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Abstract

This paper investigates the potential of constraint pnognéng for solving set
partitioning problems occurring in crew scheduling, whesastraint programming is
restricted to not employ external solvers, as for instanteger linear programming
solvers. We evaluate preprocessing steps known from thét@Rtlre on moderately
sized set partitioning problems. Further, we propose a rmepwrpcessing technique
which allows to reduce problem size more effectively thaangard preprocessing
techniques but with similar computational effort. Additaly, we propose a propa-
gation algorithm for a global set partitioning constrairttigh, compared with other
constraint programming approaches, finds and proves dpgiohations significantly
fasterresp.produces better solutions in a given time period.

1 Introduction

Set partitioning problems occur as subproblems in various combinatorial optiomzati
problems, as for example in airline scheduling (see [10] for details). A sulofagk-

line scheduling, called crew scheduling, takes as input data a set of crew paivinge

a crew pairing is a sequence of nonstop flights of a single crew and a pairing si@rts a
ends at the same base station. Such a set of pairings is generated accordirfigiotshe
an airline offers to its costumers where a large number of constraints hbeda&en into
account, as for instance labour contracts and union schedules. The selection péicrew
ings which cause minimal costs and ensure that each flight is covered exaatlycan be
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modelled as a set partitioning problem (SPP). Typically, SPPs are solveateggr linear
programming (ILP) solvers.

This paper explores the potential of constraint programming (CP) [19, 18] for solving
SPPs. Throughout this paper, we assume CP not to employ an ILP solver. Constraint
programming offers the programmer a natural and compact way to model problems and
adequate control and flexibility to solve problems quickly and efficiently evaddftional
side constraints have to be met or additional subproblems have to be solved. In our exper-
iments we use a subset of SPPs taken from Hoffman&Padberg’s problem suitereiair
scheduling problems [9].

To our knowledge, the only work on solving SPPs with constraint programming without
using an ILP solver has been done by Carmen Gervet. She proposed an SPP sulver usi
set constraints and employing a demanding formal apparatus. Her solver operagds
of sets which complicates the implementation [3, 5]. This work was the irigpiréo
develop a propagation algorithm based on index sets for a global set partitioningounstr
(see Section 4).

An SPP can be stated as follows: for a given finite groundss@tith cardinalitym)
and a seP of n subsets; associated with cos@, find a minimum cost partition dg, i.e.

a subset oP where all elements are disjoint of each other and the union of the elements is
G.
The common 0-1 linear integer programming model [13] is as follows:

min cx
s.t. Ax=1 (1)
xje{0,1} j=1,...,n

The 0-1 matrixA hasmrows andn columns. A row ofA corresponds to an element in the
ground sefG and a column is the characteristic vector of a sub$efThe vectorc holds
the cosiC; associated with a subs¥éf and the solution vectorindicates whether a subset
X;j belongs to a partition or not. Such a system can be efficiently solved by an N&?.sol

The corresponding set-based model, which is somewhat closer to the actual problem
formulation, can be phrased as:

find asetSol C Ps.t. min Zj¢Cj
AN Uja Xj =6 (2)
AN Yijjeli#j:XnX;j=0 wherel = {i| X € Sol}.

We have to find &et of subset&hich produces minimal cost and is a partitionGf

The set-based model can be directly implemented using set constraints [A,cbh}i
junction with finite domain constraints [1]. But this turns out to be not powerful enough to
solve larger instances of SPPs. To improve the situation, we explored t@atidirs:

Reducing the problem size of an SPP by performing preprocessing fie solving it.
We evaluated in detail different preprocessing steps from the OR liter§2] and
propose a (to our knowledge) new preprocessing technique. This new technique al-
lows for the considered problems a significantly improved problem size reduction



with comparable computational effort with respect to standard preproceassing
niques (see Section 2).

Improvement of the performance of the constraint solver. We propose an algorithm for
a global set partitioning constraint which allows to solve moderately stfeis
within the constraint programming framework (see Section 4).

To do an experimental evaluation, the proposed algorithms and techniques have been
implemented in Oz 3 [14, 17], a concurrent constraint language. For the experiments
selected a subset of moderately sized problems of Hoffman&Padberg’s probter{i.sui
problems with up to 6774 pairings) since these problems could be practically handled.

The results obtained show that CP cannot compete with ILP solvers which are abl
to solve problems up to 1.000.000 pairings. But for C&,for Carmen Gervet's SPP
solver, we were able to reduce the time taken to solve probleasfihding and proving
an optimal solution) on average by a factor afeéép.to produce better solutions within a
given time period if the optimal solution could not be fouredp.proved. Therefore, we
think to provide an alternative approach to solve SPPs, in particularSP&hoccurs as a
part of a larger combinatorial problem preferably tackled with CP.

Plan of the Paper. The following section proceeds by giving an overview of preprocess-
ing approaches, introducing a new preprocessing step and evaluating the efiessivof
preprocessing. Then, it defines a constraint model for solving SPPs and develops a prop-
agation algorithm for the central constraint of the constraint model. In Sectithre ®b-

tained solutions are discussed. Detailed experimental result are gitrenAppendices A

and B.

2 Preprocessing

Preprocessing aims at reducing the size of a $EPat reducing the number of subsets
and the cardinality of the ground set.

This section introduces a new preprocessing step to discard subsumed suBgets in
tion 2.2 and compares its effectiveness with standard preprocessing techimigne OR
literature [9]. Further, we provide for all considered preprocessing techniiugve al-
gorithms in terms of sets. To obtain a maximal number of discard sulespisemoved
elements, the algorithms have to be applied iteratively until no further tieducf the
problem size is possibleg., until a fixed point is reached.

Prerequisites and Notation. In the following, index sets will be used to model prepro-
cessing approaches. Amdex setd contains all indiceg of the subset¥X; wheree € X;.
This corresponds to the column indicesf Awhereaej = 1. We mean by 8the cardinal-
ity of S,

Throughout the paper we will use the following terms synonymously: ‘number of sub-
sets’ is synonymous to ‘number of columns’ and ‘cardinality of the ground set’ is synony-
mous to ‘number of rows’.



2.1 Detecting Multiple Sets (MS)

Find equal sets and keep the set with minimum cost. A naive algorithm compaiimgse

all subsets has complexity @f(n?). The use of appropriately sorted subsets can reduces
the complexity toO(nlogn). Despite the simplicity of this preprocessing approach, the
number of subsets of a SPP can be already reduced quite significantly (see 3&jtion

2.2 Detecting Subsumed Subsets (SS)

Idea. A subsetX; can be discarded from an SPP if it can be partitioned by other subsets
with less cost thag;. Although the idea is very straightforward, to the knowledge of the
authors it has not been publishegbp.used by now.

This preprocessing approach turns out to reduce the number of subsets better than any
standard approach with similar computational effort.

Algorithm.  An exhaustive search for subsumed subsets would incur an exponential com-
plexity and is hence not tractable. Therefore, we propose a greedy heuristespidhe
computational effort low. Further, the proposed technique discards significanttysubr

sets than standard preprocessing approaches (see Section 2.5).

Aucxiliary functions:  vect_head(({x1,...,Xn)) X1
vect_tail((X1,X2, ..., %n)) (X2, ..., %)
Require: SCV=(SG = (5,C1),...,SG = ($,C,)) vector of subsets and associated costs
sorted such that costs are in descending order

1: function subsumedSubsets(in SCV) : set of indices
2: begin
R«0
i1
while SCV# () do
if checkForSubsumption(vect_head(SCV),vect_tail(SCV)) = true then
R« RuU {i}
endif
: i—i+1
10: SCV « vect_tail(SCV)
11: endwhile
12: returnR
13: end.

CoNARW

Figure 1: Detecting subsumed subsets (driver loop).

The algorithm consists of two parts. The driver loop is shown in Figure 1. Isenésl
that SCVis appropriately sorted,e. with descending costs. Otherwise, the probability to
find partitions with less costs would decrease and the effectiveness dftnram would
suffer. The algorithm starts with initializing the index countemnd the accumulator for
the return value (line 3—-4). The while-loop invokes the functibeckForSubsumption(),
which checks if there exists for the headS®V a cheaper partition in the tail &CV, for
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all fields of SCV (line 6). In case a less costly partition can be found for a subset, the index
of this subset is added to the accumulad®rmext, the index counter is incremented and
the first field is removed fronsCV. This algorithm has to be applied until the returned
index set is empty to obtain the maximal effect.

The boolean functiorheckForSubsumption() is depicted in Figure 2. It tries recur-
sively to prove that there is a partition f&in the remaining vecto8CV. If it finds an
empty vector it returnfalse(line 4-5). Otherwise it checks two cases: First, it checks if
the head field 0ECV, i.e. Seaq IS SUbsumed b and has less cost than the head element
of SCV. If so, it enters recursion to prove the existence of a partition for reduostd c
annotated subsés\ Sieaq, C — Chead) i the tail of SCV (line 8-10). Second, in case the
head field ofSCVis equal taSand less costly tha@, checkForSubsumption() returnstrue
to indicate that it found a valid partition. If both cases do not apply, it entmgrsion to
perhaps find a valid partition fdfS C) in the tail of SCV.

Require: SCV=(SG = (5,C1),...,SG = ($:,C,)) vector of subsets and associated costs

1: function checkForSubsumption(in (S,C), in SCV) : {true, false}
2: begin

3. (SheadChead) ¢ vect_head(SCV)
4:  if SCV= () then
5: return false
6: else
7 if SieadC Sthen
8: if C > Cheagthen
9: return checkForSubsumption((S\ Shead C — Chead), vect-tail(SCV))
10: endif
11: elsif Seag= Sthen
12: if C > Cheagthen
13: returntrue
14 endif
15: endif
16: return checkForSubsumption((S,C),vect_tail(SCV))
17: endif
18: end.

Figure 2: Detecting subsumed subsets (check for subsumption).

The complexity of the algorithm shown in Figure 20¢n), since with each iteration the
vector of subsetsSCV) is shortened by one subset. The loop in the algorithm in Figure 1
invokes checkForSubsumption() for all possible vector tailsi.e. for n of them, that the
complexity ofsubsumedSubsets() results inO(n?). We observe that the typical number of
iterations is compared tovery small, so that it can be neglected.

2.3 Clique Analysis (CA)

Idea. Suppose, we derive a graph from an SPP, such that the nodes of the graph cor-
respond to subsets and if two nodes share at least a single element then #messlge
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between the nodes. A trivial cligu@: in such a graph is the set of all nodes containing

a certain elemenrg of the ground set. An important property of a clique is that only one
member of it can be part of the solution and all others have to be discarded. If one could
find a cliqgueC that properly subsumés; then all nodes contained only @ can be dis-
carded, because they are ruled out by the node to be selecte@frddow the problem

can be formulated as follows: find a set of subgetshere all memberX exclude each
other so that exactly ong; can be part of the partition sought. Further,Kebe the index

set ofE, i.e.K = {j : Xj € E}. In case there is an index 9dt which is properly subsumed

by K, i.e. Me C K, then all sets indexed b¥ \ M can be removed, since the presence of

Xj 1 ] € Me excludes each ofick\ v, from the partition.

Example. Suppose, the ground sél,2, 3,4} has to be partitioned by the seXs =
{1,2}, Xo = {1,3}, X3 = {2,3}, andXq = {2,4}. SinceX; andX, contribute the element
1, one of the has to be part of the partition. But there is a cligieXy, X3}, because all
of these subsets share pairwise an element. SXas=tin be discarded from the problem
since eitheX; or X will be part of a solution and both rule oM.

Require: SV=(S,,...,Sy) vector of subsets
G ground set

1: function cliqueAnalysisStep(in G, in SV) : set of indices

2: begin

3: R+0O

4: VYeeG:lg« {i|eeS}

5. foralleec Gdo

6: forallie {1,...,n}\ledo
7: ifVj€le:SNSj #0then
8: R+ RU({i}

9: endif

10: endfor

11: endfor

12: returnR

13: end.

Figure 3: Clique analysis.

Algorithm.  The algorithm is shown in Figure 3. It returns a set of indices for the subsets
to be discarded. The algorithm starts with initializing the accumuRtorbe an empty set
(line 3) and by generating the index sets for each element of the groui(bee 4). It
then tries to find subsets which have a nonempty intersection with all subtsted by a
certain index set (line 5-7). If such a subset is found, its index is add@dlitoe 8). The
algorithm is applied on reduced problems uRtik found to be empty.

The complexity of the algorithm in Figure 3 B(#G x n?), due to the nested loops
(lines 5-6) which contribut©(#G x n) and the test inside the loops (line 7) which con-
tributesO(n).



2.4 Dominance Analysis (DA)

This preprocessing step aims mainly at reducing the cardinality of the groumdhisxt

leads in the ILP model (see Equation 1) to a reduction of the number of equdtens,
decrease af. There are case that reduce also the number of subsets which is desirable for
the constraint model.

Idea. The intension is to find an elemekbf the ground set which only occurs in those
subsets in which also elemdnis contained. We sa¥ is dominatedby | and can remove

k from the ground set and all subsets, since all subsets that might be discardedlthie to t
presencek will be already be discarded due fto In terms of index sets, the idea can be
rephrased as follows: an eleméwhich occurs only in subsets where the elemesalso
contained,.e. I C |;, allows to remove all subse¥§ wherej € I, \ Iy and to remove the
elemenk from all Xj andG.

|kC || —>Xj6|\|k(—0 (3)
Vie{l,...,n}:X; < X\ {k} A\ G+ G\{k} (4)

In caselx = || either elemenk or | can be removed from the SHR. only reduction 4
has an effect.

Situations wherdy andl; differ in exactly two elementsand j, i.e.lx=1U{i} Al} =
lU{j} with I = (Ixknl;) # 0, are exploited too. The subsetsandX; either belong both
to the partition or both do not. This can be easily seen, since subtractinigfrom min
the ILP model results iy — Xxn = 0 — X = Xm. There are two case to consider:

1. In caseX; N Xm = 0, both subsets can be merged to a single suk/setX; U Xy and
C|/ = CI +Ch.

2. In caseX; N Xm # 0, X, and Xy, can be removed from the SPP, since both exclude
each other and therefore cannot be part of the partition at the same time.

Algorithm. The algorithm is depicted in Figure 4. It returns a 3-tuple consisting of a
index set designating subsets to be removed, a set of elements to be reaumeedi(ig to
reduction 4), and a set of 2-tuples designating pairs of subsets to be merged. Thierakyori
starts with initializing the accumulators for the return value and the isdex(line 3—4). It
proceeds by picking subsequently all elememisthe ground set and checking if there are
index sets other thdnwhich subsumé properly (line 7-9yesp.are properly subsumed by

li (line 10-12). If so, the appropriate elements (according to reductions 3 and 4) are added
to accumulators of the return value. Next, it is testelgl i equal to some other index set
which would lead to mark elemento be removed (line 15-16). In case index sets are
detected which differ in exactly two elements but have a nonempty intemsehen they

are either marked to be merged or to be discarded, depending on if the intarsédtie
subsets indexed by the differing elements is empty or nonempty, respeclinel§{-22).

The algorithm is applied until all components of the return value are empty.
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Require SV=(S,...,S) vector of subsets
G ground set

1: function dominanceAnalysisStep(in G, in SV) : (set of indices, set of elements, merge set)
2: begin
. RI+~ORE+~OM<«+0

3
4: VeeG:le+{i|eeS}

5: forallie Gdo

6: forall je G\{i} Ai< jdo

7: if lj Clj then

8 Rl « RIUI; \ I;,RE « REU {i}
9 elsif |j C lj then

10: Rl + RIUIL\1j;,RE+ REU{j}
11: else

12: iflj = |j then

13: RE + REU{i}

14: elsifdej, e eGer#e:lj=lU{e}Alj=1U{e} wherel =IinNljAl # 0then
15: if lg Nle, = 0 then

16: M« MU{(er,e)}

17: else

18: Rl « RlU{e1, e}

19: endif

20: endif

21: endif

22: endfor

23. endfor

24: return (RI,RE,M)

25: end.

Figure 4: Dominance analysis.



The complexity of the algorithm in Figure 4 {#G? x n), due to the nested loops (lines
5-6) which contribut@©(#G?) and the set operation inside the loops (lines 7 and 10) which
contributeO(n).

2.5 Evaluation

To run experiments, we implemented the presented preprocessing steps irp@wglihg
sets of integers as built-in data types [11] which simplified the implentientsignificantly.

The experiments have been done on problems of Hoffman&Padberg’s problem suite [9].
The names of problems follow the naming convention taken over from Hoffman&Rgslbe
benchmark suite ‘nwb.rows.cols, wherenb is the problem numberpwsis the number
of rows, andcolsis the number of columns of the problem.

We choose as a measure for the effectiveness of a preprocessing approachettie perc
age of discarded subsets. That means to take the number of columns discardec\ade to di
it by the number of columns before preprocessing. The tables in this section are cahdense
to give the reader a good overview. They show the arithmetic means of all indivedua
sults in the columns denoted widtvr (for average). Further, we give also the minimal and
maximal effectiveness in the columnmsn resp.max The column of every table indicates
the preprocessing steps performed. The detailed data can be found in Appendix A.

Table 1 shows the reductions obtained by applying a single preprocessing step to ini-
tial problems. The straightforward approach (MS) yields very good reduction dibe to
redundancies in the problems. The newly presented approach (SS) does even better by
achieving an average effectiveness of 35%. Clique and dominance analysisiresujt
limited reductions.

Approach Benefit

min avr max
(MS) 0% 21% 33%
(SS) 1% 35% 76%
(CA) 0% 0% 3%
(DA) 0% 0% 2%

Table 1: Effectiveness of single preprocessing approaches on initial problems.

Since (MS) is very straightforward but very effective, we werergegéed to find out
how the approaches (DA), (CA), and (SS) behave on problems previously processed by
(MS). Dominance analysis turned out to be very effective on problem ‘nw08.24.434’ by
discarding 284 columns. But in fact, it was not as effective as (SS) which didfife
columns (see line 4 in Table 5). Clique analysis does not contribute significaptiglittem
reduction.

Table 3 shows the results obtained by applying dominance and clique analysis on prob-
lems preprocessed by (MS) and (SS). Again, only (DA) is able to contribgtefisant
reduction for certain problems.



Approach Benefit relative to (MS) Benefit

min  avr max min avr max
(MSDA) 0% 2% 58% 0% 23% 65%
(MSCA) 0% 0% 1% 1% 21% 33%

(MS SS) 1% 24% 70% 1% 40% 77%

Table 2: Effectiveness of preprocessing approaches on problems preprocessed).by (M

Approach Benefit relative to (MS SS) Benefit

min avr max min avr max
(MS SS DA) 0% 2% 55% 1% 41% 86%
(MSSSDACA) 0% 2% 55% 2% 41% 86%
(MS SS CA) 0% 0% 2% 2% 40% 77%
(MSSSCADA) 0% 1% 19% 2% 41% 77%

Table 3: Comparing the effectiveness of different preprocessing approachedtiflen
subsets are already discarded.

The results suggest as most effective combination of preprocessing stepS(MIS) S
which we used to eventually finding solutions (see Section 5). Clique analysisiota
further regarded due to the insignificant problem reduction obtained.

In Section 2.4 it was explained that dominance analysis may lead to a reductosof
(resp.a reduction of the cardinality of the ground set). In our experiments that happened
only once for the data set ‘nw08.24.434’, where three rows could be discarded (see line 4
in Table 5). Due to it minor importance, we did not include figures for that kind of problem
reduction in the tables above.

3 Solving SPPs with CP

This section introduces briefly concepts and notions of CP used in Oz [16] which are
relevant to implement the set partitioning constraint in Section 4. Funfempropose
a constraint model for SPPs.

Constraint Solving in Oz. Constraint solving consists basically of two components:
constraint propagatiorand distribution Constraint propagation is done ovecempu-
tation spacewhich consists of theonstraint storeand the associatgaropagators The
constraint store holds a conjunction of constraints kke n, x =y, andx € D, wherex
andy are variablesn is a positive integer, anB is a finite subset of positive integers.
For these constraints satisfiability and entailment can be efficientigelicA variable is
determinedf it entails the constraint = n. More expressive constraints, @g.x < y, are
imposed bypropagators A propagator is a concurrent computational agent implementing
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a constrainP. It performs constraint propagation by removing elements from the domains
of its parametersg g.x andy in x < y), i.e. it tells a constrainB to the constraint storé€

if CAP entailsB, resulting in a stor€ A B. If a propagator becomes inconsistent with the
constraint store is becomésled which causes the whole computation space to be failed.
A propagator that is entailed by the constraints in the sia@gecannot further amplify the
constraint store, becomestailedand is without any effect to further constraint propaga-
tion. If none of the previous cases applies a propagatsuspendedintil its parameters
get involved in further constraint propagation. Usually, constraint propagatioot isuf-
ficient to find a solution. Therefore, a computation spaagistributedby cloning it and
adding a constraird and—D to the original space and its clone, respectively. Finding an
appropriate constraim is subject to clever search heuristics.

A Constraint Model for SPP. The basic idea is to introduce annotated subSetshich
are a 3-tupelgX;,Ci.R;). The componenk; is the actual seC; the cost of the set, and
R € {0,1} determines whetheX; is part of the partition or notR; = 1 resp.R, = 0). An
X; designates a set valug,is an integer, an&; is a boolean finite domain variable.

min iR x G 5)
st.G=UieX A\ Vi.jeli#j:XnXj=0 (6)
wherel ={i |ie {1,...,n} A R =1}.

The constraint model consists mainly of two parts: first, the partitioning cnstr
(Equation 6) which will be discussed in Section 4 and second, the objectivednitEgjua-
tion 5) which uses sum constraints present in almost any available finite nloorastraint
solver. Search for an optimal solution can be done usimagch&boundsearch, also pro-
vided by nearly all solvers (see for example [15]).

4 A Global Constraint for Solving SPPs

This section presents a efficient algorithm to implement a set partitiorngt@int, as
used in Equation 6 of the constraint model to solve SPPs in Section 3.

A first version of the set partitioning constraint was based on reasoningawver &nd
upper bounds of set interval constraints (see [4]) which turned out to be too inefficient
Inspired by tackling SPPs with an approach using so-called successoseaetRl] for
details), we developed a propagation algorithm based on index sets that requirestsenl
of integers rather than sets of sets.

4.1 The Constraint in Terms of Index Sets
According to the constraint model, the set partitioning constraint reads aw$ollo

partition(X,g,7) : g=UiaXxi AVi,jeli#j:xinNxj=0
wherel = {i | r; =1} and
X=(X1,...,%Xn) @andr = (rq,...,rn).
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In terms of index setpartition(X,g,T) can be stated as follows:

partition(x,g,T) : Veeg:le={i} ATi=1 (7)
A Vi€U|eZXi:{j‘i€|j}.
ecg

The equation 7 expresses the disjointness of all subsets being part of the paéitibn (
element ofg is contributed only be one subset) and the union of them yields the ground
set (there must be for all elements at least one supporting subset). The conbettiean
the index formulation and the “standard” formulation is established by Equatidisays,
that if some subseg is part of a partition for all its elements the corresponding index sets
must refer tog, i.e.Ve e x; : le = {i}.

The following reduction rules describe operationally the propagation of the paitigj
constraint in terms of index sets:

Veeg:le={i|eex}

=0 — Vjex:lj«Ij\i (8)

=1 — Vjex:lj«{i} (9)

lj={i} — r«1 (20)
Vie{alae{l,....n}A—-Jecg:acle — 1«0 (11)
JdJecg:#le=0 — failed 12)

Veeg:#le=1 — entailed (13)

These rules are to be applied until a fixed point is reached. A certain ingitbacele
can only be applied once. Note that a ryle= n has to read as{ has been determined to
n’.

The first two rules project constraints on the boolean variable to the indexades8
removes the index df; from all index sets where occurred in. For the opposite case,
Rule 9 sets all index sets containingo contain onlyi. The next two rules constrain
boolean variables based on the current values of the index sets. Rule 10 comgst@ins
1 if there exists a index sets containing onlyindices absent in all index sets cause the
corresponding boolean variables to be set to 0, as done in Rule 11. The last two rules
detect if the constraint is entailed or failed. That corresponds to the notiooduicid in
Section 3. As soon as either an empty index set (inconsistent with constoa@tRule 12)
or all index sets contain only one element (entailed by the store; Rule 13) propacgtion
be aborted. If none of the Rules 12 and 13 are applicable and a fixed point is reached, the
constraint is suspended (which has to be signalled to the solver).

4.2 The Algorithm

The algorithm implements the collection of reduction rules presented in theopsesec-
tion and is depicted in Figure 6. It uses the functiesetAllBut(l, S, k,G) which sets alll
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Require: | set of index sets G ground set
Sl set of indices to be processedk integer

1: function resetAllBut(inout |, out Sl, in k, in G) : {true, false}
2: begin

3 R Ueijicokeny le\ {k}
4: forallee Gdo

5 if K€ le then

6: le + {k}

7. else

8 le+1e\R

9 if le=0then

10: return false
11: elsif #le has become then
12: Sl«+ Slu{e}

13: endif

14 endif

15: endfor

16: returntrue

17: end.

Figure 5: Auxiliary algorithm for the propagation algorithm of the set partitioning con-
straint.

index sets containinigto contain onlyk. It records inSl all index sets which have recently
become a singleton set. The algorithm is given by Figure 5.

The local variabldr s initialized to the union of all index sets in whi&woccurs, buk
is not contained. Next, all index sets are processed; either an index sebiseetain only
k (5-6) or by employind, all subsets to be discarded are removed from the index sets not
containingk (line 8). In case this leads to an inconsistency, the véhlseis returned. If
not, it is checked whether an index set has become a singleton which is recofled i

The algorithm for the set partitioning constraint (Figure 6) starts with Irtrey the
index sets. The local variablel holds index sets that have become singletons. Next, the
index set are updated according to the current state of the constraint stoes¢repd
by the constraint oiR;, lines 5-24). In lines 7-10 the caBe= 1 is handled employing
the functionresetAllBut() (that corresponds to Rule 9). The opposite caseR, = 0, is
handled by removingfrom all index sets (corresponding to Rule 8). It is further checked
if an inconsistency occurred (lines 13-15) or singleton index sets were crdiatsl 16—
21). Since functionesetAllBut() records in its second argument newly created singleton
index sets, it is looped until all singleton index sets are taken into accones @5-31).
According to Rule 10, for all singleton index sets the corresponding boolean varsables
determined to 1 (lines 32—36). Further, Rule 10 is implemented in lines 37-39.itliast,
check if the constraint is entailed by testing all index sets to be singlefuris (3; lines
41-42). Since inconsistencies are detected as they arise in the course of tithralgor
being not entailed requires to suspend propagation (line 43). The solver is infobmetd a
the outcome of propagation by the returned value which is eftibd, suspendedor
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entailed

The complexity of the algorithm shown in Figure 50¢#G x n), since it loops for all
elements of the ground s€étand inside the loop is a set operation contribut®(@) (line
8). The algorithm in Figure 6 invokessetAllBut() for all subsetsi.e. n times, and addi-
tionally maximal another @ times to take newly generated singletons into account (lines
25-31). Because Gtis typically small against, the complexity of the whole propagation
algorithm isO(#G x n?).

4.3 Implementation

The presented algorithm is implemented as an Oz propagator via the constraint psopaga
interface (®1) of Oz [12] taking 590 lines of C++ code. The implementation takes advan-
tage of a feature of therI that propagators maintain an internal state. That is used to keep
track of intermediate results of propagation to avoid frequent rebuilding thg sede from
scratch from the current constraint store. Instead, the index sets anmantedly updated

on each invocation by only taking modified variabtesto account.

5 Experimental Results of Solving SPPs

We implemented the constraint model presented in Section 3 using Oz 3.0rfgdtnite

set and finite domain constraints [11, 7]. The set partitioning constraint (Bquétof

the constraint model) was implemented by a propagator using the algorithm presented i
Section 4. The objective function of the constraint model (Equation 5) was implethent
using the generic sum constraint of the finite domain library of Oz 3.0. The search engine
of Oz provides fobranch&boundsearch which we used to find optimal solutions.

We experimented with various search heuristics and used problems preptbbgss
(MS SS DA). It turned out that sorting the subsets of preprocessed problems bynihe mi
mal element of a subset as first criterion and by the cost per element as satenah (in
ascending order) yielded the best results. For all except three problems (‘nw19.40.2879’,
‘nw09.40.3103’, and ‘nw06.50.6774’), we are able to find the optimal solution in maximal
about 10 minutes and for the majority of problems, even within a fraction of a miRube-
ing optimality was possible in less than 10 minutes, except for problems ‘nw29.18.2540°
and ‘nw33.23.3068’ which took 43 minutes and 16 minutes, respectively. These results
can be found in Table 6 in Appendix B.

Table 4 shows the best solutions founds within an one-hour time-limit. Tablesatrie
the formmins:secs.msec&note execution times wharensdenotes minutesgecdenotes
seconds, anansecdenotes milliseconds. In table entries of the koid ¢ denotes the
number of columns anddenotes the number of rows. The last column of the table shows
the distance to the optimal solutiare., the difference of the found solution to the optimal
solution divided by the optimal solution. For problem ‘nw19.40.2879’ a solution 1% from
the optimum was found after 16:29 minutes and for problem ‘nw09.40.3103’ a solution
3% from the optimum was found after 18:15 minutes (which could be slightly improved
to 2% after 37:21 minutes). The result for problem ‘nw06.50.6774" with a solution 19%
from the optimal solution was unsatisfactory, so that we tried differentisterg. This
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Require: SV=(S,...,S)) vector of subsets
RV = (Ry,...,Ry) vector of 0-1 variables
G ground set

1: function partition(in SV, inout RV, in G) : {entailed failed,suspendef
2: begin

3. Veeg:le+{i|eeS}
4: Sl+0
5. fori:=1tondo
6: if R is determinedhen
7 if R =1then
8 if resetAllBut(l,Sl,i,G) = falsethen
9: return failed
10: endif
11: else
12: Veeg:le+le\{i}
13: if de:le=0then
14: return failed
15: endif
16: forallee {k| ke GA#lxy=1} do
17: if resetAllBut(l,Sl, e G) = falsethen
18: return failed
19: endif
20: Re+1
21: endfor
22: endif
23: endif
24. endfor
25: whileSl#0do
26: N < nwheren € Sl
27: Sl«+ SI\ {n}
28: if resetAllBut(l,SI,N,G) = falsethen
29: return failed
30: endif

31: endwhile
32: forallee Gdo

33: if #le= 1then

34: R < wherele = {i}
35: endif

36: endfor

37:  forallie{1,..,n}\Uecledo
38: R+ 0

39: endfor

40: ifVee G:#lg=1then
41: return entailed

42: endif

43: return suspended

44: end.

Figure 6: Propagation algorithm for the set partitioning constraint.
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Problem

Problem
Size

Solutions
found

Best
found

Time to find
Solution

Optimal
Solution

Distance to
Solution

nw19.40.2879

1661/40

12

11060

16:29.750

10898

1%

69262

37:21.960

67760

2%

1427/40 11
5510/50 20

nw09.40.3103
nw06.50.6774

9322 52:11.830 7810 19%

Table 4: Best solutions found for the three hardest problems considered.

heuristics was already proposed in [6] and improved the best solution found to be 15%
from the optimal solution. Interestingly, for the other problems it produced much worse
results than the heuristics mentioned above.

We have solved the preprocessed problems in Table 6 (see Appendix B) using Car-
men Gervet's SPP solver on the same platform that we used for the benchmtrks w
our solver. Her solver is implemented ECL PS [2] using the finite set constraint li-
brary Conjunto [3]. On these problems we obtained an average speed-up of factar 7 wi
our solver. Further, we run the three hardest problems with an one-hour tinteffaori
problem ‘nw.40.2879’, Carmen Gervet’s solver found a solution with the same co&t as w
did. For the other two problems her solver did worse: after an hour the solution for the
‘nw06.50.6774’ problem has a cost of 27172 which is 248% of the optimal cost and for
the ‘nw09.40.3103’ problem, the solution has a cost of 7864416% distance form the
optimum. The results show that due to the improved performance of our solver, bette
solutions can be found in a given time period.

6 Related Work

In Section 1 we already mentioned the work of Carmen Gervet, who uses taekte
SPPs. There are other works on solving SPPs which take different approachesll We
shortly explain them and characterize their features.

Peter Szeredi implemented a solver for SPPs in Prolog which implementxdal
similar to the set-based model (Equation 2) in Section 1. Sets are ref@@ses integers
and search is done by backtracking.

Guerinik and Van Caneghem implemented a SPP solver in CHIP [1] which addlifiona
employs a simplex-based solver. Bringing a simplex-based solver into paysabne to
solve significantly larger instances of SPPs (up to 100.000 pairings). Further, byproduct
of the simplex are be used to fix variables by employing reduced cost analykigiof-
ally, variable selection can be based on reasoning over the optimal sabditiba linear
relaxation of the SPP.

Branch-and-Cut solver known from OR literatueed, see [9]) are able to solve prob-
lem instances up to 1.000.000 pairings. Such solvers also employ preprocessohgcto re
the problem size.
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7 Conclusion and Future Work

We presented a new preprocessing approach that achieves a significantlyedypraiviem
size reduction on SPPs occurring in air crew scheduling compared to stapgacdehes
with similar computational effort. Further, we present a propagation algofithra set
partitioning constraint which allows to solve problems of moderate size witlgag an
ILP solver. The average speed-up against previous CP solvers is 7.

Although, the performance of ILP solvers could not be reached, we are confident to
offer an alternative approach to solve moderately sized SPPs, dgpi&®Ps occur as
components of other problems preferably solved by CP.

Future work will concentrate on the development of more sophisticated searas- heur
tics. Another promising direction is to use techniques that use intermediat#ss|to
reduce the problem size further.
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6T

In table entries of the kind/r, c denotes the number of columns andenotes the number of rows.
Further,MSS abbreviate$1S SS

Problem | Initial | (MS) | (SS) | (A) | (CA) ] (MSDA) [ (MSCA) [ (MSS) [ (MSSDA) | (MSSCADA) [ (MSSCA) [ (MSSDACA)

nw41.17.197 197/17 | 177/17 | 105/17 197/17 | 197/17 177117 177/17 | 103/17 103/17 103/17 103/17 103/17
nw32.19.294 294/19 | 252/19 | 191/19 | 294/19| 294/19 252/19 252/19 | 185/19 185/19 185/19 185/19 185/19
nw40.19.404 404/19 | 336/19 | 303/19 | 404/19 | 404/19 336/19 336/19 | 284/19 284/19 284/19 284/19 284/19
nw08.24.434 434/24 | 356/24 | 148/24 | 425/21 | 434/24 150/21 356/24 | 139/24 62/21 113/21 139/24 62/21
nw15.31.467 467/31 | 465/31 | 460/31| 467/31| 464/31 465/31 461/31 | 460/31 460/31 458/31 458/31 458/31
nw21.25.577 577/25 | 426/25| 290/25| 577/25| 577/25 426/25 426/25 | 273/25 273/25 273/25 273/25 273/25
nw22.23.619 619/23 | 531/23 | 408/23 | 619/23 | 619/23 531/23 530/23 | 389/23 389/23 389/23 389/23 389/23
nwl12.27.626 626/27 | 454/27 | 267/27 | 623/27 | 626/27 451/27 454/27 | 258/27 255/27 255/27 258/27 255/27
nw39.25.677 677/25| 567/25| 391/25| 677/25| 677/25 567/25 567/25 | 372/25 372/25 372/25 372/25 372/25
nw20.22.685 685/22 | 566/22 | 500/22 | 685/22 | 685/22 566/22 566/22 | 468/22 468/22 467122 467/22 467/22
nw23.19.711 711/19 | 474/19 | 454/19 | 711/19 | 711/19 474/19 474/19 | 392/19 392/19 390/19 390/19 390/19
nw37.19.770 770/19 | 639/19 | 503/19 | 770/19| 770/19 639/19 639/19 | 469/19 469/19 469/19 469/19 469/19
nw26.23.771 771/23 | 542/23 | 494/23 | 771/23| 750/23 542/23 537/23 | 427/23 427/23 420/23 420/23 420/23
nw10.24.853 853/24 | 659/24 | 201/24 | 850/24 | 853/24 656/24 659/24 | 198/24 195/24 195/24 198/24 195/24
nw34.20.899 899/20 | 750/20 | 672/20 | 899/20 | 899/20 750/20 749/20 | 624/20 624/20 624/20 624/20 624/20
nw43.18.1072| 1072/18 | 983/18 | 828/18 | 1072/18 | 1072/18 983/18 983/18 | 793/18 793/18 793/18 793/18 793/18
nw42.23.1079( 1079/23 | 895/23 | 789/23 | 1079/23 | 1078/23 895/23 891/23 | 749/23 749/23 742/23 742/23 742/23
nw28.18.1210( 1210/18 | 825/18 | 927/18 | 1210/18 | 1207/18 825/18 816/18 | 787/18 787/18 773/18 773/18 773/18
nw25.20.1217| 1217/20 | 844/20 | 564/20 | 1217/20 | 1217/20 844/20 844/20 | 508/20 508/20 508/20 508/20 508/20
nw38.23.1220( 1220/23 | 911/23 | 1007/23 | 1219/23 | 1219/23 910/23 905/23 | 902/23 901/23 895/23 896/23 895/23
nw27.22.1355| 1355/22 | 926/22 | 1027/22 | 1355/22 | 1353/22 926/22 917/22 | 829/22 829/22 829/22 829/22 829/22
nw24.19.1366| 1366/19 | 926/19 | 555/19 | 1366/19 | 1366/19 926/19 926/19 | 490/19 490/19 490/19 490/19 490/19
nw35.23.1709| 1709/23 | 1403/23 | 1279/23 | 1709/23 | 1709/23 1403/23 1395/23 | 1204/23 1204/23 1204/23 1204/23 1204/23
nw36.20.1783| 1783/20 | 1408/20 | 1422/20 | 1783/20 | 1783/20 1408/20 1406/20 | 1350/20 1350/20 1346/20 1346/20 1346/20
nw29.18.2540| 2540/18 | 2034/18 | 2004/18 | 2540/18 | 2540/18 2034/18 2034/18 | 1836/18 1836/18 1836/18 1836/18 1836/18
nw30.26.2653| 2653/26 | 1884/26 | 1427/26 | 2653/26 | 2653/26 1884/26 1884/26 | 1270/26 1270/26 1270/26 1270/26 1270/26
nw31.26.2662| 2662/26 | 1823/26 | 1538/26 | 2662/26 | 2662/26 1823/26 1820/26 | 1398/26 1398/26 1398/26 1398/26 1398/26
nw19.40.2879| 2879/40 | 2145/40 | 1833/40 | 2871/40 | 2879/40 2137/40 2145/40 | 1669/40 1661/40 1661/40 1669/40 1661/40
nw33.23.3068| 3068/23 | 2415/23 | 2389/23 | 3068/23 | 3068/23 2415/23 2413/23 | 2112/23 2112/23 2107/23 2107/23 2107/23
nw09.40.3103| 3103/40 | 2305/40 | 1569/40 | 3101/40 | 3103/40 2303/40 2305/40 | 1429/40 1427140 1427/40 1429/40 1427/40
nw06.50.6774| 6774/50 | 5977/50 | 5829/50 | 6761/50 | 6774/50 5964/50 5977/50 | 5523/50 5510/50 5510/50 5523/50 5510/50

Table 5: Detailed results of preprocessing approaches.
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B Benchmarks for Finding and Proving Optimal Solu-
tions
In table entries of the kind/r, c denotes the number of columns andenotes the number

of rows. Table entries of the formmins:secs.mse@®enotes execution times whamgns
denotes minutesecsdenotes seconds, antseadenotes milliseconds.

Problems Problem | Solutions | Optimal | Time tofind | Time to find&prove | Time to prove
Size found Solution | Optimum Optimal Solution Optimum

nw41.17.197 103/17 3 11307 00:00.450 00:00.780 00:00.330
nw32.19.294 185/19 8 14877 00:01.110 00:02.190 00:01.080
nw40.19.404 284/19 9 10809 00:02.820 00:21.620 00:18.800
nw08.24.434 62/21 3 35894 00:00.050 00:00.140 00:00.090
nw15.31.467 460/31 3 67743 00:35.050 01:03.520 00:28.470
nw21.25.577 273125 3 7408 00:01.470 00:03.990 00:02.520
nw22.23.619 389/23 8 6984 00:01.380 00:08.050 00:06.670
nwl2.27.626 255/27 35 14118 03:11.790 04:40.640 01:28.850
nw39.25.677 372/25 12 10080 00:02.110 00:19.360 00:17.250
nw20.22.685 468/22 13 16812 00:30.790 01:52.670 01:21.880
nw23.19.711 392/19 4 12534 00:02.150 00:20.100 00:17.950
nw37.19.770 469/19 10 10068 00:05.050 00:19.030 00:13.980
nw26.23.771 427123 7 6796 01:40.720 01:44.480 00:03.760
nw10.24.853 195/24 10 68271 00:00.970 00:05.870 00:04.900
nw34.20.899 624/20 4 10488 00:02.110 00:43.190 00:41.080
nw43.18.1072 793/18 8 8904 05:26.950 09:19.280 03:52.330
nw42.23.1079 749/23 1 7656 00:00.350 01:40.890 01:40.540
nw28.18.1210 787/18 6 8298 00:03.700 00:06.430 00:02.730
nw25.20.1217 508/20 10 5960 00:02.430 00:15.870 00:13.440
nw38.23.1220 901/23 8 5558 01:05.790 03:14.460 02:08.670
nw27.22.1355 829/22 20 9933 00:08.900 00:30.450 00:21.550
nw24.19.1366 490/19 6 6314 00:01.260 00:04.820 00:03.560
nw35.23.1709( 1204/23 13 7216 01:14.500 02:02.330 00:47.830
nw36.20.1783( 1350/20 13 7314 01:54.970 06:45.920 04:50.950
nw29.18.2540( 1836/18 9 4274 07:10.200 43:51.370 36:41.170
nw30.26.2653| 1270/26 3 3942 00:00.380 00:49.670 00:49.290
nw31.26.2662( 1398/26 2 8038 00:08.100 05:51.590 05:43.490
nw33.23.3068| 2112/23 8 6678 10:12.480 16:12.480 06:00.000

Table 6: Finding and proving optimal solutions.

The benchmarks were done on a 200MHz Dual-Pentium-Pro machine with 256KB 2nd-
level cache and 256 MB main memory running Linux 2.0.31.
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