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Abstract

This paper investigates the potential of constraint programming for solving set
partitioning problems occurring in crew scheduling, whereconstraint programming is
restricted to not employ external solvers, as for instance integer linear programming
solvers. We evaluate preprocessing steps known from the OR literature on moderately
sized set partitioning problems. Further, we propose a new preprocessing technique
which allows to reduce problem size more effectively than standard preprocessing
techniques but with similar computational effort. Additionally, we propose a propa-
gation algorithm for a global set partitioning constraint which, compared with other
constraint programming approaches, finds and proves optimal solutions significantly
fasterresp.produces better solutions in a given time period.

1 Introduction

Set partitioning problems occur as subproblems in various combinatorial optimization
problems, as for example in airline scheduling (see [10] for details). A subtaskof air-
line scheduling, called crew scheduling, takes as input data a set of crew pairings, where
a crew pairing is a sequence of nonstop flights of a single crew and a pairing starts and
ends at the same base station. Such a set of pairings is generated according to theflights
an airline offers to its costumers where a large number of constraints have tobe taken into
account, as for instance labour contracts and union schedules. The selection of crewpair-
ings which cause minimal costs and ensure that each flight is covered exactlyonce, can be
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modelled as a set partitioning problem (SPP). Typically, SPPs are solved byinteger linear
programming (ILP) solvers.

This paper explores the potential of constraint programming (CP) [19, 18] for solving
SPPs. Throughout this paper, we assume CP not to employ an ILP solver. Constraint
programming offers the programmer a natural and compact way to model problems and
adequate control and flexibility to solve problems quickly and efficiently even ifadditional
side constraints have to be met or additional subproblems have to be solved. In our exper-
iments we use a subset of SPPs taken from Hoffman&Padberg’s problem suite of aircrew
scheduling problems [9].

To our knowledge, the only work on solving SPPs with constraint programming without
using an ILP solver has been done by Carmen Gervet. She proposed an SPP solver using
set constraints and employing a demanding formal apparatus. Her solver operateson sets
of sets which complicates the implementation [3, 5]. This work was the inspiration to
develop a propagation algorithm based on index sets for a global set partitioning constraint
(see Section 4).

An SPP can be stated as follows: for a given finite ground setG (with cardinalitym)
and a setP of n subsetsXj associated with costsCj , find a minimum cost partition ofG, i.e.
a subset ofP where all elements are disjoint of each other and the union of the elements is
G.

The common 0-1 linear integer programming model [13] is as follows:

min cx
s.t. Ax= 1

x j 2 f0;1g j = 1; : : : ;n: (1)

The 0-1 matrixA hasm rows andn columns. A row ofA corresponds to an element in the
ground setG and a column is the characteristic vector of a subsetXj . The vectorc holds
the costCj associated with a subsetXj and the solution vectorx indicates whether a subset
Xj belongs to a partition or not. Such a system can be efficiently solved by an ILP solver.

The corresponding set-based model, which is somewhat closer to the actual problem
formulation, can be phrased as:

find a setSol � P s.t. min Σ j2ICj^ S
j2I Xj = G^ 8i; j 2 I ; i 6= j : Xi \Xj = /0 whereI = fi j Xi 2 Solg: (2)

We have to find aset of subsetswhich produces minimal cost and is a partition ofG.
The set-based model can be directly implemented using set constraints [4, 11] in con-

junction with finite domain constraints [1]. But this turns out to be not powerful enough to
solve larger instances of SPPs. To improve the situation, we explored two directions:

Reducing the problem size of an SPP by performing preprocessing before solving it.
We evaluated in detail different preprocessing steps from the OR literature [9] and
propose a (to our knowledge) new preprocessing technique. This new technique al-
lows for the considered problems a significantly improved problem size reduction
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with comparable computational effort with respect to standard preprocessingtech-
niques (see Section 2).

Improvement of the performance of the constraint solver.We propose an algorithm for
a global set partitioning constraint which allows to solve moderately sizedSPPs
within the constraint programming framework (see Section 4).

To do an experimental evaluation, the proposed algorithms and techniques have been
implemented in Oz 3 [14, 17], a concurrent constraint language. For the experiments, we
selected a subset of moderately sized problems of Hoffman&Padberg’s problem suite (i.e.
problems with up to 6774 pairings) since these problems could be practically handled.

The results obtained show that CP cannot compete with ILP solvers which are able
to solve problems up to 1.000.000 pairings. But for CP,i.e. for Carmen Gervet’s SPP
solver, we were able to reduce the time taken to solve problems (i.e., finding and proving
an optimal solution) on average by a factor of 7resp.to produce better solutions within a
given time period if the optimal solution could not be foundresp.proved. Therefore, we
think to provide an alternative approach to solve SPPs, in particular if anSPP occurs as a
part of a larger combinatorial problem preferably tackled with CP.

Plan of the Paper. The following section proceeds by giving an overview of preprocess-
ing approaches, introducing a new preprocessing step and evaluating the effectiveness of
preprocessing. Then, it defines a constraint model for solving SPPs and develops a prop-
agation algorithm for the central constraint of the constraint model. In Section 5,the ob-
tained solutions are discussed. Detailed experimental result are given inthe Appendices A
and B.

2 Preprocessing

Preprocessing aims at reducing the size of a SPP,i.e., at reducing the number of subsets
and the cardinality of the ground set.

This section introduces a new preprocessing step to discard subsumed subsets inSec-
tion 2.2 and compares its effectiveness with standard preprocessing techniques in the OR
literature [9]. Further, we provide for all considered preprocessing techniquesintuitive al-
gorithms in terms of sets. To obtain a maximal number of discard subsetsresp.removed
elements, the algorithms have to be applied iteratively until no further reduction of the
problem size is possible,i.e., until a fixed point is reached.

Prerequisites and Notation. In the following, index sets will be used to model prepro-
cessing approaches. Anindex set Ie contains all indicesj of the subsetsXj wheree2 Xj .
This corresponds to the column indicesj of A whereae j = 1. We mean by #Sthe cardinal-
ity of S.

Throughout the paper we will use the following terms synonymously: ‘number of sub-
sets’ is synonymous to ‘number of columns’ and ‘cardinality of the ground set’ is synony-
mous to ‘number of rows’.
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2.1 Detecting Multiple Sets (MS)

Find equal sets and keep the set with minimum cost. A naive algorithm comparingpairwise
all subsets has complexity ofO(n2). The use of appropriately sorted subsets can reduces
the complexity toO(nlogn). Despite the simplicity of this preprocessing approach, the
number of subsets of a SPP can be already reduced quite significantly (see Section2.5).

2.2 Detecting Subsumed Subsets (SS)

Idea. A subsetXj can be discarded from an SPP if it can be partitioned by other subsets
with less cost thanCj . Although the idea is very straightforward, to the knowledge of the
authors it has not been publishedresp.used by now.

This preprocessing approach turns out to reduce the number of subsets better than any
standard approach with similar computational effort.

Algorithm. An exhaustive search for subsumed subsets would incur an exponential com-
plexity and is hence not tractable. Therefore, we propose a greedy heuristics to keep the
computational effort low. Further, the proposed technique discards significantly more sub-
sets than standard preprocessing approaches (see Section 2.5).

Auxiliary functions: vect head(hx1; : : : ;xni) ! x1vect tail(hx1;x2; : : : ;xni) ! hx2; : : : ;xni
Require: SCV= hSC1 = (S1;C1); : : : ;SCn = (Sn;Cn)i vector of subsets and associated costs

sorted such that costs are in descending order

1: function subsumedSubsets(in SCV) : set of indices
2: begin
3: R /0
4: i 1
5: while SCV 6= hi do
6: if checkForSubsumption(vect head(SCV);vect tail(SCV))= truethen
7: R R [ fig
8: endif
9: i i+1

10: SCV vect tail(SCV)
11: endwhile
12: return R
13: end.

Figure 1: Detecting subsumed subsets (driver loop).

The algorithm consists of two parts. The driver loop is shown in Figure 1. Is is essential
thatSCV is appropriately sorted,i.e. with descending costs. Otherwise, the probability to
find partitions with less costs would decrease and the effectiveness of the algorithm would
suffer. The algorithm starts with initializing the index counteri and the accumulator for
the return value (line 3–4). The while-loop invokes the functioncheckForSubsumption(),
which checks if there exists for the head ofSCVa cheaper partition in the tail ofSCV, for
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all fields ofSCV(line 6). In case a less costly partition can be found for a subset, the index
of this subset is added to the accumulatorR. Next, the index counter is incremented and
the first field is removed fromSCV. This algorithm has to be applied until the returned
index set is empty to obtain the maximal effect.

The boolean functioncheckForSubsumption() is depicted in Figure 2. It tries recur-
sively to prove that there is a partition forS in the remaining vectorSCV. If it finds an
empty vector it returnsfalse(line 4–5). Otherwise it checks two cases: First, it checks if
the head field ofSCV, i.e.Shead, is subsumed bySand has less cost than the head element
of SCV. If so, it enters recursion to prove the existence of a partition for reduced cost-
annotated subset(SnShead;C�Chead) in the tail ofSCV (line 8–10). Second, in case the
head field ofSCV is equal toSand less costly thanC, checkForSubsumption() returnstrue
to indicate that it found a valid partition. If both cases do not apply, it enters recursion to
perhaps find a valid partition for(S;C) in the tail ofSCV.

Require: SCV= hSC1 = (S1;C1); : : : ;SCn = (Sn;Cn)i vector of subsets and associated costs

1: function checkForSubsumption(in (S;C), in SCV) : ftrue; f alseg
2: begin
3: (Shead;Chead) vect head(SCV)
4: if SCV= hi then
5: return false
6: else
7: if Shead� Sthen
8: ifC>Cheadthen
9: return checkForSubsumption((SnShead;C�Chead);vect tail(SCV))

10: endif
11: elsif Shead= Sthen
12: ifC�Cheadthen
13: return true
14: endif
15: endif
16: return checkForSubsumption((S;C);vect tail(SCV))
17: endif
18: end.

Figure 2: Detecting subsumed subsets (check for subsumption).

The complexity of the algorithm shown in Figure 2 isO(n), since with each iteration the
vector of subsets (SCV) is shortened by one subset. The loop in the algorithm in Figure 1
invokescheckForSubsumption() for all possible vector tails,i.e. for n of them, that the
complexity ofsubsumedSubsets() results inO(n2). We observe that the typical number of
iterations is compared ton very small, so that it can be neglected.

2.3 Clique Analysis (CA)

Idea. Suppose, we derive a graph from an SPP, such that the nodes of the graph cor-
respond to subsets and if two nodes share at least a single element then there isan edge
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between the nodes. A trivial cliqueCe in such a graph is the set of all nodes containing
a certain elemente of the ground set. An important property of a clique is that only one
member of it can be part of the solution and all others have to be discarded. If one could
find a cliqueC that properly subsumesCe then all nodes contained only inC can be dis-
carded, because they are ruled out by the node to be selected fromCe. Now the problem
can be formulated as follows: find a set of subsetsE where all membersXj exclude each
other so that exactly oneXj can be part of the partition sought. Further, letK be the index
set ofE, i.e.K = f j : Xj 2 Eg. In case there is an index setMe which is properly subsumed
by K, i.e. Me� K, then all sets indexed byK nMe can be removed, since the presence of
Xj : j 2Me excludes each ofXi2KnMe from the partition.

Example. Suppose, the ground setf1;2;3;4g has to be partitioned by the setsX1 =f1;2g, X2 = f1;3g, X3 = f2;3g, andX4 = f2;4g. SinceX1 andX2 contribute the element
1, one of the has to be part of the partition. But there is a cliquefX1;X2;X3g, because all
of these subsets share pairwise an element. SubsetX3 can be discarded from the problem
since eitherX1 or X2 will be part of a solution and both rule outX3.

Require: SV= hS1; : : : ;Sni vector of subsets
G ground set

1: function cliqueAnalysisStep(in G, in SV) : set of indices
2: begin
3: R /0
4: 8e2G : Ie fi j e2 Sig
5: forall e2G do
6: forall i 2 f1; : : : ;ngn Ie do
7: if 8 j 2 Ie : Si \Sj 6= /0 then
8: R R[fig
9: endif

10: endfor
11: endfor
12: return R
13: end.

Figure 3: Clique analysis.

Algorithm. The algorithm is shown in Figure 3. It returns a set of indices for the subsets
to be discarded. The algorithm starts with initializing the accumulatorR to be an empty set
(line 3) and by generating the index sets for each element of the ground setG (line 4). It
then tries to find subsets which have a nonempty intersection with all subsetsreferred by a
certain index set (line 5–7). If such a subset is found, its index is added toR (line 8). The
algorithm is applied on reduced problems untilR is found to be empty.

The complexity of the algorithm in Figure 3 isO(#G� n2), due to the nested loops
(lines 5–6) which contributeO(#G�n) and the test inside the loops (line 7) which con-
tributesO(n).

6



2.4 Dominance Analysis (DA)

This preprocessing step aims mainly at reducing the cardinality of the ground setwhich
leads in the ILP model (see Equation 1) to a reduction of the number of equations,i.e., a
decrease ofm. There are case that reduce also the number of subsets which is desirable for
the constraint model.

Idea. The intension is to find an elementk of the ground set which only occurs in those
subsets in which also elementl is contained. We say,k is dominatedby l and can remove
k from the ground set and all subsets, since all subsets that might be discarded due to the
presencek will be already be discarded due tol . In terms of index sets, the idea can be
rephrased as follows: an elementk which occurs only in subsets where the elementl is also
contained,i.e. Ik � Il , allows to remove all subsetsXj where j 2 Il n Ik and to remove the
elementk from all Xj andG.

Ik� Il ! Xj2InIk /0 (3)8 j 2 f1; : : : ;ng : Xj  Xj nfkg ^ G Gnfkg (4)

In caseIk = Il either elementk or l can be removed from the SPP,i.e.only reduction 4
has an effect.

Situations whereIk andIl differ in exactly two elementsi and j, i.e. Ik = I [fig^ Il =
I [f jg with I = (Ik\ Il ) 6= /0, are exploited too. The subsetsXi andXj either belong both
to the partition or both do not. This can be easily seen, since subtracting rowl from m in
the ILP model results inxl �xm= 0! xl = xm. There are two case to consider:

1. In caseXl \Xm= /0, both subsets can be merged to a single subsetX0
l = Xl [Xm and

C0
l =Cl +Cm.

2. In caseXl \Xm 6= /0, Xl andXm can be removed from the SPP, since both exclude
each other and therefore cannot be part of the partition at the same time.

Algorithm. The algorithm is depicted in Figure 4. It returns a 3-tuple consisting of a
index set designating subsets to be removed, a set of elements to be removed (according to
reduction 4), and a set of 2-tuples designating pairs of subsets to be merged. The algorithms
starts with initializing the accumulators for the return value and the indexsets (line 3–4). It
proceeds by picking subsequently all elementsi of the ground set and checking if there are
index sets other thanIi which subsumeIi properly (line 7–9)resp.are properly subsumed by
Ii (line 10–12). If so, the appropriate elements (according to reductions 3 and 4) are added
to accumulators of the return value. Next, it is tested ifIi is equal to some other index set
which would lead to mark elementi to be removed (line 15–16). In case index sets are
detected which differ in exactly two elements but have a nonempty intersection then they
are either marked to be merged or to be discarded, depending on if the intersection of the
subsets indexed by the differing elements is empty or nonempty, respectively (line 17-22).
The algorithm is applied until all components of the return value are empty.

7



Require SV= hS1; : : : ;Sni vector of subsets
G ground set

1: function dominanceAnalysisStep(in G, in SV) : (set of indices, set of elements, merge set)
2: begin
3: RI /0;RE /0;M /0
4: 8e2G : Ie fi j e2 Sig
5: forall i 2G do
6: forall j 2Gnfig ^ i < j do
7: if Ii � I j then
8: RI RI[ I j n Ii;RE RE[fig
9: elsif I j � Ii then

10: RI RI[ Ii n I j ;RE RE[f jg
11: else
12: if Ii = I j then
13: RE RE[fig
14: elsif 9e1;e2 2G;e1 6= e2 : Ii = I [fe1g^ I j = I [fe2g whereI = Ii \ I j ^ I 6= /0 then
15: if Ie1\ Ie2 = /0 then
16: M M[f(e1;e2)g
17: else
18: RI RI[fe1;e2g
19: endif
20: endif
21: endif
22: endfor
23: endfor
24: return (RI;RE;M)
25: end.

Figure 4: Dominance analysis.
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The complexity of the algorithm in Figure 4 is(#G2�n), due to the nested loops (lines
5–6) which contributeO(#G2) and the set operation inside the loops (lines 7 and 10) which
contributeO(n).
2.5 Evaluation

To run experiments, we implemented the presented preprocessing steps in Oz 3.0providing
sets of integers as built-in data types [11] which simplified the implementation significantly.

The experiments have been done on problems of Hoffman&Padberg’s problem suite [9].
The names of problems follow the naming convention taken over from Hoffman&Padberg’s
benchmark suite ‘nwnb.rows.cols’, wherenb is the problem number,rows is the number
of rows, andcols is the number of columns of the problem.

We choose as a measure for the effectiveness of a preprocessing approach the percent-
age of discarded subsets. That means to take the number of columns discarded and to divide
it by the number of columns before preprocessing. The tables in this section are condensed
to give the reader a good overview. They show the arithmetic means of all individual re-
sults in the columns denoted withavr (for average). Further, we give also the minimal and
maximal effectiveness in the columnsmin resp.max. The column of every table indicates
the preprocessing steps performed. The detailed data can be found in Appendix A.

Table 1 shows the reductions obtained by applying a single preprocessing step to ini-
tial problems. The straightforward approach (MS) yields very good reduction due tothe
redundancies in the problems. The newly presented approach (SS) does even better by
achieving an average effectiveness of 35%. Clique and dominance analysis resultin very
limited reductions.

Approach Benefit
min avr max

(MS) 0% 21% 33%
(SS) 1% 35% 76%
(CA) 0% 0% 3%
(DA) 0% 0% 2%

Table 1: Effectiveness of single preprocessing approaches on initial problems.

Since (MS) is very straightforward but very effective, we were interested to find out
how the approaches (DA), (CA), and (SS) behave on problems previously processed by
(MS). Dominance analysis turned out to be very effective on problem ‘nw08.24.434’ by
discarding 284 columns. But in fact, it was not as effective as (SS) which dropped 295
columns (see line 4 in Table 5). Clique analysis does not contribute significantly toproblem
reduction.

Table 3 shows the results obtained by applying dominance and clique analysis on prob-
lems preprocessed by (MS) and (SS). Again, only (DA) is able to contribute significant
reduction for certain problems.
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Approach Benefit relative to (MS) Benefit
min avr max min avr max

(MS DA) 0% 2% 58% 0% 23% 65%
(MS CA) 0% 0% 1% 1% 21% 33%
(MS SS) 1% 24% 70% 1% 40% 77%

Table 2: Effectiveness of preprocessing approaches on problems preprocessed by (MS).

Approach Benefit relative to (MS SS) Benefit
min avr max min avr max

(MS SS DA) 0% 2% 55% 1% 41% 86%
(MS SS DA CA) 0% 2% 55% 2% 41% 86%
(MS SS CA) 0% 0% 2% 2% 40% 77%
(MS SS CA DA) 0% 1% 19% 2% 41% 77%

Table 3: Comparing the effectiveness of different preprocessing approaches if multiple
subsets are already discarded.

The results suggest as most effective combination of preprocessing steps (MS SS DA)
which we used to eventually finding solutions (see Section 5). Clique analysis was not
further regarded due to the insignificant problem reduction obtained.

In Section 2.4 it was explained that dominance analysis may lead to a reduction ofrows
(resp.a reduction of the cardinality of the ground set). In our experiments that happened
only once for the data set ‘nw08.24.434’, where three rows could be discarded (see line 4
in Table 5). Due to it minor importance, we did not include figures for that kind of problem
reduction in the tables above.

3 Solving SPPs with CP

This section introduces briefly concepts and notions of CP used in Oz [16] which are
relevant to implement the set partitioning constraint in Section 4. Further,we propose
a constraint model for SPPs.

Constraint Solving in Oz. Constraint solving consists basically of two components:
constraint propagationand distribution. Constraint propagation is done over acompu-
tation spacewhich consists of theconstraint storeand the associatedpropagators. The
constraint store holds a conjunction of constraints likex= n, x= y, andx 2 D, wherex
andy are variables,n is a positive integer, andD is a finite subset of positive integers.
For these constraints satisfiability and entailment can be efficiently decided. A variable is
determinedif it entails the constraintx= n. More expressive constraints, ase.g.x< y, are
imposed bypropagators. A propagator is a concurrent computational agent implementing
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a constraintP. It performs constraint propagation by removing elements from the domains
of its parameters (e.g.x andy in x< y), i.e. it tells a constraintB to the constraint storeC
if C^P entailsB, resulting in a storeC^B. If a propagator becomes inconsistent with the
constraint store is becomesfailed which causes the whole computation space to be failed.
A propagator that is entailed by the constraints in the store,i.e., cannot further amplify the
constraint store, becomesentailedand is without any effect to further constraint propaga-
tion. If none of the previous cases applies a propagator issuspendeduntil its parameters
get involved in further constraint propagation. Usually, constraint propagation isnot suf-
ficient to find a solution. Therefore, a computation space isdistributedby cloning it and
adding a constraintD and:D to the original space and its clone, respectively. Finding an
appropriate constraintD is subject to clever search heuristics.

A Constraint Model for SPP. The basic idea is to introduce annotated subsetsSi which
are a 3-tupelshXi;Ci;Rii. The componentXi is the actual set,Ci the cost of the set, and
Ri 2 f0;1g determines whetherXi is part of the partition or not (Ri = 1 resp.Ri = 0). An
Xi designates a set value,Ci is an integer, andRi is a boolean finite domain variable.

min Σi2IRi�Ci (5)

s.t. G= [i2I Xi
^ 8i; j 2 I ; i 6= j : Xi \Xj = /0 (6)

whereI = fi j i 2 f1; : : : ;ng ^ Ri = 1g :
The constraint model consists mainly of two parts: first, the partitioning constraint

(Equation 6) which will be discussed in Section 4 and second, the objective function (Equa-
tion 5) which uses sum constraints present in almost any available finite domain constraint
solver. Search for an optimal solution can be done usingbranch&boundsearch, also pro-
vided by nearly all solvers (see for example [15]).

4 A Global Constraint for Solving SPPs

This section presents a efficient algorithm to implement a set partitioning constraint, as
used in Equation 6 of the constraint model to solve SPPs in Section 3.

A first version of the set partitioning constraint was based on reasoning over lower and
upper bounds of set interval constraints (see [4]) which turned out to be too inefficient.
Inspired by tackling SPPs with an approach using so-called successor sets (see [4] for
details), we developed a propagation algorithm based on index sets that requires only sets
of integers rather than sets of sets.

4.1 The Constraint in Terms of Index Sets

According to the constraint model, the set partitioning constraint reads as follows:

partition(x;g; r) : g= [i2Ixi
V 8i; j 2 I ; i 6= j : xi \x j = /0

whereI = fi j r i = 1g and
x= hx1; : : : ;xni andr = hr1; : : : ; rni:
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In terms of index setspartition(x;g; r) can be stated as follows:

partition(x;g; r) : 8e2 g : Ie= fig ^ r i = 1 (7)V 8i 2 [
e2g

Ie : xi = f j j i 2 I jg:
The equation 7 expresses the disjointness of all subsets being part of the partition (each

element ofg is contributed only be one subset) and the union of them yields the ground
set (there must be for all elements at least one supporting subset). The connectionbetween
the index formulation and the “standard” formulation is established by Equation 7. It says,
that if some subsetxi is part of a partition for all its elements the corresponding index sets
must refer toxi , i.e.8e2 xi : Ie= fig.

The following reduction rules describe operationally the propagation of the partitioning
constraint in terms of index sets:8e2 g : Ie= fi j e2 xig

r i = 0 ! 8 j 2 xi : I j  I j n i (8)

r i = 1 ! 8 j 2 xi : I j  fig (9)

I j = fig ! r i  1 (10)8i 2 fa j a2 f1; : : : ;ng^:9e2 g : a2 Ieg ! r i  0 (11)9e2 g : #Ie= 0 ! failed (12)8e2 g : #Ie= 1 ! entailed (13)

These rules are to be applied until a fixed point is reached. A certain instanceof a rule
can only be applied once. Note that a ruler i = n has to read as “r i has been determined to
n”.

The first two rules project constraints on the boolean variable to the index sets. Rule 8
removes the index ofbi from all index sets wherei occurred in. For the opposite case,
Rule 9 sets all index sets containingi to contain onlyi. The next two rules constrain
boolean variables based on the current values of the index sets. Rule 10 constrainsr i to
1 if there exists a index sets containing onlyi. Indices absent in all index sets cause the
corresponding boolean variables to be set to 0, as done in Rule 11. The last two rules
detect if the constraint is entailed or failed. That corresponds to the notions introduced in
Section 3. As soon as either an empty index set (inconsistent with constraint store; Rule 12)
or all index sets contain only one element (entailed by the store; Rule 13) propagationcan
be aborted. If none of the Rules 12 and 13 are applicable and a fixed point is reached, the
constraint is suspended (which has to be signalled to the solver).

4.2 The Algorithm

The algorithm implements the collection of reduction rules presented in the previous sec-
tion and is depicted in Figure 6. It uses the functionresetAllBut(I ;SI;k;G) which sets all
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Require: I set of index sets G ground set
SI set of indices to be processedk integer

1: function resetAllBut(inout I , out SI, in k, in G) : ftrue; f alseg
2: begin
3: R S

efi j i2G;k2Iig Ienfkg
4: forall e2G do
5: if k2 Ie then
6: Ie fkg
7: else
8: Ie IenR
9: if Ie= /0 then

10: return f alse
11: elsif #Ie has become 1then
12: SI SI[feg
13: endif
14: endif
15: endfor
16: return true
17: end.
Figure 5: Auxiliary algorithm for the propagation algorithm of the set partitioning con-
straint.

index sets containingk to contain onlyk. It records inSI all index sets which have recently
become a singleton set. The algorithm is given by Figure 5.

The local variableR is initialized to the union of all index sets in whichk occurs, butk
is not contained. Next, all index sets are processed; either an index set is setto contain only
k (5–6) or by employingR, all subsets to be discarded are removed from the index sets not
containingk (line 8). In case this leads to an inconsistency, the valuef alseis returned. If
not, it is checked whether an index set has become a singleton which is recorded in SI.

The algorithm for the set partitioning constraint (Figure 6) starts with initializing the
index sets. The local variableSI holds index sets that have become singletons. Next, the
index set are updated according to the current state of the constraint store (represented
by the constraint onRi , lines 5–24). In lines 7–10 the caseRi = 1 is handled employing
the functionresetAllBut() (that corresponds to Rule 9). The opposite case,i.e. Ri = 0, is
handled by removingi from all index sets (corresponding to Rule 8). It is further checked
if an inconsistency occurred (lines 13-15) or singleton index sets were created(lines 16–
21). Since functionresetAllBut() records in its second argument newly created singleton
index sets, it is looped until all singleton index sets are taken into account (lines 25–31).
According to Rule 10, for all singleton index sets the corresponding boolean variablesare
determined to 1 (lines 32–36). Further, Rule 10 is implemented in lines 37–39. Last,it is
check if the constraint is entailed by testing all index sets to be singletons (Rule 13; lines
41–42). Since inconsistencies are detected as they arise in the course of the algorithm,
being not entailed requires to suspend propagation (line 43). The solver is informed about
the outcome of propagation by the returned value which is eitherfailed, suspended, or
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entailed.
The complexity of the algorithm shown in Figure 5 isO(#G�n), since it loops for all

elements of the ground setG and inside the loop is a set operation contributingO(n) (line
8). The algorithm in Figure 6 invokesresetAllBut() for all subsets,i.e. n times, and addi-
tionally maximal another #G times to take newly generated singletons into account (lines
25–31). Because, #G is typically small againstn, the complexity of the whole propagation
algorithm isO(#G�n2).
4.3 Implementation

The presented algorithm is implemented as an Oz propagator via the constraint propagator
interface (CPI) of Oz [12] taking 590 lines of C++ code. The implementation takes advan-
tage of a feature of the CPI that propagators maintain an internal state. That is used to keep
track of intermediate results of propagation to avoid frequent rebuilding the index sets from
scratch from the current constraint store. Instead, the index sets are incrementally updated
on each invocation by only taking modified variablesr i into account.

5 Experimental Results of Solving SPPs

We implemented the constraint model presented in Section 3 using Oz 3.0 featuring finite
set and finite domain constraints [11, 7]. The set partitioning constraint (Equation 6 of
the constraint model) was implemented by a propagator using the algorithm presented in
Section 4. The objective function of the constraint model (Equation 5) was implemented
using the generic sum constraint of the finite domain library of Oz 3.0. The search engine
of Oz provides forbranch&boundsearch which we used to find optimal solutions.

We experimented with various search heuristics and used problems preprocessed by
(MS SS DA). It turned out that sorting the subsets of preprocessed problems by the mini-
mal element of a subset as first criterion and by the cost per element as secondcriterion (in
ascending order) yielded the best results. For all except three problems (‘nw19.40.2879’,
‘nw09.40.3103’, and ‘nw06.50.6774’), we are able to find the optimal solution in maximal
about 10 minutes and for the majority of problems, even within a fraction of a minute. Prov-
ing optimality was possible in less than 10 minutes, except for problems ‘nw29.18.2540’
and ‘nw33.23.3068’ which took 43 minutes and 16 minutes, respectively. These results
can be found in Table 6 in Appendix B.

Table 4 shows the best solutions founds within an one-hour time-limit. Table entries of
the formmins:secs.msecsdenote execution times whereminsdenotes minutes,secsdenotes
seconds, andmsecdenotes milliseconds. In table entries of the kindc/r, c denotes the
number of columns andr denotes the number of rows. The last column of the table shows
the distance to the optimal solution,i.e., the difference of the found solution to the optimal
solution divided by the optimal solution. For problem ‘nw19.40.2879’ a solution 1% from
the optimum was found after 16:29 minutes and for problem ‘nw09.40.3103’ a solution
3% from the optimum was found after 18:15 minutes (which could be slightly improved
to 2% after 37:21 minutes). The result for problem ‘nw06.50.6774’ with a solution 19%
from the optimal solution was unsatisfactory, so that we tried different heuristics. This
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Require: SV= hS1; : : : ;Sni vector of subsets
RV= hR1; : : : ;Rni vector of 0-1 variables
G ground set

1: function partition(in SV, inout RV, in G) : fentailed; f ailed;suspendedg
2: begin
3: 8e2 g : Ie fi j e2 Sig
4: SI /0
5: for i := 1 to n do
6: if Ri is determinedthen
7: if Ri = 1 then
8: if resetAllBut(I ;SI; i;G)= f alsethen
9: return f ailed

10: endif
11: else
12: 8e2 g : Ie Ienfig
13: if 9e : Ie= /0 then
14: return f ailed
15: endif
16: forall e2 fk j k2G^#Ik = 1g do
17: if resetAllBut(I ;SI;e;G)= f alsethen
18: return f ailed
19: endif
20: Re 1
21: endfor
22: endif
23: endif
24: endfor
25: while SI 6= /0 do
26: N n wheren2 SI
27: SI SInfng
28: if resetAllBut(I ;SI;N;G)= f alsethen
29: return f ailed
30: endif
31: endwhile
32: forall e2G do
33: if #Ie= 1 then
34: Ri  whereIe= fig
35: endif
36: endfor
37: forall i 2 f1; ::;ngnSe2G Ie do
38: Ri  0
39: endfor
40: if 8e2G : #Ie= 1 then
41: return entailed
42: endif
43: return suspended
44: end.

Figure 6: Propagation algorithm for the set partitioning constraint.
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Problem Problem Solutions Best Time to find Optimal Distance to
Size found found Solution Solution Solution

nw19.40.2879 1661/40 12 11060 16:29.750 10898 1%
nw09.40.3103 1427/40 11 69262 37:21.960 67760 2%
nw06.50.6774 5510/50 20 9322 52:11.830 7810 19%

Table 4: Best solutions found for the three hardest problems considered.

heuristics was already proposed in [6] and improved the best solution found to be 15%
from the optimal solution. Interestingly, for the other problems it produced much worse
results than the heuristics mentioned above.

We have solved the preprocessed problems in Table 6 (see Appendix B) using Car-
men Gervet’s SPP solver on the same platform that we used for the benchmarks with
our solver. Her solver is implemented inECLiPSe [2] using the finite set constraint li-
brary Conjunto [3]. On these problems we obtained an average speed-up of factor 7 with
our solver. Further, we run the three hardest problems with an one-hour time-limit. For
problem ‘nw.40.2879’, Carmen Gervet’s solver found a solution with the same cost as we
did. For the other two problems her solver did worse: after an hour the solution for the
‘nw06.50.6774’ problem has a cost of 27172 which is 248% of the optimal cost and for
the ‘nw09.40.3103’ problem, the solution has a cost of 78644,i.e. 16% distance form the
optimum. The results show that due to the improved performance of our solver, better
solutions can be found in a given time period.

6 Related Work

In Section 1 we already mentioned the work of Carmen Gervet, who uses CP totackle
SPPs. There are other works on solving SPPs which take different approaches. Wewill
shortly explain them and characterize their features.

Peter Szeredi implemented a solver for SPPs in Prolog which implements amodel
similar to the set-based model (Equation 2) in Section 1. Sets are represented as integers
and search is done by backtracking.

Guerinik and Van Caneghem implemented a SPP solver in CHIP [1] which additionally
employs a simplex-based solver. Bringing a simplex-based solver into play allows one to
solve significantly larger instances of SPPs (up to 100.000 pairings). Further, byproducts
of the simplex are be used to fix variables by employing reduced cost analysis. Addition-
ally, variable selection can be based on reasoning over the optimal solutionof the linear
relaxation of the SPP.

Branch-and-Cut solver known from OR literature (e.g., see [9]) are able to solve prob-
lem instances up to 1.000.000 pairings. Such solvers also employ preprocessing to reduce
the problem size.
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7 Conclusion and Future Work

We presented a new preprocessing approach that achieves a significantly improved problem
size reduction on SPPs occurring in air crew scheduling compared to standard approaches
with similar computational effort. Further, we present a propagation algorithmfor a set
partitioning constraint which allows to solve problems of moderate size withoutusing an
ILP solver. The average speed-up against previous CP solvers is 7.

Although, the performance of ILP solvers could not be reached, we are confident to
offer an alternative approach to solve moderately sized SPPs, especially if SPPs occur as
components of other problems preferably solved by CP.

Future work will concentrate on the development of more sophisticated search heuris-
tics. Another promising direction is to use techniques that use intermediate solutions to
reduce the problem size further.
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ules. DFKI Oz documentation series, Deutsches Forschungszentrum für Künstliche Intelli-
genz GmbH, Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany, 1994.

[8] Karla L. Hoffman and Manfred Padberg. Improving LP-representations of zero-one linear
programs for branch-and-cut.ORSA Journal of Computing, 3(2):121–134, 1991.

[9] Karla L. Hoffman and Manfred Padberg. Solving airline crew scheduling problems by branch-
and-cut.Management Science, 39(6):657 – 682, 1993.

[10] Karla L. Hoffman, Manfred Padberg, and Russell A. Rushmeier. Recent advances in exact
optimization of airline scheduling problems, July 1995.

[11] Tobias Müller and Martin Müller. Finite set constraints in Oz. In François Bry, Burkhard
Freitag, and Dietmar Seipel, editors,13. Workshop Logische Programmierung, pages 104–
115, Technische Universität München, 17–19 September 1997.
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In table entries of the kindc/r, c denotes the number of columns andr denotes the number of rows.

Further,MSSabbreviatesMS SS.

Problem Initial (MS) (SS) (DA) (CA) (MS DA) (MS CA) (MSS) (MSS DA) (MSS CA DA) (MSS CA) (MSS DA CA)

nw41.17.197 197/17 177/17 105/17 197/17 197/17 177/17 177/17 103/17 103/17 103/17 103/17 103/17
nw32.19.294 294/19 252/19 191/19 294/19 294/19 252/19 252/19 185/19 185/19 185/19 185/19 185/19
nw40.19.404 404/19 336/19 303/19 404/19 404/19 336/19 336/19 284/19 284/19 284/19 284/19 284/19
nw08.24.434 434/24 356/24 148/24 425/21 434/24 150/21 356/24 139/24 62/21 113/21 139/24 62/21
nw15.31.467 467/31 465/31 460/31 467/31 464/31 465/31 461/31 460/31 460/31 458/31 458/31 458/31
nw21.25.577 577/25 426/25 290/25 577/25 577/25 426/25 426/25 273/25 273/25 273/25 273/25 273/25
nw22.23.619 619/23 531/23 408/23 619/23 619/23 531/23 530/23 389/23 389/23 389/23 389/23 389/23
nw12.27.626 626/27 454/27 267/27 623/27 626/27 451/27 454/27 258/27 255/27 255/27 258/27 255/27
nw39.25.677 677/25 567/25 391/25 677/25 677/25 567/25 567/25 372/25 372/25 372/25 372/25 372/25
nw20.22.685 685/22 566/22 500/22 685/22 685/22 566/22 566/22 468/22 468/22 467/22 467/22 467/22
nw23.19.711 711/19 474/19 454/19 711/19 711/19 474/19 474/19 392/19 392/19 390/19 390/19 390/19
nw37.19.770 770/19 639/19 503/19 770/19 770/19 639/19 639/19 469/19 469/19 469/19 469/19 469/19
nw26.23.771 771/23 542/23 494/23 771/23 750/23 542/23 537/23 427/23 427/23 420/23 420/23 420/23
nw10.24.853 853/24 659/24 201/24 850/24 853/24 656/24 659/24 198/24 195/24 195/24 198/24 195/24
nw34.20.899 899/20 750/20 672/20 899/20 899/20 750/20 749/20 624/20 624/20 624/20 624/20 624/20
nw43.18.1072 1072/18 983/18 828/18 1072/18 1072/18 983/18 983/18 793/18 793/18 793/18 793/18 793/18
nw42.23.1079 1079/23 895/23 789/23 1079/23 1078/23 895/23 891/23 749/23 749/23 742/23 742/23 742/23
nw28.18.1210 1210/18 825/18 927/18 1210/18 1207/18 825/18 816/18 787/18 787/18 773/18 773/18 773/18
nw25.20.1217 1217/20 844/20 564/20 1217/20 1217/20 844/20 844/20 508/20 508/20 508/20 508/20 508/20
nw38.23.1220 1220/23 911/23 1007/23 1219/23 1219/23 910/23 905/23 902/23 901/23 895/23 896/23 895/23
nw27.22.1355 1355/22 926/22 1027/22 1355/22 1353/22 926/22 917/22 829/22 829/22 829/22 829/22 829/22
nw24.19.1366 1366/19 926/19 555/19 1366/19 1366/19 926/19 926/19 490/19 490/19 490/19 490/19 490/19
nw35.23.1709 1709/23 1403/23 1279/23 1709/23 1709/23 1403/23 1395/23 1204/23 1204/23 1204/23 1204/23 1204/23
nw36.20.1783 1783/20 1408/20 1422/20 1783/20 1783/20 1408/20 1406/20 1350/20 1350/20 1346/20 1346/20 1346/20
nw29.18.2540 2540/18 2034/18 2004/18 2540/18 2540/18 2034/18 2034/18 1836/18 1836/18 1836/18 1836/18 1836/18
nw30.26.2653 2653/26 1884/26 1427/26 2653/26 2653/26 1884/26 1884/26 1270/26 1270/26 1270/26 1270/26 1270/26
nw31.26.2662 2662/26 1823/26 1538/26 2662/26 2662/26 1823/26 1820/26 1398/26 1398/26 1398/26 1398/26 1398/26
nw19.40.2879 2879/40 2145/40 1833/40 2871/40 2879/40 2137/40 2145/40 1669/40 1661/40 1661/40 1669/40 1661/40
nw33.23.3068 3068/23 2415/23 2389/23 3068/23 3068/23 2415/23 2413/23 2112/23 2112/23 2107/23 2107/23 2107/23
nw09.40.3103 3103/40 2305/40 1569/40 3101/40 3103/40 2303/40 2305/40 1429/40 1427/40 1427/40 1429/40 1427/40
nw06.50.6774 6774/50 5977/50 5829/50 6761/50 6774/50 5964/50 5977/50 5523/50 5510/50 5510/50 5523/50 5510/50

Table 5: Detailed results of preprocessing approaches.
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B Benchmarks for Finding and Proving Optimal Solu-
tions

In table entries of the kindc/r, c denotes the number of columns andr denotes the number
of rows. Table entries of the formmins:secs.msecsdenotes execution times wheremins
denotes minutes,secsdenotes seconds, andmsecdenotes milliseconds.

Problems Problem Solutions Optimal Time to find Time to find&prove Time to prove
Size found Solution Optimum Optimal Solution Optimum

nw41.17.197 103/17 3 11307 00:00.450 00:00.780 00:00.330
nw32.19.294 185/19 8 14877 00:01.110 00:02.190 00:01.080
nw40.19.404 284/19 9 10809 00:02.820 00:21.620 00:18.800
nw08.24.434 62/21 3 35894 00:00.050 00:00.140 00:00.090
nw15.31.467 460/31 3 67743 00:35.050 01:03.520 00:28.470
nw21.25.577 273/25 3 7408 00:01.470 00:03.990 00:02.520
nw22.23.619 389/23 8 6984 00:01.380 00:08.050 00:06.670
nw12.27.626 255/27 35 14118 03:11.790 04:40.640 01:28.850
nw39.25.677 372/25 12 10080 00:02.110 00:19.360 00:17.250
nw20.22.685 468/22 13 16812 00:30.790 01:52.670 01:21.880
nw23.19.711 392/19 4 12534 00:02.150 00:20.100 00:17.950
nw37.19.770 469/19 10 10068 00:05.050 00:19.030 00:13.980
nw26.23.771 427/23 7 6796 01:40.720 01:44.480 00:03.760
nw10.24.853 195/24 10 68271 00:00.970 00:05.870 00:04.900
nw34.20.899 624/20 4 10488 00:02.110 00:43.190 00:41.080
nw43.18.1072 793/18 8 8904 05:26.950 09:19.280 03:52.330
nw42.23.1079 749/23 1 7656 00:00.350 01:40.890 01:40.540
nw28.18.1210 787/18 6 8298 00:03.700 00:06.430 00:02.730
nw25.20.1217 508/20 10 5960 00:02.430 00:15.870 00:13.440
nw38.23.1220 901/23 8 5558 01:05.790 03:14.460 02:08.670
nw27.22.1355 829/22 20 9933 00:08.900 00:30.450 00:21.550
nw24.19.1366 490/19 6 6314 00:01.260 00:04.820 00:03.560
nw35.23.1709 1204/23 13 7216 01:14.500 02:02.330 00:47.830
nw36.20.1783 1350/20 13 7314 01:54.970 06:45.920 04:50.950
nw29.18.2540 1836/18 9 4274 07:10.200 43:51.370 36:41.170
nw30.26.2653 1270/26 3 3942 00:00.380 00:49.670 00:49.290
nw31.26.2662 1398/26 2 8038 00:08.100 05:51.590 05:43.490
nw33.23.3068 2112/23 8 6678 10:12.480 16:12.480 06:00.000

Table 6: Finding and proving optimal solutions.

The benchmarks were done on a 200MHz Dual-Pentium-Pro machine with 256KB 2nd-
level cache and 256MB main memory running Linux 2.0.31.
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