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Abstract. Combinatorial problems can be efficiently tackled with deoaist pro-
gramming systems. The main tasks of the development of d@redmtsbased ap-
plication are modeling the problem at hand and subsequangiementing that
model. Typically, erroneous behavior of a constraint-Heeggplication is caused
by either the model or the implementation (or both of them)trént constraint
programming systems provide limited debugging suppornfodeling and im-
plementing a problem.

This paper proposes the Constraint Investigator, an ictigestool for debugging
the model and the implementation of a constraint-basedcatian. In particu-
lar, the Investigator is targeted at problems like wronggyor partial solutions.
A graph metaphor is used to reflect the constraints in thees@d to present
them to the user. The paper shows that this metaphor isiugwdhd proposes
appraoches to deal with real-life problem sizes.

The Investigator has been implemented in Mozart Oz and cemmghts other
constraint programming tools as an interactive visualcdeangine, forming the
base for an integrated constraint debugging environment.

1 Introduction

The state of the art of solvers based on constraint progaghtis made tremendous
progress [6,17, 19, 16], to the point where large combinatproblems can be tackled
successfully. But developing such applications has onhjtéid support by debugging

tools. This deficiency has been identified and dedicatecpt®jas DiSCiPI [7]) have

been set up.

The first step to be taken when solving a combinatorial prabiteto design a con-
straint model of the respective problem, i.e., to find a pgobformulation in terms of
constraints. Next this model is implemented by some coimstsalver. Testing the im-
plementation reveals quite frequently that no solutiontmafound, the solution found is
not correct, or the solution found still contains undeteradi variables. These situations
suggest that the constraint model or its implementationatoeflect the combinatorial
problem to be solved. To support the development procebisatage, the programmer
needs adequate interactive debugging tools which arertiyreot available.

Current constraint debugging tools focus on improving des&ehavior [18, 1, 10],
i.e., on finding search heuristicir exploring the search tree most efficiently. There is
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a lack of intuitive interactive tools for debugging the @mtness of constraint models
and/or their implementations. In particular, large protdeneed tools with a sophisticat-
ed presentation to handle the overwhelming amount of inddion. Hence, providing
an appropriate metaphor to present the data is crucial. TWaehof data presentation
proposed in this papéiis derived from graph-based visualization, as proposecsyoC
and Hermengildo in [2]. The graph metaphor was first formiatiyoduced in constraint
programming by Montanari and Rossi [11].

The contribution of this work is the development of differgmaph-based views
for correctness debugging constraint programs and theopadjpf debugging method-
ologies based on these views for frequently occurring irexiehavior of constraint
programs. Furthermore, we propose techniques for hantdiigg problems.

To prove the viability of our approach, we have designed amglémented an in-
teractive tool, the Constraint Investigator, that allohss tiser to investigate the state of
constraints and variables in a constraint solver by anady#tie corresponding graph
views. The Investigator is characterized by the followigps:

It is not restricted to any specific constraint system.

It relies on a propagation-based constraint solver (seBdBeR).

It provides intuitive data presentation and interactiohijlevaffording detailed in-

sights about the solver.

It is fully configurable by the user and requires no changeékedmctual constraint
program.

— Itis suitable for users at different levels of expertise.

— It reveals operational aspects of the solver by displayiregevents that trigger
constraints.

The Constraint Investigator is implemented in Mozart OZ] [A2d the visualiza-
tion of the graph views relies odaVinci[4]. The Investigator complements the Oz
Explorer [18], an interactive visual search engine, whioksinot take into account the
aspect of constraint propagation. Both tools form the bédssantegrated constraint
debugging environment.

The Constraint Investigator can be also useful for perforeeadebugging. For ex-
ample, its graph views can be aumented with execution cdstsrstraints such that
the program code causing these costs can be identified.efomtine, operational as-
pects of constraint execution (see Section 3 about evergsgaecaled and can be used
to improve execution performance.

Plan of the Paper Section 2 discusses issues of debugging constraint pregiaaa-
tion 3 introduces notions and concepts of propagationébaeastraint solving. The
model of the Constraint Investigator is discussed in SaatioThe Investigator itself
is explained by means of a prototypical debugging sessi@eation 5. Section 5 pro-
poses also techniques for handling large problems. Ther gégses with related work
(Section 6) and concluding remarks (Section 7).

2 Debugging Constraints

Debugging an application focuses first on correctness amd dm performance. Ap-
proaches to debugging can be identifie@®ggerimentahndanalytic[10]. Experimen-

2 Note that [13] is a previous version of this paper.



tal debugging, i.e., modifying the program text until it seto work, requires a large
set of methods to experiment with. In contrast, analyticudgjing needs to obtain a
detailed description of the state of the constraint sol8eich a description has to be
presented to the programmer by a debugging tool in a way tipgiasts program anal-
ysis in the best possible fashion.

After designing and implementing the constraint model oivaig problem, testing
the implementation typically produces erroneous situnstias:

— The solver fails immediately, i.e., the constraints areoirgistent. Either the im-
plementation of the constraint model is incorrect or the etddelf is. It is often
the case that by accident the constraint model is over-@insd though the com-
binatorial problem is not. For example, the model statescarivalence where an
implication is required. In such a case, if a solution is de (perhaps manually
derived), it is a promising strategy to debug this situatigradding this solution
to the constraint statements. The propagator which is wbddo fail is not neces-
sarily the culprit for the bug in the implementation but itgeeto track down the
problem in the constraint model.

— Propagation is incomplete in the sense that some solutinables remain unde-
termined. This is an indicator that the implementation erriodel is incomplete.

— The solution found is wrong. Either the constraint modehisorrect or if this is
not the case, the implementation of the model is incorrect.

The proposed debugging approach and the correspondingreoalmed at analytic
correctness debugging, i.e., to spot bugs in the constraidel and its implementation.

Analytic debugging requires an interactive tool that eaalthe programmer to an-
alyze the actual constraints in the solver. The amount ofinétion, i.e., typically the
number of variables and constraints, is huge. The way thegseagle presented in analyt-
ic debugging is important since constraint programs ara-detven and an appropriate
presentation helps the programmer to draw the right cormissHence, data repre-
sentation has to match the programmer’s intuition of c@irsts in a constraint solver.
Consequently, we choose a graph-based metaphor for repméea since it makes pos-
sible to emphasize different aspects of the state of a @inssolver appropriately (see
the different views presented in Section 4) and to relateptibgram structure to the
representation (see Section 5.2).

3 A Model for Propagation-based Constraint Inference

Propagation-based constraint inference involvesmastraint store holding so-called
basicandnon-basiaconstraints. A basic constraint is of the forms: v (x is bound to a
valuev), x =y (xis equated to another variabjg or x € B (x takes its value irB).
Non-basic constraints, as for examplg”, are more expressive than basic con-
straints and hence, require more computational effort. A-basic constraint is imple-
mented by gropagatorwhich is a concurrent computational agent observing theebas
constraints of itparametergwhich are variables in the constraint store). The purpose
of a propagator is to infer new basic constraints for its peaters and add them to the
store. A propagator terminates if it is inconsistent with ttonstraint storefdiled )
or if it is explicitly represented by the basic constraimstlie store gntailed ). A
non-terminated propagator is eittegeping or running . A so-calledeventtriggers



the transition fromsleeping  to running . An event occurs when a basic constraint is
added to the store. For example, a propagator might waitarameter to be bound to
a value, while a different propagator has to be rerun as ss@m&lement is removed
from a basic constraint connected to one of its parameters.

The constraints of a problem instance can be regarded asvarkaif propagators
P, variablesv, and event&. The variables itV are the parameters of the propagators
in P. The events ik denote the changes to the basic constraints that triggpagetor

transitions fromsleeping  torunning . A propagatop(vileEp, ... ,vﬁ”eEp) has a set of

parameter¥, = {v1,...,Va} €V and is triggered by the everig, C E. The notation
ecEp .
means that the propagatpis rerun as soon as evestoccurs at parametsy. A

Vi
variablev(pS=®, ..., per<Ev) is a parameter of the propagat®s= {px, ..., pm} C P
and changes to the basic constraint@an cause the evertis C E. The notatiorp-QGEV

|
means that the propagatgris rerun as soon as evestoccurs at the variable

4 Graph-based Visualization of Constraints

In this section, we illustrate different graph views usirtg\dal scheduling application.
The problem is to serialize two tasks, such that they do netlap. The first (second)
task starts at starting timel (T2) and has a fixed duration &1 (D2). The correspond-
ing constraint model is the disjunctidii 4+ D1 < T2V T2+ D2 < T1 The concrete im-
plementation uses reified constraints to implement theidigsjon. A reified constraint
has an extra boolean parameter that reflects the validityeo€onstraint, i.e., whether
it is entailed  or failed . For exampleB1=(T1+ D1< T2) is the reified version
of T1+ D1 < T2 and if this constraint i®ntailed  (failed ) B1lis bound to 1 (0).
Conversely, in casB1is bound to 1 (0) the constraiitl+ D1 < T2 (T1+ D1 > T2)

is stated. The (exclusive) disjunction of the constraiais lbe implemented by stating
that the sum of the boolean variables associated with tffieadeionstraints is 1. The
following Oz code implements the serialization constréntwo tasks®:

Bl = (T1 + D1 =<: T2) % i mpl emented by FD.reified. sunC
B2 = (T2 + D2 =<: T1) % i mpl emented by FD.reified. sunC
Bl + B2 =1 1 % i npl erent ed by FD. sunC

We present four different views of the above constraint peog The shape of a
node represents its kind: a propagator node is a rectangéiable node is an ellipse,
and an event node is a rhombus. A propagator node is annatétedhe name of
the respective propagator and the location of the propagatocation in the source
program, i.e., the file name and the line number. A variabterie annotated with the
name of the respective variable and if the variable is cairgd, the basic constraint
connected to the variable is also shown. Note that there @manable nodes fob1l
andD2 since they denote integers.

The Propagator Graph ViewA propagator graph is the graphical representation of
a propagator net, i.e., the propagators are the nodes. Natehte edges are not di-

3 Note thatD1 and D2 refer to integers and all other variables are finite domaiiee =-
constraint is implemented by Oz’s finite domain operator(and< by =<: ).



rected since data flow between propagatorsis bidirectidha, for example, is dif-
ferent for a constraint solver using index- [ramc Fn_.,emed.sumc
icals [3] because an indexical is a func-
tion rather than a relation. For instance,
the leftmost node corresponds to the propagabosumC which happens to occur
at line 260 of fileopi.oz (the location ofFD.sumC when we did the example graph
views). This annotation depends on the concrete locatian propagator in a source
file. An edge between two nodes means that the propagatoesatiaast one variable
parameter.

Using the set®, V, andE defined in Section 3, a propagator gramtPpg) consists
of nodesNpg = Ppg and edge& g = {(pi, pj)ViNVj # 0Ai < j}.

The Single Propagator Graph ViewA single propagator view presents a single
propagator and its parameters as a tree.
The parameters are grouped by the events.
Note a variable may occur several times
as parameter. The single propagator graph
view of FD.reified.sumC shows that
the propagator waits for two events, name-
ly the bounds -event, i.e., the bounds of
the domain are narrowed, and they-
event, i.e., an arbitrary element is removed from the donfaimthermore, the view
shows that @ounds event at the parameters resp.T2 and amany event atB1 cause
a rerun of the propagator. A variable node is annotated,raxtmple the node for1:
*T1{0#5} . This means thatl takes a value fror{0,1,2,3,4,5}. The asterisk ¢’)
denotes a variable passed directly by the user to the ligatstiin contrast to variables
collected while traversing the constraint network.

More formally, a single propagator gragpgp) for a propagatop is a tree with
a root nodeRspg = p, connected to the root node are event ndegg = Ep and con-
nected to the event nodes variable nodgg= Vp. An edge between an event node and
a variable node is established if the events of the event andevariable node are the
same.

* B1{0#1}
FD.reified.sumC
opi.0z:258

The Variable Graph View A variable graph view is dual to the propagator graph
view. The nodes represent the variables.

An edge between two variable nodes indi-
cates that the variables are simultaneously

constrained by one or more propagators. :

The information of what propagators are concerned is availay a menu associated
with the edge. The variable graph view shows that in our exepafi variables are con-
nected with each other.

The formal description of a variable graph makes the dutdity propagator graph
obvious: a variable grapbg(Vyg) is composed by the nodég = Vg and the edges
Evg={(vi,vj)IRNP; #0AIi < j}. An edge between two variable nodes is present if
the respective variables share at least one propagator.

The Single Variable Graph VievA single variable graph view represents a constrained
variable, events it can cause and the propagators waitirijése events to happen. One



can see that the two reified propagators wait fokends eventand no propagator
waits either for theany event nor for the
val event.

A single variable graphsvgv) of a
variablev is a tree with a root nod@syg=
v. Event nodesEs,g = E, are connect-
ed to the root node. Furthermore, each
event node of an everdg is connected
to the propagator nodé¥, ;= {p°p® € R/}, i.e., an edge between an event node and a
propagator node is established if the propagator waitshisrevent to happen to this
variable.

FD.reified.sumC
opi.0z:259

FD.reified.sumC
opi.0z:258

5 Correctness Debugging with the Constraint Investigator

This section introduces tHeonstraint Investigatoas an interactive tool for debugging
practical constraint problems. Using the Investigatorsdoet require any changes to
the constraint program. The program has to be recompiled agipropriate compiler
switches.

5.1 An Example Session with the Investigator

We start off with a deliberately buggy constraint model anapgpam and demonstrate
how to track down two hidden bugs. Of course, the bugs ar&ltiv fix for experi-
enced programmers but the approaches demonstrated atglesfiitr handling real-life
situations.

The Problem Consider the following bin-packing problem: a given set afighted
itemsl| has to be assigned to three bing 3, without exceeding the maximum capacity
of each bin. All bins have the same maximum capacitifurthermore, as soon as at
least two items are put into a bin one extra unit of packagiatenial must be added as
protection. Moreover, the bins must be color-coded to iai@iche presence of a fragile
item.

The Constraint Model The given problem is a set partitioning problem of three sets
with extra constraints. Each bba is modeled as set, and each iteme | has a weight
W.
| = Wsy (1) |sn| > 2 «— packaging materiak s, (2)
Tyies,Wi <€ (3) i fragile € S — color(s,) =red (4)
where n=1,23.

Constraint (1) states a set partitioning and Constraina(R)s extra packaging if
necessary. Furthermore, Constraint (3) enforces thatapaaity of the bins is not ex-
ceeded and takes also into account packaging material dijd€nstraint (2). The
coloring of the bins is modeled by Constraint (4). The modelat quite correct as we
will see later on.

The Implementation of the Constraint Moddlhe implementation of the presented
model is based on finite set constraints [9, 15], i.e., a sketevia approximated by a

lower bound set and a upper bound set. The constraint schenden implemented by
the procedur@inPacking



proc {BinPacking Weights Capacity Sol}

The argumeniveights is a list of pairdd#Weight . The variableCapacity deter-
mines the maximum capacity of the bins. The solution is retdiinSol and contains
the colored bins with the assigned items.

The procedure starts with variable definitions: it declates variablesRed and
Green for the bin-coloring constraint for the fragile item definegFragile . Next, it
adds for the packaging material an extra itétadkaging=100 ) with weight 1 to the
list of all weighted items\llweights . The list ofltems is extracted from the weight
list (Allweights ).

Red = 0 Green = 1 Fragile = 1 Packaging = 100
WeightedPackaging = [Packaging#1]
AllWeights = {Append WeightedPackaging Weights}
ltems = {Map AllWeights fun {$ E} E1 end}

n

The body of the procedure starts by creating the solutioistis of length 3. Each
list element represents a bin as a redongitems:S color:C) whereS is the set of
items andCis the color of the bin. The application {#S.var.upperBound Items}
constrainss to the set constrairft C S C setof(items ).

Sol = {List.make 3}

{ForAll Sol
fun {$}

= {FS.var.upperBound Items} C = {FD.int [Red Green]}
in bin(items: S color: C) end}

Next the partitioning constraint is statedS(partition ). The Map function ex-
tracts the sets that form the partition from the bin recofdie variabldétems is con-
verted to a set value b§S.value.make representing the set to be partitioned.

% constraint (1): partitioning
{FS.partition
{Map Sol fun {$ S} S.items end} {FS.value.make Items}}

The weight restriction constraint maps the presence of@&tésiio the list of boolean
variablesBL by FS.reified.areln . The constrain{fFD.sumC ... =< .}
enforces that the scalar product of the list of boolean Be&EBL and the corresponding
list of weights (produced bmap) does not exceedapacity

% constraint (3): enforce weight restriction in bins
{ForAll Sol proc {$ S} BL in
{FS.reified.areln Items S.items BL}
{FD.sumC {Map AllWeights fun {$ E} E2 end}
BL “=<:" Capacity}
end}

The constraints for adding packaging material and assigthia bin color close the
procedure and use reified constraints. Reified propaga®tsad to conditionally state
constraints according to constraint (2) in the constraimdeh. As soon as the cardinality
of S.items is at least 2 the iterRackaging is added tcs.items . This is caused by
the connection through the boolean variables of the reifieicaints.

% constraint (2): add extra packagi ng materi al
{ForAll Sol proc {$ S}



({FS.card S.items} >=: 2) =:
{FS.reified.include Packaging S.items} end}

The constraint for coloring the bins also uses reified cairss and implements the
“ _"_operator of constraint (4) by the implication constraintimpl 4.

% constraint (4): assign colors to bins
{ForAll Sol proc {$ B} {FD.impl
{FS.reified.include Fragile B.items}
(Red =: B.color) 1}
end}
end % Bi nPacki ng

The code for controlling search is omitted since it is notrdérest here and we
assume an adequate search strategy. Now we submit our ¢kimpa&olver to a search
engine, like the Oz Explorer (see Figure 8 in Section 5.3):

{ExploreOne {BinPacking [1#3 2#2 3#2 4#6 5#2 6#4 7#3 8#5] 10} }
This results in an immediately failed search tree. The ligatr is now demon-
strated in a prototypical debugging session.

The Implementation is not Faithful to the Constraint Modeloking the Investigator

from the failed node switches the Investigator to the sipgtgagator graph view (see
Figure 1). The node representing the failed propagator lisred red throughout the
session.

FS.partition
problem.ooz:65

e B T e e B
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Fig. 1. Single propagator view of the failed propagaf@®.partition

The single propagator graph view in Figure 1 shows the partjfropagator with
its parameters connected via theeerbound event. The parameters are set constraint
variables and are represented$y100}..{1#8 100}}#{2#9} 5. This corresponds

4 This is a reified constraint such that the last paranteismequired.

5 That all variables have the same na@eloes not mean that they are equal. The name is
derived from the source code of constraint (1) {ESS.partition {Map Sol fun {$
S} S.items end} ..}



to the basic constraigtl00} C SC {1,...,8,100} A2 < |§ < 9. We notice that all three
parameters contain at least element 100. Hence, the paititj propagator must fail.
This reveals an incorrectness but this is not necessaslgdtual bug. A single click on
the propagator node highlights the line of source code witerpartitioning propagator
is stated (see Figure 2).

WEsal
=2 0z Programming Interface (emacs@liszt.ps.uni-sh.de)

S[ER
Buffers Files Tools Edit Search Oz Help |

3

end}
h S,partition fMap Sol fun £3 5% S.itemz end3 yalue,nake Ttemsik

¥ enforce weight restriction in bins

FS.partition
problem.oz:28

Fig. 2. Associating the failed propagator to the source program.

We see that the parameters concerned are the sets of iteraadiorof the bins
in the solutionSol . Checking the program text suggests that only the impleatiemnt
of the packaging constraint (3) adds to all item fieldssof the elemenPackaging
(which is 100). Verifying the code for adding extra packaginaterial reveals the bug
in the implementation: instead of using different packggimaterial for each bin, the
same material is used for all bins. This is not the intentibthe constraint model and
hence an implementation bug. The bug fix simply consists iofgudifferent packaging
material items for each bin and modifies @Al — loop to select for different bins
different packaging material.

% packagi ng material for every bin
WeightedPackaging =
[(Packaging+1)#1 (Packaging+2)#1 (Packaging+3)#1]

{List.forAllind Sol

proc {$1 S} %‘Il’ counts from1l to length of ‘Sol’
% sel ect different packaging naterial by the index I
({FS.card S.items} >=: 2) =:

{FS.reified.include 100+| S.items} end}
After fixing the implementation bug, we obtain as solution
Sol = [bin(color:0 items:{1#3 5 101}#5)

bin(color:_{0#1} items:{4 7 102}#3)
bin(color:_{0#1} items:{6 8 103}#3)]

and we notice that not all variables are bound to a singleev@bserve theolor
fields). The next section demonstrates how to track downgasan for this problem.

Identification of Remaining Propagator# solution with unbound variables suggests
that there is a lack of propagation. The variable graph vieews in Figure 3 is pro-
duced when starting the Investigator from the solution nufdbe Explorer.

The variablesol is not displayed because it is bound to the solution list stk
no variable anymore. We try to find remaining propagatorsistafrom one of the vari-
able nodes. We decide to switch to the variable graph viewl @éachable variables
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Fig. 3. Initial view.

(Figure 4(a)), to get an overview over all variables left onbd. The menu associated
with an edge between two variable nodes (Figure 4(b)) oftessvitch to a single prop-
agator graph view of a propagator being imposed upon twabbas.

- e “eon “eon
Hle §#it View Havigation Abstraction Layout Options  Help (_{FD (_{rD
e — — M R
»5 QC{HMD QC{[""D Propagator graph of FD.reified.sumG (problen.oz:51)
Propagator graph of propagators imposed onto these turo variables
él @gamrgmph ofal
A
2
(b) Edge menu of the variable
Tie .
Jo] graph view.

(@) Variable graph view of all
reachable variables.

Fig. 4. Variable graph view.

Since we try to find remaining propagators, we switch to ttierefl single variable
graph view of a reified sum propagator (Figure 5).

A click on the propagator node immediately reveals the sisp$ program text:
the assignment of the bin colors seems to be too weak wheaédvagile item is not
contained in a bin (implementation of constraint (4)). Thelgbem can be fixed by re-
placing the implication by an equivalendeD(equi ). The correct constraint (4) in the
constraint model i$n : ifragile € Sh < color(s,) = red. That means that the implemen-
tation was correct but the constraint model had a flaw. Afpgryang the fix the solver
produces a proper solution.

5.2 Approaches for Dealing with Realistic Applications

Realistic problems may have thousands of propagators amablies. It is impossible
and without any practical use to represent all at once. Téusan proposes techniques
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% enforce weight restriction in bins
fForAll Sol
proc €% 53 BL in
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Fig. 5. Single propagator graph view.

for selecting problem-relevant fractions of propagatorgwiables. This scheme allows
for a user-controlled incremental exploration of the gsaplhich is essential for the
investigation of large problems.

A common approach of designing a constraint model is to dpcsethe problem
into subproblems and to decompose these subproblems wvetiefined propagators
can be used. Since procedures implement subproblemspisseasonable to structure
propagators, sub-procedures, and variables accordirgetprocedures which stated
them. This requires the introduction of procedure noddsdgtaph views. A procedure
node is depicted as circle.

Selection via the Tree of Execution Trac@$e tree representation of a constraint pro-
gram'’s execution trace (see Figure) is used to select petpeggand
variables. By clicking on a node, a possible action is toctethee prop-
agators created by the corresponding procedure invocétioremental
expansion of the tree makes possible to handle large coltesadf prop-
agators and variables. Different selection schemes,al gropagators
stated by a procedure with respectively without their stdepdures, ©
extend the functionality.

Collapsing and Expanding Propagator and Procedure Nodescommon technique
for handling large collections of data represented by gsapho collapse and expand
appropriate subsets of nodes to single nodes. We propogeefpropagator graph view
to determine subsets of nodes according to the proceduries wireated them. That
means a collapsed node represents a collection of propaget sub-procedures. This
is very close to the model the programmer has in mind whertstring the problem
and hence, is very intuitive.

A procedure node represents a collection of propagatorsadd sub-procedure
nodes. It takes as its parameters the union of the paranoéta@lisepresented propaga-
tors and sub-procedures.



proc {After}
hamil.oz:16

proc {Before} proc {Hamilton}
hamil.oz:10

proc {After}

hamil.oz:16

proc {Before}
hamil.oz:10

(a) Fully collapsed procedure graph, i.e., all propagatatess are collapsed.

(b) Partially collapsed propagator graph, i.e., a procgdurode is expanded to its
propagator nodes.

Fig. 6. Transition of a graph view by expanding a procedure node.

Figure 6 shows the expansion of the marked procedure nodediteation of prop-
agator nodes. Expansion can be undone by collapsing prupagal procedure nodes
to a single procedure node.

Filtering Propagators and VariablesAnother interesting feature is the option of dis-
playing only those propagators resp. variables which meeitexion specified by the
user. For example, it might be interesting to limit the irtigetion to those propagators
that are connected to boolean variables when symptoms af auggest that.

5.3 Additional Features

This section discusses features of the Investigator nareahvbefore but important for
effective use of the tool.

Navigating Through GraphsNavigation through the different graph views is done by
menus associated with nodes and edges of the respective. \kgyure 7 shows pos-
sible transitions from one view to another one. A history hatdsm is also available,
allowing to recall previous views by moving in the chain ofwis produced so far.



Propagator Graph View Single Propagator Graph View

Fig. 7. Navigation overview.

To further improve navigation and to keep track of a certaidanin different views,
the Investigator is able to mark nodes in graph views whieh tiemain marked through-
out all views® Additionally, the Investigator automatically marks nod#svariables
with which the session was initiated (Figure 3) and in caseetlis a failed propagator,
the node of this propagator (Figure 1).

Changing the Representation of Nod@&se Investigator provides a plug-in mechanism
for changing the representation of variables and propagiaidis enables the user to
produce a more obvious and intuitive representation. Famgte, a propagator for a
constraint in a scheduling application might be represkaseGantt-chart, reflecting its
role in the concrete application.

Interaction with the Oz ExplorerThe Oz Explorer [18] is a graphical search en-

gine where the user can control sean
It visualizes the search tree as search S
ceeds. The shape of a node tells the

er whether a node denotes either a failt K]

(square resp. a triangle for a failed su
tree), a solution (rhombus), or a choir
(circle). By default, clicking an Explor-
er node displays the basic constraints
the corresponding constraint store. Tt ‘
aCtIOn Can be mOdIerd by plugs-lns ZIH Time: 12.79s (16%c) @ 10603 © & H 10688 Depth: 20

the Investigator is one (as demonstratet

in Section 5.1). Fig. 8: The Oz Explorer

6 For the purpose of this paper, a marked node is drawn withlddires. Other schemes, for
example using colors, might be more suitable in connectith eolor displays.



6 Related Work

The tools discussed in this section focus on improving parémce. Since our approach
is orthogonal, it can be used to supplement existing tools.

The Grace constraint debugger by Meier [10] supplement®tbéog-based con-
straint programming systef8aCL' PS [8] and is intended to support performance de-
bugging of finite domain constraint programming. The caistrprogram has to be
appropriately instrumented to be run under Grace. The dghggnodel of Grace is
based upon the Prolog-box-model. It is able to follow indixal propagation steps in
the trace and to inspect the backtrack stack of finite domaifables. Furthermore,
Grace is highly configurable by assigning user-written dodeach propagation step.

The search tree debugger of Chip [1, 5] is largely influenaethe Oz Exploref.
Its focus is performance debugging. It provides differgmpies of views, mostly in a
compact matrix-like fashion, to provide the user with moe¢ailed information about
search and constraint propagation. A nice feature is toyaeahe evolution of con-
straints and variables along a search path. This is ceytaiakt valuable for optimizing
search heuristics.

7 Conclusion

We have presented a novel approach for correctness delguggivstraint programs
based on graph views. Based on this approach, we have impieden interactive tool,
the Constraint Investigator. The use of the Investigatsriieen demonstrated with an
example derived from a realistic constraint programmingliaption. The Investigator
has been tested with problems of medium size (500 propaganor600 variables) and
has helped to understand and to debug the constraint-bapéhnentation of a natural
language parser. To our knowledge, no other interactivetcaint debugging tool uses
a graph metaphor in the way presented in this paper and thietsrthe Constraint
Investigator unique.

Implementation The implementation of the Investigator is straightforwadttraverses
the network of constraints in the solver starting from thieison variables to collect all
propagators and variables. Thereby the implementaticstalvantage of propagators
being first-class values [14]. Every variable and propagatassigned a unique integer.
That makes it possible to store relations between variasdspropagators in sets of
integers. The computation of the different graph viewsoiw8 closely the definitions
of the graph views in Section 4. The complexity of the grapharation algorithm
is worst-case quadratic and depends in practice on the @@gfreonnectivity of the
constraint network, i.e., if the propagators can be statecasonable time then the
corresponding graph can be computed in reasonable time too.

Acknowledgement$would like to thank thedaVinciteam for making this brilliant tool

available. | am grateful to Leif Kornstaedt for helping metwihe implementation. |

am also grateful to Christian Schulte for many fruitful dissions. Denys Duchier ex-
ercised the Investigator in the development of linguisfiplecations and helped with
invaluable comments and suggestions. The aforementiétaddn Erk and the anony-
mous referees gave invaluable comments on earlier versidhis paper.

7 See in [1] Section 3 on related work.
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