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Abstract. Combinatorial problems can be efficiently tackled with constraint pro-
gramming systems. The main tasks of the development of a constraint-based ap-
plication are modeling the problem at hand and subsequentlyimplementing that
model. Typically, erroneous behavior of a constraint-based application is caused
by either the model or the implementation (or both of them). Current constraint
programming systems provide limited debugging support formodeling and im-
plementing a problem.
This paper proposes the Constraint Investigator, an interactive tool for debugging
the model and the implementation of a constraint-based application. In particu-
lar, the Investigator is targeted at problems like wrong, void, or partial solutions.
A graph metaphor is used to reflect the constraints in the solver and to present
them to the user. The paper shows that this metaphor is intuitive and proposes
appraoches to deal with real-life problem sizes.
The Investigator has been implemented in Mozart Oz and complements other
constraint programming tools as an interactive visual search engine, forming the
base for an integrated constraint debugging environment.

1 Introduction

The state of the art of solvers based on constraint propagation has made tremendous
progress [6, 17, 19, 16], to the point where large combinatorial problems can be tackled
successfully. But developing such applications has only limited support by debugging
tools. This deficiency has been identified and dedicated projects (as DiSCiPl [7]) have
been set up.

The first step to be taken when solving a combinatorial problem is to design a con-
straint model of the respective problem, i.e., to find a problem formulation in terms of
constraints. Next this model is implemented by some constraint solver. Testing the im-
plementation reveals quite frequently that no solution canbe found, the solution found is
not correct, or the solution found still contains undetermined variables. These situations
suggest that the constraint model or its implementation do not reflect the combinatorial
problem to be solved. To support the development process at this stage, the programmer
needs adequate interactive debugging tools which are currently not available.

Current constraint debugging tools focus on improving search behavior [18, 1, 10],
i.e., on finding search heuristics1 for exploring the search tree most efficiently. There is
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1 A search heuristics determines the policy of traversing thesearch space of a problem.



a lack of intuitive interactive tools for debugging the correctness of constraint models
and/or their implementations. In particular, large problems need tools with a sophisticat-
ed presentation to handle the overwhelming amount of information. Hence, providing
an appropriate metaphor to present the data is crucial. The model of data presentation
proposed in this paper2 is derived from graph-based visualization, as proposed by Carro
and Hermengildo in [2]. The graph metaphor was first formallyintroduced in constraint
programming by Montanari and Rossi [11].

The contribution of this work is the development of different graph-based views
for correctness debugging constraint programs and the proposal of debugging method-
ologies based on these views for frequently occurring incorrect behavior of constraint
programs. Furthermore, we propose techniques for handlinglarge problems.

To prove the viability of our approach, we have designed and implemented an in-
teractive tool, the Constraint Investigator, that allows the user to investigate the state of
constraints and variables in a constraint solver by analyzing the corresponding graph
views. The Investigator is characterized by the following points:

– It is not restricted to any specific constraint system.
– It relies on a propagation-based constraint solver (see Section 3).
– It provides intuitive data presentation and interaction, while affording detailed in-

sights about the solver.
– It is fully configurable by the user and requires no changes tothe actual constraint

program.
– It is suitable for users at different levels of expertise.
– It reveals operational aspects of the solver by displaying the events that trigger

constraints.

The Constraint Investigator is implemented in Mozart Oz [12] and the visualiza-
tion of the graph views relies ondaVinci [4]. The Investigator complements the Oz
Explorer [18], an interactive visual search engine, which does not take into account the
aspect of constraint propagation. Both tools form the base of an integrated constraint
debugging environment.

The Constraint Investigator can be also useful for performance debugging. For ex-
ample, its graph views can be aumented with execution costs of constraints such that
the program code causing these costs can be identified. Furthermore, operational as-
pects of constraint execution (see Section 3 about events) are revealed and can be used
to improve execution performance.

Plan of the Paper Section 2 discusses issues of debugging constraint programs. Sec-
tion 3 introduces notions and concepts of propagation-based constraint solving. The
model of the Constraint Investigator is discussed in Section 4. The Investigator itself
is explained by means of a prototypical debugging session inSection 5. Section 5 pro-
poses also techniques for handling large problems. The paper closes with related work
(Section 6) and concluding remarks (Section 7).

2 Debugging Constraints

Debugging an application focuses first on correctness and then on performance. Ap-
proaches to debugging can be identified asexperimentalandanalytic[10]. Experimen-
2 Note that [13] is a previous version of this paper.



tal debugging, i.e., modifying the program text until it seems to work, requires a large
set of methods to experiment with. In contrast, analytic debugging needs to obtain a
detailed description of the state of the constraint solver.Such a description has to be
presented to the programmer by a debugging tool in a way that supports program anal-
ysis in the best possible fashion.

After designing and implementing the constraint model of a given problem, testing
the implementation typically produces erroneous situations as:

– The solver fails immediately, i.e., the constraints are inconsistent. Either the im-
plementation of the constraint model is incorrect or the model itself is. It is often
the case that by accident the constraint model is over-constrained though the com-
binatorial problem is not. For example, the model states an equivalence where an
implication is required. In such a case, if a solution is available (perhaps manually
derived), it is a promising strategy to debug this situationby adding this solution
to the constraint statements. The propagator which is observed to fail is not neces-
sarily the culprit for the bug in the implementation but it helps to track down the
problem in the constraint model.

– Propagation is incomplete in the sense that some solution variables remain unde-
termined. This is an indicator that the implementation or the model is incomplete.

– The solution found is wrong. Either the constraint model is incorrect or if this is
not the case, the implementation of the model is incorrect.

The proposed debugging approach and the corresponding toolare aimed at analytic
correctness debugging, i.e., to spot bugs in the constraintmodel and its implementation.

Analytic debugging requires an interactive tool that enables the programmer to an-
alyze the actual constraints in the solver. The amount of information, i.e., typically the
number of variables and constraints, is huge. The way these data are presented in analyt-
ic debugging is important since constraint programs are data-driven and an appropriate
presentation helps the programmer to draw the right conclusions. Hence, data repre-
sentation has to match the programmer’s intuition of constraints in a constraint solver.
Consequently, we choose a graph-based metaphor for representation since it makes pos-
sible to emphasize different aspects of the state of a constraint solver appropriately (see
the different views presented in Section 4) and to relate theprogram structure to the
representation (see Section 5.2).

3 A Model for Propagation-based Constraint Inference

Propagation-based constraint inference involves aconstraint store, holding so-called
basicandnon-basicconstraints. A basic constraint is of the formx = v (x is bound to a
valuev), x = y (x is equated to another variabley), or x∈ B (x takes its value inB).

Non-basic constraints, as for example “6=”, are more expressive than basic con-
straints and hence, require more computational effort. A non-basic constraint is imple-
mented by apropagatorwhich is a concurrent computational agent observing the basic
constraints of itsparameters(which are variables in the constraint store). The purpose
of a propagator is to infer new basic constraints for its parameters and add them to the
store. A propagator terminates if it is inconsistent with the constraint store (failed )
or if it is explicitly represented by the basic constraints in the store (entailed ). A
non-terminated propagator is eithersleeping or running . A so-calledeventtriggers



the transition fromsleeping to running . An event occurs when a basic constraint is
added to the store. For example, a propagator might wait for aparameter to be bound to
a value, while a different propagator has to be rerun as soon as an element is removed
from a basic constraint connected to one of its parameters.

The constraints of a problem instance can be regarded as a network of propagators
P, variablesV, and eventsE. The variables inV are the parameters of the propagators
in P. The events inE denote the changes to the basic constraints that trigger propagator
transitions fromsleeping to running . A propagatorp(v

e1∈Ep
1 , . . . ,v

en∈Ep
n ) has a set of

parametersVp = {v1, . . . ,vn} ⊆V and is triggered by the eventsEp ⊆ E. The notation

v
ei∈Ep
i means that the propagatorp is rerun as soon as eventei occurs at parametervi . A

variablev(pe1∈Ev
1 , . . . , pem∈Ev

m ) is a parameter of the propagatorsPv = {p1, . . . , pm} ⊆ P
and changes to the basic constraint atv can cause the eventsEv ⊆E. The notationpei∈Ev

i
means that the propagatorpi is rerun as soon as eventei occurs at the variablev.

4 Graph-based Visualization of Constraints

In this section, we illustrate different graph views using atrivial scheduling application.
The problem is to serialize two tasks, such that they do not overlap. The first (second)
task starts at starting timeT1 (T2) and has a fixed duration ofD1 (D2). The correspond-
ing constraint model is the disjunctionT1+D1≤ T2∨T2+D2≤ T1. The concrete im-
plementation uses reified constraints to implement the disjunction. A reified constraint
has an extra boolean parameter that reflects the validity of the constraint, i.e., whether
it is entailed or failed . For example,B1=(T1+D1≤ T2) is the reified version
of T1+D1≤ T2 and if this constraint isentailed (failed ) B1 is bound to 1 (0).
Conversely, in caseB1 is bound to 1 (0) the constraintT1+D1≤ T2 (T1+D1> T2)
is stated. The (exclusive) disjunction of the constraints can be implemented by stating
that the sum of the boolean variables associated with the reified constraints is 1. The
following Oz code implements the serialization constraintfor two tasks3:

B1 =: (T1 + D1 =<: T2) % implemented by FD.reified.sumC
B2 =: (T2 + D2 =<: T1) % implemented by FD.reified.sumC
B1 + B2 =: 1 % implemented by FD.sumC

We present four different views of the above constraint program. The shape of a
node represents its kind: a propagator node is a rectangle, avariable node is an ellipse,
and an event node is a rhombus. A propagator node is annotatedwith the name of
the respective propagator and the location of the propagator invocation in the source
program, i.e., the file name and the line number. A variable node is annotated with the
name of the respective variable and if the variable is constrained, the basic constraint
connected to the variable is also shown. Note that there are no variable nodes forD1
andD2 since they denote integers.

The Propagator Graph ViewA propagator graph is the graphical representation of
a propagator net, i.e., the propagators are the nodes. Note that the edges are not di-

3 Note thatD1 and D2 refer to integers and all other variables are finite domains.The =-
constraint is implemented by Oz’s finite domain operator=: (and≤ by =<: ).



rected since data flow between propagators is bidirectional. This, for example, is dif-
ferent for a constraint solver using index-
icals [3] because an indexical is a func-
tion rather than a relation. For instance,

FD.reified.sumC

opi.oz:258
FD.reified.sumC

opi.oz:259

FD.sumC

opi.oz:260

the leftmost node corresponds to the propagatorFD.sumC which happens to occur
at line 260 of fileopi.oz (the location ofFD.sumC when we did the example graph
views). This annotation depends on the concrete location ofa propagator in a source
file. An edge between two nodes means that the propagators share at least one variable
parameter.

Using the setsP, V, andE defined in Section 3, a propagator graphpg(Ppg) consists
of nodesNpg = Ppg and edgesEpg = {(pi , p j)|Vi ∩Vj 6= /0∧ i < j}.

The Single Propagator Graph ViewA single propagator view presents a single
propagator and its parameters as a tree.
The parameters are grouped by the events.
Note a variable may occur several times
as parameter. The single propagator graph
view of FD.reified.sumC shows that
the propagator waits for two events, name-
ly the bounds -event, i.e., the bounds of
the domain are narrowed, and theany -

* T2{0#5}

* T1{0#5}

bounds

* B1{0#1}any

FD.reified.sumC

opi.oz:258

event, i.e., an arbitrary element is removed from the domain. Furthermore, the view
shows that abounds event at the parametersT1 resp.T2 and anany event atB1 cause
a rerun of the propagator. A variable node is annotated, as for example the node forT1:
*T1{0#5} . This means thatT1 takes a value from{0,1,2,3,4,5}. The asterisk (’* ’)
denotes a variable passed directly by the user to the Investigator in contrast to variables
collected while traversing the constraint network.

More formally, a single propagator graphspg(p) for a propagatorp is a tree with
a root nodeRspg= p, connected to the root node are event nodesEspg= Ep and con-
nected to the event nodes variable nodesVspg=Vp. An edge between an event node and
a variable node is established if the events of the event nodeand variable node are the
same.

The Variable Graph View A variable graph view is dual to the propagator graph
view. The nodes represent the variables.
An edge between two variable nodes indi-
cates that the variables are simultaneously
constrained by one or more propagators.

* B1{0#1}

* B2{0#1}

* T1{0#5}* T2{0#5}

The information of what propagators are concerned is available by a menu associated
with the edge. The variable graph view shows that in our example, all variables are con-
nected with each other.

The formal description of a variable graph makes the dualityto a propagator graph
obvious: a variable graphvg(Vvg) is composed by the nodesNvg = Vvg and the edges
Evg = {(vi ,v j)|Pi ∩Pj 6= /0∧ i < j}. An edge between two variable nodes is present if
the respective variables share at least one propagator.

The Single Variable Graph ViewA single variable graph view represents a constrained
variable, events it can cause and the propagators waiting for these events to happen. One



can see that the two reified propagators wait for thebounds event and no propagator
waits either for theany event nor for the
val event.

A single variable graphsvg(v) of a
variablev is a tree with a root nodeRsvg=
v. Event nodesEsvg = Ev are connect-
ed to the root node. Furthermore, each
event node of an evente is connected

any

FD.reified.sumC

opi.oz:258

FD.reified.sumC

opi.oz:259

bounds

val

* T1{0#5}

to the propagator nodesPe
svg= {pe|pe ∈ Pv}, i.e., an edge between an event node and a

propagator node is established if the propagator waits for this event to happen to this
variable.

5 Correctness Debugging with the Constraint Investigator

This section introduces theConstraint Investigatoras an interactive tool for debugging
practical constraint problems. Using the Investigator does not require any changes to
the constraint program. The program has to be recompiled with appropriate compiler
switches.

5.1 An Example Session with the Investigator

We start off with a deliberately buggy constraint model and program and demonstrate
how to track down two hidden bugs. Of course, the bugs are trivial to fix for experi-
enced programmers but the approaches demonstrated are suitable for handling real-life
situations.

The Problem Consider the following bin-packing problem: a given set of weighted
itemsI has to be assigned to three binsb1,2,3, without exceeding the maximum capacity
of each bin. All bins have the same maximum capacityc. Furthermore, as soon as at
least two items are put into a bin one extra unit of packaging material must be added as
protection. Moreover, the bins must be color-coded to indicate the presence of a fragile
item.

The Constraint ModelThe given problem is a set partitioning problem of three sets
with extra constraints. Each binbn is modeled as setsn and each itemi ∈ I has a weight
wi .

I = ⊎sn (1) |sn| ≥ 2↔ packaging material∈ sn (2)
Σ∀i∈sn

wi ≤ c (3) i f ragile ∈ sn → color(sn) = red (4)
where n = 1,2,3.

Constraint (1) states a set partitioning and Constraint (2)adds extra packaging if
necessary. Furthermore, Constraint (3) enforces that the capacity of the bins is not ex-
ceeded and takes also into account packaging material addedby Constraint (2). The
coloring of the bins is modeled by Constraint (4). The model is not quite correct as we
will see later on.

The Implementation of the Constraint ModelThe implementation of the presented
model is based on finite set constraints [9, 15], i.e., a set value is approximated by a
lower bound set and a upper bound set. The constraint solver has been implemented by
the procedureBinPacking :



proc {BinPacking Weights Capacity Sol}

The argumentWeights is a list of pairsId#Weight . The variableCapacity deter-
mines the maximum capacity of the bins. The solution is returned inSol and contains
the colored bins with the assigned items.

The procedure starts with variable definitions: it declaresthe variablesRed and
Green for the bin-coloring constraint for the fragile item definedby Fragile . Next, it
adds for the packaging material an extra item (Packaging=100 ) with weight 1 to the
list of all weighted itemsAllWeights . The list ofItems is extracted from the weight
list (AllWeights ).

Red = 0 Green = 1 Fragile = 1 Packaging = 100
WeightedPackaging = [Packaging#1]
AllWeights = {Append WeightedPackaging Weights}
Items = {Map AllWeights fun {$ E} E.1 end }

in

The body of the procedure starts by creating the solution list Sol of length 3. Each
list element represents a bin as a recordbin(items:S color:C) whereS is the set of
items andC is the color of the bin. The application of{FS.var.upperBound Items}
constrainsS to the set constraint/0 ⊆ S⊆ setof(Items ).

Sol = {List.make 3}
{ForAll Sol

fun {$}
S = {FS.var.upperBound Items} C = {FD.int [Red Green]}

in bin(items: S color: C) end }

Next the partitioning constraint is stated (FS.partition ). TheMap function ex-
tracts the sets that form the partition from the bin records.The variableItems is con-
verted to a set value byFS.value.make representing the set to be partitioned.

% constraint (1): partitioning
{FS.partition

{Map Sol fun {$ S} S.items end } {FS.value.make Items}}

The weight restriction constraint maps the presence of elements to the list of boolean
variablesBL by FS.reified.areIn . The constraint{FD.sumC ... ´ =<: ´ ...}
enforces that the scalar product of the list of boolean variablesBL and the corresponding
list of weights (produced byMap) does not exceedCapacity .

% constraint (3): enforce weight restriction in bins
{ForAll Sol proc {$ S} BL in

{FS.reified.areIn Items S.items BL}
{FD.sumC {Map AllWeights fun {$ E} E.2 end }

BL ´ =<: ´ Capacity}
end }

The constraints for adding packaging material and assigning the bin color close the
procedure and use reified constraints. Reified propagators are used to conditionally state
constraints according to constraint (2) in the constraint model. As soon as the cardinality
of S.items is at least 2 the itemPackaging is added toS.items . This is caused by
the connection through the boolean variables of the reified constraints.

% constraint (2): add extra packaging material
{ForAll Sol proc {$ S}



({FS.card S.items} >=: 2) =:
{FS.reified.include Packaging S.items} end }

The constraint for coloring the bins also uses reified constraints and implements the
“→”–operator of constraint (4) by the implication constraintFD.impl 4.

% constraint (4): assign colors to bins
{ForAll Sol proc {$ B} {FD.impl

{FS.reified.include Fragile B.items}
(Red =: B.color) 1}

end }
end % BinPacking

The code for controlling search is omitted since it is not of interest here and we
assume an adequate search strategy. Now we submit our bin-packing solver to a search
engine, like the Oz Explorer (see Figure 8 in Section 5.3):

{ExploreOne {BinPacking [1#3 2#2 3#2 4#6 5#2 6#4 7#3 8#5] 10} }

This results in an immediately failed search tree. The Investigator is now demon-
strated in a prototypical debugging session.

The Implementation is not Faithful to the Constraint ModelInvoking the Investigator
from the failed node switches the Investigator to the singlepropagator graph view (see
Figure 1). The node representing the failed propagator is colored red throughout the
session.

Fig. 1. Single propagator view of the failed propagatorFS.partition .

The single propagator graph view in Figure 1 shows the partition propagator with
its parameters connected via thelowerbound event. The parameters are set constraint
variables and are represented byS{{100}..{1#8 100}}#{2#9} 5. This corresponds
4 This is a reified constraint such that the last parameter1 is required.
5 That all variables have the same nameS does not mean that they are equal. The name is

derived from the source code of constraint (1), cf.{FS.partition {Map Sol fun {$
S} S.items end } ...} .



to the basic constraint{100}⊆S⊆{1, . . . ,8,100}∧2≤ |S| ≤ 9. We notice that all three
parameters contain at least element 100. Hence, the partitioning propagator must fail.
This reveals an incorrectness but this is not necessarily the actual bug. A single click on
the propagator node highlights the line of source code wherethe partitioning propagator
is stated (see Figure 2).

Fig. 2.Associating the failed propagator to the source program.

We see that the parameters concerned are the sets of items foreach of the bins
in the solutionSol . Checking the program text suggests that only the implementation
of the packaging constraint (3) adds to all item fields ofSol the elementPackaging
(which is 100). Verifying the code for adding extra packaging material reveals the bug
in the implementation: instead of using different packaging material for each bin, the
same material is used for all bins. This is not the intention of the constraint model and
hence an implementation bug. The bug fix simply consists of using different packaging
material items for each bin and modifies theForAll – loop to select for different bins
different packaging material.

% packaging material for every bin
WeightedPackaging =

[(Packaging+1)#1 (Packaging+2)#1 (Packaging+3)#1]
...
{List.forAllInd Sol

proc {$ I S} % ‘I’ counts from 1 to length of ‘Sol’
% select different packaging material by the index I
({FS.card S.items} >=: 2) =:

{FS.reified.include 100+I S.items} end }

After fixing the implementation bug, we obtain as solution

Sol = [bin(color:0 items:{1#3 5 101}#5)
bin(color:_{0#1} items:{4 7 102}#3)
bin(color:_{0#1} items:{6 8 103}#3)]

and we notice that not all variables are bound to a single value (observe thecolor
fields). The next section demonstrates how to track down the reason for this problem.

Identification of Remaining PropagatorsA solution with unbound variables suggests
that there is a lack of propagation. The variable graph view shown in Figure 3 is pro-
duced when starting the Investigator from the solution nodeof the Explorer.

The variableSol is not displayed because it is bound to the solution list and hence
no variable anymore. We try to find remaining propagators starting from one of the vari-
able nodes. We decide to switch to the variable graph view of all reachable variables



Fig. 3. Initial view.

(Figure 4(a)), to get an overview over all variables left unbound. The menu associated
with an edge between two variable nodes (Figure 4(b)) offersto switch to a single prop-
agator graph view of a propagator being imposed upon two variables.

(a) Variable graph view of all
reachable variables.

(b) Edge menu of the variable
graph view.

Fig. 4.Variable graph view.

Since we try to find remaining propagators, we switch to the offered single variable
graph view of a reified sum propagator (Figure 5).

A click on the propagator node immediately reveals the suspicious program text:
the assignment of the bin colors seems to be too weak whenevera fragile item is not
contained in a bin (implementation of constraint (4)). The problem can be fixed by re-
placing the implication by an equivalence (FD.equi ). The correct constraint (4) in the
constraint model is∀n : i f ragile ∈ sn ↔ color(sn) = red. That means that the implemen-
tation was correct but the constraint model had a flaw. After applying the fix the solver
produces a proper solution.

5.2 Approaches for Dealing with Realistic Applications

Realistic problems may have thousands of propagators and variables. It is impossible
and without any practical use to represent all at once. This section proposes techniques



Fig. 5.Single propagator graph view.

for selecting problem-relevant fractions of propagators or variables. This scheme allows
for a user-controlled incremental exploration of the graphs which is essential for the
investigation of large problems.

A common approach of designing a constraint model is to decompose the problem
into subproblems and to decompose these subproblems until predefined propagators
can be used. Since procedures implement subproblems, it seems reasonable to structure
propagators, sub-procedures, and variables according to the procedures which stated
them. This requires the introduction of procedure nodes to the graph views. A procedure
node is depicted as circle.

Selection via the Tree of Execution TracesThe tree representation of a constraint pro-
gram’s execution trace (see Figure) is used to select propagators and
variables. By clicking on a node, a possible action is to select the prop-
agators created by the corresponding procedure invocation. Incremental
expansion of the tree makes possible to handle large collections of prop-
agators and variables. Different selection schemes, e.g.,all propagators
stated by a procedure with respectively without their sub-procedures,
extend the functionality.

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

Collapsing and Expanding Propagator and Procedure NodesA common technique
for handling large collections of data represented by graphs is to collapse and expand
appropriate subsets of nodes to single nodes. We propose forthe propagator graph view
to determine subsets of nodes according to the procedures which created them. That
means a collapsed node represents a collection of propagators and sub-procedures. This
is very close to the model the programmer has in mind when structuring the problem
and hence, is very intuitive.

A procedure node represents a collection of propagator nodes and sub-procedure
nodes. It takes as its parameters the union of the parametersof all represented propaga-
tors and sub-procedures.



proc {Hamilton}

hamil.oz:2

proc {Before}

hamil.oz:10

proc {After}

hamil.oz:16

proc {Before}

hamil.oz:10
proc {After}

hamil.oz:16

(a) Fully collapsed procedure graph, i.e., all propagator nodes are collapsed.

FD.reified.sumC

hamil.oz:18

FD.reified.sumC

hamil.oz:18

FD.sumC

hamil.oz:17

proc {Hamilton}

hamil.oz:2

proc {Before}

hamil.oz:10

proc {Before}

hamil.oz:10

proc {After}

hamil.oz:16

(b) Partially collapsed propagator graph, i.e., a procedure’s node is expanded to its
propagator nodes.

Fig. 6. Transition of a graph view by expanding a procedure node.

Figure 6 shows the expansion of the marked procedure node to acollection of prop-
agator nodes. Expansion can be undone by collapsing propagator and procedure nodes
to a single procedure node.

Filtering Propagators and VariablesAnother interesting feature is the option of dis-
playing only those propagators resp. variables which meet acriterion specified by the
user. For example, it might be interesting to limit the investigation to those propagators
that are connected to boolean variables when symptoms of a bug suggest that.

5.3 Additional Features

This section discusses features of the Investigator not covered before but important for
effective use of the tool.

Navigating Through GraphsNavigation through the different graph views is done by
menus associated with nodes and edges of the respective views. Figure 7 shows pos-
sible transitions from one view to another one. A history mechanism is also available,
allowing to recall previous views by moving in the chain of views produced so far.



* N11{1#9}

* N12{1#9}

N13{1#9}

N21{1#9}

N22{1#9}

N23{1#9}

N31{1#9}

N32{1#9}

N33{1#9}

Sum{3#27}

Variable Graph View

Sum{3#27} N32{1#9} N22{1#9} * N12{1#9}

bounds

FD.sumC

opi.oz:54

Single Propagator Graph View

any

FD.sumC

opi.oz:54

FD.sumC

opi.oz:50

bounds

FD.distinct

opi.oz:58

val

* N12{1#9}

Single Variable Graph View

FD.sumC

opi.oz:54

FD.sumC

opi.oz:50

FD.distinct

opi.oz:58

FD.sumC

opi.oz:56

FD.sumC

opi.oz:55

FD.sumC

opi.oz:52

FD.sumC

opi.oz:57

FD.sumC

opi.oz:53

FD.sumC

opi.oz:51

Propagator Graph View

Fig. 7. Navigation overview.

To further improve navigation and to keep track of a certain node in different views,
the Investigator is able to mark nodes in graph views which then remain marked through-
out all views.6 Additionally, the Investigator automatically marks nodesof variables
with which the session was initiated (Figure 3) and in case there is a failed propagator,
the node of this propagator (Figure 1).

Changing the Representation of NodesThe Investigator provides a plug-in mechanism
for changing the representation of variables and propagators. This enables the user to
produce a more obvious and intuitive representation. For example, a propagator for a
constraint in a scheduling application might be represented as Gantt-chart, reflecting its
role in the concrete application.

Interaction with the Oz ExplorerThe Oz Explorer [18] is a graphical search en-
gine where the user can control search.
It visualizes the search tree as search pro-
ceeds. The shape of a node tells the us-
er whether a node denotes either a failure
(square resp. a triangle for a failed sub-
tree), a solution (rhombus), or a choice
(circle). By default, clicking an Explor-
er node displays the basic constraints of
the corresponding constraint store. This
action can be modified by plugs-ins as
the Investigator is one (as demonstrated
in Section 5.1). Fig. 8: The Oz Explorer

6 For the purpose of this paper, a marked node is drawn with double lines. Other schemes, for
example using colors, might be more suitable in connection with color displays.



6 Related Work

The tools discussed in this section focus on improving performance. Since our approach
is orthogonal, it can be used to supplement existing tools.

The Grace constraint debugger by Meier [10] supplements theProlog-based con-
straint programming systemECLiPSe [8] and is intended to support performance de-
bugging of finite domain constraint programming. The constraint program has to be
appropriately instrumented to be run under Grace. The debugging model of Grace is
based upon the Prolog-box-model. It is able to follow individual propagation steps in
the trace and to inspect the backtrack stack of finite domain variables. Furthermore,
Grace is highly configurable by assigning user-written codeto each propagation step.

The search tree debugger of Chip [1, 5] is largely influenced by the Oz Explorer7.
Its focus is performance debugging. It provides different types of views, mostly in a
compact matrix-like fashion, to provide the user with more detailed information about
search and constraint propagation. A nice feature is to analyze the evolution of con-
straints and variables along a search path. This is certainly most valuable for optimizing
search heuristics.

7 Conclusion

We have presented a novel approach for correctness debugging constraint programs
based on graph views. Based on this approach, we have implemented an interactive tool,
the Constraint Investigator. The use of the Investigator has been demonstrated with an
example derived from a realistic constraint programming application. The Investigator
has been tested with problems of medium size (500 propagators and 600 variables) and
has helped to understand and to debug the constraint-based implementation of a natural
language parser. To our knowledge, no other interactive constraint debugging tool uses
a graph metaphor in the way presented in this paper and that makes the Constraint
Investigator unique.

ImplementationThe implementation of the Investigator is straightforward. It traverses
the network of constraints in the solver starting from the solution variables to collect all
propagators and variables. Thereby the implementation takes advantage of propagators
being first-class values [14]. Every variable and propagator is assigned a unique integer.
That makes it possible to store relations between variablesand propagators in sets of
integers. The computation of the different graph views follows closely the definitions
of the graph views in Section 4. The complexity of the graph-generation algorithm
is worst-case quadratic and depends in practice on the degree of connectivity of the
constraint network, i.e., if the propagators can be stated in reasonable time then the
corresponding graph can be computed in reasonable time too.

AcknowledgementsI would like to thank thedaVinciteam for making this brilliant tool
available. I am grateful to Leif Kornstaedt for helping me with the implementation. I
am also grateful to Christian Schulte for many fruitful discussions. Denys Duchier ex-
ercised the Investigator in the development of linguistic applications and helped with
invaluable comments and suggestions. The aforementioned,Katrin Erk and the anony-
mous referees gave invaluable comments on earlier versionsof this paper.
7 See in [1] Section 3 on related work.
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