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Abstract

Combinatorial problems can be efficiently tackled with doaist program-
ming systems. The main tasks of the development of a constrased appli-
cation are modeling the problem at hand and subsequentleimgnting that
model. Typically, erroneous behavior of a constraint-Haggplication is caused
by either the model or the implementation (or both of them)rrént constraint
programming systems provide limited debugging supportrfodeling and im-
plementing a problem.

This paper proposes the Constraint Investigator, an ictigeatool for de-
bugging the model and the implementation of a constraiseapplication. In
particular, the Investigator is targeted at problems likevg, void, or partial so-
lutions. A graph metaphor is used to reflect the constramtke solver and to
present them to the user. The paper shows that this metapimbuitive and that
it scales up to real-life problem sizes.

The Constraint Investigator has been implemented in Md2artlt comple-
ments other constraint debugging tools as an interacti@eckdree visualizer,
forming the base for an integrated constraint debugging@mment.

Keywords: Constraint programming, correctness debugging of canssravi-
sualization of constraints, program analysis tools.

1 Introduction

The state of the art of solvers based on constraint progaglaéis made tremen-
dous progress [5, 15, 18, 14], to the point where large coatbiral problems
can be tackled successfully. But developing such apptinathas only limited
support by debugging tools. This deficiency has been idedténd dedicated
projects (as DiSCiPI [7]) have been set up.

The first step to be taken when solving a combinatorial prabeto design
a constraint model of the respective problem, i.e., to fincbalem formulation
in terms of constraints. Next this model is implemented bypaaonstraint
solver. Testing the implementation reveals quite fregyehat no solution can
be found, the solution found is not correct, or the solutimunid still contains
undetermined variables. These situations suggest thabtinstraint model or
its implementation do not reflect the combinatorial probkenbe solved. To

In Konstantinos Saonas and Paul Tarau, editBreceedings of the International Workshop on Imple-
mentation of Declarative Languages (IDL'9®aris, France, 27-28 September 1999.



support the development process at this stage, the progeanereds adequate
interactive debugging tools which are currently not a\déda

Current constraint debugging tools focus on improvingaehehavior [16,
2, 10], i.e., on finding search heuristic®r exploring the search tree most
efficiently. There is a lack of intuitive interactive toolsrfdebugging the
correctness of constraint models and/or their implememtst In particular,
large problems need tools with a sophisticated presenttaiibandle the over-
whelming amount of information. Hence, providing an appiaie metaphor
to present the data is crucial. The model of data presentptimposed in this
paper is derived from graph-based visualization, as pexgbbg Carro and Her-
mengildo in [3]. The graph metaphor was first formally intwedd in constraint
programming by Montanari and Rossi [11].

The contribution of this work is the development of differgnaph-based
views for correctness debugging constraint programs amgtbposal of de-
bugging methodologies based on these views for frequeatiyraing incorrect
behavior of constraint programs. Furthermore, the teclesgqre extended to
be able to handle large problems.

To prove the viability of our approach, we have designed amglemented
an interactive tool, the Constraint Investigator, thavval the user to investi-
gate the state of constraints and variables in a constraim¢rsby analyzing
the corresponding graph views. The Investigator meetsalt@afing require-
ments:

— It can deal with large problems.
— Itis not restricted to any specific constraint system.

— It provides intuitive data presentation and interactiohilgvaffording de-
tailed insights about the solver.

— ltis fully configurable by the user.
— It requires no changes to the actual constraint program.
— Itis suitable for users at different levels of expertise.

— It reveals operational aspects of the solver by displaylegavents that
trigger constraints.

The Constraint Investigator is implemented in Mozart OZ [d2d the vi-
sualization of the graph views relies daVinci[17].

The Investigator complements the Oz Explorer [16], an adgve visu-
al search engine, which does not take into account the aspexinstraint
propagation. Both tools form the base of an integrated caimstdebugging
environment.

Although the Constraint Investigator is especially desdjto tackle prob-
lems concerning the accuracy of the constraint model anthjgeementation,
it can be easily extended for performance debugging. Fanple its graph
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views can be used to present execution costs of constraiatstkat the pro-
gram code causing these costs can be quickly identifiedh&umtore, insights
gained about the structure of a constraint graph enablertdgrgmmer to im-
prove the (propagation) performance of the correspondingrem. Especially
since operational aspects of constraint execution (sego8eX about events)
are also presented to the user.

Plan of the paper. Issues of debugging constraint programs are discussed in
Section 2. Section 3 introduces notions and concepts detatpropagation-
based constraint solving. The model of the Constraint linyator is discussed

in Section 4. The Investigator itself is explained by meaha prototypical
debugging session in Section 5. Furthermore, Section Eptesechniques

for handling large problems. The implementation is skeddheSection 6. The
paper closes with related work (Section 7) and concludingar&s (Section 8).

2 Debugging Constraints

Debugging an application focuses first on correctness arddh performance.
Approaches to debugging can be identifieceggerimentabndanalytic[10].
Experimental debugging, i.e., modifying the program temtilut seems to
work, requires a large set of methods to experiment with.olmtrast, analytic
debugging needs to obtain a detailed description of the sftathe constraint
solver. Such a description has to be presented to the progeaiy a debug-
ging tool in a way that supports program analysis in the bessible fashion.

After designing and implementing the constraint model oivaigproblem,
testing the implementation typically produces erronedusisons as:

— The solver fails immediately, i.e., the constraints areonsistent. Ei-
ther the implementation of the constraint model is incdrogche mod-
el itself is. It is often the case that by accident the comstraodel is
over-constrained though the combinatorial problem is Hédr exam-
ple, the model states an equivalence where an implicaticegisired. In
such a case, if a solution is available (perhaps manuallyet; it is a
promising strategy to debug this situation by adding thistgmn to the
constraint statements. The propagator which is observédiltes not
necessarily the culprit for the bug in the implementatiohibhelps to
track down the problem in the constraint model.

— Propagation is incomplete in the sense that some solutinables re-
main undetermined. This is an indicator that the implenteriaor the
model is incomplete.

— The solution found is wrong. Either the constraint modehisorrect or
if this is not the case, the implementation of the model i®inect.

The proposed debugging approach and the correspondingrmalmed at
analytic correctness debugging, i.e., to spot bugs in timstcaint model and
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its implementation.

Analytic debugging requires an interactive tool that eaatthe program-
mer to analyze the actual constraints in the solver. The abtuadunformation,
i.e., typically the number of variables and constraintfiuge. The way these
data are presented in analytic debugging is important siostraint programs
are data-driven and an appropriate presentation helpgdgegmmer to draw
the right conclusions. Hence, data representation has tohntlae program-
mer’s intuition of constraints in a constraint solver. Cemsently, we choose a
graph-based metaphor for representation since it makesy®$o emphasize
different aspects of the state of a constraint solver apatgly (see the dif-
ferent views presented in Section 4) and to relate the pnogteucture to the
representation (see Section 5.2).

3 A Model for Propagation-based Constraint Inference

Propagation-based constraint inference involvesrestraint storeholding so-
calledbasicandnon-basiaconstraints. A basic constraint is of the form= v
(= is bound to a value), = = y (z is equated to another variahjg orz € B
(= takes its value IB).

Non-basic constraints, as for example™; are more expressive than basic
constraints and hence, require more computational effdrhon-basic con-
straint is implemented by propagatorwhich is a concurrent computational
agent observing the basic constraints op#sametergwhich are variables in
the constraint store). The purpose of a propagator is to méev basic con-
straints for its parameters and add them to the store. A gaipaterminates
if it is inconsistent with the constraint stortiled ) or if it is explicitly rep-
resented by the basic constraints in the stereaifed ). A non-terminated
propagator is eithesleeping or running . A so-calledeventtriggers the tran-
sition fromsleeping to running . An event occurs when a basic constraint is
added to the store. For example, a propagator might wait frarameter to
be bound to a value, while a different propagator has to heras soon as an
element is removed from a basic constraint connected to bitegarameters.
A running propagator becomes eitlseping |, failed , Or entailed

The constraints of a problem instance can be regarded awarkedf prop-
agatorsP, variablesV, and eventy. The variables i/ are the parameters
of the propagators i’. The events inE denote the changes to the basic con-
straints that trigger propagator transitions freleeping  to running . A prop-
agatorp(vfleEP, ..., ver€Pr) has a set of paramete¥s = {vy,...,v,} CV
and is triggered by the events, C E. The notationvfieEp means that the
propagator is rerun as soon as evenbccurs at parameter,. A variable
v(p$' €, pim€E) is a parameter of the propagatdis= {pi,...,pm} C
P and changes to the basic constraint @an cause the evenig, C E. The
notationp“** means that the propagaigris rerun as soon as eventoccurs
at the variable.



4 Graph-based Visualization of Constraints

In this section, we illustrate different graph views usingigial scheduling
application. The problem is to serialize two tasks, suchtiingy do not over-
lap. The first (second) task starts at starting tiffie (72) and has a fixed
duration of D1 (D2). The corresponding constraint model is the disjunction
T1+ D1 < T2V T2+ D2 < T1. The concrete implementation uses rei-
fied constraints to implement the disjunction. A reified doaist has an extra
boolean parameter that reflects the validity of the constirae., whether it is
entailed  Orfailed . For exampleBl = (T'1 + D1 < T2) is the reified ver-
sion of 1+ D1 < T2 and if this constraint isntailed  (failed ) B1 is bound
to1 (0). Conversely, in casB1 is bound tal (0) the constrain?'1 + D1 < T2
(T1+ D1 > T?2)is stated. The (exclusive) disjunction of the constratats be
implemented by stating that the sum of the boolean varisddssciated with
the reified constraints is The following Oz code implements the serialization
constraint for two tasks:

Bl = (T1 + D1 =<: T2) % i npl emented by FD.reified. sunC
B2 = (T2 + D2 =<: T1) % i mpl emented by FD.reified. sunC
Bl + B2 =1 % i npl erent ed by FD. sunC

Note thatD1 and D2 refer to integers and all other variables are finite do-
mains. The=-constraint is implemented by the Oz’s finite domain opearato
and<-constraint bye<: .

In the following we present four different views of the aba@emstraint pro-
gram. The shape of a node represents its kind: a propagaterisia rectangle,
a variable node an ellipse, and an event node a rhombus. Aagatg node
is annotated with the name of the respective propagatorrenidtation of the
propagator invocation in the source program, i.e., the i@ and the line
number. A variable node is annotated with the name of theetisqe variable
and if the variable is constrained, the basic constrainbeoted to the variable
is also shown. Note that there are no variable node®f@ndDbD2 since they
denote integers.

The Propagator Graph View. A propagator graph is the graphical representa-
tion of a propagator net, i.e., the propagators are the noddsote
that the edges are not directed since
data flow between propagators is
bidirectional. This, for example, is
different for a constraint solver using
indexicals [4] because an indexical is a function rathentaaelation. For
instance, the leftmost node corresponds to the propagatarmc which hap-
pens to occur at line 260 of filgpi.oz  (the location ofD.sumC when we did
the example graph views). This annotation depends on theretnlocation
of a propagator in a source file. An edge between two nodes sribahthe
propagators share at least one variable parameter.

Using the set®, V, andE defined in Section 3, a propagator grapliP,,)
consists of noded/,, = P,, and edge€,, = {(pi,p;)|ViNV; #0 Ai < j}.




The Single Propagator Graph View. A single propagator view presents a
single propagator and its parame-
ters as a tree. The parameters
are grouped by the events. Note
a variable may occur several times
as parameter. The single propaga-
tor graph view ofFD.reified.sumC

shows that the propagator waits for
two events, namely thieounds -event, i.e., the bounds of the domain are nar-
rowed, and theny-event, i.e., an arbitrary element is removed from the do-
main. Furthermore, the view shows thatands event at the parameters
resp.12 and amny event aB1 cause a rerun of the propagator. A variable node
is annotated, as for example the nodeTor *T1{0#5} means thari takes a
value from{0, 1,2, 3,4,5}. The asterisk ¢’) denotes a variable passed di-
rectly by the user to the Investigator in contrast to vagahtollected while
traversing the constraint network.

More formally, a single propagator graphg(p) for a propagatop is a
tree with a root node?,,, = p, connected to the root node are event nodes
E,,, = E, and connected to the event nodes variable nddgs= V,. An
edge between an event node and a variable node is estatifishe@vents of
the event node and variable node are the same.

FD.reified.sumC
0pi.0z:258

The Variable Graph View. A variable graph view is dual to the propaga-

tor graph view. The nodes represent the variables. An edtyeeba two

variable nodes indicates that the vari-

ables are simultaneously constrained ——

by one or more propagators. The oS

information of what propagators are

concerned is available by a menu associated with the edgevariable graph

view shows that in our example, all variables are conneciddeach other.
The formal description of a variable graph makes the dutditypropagator

graph obvious: a variable grapl(V,,) is composed by the nodé§,, = V,,

and the edge&,, = {(v;,v;)|P, N P; # 0 Ai < j}. An edge between two

variable nodes is present if the respective variables stdeast one propaga-

tor.

The Single Variable Graph View. A single variable graph view represents
a constrained variable, events it can
cause and the propagators waiting for
these events to happen. One can see
that the two reified propagators wait
for thebounds event and no propaga-
tor waits either for theny event nor
for theval event.
A single variable grapBuvg(v) of a variablev is a tree with a root node

R,,, = v. Eventnoded’,,, = E, are connected to the root node. Furthermore,

FD.reified.sumC
opi.0z:259

FD.reified.sumC
opi.0z:258




each event node of an evenis connected to the propagator nodes, =
{p°|p¢ € P,}, i.e., an edge between an event node and a propagator node is
established if the propagator waits for this event to hagpehis variable.

5 Correctness Debugging with the Constraint Investigator

This section introduces th€onstraint Investigatoas an interactive tool for
debugging practical constraint problems.

Using the Investigator does not require any changes to thsti@nt pro-
gram. The program has to be recompiled with appropriate dengwitches.

5.1 An Example Session with the Investigator

We start off with a deliberately buggy constraint model aramjpam and demon-
strate how to track down two hidden bugs. Of course, the breggigial to fix
for experienced programmers but the approaches dematsta suitable for
handling real-life situations.

The Problem. Consider the following bin-packing problem: a given set of
weighted itemd has to be assigned to three bins 3, without exceeding the
maximum capacity of each bin. All bins have the same maximapacityc.
Furthermore, as soon as at least two items are put into a leirexina unit of
packaging material must be added as protection. Moredwverhins must be
color-coded to indicate the presence of a fragile item.

The Constraint Model. The given problem is a set partitioning problem of
three sets with extra constraints. Each bjnis modeled as set, and each
item: € I has a weighty;.

I =Ws, (1) |sn| > 2 — packaging materiak s, (2)

Svies,w; < ¢ (3) ifragite € Sn — color(sy,) = red (4)

where n=1,2,3
Constraint (1) states a set partitioning and Constraina(2)s extra pack-

aging if necessary. Furthermore, Constraint (3) enforoasthe capacity of
the bins is not exceeded and takes also into account packawgiterial added
by Constraint (2). The coloring of the bins is modeled by Gast (4). The
model is not quite correct as we will see later on.

The Implementation of the Constraint Model. The implementation of the
presented model is based on finite set constraints [9, X3],d.set value is
approximated by a lower bound set and a upper bound set. Trstramt
solver has been implemented by the proce@ineacking

proc {BinPacking Weights Capacity Sol}

The argumeniveights is a list of pairgd#weight . The variablecapacity
determines the maximum capacity of the bins. The solutioatigned inSol
and contains the colored bins with the assigned items.



The procedure starts with variable definitions: it decldhesvariableRed
andGreen for the bin-coloring constraint for the fragile item definegFrag-
ile . Next, it adds for the packaging material an extra it®axckaging=100 )
with weight1 to the list of all weighted itemsliweights . The list ofitems
is extracted from the weight list{weights ).

Red =0 Green =1

Fragile = 1 Packaging = 100

WeightedPackaging = [Packaging#1]

AllWeights = {Append WeightedPackaging Weights}

Items = {Map AllWeights fun {$ E} E1 end}
in

The body of the procedure starts by creating the solutidrstis of length
3. Each list element represents a bin as a reatgtems:S color:C)
where s is the set of items and is color of the bin. The application of
{FS.var.upperBound Items} constrainss to the set constraint C s C
setof (Items ).

Sol = {List.make 3}
{ForAll Sol
fun {$}
S = {FS.var.upperBound Items}
C = {FD.int [Red Green]}
in
bin(items: S
color: C)
end}

Next the partitioning constraint is statets(partition ). Themapfunction
extracts the sets that form the partition from the bin resor@he variable
ltems IS converted to a set value IBg.value.make representing the set to be
partitioned.

% constraint (1): partitioning
{FS.partition

{Map Sol fun {$ S} S.items end}
{FS.value.make Items}}

The weight restriction constraint maps the presence of @éso the list
of boolean variableBL by FS.reified.areln . The constraingrFD.sumC ...
“=<:" .} enforces that the scalar product of the list of boolean et
BL and the corresponding list of weights (producedmMay) does not exceed
Capacity

% constraint (2): enforce weight restriction in bins
{ForAll Sol
proc {$ S} BL in
{FS.reified.areln Items S.items BL}
{FD.sumC {Map AllWeights fun {$ E} E2 end}
BL “=<:" Capacity}
end}

The constraints for adding packaging material and assjgtfie bin color
close the procedure and use reified constraints. Reifiecagedprs are used
to conditionally state constraints according to constrédh in the constraint



model. As soon as the cardinality ®items is at leas® the itemPackaging
is added tos.items . This is caused by the connection through the boolean
variables of the reified constraints.
% constraint (3): add extra packagi ng materi al
{ForAll Sol
proc {$ S}
({FS.card S.items} >=: 2) =:
{FS.reified.include Packaging S.items}
end}

The constraint for coloring the bins also uses reified can#s and imple-
ments the “+” operator of constraint (4) by the implication constraintimpl 2.

% constraint (4): assign colors to bins
{ForAll Sol
proc {$ B}
{FD.impl
{FS.reified.include Fragile B.items}
(Red =: B.color)
1}
end}
end % Bi nPacki ng

The code for controlling search is omitted since it is nondérest here and
we assume an adequate search strategy. Now we submit opadtikimg solver
to a search engine, like the Oz Explorer:

{ExploreOne {BinPacking [1#3 2#2 3#2 4#6 5#2 6#4 7#3 8#5 ] 10} }

This results in an immediately failed search tree. The liiga®r is now
demonstrated in a prototypical debugging session.

The Implementation is not Faithful to the Constraint Model. Invoking the
Investigator from the failed node switches the Investigaidhe single propa-
gator graph view (see Figure 1). The node representing ileel faropagator is
colored red throughout the session.

FS_partition
prohle m.oz:65

— T /F_’_'_'_\—*__\_\-_‘k — T
<* S§61007.148 100}3#52#9;) <~* SE1003.5148 100};«{2«9}) <* SE6100}.41 88 100}}#52#9;)
— — — — — "

Figure 1: Single propagator view of the failed propag&®ipartition
The single propagator graph view in Figure 1 shows the pamtgropagator
with its parameters connected via th@erbound event. The parameters are

2This is a reified constraint such that the last paramktsrrequired.



set constraint variables and are representes{{ago}. {1#8 100}}#{2#9} 3,
This corresponds to the basic constrdin®0} € S C {1,...,8,100} A2 <
|S] < 9. We notice that all three parameters contain at least eleftgn
Hence, the partitioning propagator must fail. This revaalsncorrectness but
this is not necessarily the actual bug. A single click on theppgator node
highlights the line of source code where the partitioningpaigator is stated
(see Figure 2).

el
=8 0z Programming Interface {emacs@liszt.ps.uni-sh.de)
Eutfers Files Tools Edit Search ©z Help |

For E
FS.partition end?

problem.oz:28

T S.partition iMap Sol fun £% 5% S,items end? {FS,value,make ITtemsii

% enforce weight restriction in bins

Figure 2: Associating the failed propagator to the sourogmm.

We see that the parameters concerned are the sets of iteeectoiof the
bins in the solutiorsol . Checking the program text suggests that only the
implementation of the packaging constraint (3) adds totathifields ofSol
the elemenPackaging (which is100). Verifying the code for adding extra
packaging material reveals the bug in the implementatiostead of using
different packaging material for each bin, the same madteriesed for all bins.
This is not the intention of the constraint model and hencergolementation
bug. The bug fix simply consists of using different packagimagerial items
for each bin and modifies tlrarall  —loop to select for different bins different
packaging material.

% packagi ng material for every bin
WeightedPackaging = [(Packaging+1)#1 (Packaging+2)#1 (P ackaging+3)#1]

{List.forAllind Sol
proc {$1S} %°‘l’ counts from1l to length of ‘Sol’
% sel ect different packaging naterial by the index I
({FS.card S.items} >=: 2) =: {FS.reified.include 100+l S.i tems}
end}
After fixing the implementation bug, we obtain as solution

Sol = [bin(color:0 items:{1#3 5 101}#5)
bin(color:_{0#1} items:{4 7 102}#3)
bin(color:_{0#1} items:{6 8 103}#3)]
and we notice that not all variables are bound to a singleavahbserve the
color fields). The next section demonstrates how to track downetgan for
this problem.

Identification of Remaining Propagators. A solution with unbound variables
suggests that there is a lack of propagation. The variablghgview shown in
Figure 3 is produced when starting the Investigator fromstbletion node of
the Explorer.

3That all variables have the same naBeoes not mean that they are equal. The name is derived from
the source code of constraint (1), §FS.partition {Map Sol fun {$ S} S.items
end} ..}
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@\ Add #1 variable nodes connected to * C{0#1}
—I Single variahle graph of * C{0#1}
}Eﬂl Variable graph only of root variables
Variable graph of all variables
I?" Corresponding propagator graph
] I
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%H T

Figure 3: Initial view.

The variablesol is not displayed because it is bound to the solution list
and hence no variable anymore. We try to find remaining prajoag starting
from one of the variable nodes. We decide to switch to theabéegigraph view
of all reachable variables (Figure 4(a)), to get an overaser all variables
left unbound. The menu associated with an edge between tiabl@nodes
(Figure 4(b)) offers to switch to a single propagator grajgwof a propagator
being imposed upon two variables.

— 4 [ -0 X

Hle #dif Miew HNavigation Ahstraction Layout Options Help | QEFID QEFID

ﬂ I _ B Previous

QC{[""D QC{U'"D Propagator graph of FD.reified sumC (problem.oz:51)

Propagator graph of propagators imposed onto these two variables
él " o Propagator graph of all propagatars

N

B

Bt .

(b) Edge menu of the variable graph

e .
& view.

(a) Variable graph view of all reach-
able variables.

Figure 4: Variable graph view.

Since we try to find remaining propagators, we switch to therefl sin-
gle variable graph view of a reified sum propagator (Figure 5)

A click on the propagator node immediately reveals the susps program
text: the assignment of the bin colors seems to be too weakeviee a fragile
item is not contained in a bin (implementation of constré#)). The prob-
lem can be fixed by replacing the implication by an equivade ©.equi ).

The correct constraint (4) in the constraint modeVis : ifq4ic € S, <>
color(s,) = red. That means that the implementation was correct but the con-

straint model had a flaw. After applying the fix the solver progs a proper
solution.
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FD.reified.sumcC
problem.oz:51

| -
Buffers Files Tools Edit Search ©z Help
iFS.partition £Map Sol fun £% 5% S.items end? £FS.value.make Items33

% enforce weight restriction in bins
fForAll Sol
proc £ 5% BL in
FS,reified.arsln Items S.items BL3
£FD0,zumC iMap AllMeights fun £3 E¥ E.2 end® BL Capacity3
end?

% s=sign colors to bins
fForfll Sol proc £ B

{FD‘lmil iFS.reified.include 1 B.itens3

end3
QC{I]ND BFS.distribute naive {Map Sol fun £f 53 S.items end:B

- en
=nil

{2 ) ~—L 5 3——C6—— 5 ==~ === ———=————————————————————————————

Figure 5: Single propagator graph view.

5.2 Dealing with Realistic Applications

Realistic problems may have thousands of propagators arabies. It is im-
possible and without any practical use to represent all aéoThis section
proposes techniques for selecting problem-relevantifnastof propagators or
variables. This scheme allows for a user-controlled inerata exploration of
the graphs which is essential for the investigation of lgngdlems.

A common approach of designing a constraint model is to dpose the
problem into subproblems and to decompose these subprshietit prede-
fined propagators can be used. Since procedures implemigotoflems, it
seems reasonable to structure propagators, sub-prosedinct variables ac-
cording to the procedures which stated them. This require#troduction of
procedure nodes to the graph views. A procedure node istéeas circle.

Selection via the Tree of Execution Traces.The tree representation of a
constraint program’s execution trace (see Figure) is used t
select propagators and variables. By clicking on a node,
possible action is to select the propagators created byothe ¢

agators and variables. Different selection schemes, allg.,
propagators stated by a procedure with respectively withou
their sub-procedures, extend the functionality.

Collapsing and Expanding Propagator and Procedure NodesA common
technique for handling large collections of data represgrity graphs is to
collapse and expand appropriate subsets of nodes to siogésnWe propose
for the propagator graph view to determine subsets of nocex@ding to the
procedures which created them. That means a collapsed epdesents a
collection of propagators and sub-procedures. This is g&rge to the model
the programmer has in mind when structuring the problem amtdy is very
intuitive.
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A procedure node represents a collection of propagatorsadd sub-
procedure nodes. It takes as its parameters the union ofattaengters of all
represented propagators and sub-procedures.

proc {After}
hamil.oz:16

hamil.oz:10

(a) Fully collapsed procedure graph, i.e., all propagatatess are collapsed.

(b) Partially collapsed propagator graph, i.e., a procesimode is expanded to
its propagator nodes.

Figure 6: Transition of a graph view by expanding a procedaase.
Figure 6 shows the expansion of the marked procedure nodediteation
of propagator nodes. Expansion can be undone by collapsopagator and
procedure nodes to a single procedure node.

Filtering propagators and variables. Another interesting feature is the op-
tion of displaying only those propagators resp. variableEivmeet a criterion
specified by the user. For example, it might be interestirigtib the investiga-
tion to those propagators that are connected to booleaabkasi when symp-
toms of a bug suggest that.

5.3 Additional Features

This section discusses features of the Investigator natreovbefore but im-
portant for effective use of the tool.

Navigating through the Graphs. Navigation through the different graph views
is done by menus associated with nodes and edges of the tiespaews.
Figure 7 shows possible transitions from one view to anotimer. A history
mechanism is also available, allowing to recall previowsma by moving in
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the chain of views produced so far.

Propagator Graph View Single Propagator Graph Viey

oz |

>

Cren) Caun)d Cand Cuund

Variable Graph View Single Variable Graph View

Figure 7: Navigation overview.

To further improve navigation and to keep track of a certaodenin dif-
ferent views, the Investigator is able to mark nodes in grapis which then
remain marked throughout all vieWsAdditionally, the Investigator automati-
cally marks nodes of variables with which the session wdsted (Figure 3)
and in case there is a failed propagator, the node of thisagapr (Figure 1).

Changing the Representation of NodesThe Investigator provides a plug-in
mechanism for changing the representation of variablepemsghgators. This
enables the user to produce a more obvious and intuitiveseptation. For

example, propagators for cumulative constraints [1] in lzedaling applica-

tion could be represented as Gantt-charts, reflecting thkgrin the concrete

application.

Interaction with the Oz Explorer. The Investigator is designed to be in-
tegrated with the Oz Explorer [16]. The Explorer displays #earch tree
as search proceeds. The default acti
of clicking an Explorer node is to dis- w
play the basic constraints of the cor Jj
f

responding constraint store. Plugging

in the Investigator makes possible t

investigate failed and unfailed search

tree nodes by clicking on the respec-

tive nodes. The Investigator operates on =
Explorer nodes as demonstrated in thgz = 2mm? 8w e

Section 5.1.

“For the purpose of this paper, a marked node is drawn withlddinles. Other schemes, for example
using colors, might be more suitable in connection with cdieplays.
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6 Implementation

The Investigator is implemented in Mozart Oz [12] and usesgitaph visual-
ization systendaVinci[17]. The implementation consists of two parts: first,
the reflection of variables and propagators in the solver@ data structures,
and second, the construction of the graphs and the genermatithe corre-
spondingdaVinciterms.

The reflection part requires the Oz program to be able to heygagators
as a first-class abstract data type, to be able to detect eguables respec-
tively propagators, and to have primitives to reflect vdaaland propagators
to Oz data structures. The data structures make explicitdhe@ections be-
tween propagators and variables, i.e., which are variautsg as parameters
of propagators and which propagators are waiting for a bbeis basic con-
straint to change. A data structure reflecting a variableestthe name, the
basic constraint, the references to the propagators thataiting for the vari-
able’s basic constraint to change, and the actual varidbteflected propaga-
tor stores the propagator’s name and parameters and anedetee the actual
propagator. Reflection typically starts from the soluti@mi&bles of a prob-
lem and proceeds by traversing all reachable propagatdrsaiables until it
terminates, i.e., when there are no more new propagatorsarables to be
found. Detecting termination, when implemented naivegeds to be able to
test variables and propagators for equality. We have usedia table here to
overcome the quadratic complexity of the naive implemienia

The list of newly found propagators and variables is trameslanto a com-
pact representation for the connections between propagaal variables us-
ing sets of integers [13]. Each propagator and variablesgyasd a unique
integer. A reflected propagator stores its parameters astageir set, also a
reflected variable stores the propagators for which it israrpater as an inte-
ger set. The edges and nodes of the individual graph viewscamguted by
the set operations described in Section 4 and are furtheslated todaVinci
terms. ThedaVinciterms are augmented by menus to allow for comfortable
user interaction.

The complexity of the graph-generation algorithm is quadia the worst
case and depends in practice on the degree of connectivityeofonstraint
network, i.e., if the propagators can be stated in reasertabk then the cor-
responding graph can be computed in reasonable time too.

Collapsing and expanding of procedures and propagatorsreglextra
data structures for procedures. These are an extensior afatia structures
used for propagators and contain additionally referermeah-procedures and
propagators stated by the respective procedure. Due tcetheased imple-
mentation, the changes can be factorized out nicely.
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7 Related Work

The tools discussed in this section focus on improving parémce. Since our
approach is orthogonal, it can be used to supplement eyisiois.

The Grace constraint debugger by Meier [10] supplementBitbleg-based
constraint programming systeBCL'PS [8] and is intended to support perfor-
mance debugging of finite domain constraint programminge ¢bnstraint
program has to be appropriately instrumented to be run u@desre. The de-
bugging model of Grace is based upon the Prolog-box-modek dble to
follow individual propagation steps in the trace and to axphe backtrack
stack of finite domain variables. Furthermore, Grace isligiganfigurable by
assigning user-written code to each propagation step.

The Oz Explorer is a graphical search engine which visusilike search
tree as search proceeds. It allows the user to control seag:hone can inter-
rupt search and can resume search from a branch differentthre branch ex-
plored last. The Explorer is extendable by plug-ins, to mlewifferent views
of nodes in the search tree. The Explorer is particularlyulder optimizing
search heuristics according to the topology of the seassh tin conjunction
with the Investigator, debugging performance and coresgrissues of con-
straint programs is actively supported.

The search tree debugger of Chip [2, 6] is largely influencgdhie Oz
ExploreP. Its focus is performance debugging. It provides diffettgpes of
views, mostly in a compact matrix-like fashion, to provitie user with more
detailed information about search and constraint prop@ga# nice feature is
to analyze the evolution of constraints and variables abbegarch path. This
is certainly most valuable for optimizing search heursstic

8 Conclusion

We have presented a novel approach for correctness delgugmistraint pro-
grams based on graph views and have showed how this appraackeal with
large constraint problems. Based on this approach, we hgsemented an in-
teractive tool, the Constraint Investigator. The use ofltivestigator has been
demonstrated with an example derived from a realistic camgtprogramming
application.

The Investigator has been tested with problems of mediuen(5i20 prop-
agators and 600 variables) and has helped to understandoatebtig the
constraint-based implementation of a natural languagsepar

To our knowledge, no other interactive constraint debugdool uses a
graph metaphor in the way presented in this paper and tha¢srihle Con-
straint Investigator unique.
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5See in [2] Section 3 on related work.
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