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1 IntroductionConcurrent constraint programming (CCP) systems factorize into a constraint system,which may be seen as a parameter to the system, and an extension facility to computewith relations or processes. The constraint system consists of a universal data structureand a set of logical formulae, called constraints, that express relations between the dataobjects.There are several computation models for di�erent CCP systems and paradigms, suchas AKL [HJ90], ALPS [Mah87], cc-languages [SR91], constraint logic programing(CLP) [JL87, HS88], LIFE [AKP91] and Oz [Smo93, HSW93]. They all require the con-straints to be closed under conjunction and raise the need for an e�cient and incrementalconstraint simpli�cation algorithm that yields a test for satis�ability of constraints. Allof them use existential quanti�cation of constraints implicitly or explicitly, and most ofthem require an e�cient and incremental entailment test (i.e., a test of of the implica-tion between two constraints). In particular this test is necessary for committed choicemechanisms depending on the satisfaction of guards as in Oz, AKL, LIFE and ALPS.In many programming languages, memberships come in the form of static type assertions.In the CCP context however, it is natural to have memberships as relations. Havingde�nitions for the two sets Nat and NatList likeNat = 0 [ succ(Nat)NatList = nil [ cons(Nat; NatList)we could of course de�ne according unary predicates Nat and NatList in the exten-sion facility (for instance as a logic program). The problem is that the extension fa-cility is by design decision in general incomplete for disjunctive information, while thesort de�nitions are inherently disjunctive. For instance the conjunction of the atomsNat(x) ^ NatList(x) will not be reduced to ? unless the language provides some kindof backtracking, which often is not the case in CCP systems. Even worse, in the contextof the set de�nitionsEven = 0 [ succ (Odd ) Nat = 0 [ succ (Nat )Odd = succ (Even ) Inf = succ (Inf )the computation rules of the extension facility will not detect that the denotation of Evenis a subset of the denotation of Nat , since this requires an inductive argument. Hence, arule like if Nat(x) then � � �will not �re in a context where Even(x) is given. The third reason why we can notemploy the extension facility for dealing with memberships is founded in the use of3



in�nite trees as the basic data structure. In�nite trees have been introduced in Prolog II[CKC83] in order to model cyclic data structures. With the de�nition of Nat as above,the conjunction x := succ(x) ^ Nat(x) will forever unfold Nat . Again, an inductivereasoning is missing here.Consequently, we claim that CCP systems will bene�t from the incorporation of mem-berships of some restricted form into the constraint part.1 This allows to delegate somecomputation from the extension facility to a possibly complete constraint solver. Hence,our constraint system comprises equational constraints and membership constraints. Thesyntax in BNF style of our constraints is as follows:
 ::= x _2 p j x := y j x := f(y1; � � � ; yn) j 
 ^ 
 0 j 9x 
 j ? j > :As de�ning device we use regular systems of equations with deterministic union andits greatest �xpoint solution. These equations are not part of the constraint system.Nevertheless, it is possible to extended the system by new equations in the course ofcomputation.For instance in the de�nition of Nat given above, x _2Nat holds exactly if x is a naturalnumber including1. This conforms with the fact that 1 has an equational representa-tion as the unique solution of x := succ(x).The union is used in a deterministic manner, since the constructors in the di�erentpossibilities of an equation are distinct. We use the name determinism for this concept,since the components of the least �xpoint solutions of our deterministic regular systemsare exactly the sets recognized by deterministic top down tree automata. Without anappropriate restriction of the union like determinism we could not hope for any e�cientalgorithm. Furthermore, our entailment test relies on the determinism condition.Our algorithms for testing the satis�ability and entailment are based on a novel techniquethat we call memorization. The correctness of memorization depends mainly on thegreatest �xpoint solution. We illustrate this technique by proving the entailment:x := succ(x) j= x _2Nat :By unfolding the de�nition of Nat , we obtain a constraint which simpli�es to x _2Natrelatively to x := succ(x ).2 Now, instead of reducing to the same subproblem in�nite-ly often, we memorize all constraints once unfolded, and throw them away when theyreappear. In this way x _2Nat is simpli�ed to >, and entailment is proven.We prove that the step of deleting once unfolded constraints is correct in the greatest�xpoint solution, while it can be wrong in other �xpoints. More technically, we use the1This idea is due to Gert Smolka.2Relative simpli�cation [ST92a, AKPS92] of a constraint � relatively to a constraint  means thatwe transform � into a constraint �0 which is equivalent to � modulo  (i.e., �^ is equivalent to �0^ ).4



fact that the greatest �xpoint solution is obtained by ! iteration steps from 'top'. Notethat for arbitrary logic programs this is in general not the case [Llo84].In order to check the satis�ability of the conjunction of membership constraints, we needto be able to compute the intersection of sets. Furthermore, the entailment problemfor two membership constraints amounts to the computation of the subset relation forthe two corresponding sets. Our constraint system provides both computations. Notethat we can not decide the subset relation p � q with an emptiness test of p \ qc, sincethe family of sets de�ned by deterministic equation systems is closed under intersectionbut neither under union nor under complement (either would lead to ine�ciency bycombinatorial explosion). Instead, we will give a system of transformation rules onconjunctions of subset formulae p � q according to the equation system, and again applythe memorization technique.Entailment tests for feature constraints, which re�ne equational constraints for in�nitetrees, have been treated in [ST92a, AKPS92]. In most of those contexts rational andin�nite trees can not be distinguished by means of logical formulae [BS92, Mah88].Membership constraints over sets of �nite trees have been considered in [CD91, Uri92].The case of �nite feature trees is discussed in [NP93]. In these works (generalized)tree automata or regular equation systems with least �xpoint solutions are used. Theproposed simpli�cation algorithms are not e�cient, since the union in the set de�ningdevices is not restricted such that combinatoric explosion is possible.As an alternative to the approach chosen here, we could have taken Rabin automatato de�ne sets of in�nite trees (cf., [Tho90]). In a constraint system for CCP, however,it would be irrealistic to hope that one could use this theory. The complexity of thealgorithms involved is far too high. Clearly, we don't need the expressiveness of thecorresponding second-order logic.The paper is organized as follows. We �rst introduce general notation and the constraintformulae. In Section 3 we de�ne deterministic equation systems and prove the fact thatthe greatest �xpoint solution is calculated by !-iteration from top. In Sections 4 and 5we introduce the memorization technique and present the satis�ability test, proving itscorrectness. In Section 6 we present the entailment test. In the last two sections wedescribe the decision procedure for the test of the subset relation and the computationof the intersection. Finally, we conclude with a discussion of further work.2 Equational and Membership ConstraintsWe assume a non empty, �nite or in�nite, one-sorted signature � of function symbolsf; g; : : :. IT denotes the set of all �nite and in�nite trees over �. We also assume anin�nite alphabet of variables ranged over by x; y; z and a possibly in�nite collection Q of5



� ::= x := y j > j � ^ �0� ::= x := f(�y) j > j � ^ �0 � ::= � ^ � ^ � j ?� ::= x _2 q j > j � ^ �0Figure 1: The fragments of constraints without 9.set expressions ranged over by p; q; r; s. We will be more speci�c about the set expressionsin Section 3.Finite sequences of set expressions and variables are abbreviated as �p and �x. We willalso use similar notions like �x := �y or �x _2 �p for �nite sequences of formulae.As atomic constraints we take equational constraints of the form x := y or x := f(�y),membership constraints x _2 p and ?. The set of constraints is the closure of the set ofatomic constraints under conjunction and existential quanti�cation. > is a constraintstanding for the empty conjunction. Note that, without loss of generality, we consideronly 
at terms f(�y). The symbols for constraints of several restricted forms are givenin Figure 1. A membership constraint x _2 p can be seen as a convenient notion for theapplication p(x) of a unary predicate p to the variable x.As semantics of this �rst order language we consider IT {structures . These are structureswith the domain IT that interpret the function symbols f of � as the pertaining treeconstructor fIT . The possible interpretations of the unary predicate symbols of Q willbe restricted in Section 3 by the choice of special IT {structures. It is understood that? and := get their standard meaning. As usual, we use the notions of existential (resp.universal) closure, ~9w (resp. ~8w), and the set of free variables V(w) occurring in w.The notion of a structure A being a model of a closed formula w (j=A w) is de�nedas usual. An arbitrary formula w is satis�able in a structure A if j=A ~9w, otherwiseit is unsatis�able in A. A formula v entails a formula w in a structure A (v j=A w)if j=A ~8(v ! w). Two formulae v;w are equivalent in a structure A (v j=jA w) ifj=A ~8(v $ w). The notions of entailment and equivalence can be extended to classes ofstructures. Sometimes, we furthermore use the notion v j=�A w for � j=A ~8(v ! w) andv j=j�A w for � j=A ~8(v $ w).3 Set De�nitionsWhen simplifying membership constraints such as x _2 p ^ x _2 q, we need set expressionsrepresenting intersections. Therefore, we require that the setQ of set expressions is closedunder \, which is taken to be an associative, commutative and idempotent constructorfor set expressions. For instance, q \ (p \ q) is identi�ed with p \ q.6



The possible interpretations of the unary predicates are described by a given regularsystem of equations E. This is a set of equations of one of the two following forms:q = f1(q1) [ : : : [ fn(qn) or q = > : (1)We restrict the union in the equations to be deterministic, which means that the con-structors on the right hand side of an equation have to be pairwise distinct. In particularthe empty disjunction, denoted as ?, is allowed.We say that a set expression is de�ned in E, if it appears on the left hand side of anequation in E. We require that no set expression is de�ned twice and that each setexpression appearing on the right hand side of E is de�ned. In the following sections wewill often consider a constraint together with an equation system E and assume that allthe set expressions used in the constraint are de�ned in E.A structure A is a model of E if the statementx _2 q j=jA 9y1 : : :9yn ��x := f(y1) ^ y1 _2 q1� _ : : : _ �x := f(yn) ^ yn _2 qn��holds for all equations in E of the �rst form of (1), and if x _2 q j=jA > holds in the secondcase of (1).An equation system E can be considered as a syntactic characterization of its IT {models.Therefore, we identify E with its IT {models in notions like v j=jE w and v j=E w.We restrict ourselves to equation systems E with appropriate de�nitions of compound setexpressions. If p; q and p \ q are de�ned in E, then we require:x _2 p \ q j=jE x _2 p ^ x _2 q :We will often make use of the following observation. If � contains the equation x := fi(�y),then we get by the determinism condition of E and the restriction to tree structures:x _2 q j=j�E �y _2 qi :In the rest of this section we discuss computational properties of the greatest IT {modelM and the least IT {model m of an equation system E.The set of IT {structures over the de�ned set expressions of E is a complete lattice in itscanonical order. We denote its greatest and least elements by A> and A?. The equationsystem E de�nes a monotone operator, also called E, on this lattice. If qA denotes theinterpretation of the unary relation q in the IT {structure A, then the de�nition of theIT {structure E(A) is given by:qE(A) := Sni=1 fITi (qAi ) if q = f1(q1) [ : : : [ fn(qn) in EqE(A) := IT if q = > in E :7



Hence, the IT {models A of E are exactly the �xpoints of the operator E. By mono-tonicity and Tarski's �xed point theorem (see for instance [Gue89]) the operator E has aleast and a greatest �xpoint. This proves the existence of m and M.The operator E is upward and downward continuous, as the reader easily veri�es. Thismeans that E preserves least upper (greatest lower) bounds of every upward (downward)directed chain A�, i.e. E(supA�) = sup E(A�) ( E(infA�) = inf E(A�) ). With anapplication of Kleene's �xed point theorem to the complete lattice of IT structures andto its dual lattice, we get that the least (resp. greatest) �xed points of E can be reachedin ! iteration steps from bottom (resp. top). This is well known for the least �xed pointof E, since E considered as a logic program de�nes an upward continuous operator. Forthe greatest �xed point of E it is surprising, since it takes in general more than ! stepsto iterate the greatest �xed point of a logic program from top [Llo84].Lemma 3.1 m = 1[m=0 Em(A?) and M = 1\m=0 Em(A>) :We intend to interpret set expressions in greatest IT -models M. Therefore we call asubset of IT de�nable, if it is a component of the greatest IT -model of some deterministicequation system.An example of a non-de�nable set is ff(a; a); f(b; b)g, since our equation systems aredeterministic.In general, the restrictions of IT de�nable sets to �nite trees are exactly those that arerecognizable by a deterministic top down tree automaton.More precisely the restriction of the greatest solution of a deterministic equation systemto �nite trees is the least solution, and the components of the least solution of determin-istic equation systems are exactly the sets recognizable by deterministic tree automata.4 Normal Forms of ConstraintsIn order to decide the satis�ability of constraints, we present a transformation of con-straints into either ? or a satis�able normal form. Since 9x� is satis�able i� � is, wewill restrict ourselves to constraints without existential quanti�cation. These are con-sidered as multisets of atomic constraints. In other words the conjunction is seen to beassociative and commutative, but not idempotent.Since we use membership constraints, all our normal forms are calculated with respectto the maximal model M of an equation system E.A variable is called constrained (in �) if it appears on the left hand side of an atomicconstraint in � which is not equivalent to >. With C(�) we denote the set of all con-8



strained variables in the multiset �. The problem � j=jM > can be decided syntactically.This is trivial for in�nite, and a little bit more complicated for �nite signatures. Forexample, let E contain the de�nition of Nat from the introduction and let � be the con-straint x := x ^ y _2Nat . Then C(�) = ;, if the signature consists of fsucc ; 0 g only, andC(�) = fyg otherwise.For the case of an in�nite signature, x is always constrained in x := f(�y) and constrainedin x _2 p i� p = > is not in E (both statement can be wrong for �nite signatures). Notethat x := y constrains x if x 6= y, but not y.De�nition 4.1 A constraint � is in normal form, i� � = � ^ � ^ � with1. every variables of � is constrained at most once.2. every variable constrained in � does not occur in � ^ �.3. � is satis�able in M. is a normal form of �, if  is in normal form and � j=jM  .A normal form � can be considered as an idempotent substitution with domain C(�).The application of this substitution to a formula w is denoted by �w and correspondsexactly to the elimination of the constrained variables of � in w.The following proposition implies in particular the satis�ability of normal forms. We willexploit this proposition again for the entailment check.Proposition 4.2 If � is in normal form, then every assignment of the non constrainedvariables of � can be extended to a solution of � in M:j=M ~89C(�)� :The proof reduces immediately to the case of equational constraints only, which has beensolved in [Mah88].Normal forms of equational constraints can be obtained by the well known uni�cationrules in Figure 2. We obtain normal forms of arbitrary constraints in four steps. First wecalculate a normal form �^� of the equational part. Second we apply � to the membershippart and call the result �. Third we simplify � relative to � and E by memorization. Inthe last step we calculate intersections and detect unsatis�able membership constraints.The memorization technique is described by schemes of rewrite rules which depend on �and E. It transforms expressions of the form � 2 �0, where 2 is a new symbol. We saythat �0 simpli�es to �1 relative to � and E, if there is a �01 such that �02> rewrites to9



decomp x := f(�y) ^ x := f(�z) ^ �x := f(�y) ^ �y := �z ^ �elim x := y ^ �x := y ^ �[x y] if x 6= y and x 2 V(�)clash 1 x := f(�y) ^ x := g(�z) ^ �? if f 6= gFigure 2: Uni�cation rules. Here � ::= x := y j x := f(�y) j � ^ �0.unfold x _2 q ^ � 2 �0�y _2 �p ^ �2 x _2 q ^ �0 if x _2 q is not in �0;q = : : : [ f(�p) [ : : : is in E;and x := f(�y) is in �:memo x _2 q ^ � 2 �0� 2 �0 if x _2 q is in �0clash 2 x _2 q ^ � 2 �0?2 �0 if x := f(�y) is in �the de�nition of q does not contain f ,and q = > is not in E.Figure 3: Simpli�cation of Memberships relative to Equational Constraints with Memo-rization.�12�01 relative to � and E. In this case we will prove �0 and �1 to be equivalent relativeto � in M (correctness of memorization).On the right hand side of 2 we memorize the constraints which have already been un-folded. The rules are presented in Figure 3. They forbid multiple unfolding of the sameconstraint and delete those that have been unfolded before.The termination of memorization is obvious. The main problem is the correctness of thememo-rule, which is proven in Section 5.A typical example is the simpli�cation of the constraint x _2 Inf relative to x := succ (x)and E containing Inf = succ (Inf ):x _2 Inf 2> unfoldx _2 Inf 2 x _2 Inf memo>2 x _2 InfThe last set of rules handles empty sets in membership constraints and conjunctionsof membership constraints for the same variable. It is given in Figure 4. During itsexecution we want to maintain two invariants. First, each occurring set expression shouldbe de�ned in E. This means that we have to calculate equations for intersections and toextend the equation system by need without changing the interpretations of previouslyde�ned set expressions in M. This will be done in Section 7.10



intersect x _2 p ^ x _2 qx _2 p \ qempty x _2 p ^ �? if p = ? is in EFigure 4: Simpli�cation of Empty Sets and Conjunctions of Membership.Second, a set expression p should be de�ned by p = ? i� pM = ;. This can easily bedone by propagating ? in E.Theorem 4.3 When started with the constraint �, the above algorithm terminates with? if � is unsatis�able in M, and in a normal form of � otherwise.Here is an example that illustrates our algorithm in action. E contains the equations forNat , NatList , Even and Odd from the introduction. We compute a normal form ofx := cons (y; x) ^ x := cons (z; x) ^ x _2NatList ^ y _2Even ^ z _2Odd :The equational part simpli�es to � ^ � with� = y := z ^ x := x; � = x := cons (z; x) :By applying � to the membership part we get� = x _2NatList ^ z _2Even ^ z _2OddThe memorization algorithm simpli�es � relative to � and E to�1 = z _2Nat ^ z _2Even ^ z _2Odd :This is transformed with the intersection rule to z _2Nat \Even \Odd . The intersectionalgorithm of Section 7 adds the following equation to E:Nat \ Even \ Odd = succ(Nat \ Even \Odd ) :To be precise it also adds an equation for Even \ Odd , Nat \ Even or Nat \ Odddepending on which intersection is calculated �rst. We get the normal formy := z ^ x := x ^ x := cons (z; x) ^ z _2Nat \ Even \Odd :This normal form is satis�able since 1 2 (Nat \ Even \ Odd )M. Note that we couldreplace z _2Nat \Even \Odd by the M-equivalent constraint z := succ (z). This will benecessary in the entailment check. 11



5 Correctness of Relative Simpli�cation with Mem-orizationSince the clash rule terminates the rewriting, we can restrict ourselves to the memo andunfold rule. The relation `rewrites to in one memo or unfold step' on expressions of theform � 2 �0 will be denoted by >�;E and its re
exive transitive closure by >��;E .Roughly speaking, the following theorem states that the symbol 2 can be interpreted asthe logical connective ^ with respect to all IT {models of E, and also as ! with respectto the greatest IT {model M.Theorem 5.1 For each computation�0 2 �00 >��;E �1 2 �01the following two statements are invariants:�0 ^ �00 j=j�E �1 ^ �01 and �00 j=�M �1 ! �01 :Only the second statement is not obvious, since the assumption of the implication isweakened by the memorization rule.Corollary 5.2 (Correctness) If �0 simpli�es to �1 by memorization relative to � andE then �0 j=jEM �1 holds.Proof. By de�nition there is �01 with �02> >��;E �12 �01. The above theorem implies�0 ^ > j=j�E �1 ^ �01 j=j�M �1 : 2Theorem 5.1 can be proven with the help of Lemma 5.3, which re
ects an importantproperty of the greatest IT {model M.In order to be general enough we need the concept of derivable constructors. If f 2 �is a constructor with arity n, m a natural number and � : f1; � � � ; ng ! f1; � � � ;mg anarbitrary mapping, then the pair f� is called derivable constructor with arity m. Theinterpretation of f� in a �{structure I is de�ned byfI� (d1; : : : ; dm) = f I(d�(1); : : : ; d�(n))for all elements di of the domain of I. Each constructor is itself a derivable constructor,since we may chose � to be the identity. We will freely use derivable constructors as12



abbreviations in terms. For example f�(x; y) stands for f(y; y; y) if � is the mapping�(1) = �(2) = �(3) = 2. In the sequel we will not distinguish between constructorsand derivable constructors.Using this notion in the rest of this section we will always assume �nite sequence ofobjects to have the form �o = (oi)i.Lemma 5.3 (Main) Let E be an equation system, �p = (pi)i and �q = (qi)i �nite se-quences of set expressions, �x = (xi)i and �y = (yi)i �nite sequences of variables, �f = (fi)ia �nite sequence of derivable constructors and � a constraint. We assume that for all jthe equations pj = : : : [ fj(�p; �q) [ : : :are contained in E and that the statementj=�M xj := fj(�x; �y)is valid. Then the following implication relative to � and the greatest model M of E holds:j=�M �y _2 �q ! �x _2 �p :In order to illustrate the contents of the Main Lemma, let � be x1 := f(x1; x2) ^ x2 :=f(x1; x2) and let E contain the equations p1 := f(p1; p2) and p2 := f(p1; p2). The mainlemma implies> j=�M x1 _2 p1^x2 _2 p2. Note that this does not hold in any other solutionof E, i.e. for pm1 = ; and pm2 = ;.Proof of the Main Lemma. We proof that each solution of � ^ �y _2 �q over M is asolution of �x _2 �p. Suppose � : V ar! IT to be a solution of �^ �y _2 �q inM. This implies�(xj) = fITj (�(x); �(y)) and �(yj) 2 qMjfor all j (with �(x) = (�(xi))i ).By the representation of M in Lemma 3.1, it su�ces to show:�(xj) 2 pEm(A>)jfor all j and all m � 0. This can be done by induction over m. The case m = 0 is trivial.For the induction step we have to show�(xj) 2 pEm+1(A>)j= : : : [ fITj (pEm(A>); qEm(A>)) [ : : :for all j. But �(xj) is contained in the right hand side. Indeed �(xj) = fITj (�(x); �(y)),by induction hypothesis �(x) 2 pEm(A>)13



and by assumption �(y) 2 qM � qEm(A>) : 2Proof of Theorem 5.1. For simplicitywe assume �00 = >, which is su�cient to concludeCorollary 5.2.We call the expression �y _2 �q2 �x _2 �p appropriate with respect to � and E i� there is a �nitesequence of derived constructors �f and a �nite sequence of variables �y such that for allj the equation pj = : : : [ fj(�p; �q) [ : : : :is in E and the following statement holds:j=� xj := fj(�x; �y) :�02> is appropriate even for arbitrary � and E. We will show that unfold and memosteps relative to � and E maintain appropriateness relative to � and E. Therefore �12�01is appropriate relative to � and E. The Main Lemma yieldsj=�M �1 ! �01 :It remains to prove that the unfold and memo rule maintain appropriateness. First weconsider the unfold rule that reduces x0 _2 p0 to y0 _2 q0 in�y _2 �q ^ x0 _2 p0 2 �x _2 �p >�;E �y _2 �q ^ y0 _2 q0 2 �x _2 �p ^ x0 _2 p0 :To prove the appropriateness of the right hand side we will �nd constructors g0 and �gwith pj = : : : [ gj(�p; p0; �q; q0) [ : : : and j=� xj := gj(�x; x0; �y; y0) ;p0 = : : : [ g0(�p; p0; �q; q0) [ : : : and j=� x0 := g0(�x; x0; �y; y0) :By the application condition of the unfold rule, there is a constructor f 0 withp0 = : : : [ f 0(q0) [ : : : and j=� x0 := f 0(y0) :By the appropriateness of the left hand side of >�;E there are derived constructors �fwith pj = : : : [ fj(�p; �q; p0) [ : : : and j=� xj := fj(�x; �y; x0)We can now �nd de�nable constructors that are essentially like fj, but take possiblymore arguments in a possibly permuted order. Formally there are de�nable constructors�g and g0 withfj(�x; �y; x0) = gj(�x; x0; �y; y0) and f 0(y0) = g0(�x; x0; �y; y0) :14



This impliesfj(�p; �q; p0) = gj(�p; q; �q; q0) and f 0(q0) = g0(�p; p0; �q; q0)and proves the appropriateness of the right hand side.For the second case we consider an application of the memo rules erasing x0 _2 p0:�y _2 �q ^ x0 _2 p0 2 �x _2 �p ^ x0 _2 p0 >�;E �y _2 �q 2 �x _2 �p ^ x0 _2 p0 :The appropriateness of the left hand side guarantees the existence of derivable construc-tors �f and f0 withpj = : : : [ fj(�p; p0; �q; p0) [ : : : and j=� xj := fj(�x; x0; �y; x0)for all j � 0. Now we can �nd derivable constructors that take x0, resp. p0 only once.To be precise, we de�ne �g and g0 withfj(�x; x0; �y; x0) = gj(�x; x0; �y)for all j � 0. Therefore fj(�p; p0; �q; p0) = gj(�p; p0; �q) :This shows the appropriateness of the right hand side. 26 The Entailment CheckIn this section, we show how to decide entailment between existentially quanti�ed con-straints in the greatest model M.For the purpose of this section we assume that the signature contains at leasttwo elements, since otherwise the domain of the models under considerationwill be singleton, and hence every equation will hold.Initially, we are given the question whether9X 0�0 j=M 9X� (2)holds, where X, X 0 are �nite sets of variables. We may assume without loss of generalitythat �0 is satis�able in M, since otherwise (2) holds vacuously. Hence by Theorem 4.3 wecan assume �0 to be in normal form. For the purpose of entailment checks it is convenientto exclude certain forms of degenerate membership constraints. Hence, we furthermore15



require that for all membership constraints x _2 p of �0 the de�nition of p is disjunctive. Anormal form meeting this additional condition is called a branching normal form. Notethat a branching normal form contains only membership constraints x _2 p for which pMis not singleton. We can always transform a normal form into an equivalent branchingnormal form by introducing new existentially quanti�ed variables:� A membership constraint x _2 p, where pM is singleton, is equivalent to a corre-sponding equation. For example, if E contains p = f(q) and q = g(p), then x _2 p isin M equivalent to 9y(x := f(y) ^ y := g(x)).� A membership constraint x _2 p, where the de�nition of p is of the form p = f(�q)and where pM is not singleton, is replaced by 9�y(x := f(�y) ^ �y _2 �q).Both rules maintain normal forms (modulo existential quanti�cation) and terminate,since the second rule applies only when pM is not a singleton. Note that by Lemma 5.3,pM is non-singleton i� the de�nition of p depends on a de�nition which is disjunctive, orwhich is >.Taking the de�nition of Inf , Even and Odd as given in the introduction, we transformthe existentially quanti�ed normal form9y(x _2 Inf ^ y _2Odd)into the existentially quanti�ed branching normal form9y9z(x := succ(x) ^ y := succ(z) ^ z _2Even) :The next lemma states that membership constraints in a branching normal form can notcontribute to equalities:Lemma 6.1 Let �0 ^ �0 be in branching normal form. Then �0 ^ �0 j=M � i� �0 j=M �.Hence, we assume without loss of generality in (2) that �0 is in branching normal form.Since we may in (2) assume without loss of generality that X 0 is disjoint to V(�),we maydrop the existential quanti�er on the left hand side. The normal form �0 can be writtenas �0 ^ �0 ^ �0. Since �0 is an idempotent substitution and since we may assume X to bedisjoint to V�0, we arrive at the problem�0 ^ �0 j=M 9X�0�where �0 ^ �0 is in branching normal form.Before we state the entailment theorem we consider the special case of a right hand sideconsisting of equations only. We say that some � is complete for some � if� j= x := y and x := f(�x) 2 � and y := f(�y) 2 � implies � j= �x := �y :16



For instance, x := v ^ y := v is complete for x := f(x; y) ^ y := f(v; x) ^ v := f(y; x).We de�ne the quantor 9̂x� (read: there is at most one x such that �) as an abbreviationfor: 8y18y2(�[x y1] ^ �[x y2]! y1 := y2)The generalization 9̂X to a �nite set X of variables is straightforward. This quantor hasthe important property that:~89̂X� ^ ~89X(� ^  ) j= ~8(�!  ) : (3)We can now express an important property of normal forms which is in some sense acounterpart to Proposition 4.2. This lemma has been given in [Mah88] as an axiom ofin�nite trees.Lemma 6.2 For every � we have j=M ~89̂C(�) � .Lemma 6.3 (Determined Equations) Let � be complete for �0, let � contain no trivialequation x := x and let � ^ �0 be satis�able in M. Then �0 j=M � i� V(�) � C(�0).For instance, x := f(x; y) ^ y := f(v; x) ^ v := f(y; x) j=M x := v ^ y := v :This does not hold, if we drop the third equation form the assumption.Proof. If V(�) 6� C(�0), then we can �nd a valuation which satis�es �0 but not � asfollows: If � contains x := y, where both x and y are not constrained in �0, then we maychoose arbitrary di�erent values for x and y. If � contains x := y, where one variable (sayx) is not constrained and the other (say y) is constrained in �0 by, say, y = f(�y), then wechoose for x a value which has a root symbol di�erent from f . This is always possiblesince we assume our signature to contain at least two elements. In both cases, we useProposition 4.2 to get a solution of �0 which does not satisfy �.Let V(�) � C(�0). By Lemma (6.2) j=M ~89̂C(�0) �0 : (4)We may assume without loss of generality that � is arranged to be an idempotent sub-stitution. We now show that ��0 is in normal form up to multiple occurrences of atomicconstraints. Assume that x := f(�y) ^ x := g(�z) � ��0 :17



Since � ^ �0 is satis�able, f equals g. Since � is complete for �0, we obtain � j= �y := �z.Since � is an idempotent substitution and since �y; �z are in the codomain of � this implies�y = �z. Hence by Proposition 4.2j=M ~89C(��0)(� ^ ��0) j=j ~89C(��0)(�0 ^ �0) j= ~89C(�0)(�0 ^ �0) (5)The last implication is justi�ed by V(�) � C(�0), hence V(��0) � C(�0). Now, the claimfollows by (3) from (4) and (5). 2A proof of a more general lemma (in the context of feature constraints) has been givenin [ST92b].Before we state the entailment theorem we have to introduce some more notation. Wecall � X-directed if � contains no equation x := y with x 62 X and y 2 X.For a constraint � we de�ne �X to be the subset of atomic constraints which constrainonly variables from X, and ��X to be the subset of atomic constraints which constrainonly variables alien to X. Since every constraint is either equivalent to > or constrainsa variable, we have � j=jM �X ^ ��X .De�nition 6.4 Let �0 ^ �0 be in branching normal form. The constraint 9X(� ^ � ^ �)is in normal form relative to �0 ^ �0 if1. � is X-directed,2. � is complete for �0 ^ �, and � ^ �0 is satis�able in M,3. C(�0) and C(�) are disjoint,4. � ^ � ^ � is in normal form.For instance, 9v(v := z ^ x := y ^ y := f(y) ^ z _2 p) (6)is in normal form relative tox := f(y) ^ y := f(x) ^ w := h(z) ^ z _2 q : (7)This does not hold if we drop x := y from (6), since then clause 2 of De�nition 6.4 isviolated.Theorem 6.5 (Entailment) Let �0 ^�0 be in branching normal form, let X be disjointto V(�0^�0) and let 9X(�^ � ^�) be in normal form relative to �0^�0. Then �0^�0 j=M9X(� ^ � ^ �) i� the three following statements hold:18



1. V(��X) � C(�0),2. for every x _2 p in ��X there is an x _2 q in �0 with qM � pM,3. ��X � ��0.For instance (7) j=M (6) holds provided that qM � pM.Proof. By clause (1) of De�nition 6.4, V(��X) is disjoint from X. Since furthermoreV(��X) is disjoint from X, �0 ^ �0 j=M 9X(� ^ � ^ �) is equivalent to the conjunction ofthe three statements �0 ^ �0 j=M ��X (8)�0 ^ �0 j=M ��X (9)�0 ^ �0 j=M 9X(�X ^ ��X ^ �X ^ �X) : (10)By Lemma 6.1 and 6.3, (8) is equivalent to condition 1 of the theorem. This relies onclause 2 of De�nition 6.4.Using clause 3 of De�nition 6.4 and the fact that X is disjoint to V(�0 ^ �0), (9) isequivalent to condition 2 of the theorem.Since � is X-directed, V(��0) is disjoint from X. Hence condition (3) of the theoremimplies that V(��X) is disjoint from X, and hence (10) is equivalent to the conjunctionof �0 ^ �0 j=M ��X (11)�0 ^ �0 j=M 9X(�X ^ �X ^ �X) (12)If condition 3 and 1 of the theorem hold, then by (8) we have �0^�0 j=M �0^��X j= ��X .By clause (4) of De�nition 6.4, the formula �X ^ �X ^ �X is in normal form. Hence, byProposition 4.2, (12) holds.On the other hand, assume that (10) holds and that x := f(�y) 2 ��X . If ��0 does notcontain an equation for x, or contains an equation x = g(�z) with g 6= f , then the sameholds for �0 by condition 1 of the theorem and since � ^ �0 is satis�able in M. Thiscontradicts our assumption that entailment holds. Hence, there is an x := f(�z) in ��0.Since � is complete for � ^ �0, it is also complete for � ^ ��0. Hence � j= �y := �z, that issince � is an idempotent substitution, ��y = ��z. Since �y, �z are in the codomain of � andsince � is idempotent, �y = �z, hence x = f(�z) 2 ��0. 2Next we show how to transform a constraint 9X� into normal form relative to �0 ^ �0.First, we transform the equational part of � using the rules of Figure 5. This rules areequivalence transformations relative to �0 in all IT structures. The rules terminate with19



r-decomp � ^ ��y := �z ^ � ^ � � is substitutionand x := f(�y) ^ x = f(�z) � � ^ ��0r-elim x := y ^ � ^ �x := y ^ (� ^ �)[x y] x 6= y; x 2 V(� ^ �)r-clash � ^ �? � is substitutionand x := f(�y) ^ x = g(�z) � � ^ ��0, f 6= gorient x := y ^ � ^ �y := x ^ � ^ � x 62 X; y 2 XFigure 5: Relative Simpli�cation of Equations.either ? or with � ^ �, such that the clauses 1 and 2 of De�nition 6.4 hold. Let � be themembership part of �. Now we simplify �� relative to � ^ �0 as explained in Section 4.Finally, we simplify constraints of the form x _2 p ^ x _2 q and check for membership inempty sets, as explained in Section 4. If this does not lead to ?, we arrive at a relativenormal form.As an example of equational simpli�cation, the constraint9v(x := v ^ v := f(v))simpli�es relative to x := f(y) ^ y := f(z) ^ z := f(x) to9v(v := z ^ x := z ^ y := z ^ z := f(z)) :7 Equations for IntersectionsWe need an algorithm that extends a deterministic equation system E containing de�ni-tions of p and q by an appropriate de�nition for p \ q.In the terminology of model theory, we will extend the formula E to a formula E 0, suchthat every IT {model of E extends conservatively to a IT {model of E 0, and such thatx _2 p\q j=jE 0 x _2 p^x _2 q holds for all new set expressions p\q. Thereby appropriatenessof de�nitions of set expressions inherits from E to E 0.This extension can be achieved by iterated applications of the non-deterministic rewriterules in Figure 6 that are easily proven correct in the above sense. Note that the rulesmaintain determinism of equation systems.The �rst rule possibly creates the need for adding further equations to E in order tohave de�nitions for all set expressions which appear on the right hand sides in E. Thiscompletion process can be organised in a terminating manner, by adding p\ q to E onlyunder the assumption that p, q and all set expressions on the right hand sides of E are20



int 1 EE [ feg p = f1(p1) [ : : : [ fn(pn) [ fn+1(pn+1) [ : : : in Eq = f1(q1) [ : : : [ fn(qn) [ gn+1(qn+1) [ : : : in Ewith fj 6= gk for all j; k � n + 1:e is p \ q = f1(p1 \ q1) [ : : : [ fn(pn \ qn)int 2 EE [ feg if q = > and p = defp are contained in Eand e is the equation p \ q = defp:Figure 6: Computation of Intersectionsde�ned in E. More precisely, only binary intersections of set expressions on the righthand side have to be added. These are at most n2 equations, where n is the number ofde�ned set expressions in E.For example we can extend an equations system E containing the above de�nitions forEven and Nat with an equation for Even \ Nat . First the �rst rule adds the equationEven \ Nat = 0 [ succ (Odd \ Nat ) :A further application the same rule addsOdd \ Nat = succ (Even \ Nat ) :8 Deciding the Subset RelationWe will decide the subset relation pA � qA for A = m or A = M using the memorizationtechnique. Note that this includes a subset check for sets recognized by deterministic topdown tree automata as well as for IT de�nable sets.Therefore we de�ne the following fragment of new constraints:� ::= p _� q j > j� ^ �0 :The memorization technique is carried out by rewriting expressions of the form � 2 �0 .We say that �0 simpli�es to �1 relative to E if there is a �01 such that �02> rewrites to�1 2�01 relative to E.Without loss of generality we make two assumptions on E. First we assume that pA = ;i� p = ? in E, and that set expressions which are used on the right hand side of E donot denote the empty set in A. Second, we assume that pA = IT i� p = > in E. Bothconditions can be assured forM as well as for m, for �nite as well as for in�nite signatures.The rules of the rewrite system are presented in Figure 7.21



unfold1 p _� q ^ � 2 �0�1 ^ �2 p _� q ^ �0 if p _� q is not in �0, the equationsp = f1(p1) [ : : : [ fn(pn)q = f1(q1) [ : : : [ fn(qn) [ : : :are in E and �1 = p1 _� q1 ^ : : : ^ pn _� qn:memo1 p _� q ^ � 2 �0�2 �0 if p _� q is in �0:clash 3 p _� q ^ � 2 �0?2 � if p = : : : [ f(�p) [ : : : is in E;but the de�nition of q in E is not of formq = : : : [ f(�q) [ : : : or q = >:clash 4 p _� q ^ � 2 �0?2 � if p = > is in E, but the de�nition of qis not q = >:Figure 7: Deciding the Subset Relation with MemorizationTheorem 8.1 (Correctness and Completeness) The rewrite system of Figure 7 ter-minates. If �0 simpli�es to �1 relative to E then �0 j=jA �1 holds. A constraint �1 6= ?that can not be simpli�ed is valid.Termination and the last statement are trivial. The clash rules are correct by the as-sumptions on E. It remains to show that the rules unfold1 and memo1 are correct. Thiscan be done in analogy to Section 5.In the following example we apply memorization to prove that Even _�Nat holds in Mas well as in m. We assume that the signature contains a constructor di�erent from succand 0 : Even _�Nat 2 > unfold1Odd _�Nat 2 Even _�Nat unfold1Even _�Nat 2 Even _�Nat ^ Odd � Nat memo1>2 Even _�Nat ^Odd _�NatAs a second example we consider Inf _�Zero with E containing Zero = 0. In the caseof m the de�nition of Inf is replaced by Inf = ? and the subset relation holds. Inthe case of M we do not replace the de�nition of Inf . The clash 3 rule applies, and thesubset relation is refuted.In order to prove Theorem 8.1 analogously to Section 5, we have to exchange the con-straint x _2 q by p _� q, the Main Lemma by Lemma 8.3 and the assumptions about x in� by assumptions for the de�nitions of p in E.22



The relation `rewrites to in one unfold1 ormemo1 step' is denoted as >E and its re
exiveand transitive closure by >�E . The following theorem is symmetric to Theorem 5.1 butholds for m and M.Theorem 8.2 (Correctness) For every computation:�0 2 �00 >�E �1 2 �01the following two invariants are valid:�0 ^ �00 j=jE �1 ^ �01 and �00 j=fm;Mg �1 ! �01:Only the second statement requires a proof. Therefore we claim the following lemmathat is symmetric to the Main Lemma.Lemma 8.3 Let E be an equation system, �p, �q, �r and �s �nite sequences of set expressionsand (fkj )k �nite sequences of derivable constructors. We assume for all j the followingequations in E: rj = [k fkj (�r; �s) and pj = [k fkj (�p; �q) [ : : :In this case the following entailment with respect to the least and the greatest model of Ehold: j=fm;Mg �s _� �q ! �r _� �p :There are models where this lemma is wrong. For instance consider the equation systemp = f(p) and r = f(r) with the model rA = ff(f(f(: : :)))g and pA = ;. Then> j=A r _� p does not hold.Proof. We mainly use the representations of m and M from Lemma 3.1. For the case ofM we assume sM � qM and proof by induction rM � pEm(A>) for each m � 0.The induction base m = 0 is trivial. The induction step is done bypEm+1(A>)j � [kfkj (pEm(A>); qEm(A>))� [kfkj (rM; sM)= rMfor all j. The second inclusion holds by induction hypothesis and assumption:pEm(A>) � rMqEm(A>) � qM � sM23



For the case of m we assume sm � qm. By induction we prove rEm(A?) � pm for eachm � 0.The induction step is done byrEm+1(A?)j = [kfkj (rEm(A?); sEm(A?))� [kfkj (pm; qm)� pmfor all j. The second inclusion holds by induction hypothesis and assumption:rEm(A?) � pmsEm(A?) � sm � qm 2Proof of Theorem 8.2. For simplicity we assume �00 = >, which is su�cient toconclude Theorem 8.1.We call the expression �s _� �q2 �r _� �p appropriate with respect to E i� there are �nite se-quences of derivable constructors (fkj )k such that for all j the equationsrj = Sk fkj (�r; �s) and pj = Sk fkj (�p; �q) [ : : :are in E. �02> is appropriate even for arbitrary E. We will show that unfold andmemo steps relative to E maintain appropriateness relative to E. Therefore �12�01 isappropriate relative to E and Lemma 8.3 yieldsj=fm;Mg �1 ! �01 :It remains to prove that the unfold1 and memo1 rule maintain appropriateness. Firstwe consider the unfold1 rule. It reduces r0 _� p0 to s0 _� q0 in�s _� �q ^ r0 _� p0 2 �r _� �p >E �s _� �q ^ s0 _� q0 2 �r _� �p ^ r0 _� p0 :We will show that there are constructors gkj and g0k withrj = Sk gkj (�r; r0; �s; s0) and pj = Sk gkj (�p; p0; �q; q0) [ : : :r0 = Sk g0k(�r; r0; �s; s0) and p0 = Sk g0k(�p; p0; �q; q0) [ : : :By the application condition of the unfold rule, there is a sequence of derivable con-structors (f 0k)k withr0 = Sk f 0k(s0) and p0 = Sk f 0k(q0) [ : : : :24



By the appropriateness of the left hand side there are sequences of derivable constructors(fkj )k with rj = Sk fkj (�r; �s; r0) and pj = Sk fkj (�p; �q; p0) [ : : : :It is easy to �nd de�nable constructors gkj and g0k withfkj (�r; �s; r0) = gkj (�r; r0; �s; s0)f 0k(s0) = g0k(�r; r0; �s; s0) :This implies fkj (�p; �q; p) = gkj (�p; p; �q; q0)f 0k(q0) = g0k(�p; p0; �q; q0) ;which proves the appropriateness of the right hand side. The considerations for thememo 1 rule are similar. 29 Conclusion and Further WorkWe have presented a rule-based algorithm which allows for satis�ability and entailmenttests of equational and membership constraints. The development of an abstract machinein the style of [ST92b] and the calculation of precise complexity bounds is up to furtherresearch.The constraint system presented here can possibly be extended in various directions.One immediate question is the decidability of the �rst-order theory of a deterministicequation system with maximal �xpoint solution; i.e., the decidability of arbitrary �rst-order formulae built up from equational and membership constraints. We conjecture apositive answer, encouraged by the decidability result [CD91] for the �rst-order theoryof tree automata.Another extension of this work could increase the expressive power of the equation sys-tems by weakening the restriction that they be deterministic. The relaxation of thedeterminism condition will cause problems in the entailment check.Finally, it will be interesting to apply the methods developed here to the other formalismmodeling cyclic data structures: feature trees [ST92a, BS92, AKPS92].AcknowledgmentsWe are grateful to Gert Smolka. He inspired this work and contributed ideas during thewhole development. We would like to thank Hassan A��t-Kaci and Hubert Comon forstimulating questions and fruitful discussions.25
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