A Type is a Type is a Type*

Martin Muller Joachim Niehren

Programming Systems Lab
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germany
{mmueller,niehren}@dfki.uni-sb.de

Abstract. We present an incremental constraint solver as the nucleus
of a soft type checker for a higher-order concurrent constraint language.
Designed as a variation of rational tree unification, our algorithm ad-
ditionally decides satisfiability of weak subtype constraints of the form
xCy. It allows for a number of extensions such as record types, sorts,
union types, and type declarations, which we discuss by example. Hard
disjunctive constraints are handeled as incomplete propagators which in-
crementally make as many simple constraints explicit as feasible. These
extensions let our algorithm become suitable for type checking of a full-
fledged programming language.

1 Introduction

We present an incremental constraint solver as the nucleus of a static type
checker for a dynamically typed language. Our particular interest is to pro-
vide types for a higher-order concurrent constraint language such as Oz
[Smo95, HSW95, SSW94]. We aim at rejecting as many ill-typed programs as
feasible, but not to prove the accepted programs well-typed. While strong type
checking strives to maximize the number of programs for which well-typedness
is provable, our approach can be characterized as “soft” [CFI1, WC94].

Our algorithm decides satisfiability of equational constraints z=y and
r=f(y), and containment constraints £Cy modelling a weak subtype relation.
The semantics of containment is axiomatized by the first-order formulae:

uCv ¢« f(u) C f(v) and zC f(u) — Jw(e=f(w))

This formalizes the intuition that xCy states “a has at least the structure of y”.

Satisfiability of constraints can be decided in one of three canonical models:
One 1s based on weak subsumption of feature trees, a second one interprets types
as rational constructor trees with holes, and the third one takes a type to be a
non-empty set and interprets xCy as set inclusion. Our containment relation is

* A preliminary version of this paper was presented at CLNLP’95 [MN95b]. The
research reported here has been supported by the Bundesminister fur Bildung,
Wissenschaft, Forschung und Technologie (FTZ-ITW-9105), the Esprit Project
ACCLAIM (PE 7195), the Esprit Working Group CCL (EP 6028), and a fellowship
of the Graduiertenkolleg "Kognition’ at the Univ. des Saarlandes of the first author.

weak in not being able to express coreference information. For instance, inter-
preted in the model of rational trees with holes z=f(a b) A y=f(x x) implies
2Cy, even if a #£ b.

The algorithm is designed to extend the standard rule system for rational uni-
fication, and it is just as close to its implementation as the latter. Being fully in-
cremental, our algorithm is suited for type checking an interactive language. The
algorithm can be extended to a full-fledged type diagnosis system [MN95a], cov-
ering record types, sorts, disjunctive (i.e., union) types, recursive data type dec-
larations, and others. Record types are modelled by feature constraints [ST94],
and type declarations by membership constraints following [NPT93]. For these
extensions, the set based semantics is most flexible and carries furthest.

For efficieny reasons, the treatment of hard disjunctive constraints is re-
stricted by an incomplete solver: We shall consider disjunctive constraints as
“propagators” which only emit as many simple constraints as feasible. Qur set-
ting allows us to draw from experience in the constraint programming field,
where traditionally hard constraints are only approximated. Concepts like that
of a propagator have been developed for (finite domain) constraint programming
(cf., “cardinality constraints” [HD91, MPSW94]). Note that these propagation
techniques are impossible to apply to a non-incremental algorithm.

By design, the whole algorithm is suitable for integration into a concurrent
constraint language like Oz [Smo95] or AKL [JH91] and allows us to understand
type checking as a application of constraint programming.

Related Work. The containment relation turns out to be equivalent to weak
subsumption which was introduced by Dérre [D6r94] as an approximation of the
undecidable (strong) subsumption [DR9I0] between feature trees. Dorre drew his
motivation from a linguistic problem in constraint based grammar formalisms.
He proved decidability of weak subsumption [D6r94]; by reference to the fea-
ture tree model, this also settles decidability of containment. However, [Dor94]
does not give an incremental algorithm as we do, and he does not consider
extensibility of his algorithm. One relationship between type checking and lin-
guistics via the undecidable semi-unification problem [KTU93] is well-known,
since semi-unification is equivalent to both type checking polymorphic recursion
[Myc84, Hen88] and (strong) subsumption [DRI0] on feature trees. We extend
this correlation by showing how weak subsumption relates to soft typing.

In recent years, there has been increasing interest in type analysis for untyped
languages (soft typing) [Tha90, AW93, AWL94, CF91, WC94]. By far most of
the typing literature is for functional languages. The close relationship between
constraint solving and type inference ([Wan87, AW93, PS94] and many others) or
more general program analysis (e.g., [Hei92, PS94]) is well-established. Among
the abounding literature, the work of Aiken, Wimmers et al. seems closest in
some respects [AW93, AWL94]:

In this work, a rich type language containing union, intersection, complement
functional and conditional types is considered. For a large class of constraints (so-
called inductive systems) they give a complete decision algorithm. For efficiency
reasons, their algorithm is not implemented completely, but these pragmatics of

type inference are not focussed on. In contrast, drawing intuitions from concur-
rent constraint programming, our focus lies exactly on the problem of how to
specify incompletely implemented constraints (propagators).

Our algorithm exhibits failure as soon as any variable is proved to denote
the empty set. In contrast, the empty set in Aiken and Wimmer’s system de-
notes the type of a non-terminating yet perfectly well-typed expression. Thirdly,
type inference influenced by constraint programming allows to recast conditional
types [AWL94] in an operational manner and express more general “constraint
propagators” such as overloaded types.

Plan of the Paper. Section 2 illustrates the intended form of type diagnosis by
example. In Section 3 we present our constraints and their semantics along with
necessary notation. Section 4 gives the rules of the full algorithm and a number
of examples. Section b sketches the correctness proof, and Section 6 some of the
intended extensions. Section 7 summarizes.

2 A Type Diagnosis Example

Type checking a program consists in three steps: (i) every program variable is
mapped to a type variable, (#7) the program itself is mapped to a constraint ¢
over these variables, and (#if) inconsistency of ¢ is interpreted as a type error.
Consider the following program written in the p-calculus [NM95]. The p calculus
can be considered as relational A-calculus [Nie94] or as concurrent m-calculus
[MPW92] with logic variables. Furthermore, it is a foundation for concurrent
constraint programming [Smo94] in the style of Oz.

JxIy3zTp pruv/v=cons(z u) Apyy A x=f(y z)

This program declares four variables z,y, z, and p. It defines a relational ab-
straction p, which states that its two arguments u and v are related through
the equation v = cons(x u).? Furthermore, it states the equality z=f(y z) and
applies p to yy. This application pyy reduces to a copy of the abstraction p with
the actual arguments yy replaced for the formal ones uv:

JxIy3=zTp puv/v=cons(x u) Apyy A x=f(y z)
— JxFy3zTp pruv/v=cons(x u) A y=cons(z y) A z=f(y 2)

Observe how the abstraction p is defined by reference to the global variable z,
while the value of z is defined through an application of p in pyy A z=f(y z).
Such a cycle is specific to Oz-like calculi, since no other language offers explicit
declaration of logic variables global to an abstraction. The types of the variables
involved are described by the following constraint, where — for ease of reading —

2 The expression p:uv /v=cons(z u) is a relational variant of the functional abstraction
p = Au.cons(z u). It can also be considered as Prolog predicate p(u,v) - v=cons(x u).
extended with externally bound variables such as x.

the type variables are picked identical to the corresponding object variables and
declarations are dropped:

p={(u v) A v=cons(z u) ANyCu A yCov A z=f(y z)

(u v) is the relational type of p, and the application gives rise to the constraint
yCu A yCuv, which says that y is constrained by both formal arguments of the
procedure p. The subconstraint c=f(y z) A yCv A v=cons(x u) reflects the
cyclic dependency between x and p. It says that y be contained in the type v
which depends through v=cons(z «) on z, and that should be exactly f(y z).

The use of containment constraints to type applications corresponds to the
instantiation of polymorphic types in a functional language with polymorphic
recursion. While some polymorphic flavour is preserved, we abandon full para-
metric polymorphism: For example, the polymorphic type Yz.z — int of length is
expressible, 3 while the coreference in the type of the identity function Vz.z — z
1s lost due to the weak semantics of C. Here one can see that our constraints
have soft typing character.*

3 Constraints and Semantics

We assume a signature X' of function symbols with at least two elements, ranged
over by f,g,h,a,b,c, and an infinite set of base variables BV .

We build constraints over a set of variables V', ranged over by z, y, z, u, v,
w, which contain at least the base variable (BV C V). Sequences of variables
are written as 7, y, The abstract syntax of our constraints ¢, ¢ 1s as follows:

¢ u=a=y | a=f(7) | 2Cy [¢ AV

As atomic constraints we consider equations x=y or x=f(y) and containment
constraints #Cy. Constraints are atomic constraints closed under conjunction.
A main contribution of this paper is an incremental algorithm deciding the
satisfiability of constraints in some model of the axioms Ax in Figure 1.

(Decom) VYaVyVz ((z=f(7) A z=f(2)) < y=3)
(Clash) VaVyvz ((z=f(7) A 2=g(z)) & 1) if f#£g
(Descend) VaVu (3z(xCz A 2=£(0))) « Ju(z=f(a) A aCD))

Fig. 1. The Axiom Scheme Ax

The axioms (Decom) and (Clash) are well known from unification of infinite
trees. The axiom (Descend) combined with (Decomp) implies the monotonicity

® In our setting, this type is just (z int).
* For a more detailed discussion of type diagnosis along these lines the reader is referred
to the forthcoming report [MN95a).

of constructor application with respect to C. In order to formalize this, we
introduce some syntactic sugar for first-order formulae over constraints. Let s
and ¢t denote terms over X with variables. If @ = (w;)?_; and § = (s;)7,, then
we write:

sCt H Jey(xCy A 2=s A y=t) e=f(5) H Ju(e=f(u) A a=5)

=5 Hui=s1 A ... Aup,=s,

Propositionl. In all models of (Decomp), ariom (Descend) is equivalent to
the conjunction of the following two schemes:

(Monoton) uCv & f(u)Cf(7) (Constr) xCf(v) — 3w (z=f(w))

Proof. We first assume a model A of (Decomp) and (Descend). Obviously,
(Constr) is implied by (Descend). The validity of (M onoton) follows from:

f@Cf@) H Fz(e=f(u) AxCf(7))
H4 Jz(x=f(u) A Jw(x=f(W)) AN WD) (Descend)
EA JxIw(x=f(7) A =0 A WCY) (Decomp)
et

For the converse, we consider a model A’ of (Monoton) and (Constr). We can
establish (Descend) as follows:

vCI@) Ho 2CH(0) A Fu(z=f(@) (Constr)
H Ja(f(@)C /(@) Ae=[())
Ha Ju(uCo A x=f(u)) (Monoton)

There exists several models of Ax with distinct first order-theories. These
have been investigated in rather independent research areas: Subset constraints
on sets of trees have proven useful for various program analysis problems such as
type inference (e.g., [Hei92, AW93, AWL94]) while weak subsumption constraints
on trees have been considered in computational linguistics [D6r94].

In the sequel, we assume a set H of holes. We write |Tg for the set of all
finite or infinite trees over XU H | where holes are treated as additional constants.
Trees are ranged over by s and ¢t. The symbol IT stands for ITy.

Nonempty sets: The domain of Sets consists of all nonempty subsets of IT. Con-
structors are interpreted elementwise and C as subset relation. Intuitions from
type inference may justify the restriction to nonempty sets of trees as types. Note
that the validity of all axioms of Ax depends on the nonemptiness assumption.

For instance, fSetS(@) = gsets(@) holds for all f and g, even if f # g.

Weak instances or weak subsumption: The domain of ITg is the set ITg. Con-
structors are interpreted as tree constructors. For two trees s and ¢, we define

SQITHt by s € Instg(t), where the set Instgr(s) of weak instances of s is defined
as the greatest fixed point of the following set-valued equation:

Inst [Ty if £1s a hole, t € H
sty (s) = F(Instg (s)) if t = f(5) for some 5

There exists an equivalent definition for QITH in terms of weak subsumption
[Dor94, MN95b]. Let ¢ | p denote the subtree of ¢ at position p, and label(t) the
constructor of £. Then we say that s is weakly subsumed by ¢, if for all paths p
and all constructors f: label(t | p) = f implies label(s | p) = f.

Theorem 2. Let ¢ be a constraint and H # § a nonempty set of holes. Then
the following statements are equivalent:

1) ¢ is satisfiable in some model of Ax. 2) ¢ is satisfiable in Sets.
3) ¢ is satisfiable in |Tg. 4) ¢ is satisfiable in 1T4y.

We need at least one hole to prove satisfiability of containment constraints.
E.g., aCx A bCx is satisfiable over ITg if and only if H # (J, provided a # b.

Proof. Since Sets, IT{,;and 1Ty are models of Ax, 2) = 1), 3) = 1), and 4) = 1)
hold. Since [Ty, is a substructure of Sets and of IT g, satisfiablity in IT,} implies
satisfiability in Sets and ITg. Hence, 4) = 2) and 4) = 3) hold. The embedding
of T4} to Sets is given by mapping s + s[IT/e]. An embedding of IT,; to ITx
can be obtained by mapping e to an arbitrary element of H (which exists since
H # 0) and homomorphic extension. It is sufficient to establish 1) = 4). This
can be done by standard coinductive arguments.

In presence of negation this equivalence does no longer hold: Let @1 = 2Cy A
yCax — x=y and @2 = Jx(aCx A bCx A —cCx) where a # b,a # ¢,b # ¢, and
observe that @, is valid in ITe; and Sets but not in ITg, while @5 is valid in
Sets but not in ITg nor in ITy,;.

Notice that the definition of weak instances implies f(a b) € Insty(f(x #)),
even if a # b. The set of strong instances of s is defined by Inst’g(s) =
{o(s) | o : V(s)— H is a substitution}. Note that Inst’gr(s) C Instg(s), and that
fla b) & Inst’ g (f(x x)) if @ # b. Using models of Inst’g(s) instead of Instg(s)
would make satisfiability of our constraints equivalent to semi-unification and

undecidable [KTU90, DR90].

4 The Algorithm

At first sight, the satisfiablity problem seems to be a not too difficult extension
of rational unification. We could simply add a directed version of (Descend):

tCy Ao
e=f@) NaCz A ¢

(Descend) u fresh, y=f(%) in ¢.

In the above application condition and in the sequel we make use of the following
notation: We define = to be the least equivalence relation on constraints such
that A is associative and commutative in =. Furthermore we write:

¢ in ¢ iff exists ¢’ with ¢ A @' = o

The (Descend) rule above is doomed because the introduction of fresh variables
induces non-termination. Consider, for instance, a constraint with cyles such

as tCy A y=f(x). On the other hand, (Descend) is needed in order to detect
inconsistencies such as in: y=f(u) A u=a A z=f(z) NeCyAaeCz A ¢.

The key i1dea for a terminating algorithm is to add new constraints which
avoid the explicit introduction of fresh variables. These can be motivated in the
model Sets: To verify satisfiability of xCy A 2Cz in some context ¢, we have
to show that y and z have a nonempty intersection. We define the new class of
wntersection variables as follows:

XY, Z =2 | XNY
Equality on intersection variables is associative, commutative, and idempotent:
XNY =YnX, (XnY)nZ=Xn{nz), XnX=X.

We call X a component of Y, if there exists Z such that X = YNZ. The set
of components of X is denoted by C(X), and the set of variables in ¢ by V(¢).
Note that zNY € V(¢) implies x € C(V(¢)) but in general not z € V(¢). As new
constraints we introduce XC f(V) and zCY. That is, our algorithm actually
operates on the following constraints:

¢, u=a=y | 2=f(y) | 2CY | XCF(Y) | oA ¥

The standard model-theoretic semantics still applies when intersection variables
are treated just as base variables. However, since it ignores the internal structure
of intersection variables, it is incomplete. This will be fixed in Section 5.

Let us call a variable X determined in ¢, if there exists f and U, such that
X<, f(U) is derivable with the following rules:

e=f(@) XCf(U) X<Qf()ing 2C¥NZ YAf(l)ing
zAf@ Xaf(0) X<, f(0) <y f(U)

We define the application of an operator [y/«] to intersection variables compo-
nentwise. If 7 = (z1N...Nz,), then we set:

Zly/x]l = m1ly/x]N . Nzly/x] .

Observe that in general V(x=y A ¢) # V(x=y A ¢[y/z]). For instance, if ¢ =
zCzNy, the variable zNy is contained in the first set but not in the second one.
However, equality holds if only base components of the constraint are considered:

CV(z=y A ¢))NBV = C(V(z=y A ¢[y/z])) N BV .

We can now specify our algorithm for constraint simplification: It is given
by the rules in Figures 2 and 3. The rules in Figure 2 are known from usual
rational tree unification. Only the application condition of (Elim) and (Clash)
are original to our setting. The (Clash) rule contains as special cases:

and EES(@) Aigg(f) A

$:f(y) /\Jl::g(z) Ao f#g

(Decom) % z=f(Z) in ¢.

(Clash) - X<of(0), Y € C(X), Y<sg(V), and f # g.

(Elim) % z € C(V()), and = # y.

Fig. 2. Rational Tree Unification

CY ANxCZ A
(Propagatel) x—nger—/\ ¢ ¢
XCrU) né 7). Tnv 2
P te2) —=e—o—~ "~ Y el(X), Y<uf(V), UnV £U.
(ropagate) ng(UﬁV) A b € ()7 _¢f()7 7_é
CY A .
(Collapse) % weC(Y), uCZiné, and YNZ £ 7.
z=f(w) A ¢ v<of(V),
(Descend) e=f(a) A aCV A ¢ not exists W such that aCVNW in ¢
(Descend?) _ and not exists g and V such that
XCfU)né XCg(V)ingor X=¢g(V)in ¢

Fig. 3. Simplifying Inclusion Constraints

Its full power comes in interaction with the rules in Figure 3.

The rules (Propagatel) and (Propagate2) propagate intersection variables
into the right hand side of containment contraints. The (Collapse) rule collapses
chains of variables related via containment constraints. In other words, these
rules propagate upper bounds with respect to the containment relation.

The rules (Descendl) and (Descend2) replace the problematic rule (Descend)
above. The Descend rules are the only rules introducing new containment con-
straints. Observe that both preserve well-formedness of constraints. The rule
(Descend?2) introduces a constructor for an intersection variable X by adding a
constraint of the form X C f(U). If the rule is applied, then the intersection of the
components of X 1s forced to be nonempty. A constraint ¢ implies nonemptiness
of every variable X € V(¢) (e.g., in yC f(X)).

Note that (Descendl) and (Descend?2) are carefully equipped with side con-
ditions for termination. For example, the following derivations are not possible:

w=f(u) 2Cy Ae=f(z) A 2C f(y) z=f(y)
r=fu) NxCflu) eCyAxCyAne=f(z) N2Cf(y) yCyAz=f(y)

Ezxample 1 (Simplifying Intersections). Assume a # b and consider the non-
satisfiable constraint #CyNz A ¢ where ¢ = y=Ff(y u) A z=f(z v) A u=a A v=b:

xCyNz A ¢

E=yE A Descend?2
rCynz A yNzC f(y u) ¢ Propagate?2
xCyNz AynzCf(ynz ulv) A ¢ Descend?

rCynz AyNzC f(yNz unw) Aunw Ca A ¢ Clash
1L

Ezample 2 (How (Descend) is circumvented). Consider the non-satisfiable con-
straint ®Cy A ¢ where ¢ = y=f(u) A u=a A z=f(x) A xCz . The derivation
of L looks as follows:

M Propagatel
w Descend?2

eCynz A yNzC f(u) A ¢ Propagate2
zCyNz A yNzC f(unNz) A ¢ Descend?2

& Cynz AynzCfluna) Aune Ca A ¢ Clash
1

Example 3 (Deep Substitution). The substitution operation ensures (e.g.) that
rules (Propagatel) and (Elim) are interchangeable. This is a requirement for
completeness since we cannot fix the order of rule application in an incremental
algorithm. Consider ¢ = 2Ca A uCz A yCb with a # b in:

x=y N uCx A ¢ Propagatel
=y A uCzxNz A ¢ Descend?2
z=y AN uCzNz AzNzCa A ¢ Elim

r=y AuCynz A g NzCah @ .ah
T

5 Correctness

The standard model theoretic semantics allows {{a}/y,{b}/z,{c}/yNz} as a
satisfying substitution of #CyNz A y=a A z=b. This conflicts with the intended
semantics of intersection variables, as well as with our algorithm which derives a
clash. However, the algorithm performs equivalence transformations if we restrict
ourselves to so-called intersection-correct substitutions:

Definition 3 Intersection Correct. We say that a substitution o : V' — Sets
is intersection-correct for X and Y, if ¢(XNY) = o(X) Na(Y). We call a sub-
stitution ¢ wntersection-correct, if for all intersection variables X and Y:

- If X, Y, XNY € dom(c), then o is intersection-correct for X and Y.
— If X, XNY € dom(o), then o is intersection-correct for XNY and Y.

Note that ¢ is intersection-correct for X and XNY iff o(XNY) C o(X). Call a
constraint ¢ intersection-satisfiable, if ¢ has an intersection-correct solution.

Proposition4. Let ¢ be a constraint only containing base variables. Then ¢ is
satisfiable, if and only if it is intersection satisfiable.

The set of all intersection-correct solutions of ¢ is written SolI((b). Let
Ext{,(a) denote the set of all intersection correct substitutions & such that
dom(&) = dom(c) UV and ¢ and & coincide on dom(e). For two constraints
¢ and ¢ we say that ¢ intersection-implies ¥, written ¢ = 1, if

Exty) (Sol’ (¢)) C Sol’(¢) and Sol'(¢) = @ if Exty,)(Sol' (¢)) = 0

By the first condition, every solution of ¢ must be correctly extensible to a
solution of . The second condition excludes for instance: ¢ =/ ¢ A 2CzNy
where ¢ = z=a A y=b. The set Ext{,(¢,\zcmy)(8011(¢)) is empty, since the
variable Ny prevents any intersection correct extension of {& — a,y — b}. We

call ¢ and 1 intersection-equivalent if ¢ =1 v and ¢ =1 ¢, and write ¢ I:|I 1.

Lemma 5. If ¢ is not intersection satisfiable, then ¢ =1 4 holds trivially for all
. Furthermore, if ¢ I:|I ¥, then ¢ 1s intersection satisfiable if and only if ¥ 1s.

Theorem 6 Termination. The rule system from Figures 2 and 3 terminates.

Theorem 7 Correctness and Completeness. For an arbitrary constraint ¢
the following statements are equivalent:

1. ¢ is intersection-satisfiable.

2. There exists an irreducible constraint derivable from ¢.

3. There exists an irreducible constraint that is intersection-equivalent to ¢.
4. L cannot be derived from ¢.

Proof. We define a normal form of constraints and prove that the algorithm
(7)) performs int.-equivalence transformations, (éi) always yields either L or a
normal form constraint, and that (i4¢) normal forms always are int.-satisfiable.

6 Towards a Realistic System

Much of the flexibility of soft type systems is due to the capability to express
disjunctive types [WC94, AWL94]. Disjunctive types are necessary to handle
program expressions with branching control such as conditionals. Consider the
following three-way case statement:

case x of f(y z) then x=f(a b) [] 1 then true [] f(c y) then y=d end

For this expression to be free of run-time errors, # must be bound to one of
f(a b), 1, or f(c d).5 This set of values can be approximated with different
precision, for instance by one of the following types:

int L tuple {f, 1} flaUe bud)U1 fla bH)uf(e dyul

We call the first two approximations sorts, and the latter two union types.

Sorts are formalised by reference to a complete 1
lattice (S,E) with minimal and maximal elements 0 /7 \
and 1.°A sorting function Sort() assigns every con- number tuple
structor f a non-empty sort S € S, for instance /\ I\
Sort(nil) = Sort(cons) = list, Sort(l) = int, and int float list bool
Sort(1.2) = float. The constraints are extended by a \\ //
sort constraint #C.S where £CO0 is equivalent to L. 0

Using sorts, we can easily derive the type tuple for z if we assume the equation
z = f(e d) in the context which constrains z to sort tuple:

zCint U tuple A Ctuple — 2C(int Utuple) Mtuple = xCtuple

To cover also disjunctions of structured types, we allow union types:

¢ = ... 2CS | 2CpU.. Uy, | 2CF(Tm)VU... . Uf(Th)
With union types, the type of can be described more precisely by
vCf{a BUF(e d) A aCf(e d))

Many soft typing systems allow only “tidy” or “deterministic” unions where
the top-level constructors in a union must be different (e.g. [WC94]). In such
systems, type information like f(a b)Uf(c d) is immediately approximated by
flaUe bUd). In contrast, we allow the representation of such types, but formal-
1ze their propagation behaviour operationally in terms of reduction rules. From
the constraint (1) above we derive eCalUc A dCbUd by an operation similar to
antiunification, which in turn reduces to 1 immediately. The inconsistency of
the constraint C f(a a)Uf(b b) A C f(a b), however, cannot be derived.

It 18 a common technique in constraint programming to implement hard
constraints incompletely via “propagators” which continuously watch the already
accumulated constraints, and which (7) disappear once they are entailed and (7)
emit additional constraints if certain conditions are met. This view point allows
us to exactly specify the amount of incompleteness with which hard constraints
are treated. In addition, one can elegantly express overloaded types like (int x
intxint)U(real x real xreal). Assuming + to have this type, the application z+y==
would immediately constrain z,y, and z to have at least type num = int U real:
When one of z, y, z gets constrained to int later, it will also constrain y and z to
int, and then disappear.

5 The logic variable used in constraint languages adds the possibility of & not being
bound at all.
® This tiny fragment here is part of the type hierarchy of Oz data structures [Smo95].

7 Summary

We have presented an incremental algorithm for solving equational and con-
tainment constraints. For satisfiability of these constraints we have given three
equivalent models drawing intuitions from very different fields. The kernel algo-
rithm has be shown to be terminating, correct and complete.

We have argued the use of these constraints for soft type inference. Based on
the kernel algorithm, we have sketched a number of extensions which carry it to
type diagnosis for realistic programs. Our approach can carry over propagation
techniques from the constraint programming field. These can be used to opera-
tionally specify the exact amount of incompleteness with which hard constraints
(e.g. for union types) are handled.

Acknowledgements. We would like to thank Ralf Treinen for pointing us to Dorre’s
paper and Alex Aiken for detailed discussions on set constraints.

References

[AW93] A. Aiken and E. Wimmers. Type Inclusion Constraints and Type Infer-
ence. In 6" ACM Conference on Functional Programming and Computer
Architecture, pp. 31-41, Copenhagen, Denmark, June 1993.

[AWL94] Alexander Aiken, Edward L. Wimmers, and T.K. Lakshman. Soft Typ-
ing with Conditional Types. In 21°% ACM Symposium on Principles of
Programming Languages, Portland, Oregon, January 1994.

[CFI1] R. Cartwright and M. Fagan. Soft Typing. In ACM Conference on Pro-
gramming Language Design and Implementation, pp. 278-292, June 1991.

[Dor94] Jochen Dérre. Feature-Logic with Weak Subsumption Constraints. In
Constraints, Languages, and Computation, ch. 7, pp. 187-203. Acad. Press,
1994.

[DRI0] Jochen Dorre and William C. Rounds. On Subsumption and Semiunifi-
cation in Feature Algebras. In IEEF Symposium on Logic in Computer
Science, pp. 300-310, 1990.

[HDO91] Pascal Van Hentenryck and Yves Deville. The Cardinality Operator: A
New Logical Connective for Constraint Logic Programming. In Koichi
Furukawa, editor, 8" International Conference on Logic Programming, pp.
745-759, Paris, France, 1991. The MIT Press.

[Hei92] Nevin Heintze. Practical Aspects of Set Based Analysis. In International
Conference and Symposium on Logic Programming, pp. 765-779, 1992.

[Hen88] F. Henglein. Type Inference and Semi-Unification. In ACM Conference on
LISP and Functional Programming, pp. 184-197, January 1988.

[HSW95] Martin Henz, Gert Smolka, and Jorg Wiirtz. Object-oriented concurrent
constraint programming in Oz. In V. Saraswat and P. Van Hentenryck,
editors, Principles and Practice of Constraint Programming, chapter 2, pp.
27-48. The MIT Press, Cambridge, MA, 1995. To appear.

[JHI1] Sverker Janson and Seif Haridi. Programming Paradigms of the Andorra
Kernel Language. In International Logic Programming Symposium, pp.
167-186, 1991.

[KTU90]

[KTU93]

[MN95a]

[MNO5b]

A. Kfoury, J. Tiuryn, and P. Urzyczyn. The Undecidability of the Semi-
Unification Problem. In ACM Symposium on Theory of Computation, pp.
468476, May 1990.

A. J. Kfoury, J. Tiuryn, and Urzycyn. Type Recursion in the Presence of
Polymorphic Recursion. ACM Transactions on Programming Languages
and Systems, pp. 290-311, 1993.

Martin Miiller and Joachim Niehren. A Typeis a Type is a Type. Draft Re-
search Report, DFKI, Stuhlsatzenhausweg 3, D-66123 Saarbriicken, 1995.

Martin Miiller and Joachim Niehren. Weak Subsumption Constraints
for Type Diagnosis: An Incremental Algorithm. In Joint COMPU-
LOGNET/ELSNET/EAGLES Workshop on Computational Logic for Nat-
ural Language Processing, Edinburgh, Scotland, April 3-5 1995.

[MPSW94] Tobias Miiller, Konstantin Popow, Christian Schulte, and Jorg Wiirtz.

[MPW92]

[Myc84]

[Nie94]

[NMo95]

[NPT93]

[PS94]

[Smo94]

[Smo95]

[SSW94]

[ST94]
[Tha90]
[Wan8&7]

[WC4]

Constraint programming in Oz. DFKI Oz documentation series, DFKI,
Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany, 1994.

Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile
Processes, I and II. Information and Computation, 100(1):1-40 and 41-77,
September 1992.

Alan Mycroft. Polymorphic Type Schemes and Recursive Definitions. In
International Symposium on Programming, LNCS 167, 1984.

Joachim Niehren. Funktionale Berechnung in einem uniform nebenldufigen
Kalkil mit logischen Variablen. Doctoral Dissertation. Universitat des Saar-
landes, Technische Fakultat, 66041 Saarbriicken, Germany, December 1994.
Joachim Niehren and Martin Miiller. Constraints for Free in Concurrent
Computation. In First International Workshop on Concurrent Constraint
Programming, Venice, Italy, May29-31 1995. Submitted to CP’95.
Joachim Niehren, Andreas Podelski, and Ralf Treinen. Equational and
Membership Constraints for Infinite Trees. In Claude Kirchner, editor,
Proceedings of the RTA 93, pp. 106-120, 1993.

J. Palsberg and M.I. Schwartzbach. Object-Oriented Type Systems. Wiley,
Chichester, England, 1994.

Gert Smolka. A Foundation for Concurrent Constraint Programming. In
Jean-Pierre Jouannaud, editor, Constraints in Computational Logics, LNCS
845, pp. 50-72, Miinchen, Germany, 7-9 September 1994.

Gert Smolka. The definition of Kernel Oz. In Andreas Podelski, editor,
Constraints: Basics and Trends, LNCS 910, pp. 251-292. Springer, 1995.
Christian Schulte, Gert Smolka, and Jorg Wirtz. Encapsulated search and
constraint programming in Oz. In A.H. Borning, editor, Second Workshop
on Principles and Practice of Constraint Programming, LNCS 874, pp. 134—
150, Orcas Island, Washington, USA, 2-4 May 1994. Springer-Verlag.

Gert Smolka and Ralf Treinen. Records for logic programming. Journal of
Logic Programming, 18(3):229-258, April 1994.

S. R. Thatte. Quasi-static Typing. In 7" ACM Symposium on Principles
of Programming Languages, pp. 367-381. CACM, January 1990.

Mitchell Wand. A Simple Algorithm and Proof for Type Inference. Fun-
damenta Informaticae, 10:115-122, 1987.

Andrew K. Wright and Robert Cartwright. A Practical Soft Type System
for Scheme. In ACM Conference on LISP and Functional Programming,
pp. 250-262, June 1994.

This article was processed using the INTEX macro package with LLNCS style

