
A Type is a Type is a Type?Martin M�uller Joachim NiehrenProgramming Systems LabGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, 66123 Saarbr�ucken, Germanyfmmueller,niehreng@dfki.uni-sb.deAbstract. We present an incremental constraint solver as the nucleusof a soft type checker for a higher-order concurrent constraint language.Designed as a variation of rational tree uni�cation, our algorithm ad-ditionally decides satis�ability of weak subtype constraints of the formx�y. It allows for a number of extensions such as record types, sorts,union types, and type declarations, which we discuss by example. Harddisjunctive constraints are handeled as incomplete propagators which in-crementally make as many simple constraints explicit as feasible. Theseextensions let our algorithm become suitable for type checking of a full-
edged programming language.1 IntroductionWe present an incremental constraint solver as the nucleus of a static typechecker for a dynamically typed language. Our particular interest is to pro-vide types for a higher-order concurrent constraint language such as Oz[Smo95, HSW95, SSW94]. We aim at rejecting as many ill-typed programs asfeasible, but not to prove the accepted programs well-typed. While strong typechecking strives to maximize the number of programs for which well-typednessis provable, our approach can be characterized as \soft" [CF91, WC94].Our algorithm decides satis�ability of equational constraints x=y andx=f(y), and containment constraints x�y modelling a weak subtype relation.The semantics of containment is axiomatized by the �rst-order formulae:u�v $ f(u) � f(v) and x�f(u)!9w(x=f(w))This formalizes the intuition that x�y states \x has at least the structure of y".Satis�ability of constraints can be decided in one of three canonical models:One is based on weak subsumption of feature trees, a second one interprets typesas rational constructor trees with holes, and the third one takes a type to be anon-empty set and interprets x�y as set inclusion. Our containment relation is? A preliminary version of this paper was presented at CLNLP'95 [MN95b]. Theresearch reported here has been supported by the Bundesminister f�ur Bildung,Wissenschaft, Forschung und Technologie (FTZ-ITW-9105), the Esprit ProjectACCLAIM (PE 7195), the Esprit Working Group CCL (EP 6028), and a fellowshipof the Graduiertenkolleg 'Kognition' at the Univ. des Saarlandes of the �rst author.



weak in not being able to express coreference information. For instance, inter-preted in the model of rational trees with holes x=f(a b) ^ y=f(x x) impliesx�y, even if a 6= b.The algorithm is designed to extend the standard rule system for rational uni-�cation, and it is just as close to its implementation as the latter. Being fully in-cremental, our algorithm is suited for type checking an interactive language. Thealgorithm can be extended to a full-
edged type diagnosis system [MN95a], cov-ering record types, sorts, disjunctive (i.e., union) types, recursive data type dec-larations, and others. Record types are modelled by feature constraints [ST94],and type declarations by membership constraints following [NPT93]. For theseextensions, the set based semantics is most 
exible and carries furthest.For e�cieny reasons, the treatment of hard disjunctive constraints is re-stricted by an incomplete solver: We shall consider disjunctive constraints as\propagators" which only emit as many simple constraints as feasible. Our set-ting allows us to draw from experience in the constraint programming �eld,where traditionally hard constraints are only approximated. Concepts like thatof a propagator have been developed for (�nite domain) constraint programming(cf., \cardinality constraints" [HD91, MPSW94]). Note that these propagationtechniques are impossible to apply to a non-incremental algorithm.By design, the whole algorithm is suitable for integration into a concurrentconstraint language like Oz [Smo95] or AKL [JH91] and allows us to understandtype checking as a application of constraint programming.Related Work. The containment relation turns out to be equivalent to weaksubsumption which was introduced by D�orre [D�or94] as an approximation of theundecidable (strong) subsumption [DR90] between feature trees. D�orre drew hismotivation from a linguistic problem in constraint based grammar formalisms.He proved decidability of weak subsumption [D�or94]; by reference to the fea-ture tree model, this also settles decidability of containment. However, [D�or94]does not give an incremental algorithm as we do, and he does not considerextensibility of his algorithm. One relationship between type checking and lin-guistics via the undecidable semi-uni�cation problem [KTU93] is well-known,since semi-uni�cation is equivalent to both type checking polymorphic recursion[Myc84, Hen88] and (strong) subsumption [DR90] on feature trees. We extendthis correlation by showing how weak subsumption relates to soft typing.In recent years, there has been increasing interest in type analysis for untypedlanguages (soft typing) [Tha90, AW93, AWL94, CF91, WC94]. By far most ofthe typing literature is for functional languages. The close relationship betweenconstraint solving and type inference ([Wan87, AW93, PS94] and many others) ormore general program analysis (e.g., [Hei92, PS94]) is well-established. Amongthe abounding literature, the work of Aiken, Wimmers et al. seems closest insome respects [AW93, AWL94]:In this work, a rich type language containing union, intersection, complementfunctional and conditional types is considered. For a large class of constraints (so-called inductive systems) they give a complete decision algorithm. For e�ciencyreasons, their algorithm is not implemented completely, but these pragmatics of



type inference are not focussed on. In contrast, drawing intuitions from concur-rent constraint programming, our focus lies exactly on the problem of how tospecify incompletely implemented constraints (propagators).Our algorithm exhibits failure as soon as any variable is proved to denotethe empty set. In contrast, the empty set in Aiken and Wimmer's system de-notes the type of a non-terminating yet perfectly well-typed expression. Thirdly,type inference in
uenced by constraint programming allows to recast conditionaltypes [AWL94] in an operational manner and express more general \constraintpropagators" such as overloaded types.Plan of the Paper. Section 2 illustrates the intended form of type diagnosis byexample. In Section 3 we present our constraints and their semantics along withnecessary notation. Section 4 gives the rules of the full algorithm and a numberof examples. Section 5 sketches the correctness proof, and Section 6 some of theintended extensions. Section 7 summarizes.2 A Type Diagnosis ExampleType checking a program consists in three steps: (i) every program variable ismapped to a type variable, (ii) the program itself is mapped to a constraint �over these variables, and (iii) inconsistency of � is interpreted as a type error.Consider the following program written in the �-calculus [NM95]. The � calculuscan be considered as relational �-calculus [Nie94] or as concurrent �-calculus[MPW92] with logic variables. Furthermore, it is a foundation for concurrentconstraint programming [Smo94] in the style of Oz.9x9y9z9p p:uv=v=cons(x u) ^ pyy ^ x=f(y z)This program declares four variables x; y; z, and p. It de�nes a relational ab-straction p, which states that its two arguments u and v are related throughthe equation v = cons(x u).2 Furthermore, it states the equality x=f(y z) andapplies p to yy. This application pyy reduces to a copy of the abstraction p withthe actual arguments yy replaced for the formal ones uv:9x9y9z9p p:uv=v=cons(x u) ^ pyy ^ x=f(y z)! 9x9y9z9p p:uv=v=cons(x u) ^ y=cons(x y) ^ x=f(y z)Observe how the abstraction p is de�ned by reference to the global variable x,while the value of x is de�ned through an application of p in pyy ^ x=f(y z).Such a cycle is speci�c to Oz-like calculi, since no other language o�ers explicitdeclaration of logic variables global to an abstraction. The types of the variablesinvolved are described by the following constraint, where { for ease of reading {2 The expression p:uv=v=cons(x u) is a relational variant of the functional abstractionp = �u:cons(x u). It can also be considered as Prolog predicate p(u,v) :- v=cons(x u).extended with externally bound variables such as x.



the type variables are picked identical to the corresponding object variables anddeclarations are dropped:p=hu vi ^ v=cons(x u) ^ y�u ^ y�v ^ x=f(y z)hu vi is the relational type of p, and the application gives rise to the constrainty�u ^ y�v, which says that y is constrained by both formal arguments of theprocedure p. The subconstraint x=f(y z) ^ y�v ^ v=cons(x u) re
ects thecyclic dependency between x and p. It says that y be contained in the type vwhich depends through v=cons(x u) on x, and that x should be exactly f(y z).The use of containment constraints to type applications corresponds to theinstantiation of polymorphic types in a functional language with polymorphicrecursion. While some polymorphic 
avour is preserved, we abandon full para-metric polymorphism: For example, the polymorphic type 8x:x! int of length isexpressible,3 while the coreference in the type of the identity function 8x:x! xis lost due to the weak semantics of �. Here one can see that our constraintshave soft typing character.43 Constraints and SemanticsWe assume a signature � of function symbols with at least two elements, rangedover by f; g; h; a; b; c, and an in�nite set of base variables BV .We build constraints over a set of variables V , ranged over by x, y, z, u, v,w, which contain at least the base variable (BV � V ). Sequences of variablesare written as x, y, : : :. The abstract syntax of our constraints �,  is as follows:�;  ::= x=y j x=f(y) j x�y j � ^  As atomic constraints we consider equations x=y or x=f(y) and containmentconstraints x�y. Constraints are atomic constraints closed under conjunction.A main contribution of this paper is an incremental algorithm deciding thesatis�ability of constraints in some model of the axioms Ax in Figure 1.(Decom) 8x8y8z ((x=f(y) ^ x=f(z))$ y=z)(Clash) 8x8y8z ((x=f(y) ^ x=g(z))$ ?) if f 6= g(Descend) 8x8v (9z(x�z ^ z=f(v)))$ 9u(x=f(u) ^ u�v))Fig. 1. The Axiom Scheme AxThe axioms (Decom) and (Clash) are well known from uni�cation of in�nitetrees. The axiom (Descend) combined with (Decomp) implies the monotonicity3 In our setting, this type is just hx inti.4 For a more detailed discussion of type diagnosis along these lines the reader is referredto the forthcoming report [MN95a].



of constructor application with respect to �. In order to formalize this, weintroduce some syntactic sugar for �rst-order formulae over constraints. Let sand t denote terms over � with variables. If u = (ui)ni=1 and s = (si)ni=1, thenwe write:s�t j=j 9x9y(x�y ^ x=s ^ y=t) x=f(s) j=j 9u(x=f(u) ^ u=s)u=s j=j u1=s1 ^ : : : ^ un=snProposition1. In all models of (Decomp), axiom (Descend) is equivalent tothe conjunction of the following two schemes:(Monoton) u�v $ f(u)�f(v) (Constr) x�f(v)!9w(x=f(w))Proof. We �rst assume a model A of (Decomp) and (Descend). Obviously,(Constr) is implied by (Descend). The validity of (Monoton) follows from:f(u)�f(v) j=j 9x(x=f(u) ^ x�f(v))j=jA 9x(x=f(u) ^ 9w(x=f(w)) ^ w�v) (Descend)j=jA 9x9w(x=f(u) ^ u=w ^ w�v) (Decomp)j=j u�vFor the converse, we consider a model A0 of (Monoton) and (Constr). We canestablish (Descend) as follows:x�f(v) j=jA0 x�f(v) ^ 9u(x=f(u)) (Constr)j=j 9u(f(u)�f(v) ^ x=f(u))j=jA0 9u(u�v ^ x=f(u)) (Monoton)There exists several models of Ax with distinct �rst order-theories. Thesehave been investigated in rather independent research areas: Subset constraintson sets of trees have proven useful for various program analysis problems such astype inference (e.g., [Hei92, AW93, AWL94]) while weak subsumption constraintson trees have been considered in computational linguistics [D�or94].In the sequel, we assume a set H of holes. We write ITH for the set of all�nite or in�nite trees over �[H, where holes are treated as additional constants.Trees are ranged over by s and t. The symbol IT stands for IT;.Nonempty sets: The domain of Sets consists of all nonempty subsets of IT. Con-structors are interpreted elementwise and � as subset relation. Intuitions fromtype inference may justify the restriction to nonempty sets of trees as types. Notethat the validity of all axioms of Ax depends on the nonemptiness assumption.For instance, fSets(;) = gSets(;) holds for all f and g, even if f 6= g.Weak instances or weak subsumption: The domain of ITH is the set ITH . Con-structors are interpreted as tree constructors. For two trees s and t, we de�nes�ITH t by s 2 InstH(t), where the set InstH (s) of weak instances of s is de�nedas the greatest �xed point of the following set-valued equation:InstH (s) = � ITH if t is a hole, t 2 Hf(InstH (s)) if t = f(s) for some s



There exists an equivalent de�nition for �ITH in terms of weak subsumption[D�or94, MN95b]. Let t # p denote the subtree of t at position p, and label(t) theconstructor of t. Then we say that s is weakly subsumed by t, if for all paths pand all constructors f : label(t # p) = f implies label(s # p) = f .Theorem2. Let � be a constraint and H 6= ; a nonempty set of holes. Thenthe following statements are equivalent:1) � is satis�able in some model of Ax. 2) � is satis�able in Sets.3) � is satis�able in ITH . 4) � is satis�able in ITf�g.We need at least one hole to prove satis�ability of containment constraints.E.g., a�x ^ b�x is satis�able over ITH if and only if H 6= ;, provided a 6= b.Proof. Since Sets, ITf�gand ITH are models of Ax, 2)) 1), 3)) 1), and 4)) 1)hold. Since ITf�g is a substructure of Sets and of ITH , satis�ablity in ITf�g impliessatis�ability in Sets and ITH . Hence, 4)) 2) and 4)) 3) hold. The embeddingof ITf�g to Sets is given by mapping s 7! s[IT=�]. An embedding of ITf�g to ITHcan be obtained by mapping � to an arbitrary element of H (which exists sinceH 6= ;) and homomorphic extension. It is su�cient to establish 1) ) 4). Thiscan be done by standard coinductive arguments.In presence of negation this equivalence does no longer hold: Let �1 = x�y ^y�x ! x=y and �2 = 9x(a�x ^ b�x ^ :c�x) where a 6= b; a 6= c; b 6= c, andobserve that �1 is valid in ITf�g and Sets but not in ITH , while �2 is valid inSets but not in ITH nor in ITf�g.Notice that the de�nition of weak instances implies f(a b) 2 InstH(f(x x)),even if a 6= b. The set of strong instances of s is de�ned by Inst'H (s) =f�(s) j � : V(s)!H is a substitutiong. Note that Inst'H (s) � InstH(s), and thatf(a b) 62 Inst'H(f(x x)) if a 6= b. Using models of Inst'H (s) instead of InstH (s)would make satis�ability of our constraints equivalent to semi-uni�cation andundecidable [KTU90, DR90].4 The AlgorithmAt �rst sight, the satis�ablity problem seems to be a not too di�cult extensionof rational uni�cation. We could simply add a directed version of (Descend):(Descend) x�y ^ �x=f(u) ^ u�z ^ � u fresh; y=f(z) in �:In the above application condition and in the sequel we make use of the followingnotation: We de�ne � to be the least equivalence relation on constraints suchthat ^ is associative and commutative in �. Furthermore we write:� in  i� exists �0 with � ^ �0 �  The (Descend) rule above is doomed because the introduction of fresh variablesinduces non-termination. Consider, for instance, a constraint with cyles such



as x�y ^ y=f(x). On the other hand, (Descend) is needed in order to detectinconsistencies such as in: y=f(u) ^ u=a ^ z=f(x) ^ x�y ^ x�z ^ � :The key idea for a terminating algorithm is to add new constraints whichavoid the explicit introduction of fresh variables. These can be motivated in themodel Sets: To verify satis�ability of x�y ^ x�z in some context �, we haveto show that y and z have a nonempty intersection. We de�ne the new class ofintersection variables as follows:X;Y; Z ::= x j X\YEquality on intersection variables is associative, commutative, and idempotent:X\Y � Y \X; (X\Y )\Z � X\(Y \Z); X\X � X:We call X a component of Y , if there exists Z such that X � Y \Z. The setof components of X is denoted by C(X), and the set of variables in � by V(�).Note that x\Y 2 V(�) implies x 2 C(V(�)) but in general not x 2 V(�). As newconstraints we introduce X�f(Y ) and x�Y . That is, our algorithm actuallyoperates on the following constraints:�;  ::= x=y j x=f(y) j x�Y j X�f(Y ) j � ^  The standard model-theoretic semantics still applies when intersection variablesare treated just as base variables. However, since it ignores the internal structureof intersection variables, it is incomplete. This will be �xed in Section 5.Let us call a variable X determined in �, if there exists f and U , such thatX��f(U ) is derivable with the following rules:x=f(u)x<f(u) X�f(U )X<f(U ) X<f(U ) in �X��f(U ) x�Y \Z Y <f(U ) in �x��f(U )We de�ne the application of an operator [y=x] to intersection variables compo-nentwise. If Z � (z1\ : : :\zn), then we set:Z[y=x] � z1[y=x]\ : : :\zn[y=x] :Observe that in general V(x=y ^ �) 6= V(x=y ^ �[y=x]). For instance, if � =z�x\y, the variable x\y is contained in the �rst set but not in the second one.However, equality holds if only base components of the constraint are considered:C(V(x=y ^ �)) \BV = C(V(x=y ^ �[y=x])) \BV :We can now specify our algorithm for constraint simpli�cation: It is givenby the rules in Figures 2 and 3. The rules in Figure 2 are known from usualrational tree uni�cation. Only the application condition of (Elim) and (Clash)are original to our setting. The (Clash) rule contains as special cases:x=f(y) ^ x=g(z) ^ �? f 6= g and x�f(y) ^ x�g(z) ^ �? f 6= g :



(Decom) x=f(y) ^ �y=z ^ � x=f(z) in �.(Clash) �? X��f(U); Y 2 C(X); Y��g(V ); and f 6= g:(Elim) x=y ^ �x=y ^ �[y=x] x 2 C(V(�)); and x 6= y:Fig. 2. Rational Tree Uni�cation(Propagate1) x�Y ^ x�Z ^ �x�Y \Z ^ �(Propagate2) X�f(U) ^ �X�f(U\V ) ^ � Y 2 C(X); Y��f(V ); U\V 6� U:(Collapse) x�Y ^ �x�Y \Z ^ � u 2 C(Y ); u�Z in �; and Y \Z 6� Z.(Descend1) x=f(u) ^ �x=f(u) ^ u�V ^ � x��f(V );not exists W such that u�V \W in �(Descend2) �X�f(U) ^ � X 2 V(�); Y 2 C(X); Y��f(U);and not exists g and V such thatX�g(V ) in � orX=g(V ) in �Fig. 3. Simplifying Inclusion ConstraintsIts full power comes in interaction with the rules in Figure 3.The rules (Propagate1) and (Propagate2) propagate intersection variablesinto the right hand side of containment contraints. The (Collapse) rule collapseschains of variables related via containment constraints. In other words, theserules propagate upper bounds with respect to the containment relation.The rules (Descend1) and (Descend2) replace the problematic rule (Descend)above. The Descend rules are the only rules introducing new containment con-straints. Observe that both preserve well-formedness of constraints. The rule(Descend2) introduces a constructor for an intersection variable X by adding aconstraint of the formX�f(U ). If the rule is applied, then the intersection of thecomponents of X is forced to be nonempty. A constraint � implies nonemptinessof every variable X 2 V(�) (e.g., in y�f(X)).Note that (Descend1) and (Descend2) are carefully equipped with side con-ditions for termination. For example, the following derivations are not possible:x=f(u)x=f(u) ^ x�f(u) x�y ^ x=f(x) ^ x�f(y)x�y ^ x�y ^ x=f(x) ^ x�f(y) x=f(y)y�y ^ x=f(y) :Example 1 (Simplifying Intersections). Assume a 6= b and consider the non-satis�able constraint x�y\z ^ �where � � y=f(y u) ^ z=f(z v) ^ u=a ^ v=b:



x�y\z ^ � Descend2x�y\z ^ y\z�f(y u) � Propagate2x�y\z ^ y\z�f(y\z u\v ) ^ � Descend2x�y\z ^ y\z�f(y\z u\v) ^ u\ v �a ^ � Clash?Example 2 (How (Descend) is circumvented). Consider the non-satis�able con-straint x�y ^ � where � � y=f(u) ^ u=a ^ z=f(x) ^ x�z . The derivationof ? looks as follows: x�y ^ � Propagate1x�y\z ^ � Descend2x�y\z ^ y\z�f(u) ^ � Propagate2x�y\z ^ y\z�f( u\x ) ^ � Descend2x �y\z ^ y\z�f(u\x) ^ u\ x �a ^ � Clash?Example 3 (Deep Substitution). The substitution operation ensures (e.g.) thatrules (Propagate1) and (Elim) are interchangeable. This is a requirement forcompleteness since we cannot �x the order of rule application in an incrementalalgorithm. Consider � � z�a ^ u�z ^ y�b with a 6= b in:x=y ^ u�x ^ � Propagate1x=y ^ u�x\z ^ � Descend2x=y ^ u�x\z ^ x\z�a ^ � Elimx=y ^ u�y\z ^ y \z�a ^ � Clash?5 CorrectnessThe standard model theoretic semantics allows ffag=y; fbg=z; fcg=y\zg as asatisfying substitution of x�y\z ^ y=a ^ z=b. This con
icts with the intendedsemantics of intersection variables, as well as with our algorithm which derives aclash. However, the algorithmperforms equivalence transformations if we restrictourselves to so-called intersection-correct substitutions:De�nition3 Intersection Correct. We say that a substitution � : V ! Setsis intersection-correct for X and Y , if �(X\Y ) = �(X) \ �(Y ). We call a sub-stitution � intersection-correct, if for all intersection variables X and Y :{ If X, Y , X\Y 2 dom(�), then � is intersection-correct for X and Y .{ If X, X\Y 2 dom(�), then � is intersection-correct for X\Y and Y .



Note that � is intersection-correct for X and X\Y i� �(X\Y ) � �(X). Call aconstraint � intersection-satis�able, if � has an intersection-correct solution.Proposition4. Let � be a constraint only containing base variables. Then � issatis�able, if and only if it is intersection satis�able.The set of all intersection-correct solutions of � is written SolI(�). LetExtIV (�) denote the set of all intersection correct substitutions ~� such thatdom(~�) = dom(�) [ V and � and ~� coincide on dom(�). For two constraints� and  we say that � intersection-implies  , written � j=I  , ifExtIV( )(SolI(�)) � SolI( ) and SolI(�) = ; if ExtIV( )(SolI(�)) = ;By the �rst condition, every solution of � must be correctly extensible to asolution of  . The second condition excludes for instance: � j=I � ^ z�x\ywhere � = x=a ^ y=b. The set ExtIV(�^z�x\y)(SolI(�)) is empty, since thevariable x\y prevents any intersection correct extension of fx 7! a; y 7! bg. Wecall � and  intersection-equivalent if � j=I  and  j=I �, and write � j=jI  .Lemma5. If � is not intersection satis�able, then � j=I  holds trivially for all . Furthermore, if � j=jI  , then � is intersection satis�able if and only if  is.Theorem6 Termination. The rule system from Figures 2 and 3 terminates.Theorem7 Correctness and Completeness. For an arbitrary constraint �the following statements are equivalent:1. � is intersection-satis�able.2. There exists an irreducible constraint derivable from �.3. There exists an irreducible constraint that is intersection-equivalent to �.4. ? cannot be derived from �.Proof. We de�ne a normal form of constraints and prove that the algorithm(i) performs int.-equivalence transformations, (ii) always yields either ? or anormal form constraint, and that (iii) normal forms always are int.-satis�able.6 Towards a Realistic SystemMuch of the 
exibility of soft type systems is due to the capability to expressdisjunctive types [WC94, AWL94]. Disjunctive types are necessary to handleprogram expressions with branching control such as conditionals. Consider thefollowing three-way case statement:case x of f(y z) then x=f(a b) [] 1 then true [] f(c y) then y=d end



For this expression to be free of run-time errors, x must be bound to one off(a b), 1, or f(c d).5 This set of values can be approximated with di�erentprecision, for instance by one of the following types:int t tuple ff; 1g f(a[c b[d)[1 f(a b)[f(c d)[1We call the �rst two approximations sorts, and the latter two union types.Sorts are formalised by reference to a completelattice (S,v) with minimal and maximal elements 0and 1.6A sorting function Sort() assigns every con-structor f a non-empty sort S 2 S, for instanceSort(nil) = Sort(cons) = list, Sort(1) = int, andSort(1:2) = 
oat. The constraints are extended by asort constraint x�S where x�0 is equivalent to ?. 1number tupleint 
oat list bool0Using sorts, we can easily derive the type tuple for x if we assume the equationx = f(e d) in the context which constrains x to sort tuple:x�int t tuple ^ x�tuple ! x�(int t tuple) u tuple � x�tupleTo cover also disjunctions of structured types, we allow union types:� ::= : : : j x�S j x�y1[ : : :[yn j x�f(y1)[ : : :[f(yn)With union types, the type of x can be described more precisely byx�f(a b)[f(c d) ^ x�f(e d) (1)Many soft typing systems allow only \tidy" or \deterministic" unions wherethe top-level constructors in a union must be di�erent (e.g. [WC94]). In suchsystems, type information like f(a b)[f(c d) is immediately approximated byf(a[c b[d). In contrast, we allow the representation of such types, but formal-ize their propagation behaviour operationally in terms of reduction rules. Fromthe constraint (1) above we derive e�a[c ^ d�b[d by an operation similar toantiuni�cation, which in turn reduces to ? immediately. The inconsistency ofthe constraint x�f(a a)[f(b b) ^ x�f(a b), however, cannot be derived.It is a common technique in constraint programming to implement hardconstraints incompletely via \propagators" which continuously watch the alreadyaccumulated constraints, and which (i) disappear once they are entailed and (ii)emit additional constraints if certain conditions are met. This view point allowsus to exactly specify the amount of incompleteness with which hard constraintsare treated. In addition, one can elegantly express overloaded types like (int �int�int)[(real�real�real). Assuming + to have this type, the application x+y=zwould immediately constrain x; y; and z to have at least type num = int [ real:When one of x; y; z gets constrained to int later, it will also constrain y and z toint, and then disappear.5 The logic variable used in constraint languages adds the possibility of x not beingbound at all.6 This tiny fragment here is part of the type hierarchy of Oz data structures [Smo95].



7 SummaryWe have presented an incremental algorithm for solving equational and con-tainment constraints. For satis�ability of these constraints we have given threeequivalent models drawing intuitions from very di�erent �elds. The kernel algo-rithm has be shown to be terminating, correct and complete.We have argued the use of these constraints for soft type inference. Based onthe kernel algorithm, we have sketched a number of extensions which carry it totype diagnosis for realistic programs. Our approach can carry over propagationtechniques from the constraint programming �eld. These can be used to opera-tionally specify the exact amount of incompleteness with which hard constraints(e.g. for union types) are handled.Acknowledgements. We would like to thank Ralf Treinen for pointing us to D�orre'spaper and Alex Aiken for detailed discussions on set constraints.References[AW93] A. Aiken and E. Wimmers. Type Inclusion Constraints and Type Infer-ence. In 6th ACM Conference on Functional Programming and ComputerArchitecture, pp. 31{41, Copenhagen, Denmark, June 1993.[AWL94] Alexander Aiken, Edward L. Wimmers, and T.K. Lakshman. Soft Typ-ing with Conditional Types. In 21st ACM Symposium on Principles ofProgramming Languages, Portland, Oregon, January 1994.[CF91] R. Cartwright and M. Fagan. Soft Typing. In ACM Conference on Pro-gramming Language Design and Implementation, pp. 278{292, June 1991.[D�or94] Jochen D�orre. Feature-Logic with Weak Subsumption Constraints. InConstraints, Languages, and Computation, ch. 7, pp. 187{203. Acad. Press,1994.[DR90] Jochen D�orre and William C. Rounds. On Subsumption and Semiuni�-cation in Feature Algebras. In IEEE Symposium on Logic in ComputerScience, pp. 300{310, 1990.[HD91] Pascal Van Hentenryck and Yves Deville. The Cardinality Operator: ANew Logical Connective for Constraint Logic Programming. In KoichiFurukawa, editor, 8thInternational Conference on Logic Programming, pp.745{759, Paris, France, 1991. The MIT Press.[Hei92] Nevin Heintze. Practical Aspects of Set Based Analysis. In InternationalConference and Symposium on Logic Programming, pp. 765{779, 1992.[Hen88] F. Henglein. Type Inference and Semi-Uni�cation. In ACM Conference onLISP and Functional Programming, pp. 184{197, January 1988.[HSW95] Martin Henz, Gert Smolka, and J�org W�urtz. Object-oriented concurrentconstraint programming in Oz. In V. Saraswat and P. Van Hentenryck,editors, Principles and Practice of Constraint Programming, chapter 2, pp.27{48. The MIT Press, Cambridge, MA, 1995. To appear.[JH91] Sverker Janson and Seif Haridi. Programming Paradigms of the AndorraKernel Language. In International Logic Programming Symposium, pp.167{186, 1991.



[KTU90] A. Kfoury, J. Tiuryn, and P. Urzyczyn. The Undecidability of the Semi-Uni�cation Problem. In ACM Symposium on Theory of Computation, pp.468{476, May 1990.[KTU93] A. J. Kfoury, J. Tiuryn, and Urzycyn. Type Recursion in the Presence ofPolymorphic Recursion. ACM Transactions on Programming Languagesand Systems, pp. 290{311, 1993.[MN95a] Martin M�uller and Joachim Niehren. A Type is a Type is a Type. Draft Re-search Report, DFKI, Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken, 1995.[MN95b] Martin M�uller and Joachim Niehren. Weak Subsumption Constraintsfor Type Diagnosis: An Incremental Algorithm. In Joint COMPU-LOGNET/ELSNET/EAGLES Workshop on Computational Logic for Nat-ural Language Processing, Edinburgh, Scotland, April 3{5 1995.[MPSW94] Tobias M�uller, Konstantin Popow, Christian Schulte, and J�org W�urtz.Constraint programming in Oz. DFKI Oz documentation series, DFKI,Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken, Germany, 1994.[MPW92] Robin Milner, Joachim Parrow, and David Walker. A Calculus of MobileProcesses, I and II. Information and Computation, 100(1):1{40 and 41{77,September 1992.[Myc84] Alan Mycroft. Polymorphic Type Schemes and Recursive De�nitions. InInternational Symposium on Programming, LNCS 167, 1984.[Nie94] Joachim Niehren. Funktionale Berechnung in einem uniform nebenl�au�genKalk�ul mit logischenVariablen. Doctoral Dissertation. Universit�at des Saar-landes, Technische Fakult�at, 66041 Saarbr�ucken, Germany, December 1994.[NM95] Joachim Niehren and Martin M�uller. Constraints for Free in ConcurrentComputation. In First International Workshop on Concurrent ConstraintProgramming, Venice, Italy, May29{31 1995. Submitted to CP'95.[NPT93] Joachim Niehren, Andreas Podelski, and Ralf Treinen. Equational andMembership Constraints for In�nite Trees. In Claude Kirchner, editor,Proceedings of the RTA '93, pp. 106{120, 1993.[PS94] J. Palsberg and M.I. Schwartzbach. Object-Oriented Type Systems. Wiley,Chichester, England, 1994.[Smo94] Gert Smolka. A Foundation for Concurrent Constraint Programming. InJean-Pierre Jouannaud, editor, Constraints in Computational Logics,LNCS845, pp. 50{72, M�unchen, Germany, 7{9 September 1994.[Smo95] Gert Smolka. The de�nition of Kernel Oz. In Andreas Podelski, editor,Constraints: Basics and Trends, LNCS 910, pp. 251{292. Springer, 1995.[SSW94] Christian Schulte, Gert Smolka, and J�org W�urtz. Encapsulated search andconstraint programming in Oz. In A.H. Borning, editor, Second Workshopon Principles and Practice of Constraint Programming, LNCS 874, pp. 134{150, Orcas Island, Washington, USA, 2-4 May 1994. Springer-Verlag.[ST94] Gert Smolka and Ralf Treinen. Records for logic programming. Journal ofLogic Programming, 18(3):229{258, April 1994.[Tha90] S. R. Thatte. Quasi-static Typing. In 7th ACM Symposium on Principlesof Programming Languages, pp. 367{381. CACM, January 1990.[Wan87] Mitchell Wand. A Simple Algorithm and Proof for Type Inference. Fun-damenta Informaticae, 10:115{122, 1987.[WC94] Andrew K. Wright and Robert Cartwright. A Practical Soft Type Systemfor Scheme. In ACM Conference on LISP and Functional Programming,pp. 250{262, June 1994.



This article was processed using the LaTEX macro package with LLNCS style


