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Abstract

Combinatorial problems can be efficiently tackled with constraint program-
ming systems. The main tasks of the development of a constraint-based appli-
cation are modeling the problem at hand and subsequently implementing that
model. Typically, erroneous behavior of a constraint-based application is caused
by either the model or the implementation (or both of them). Current constraint
programming systems provide limited debugging support formodeling and im-
plementing a problem.

This paper proposes the Constraint Investigator, an interactive tool for de-
bugging the model and the implementation of a constraint-based application. In
particular, the Investigator is targeted at problems like wrong, void, or partial so-
lutions. A graph metaphor is used to reflect the constraints in the solver and to
present them to the user. The paper shows that this metaphor is intuitive and that
it scales up to real-life problem sizes.

The Constraint Investigator has been implemented in MozartOz. It comple-
ments other constraint debugging tools as an interactive search tree visualizer,
forming the base for an integrated constraint debugging environment.

Keywords: Constraint programming, correctness debugging of constraints, vi-
sualization of constraints, program analysis tools.

1 Introduction

The state of the art of solvers based on constraint propagation has made tremen-
dous progress [5, 15, 18, 14], to the point where large combinatorial problems
can be tackled successfully. But developing such applications has only limited
support by debugging tools. This deficiency has been identified and dedicated
projects (as DiSCiPl [7]) have been set up.

The first step to be taken when solving a combinatorial problem is to design
a constraint model of the respective problem, i.e., to find a problem formulation
in terms of constraints. Next this model is implemented by some constraint
solver. Testing the implementation reveals quite frequently that no solution can
be found, the solution found is not correct, or the solution found still contains
undetermined variables. These situations suggest that theconstraint model or
its implementation do not reflect the combinatorial problemto be solved. To

In Konstantinos Saonas and Paul Tarau, editors,Proceedings of the International Workshop on Imple-
mentation of Declarative Languages (IDL’99), Paris, France, 27–28 September 1999.
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support the development process at this stage, the programmer needs adequate
interactive debugging tools which are currently not available.

Current constraint debugging tools focus on improving search behavior [16,
2, 10], i.e., on finding search heuristics1 for exploring the search tree most
efficiently. There is a lack of intuitive interactive tools for debugging the
correctness of constraint models and/or their implementations. In particular,
large problems need tools with a sophisticated presentation to handle the over-
whelming amount of information. Hence, providing an appropriate metaphor
to present the data is crucial. The model of data presentation proposed in this
paper is derived from graph-based visualization, as proposed by Carro and Her-
mengildo in [3]. The graph metaphor was first formally introduced in constraint
programming by Montanari and Rossi [11].

The contribution of this work is the development of different graph-based
views for correctness debugging constraint programs and the proposal of de-
bugging methodologies based on these views for frequently occurring incorrect
behavior of constraint programs. Furthermore, the techniques are extended to
be able to handle large problems.

To prove the viability of our approach, we have designed and implemented
an interactive tool, the Constraint Investigator, that allows the user to investi-
gate the state of constraints and variables in a constraint solver by analyzing
the corresponding graph views. The Investigator meets the following require-
ments:

– It can deal with large problems.

– It is not restricted to any specific constraint system.

– It provides intuitive data presentation and interaction, while affording de-
tailed insights about the solver.

– It is fully configurable by the user.

– It requires no changes to the actual constraint program.

– It is suitable for users at different levels of expertise.

– It reveals operational aspects of the solver by displaying the events that
trigger constraints.

The Constraint Investigator is implemented in Mozart Oz [12] and the vi-
sualization of the graph views relies ondaVinci[17].

The Investigator complements the Oz Explorer [16], an interactive visu-
al search engine, which does not take into account the aspectof constraint
propagation. Both tools form the base of an integrated constraint debugging
environment.

Although the Constraint Investigator is especially designed to tackle prob-
lems concerning the accuracy of the constraint model and itsimplementation,
it can be easily extended for performance debugging. For example, its graph

1A search heuristics determines the policy of traversing thesearch space of a problem.
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views can be used to present execution costs of constraints such that the pro-
gram code causing these costs can be quickly identified. Furthermore, insights
gained about the structure of a constraint graph enable the programmer to im-
prove the (propagation) performance of the corresponding program. Especially
since operational aspects of constraint execution (see Section 3 about events)
are also presented to the user.

Plan of the paper. Issues of debugging constraint programs are discussed in
Section 2. Section 3 introduces notions and concepts related to propagation-
based constraint solving. The model of the Constraint Investigator is discussed
in Section 4. The Investigator itself is explained by means of a prototypical
debugging session in Section 5. Furthermore, Section 5 presents techniques
for handling large problems. The implementation is sketched in Section 6. The
paper closes with related work (Section 7) and concluding remarks (Section 8).

2 Debugging Constraints

Debugging an application focuses first on correctness and then on performance.
Approaches to debugging can be identified asexperimentalandanalytic [10].
Experimental debugging, i.e., modifying the program text until it seems to
work, requires a large set of methods to experiment with. In contrast, analytic
debugging needs to obtain a detailed description of the state of the constraint
solver. Such a description has to be presented to the programmer by a debug-
ging tool in a way that supports program analysis in the best possible fashion.

After designing and implementing the constraint model of a given problem,
testing the implementation typically produces erroneous situations as:

– The solver fails immediately, i.e., the constraints are inconsistent. Ei-
ther the implementation of the constraint model is incorrect or the mod-
el itself is. It is often the case that by accident the constraint model is
over-constrained though the combinatorial problem is not.For exam-
ple, the model states an equivalence where an implication isrequired. In
such a case, if a solution is available (perhaps manually derived), it is a
promising strategy to debug this situation by adding this solution to the
constraint statements. The propagator which is observed tofail is not
necessarily the culprit for the bug in the implementation but it helps to
track down the problem in the constraint model.

– Propagation is incomplete in the sense that some solution variables re-
main undetermined. This is an indicator that the implementation or the
model is incomplete.

– The solution found is wrong. Either the constraint model is incorrect or
if this is not the case, the implementation of the model is incorrect.

The proposed debugging approach and the corresponding toolare aimed at
analytic correctness debugging, i.e., to spot bugs in the constraint model and
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its implementation.
Analytic debugging requires an interactive tool that enables the program-

mer to analyze the actual constraints in the solver. The amount of information,
i.e., typically the number of variables and constraints, ishuge. The way these
data are presented in analytic debugging is important sinceconstraint programs
are data-driven and an appropriate presentation helps the programmer to draw
the right conclusions. Hence, data representation has to match the program-
mer’s intuition of constraints in a constraint solver. Consequently, we choose a
graph-based metaphor for representation since it makes possible to emphasize
different aspects of the state of a constraint solver appropriately (see the dif-
ferent views presented in Section 4) and to relate the program structure to the
representation (see Section 5.2).

3 A Model for Propagation-based Constraint Inference

Propagation-based constraint inference involves aconstraint store, holding so-
calledbasicandnon-basicconstraints. A basic constraint is of the formx = v
(x is bound to a valuev), x = y (x is equated to another variabley), or x 2 B
(x takes its value inB).

Non-basic constraints, as for example “6=”, are more expressive than basic
constraints and hence, require more computational effort.A non-basic con-
straint is implemented by apropagatorwhich is a concurrent computational
agent observing the basic constraints of itsparameters(which are variables in
the constraint store). The purpose of a propagator is to infer new basic con-
straints for its parameters and add them to the store. A propagator terminates
if it is inconsistent with the constraint store (failed ) or if it is explicitly rep-
resented by the basic constraints in the store (entailed ). A non-terminated
propagator is eithersleeping or running . A so-calledeventtriggers the tran-
sition fromsleeping to running . An event occurs when a basic constraint is
added to the store. For example, a propagator might wait for aparameter to
be bound to a value, while a different propagator has to be rerun as soon as an
element is removed from a basic constraint connected to one of its parameters.
A running propagator becomes eithersleeping , failed , or entailed .

The constraints of a problem instance can be regarded as a network of prop-
agatorsP , variablesV , and eventsE. The variables inV are the parameters
of the propagators inP . The events inE denote the changes to the basic con-
straints that trigger propagator transitions fromsleeping to running . A prop-
agatorp(ve12Ep1 ; : : : ; ven2Epn ) has a set of parametersVp = fv1; : : : ; vng � V
and is triggered by the eventsEp � E. The notationvei2Epi means that the
propagator is rerun as soon as eventei occurs at parametervi. A variablev(pe12Ev1 ; : : : ; pem2Evm ) is a parameter of the propagatorsPv = fp1; : : : ; pmg �P and changes to the basic constraint atv can cause the eventsEv � E. The
notationpei2Evi means that the propagatorpi is rerun as soon as eventei occurs
at the variablev.
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4 Graph-based Visualization of Constraints

In this section, we illustrate different graph views using atrivial scheduling
application. The problem is to serialize two tasks, such that they do not over-
lap. The first (second) task starts at starting timeT1 (T2) and has a fixed
duration ofD1 (D2). The corresponding constraint model is the disjunctionT1 + D1 � T2 _ T2 + D2 � T1. The concrete implementation uses rei-
fied constraints to implement the disjunction. A reified constraint has an extra
boolean parameter that reflects the validity of the constraint, i.e., whether it is
entailed or failed . For example,B1 = (T1 +D1 � T2) is the reified ver-
sion ofT1+D1 � T2 and if this constraint isentailed (failed ) B1 is bound
to 1 (0). Conversely, in caseB1 is bound to1 (0) the constraintT1+D1 � T2
(T1+D1 > T2) is stated. The (exclusive) disjunction of the constraintscan be
implemented by stating that the sum of the boolean variablesassociated with
the reified constraints is1. The following Oz code implements the serialization
constraint for two tasks:

B1 =: (T1 + D1 =<: T2) % implemented by FD.reified.sumC
B2 =: (T2 + D2 =<: T1) % implemented by FD.reified.sumC
B1 + B2 =: 1 % implemented by FD.sumC

Note thatD1 andD2 refer to integers and all other variables are finite do-
mains. The=-constraint is implemented by the Oz’s finite domain operator =:

and�-constraint by=<: .
In the following we present four different views of the aboveconstraint pro-

gram. The shape of a node represents its kind: a propagator node is a rectangle,
a variable node an ellipse, and an event node a rhombus. A propagator node
is annotated with the name of the respective propagator and the location of the
propagator invocation in the source program, i.e., the file name and the line
number. A variable node is annotated with the name of the respective variable
and if the variable is constrained, the basic constraint connected to the variable
is also shown. Note that there are no variable nodes forD1 andD2 since they
denote integers.

The Propagator Graph View. A propagator graph is the graphical representa-
tion of a propagator net, i.e., the propagators are the nodes. Note

FD.reified.sumC

opi.oz:258
FD.reified.sumC

opi.oz:259

FD.sumC

opi.oz:260

that the edges are not directed since
data flow between propagators is
bidirectional. This, for example, is
different for a constraint solver using
indexicals [4] because an indexical is a function rather than a relation. For
instance, the leftmost node corresponds to the propagatorFD.sumC which hap-
pens to occur at line 260 of fileopi.oz (the location ofFD.sumC when we did
the example graph views). This annotation depends on the concrete location
of a propagator in a source file. An edge between two nodes means that the
propagators share at least one variable parameter.

Using the setsP , V , andE defined in Section 3, a propagator graphpg(Ppg)
consists of nodesNpg = Ppg and edgesEpg = f(pi; pj)jVi \ Vj 6= ; ^ i < jg.
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The Single Propagator Graph View. A single propagator view presents a

* T2{0#5}

* T1{0#5}

bounds

* B1{0#1}any

FD.reified.sumC

opi.oz:258

single propagator and its parame-
ters as a tree. The parameters
are grouped by the events. Note
a variable may occur several times
as parameter. The single propaga-
tor graph view ofFD.reified.sumC

shows that the propagator waits for
two events, namely thebounds -event, i.e., the bounds of the domain are nar-
rowed, and theany -event, i.e., an arbitrary element is removed from the do-
main. Furthermore, the view shows that abounds event at the parametersT1

resp.T2 and anany event atB1 cause a rerun of the propagator. A variable node
is annotated, as for example the node forT1: *T1{0#5} means thatT1 takes a
value fromf0; 1; 2; 3; 4; 5g. The asterisk (’* ’) denotes a variable passed di-
rectly by the user to the Investigator in contrast to variables collected while
traversing the constraint network.

More formally, a single propagator graphspg(p) for a propagatorp is a
tree with a root nodeRspg = p, connected to the root node are event nodesEspg = Ep and connected to the event nodes variable nodesVspg = Vp. An
edge between an event node and a variable node is establishedif the events of
the event node and variable node are the same.

The Variable Graph View. A variable graph view is dual to the propaga-
tor graph view. The nodes represent the variables. An edge between two

* B1{0#1}

* B2{0#1}

* T1{0#5}* T2{0#5}

variable nodes indicates that the vari-
ables are simultaneously constrained
by one or more propagators. The
information of what propagators are
concerned is available by a menu associated with the edge. The variable graph
view shows that in our example, all variables are connected with each other.

The formal description of a variable graph makes the dualityto a propagator
graph obvious: a variable graphvg(Vvg) is composed by the nodesNvg = Vvg
and the edgesEvg = f(vi; vj)jPi \ Pj 6= ; ^ i < jg. An edge between two
variable nodes is present if the respective variables shareat least one propaga-
tor.

The Single Variable Graph View. A single variable graph view represents

any

FD.reified.sumC

opi.oz:258

FD.reified.sumC

opi.oz:259

bounds

val

* T1{0#5}

a constrained variable, events it can
cause and the propagators waiting for
these events to happen. One can see
that the two reified propagators wait
for thebounds event and no propaga-
tor waits either for theany event nor
for theval event.

A single variable graphsvg(v) of a variablev is a tree with a root nodeRsvg = v. Event nodesEsvg = Ev are connected to the root node. Furthermore,
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each event node of an evente is connected to the propagator nodesP esvg =fpejpe 2 Pvg, i.e., an edge between an event node and a propagator node is
established if the propagator waits for this event to happento this variable.

5 Correctness Debugging with the Constraint Investigator

This section introduces theConstraint Investigatoras an interactive tool for
debugging practical constraint problems.

Using the Investigator does not require any changes to the constraint pro-
gram. The program has to be recompiled with appropriate compiler switches.

5.1 An Example Session with the Investigator

We start off with a deliberately buggy constraint model and program and demon-
strate how to track down two hidden bugs. Of course, the bugs are trivial to fix
for experienced programmers but the approaches demonstrated are suitable for
handling real-life situations.

The Problem. Consider the following bin-packing problem: a given set of
weighted itemsI has to be assigned to three binsb1;2;3, without exceeding the
maximum capacity of each bin. All bins have the same maximum capacity
.
Furthermore, as soon as at least two items are put into a bin one extra unit of
packaging material must be added as protection. Moreover, the bins must be
color-coded to indicate the presence of a fragile item.

The Constraint Model. The given problem is a set partitioning problem of
three sets with extra constraints. Each binbn is modeled as setsn and each
item i 2 I has a weightwi.I = ℄sn (1) jsnj � 2! packaging material2 sn (2)�8i2snwi � 
 (3) ifragile 2 sn ! 
olor(sn) = red (4)

where n = 1; 2; 3
Constraint (1) states a set partitioning and Constraint (2)adds extra pack-

aging if necessary. Furthermore, Constraint (3) enforces that the capacity of
the bins is not exceeded and takes also into account packaging material added
by Constraint (2). The coloring of the bins is modeled by Constraint (4). The
model is not quite correct as we will see later on.

The Implementation of the Constraint Model. The implementation of the
presented model is based on finite set constraints [9, 13], i.e., a set value is
approximated by a lower bound set and a upper bound set. The constraint
solver has been implemented by the procedureBinPacking :

proc {BinPacking Weights Capacity Sol}

The argumentWeights is a list of pairsId#Weight . The variableCapacity

determines the maximum capacity of the bins. The solution isreturned inSol

and contains the colored bins with the assigned items.
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The procedure starts with variable definitions: it declaresthe variablesRed

andGreen for the bin-coloring constraint for the fragile item definedby Frag-

ile . Next, it adds for the packaging material an extra item (Packaging=100 )
with weight1 to the list of all weighted itemsAllWeights . The list of Items

is extracted from the weight list (AllWeights ).
Red = 0 Green = 1
Fragile = 1 Packaging = 100
WeightedPackaging = [Packaging#1]
AllWeights = {Append WeightedPackaging Weights}
Items = {Map AllWeights fun {$ E} E.1 end }

in

The body of the procedure starts by creating the solution list Sol of length3. Each list element represents a bin as a recordbin(items:S color:C)

where S is the set of items andC is color of the bin. The application of
{FS.var.upperBound Items} constrainsS to the set constraint; � S �setof(Items ).

Sol = {List.make 3}
{ForAll Sol

fun {$}
S = {FS.var.upperBound Items}
C = {FD.int [Red Green]}

in
bin(items: S

color: C)
end }

Next the partitioning constraint is stated (FS.partition ). TheMapfunction
extracts the sets that form the partition from the bin records. The variable
Items is converted to a set value byFS.value.make representing the set to be
partitioned.

% constraint (1): partitioning
{FS.partition

{Map Sol fun {$ S} S.items end }
{FS.value.make Items}}

The weight restriction constraint maps the presence of elements to the list
of boolean variablesBL by FS.reified.areIn . The constraint{FD.sumC ...

´ =<: ´ ...} enforces that the scalar product of the list of boolean variables
BL and the corresponding list of weights (produced byMap) does not exceed
Capacity .

% constraint (2): enforce weight restriction in bins
{ForAll Sol

proc {$ S} BL in
{FS.reified.areIn Items S.items BL}
{FD.sumC {Map AllWeights fun {$ E} E.2 end }

BL ´ =<: ´ Capacity}
end }

The constraints for adding packaging material and assigning the bin color
close the procedure and use reified constraints. Reified propagators are used
to conditionally state constraints according to constraint (3) in the constraint
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model. As soon as the cardinality ofS.items is at least2 the itemPackaging

is added toS.items . This is caused by the connection through the boolean
variables of the reified constraints.

% constraint (3): add extra packaging material
{ForAll Sol

proc {$ S}
({FS.card S.items} >=: 2) =:
{FS.reified.include Packaging S.items}

end }

The constraint for coloring the bins also uses reified constraints and imple-
ments the “!” operator of constraint (4) by the implication constraintFD.impl 2.

% constraint (4): assign colors to bins
{ForAll Sol

proc {$ B}
{FD.impl

{FS.reified.include Fragile B.items}
(Red =: B.color)
1}

end }
end % BinPacking

The code for controlling search is omitted since it is not of interest here and
we assume an adequate search strategy. Now we submit our bin-packing solver
to a search engine, like the Oz Explorer:

{ExploreOne {BinPacking [1#3 2#2 3#2 4#6 5#2 6#4 7#3 8#5 ] 10} }

This results in an immediately failed search tree. The Investigator is now
demonstrated in a prototypical debugging session.

The Implementation is not Faithful to the Constraint Model. Invoking the
Investigator from the failed node switches the Investigator to the single propa-
gator graph view (see Figure 1). The node representing the failed propagator is
colored red throughout the session.

Figure 1: Single propagator view of the failed propagatorFS.partition .

The single propagator graph view in Figure 1 shows the partition propagator
with its parameters connected via thelowerbound event. The parameters are

2This is a reified constraint such that the last parameter1 is required.
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set constraint variables and are represented byS{{100}..{1#8 100}}#{2#9} 3.
This corresponds to the basic constraintf100g � S � f1; : : : ; 8; 100g ^ 2 �jSj � 9. We notice that all three parameters contain at least element 100.
Hence, the partitioning propagator must fail. This revealsan incorrectness but
this is not necessarily the actual bug. A single click on the propagator node
highlights the line of source code where the partitioning propagator is stated
(see Figure 2).

Figure 2: Associating the failed propagator to the source program.

We see that the parameters concerned are the sets of items foreach of the
bins in the solutionSol . Checking the program text suggests that only the
implementation of the packaging constraint (3) adds to all item fields ofSol

the elementPackaging (which is 100). Verifying the code for adding extra
packaging material reveals the bug in the implementation: instead of using
different packaging material for each bin, the same material is used for all bins.
This is not the intention of the constraint model and hence animplementation
bug. The bug fix simply consists of using different packagingmaterial items
for each bin and modifies theForAll – loop to select for different bins different
packaging material.
% packaging material for every bin
WeightedPackaging = [(Packaging+1)#1 (Packaging+2)#1 (P ackaging+3)#1]
...
{List.forAllInd Sol

proc {$ I S} % ‘I’ counts from 1 to length of ‘Sol’
% select different packaging material by the index I
({FS.card S.items} >=: 2) =: {FS.reified.include 100+I S.i tems}

end }

After fixing the implementation bug, we obtain as solution
Sol = [bin(color:0 items:{1#3 5 101}#5)

bin(color:_{0#1} items:{4 7 102}#3)
bin(color:_{0#1} items:{6 8 103}#3)]

and we notice that not all variables are bound to a single value (observe the
color fields). The next section demonstrates how to track down the reason for
this problem.

Identification of Remaining Propagators.A solution with unbound variables
suggests that there is a lack of propagation. The variable graph view shown in
Figure 3 is produced when starting the Investigator from thesolution node of
the Explorer.

3That all variables have the same nameSdoes not mean that they are equal. The name is derived from
the source code of constraint (1), cf.{FS.partition {Map Sol fun {$ S} S.items
end } ...} .
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Figure 3: Initial view.

The variableSol is not displayed because it is bound to the solution list
and hence no variable anymore. We try to find remaining propagators starting
from one of the variable nodes. We decide to switch to the variable graph view
of all reachable variables (Figure 4(a)), to get an overviewover all variables
left unbound. The menu associated with an edge between two variable nodes
(Figure 4(b)) offers to switch to a single propagator graph view of a propagator
being imposed upon two variables.

(a) Variable graph view of all reach-
able variables.

(b) Edge menu of the variable graph
view.

Figure 4: Variable graph view.

Since we try to find remaining propagators, we switch to the offered sin-
gle variable graph view of a reified sum propagator (Figure 5).

A click on the propagator node immediately reveals the suspicious program
text: the assignment of the bin colors seems to be too weak whenever a fragile
item is not contained in a bin (implementation of constraint(4)). The prob-
lem can be fixed by replacing the implication by an equivalence (FD.equi ).
The correct constraint (4) in the constraint model is8n : ifragile 2 sn $
olor(sn) = red. That means that the implementation was correct but the con-
straint model had a flaw. After applying the fix the solver produces a proper
solution.
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Figure 5: Single propagator graph view.

5.2 Dealing with Realistic Applications

Realistic problems may have thousands of propagators and variables. It is im-
possible and without any practical use to represent all at once. This section
proposes techniques for selecting problem-relevant fractions of propagators or
variables. This scheme allows for a user-controlled incremental exploration of
the graphs which is essential for the investigation of largeproblems.

A common approach of designing a constraint model is to decompose the
problem into subproblems and to decompose these subproblems until prede-
fined propagators can be used. Since procedures implement subproblems, it
seems reasonable to structure propagators, sub-procedures, and variables ac-
cording to the procedures which stated them. This requires the introduction of
procedure nodes to the graph views. A procedure node is depicted as circle.

Selection via the Tree of Execution Traces.The tree representation of a

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100

proc {Hamilton}

hamil.oz:100constraint program’s execution trace (see Figure) is used to
select propagators and variables. By clicking on a node, a
possible action is to select the propagators created by the cor-
responding procedure invocation. Incremental expansion of
the tree makes possible to handle large collections of prop-
agators and variables. Different selection schemes, e.g.,all
propagators stated by a procedure with respectively without
their sub-procedures, extend the functionality.

Collapsing and Expanding Propagator and Procedure Nodes.A common
technique for handling large collections of data represented by graphs is to
collapse and expand appropriate subsets of nodes to single nodes. We propose
for the propagator graph view to determine subsets of nodes according to the
procedures which created them. That means a collapsed node represents a
collection of propagators and sub-procedures. This is veryclose to the model
the programmer has in mind when structuring the problem and hence, is very
intuitive.
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A procedure node represents a collection of propagator nodes and sub-
procedure nodes. It takes as its parameters the union of the parameters of all
represented propagators and sub-procedures.

proc {Hamilton}

hamil.oz:2

proc {Before}

hamil.oz:10

proc {After}

hamil.oz:16

proc {Before}

hamil.oz:10
proc {After}

hamil.oz:16

(a) Fully collapsed procedure graph, i.e., all propagator nodes are collapsed.

FD.reified.sumC

hamil.oz:18

FD.reified.sumC

hamil.oz:18

FD.sumC

hamil.oz:17

proc {Hamilton}

hamil.oz:2

proc {Before}

hamil.oz:10

proc {Before}

hamil.oz:10

proc {After}

hamil.oz:16

(b) Partially collapsed propagator graph, i.e., a procedures node is expanded to
its propagator nodes.

Figure 6: Transition of a graph view by expanding a procedurenode.
Figure 6 shows the expansion of the marked procedure node to acollection

of propagator nodes. Expansion can be undone by collapsing propagator and
procedure nodes to a single procedure node.

Filtering propagators and variables. Another interesting feature is the op-
tion of displaying only those propagators resp. variables which meet a criterion
specified by the user. For example, it might be interesting tolimit the investiga-
tion to those propagators that are connected to boolean variables when symp-
toms of a bug suggest that.

5.3 Additional Features

This section discusses features of the Investigator not covered before but im-
portant for effective use of the tool.

Navigating through the Graphs. Navigation through the different graph views
is done by menus associated with nodes and edges of the respective views.
Figure 7 shows possible transitions from one view to anotherone. A history
mechanism is also available, allowing to recall previous views by moving in
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the chain of views produced so far.

* N11{1#9}

* N12{1#9}

N13{1#9}

N21{1#9}

N22{1#9}

N23{1#9}

N31{1#9}

N32{1#9}

N33{1#9}

Sum{3#27}

Variable Graph View

Sum{3#27} N32{1#9} N22{1#9} * N12{1#9}

bounds

FD.sumC

opi.oz:54

Single Propagator Graph View

any

FD.sumC

opi.oz:54

FD.sumC

opi.oz:50

bounds

FD.distinct

opi.oz:58

val

* N12{1#9}
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Figure 7: Navigation overview.

To further improve navigation and to keep track of a certain node in dif-
ferent views, the Investigator is able to mark nodes in graphviews which then
remain marked throughout all views.4 Additionally, the Investigator automati-
cally marks nodes of variables with which the session was initiated (Figure 3)
and in case there is a failed propagator, the node of this propagator (Figure 1).

Changing the Representation of Nodes.The Investigator provides a plug-in
mechanism for changing the representation of variables andpropagators. This
enables the user to produce a more obvious and intuitive representation. For
example, propagators for cumulative constraints [1] in a scheduling applica-
tion could be represented as Gantt-charts, reflecting theirrole in the concrete
application.

Interaction with the Oz Explorer. The Investigator is designed to be in-
tegrated with the Oz Explorer [16]. The Explorer displays the search tree
as search proceeds. The default action
of clicking an Explorer node is to dis-
play the basic constraints of the cor-
responding constraint store. Plugging
in the Investigator makes possible to
investigate failed and unfailed search
tree nodes by clicking on the respec-
tive nodes. The Investigator operates on
Explorer nodes as demonstrated in the
Section 5.1.

4For the purpose of this paper, a marked node is drawn with double lines. Other schemes, for example
using colors, might be more suitable in connection with color displays.
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6 Implementation

The Investigator is implemented in Mozart Oz [12] and uses the graph visual-
ization systemdaVinci [17]. The implementation consists of two parts: first,
the reflection of variables and propagators in the solver into Oz data structures,
and second, the construction of the graphs and the generation of the corre-
spondingdaVinciterms.

The reflection part requires the Oz program to be able to have propagators
as a first-class abstract data type, to be able to detect equalvariables respec-
tively propagators, and to have primitives to reflect variables and propagators
to Oz data structures. The data structures make explicit theconnections be-
tween propagators and variables, i.e., which are variablesacting as parameters
of propagators and which propagators are waiting for a variable’s basic con-
straint to change. A data structure reflecting a variable stores the name, the
basic constraint, the references to the propagators that are waiting for the vari-
able’s basic constraint to change, and the actual variable.A reflected propaga-
tor stores the propagator’s name and parameters and a reference to the actual
propagator. Reflection typically starts from the solution variables of a prob-
lem and proceeds by traversing all reachable propagators and variables until it
terminates, i.e., when there are no more new propagators andvariables to be
found. Detecting termination, when implemented naı̈vely,needs to be able to
test variables and propagators for equality. We have used a hash table here to
overcome the quadratic complexity of the naı̈ve implementation.

The list of newly found propagators and variables is translated into a com-
pact representation for the connections between propagators and variables us-
ing sets of integers [13]. Each propagator and variable is assigned a unique
integer. A reflected propagator stores its parameters as an integer set, also a
reflected variable stores the propagators for which it is a parameter as an inte-
ger set. The edges and nodes of the individual graph views arecomputed by
the set operations described in Section 4 and are further translated todaVinci
terms. ThedaVinci terms are augmented by menus to allow for comfortable
user interaction.

The complexity of the graph-generation algorithm is quadratic in the worst
case and depends in practice on the degree of connectivity ofthe constraint
network, i.e., if the propagators can be stated in reasonable time then the cor-
responding graph can be computed in reasonable time too.

Collapsing and expanding of procedures and propagators required extra
data structures for procedures. These are an extension of the data structures
used for propagators and contain additionally references to sub-procedures and
propagators stated by the respective procedure. Due to the set-based imple-
mentation, the changes can be factorized out nicely.
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7 Related Work

The tools discussed in this section focus on improving performance. Since our
approach is orthogonal, it can be used to supplement existing tools.

The Grace constraint debugger by Meier [10] supplements theProlog-based
constraint programming systemECLiPSe [8] and is intended to support perfor-
mance debugging of finite domain constraint programming. The constraint
program has to be appropriately instrumented to be run underGrace. The de-
bugging model of Grace is based upon the Prolog-box-model. It is able to
follow individual propagation steps in the trace and to inspect the backtrack
stack of finite domain variables. Furthermore, Grace is highly configurable by
assigning user-written code to each propagation step.

The Oz Explorer is a graphical search engine which visualizes the search
tree as search proceeds. It allows the user to control search, e.g. one can inter-
rupt search and can resume search from a branch different from the branch ex-
plored last. The Explorer is extendable by plug-ins, to provide different views
of nodes in the search tree. The Explorer is particularly useful for optimizing
search heuristics according to the topology of the search tree. In conjunction
with the Investigator, debugging performance and correctness issues of con-
straint programs is actively supported.

The search tree debugger of Chip [2, 6] is largely influenced by the Oz
Explorer5. Its focus is performance debugging. It provides differenttypes of
views, mostly in a compact matrix-like fashion, to provide the user with more
detailed information about search and constraint propagation. A nice feature is
to analyze the evolution of constraints and variables alonga search path. This
is certainly most valuable for optimizing search heuristics.

8 Conclusion

We have presented a novel approach for correctness debugging constraint pro-
grams based on graph views and have showed how this approach can deal with
large constraint problems. Based on this approach, we have implemented an in-
teractive tool, the Constraint Investigator. The use of theInvestigator has been
demonstrated with an example derived from a realistic constraint programming
application.

The Investigator has been tested with problems of medium size (500 prop-
agators and 600 variables) and has helped to understand and to debug the
constraint-based implementation of a natural language parser.

To our knowledge, no other interactive constraint debugging tool uses a
graph metaphor in the way presented in this paper and that makes the Con-
straint Investigator unique.
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5See in [2] Section 3 on related work.

16



the implementation. I am also grateful to Christian Schultefor many fruitful
discussions. Denys Duchier exercised the Investigator in the development of
linguistic applications and helped with invaluable comments and suggestions.
The aforementioned, Katrin Erk and the anonymous referees gave invaluable
comments on earlier versions of this paper.

The research reported in this paper has been supported by theEsprit Work-
ing Group CCL-II (EP 22457).

References

[1] A. Aggound and N. Beldiceanu. Extending CHIP in order to solve com-
plex scheduling and placement problems.Mathl. Comput. Modelling,
17(7):57–73, 1993.

[2] A. Agoun and H. Simonis. Search tree visualization. Technical Report
D.WP1.1.M1.1-2, COSYTEC SA, June 1997. In the ESPRIT LTR Project
22352 DiSCiPl.

[3] M. Carro and M. Hermenegildo. Some design issues in the visualiza-
tion of constraint logic program execution. InAGP’98, A Coruña, Spain,
1998.

[4] P. Codognet and D. Diaz. Compiling constraints inclp(FD) . Journal
of Logic Programming, 27(3):185–226, June 1996.

[5] M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving large combi-
natorial problems in logic programming.Journal of Logic Programming,
8:75–93, 1990.

[6] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The constraint logic programming language CHIP. In Pro-
ceedings of the International Conference on Fifth Generation Computer
Systems FGCS-88, pages 693–702, Tokyo, Japan, December 1988. Insti-
tute for New Generation Computer Technology (ICOT),Tokyo,Japan.

[7] DiSCiPl. Debugging systems for constraint programming. http://
discipl.inria.fr/ .

[8] ECRC and International Computers Limited and IC-Parc.ECLiPSe, User
Manual Version 3.7, February 1998.

[9] Carmen Gervet. Interval propagation to reason about sets: Definition and
implementation of a practical language.Constraints, 1(3):191–244, 1997.

[10] M. Meier. Debugging constraint programs. InProceedings of the First
International Conference on Principles and Practice of Constraint Pro-
gramming (CP95), 1995.

17



[11] U. Montanari and F. Rossi. True concurrency in concurrent constraint
programming. In V. Saraswat and K. Ueda, editors,Proceedings of the
1991 International Symposium on Logic Programming, pages 694–713,
San Diego, USA, June 1991. The MIT Press.

[12] The Mozart Consortium.The Mozart Programming System. http://
www.mozart-oz.org/ .

[13] T. Müller and M. Müller. Finite set constraints in Oz.In François Bry,
Burkhard Freitag, and Dietmar Seipel, editors,13. Workshop Logische
Programmierung, pages 104–115, Technische Universität München, 17–
19 September 1997.
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