
Promoting Constraints to First-Class Status

Tobias Müller

Programming System Lab, Universität des Saarlandes
Postfach 15 11 50, D-66041 Saarbrücken, Germany

tmueller@ps.uni-sb.de

Abstract. This paper proposes to promote constraints to first-class status. In con-
trast to constraint propagation, which performs inferenceon values of variables,
first-class constraints allow reasoning about the constraints themselves. This lets
the programmer access the current state of a constraint and control a constraint’s
behavior directly, thus making powerful new programming and inference tech-
niques possible, as the combination of constraint propagation and rewriting con-
straints à la term rewriting. First-class constraints allow for true meta constraint
programming. Promising applications in the field of combinatorial optimization
include early unsatisfiability detection, constraint reformulation to improve prop-
agation, garbage collection of redundant but not yet entailed constraints, and find-
ing minimal inconsistent subsets of a given set of constraints for debugging im-
mediately failing constraint programs.
We demonstrate the above-mentioned applications by means of examples. The
experiments were done with Mozart Oz but can be easily portedto other con-
straint solvers.

Keywords: Constraint programming, first-class constraints, early failure detection, sim-
plification and garbage collection of constraints, minimalsets of inconsistent constraints.

1 Introduction

This paper proposes to promote constraints to first-class status and presents three ap-
plications for combinatorial problems. In contrast to constraint propagation, which per-
forms inference on values of variables, first-class constraints allow reasoning about the
constraints themselves. This lets the programmer access the current state of a constraint
and control a constraint’s behavior directly, thus making powerful new programming
and inference techniques possible, as the combination of constraint propagation and
rewriting constraints à la term rewriting. Promising applications in the field of combi-
natorial optimization include early unsatisfiability detection, constraint reformulation
to improve propagation, and garbage collection of redundant but not yet entailed con-
straints.

In John Lloyd, Veronica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia
Palamidessi, Luı́s Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey, editors,Proceedings of
the First International Conference on Computational Logic– CL2000, volume 1861 ofLecture
Notes in Artificial Intelligence, pages 429–447, London, UK, July 2000. Springer Verlag.

Commonly, a constraint that reflects its validity to a 0/1-variable is called a meta
constraint. This notion is slightly misleading since this reflection does not allow for true
meta programming in the sense of self-reasoning and self-modification. Hence Smolka
coined the termreified constraints, which we use in this paper, instead of meta con-
straints (first used in [6]). First-class constraints are orthogonal to reified constraints
and allow fortruemeta constraint programming. For example, one can obtain the name
and the parameters of a first-class constraint and learn whether it is already entailed
or not. Furthermore, one can explicitly discard a first-class constraint and can turn its
propagation on or off. We demonstrate these operations in the following application
areas:

Early failure detection.Due to the limited view of a single constraint on the constraint
store, reasoning and especially failure detection is limited too. Often recognizing
a certain constraint pattern makes it possible to spot an inconsistency much earli-
er than constraint propagation can do and sometimes constraint propagation on its
own is not able to detect the inconsistency at all. For example x < y ∧ y < x
is obviously inconsistent. But the time ordinary finite domain propagation takes to
detect the inconsistency is proportional to the domain sizeof x andy, and hence,
can be quite long. Reasoning about the constraints themselves can detect the unsat-
isfiability of this constraint immediately.

Constraint simplification.Constraints fed into a constraint solver can often be improved
regarding their propagation behavior. Common sub-constraints, for example, can be
collapsed and constraints can be reformulated to provided for better domain prun-
ing.

Garbage Collection.Usually constraints are garbage collected as soon as they are en-
tailed by the constraint store. But typically that requiresthe parameter of the con-
straints to be determined. In many cases constraints could be discarded earlier. Con-
sider the finite domain constraintx + 1 = z ∧ x ≤ z. The constraintx ≤ z can be
discarded since it is implied byx + 1 = z.

Minimal Sets of Inconsistent Constraints.Like every kind of programming, constraint
programming is prone to error. A common programming error isto put up an in-
correct model a given problem or to implement a constraint model incorrectly. This
frequently results in inconsistent constraints which cause immediate failure. De-
bugging such symptoms is supported by finding sets of constraints that are respon-
sible for the inconsistency.

First-class constraints are defined as an abstract data type, i. e., in terms of opera-
tions on them. They are true first-class citizens: they can occur at any position where
primitive values can occur too, e. g., as parameters of applications, as return values of
functions, or as parts of composite data structures. That makes the new powerful pro-
gramming techniques possible and allows the programmer, for example, to combine
constraint inference on variable values with rewriting techniques to implement hybrid
constraint solvers. Furthermore first-class constraints can be used for prototyping so-
phisticated new constraints.

To our knowledge existing systems do not provide first-classconstraints even though
it is straightforward to add them to existing solvers (cf. Sect. 8). It is not sufficient to

have access to a C++ object representing a constraint as in ILOG Solver [14, 7]. A first-
class constraint is a value of an abstract data type defined bya set of operations (cf.
Sect. 2).

First-class constraints have been implemented with MozartOz [9] and the exten-
sions are orthogonal to the existing solver and do not imposeany performance penalty
when not using first-class constraints.

Plan of the paper.Sect. 2 defines first-class constraints as abstract data types. The fol-
lowing sections investigate early failure detection, simplification, garbage collection
of constraints, and finding minimal sets of consistent constraints. Sect. 7 contrasts the
expressiveness of first-class constraints with reified constraints, Sect. 8 discusses im-
plementation issues and Sect. 9 comments on related work. The paper closes with con-
cluding remarks.

2 Constraints as First-Class Values

This section introduces a general model for constraint inference serving as a base for the
promotion of constraints to first-class status. Then first-class constraints are introduced
as values of an abstract data type.

A Model for Constraint Inference.Constraint inference involves aconstraint store,

constraint· · · constraint

constraint store

holding so-calledbasicconstraints. A basic constraint is of
the formx = v (x is bound to a valuev), x = y (x is equated
to another variabley), or x ∈ D (x takes its value inD).
Attached to the constraint store arenon-basicconstraints.
Together with the constraint store they form acomputation space. A computation space
can be asked, among other things, if propagation has reacheda fix-point [16].

Non-basic constraints, as for example “x + y = z”, are more expressive than basic
constraints and, hence, require more computational effort. In the following we call a
non-basic constraint “constraint”. A constraint is realized by a computational agent (a
so-calledpropagator) observing the basic constraints of itsparameters(which are vari-
ables in the constraint store; in the examplex, y, andz). The purpose of a constraint
is to infer new basic constraints for its parameters and add them to the store. A con-
straint terminates (fails) if it is inconsistent with the constraint store or if it is explicitly
represented by the basic constraints in the store, i. e., it is entailed by the store. A com-
putation space becomes entailed as soon as all constraints are entailed or it becomes
failed as soon as at least one constraint fails.

First-Class Constraints.A first-class constraint is a value of an abstract data type and
is hence defined in terms of its operations. It can be handled like any other primitive
value, i.e, it can be part of composite data structures or canbe used in applications or
expressions.

Operations on first-class constraints are provided by the moduleConstraint. Ac-
cess to operations is obtained by the “.”-operator and operations are applied by the
“{}”-operator.

Note that reflective operations are typicallynon-monotonic, i. e., the produced result
depends on the current state of the solver. Hence, these operations can be safely applied
only if propagation has reached a fix-point. This has to be taken into account when
adding new basic constraints to the constraint store while reasoning over first-class
constraints. Adding new basic constraints typically requires the recomputation of the
fix-point resulting in a changed set of first-class constraints to reason about.

First we define a minimal set of operations, i. e., this set does not contain operations
which can be expressed by other operations of this set. Then we introduce operations
that make more concise and elegant programming possible.

The following operations designate the minimal set of operations to be provided:
The first two operations are required to obtain access to a first-class constraint and

to be able to identify a value as a first-class constraint.

– C <- { F } (for short<--operator) creates the constraintF, adds it to the current
computation space, and bindsC to an abstract value referring toF.

– C <-# { F } (for short<-#-operator) creates the constraintF, adds it inactive,
i. e., the propagation is turned off, to the current computation space, and bindsC to
an abstract value referring toF. The<-#-operator is used in conjunction with the
following abstraction:

– {Constraint.activate C} turns constraint propagation of constraintC on.
– {Constraint.is C B} bindsB to true if C refers to a constraint and otherwise

to false .

ObviouslyC <- { F } can be expressed by combiningC <-# { F } and{Con-
straint.activate C} but it is added for convenience since it is the usual way to
create a first-class propagator.

Programming with first-class constraints typically involves rewriting sets of con-
straints to operationally more efficient formulations (themost efficient one is of course
true). That requires discarding the redundant constraint whichis replaced. Further-
more, reasoning about constraints may take into account that a constraint has already
become entailed by the constraint store, i. e., can be ignored.

– {Constraint.discard C} discardsC explicitly, i. e., C is removed from the
computation space. By discarding a constraint, its whole host space may become
entailed.

– {Constraint.isEntailed C B} bindsB to true if C is entailed, either explic-
itly by the operationdiscard or by entailment through the constraint store, and
otherwise tofalse .

To be able to reason about constraints the programmer needs to identify what kind
of constraint she is dealing with and what the parameters of the constraints are like.
The question of which parameters are equal is especially interesting because it makes
reformulations of constraints possible.

– {Constraint.getName C N} bindsN to the name ofC.
– {Constraint.getParameters C Ps} bindsPs to the parameters ofC.

– {Constraint.identifyParameters Vs Ids} maps the list of variablesVs to
a list of integer identifiersIds by assigning to each element inVs the index of its
first occurrence inVs. Thus equal variables can be detected easily.

Additionally, we propose operations that have turned out tobe useful and convenient
in the applications discussed in this paper.

– {Constraint.toString C S} bindsS to a textual representation ofC.
– {Constraint.reflectSpace Rs Cs} takes a listRs of variables. It collects

all propagators that have at least one variable ofRs as a parameter. Furthermore,
it collects propagators which share parameters with collected propagators. Thus,
the transistive closure of all propagators “reachable” from Rs is computed. The
collected propagators are turned into some normal form and returned in the listCs.

The application ofConstraint.reflectSpace makes it possible to use first-
class constraints in an orthogonal way since the original constraint program needs not
be modified (cf. Sect. 3 and Sect. 4).

3 Early Failure Detection

One of the major goals of constraint programming is to avoid exploration of parts of
the search tree that do not contain any solutions. But there are cases where propaga-
tion takes significant time to detect failure or is even unable to do so. An example for
potential long lasting propagation are the finite domain constraintsx < y ∧ y < x
and2x = y ∧ 2u = v ∧ y + 1 = v assuming sufficiently large domains.1 An exam-
ple for an unsatisfiable constraint that cannot be spotted without any meta reasoning is
x, y, z ∈ {0, 1} ∧ x 6= y ∧ x 6= z ∧ y 6= z.

This section demonstrates how meta constraint programmingcan be used to de-
tect unsatisfiable constraints where ordinary constraint propagation fails to do so. Thus
the search tree can be significantly pruned and bigger instances of the problem can be
solved.

We use as example a modified Hamiltonian path problem, where the aim is to find
a path through a given directed graph from an arbitrary starting node to an arbitrary
ending node such that all nodes of the graph are visited once and the path is valid for
the reverse direction too.

The Constraint Model and its Implementation.The problem data is given as setArcs
of 2-tuplesarc(f, T), where the setT ⊆ {1, . . . , n} contains all nodest ∈ T such
that there is an arc from nodef to t. Every of then nodes of the graph is represented
by a finite domain variablexi ∈ {1, . . . , n} which represents the position of theith
node; the variables have to be pairwise distinct (constraint (1)). Constraint (2) expresses
the path from the starting node to the ending node. Nodexi is the successor ofxf if
xi = xf +1 holds. Note the extra clause for the ending point. The constraint (3) is dual
to constraint (2) and models the reverse path.

1 Due to the significant propagation time, we used these constraints in [13] to benchmark the
propagation performance of our constraint solver.

distinct(x1, . . . , xn) (1)

∀ arc(f, T) ∈ Arcs :
∨

i∈T

(xi = xf + 1) ∨ xf = n (2)

∀ arc(f, T) ∈ Arcs :
∨

i∈T

(xi + 1 = xf) ∨ xf = 1 (3)

We have implemented the constraint model one-to-one with Mozart Oz finite do-
main constraints and used disjunctive combinators producing choice-points to obtain
the same behavior as the program used in [4]. The search strategy is naı̈ve, i. e., it picks
from the left-most finite domain variablexl the minimum elementm and creates a
choice-pointxl = m ∨ xl 6= m.

Deriving an Early-Failure Criterion.Deriving a criterion is a creative process and it is
hard to give any guidelines. But
it is helpful to have a tool handy
that displays the constraints in a
node of the search tree. Mozart
Oz [9] offers a combination of
such tools, namely the Oz Ex-
plorer [15] and the Oz Propaga-
tor Viewer.2

The figure shows a part of
the constraints of a node of
the search tree without early failure detection. One may notice the constraints
distinct(. . . , x3, . . . , x10, . . .) ∧ 1 − x2 + x3 = 0 ∧ 1 − x2 + x10 = 0 (last two lines).
Substitution of the two equations yieldsx3 = x10, which contradicts the constraint
distinct(. . . , x3, . . . , x10, . . .) (top line). Generalization of this observation leads to an
early failure detection criterion: the setD contains all indices of variables required to be
pairwise distinct (derived from the parameters of thedistinct-constraint). The criterion
is: ∃C1, C2 : C1 ≡ 1 + aixi + ajxj = 0 ∧ C2 ≡ 1 + akxk + alxl = 0 ∧ ai,j,k,l 6=
0 ∧ i = k ∧ j 6= l ∧ j, l ∈ D ∧ aj = al → failure.

Adding the Early Failure Detection Criterion.The early failure detection code is com-
pletely factored out. It is embedded in the procedureDetectFailureEarly which is
applied as soon as constraint propagation reaches a fix-point, i. e., right before the cre-
ation of a new choice-point.3 The procedure reflects the constraints to their first-class
representationCs according to a normal form. The variableEqCs refers to the equation-
al constraints and the variableDistinctCs to the pairwise distinct constraints. Then

2 The Propagator Viewer is still experimental and not yet official part of the Mozart Oz distribu-
tion. It can be obtained from the author.

3 Mozart Oz provides means to synchronize on reaching a propagation fix-point: A unary pro-
cedure can be passed to the search engine and this procedure is applied to the solution variable
of a search problem as soon as a fix-point is reached.

for eachdistinct-constraint a setD is computed and stored in the list of sets values
DistinctSets (see [12] for details on integer sets in Mozart Oz). Here the implemen-
tation is more general than required for this example.

proc {DetectFailureEarly RootVars}
Cs = {Constraint.reflectSpace RootVars}
EqCs = {FilterEqualityConstraints Cs}
DistinctCs = {FilterDistinctConstraints Cs}
DistinctSets = {ComputeDistinctSets DistinctCs}

Then two nested loops (proceduresForAllTail4 andForAll5 applying anony-
mous procedures$) try to match the appropriate equational constraints according to
the early failure detection criterion. An equational constraint is represented by a tuple
´ =:´ (P LHS RHS) whereP is a reference to the actual constraint andLHS (RHS) is the
left hand-side (right hand-side) of the equation. The left resp. right hand-side is repre-
sented by a list of addend tuplesaddend(Sign Coeff Var) whereSign is the sign
(−1 or 1), Coeff is the absolute value of the coefficient, andVar is a reference to the
variable.

Constraints of form1 + ax + by = 0 are isolated by pattern matching and the
pattern for such a constraint is´ =:´ (_ [A1 A2 A3] 0)6 as it can be found in the
case -statements.

in
{ForAllTail EqCs

proc {$ Tail}
case Tail of (´ =:´ (_ [A X1 X2] 0)) | T then

{ForAll T
proc {$ TC}

case TC of ´ =:´ (_ [B Y1 Y2] 0) then

After isolating two matching equational constraints the constant addends are com-
pared and it is checked if the variables are in aD-set. The predicateSome is true if
at least one of the elements of the list passed (hereDistinctSets) evaluates the 2nd
argument function totrue .

if A == B andthen
{Some DistinctSets

fun {$ Set}
{VarIsInSet X1 Set}
andthen {VarIsInSet X2 Set}
andthen {VarIsInSet Y1 Set}
andthen {VarIsInSet Y2 Set}

end}
then

4 The procedure{ForAllTail List Proc} applies the unary procedureProc to all non-
nil tails of listList.

5 The procedure{ForAll List Proc} applies the unary procedureProc to all elements
of list List.

6 Note that there is an order on the addends: the first one is constant, the next ones contain
variables and the variables are subject to a certain order.

Here the anonymous function$ checks if the variables of the addends are in one
and the sameD-set. It uses the predicateVarIsInSet which checks if a variable is in
a given set. The connectorandthen is a short-circuit conjunction.

if {IsEqAddend X1 Y1}
andthen {IsNeqAddend X2 Y2}

orelse {IsEqAddend X1 Y2}
andthen {IsNeqAddend X2 Y1}

orelse {IsEqAddend X2 Y1}
andthen {IsNeqAddend X1 Y2}

orelse {IsEqAddend X2 Y2}
andthen {IsNeqAddend X1 Y1}

then fail % raise failure
end

end
end % case

end}
end % case

end}
end % DetectFailureEarly

Finally, the variables of the addends are tested to meet the early failure detection
criterion and if so, failure is raised by the statementfail . The predicateIsEqAddend
(IsNeqAddend) tests if two addends are equal (not equal). The individual applications
of IsEqAddend are connected by the short-circuit disjunctionorthen.

Evaluation. Table 1 shows the effectiveness of the presented technique impressively.
Entries ’-’ indicate that after 100.000 nodes of the search tree no solution was found
and search was aborted.

no early failure detection with early failure detection
nodes solution found after solution found after# detected

choices/# failures # choices/# failures failures
10 72/52 72/52 0
20 - 160/124 1
30 - 298/244 68
40 - 499/406 162
50 - 499/406 162

Table 1.Effectiveness of early failure detection.

By accident the results for problems with 40 and 50 nodes are identical. The first
solution was found on a 200MHz Pentium Pro in a range from a tenth of a second till
less than a minute depending on the problem. But the benchmarks aim at demonstrating
the effectiveness of the technique, and the early failure detection code has not been
particularly optimized.

Early failure detection requires constraints to be first-class values in order to re-
flect the state of the constraint solver for making symbolic detection of inconsistent
constraints possible.

4 Constraint Simplification

This section demonstrates another constraint programmingtechnique made possible by
first-class constraints. It is not unusual that a constraintmodel and consequently its
implementation contains redundant constraints or constraints in a formulation that does
not allow for the strongest possible propagation.

Consider the constraintx+x = y∧x ∈ {1, 2}∧y ∈ {3, 4}. Without exploiting the
equality of the two variables on the left hand-side the constraint cannot deduce that the
only valid instantiation isx = 2∧y = 4. Hence the simplificationx+x = y → 2x = y
improves constraint propagation significantly.

This section reuses the Hamiltonian path problem defined in Sect. 3 but uses reified
constraints instead of disjunctive combinators. A reified constraint connects a constraint
C with a 0/1-variableB: (C ↔ B) ∧ B ∈ {0, 1}. VariableB is bound to1(0) if C
is entailed (disentailed). As long asB is unboundC does not add any constraints to
the constraint store. In caseB is bound to1(0) the reified constraint is replaced by
C(¬C). Reified constraints are used mainly for handling over-constrained problems,
i. e., problems where not all constraints can be fulfilled at once, or for modeling dis-
junctive constraints as in the following case.

The Constraint Model and its Implementation.The constraint model expresses the dis-
junctions by reified constraints. The parentheses “()” enclosing the equations indicate
reification. Constraint (5) stands for the path from the starting to the ending node and
constraint (6) for the same path in reverse direction.

distinct(x1, . . . , xn) (4)

∀ arc(f, T) ∈ Arcs :

(

(xf = n) +
∑

i∈T

(xi = xf + 1)

)

= 1 (5)

∀ arc(f, T) ∈ Arcs :

(

(xf = 1) +
∑

i∈T

(xi + 1 = xf)

)

= 1 (6)

Deriving a Simplification Rule. In this case finding a suitable rule is easy.
Regard the lines in the figure
starting with the variablesx16

and x3. In both cases the cor-
responding constraints reify1 +
x1 − x2 = 0. That makes it pos-
sible to equatex16 and x3 and
to discard a copy of1 + x1 −
x2 = 0. In general∃(Ci ↔
Bi), (Cj ↔ Bj) : Ci = Cj →
Bi = Bj ∧ discard(Cj).

The proposed simplification
has two effects: it removes redundant propagation by discarding superfluous constraints,
and it strengthens the constraint store by adding equality constraints.7

Adding Constraint Simplification.Constraint simplification is executed whenever prop-
agation reaches its fix-point. It reflects the constraints ofa computation space withCon-
straint.reflectSpace to obtain direct access to the constraints, and functionFil-

terReified filters out all reified constraints(C ↔ B) since the other constraints are
of no interest. The result is stored inReCs. Furthermore,FilterReified generates a
textual representation ofC usingConstraint.toString which is used as index for
the dictionaryDict to easily identify reified constraints which are identical modulo the
0/1-variableB.

fun {SimplifyAndCollect RootVars}
ReCs = {FilterReified {Constraint.reflectSpace RootVars}}
Dict = {NewDictionary}

in

For each reified constraint the actual simplification is donein aForAll loop which
calls an anonymous procedure$. This procedure accesses the components of its argu-
ment by pattern matching:I is the textual representation index,P is a reference to the
reified constraint itself,C the reified constraint, andB is a 0/1-variable. Note that# is
the infix tuple constructor and henceI#reified(P C B) is a 2-tuple matched against
the argument passed to the anonymous procedure.

{ForAll ReCs
proc {$ I#reified(P C B)}

if {Dictionary.member Dict I} then
reified(P1 C1 B1) = {Dictionary.get Dict I}

in
B1 = B
{Constraint.discard P}

else
{Dictionary.put Dict I reified(P C B)}

end
end}

% return 0/1-variables of the reified constraints
{RetrieveBools Dict}

end % SimplifyAndCollect

UsingDictionary.member the procedure checks if a reified constraint is already
stored under the textual representation indexI. If so, the individual components of
the entries are retrieved by pattern matching8, the 0/1-variables are equated, and the
constraint referred to byP is stated to be entailed byConstraint.discard. That is
exactly what the simplification rule requires. In case the reified constraint is not yet

7 In Mozart Oz equality is represented directly in the constraint store.
8 The return value of the function application{Dictionary.get Dict I} is matched

against the tuplereified(P1 C1 B1) and the newly introduced variablesP1 C1 B1 are
bound accordingly.

stored inDict a new entry is created byDictionary.put. Finally, the 0/1-variables
of the reified constraints are retrieved and returned byRetrieveBools.

The search strategy branches over the 0/1-variables of the reified constraints (5) and
(6) returned bySimplifyAndCollect to stay as close as possible to the program used
in Sect. 3.

Evaluation. The number of 0/1-variables coming from the reified constraints is sig-
nificantly reduced by simplification. In combination with the additional equality con-
straints, this leads to an enormous reduction of choice points (see Table 2), even better
than for early failure detection in Sect. 3.

no simplification with simplification
nodes solution found after solution found after# simplified

choices/# failures# choices/# failures constraints
10 292/288 4/2 26
20 - 19/0 60
30 - 19/94 118
40 - 2673/2632 158
50 - 122/73 199

Table 2.Effectiveness of constraint simplification.

Only for the graph with 40 nodes the number of choice points ismuch greater. This
indicates that the search strategy used is not stable enoughagainst variations of the
problems, but this is not the focus of this paper.

Constraint simplification requires constraints to be first-class values in order to re-
flect the state of the constraint solver and thus making symbolic constraint simplifica-
tions possible.

5 Garbage Collection of Constraints

Usually constraint solvers collect redundant constraintsas they become entailed by the
constraints in the store. Even if their memory is not freed due the implementation of
the solver, they are at least not rerun anymore if their parameters receive new basic
constraints. For example, considerx ≤ y ∧ x ∈ {0, . . . , 3} ∧ y ∈ {3, . . . , 6}, and
suppose the≤-constraint is entailed by the basic constraintsx ∈ {0, . . . , 3} ∧ y ∈
{3, . . . , 6} and is garbage collected. That is not always the case, as demonstrated for
the no-overlap constraint in the tiling problem.

The Problem Description and the Constraint Model.A given number of square tiles
has to be placed on a master plate (see figure). The tiles must not
exceed the master plate along thex- andy-axis. This is enforced by
thecapacity-constraint which is not of interest here. Furthermore,
the tiles must not overlap which is enforced by thenonoverlap-
constraint. Consider the square tilesT1 andT2 with lengthl1 and

l2. Their positions on the master plate are determined by theirleft lower corners(x1, y1)
and(x2, y2) which results in thenonoverlap-constraint

x1 + l1 ≤ x2 ∨ x2 + l2 ≤ x1 ∨ y1 + l1 ≤ y2 ∨ y2 + l2 ≤ y1. (7)

The constraint (7) is encoded by the reified constraint

(x1 + l1 ≤ x2) + (x2 + l2 ≤ x1) + (y1 + l1 ≤ y2) + (y2 + l2 ≤ y1) ≥ 1.

Note the≥-constraint which is necessary since two tiles can be non-overlapping in
both thex- andy-axis. This constraint causes the trouble regarding garbage collection
since as soon as one of its reified constraints is valid the remaining three constraints
could be discarded. But this is impossible without first-class constraints because a rei-
fied constraint cannot be discarded, it just reduces to its embedded positive or negative
constraint.

Implementation Issues.The encoding of thenonoverlap-constraint by the procedure
ImposeNonOverlap catches the references to the individual constraints involved, i. e.,
the reified≤-constraints and the≥-constraint. This is achieved by using the<--operator.
The nonoverlap-constraint returns these references wrapped in the tuplenonover-

lap(P0 [P1 P2 P3 P4]).

fun {ImposeNonOverlap X1 Y1 L1 X2 Y2 L2}
B1 B2 B3 B4 P0 P1 P2 P3 P4

in
P1 <- {(X1 + L1 =<: X2) = B1}
P2 <- {(X2 + L2 =<: X1) = B2}
P3 <- {(Y1 + L1 =<: Y2) = B3}
P4 <- {(Y2 + L2 =<: Y1) = B4}
P0 <- {B1 + B2 + B3 + B4 >=: 1}

nonoverlap(P0 [P1 P2 P3 P4])
end

The procedureCollectNonOverlapConstraints is called when propagation
has reached a fix-point. It receives as its argument a list of tuples produced byIm-
poseNonOverlap and checks for all tuples if the enclosed≥-constraint is entailed by
applyingConstraint.isEntailed to P0. If so, the remaining reified constraints are
determined to be entailed byConstraint.discard.

proc {CollectNonOverlapConstraints NonOverlapConstraints}
{ForAll NonOverlapConstraints

proc {$ nonoverlap(P0 Ps)}
if {Constraint.isEntailed P0} then

{ForAll Ps proc {$ P}
if not {Constraint.isEntailed P}
then {Constraint.discard P} end

end}

end
end}

end

Evaluation. Table 3 shows the number of reified≤-constraints garbage collected for
different instances of the tiling problem.

tiles # collected constraintssaved memory
6 18 5K
9 44 11K
17 197 100K
21 1528 1.7M

Table 3.Effectiveness of constraint garbage collection.

The third column shows the amount of memory saved which is in balance with the
overhead imposed by the extra data structures used.

The proposed garbage collection scheme relies on first-class constraints for detect-
ing redundant constraints and for explicitly discarding such constraints since they can-
not be garbage collected yet by entailment.

6 Computing Minimal Sets of Inconsistent Constraints

Solving a combinatorial problem by constraint programmingrequires expressing the
problem in terms of constraints, i. e., finding a constraint model, and implement the
conceived constraint model as a constraint program for a concrete constraint solver. This
process is prone to error. The first run of the constraint program frequently results in an
immediate failure of the solver, caused by an inconsistent set of constraints. The set of
constraints is usually large and only a subset is responsible for the failure. Hence, being
able to find minimal inconsistent subsets of constraints of agiven set of constraints may
simplify debugging the above-described situation significantly. Note that there may be
several minimal inconsistent sets of constraints since several errors may occur at once.

Idea. According to the model presented in Sect. 2, constraint propagation takes place
in computation spaces. A failed space hosts an inconsistentset of constraints. Finding
minimal sets of inconsistent constraints starts by reflecting the last consistent state of
the failed computation space. Reflection comprises all basic constraints, i. e., constraints
of the formx ∈ D andx = y, and all propagators. Such a reflection makes it possi-
ble to restore the constraints of the last consistent state of the failed space in a fresh
space. Since such a restoring would immediately result in a failure, the propagators
are imposed asinactive first-class propagators, i. e., they are imposed with propagation
turned off. A solution is a set of inconsistent propagators.Hence, the fresh space is ap-
propriately wrapped to propagate its failure as solution. The starting point for searching
a solution that all propagators are inactive. Search turns propagation successively on for
every propagator and then checks whether the set of active propagators is inconsistent
or not.

Implementation.The last consistent state of a failed computation space is reflected
by Constraint.reflectSpace and equal variables are spotted byConstraint.
identifyParameters. The reflected propagators are imposed as inactive first-class
propagators using the<-#-operator in a fresh computation space to be able to catch
failure. Furthermore, every propagator is assigned a unique integer identifier and is
connected via its corresponding first-class value to a0/1-variable such, that constrain-
ing the0/1-variable to1 (0) activates (discards) the propagator. That makes it possible
to use the standard search library on finite domain variables. A possible solution is a set
of integers denoting a set of inconsistent propagators.

We are interested in minimal sets of inconsistent constraints. Branch-and-bound
search is used to ensure that new solutions are either a proper subset of an already found
solution or a distinct set of inconsistent constraints. An appropriate order constraint,
which ensures that new solutions meet the above condition, has to take into account
two cases:

1. a new solutionN is a proper subset of the current solutionO, i. e.,N ⊂ O resp.
N \ C 6= ∅ whereC = N ∩ O.

2. a new solutionN is distinct to the set of inconsistent constraintsO, i. e.,O \ C 6=
∅ ∧ N \ C 6= ∅ whereC = N ∩ O.

These two conditions can be collapsed toO \ (N ∩O) 6= ∅. The implementation of
the order constraint uses Mozart Oz’s finite set constraints[12].

A first minimal set of inconsistent constraints is found by starting with all prop-
agator’s propagation turned on and successively turning propagation off. As soon as
turning a propagator inactive makes the set of active propagators not immediately in-
consistent, this propagator is kept active. Thus, by processing all propagators once, a
first minimal set of inconsistent constraints is found. Finding other possible sets re-
quires backtracking to the first propagator turned inactiveand turning this propagator
active and continue search from there. The order constraintdescribed above prunes the
search space further by disallowing solutions subsuming already known ones.

Example.Consider the inconsistent set of constraints composed of the constraintsc1...5:

Fig. 1.Search tree of example.

x <c1 y ∧ y <c2 z ∧ z <c3 x ∧
z <c4 u ∧ u <c5 x. As one can easily see,
there are two minimal sets of constraints that are
not in a subset relation:S1 = {c1, c2, c3} and
S2 = {c1, c2, c4, c5}.

Expectedly, the search routine finds two so-
lutions S1 and S2, as the corresponding search
tree shows (see the rhombus-shaped nodes in the
Mozart Explorer display [15] in Fig. 1).

We use the Mozart Constraint Investiga-
tor [10] to present the solutions graphically. The first solution, corresponding toS1,
is shown as a variable graph in Fig. 2(a), i. e., the nodes of the graph denote variables
and edges represent propagators. Thick solid edges stand for propagators being part of
the set of inconsistent constraints.

* X{0#10}

* Y{0#10}

* Z{0#10}

* U{0#10}

(a) Parameter graph where failed propagator edges are thicksolid line.

FD.lessEqOff

failedset.oz:42

FD.lessEqOff

failedset.oz:41

FD.lessEqOff

failedset.oz:39

FD.lessEqOff

failedset.oz:38

FD.lessEqOff

failedset.oz:37

(b) Constraint graph where nodes of failed propagators are shaded.

Fig. 2. First solution (left-most solution (rhombus) node in Fig. 1).

The propagator graph in Fig. 2(b) depicts propagators as nodes and variables shared
between propagators as edges between the respective propagators. Propagators being
part of the inconsistent set of constraints are shaded. Having propagators, represented
by their nodes, identified as being responsible for a failure, the Investigator allows to
highlight their occurrence in the source code by simply clicking the respective propa-
gator node.

* X{0#10}

* Y{0#10}

* Z{0#10}

* U{0#10}

Fig. 3. Variable graph of second solution (right-most solution (rhombus) node in Fig. 1).
The second solution, corresponding toS2, is shown as the variable graph in Fig. 3

and reveals a second reason for the example set constraints being inconsistent.

First-class constraints are the key to this application since they make it possible to
reflect a failed computation space and to do search over constraints by explicitly turning
propagation on and off.

7 First-Class Constraints vs. Reified Constraints

This section summarizes the unique features of first-class constraints used in the pre-
sented applications and argues why the expressiveness of first-class constraints goes far
beyond what can be expressed with reified constraints.

Reflection.First-class constraints make it possible to reflect the propagator’s name and
parameters to values. Reified constraints do not offer reflection.

Activation and Deactivation.Applications searching over sets of constraints (cf. Sect.6)
have to be able to impose propagators with propagation turned off and then to
toggle propagation as computation proceeds. Initially, reified constraints(C ↔
B ∈ {0, 1}) are inactive w. r. t. propagation. Turning propagation on isdone by
constrainingB to 1. But once turned on, propagation cannot be turned off due to
monotonicity of reified constraints.9 Although not mentioned so far, propagation of
a first-class constraintC can be turned off by calling{Constraint.deactivate
C}.

Explicit Entailment.Applications rewriting constraints need to be able to discard con-
straints even if they are not entailed by the constraint store. Replacing a set of
constraintsC by ⊤ is the special case of garbage collectingC, as demonstrated
in Sect. 5. ReplacingC by C′ 6= ⊤ was discussed as constraint simplification in
Sect. 4. Reified constraints do not support this functionality.

Checking for Entailment.It is frequently necessary to find out if a constraint is already
entailed or not. First-class constraints provide the operationConstraint.isActive.
Reified constraints can be used for entailment checking too,whereB = 1 indicates
entailment. The constraintC ∧ (C ↔ B ∈ {0, 1}) does this test but it must be
ensured thatB 6= 0.

Operations on first-class constraints are non-monotonic, i. e., they can be undone or
can produce different result depending on the current stateof the computation space
they are applied on. Reified constraints are monotonic, i. e., they cannotbe undone
and in conjunction with a certain set of other constraints they always reach the same
fix-point. In fact, first-class constraints and reified constraints areorthogonal concepts
and reified constraints can of course be first-class constraints too (cf. Sect. 5 where
the nonoverlap-constraint uses reified first-class constraints). The use of the notion
metais somewhat misleading since true meta programming is only possible with the
expressiveness that first-class constraints provide.

8 Adding First-Class Constraints to an Existing Solver

This section briefly summarizes the necessary additions to an existing constraint solver
to provide for first-class constraints.

Promoting a constraint to first-class status means giving the programmer direct ac-
cess to it and thus being able to inspect and control the constraint. This is straightfor-
wardly done by introducing a data type referring to constraints.

9 Note that constrainingB to 0 imposes the negative constraint¬C.

Inspecting a constraint (cf.getName andgetParameters in Sect. 2) requires be-
ing able to retrieve a constraint’s parameters and name. Constraint solvers implemented
in C++ typically represent a constraint as an object such that it is easy to add appropriate
member functions and keep the changes local to the actual constraints.

Furthermore, first-class constraints need to have a unique identity to enable the
check for equality of first-class constraints.10 This can be done by deriving an iden-
tity from the memory address of the object representing a constraint. But care must be
taken for garbage collection and all kinds of operations that change the location of a
constraint in memory.

Discarding a constraint and checking for entailment (cf.discard andisEntailed
in Sect. 2) typically requires setting a flag in the constraint representation. The con-
straint solver has to check right before the execution of a constraint whether it was
explicitly entailed in the mean-time, i. e., between wake-up and execution, or not.

The programming techniques presented in Sect. 3, Sect. 4, and Sect. 5 need to detect
the fix-point of constraint propagation. Hence the constraint language has to provide a
combinator that allows the programmer to do so. Implementation may simply check if
the propagation queue, which maintains constraints to be executed next, is empty.

The experimental implementation of first-class constraints was straightforward since
Mozart Oz provides so-called extensions. They are intendedto allow the programmer
to add new data types via a C++ interface [8]. There were no modifications necessary
to the actual propagation engine such that there are no performance penalties.

9 Related Work

One approach at gaining more control and expressivity over constraints was the idea
to exploit a constraint’s truth value as proposed for the cardinality constraint in [18].
Applying arithmetic and boolean operations to constraint’s truth values was explored
in [1]. These constraints are usually called meta or reified constraints. They are available
in nearly all current constraints solvers.

Meta-programming as known from Lisp or Prolog means manipulating a program
by another program. Therefore, the program code is represented as a term of the re-
spective programming language and then submitted to a meta-interpreter written in this
language. Such a scheme for the constraint programming language CLP(R) is proposed
in [5]. They usequote andeval functions which are analogous to the corresponding
Lisp functions.

Solvers dedicated to a certain set of constraints as well as dedicated constraints can
of course do the same analysis as discussed in this paper. In [4] early failure detection
as described in Sect. 3 has been proposed as a by-product of analyzing the impact of
simplifications for equational constraints on the propagation behavior.

ILOG Solver [7] is a C++ library for constraint programming in C++. It does not
support first-class constraints as presented in this paper but ILOG Solver 4.4 allows
the user to define a new constraint by defining a new class of constraints derived from
10 This paper ignores identity on first-class constraints. Butif one has to implementreflect-
Space just with the other operations, to guarantee termination one has to check equality of
constraints.

the library classIlcConstraintI. It is straightforward to provide the required extra
functionality according to Sect. 8 by adding appropriate member functions to the class
definition of the new constraint.

Constraint Handling Rules (CHR) [3] are a committed-choicelanguage for rewrit-
ing constraints towards a solved form which eventually denotes a solution. A CHR
program is a set of guarded rules of the formH op G | B whereop ∈ {<=>, ==>},
H = H1, . . . , Hi, G = G1, . . . , Gj , andB = B1, . . . , Bk. A multi-headH is a se-
quence of CHR, the guardG is a sequence of built-in constraints, and the bodyB is
a sequence of CHR and built-in constraints. A rule fires as soon as a the CHR store
impliesH and the constraint store impliesG. Then the CHR and constraint store are
extended byB. A propagation rule (op = ==>) extends the appropriate stores by re-
dundant constraintsB. A simplification rule (op = <=>) behaves like a propagation
rule but additionally removesH from the CHR store. CHR can be used to implement
the techniques proposed in Sect. 3 and Sect. 4 due to the multi-heads of the rules. For
example, the inconsistent constraintx < y ∧ y < x can be detected by the following
CHR rule:

less(x,y),less(y,x) <=> true | false .

To the best of our knowledge none of the above-mentioned approaches, nor other
existing systems, offer the same expressiveness or generality as the scheme proposed in
this paper, to promote constraints to first-class status.

10 Conclusion and Future Work

We have introduced constraints as first-class citizens and investigated possible fields of
application. Furthermore, we have demonstrated programming techniques using first-
class constraints, have proved their effectiveness, and argued that first-class constraints
and reified constraints are orthogonal concepts (cf. Sect. 7).

The experiments have shown that the programmer needs appropriate analysis tools
to find powerful meta-constraint propagation rules especially for the techniques dis-
cussed in Sect. 3 and Sect. 4. Furthermore, the effects of simplification and garbage
collection may overlap since simplified constraints becomeredundant and can be dis-
carded.

The experiments were done with Mozart Oz using the Oz Explorer and the Oz Prop-
agator Viewer. The experimental implementation of first-class constraint was straight-
forward since Mozart Oz provides adequate programming interfaces to extend the con-
straint solver’s functionality easily from user level [8, 11].

Extending an existing constraint solver can be done with minimal effort and without
performance penalties when first-class constraints are notused.

Acknowledgements.I am grateful to Warwick Harwey for discussing with me issuesof
early failure detection and pointing me to the Hamiltonian path problem as a suitable
example. Katrin Erk, Leif Kornstaedt, Kevin Ng Ka Boon and Christian Schulte gave
helpful comments on earlier versions of the paper. Furthermore, Christian brought the
tiling example in Sect. 5 to my attention. Moreover, I am grateful to Ulrich Neumerkel

for discussing ideas about inconsistent sets of constraints. The graphs in Sect. 6 were
drawn withdaVinci[17]. Last but not least I would like to thank the anonymous referees
for their comments.

References

1. Frédéric Benhamou and William J. Older. Applying interval arithmetic to real, integer and
boolean constraints.Journal of Logic Programming, 1997.

2. M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The con-
straint logic programming language CHIP. InProceedings of the International Conference
on Fifth Generation Computer Systems FGCS-88, pages 693–702, Tokyo, Japan, December
1988. Institute for New Generation Computer Technology (ICOT),Tokyo, Japan.

3. Thom Früwirth. Theory and practice of constraint handling rules.Special Issue on Constraint
Logic Programming, Journal of Logic Programming, 37(1–3), October 1998.

4. Warwick Harvey and Peter J. Stuckey. Constraint representation for propagation. In M. Ma-
her and J.-F. Puget, editors,Proceedings of the Fourth International Conference on Princi-
ples and Practice of Constraint Programming (CP98), Lecture Notes in Computer Science,
pages 235–249, Pisa, Italy, October 1998. Springer-Verlag.

5. Nevin Heintze, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. Meta-programming
in CLP(R). Journal of Logic Programming, 33(3):221–259, December 1997.

6. Martin Henz and Jörg Würtz. Using Oz for college timetabling. In E.K. Burke and
P. Ross, editors,Practice and Theory of Automated Timetabling, First International Confer-
ence, Selected Papers, Edinburgh 1995, volume 1153 ofLecture Notes in Computer Science,
Springer, pages 162–178. Springer-Verlag, Berlin-Heidelberg, 1996.

7. ILOG S. A., URL: http://www.ilog.com/.ILOG Solver 4.4, User’s Manual, 1999.
8. Michael Mehl, Tobias Müller, Christian Schulte, and Ralf Scheidhauer. Interfacing to C

and C++. Technical report, Mozart Consortium, 1999. Available at http://www.mozart-
oz.org/documentation/foreign/index.html.

9. The Mozart Consortium.The Mozart Programming System. http://www.mozart-oz.org/.
10. Tobias Müller. Practical investigation of constraints with graph views. In Konstantinos Sag-

onas and Paul Tarau, editors,Proceedings of the International Workshop on Implementation
of Declarative Languages (IDL’99), September 1999.

11. Tobias Müller. The Mozart Constraint Extensions Tutorial. Technical report, Mozart Con-
sortium, 1999. Available at http://www.mozart-oz.org/documentation/cpitut/index.html.

12. Tobias Müller and Martin Müller. Finite set constraints in Oz. In François Bry, Burkhard
Freitag, and Dietmar Seipel, editors,13. Workshop Logische Programmierung, pages 104–
115, Technische Universität München, 17–19 September 1997.

13. Tobias Müller and Jörg Würtz. Extending a concurrentconstraint language by propagators.
In Jan Małuszyński, editor,Proceedings of the International Logic Programming Sympo-
sium, pages 149–163. The MIT Press, Cambridge, 1997.

14. Jean-François Puget and Michel Leconte. Beyond the glass box: Constraints as objects. In
John Lloyd, editor,Logic Programming – Proceedings of the 1995 International Symposium,
pages 513–527. The MIT Press, Cambridge, December 1995.

15. Christian Schulte. Oz Explorer: A visual constraint programming tool. In Lee Naish, editor,
Proceedings of the Fourteenth International Conference onLogic Programming, pages 286–
300, Leuven, Belgium, 8-11 July 1997. The MIT Press, Cambridge.

16. Christian Schulte. Programming constraint inference engines. In Gert Smolka, editor,Pro-
ceedings of the Third International Conference on Principles and Practice of Constraint Pro-
gramming, volume 1330 ofLecture Notes in Computer Science, Schloss Hagenberg, Linz,
Austria, October 1997. Springer-Verlag, Berlin-Heidelberg.

17. Universität Bremen, Group of Prof. Dr. Bernd Krieg-Br¨uckner. The Graph Visualization
System daVinci. http://www.informatik.uni-bremen.de/ davinci/.

18. Pascal Van Hentenryck and Yves Deville. The CardinalityOperator: A new Logical Con-
nective for Constraint Logic Programming. In Koichi Furukawa, editor,Proceedings of the
International Conference on Logic Programming, pages 745–759, Paris, France, 1991. The
MIT Press.

19. Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, implementation and eval-
uation of the constraint language cc(FD). In Andreas Podelski, editor, Constraints: Basics
and Trends, volume 910 ofLecture Notes in Computer Science. Springer Verlag, 1995.

