Promoting Constraints to First-Class Status

Tobias Muller

Programming System Lab, Universitat des Saarlandes
Postfach 15 11 50, D-66041 Saarbriicken, Germany
tnuel | er @s. uni -sh. de

Abstract. This paper proposes to promote constraints to first-claggsstin con-
trast to constraint propagation, which performs inferemeealues of variables,
first-class constraints allow reasoning about the comtgahemselves. This lets
the programmer access the current state of a constraintcenticbta constraint’s
behavior directly, thus making powerful new programmingl &mference tech-
nigues possible, as the combination of constraint propagand rewriting con-
straints & la term rewriting. First-class constraintewalfor true meta constraint
programming. Promising applications in the field of combinial optimization
include early unsatisfiability detection, constraint refialation to improve prop-
agation, garbage collection of redundant but not yet esdaibnstraints, and find-
ing minimal inconsistent subsets of a given set of congsdr debugging im-
mediately failing constraint programs.

We demonstrate the above-mentioned applications by mdamsamples. The
experiments were done with Mozart Oz but can be easily pddesther con-
straint solvers.

Keywords: Constraint programming, first-class constraints, eailyifadetection, sim-
plification and garbage collection of constraints, minis&tk of inconsistent constraints.

1 Introduction

This paper proposes to promote constraints to first-clagesand presents three ap-
plications for combinatorial problems. In contrast to doaisit propagation, which per-
forms inference on values of variables, first-class comgBallow reasoning about the
constraints themselves. This lets the programmer accessithent state of a constraint
and control a constraint’s behavior directly, thus makiogverful new programming
and inference techniques possible, as the combination rigtiint propagation and
rewriting constraints a la term rewriting. Promising apations in the field of combi-
natorial optimization include early unsatisfiability detien, constraint reformulation
to improve propagation, and garbage collection of reduhdannot yet entailed con-
straints.

In John Lloyd, Veronica Dahl, Ulrich Furbach, Manfred KerbKung-Kiu Lau, Catuscia
Palamidessi, Luis Moniz Pereira, Yehoshua Sagiv, and PeBtuckey, editor§roceedings of
the First International Conference on Computational LogiCL2000 volume 1861 of ecture
Notes in Atrtificial Intelligencepages 429-447, London, UK, July 2000. Springer Verlag.



Commonly, a constraint that reflects its validity to a O/tiakle is called a meta
constraint. This notion is slightly misleading since thefiection does not allow for true
meta programming in the sense of self-reasoning and sdtifioation. Hence Smolka
coined the ternreified constraints, which we use in this paper, instead of meta con-
straints (first used in [6]). First-class constraints ahagonal to reified constraints
and allow fortrue meta constraint programming. For example, one can obtaindime
and the parameters of a first-class constraint and learnhehétis already entailed
or not. Furthermore, one can explicitly discard a first-glagnstraint and can turn its
propagation on or off. We demonstrate these operationseirfdliowing application
areas:

Early failure detection.Due to the limited view of a single constraint on the constrai
store, reasoning and especially failure detection is &thiibbo. Often recognizing
a certain constraint pattern makes it possible to spot amnsistency much earli-
er than constraint propagation can do and sometimes corigirapagation on its
own is not able to detect the inconsistency at all. For exampk y A y < z
is obviously inconsistent. But the time ordinary finite dampropagation takes to
detect the inconsistency is proportional to the domain sfze andy, and hence,
can be quite long. Reasoning about the constraints theessean detect the unsat-
isfiability of this constraint immediately.

Constraint simplification.Constraints fed into a constraint solver can often be imgdov
regarding their propagation behavior. Common sub-coimssdor example, can be
collapsed and constraints can be reformulated to provideddtter domain prun-
ing.

Garbage Collection.Usually constraints are garbage collected as soon as thegnar
tailed by the constraint store. But typically that requities parameter of the con-
straints to be determined. In many cases constraints ceulbarded earlier. Con-
sider the finite domain constraint+ 1 = z A x < z. The constraint < z can be
discarded since it is implied by + 1 = 2.

Minimal Sets of Inconsistent Constraintsike every kind of programming, constraint
programming is prone to error. A common programming errd¢oiput up an in-
correct model a given problem or to implement a constrairdehimcorrectly. This
frequently results in inconsistent constraints which eansmediate failure. De-
bugging such symptoms is supported by finding sets of cdntdrihat are respon-
sible for the inconsistency.

First-class constraints are defined as an abstract dataitgpein terms of opera-
tions on them. They are true first-class citizens: they cawioat any position where
primitive values can occur too, e. g., as parameters of eqiins, as return values of
functions, or as parts of composite data structures. Thaemgéne new powerful pro-
gramming techniques possible and allows the programmegxXample, to combine
constraint inference on variable values with rewritinggiques to implement hybrid
constraint solvers. Furthermore first-class constraiatslie used for prototyping so-
phisticated new constraints.

To our knowledge existing systems do not provide first-atasstraints even though
it is straightforward to add them to existing solvers (cfctS8). It is not sufficient to



have access to a C++ object representing a constraint a®i@ kolver [14, 7]. A first-
class constraint is a value of an abstract data type definexdd®t of operations (cf.
Sect. 2).

First-class constraints have been implemented with Md2arf9] and the exten-
sions are orthogonal to the existing solver and do not impageperformance penalty
when not using first-class constraints.

Plan of the paper.Sect. 2 defines first-class constraints as abstract dats. fype fol-
lowing sections investigate early failure detection, difigation, garbage collection
of constraints, and finding minimal sets of consistent aaivss. Sect. 7 contrasts the
expressiveness of first-class constraints with reified ttaims, Sect. 8 discusses im-
plementation issues and Sect. 9 comments on related woekpdpper closes with con-
cluding remarks.

2 Constraints as First-Class Values

This section introduces a general model for constraint@nfee serving as a base for the
promotion of constraints to first-class status. Then filgssconstraints are introduced
as values of an abstract data type.

A Model for Constraint InferenceConstraint inference involves @nstraint store
holding so-callebasicconstraints. A basic constraint is o . .

. . constraint- - - constraint
the formz = v (x is bound to a value), z = y (x is equated N
to another variable), or x € D (x takes its value inD). constraint store
Attached to the constraint store amen-basicconstraints.
Together with the constraint store they forrn@mputation spacé\ computation space
can be asked, among other things, if propagation has reacfivegoint [16].

Non-basic constraints, as for example+ y = 2", are more expressive than basic
constraints and, hence, require more computational efiothe following we call a
non-basic constraint “constraint”. A constraint is reatldy a computational agent (a
so-calledpropagato) observing the basic constraints offiigrametergwhich are vari-
ables in the constraint store; in the example;, andz). The purpose of a constraint
is to infer new basic constraints for its parameters and hdmtto the store. A con-
straint terminates (fails) if it is inconsistent with thenstraint store or if it is explicitly
represented by the basic constraints in the store, i. s.eittiailed by the store. A com-
putation space becomes entailed as soon as all constreégnenhailed or it becomes
failed as soon as at least one constraint fails.

First-Class ConstraintsA first-class constraint is a value of an abstract data tyge an
is hence defined in terms of its operations. It can be handtedahy other primitive
value, i.e, it can be part of composite data structures obeamsed in applications or
expressions.

Operations on first-class constraints are provided by théube@onst r ai nt . Ac-
cess to operations is obtained by thé-bperator and operations are applied by the
“{}"-operator.



Note that reflective operations are typicallgn-monotonig. e., the produced result
depends on the current state of the solver. Hence, thesetmpercan be safely applied
only if propagation has reached a fix-point. This has to berakto account when
adding new basic constraints to the constraint store wigdsaning over first-class
constraints. Adding new basic constraints typically reggithe recomputation of the
fix-point resulting in a changed set of first-class constsaio reason about.

First we define a minimal set of operations, i. e., this sesdu contain operations
which can be expressed by other operations of this set. Tleeimtwoduce operations
that make more concise and elegant programming possible.

The following operations designate the minimal set of opena to be provided:

The first two operations are required to obtain access totecfass constraint and
to be able to identify a value as a first-class constraint.

— C <- { F } (for short<- -operator) creates the constraitadds it to the current
computation space, and bind$o an abstract value referring Fo

— C <-# { F} (for short<- #-operator) creates the constraitadds it inactive,
i. e., the propagation is turned off, to the current compartegpace, and bindsto
an abstract value referring o The<- #-operator is used in conjunction with the
following abstraction:

— {Constraint.activate C} turns constraint propagation of constrainn.

— {Constraint.is C B} bindsBtotrue if Crefersto a constraint and otherwise
to false

ObviouslyC <- { F } canbe expressed by combini@g<-# { F } and{ Con-
straint.activate C} butitis added for convenience since it is the usual way to
create a first-class propagator.

Programming with first-class constraints typically inwedvrewriting sets of con-
straints to operationally more efficient formulations (thest efficient one is of course
true ). That requires discarding the redundant constraint wiialeplaced. Further-
more, reasoning about constraints may take into accounatbanstraint has already
become entailed by the constraint store, i. e., can be ighore

— {Constraint.discard C discardsC explicitly, i.e., C is removed from the
computation space. By discarding a constraint, its whokt Bpace may become
entailed.

— {Constraint.isEntailed C B} bindsBtotrue if Cis entailed, either explic-
itly by the operationdi scar d or by entailment through the constraint store, and
otherwise tdfalse

To be able to reason about constraints the programmer neédintify what kind
of constraint she is dealing with and what the parameterb@fbnstraints are like.
The question of which parameters are equal is especiallyasting because it makes
reformulations of constraints possible.

— {Constraint.get Name C N} bindsNto the name of.
— {Constraint.getParanmeters C Ps} bindsPs to the parameters d.



— {Constraint.identifyParaneters Vs |Ids} maps the list of variablegs to
a list of integer identifiers ds by assigning to each element\s the index of its
first occurrence itvs. Thus equal variables can be detected easily.

Additionally, we propose operations that have turned obetaseful and convenient
in the applications discussed in this paper.

— {Constraint.toString C S} bindsSto a textual representation of

— {Constraint.refl ect Space Rs Cs} takes a listRs of variables. It collects
all propagators that have at least one variablesofs a parameter. Furthermore,
it collects propagators which share parameters with ctepropagators. Thus,
the transistive closure of all propagators “reachableirfies is computed. The
collected propagators are turned into some normal form efired in the lisCs.

The application ofConst rai nt. refl ect Space makes it possible to use first-
class constraints in an orthogonal way since the originastraint program needs not
be modified (cf. Sect. 3 and Sect. 4).

3 Early Failure Detection

One of the major goals of constraint programming is to avejaration of parts of
the search tree that do not contain any solutions. But thereases where propaga-
tion takes significant time to detect failure or is even uadbldo so. An example for
potential long lasting propagation are the finite domainst@ints: < y Ay < =z
and2z = y A 2u = v Ay + 1 = v assuming sufficiently large domaihgAn exam-
ple for an unsatisfiable constraint that cannot be spottétibwi any meta reasoning is
z,y,2 €{0, 1} Ax A yAz# 2Ny # 2

This section demonstrates how meta constraint programuoangoe used to de-
tect unsatisfiable constraints where ordinary constraopggation fails to do so. Thus
the search tree can be significantly pruned and bigger iossaof the problem can be
solved.

We use as example a modified Hamiltonian path problem, wheraitn is to find
a path through a given directed graph from an arbitraryistanode to an arbitrary
ending node such that all nodes of the graph are visited omt¢he path is valid for
the reverse direction too.

The Constraint Model and its Implementatiohhe problem data is given as sétcs

of 2-tuplesarc(f,T), where the seT” C {1,...,n} contains all nodes € T such
that there is an arc from nodeto ¢t. Every of then nodes of the graph is represented
by a finite domain variable; € {1,...,n} which represents the position of tlith
node; the variables have to be pairwise distinct (congt(a)h. Constraint (2) expresses
the path from the starting node to the ending node. Ngde the successor ofy if

x; = xy + 1 holds. Note the extra clause for the ending point. The caimt(3) is dual

to constraint (2) and models the reverse path.

! Due to the significant propagation time, we used these ainggrin [13] to benchmark the
propagation performance of our constraint solver.



distinct(z1,...,xy,) 1)

Varc(f,T)GATcs:\/(xi:xf+1)fo:n 2
€T

VaTC(f,T)EATCS:\/(:Ei+1:$f)\/:rf:1 (3
€T

We have implemented the constraint model one-to-one witkavtaOz finite do-
main constraints and used disjunctive combinators praguchoice-points to obtain
the same behavior as the program used in [4]. The searchgtriatnaive, i. e., it picks
from the left-most finite domain variable, the minimum elementn and creates a
choice-pointt; = m V z; # m.

Deriving an Early-Failure Criterion. Deriving a criterion is a creative process and it is
hard tO give any gLIideIineS' BUI Sl Propagator Viewer: 36 propagators in space #6 - B X
it is helpful to have a tool handy | viewer

that displays the constraints in gdistinctt «l x2 =3 =t 25 x6 =7 8 w0 «10 w1l ¥12 #13 =14 )
node of the search tree. Mozarf; & 2 - 552%°

Oz [9] offers a combination of |t §*¢ -7 3=

such tools, namely the Oz Ex-|t * = - =1 4= 0

plorer [15] and the Oz Propaga-t + =4 - =5 \= 0

. 2 1 a

tor Viewer: 1 xi + K; = 8
. xl + x2 =

The figure shows a part of |1 - w2 + 3 =0

the constraints of a node of|i -1 =5°"°

the search tree without early failure detection. One mayicaothe constraints
distinct(...,x3,...,210,... ) N1 —xo +23 =0A1— 29+ 219 = 0 (last two lines).
Substitution of the two equations yields = x1¢, which contradicts the constraint
distinct(...,x3,...,210,...) (top line). Generalization of this observation leads to an
early failure detection criterion: the sBtcontains all indices of variables required to be
pairwise distinct (derived from the parameters ofdl@inct-constraint). The criterion
is:3C1,Cy : Cr = 1+ axs +ajey = 0ANCo = 1+ apxp + ey = 0A a; 50,1 #
ONi=kNj#INjleDANaj =a — failure.

Adding the Early Failure Detection CriterionThe early failure detection code is com-
pletely factored out. It is embedded in the procedd#eect Fai | ur eEar | y which is
applied as soon as constraint propagation reaches a fix-p@n right before the cre-
ation of a new choice-poirftThe procedure reflects the constraints to their first-class
representatiogs according to a normal form. The varialtigCs refers to the equation-

al constraints and the variahi st i nct Cs to the pairwise distinct constraints. Then

2 The Propagator Viewer is still experimental and not yet iffipart of the Mozart Oz distribu-
tion. It can be obtained from the author.

3 Mozart Oz provides means to synchronize on reaching a padieagfix-point: A unary pro-
cedure can be passed to the search engine and this procedpmied to the solution variable
of a search problem as soon as a fix-point is reached.



for eachdistinct-constraint a seD is computed and stored in the list of sets values
Di sti nct Set s (see [12] for details on integer sets in Mozart Oz). Here tng@émen-
tation is more general than required for this example.

proc {DetectFailureEarly RootVars}

Cs = {Constraint.refl ect Space Root Var s}
EqCs = {FilterEqualityConstraints Cs}
Di stinctCs = {FilterDistinctConstraints Cs}

Di stinctSets {Conput eDi stinct Sets Di stinctCs}

Then two nested loops (procedures Al | Tai |  andFor Al | ® applying anony-
mous procedure$) try to match the appropriate equational constraints atiogrto
the early failure detection criterion. An equational coaistt is represented by a tuple
“=:" (P LHS RHS) whereP is a reference to the actual constraint ars (RHS) is the
left hand-side (right hand-side) of the equation. The lefpr right hand-side is repre-
sented by a list of addend tupleddend( Si gn Coeff Var) whereSi gn is the sign
(—1or1), Coef f is the absolute value of the coefficient, avat is a reference to the
variable.

Constraints of forml + ax + by = 0 are isolated by pattern matching and the
pattern for such a constraintis: " (_ [Al A2 A3] 0)° as it can be found in the
case -statements.

in
{ForAl'l Tail EQqCs
proc {$ Tail}
case Tail of ("=:"(_[A XL X2] 0)) | T then
{ForAIl T
proc {$ TC}
case TCof ~ =" (_[B Y1l Y2] 0) then

After isolating two matching equational constraints thestant addends are com-
pared and it is checked if the variables are ibaet. The predicatgone is true if
at least one of the elements of the list passed (bes¢i nct Set s) evaluates the 2nd
argument function tarue .

if A == B andthen
{Some DistinctSets
fun {$ Set}
{VarlslnSet X1 Set}
andthen {VarlslnSet X2 Set}
andthen {VarlslnSet Y1 Set}
andthen {VarlslnSet Y2 Set}
end}
then

4 The proceduré For Al | Tai | Li st Proc} applies the unary proceduRe oc to all non-
ni | tails of listLi st .

5 The procedurd For Al | Li st Proc} applies the unary proceduR® oc to all elements
of listLi st .

6 Note that there is an order on the addends: the first one igaminshe next ones contain
variables and the variables are subject to a certain order.



Here the anonymous functiaghchecks if the variables of the addends are in one
and the samé-set. It uses the predicat@ar | sl nSet which checks if a variable is in
a given set. The connectandthen is a short-circuit conjunction.

if {IsEgAddend X1 Y1}
andthen {IsNeqAddend X2 Y2}
orelse {1 sEgAddend X1 Y2}
andthen {l sNegAddend X2 Y1}
orelse {1 sEgAddend X2 Y1}
andthen {l sNegAddend X1 Y2}
orelse {lsEgAddend X2 Y2}
andthen {IsNeqgAddend X1 Y1}
then fail % raise failure
end
end
end % case
end}
end % case
end}
end % Det ect Fail ureEarly

Finally, the variables of the addends are tested to meetahyg failure detection
criterion and if so, failure is raised by the statemiaiit . The predicaté sEqAddend
(I sNegAddend) tests if two addends are equal (not equal). The individpplieations
of I sEgAddend are connected by the short-circuit disjunctiort hen.

Evaluation. Table 1 shows the effectiveness of the presented technmpeegsively.
Entries '~ indicate that after 100.000 nodes of the seareh ho solution was found
and search was aborted.

no early failure detectign with early failure detection
# nodes solution found after | solution found after# detected
# choices# failures |# choices# failures failures

10 72/52 72/52 0
20 - 160/124 1
30 - 298/244 68
40 - 499/406 162
50 - 499/406 162

Table 1. Effectiveness of early failure detection.

By accident the results for problems with 40 and 50 nodesdammetical. The first
solution was found on a 200MHz Pentium Pro in a range from tnteha second till
less than a minute depending on the problem. But the bendisraan at demonstrating
the effectiveness of the technique, and the early failuteatien code has not been
particularly optimized.

Early failure detection requires constraints to be firsisslvalues in order to re-
flect the state of the constraint solver for making symboétedtion of inconsistent
constraints possible.



4 Constraint Simplification

This section demonstrates another constraint programiadaigique made possible by
first-class constraints. It is not unusual that a constraiatiel and consequently its
implementation contains redundant constraints or coinssrm a formulation that does
not allow for the strongest possible propagation.

Consider the constraint+x = y Az € {1,2} Ay € {3,4}. Without exploiting the
equality of the two variables on the left hand-side the awiirst cannot deduce that the
only valid instantiation is = 2Ay = 4. Hence the simplification+z =y — 2z =y
improves constraint propagation significantly.

This section reuses the Hamiltonian path problem define@t. 8 but uses reified
constraints instead of disjunctive combinators. A reifiedstraint connects a constraint
C with a O/1-variableB: (C <~ B) A B € {0, 1}. Variable B is bound to1(0) if C
is entailed (disentailed). As long &3 is unboundC' does not add any constraints to
the constraint store. In cade is bound to1(0) the reified constraint is replaced by
C(—C). Reified constraints are used mainly for handling over-gaired problems,
i. e., problems where not all constraints can be fulfilled rdeg or for modeling dis-
junctive constraints as in the following case.

The Constraint Model and its Implementatiofhe constraint model expresses the dis-
junctions by reified constraints. The parentheses “()” @siolg the equations indicate
reification. Constraint (5) stands for the path from thetstgrto the ending node and
constraint (6) for the same path in reverse direction.

distinct(zq, ..., x,) (4)

Y oarc(f,T) € Arcs : <(zfn)+2(xixf+1)> =1 (5)
i€T

YV oare(f,T) € Arcs : ((acle)—l—Z(xi—i—l:mf)) =1 (6)
€T

Deriving a Simplification Rule. In this case finding a suitable rule is easy.
Regard the ||neS In_the flgure S Propagator Viewer: 93 propagators in space #1
starting with the variables1s  viewer

and z3. In both cases the cor-[aistincti w1 w2 w17 «18 x19 20 w21 w22 w23 x24 |
. . . 2d == § 1 4+ x2 - w24 =0 )
responding constraints reify+ [ < {1« st - xz -0

|
|

r1 — 2o = 0. That makes it pos- |5, o {172, 2 =0
|
1
|

sible to equater;s andz3 and [** 1hxd -2 =0

x13 1 - =1 + 22 =10

Y

=
=]
=

to discard a copy ol + z; — |=¢ 1-x=0)
®x8 a=r {1 - xl + %2 =10
xzo = 0. In general3(C; < [x <> 110 - =1 -0,

x3 #=r | 1+ xl - x2=0])

B,L-),(C]-HBJ-):CZ-:CJ'*) XT3 <= {1 4 x23 - 124 = 0 )
. %70 <=+ { 10 - x2¢4 = 0 )
B; = Bj A d’LSCGTd(Cj)- AR a=> L1 - x77 4 w24 = 04




The proposed simplification
has two effects: it removes redundant propagation by distgsuperfluous constraints,
and it strengthens the constraint store by adding equalitgtcaints’

Adding Constraint SimplificationConstraint simplification is executed whenever prop-
agation reaches its fix-point. It reflects the constraintssa@dmputation space witton-
straint.refl ect Space to obtain direct access to the constraints, and fun&tion

t er Rei fi ed filters out all reified constraint®” « B) since the other constraints are
of no interest. The result is storedReCs. FurthermoreFi | t er Rei f i ed generates a
textual representation @ usingConst r ai nt . t oSt ri ng which is used as index for
the dictionaryDi ct to easily identify reified constraints which are identicaldunlo the
0/1-variableB.

fun {SinplifyAndCol | ect Root Vars}
ReCs = {FilterReified {Constraint.refl ect Space Root Vars}}
Dict = {NewDi ctionary}
n
For each reified constraint the actual simplification is dioreeFor Al | loop which
calls an anonymous procedu§eThis procedure accesses the components of its argu-
ment by pattern matching:is the textual representation indéXis a reference to the
reified constraint itselfC the reified constraint, anglis a 0/1-variable. Note that is
the infix tuple constructor and hencgr ei fi ed( P C B) is a 2-tuple matched against
the argument passed to the anonymous procedure.

{ForAl'l ReCs
proc {$ l#reified(P C B)}
if {Dictionary.menber Dict |} then
reified(P1 C1 Bl) = {Dictionary.get Dict I}
in
Bl = B
{Constraint.discard P}
else
{Dictionary.put Dict | reified(P C B)}
end
end}
%return 0/ 1-variables of the reified constraints
{RetrieveBools Dict}
end % Si npli fyAndCol | ect

UsingDi cti onary. menber the procedure checks if a reified constraint is already
stored under the textual representation indexf so, the individual components of
the entries are retrieved by pattern matcRjrthe 0/1-variables are equated, and the
constraint referred to bl is stated to be entailed §onst r ai nt . di scard. That is
exactly what the simplification rule requires. In case théee constraint is not yet

" In Mozart Oz equality is represented directly in the cornstrstore.

8 The return value of the function applicatigrDi cti onary. get Dict |} is matched
against the tupleei fi ed(P1 C1 B1) and the newly introduced variabl®d C1 Bl are
bound accordingly.



stored inDi ct a new entry is created by cti onary. put . Finally, the 0/1-variables
of the reified constraints are retrieved and returnegdiyr i eveBool s.

The search strategy branches over the 0/1-variables oéifiedrconstraints (5) and
(6) returned bysi npl i f yAndCol | ect to stay as close as possible to the program used
in Sect. 3.

Evaluation. The number of 0/1-variables coming from the reified constsais sig-
nificantly reduced by simplification. In combination withetiadditional equality con-
straints, this leads to an enormous reduction of choicetpsee Table 2), even better
than for early failure detection in Sect. 3.

no simplification with simplification
# nodes solution found after solution found after# simplified
# choices#t failureg# choices# failures constraints

10 292/288 4/2 26
20 - 19/0 60
30 - 19/94 118
40 - 2673/2632 158
50 - 122/73 199

Table 2. Effectiveness of constraint simplification.

Only for the graph with 40 nodes the number of choice pointsush greater. This
indicates that the search strategy used is not stable eregajhst variations of the
problems, but this is not the focus of this paper.

Constraint simplification requires constraints to be filsiss values in order to re-
flect the state of the constraint solver and thus making syimbonstraint simplifica-
tions possible.

5 Garbage Collection of Constraints

Usually constraint solvers collect redundant constrastthey become entailed by the
constraints in the store. Even if their memory is not freed the implementation of
the solver, they are at least not rerun anymore if their patara receive new basic
constraints. For example, consider< y Az € {0,...,3} Ay € {3,...,6}, and
suppose the<-constraint is entailed by the basic constraint€ {0,...,3} Ay €
{3,...,6} and is garbage collected. That is not always the case, asrdrated for
the no-overlap constraint in the tiling problem.

The Problem Description and the Constraint Mod@l.given number of square tiles
has to be placed on a master plate (see figure). The tiles ratist .

exceed the master plate along theandy-axis. This is enforced by
the capacity-constraint which is not of interest here. Furthermor
the tiles must not overlap which is enforced by theoverlap-

constraint. Consider the square tilEsand 75 with lengthl/; and ||



l5. Their positions on the master plate are determined by léfelower cornergay, y1)
and(zs, y2) which results in thevonoverlap-constraint

ri+h <zeVazo+lh <z Vyr+h <yaVya+ 12 < y1. (7)

The constraint (7) is encoded by the reified constraint

(mr+h<z)+(2+b<a)+ W +h<y)+@+l<y)>1

Note the>-constraint which is necessary since two tiles can be namlapping in
both thez- andy-axis. This constraint causes the trouble regarding garbatiection
since as soon as one of its reified constraints is valid theirgng three constraints
could be discarded. But this is impossible without firsisslaonstraints because a rei-
fied constraint cannot be discarded, it just reduces to itsegltled positive or negative
constraint.

Implementation IssuesThe encoding of theonoverlap-constraint by the procedure
I nposeNonOver | ap catches the references to the individual constraints waghli. e.,
the reified<-constraints and the-constraint. This is achieved by using the-operator.
The nonoverlap-constraint returns these references wrapped in the tuplever -
lap(PO [P1 P2 P3 P4]).

fun {1 nmposeNonOverlap X1 Y1 L1 X2 Y2 L2}
Bl B2 B3 B4 PO P1 P2 P3 P4
in

PlL <- {(X1 + L1 =<: X2) = B1}
P2 <- {(X2 + L2 =<: X1) = B2}
P3 <- {(Y1 + L1 =<: Y2) = B3}
P4 <- {(Y2 + L2 =<: Y1) = B4}
PO <- {B1 + B2 + B3 + B4 >=: 1}

nonoverl ap(PO [P1 P2 P3 P4])
end

The procedureCol | ect NonOver | apConst rai nts is called when propagation
has reached a fix-point. It receives as its argument a listjgles produced bym
poseNonOver | ap and checks for all tuples if the enclosedconstraint is entailed by
applyingConst rai nt . i sEnt ai | ed to PO. If so, the remaining reified constraints are
determined to be entailed Igpnst r ai nt . di scard.

proc {Col | ect NonOver| apConstrai nt s NonOverl| apConst rai nt s}
{ForAl'l NonOverl apConstraints
proc {$ nonoverl ap(PO Ps)}
if {Constraint.isEntailed PO} then
{ForAll Ps proc {$ P}
if not {Constraint.isEntailed P}
then {Constraint.discard P} end
end}



end
end}
end

Evaluation. Table 3 shows the number of reifiedconstraints garbage collected for
different instances of the tiling problem.

# tiles|# collected constrainfsaved memory

6 18 5K

9 44 11K
17 197 100K
21 1528 1.7M

Table 3. Effectiveness of constraint garbage collection.

The third column shows the amount of memory saved which islarte with the
overhead imposed by the extra data structures used.

The proposed garbage collection scheme relies on firs$-classtraints for detect-
ing redundant constraints and for explicitly discardinghsuonstraints since they can-
not be garbage collected yet by entailment.

6 Computing Minimal Sets of Inconsistent Constraints

Solving a combinatorial problem by constraint programmieguires expressing the
problem in terms of constraints, i.e., finding a constraiodel, and implement the
conceived constraint model as a constraint program for eret&constraint solver. This
process is prone to error. The first run of the constraint anogrequently results in an
immediate failure of the solver, caused by an inconsistetdiconstraints. The set of
constraints is usually large and only a subset is respanfibthe failure. Hence, being
able to find minimal inconsistent subsets of constraintsgifen set of constraints may
simplify debugging the above-described situation sigaifity. Note that there may be
several minimal inconsistent sets of constraints sincerséerrors may occur at once.

Idea. According to the model presented in Sect. 2, constraintggapon takes place
in computation spaces. A failed space hosts an inconsis¢¢mtf constraints. Finding
minimal sets of inconsistent constraints starts by refigctihe last consistent state of
the failed computation space. Reflection comprises altlisistraints, i. e., constraints
of the formz € D andz = y, and all propagators. Such a reflection makes it possi-
ble to restore the constraints of the last consistent sfatieeofailed space in a fresh
space. Since such a restoring would immediately result iailaré, the propagators
are imposed amactive first-class propagators e., they are imposed with propagation
turned off. A solution is a set of inconsistent propagatbience, the fresh space is ap-
propriately wrapped to propagate its failure as solutidre $tarting point for searching
a solution that all propagators are inactive. Search turmgggation successively on for
every propagator and then checks whether the set of actygapators is inconsistent
or not.



Implementation. The last consistent state of a failed computation spaceflected

by Constraint.refl ect Space and equal variables are spotted @ynst rai nt.

i denti f yPar amet er s. The reflected propagators are imposed as inactive firsscla
propagators using the- #-operator in a fresh computation space to be able to catch
failure. Furthermore, every propagator is assigned a @nigteger identifier and is
connected via its corresponding first-class value @g avariable such, that constrain-
ing the0/1-variable tol (0) activates (discards) the propagator. That makes it plessib
to use the standard search library on finite domain variaBle®ssible solution is a set

of integers denoting a set of inconsistent propagators.

We are interested in minimal sets of inconsistent congsaBranch-and-bound
search is used to ensure that new solutions are either armapset of an already found
solution or a distinct set of inconsistent constraints. Asprapriate order constraint,
which ensures that new solutions meet the above conditas td take into account
two cases:

1. a new solutionV is a proper subset of the current solutiOni.e., N C O resp.
N\ C # (0 whereC = NNO.

2. anew solutionV is distinct to the set of inconsistent constrai@tsi.e.,O \ C #
D AN\C #0whereC =NnO.

These two conditions can be collapsedxq (N N O) # §. The implementation of
the order constraint uses Mozart Oz’s finite set constrflr2ys

A first minimal set of inconsistent constraints is found bgrghg with all prop-
agator’s propagation turned on and successively turningggation off. As soon as
turning a propagator inactive makes the set of active prafoag not immediately in-
consistent, this propagator is kept active. Thus, by pingsall propagators once, a
first minimal set of inconsistent constraints is found. Figdother possible sets re-
quires backtracking to the first propagator turned inaciivd turning this propagator
active and continue search from there. The order constlastribed above prunes the
search space further by disallowing solutions subsumiregadly known ones.

Example.Consider the inconsistent set of constraints composeceafthstraints;  5:

T <ay NY <c2 2z ANz <3 T N [ EEmmm———w —

z <eq u N u <g x. As one can easily see, a1

there are two minimal sets of constraints that are

not in a subset relationS1 = {c1,¢2,¢3} and

S2={cl,c2,c4,c5}. q
Expectedly, the search routine finds two so-

lutions S1 and S2, as the corresponding search

tree shows (see the rhombus-shaped nodes in the

Mozart Explorer display [15] in Fig. 1). et _Qnozin S
We use the Mozart Constraint Investiga- Fig. 1. Search tree of example.

tor [10] to present the solutions graphically. The first $olu, corresponding t&'1,

is shown as a variable graph in Fig. 2(a), i. e., the nodeseofitaph denote variables

and edges represent propagators. Thick solid edges staptbfmagators being part of

the set of inconsistent constraints.




* X{0#10} * Z{0#10}

(a) Parameter graph where failed propagator edges aredbiickline.

FD.lessEqOff

failedset.0z:39

FD.lessEqOff
failedset.0z:42

FD.lessEqOff
failedset.0z:37

FD.lessEqOff
failedset.o0z:41

FD.lessEqOff
failedset.0z:38

(b) Constraint graph where nodes of failed propagatorstaedes.

Fig. 2. First solution (left-most solution (rhombus) node in Fiy. 1

The propagator graph in Fig. 2(b) depicts propagators assaiad variables shared
between propagators as edges between the respective atofzadPropagators being
part of the inconsistent set of constraints are shaded.Hgawiopagators, represented
by their nodes, identified as being responsible for a fajltire Investigator allows to
highlight their occurrence in the source code by simplykitig the respective propa-
gator node.

* X{0#10} * Z{0#10}

Fig. 3. Variable graph of second solution (right-most solutiororiibus) node in Fig. 1).
The second solution, correspondingd®, is shown as the variable graph in Fig. 3
and reveals a second reason for the example set constraintsibconsistent.

First-class constraints are the key to this applicationesthey make it possible to
reflect a failed computation space and to do search overredmtstby explicitly turning
propagation on and off.



7 First-Class Constraints vs. Reified Constraints

This section summarizes the unique features of first-claastraints used in the pre-
sented applications and argues why the expressivenesstefléiss constraints goes far
beyond what can be expressed with reified constraints.

Reflection.First-class constraints make it possible to reflect the @gafor's name and
parameters to values. Reified constraints do not offer téeflec

Activation and DeactivationApplications searching over sets of constraints (cf. S8ct.
have to be able to impose propagators with propagation duoffeand then to
toggle propagation as computation proceeds. Initiallifie@ constraintgC' —

B € {0,1}) are inactive w.r.t. propagation. Turning propagation odase by
constrainingB to 1. But once turned on, propagation cannot be turned off due to
monotonicity of reified constraint® Although not mentioned so far, propagation of
a first-class constrairit can be turned off by callingConst r ai nt . deacti vat e

G.

Explicit Entailment. Applications rewriting constraints need to be able to didc@n-
straints even if they are not entailed by the constraintestBeplacing a set of
constraintsC by T is the special case of garbage collectihgas demonstrated
in Sect. 5. Replacing by C’ # T was discussed as constraint simplification in
Sect. 4. Reified constraints do not support this functityali

Checking for Entailmentlt is frequently necessary to find out if a constraint is alsea
entailed or not. First-class constraints provide the dpmr&onst r ai nt . i sActi ve.
Reified constraints can be used for entailment checkingtbereB = 1 indicates
entailment. The constrairi® A (C — B € {0,1}) does this test but it must be
ensured thaB # 0.

Operations on first-class constraints are non-monotardg,they can be undone or
can produce different result depending on the current statee computation space
they are applied on. Reified constraints are monotonic, they cannotbe undone
and in conjunction with a certain set of other constraingytalways reach the same
fix-point. In fact, first-class constraints and reified coaisits areorthogonal concepts
and reified constraints can of course be first-class consdréoo (cf. Sect. 5 where
the nonoverlap-constraint uses reified first-class constraints). The digdeonotion
metais somewhat misleading since true meta programming is oodgiple with the
expressiveness that first-class constraints provide.

8 Adding First-Class Constraints to an Existing Solver

This section briefly summarizes the necessary additions &xeting constraint solver
to provide for first-class constraints.

Promoting a constraint to first-class status means giviagptbgrammer direct ac-
cess to it and thus being able to inspect and control the @nstThis is straightfor-
wardly done by introducing a data type referring to conatsai

% Note that constraining? to 0 imposes the negative constraint.



Inspecting a constraint (ciet Name andget Par anet er s in Sect. 2) requires be-
ing able to retrieve a constraint’s parameters and namest@ont solvers implemented
in C++ typically represent a constraint as an object sudhtiseasy to add appropriate
member functions and keep the changes local to the actusireants.

Furthermore, first-class constraints need to have a unidgwstity to enable the
check for equality of first-class constraififsThis can be done by deriving an iden-
tity from the memory address of the object representing atcaimt. But care must be
taken for garbage collection and all kinds of operations$ th@nge the location of a
constraint in memory.

Discarding a constraint and checking for entailmentdickcar d andi sEnt ai | ed
in Sect. 2) typically requires setting a flag in the constra@presentation. The con-
straint solver has to check right before the execution of mstraint whether it was
explicitly entailed in the mean-time, i. e., between walgeand execution, or not.

The programming technigues presented in Sect. 3, Sectd&egct. 5 need to detect
the fix-point of constraint propagation. Hence the constdainguage has to provide a
combinator that allows the programmer to do so. Implemantahay simply check if
the propagation queue, which maintains constraints to beug®d next, is empty.

The experimental implementation of first-class constgaivds straightforward since
Mozart Oz provides so-called extensions. They are inteta@dlow the programmer
to add new data types via a C++ interface [8]. There were nafinations necessary
to the actual propagation engine such that there are norpafae penalties.

9 Related Work

One approach at gaining more control and expressivity ovasttaints was the idea
to exploit a constraint’s truth value as proposed for thelicality constraint in [18].
Applying arithmetic and boolean operations to constraitrtith values was explored
in [1]. These constraints are usually called meta or reifatstraints. They are available
in nearly all current constraints solvers.

Meta-programming as known from Lisp or Prolog means maaijing a program
by another program. Therefore, the program code is repieders a term of the re-
spective programming language and then submitted to a imietigoreter written in this
language. Such a scheme for the constraint programmingdayeyCLPR) is proposed
in [5]. They usegquot e andeval functions which are analogous to the corresponding
Lisp functions.

Solvers dedicated to a certain set of constraints as wekdiated constraints can
of course do the same analysis as discussed in this papdt.a@aidy failure detection
as described in Sect. 3 has been proposed as a by-produdlgfiag the impact of
simplifications for equational constraints on the propigetbehavior.

ILOG Solver [7] is a C++ library for constraint programming C++. It does not
support first-class constraints as presented in this pagelL®G Solver 4.4 allows
the user to define a new constraint by defining a new class afti@ints derived from

10 This paper ignores identity on first-class constraints.iBome has to implementef | ect -
Space just with the other operations, to guarantee terminatiom twas to check equality of
constraints.



the library class | cConstrai nt 1. It is straightforward to provide the required extra
functionality according to Sect. 8 by adding appropriaterrber functions to the class
definition of the new constraint.

Constraint Handling Rules (CHR) [3] are a committed-chdéceyuage for rewrit-
ing constraints towards a solved form which eventually dem@ solution. A CHR
program is a set of guarded rules of the fof op G | B whereop € {<=>,==>},
H=Hy,...,H;,G=Gy,...,Gj,andB = By,...,B;. Amulti-headH is a se-
quence of CHR, the guar@ is a sequence of built-in constraints, and the bétis
a sequence of CHR and built-in constraints. A rule fires as sma the CHR store
implies H and the constraint store impli€s. Then the CHR and constraint store are
extended byB. A propagation ruledp = ==>) extends the appropriate stores by re-
dundant constraint®. A simplification rule pp = <=>) behaves like a propagation
rule but additionally remove& from the CHR store. CHR can be used to implement
the techniques proposed in Sect. 3 and Sect. 4 due to thelmealtis of the rules. For
example, the inconsistent constraink y A y < z can be detected by the following
CHR rule:

| ess(x,y),less(y,x) <=> true | false

To the best of our knowledge none of the above-mentionedbagpes, nor other
existing systems, offer the same expressiveness or ganasathe scheme proposed in
this paper, to promote constraints to first-class status.

10 Conclusion and Future Work

We have introduced constraints as first-class citizensmarebtigated possible fields of
application. Furthermore, we have demonstrated progragnteichniques using first-
class constraints, have proved their effectiveness, angedrthat first-class constraints
and reified constraints are orthogonal concepts (cf. Sgct. 7

The experiments have shown that the programmer needs ajatecgnalysis tools
to find powerful meta-constraint propagation rules esplgciar the techniques dis-
cussed in Sect. 3 and Sect. 4. Furthermore, the effects glifisation and garbage
collection may overlap since simplified constraints becoetkindant and can be dis-
carded.

The experiments were done with Mozart Oz using the Oz Expéord the Oz Prop-
agator Viewer. The experimental implementation of firstssl constraint was straight-
forward since Mozart Oz provides adequate programmingfaxtes to extend the con-
straint solver’s functionality easily from user level [8]1

Extending an existing constraint solver can be done withimmheffort and without
performance penalties when first-class constraints araseut.

Acknowledgements.am grateful to Warwick Harwey for discussing with me issoés
early failure detection and pointing me to the Hamiltoniathpproblem as a suitable
example. Katrin Erk, Leif Kornstaedt, Kevin Ng Ka Boon andriStian Schulte gave
helpful comments on earlier versions of the paper. FurtbeenChristian brought the
tiling example in Sect. 5 to my attention. Moreover, | am gfakto Ulrich Neumerkel



for discussing ideas about inconsistent sets of consstaiiite graphs in Sect. 6 were
drawn withdaVinci[17]. Last but not least | would like to thank the anonymodemees
for their comments.

References

1.

2.

11.

12.

13.

14.

15.

16.

Frédéric Benhamou and William J. Older. Applying int#rarithmetic to real, integer and
boolean constraintslournal of Logic Programmingl997.

M. Dinchas, P. Van Hentenryck, H. Simonis, A. Aggoun, TafGand F. Berthier. The con-
straint logic programming language CHIP. Pnoceedings of the International Conference
on Fifth Generation Computer Systems FGCSg#fjes 693702, Tokyo, Japan, December
1988. Institute for New Generation Computer Technology(QTg, Tokyo, Japan.

. Thom Friwirth. Theory and practice of constraint hamglliules.Special Issue on Constraint

Logic Programming, Journal of Logic Programmingj7(1-3), October 1998.

. Warwick Harvey and Peter J. Stuckey. Constraint reptatien for propagation. In M. Ma-

her and J.-F. Puget, edito®roceedings of the Fourth International Conference on Eirin
ples and Practice of Constraint Programming (CP982cture Notes in Computer Science,
pages 235-249, Pisa, Italy, October 1998. Springer-Verlag

. Nevin Heintze, Spiro Michaylov, Peter J. Stuckey, andaRdIH. C. Yap. Meta-programming

in CLP(R). Journal of Logic Programming33(3):221-259, December 1997.

. Martin Henz and Jorg Wurtz. Using Oz for college timéitah In E.K. Burke and

P. Ross, editorRractice and Theory of Automated Timetabling, First Intgional Confer-
ence, Selected Papers, Edinburgh 19883ume 1153 of ecture Notes in Computer Science,
Springet pages 162—-178. Springer-Verlag, Berlin-Heidelberg 6199

. ILOG S. A., URL: http://www.ilog.com/ILOG Solver 4.4, User's Manuall999.
. Michael Mehl, Tobias Muiller, Christian Schulte, and Ratheidhauer. Interfacing to C

and C++. Technical report, Mozart Consortium, 1999. Avddaat http://www.mozart-
oz.org/documentation/foreign/index.html.

. The Mozart ConsortiumThe Mozart Programming Systeimttp://www.mozart-0z.org/.
. Tobias Miuller. Practical investigation of constraintith graph views. In Konstantinos Sag-

onas and Paul Tarau, editoPrpceedings of the International Workshop on Implemeoitati
of Declarative Languages (IDL'995eptember 1999.

Tobias Miller. The Mozart Constraint Extensions TialorTechnical report, Mozart Con-
sortium, 1999. Available at http://www.mozart-oz.orgédmentation/cpitut/index.html.
Tobias Muller and Martin Muller. Finite set constrigiin Oz. In Francois Bry, Burkhard
Freitag, and Dietmar Seipel, editofs3. Workshop Logische Programmierymmages 104—
115, Technische Universitat Miinchen, 17-19 Septemb@r.19

Tobias Muller and Jorg Wirtz. Extending a concurentstraint language by propagators.
In Jan Maluszyhski, editoRroceedings of the International Logic Programming Sympo-
sium pages 149-163. The MIT Press, Cambridge, 1997.

Jean-Francois Puget and Michel Leconte. Beyond ttes ¢lax: Constraints as objects. In
John Lloyd, editorl.ogic Programming — Proceedings of the 1995 InternationahSosium
pages 513-527. The MIT Press, Cambridge, December 1995.

Christian Schulte. Oz Explorer: A visual constraintgreanming tool. In Lee Naish, editor,
Proceedings of the Fourteenth International Conferencéagic Programmingpages 286—
300, Leuven, Belgium, 8-11 July 1997. The MIT Press, Cangarid

Christian Schulte. Programming constraint inferemmgrees. In Gert Smolka, editdpro-
ceedings of the Third International Conference on Prineshnd Practice of Constraint Pro-
gramming volume 1330 ofLecture Notes in Computer Scien&chloss Hagenberg, Linz,
Austria, October 1997. Springer-Verlag, Berlin-Heidethe



17.

18.

19.

Universitat Bremen, Group of Prof. Dr. Bernd KrieguBkiher. The Graph Visualization
System daVincihttp://www.informatik.uni-bremen.de/ davinci/.

Pascal Van Hentenryck and Yves Deville. The Cardin®iperator: A new Logical Con-
nective for Constraint Logic Programming. In Koichi Furukg editor,Proceedings of the
International Conference on Logic Programmijmgages 745-759, Paris, France, 1991. The
MIT Press.

Pascal Van Hentenryck, Vijay Saraswat, and Yves DeWl&sign, implementation and eval-
uation of the constraint language cc(FD). In Andreas P&@edslitor, Constraints: Basics
and Trendsvolume 910 of_ecture Notes in Computer Scien&pringer Verlag, 1995.



