Adding Constraint Systems to DFKI Oz

Tobias Miiller
German Research Center for Artificial Intelligence (DFKI)
D-66123 Saarbrucken,
Stuhlsatzenhausweg 3,
Germany
Email: tmueller@dfki.uni-sb.de

Abstract

We present an experimental C interface to Oz, which enables programmers to add
metaterms to the DFKI Oz system in a modular way. Low-level issues, as garbage collection
and waking up suspended computation, are transparent. Metaterms are fully compatible
with the other components of the system, as for example the Oz Browser.

Metaterms are a well-suited means to implement instances of the CLP(X') framework.
To demonstrate the use of the interface we implement a solver for CLP(Real Intervals).

Keywords

Implementation of Constraint Systems, Extended Unification, CLP(X'), C Interface, Oz,
Metaterms

1. INTRODUCTION

Metaterms (or attributed variables) have a long history and have been studied by vari-
ous authors. They were first used in [2] to implement coroutining in Prolog. Nowadays,
metaterms are mainly used to add extra constraint systems to existing systems and to han-
dle suspended computation [3, 6].

The idea of a metaterm is very simple. A logic variable is annotated with attributes. The
system is extended by appropriate hooks into its unification procedure, so that the metaterm
unification can be user-defined, and abstractions to cope with the attributes of the variables.

Basically, there are two approaches to provide metaterms, which differ in the manner the
needed system extensions are provided. On one hand a high-level language, as for example
Prolog, is extended to allow the implementation of metatermsin the high-level language itself.
Here, metaterms are provided by a set of built-ins to deal with attributions of variables and
a unification handler, which allows to run user-defined code when unification of metaterms
is invoked. This approach, as pursued in ECL‘PS® [6], puts the programmer in a position
to stick with a high-level language at all stages of the implementation, which not necessarily
implies that the implementation is simpler.

The other alternative is to implement the unification handler and the code to handle at-
tributes in the implementation language of the system, which is mostly C/C++. Usually the
code is statically linked with the system itself and no modifications are possible except for the

The research reported in this paper has been supported by the Bundesminister fiir Bildung, Wissenschaft,
Forschung und Technologie (FTZ-1TW-9105), the Esprit Project ACCLAIM (PE 7195) and the Esprit Working
Group CCL (EP 6028).

In Jean-Luc Cochard, ed., Proceedings of WOz'95, International Workshop on Oz Programming, Institut Dalle
Molle d’Intelligence Artificielle Perceptive (IDIAP), Martigny, Switzerland, 29 November—1 December 1995.

system implementors. Therefore this approach to offer metaterms has often been abandoned
in the past, because of its inflexibility.

Since DFKI Oz features a foreign function interface [5], which allows to dynamically link
object files to the runtime system, it was possible to design an interface for metaterms, which
provides for high flexibility and competitive performance.

Simplicity was one design objective of the interface described in this paper. Application
programmers need not care of garbage collection (if they meet some invariants), reinvocation
of suspending computation, binding and trailing variables and other low-level issues. Further,
the interface is fully compatible with other components of the system, as for example the
browser! and entailment of computation spaces.

2. THE METATERM INTERFACE OF DFKI Oz
2.1 Attributes of Metaterms

A metaterm in DFKI Oz is a variable with an attribute field and of a certain type attached.
The type is used to give a metaterm an identification, which, for example, is used during
unification to check the compatibility against Oz values?. The attribute field stores an Oz
term, which can refer to any Oz value, e.g., tuples, lists and records. Further, so-called heap-
chunks are available, which allow to store a fixed number of C’s chars. They can be referred
to by Oz terms and can be seen as low-level extension of the Oz universe to store raw data®.
Operations on attributes may safely be destructive, because they are encapsulated by the
metaterm.

The metaterm interface provides abstractions to cope with metaterms efficiently. These
abstractions will be explained as they are used in the example of Section 3.

2.2 Unification of Metaterms

If a metaterm of a certain type is to be unified with an Oz value or with another metaterm,
the unification procedure of the Oz runtime system imposes the equality constraint and then
branches to the unification handler associated with this type of metaterm. Unification of an
Oz variable and a metaterm is handled automatically by the unification of the system, by
simply binding the variable to the metaterm.

There are two unification handlers for one type of metaterm. The first one is called if
this type of metaterm is to be unified with an Oz value. The second is reserved for the
unification with another metaterm. Both handlers get appropriate arguments passed, which
will be explained by example in the next section.

Both unification handlers have one thing in common; they compute a new attribute by
regarding only the attributes of the metaterms to be unified*. The computed attribute is one

'The browser displays metaterms and if a metaterms is changed by some computation the display is
update accordingly.

2An Oz value designates a determined Oz term.

®Since heap-chunks are black boxes from the system’s garbage collector’s point of view, they must not
contain Oz terms.

*Note that an Oz value can be regarded as a metaterm with an attribute designating this Oz value,

return value of a unification handler. The second return value describes how the computed
attribute relates to the attributes of the metaterms to be unified®. The metaterm interface
provides for an enumerated type for this purpose.

2.3 Further Ingredients

There are two additional handlers required to integrate metaterms smoothly into the DFKI
Oz system.

1. Displaying a metaterm in some way requires a handler that converts a metaterm in a C
string. Such a handler is invoked, for example, whenever a metaterm shall be displayed
by the browser.

2. There are occasions when the Oz system has to decide whether the attribute of a
metaterm sufficiently approximates an Oz value or not. We will see such a case in
the example of Section 4.

3. AN ExampLE: CLP(REAL INTERVALS)

We will implement interval constraints over real numbers to illustrate the implementation
of a concrete constraint system via the metaterm interface.

The key idea of interval constraints over reals (or short interval constraints) is to approxi-
mate a real number by an interval which bounds are floating point numbers. Operations are
performed on the bounds of an interval. The resulting interval coincides with the respective
result of the operation performed over real numbers, i.e., the resulting real number lies in the
corresponding interval. An extensive discussion of this subject can be found in [1].

When building instances of CLP(X"), metaterms are used to implement constrained vari-
ables, i.e., the attribute of a metaterm stores the current constraint of the variable. We will
call the new type of metaterm interval variable.

The following explanation tries to be as self-contained as possible. The reader may find
detailed information on the C interface of DFKI Oz in Section 8 of [5].

3.1 The Attribute of a Metaterm stores the Constraint

An interval constraint is represented as ordered pair of float numbers. The metaterm
interface expects an attribute to be an 0Z_Term. Therefore, we have two alternatives to
represent a pair: Either we use a cons cell, produced by the abstraction 0Z_cons, or we take
a C data structure wrapped in an Oz heap-chunk. Since heap-chunks are more memory-
efficient than cons cells and we would like to take the opportunity to demonstrate their use,
we decide to use them. First we define a C datatype called ri_t, whereby 0Z_Float is a C
type provided by the DFKI Oz C interface to represent float numbers.

typedef struct {
0Z_Float lower, upper;
} ri_t;

though the system converts as optimization such metaterms to Oz values.
5The second return value is internally used, for example, to determine the direction of binding and
whether suspended computation has to be woken up or not.

Next, we define a couple of abstractions to get an abstract data type for the interval
representation.

The abstraction createRI(ri_t ri) expects one argument of type ri_t and returns a
reference to a newly created heap-chunk holding ri. It uses the metaterm interface abstrac-
tions 0Z_makeHeapChunk and 0Z_getHeapChunkData. The former one takes the number of
chars to be stored in the heap-chunk and returns an 0Z_Term referring to the newly cre-
ated heap-chunk. The latter one takes an 0Z_Term referring to a heap-chunk as argument
and returns a (char *), pointing to chars wrapped by the heap-chunk. The abstraction
getRI(0Z_Term t) is the actual access function. It wraps up OZ_getHeapChunkData and
casts 0Z_getHeapChunkData’s return type to ri_t.

0Z_Term createRI(rit ri) {
0Z_Term t = 0ZmakeHeapChunk (sizeof (rit));
* (rit *) 0Z_getHeapChunkData(t) = ri;
return t;

1

rit getRI(0ZTerm t) {
return * (rit *) 0Z_getHeapChunkData(t);

1

3.2 The Most Fssential First: The Unification Handlers

Four handlers are required for a new type of metaterm. They will be introduced to the Oz
system by the interface function 0Z_introMetaTerm, which is to be called when a C module®
is opened.

The metaterm interface requires two handlers for unification, depending on whether a
metaterm is unified with another metaterm or an Oz value. For this example, we assert that
an interval variable can only be consistent with another interval variable or an 0Z_Float.

We discuss the unification handler dealing with two metaterms in detail, since the han-
dler for a metaterm and an Oz value is a simplified version of the first one. The unifi-
cation handler computes a new interval from the input intervals left and right, passed
as attributes of the left and right variables to be unified. The new interval is calculated
by [max(left, right), min(left, right)], whereby interval resp. interval designates the lower
resp. uppm)ound of interval.

The C code for this unification handler is given below. The value of the global variable
ri_type is returned by the metaterm interface abstraction introduceMetaTerm when the
module is opened. The first argument of the handler is a metaterm of the type the handler
is associated with, standing on the left side. The second argument is the attribute of this
metaterm. The next three arguments belong to the metaterm on the right side, whereby
0Z_MetaType t denotes the type of rvar and consequently rattr. The last argument res is
a pointer to an 0Z_Term which is assigned to store the interval to be computed, but only if
res is not NULLY.

%Here, the notion ¢ module means either the C code to implement a constraint system or the object file
produced by the compilation of the C code.

"Occasionally, the system is only interested in how two metaterm relate to each other in terms of their
attributes. In this case res is NULL.

Interval variables, with respect to other metaterms, are only consistent with themselves,
therefore any other value for the argument t reports failure. The computation of the resulting
interval is straightforward. In case the resulting interval denotes a single Oz float, an appro-
priate value is generated and assigned to *res using the interface abstraction 0Z_CToFloat.
A resulting consistent interval causes to generate a new attribute by the abstraction createRI
of our abstract data type defined in Section 3.1.

0Z MetaType ri_type;
mur_t unify metametari(0Z Term lvar, 0Z_Term lattr,

0Z_Term rvar, 0Z_Term rattr, 0Z_MetaType t,
0Z_Term * res)

{
if (t == ri_type) {
rit right = getRI(rattr), left = getRI(lattr), ri;
ri.lower = max(left.lower, right.lower);
ri.upper = min(left.upper, right.upper);
if (ri.lower == ri.upper) {
if (res) *res = 0Z_CToFloat(ri.lower);
return (metaleft_constr | metaright_constr | meta_det) ;
} else if (ri.lower < ri.upper) {
0Z_Float ri_width = ri.upper - ri.lower;
mur_t ret 1l = riwidth < (left.upper - left.lower)
7 meta_left_constr : metaunconstr;
mur_t retr = riwidth < (right.upper - right.lower)
? metaright constr : metaunconstr;
if (res) *res = createRI(ri);
return (ret_1 | ret.r);
}
}
return meta fail;
}

A point, which probably requires further explanation is the generation of the return value
which describes how two intervals relate to each other. The metaterm interface provides
for the enumerate type mur_t, whereby the enumerables can be combined by C’s bitwise or
operator.

typedef enum {

metaunconstr, metadet, meta_left_constr, metaright_constr, meta fail

} mur_t;

The value meta_fail is returned, if two intervals are inconsistent with each other, as for
example [1.0,3.0] and [6.5,7.0].

The intervals [1.0,3.0] and [3.0,7.0] would cause meta_det to be returned, since the result-
ing interval contains only 3.0, which determines the interval variable to an Oz value.

In case both intervals are equal, meta_unconstr has to be returned, since apart from equal-
ity, which is enforced by the systems unification procedure, no other constraint is imposed
on the interval variables.

If the resulting interval constrains the left resp. right interval the values meta_left_constr
resp. meta_right_constr have to be returned. Let us suppose the left interval is
[1.0,2.5] and the right interval is [1.5,3.0] then the resulting interval yields [1.5,2.5] and
(meta_left_constr | meta_right_constr) has to be returned, since the resulting interval
constrains both input intervals.

As mentioned before, the unification handler which deals with an interval variable and an
Oz value is a special case of the unification handler just described.

mur_t unify meta det ri(0Z Term lvar, 0Z Term lattr,
0Z_Term rval, 0Z_TermType t,
0Z_Term * res)

if (t == 0Z_TypeFloat) {
0Z_Float f = 0Z_floatToC(rval);
rit lri = getRI(lattr);

if (lri.lower < f && £ < lri.upper) {
if (res) *res = rval;
return meta left _constr | meta_det;

}
}

return meta fail;

1

The Oz values which are consistent with intervals over reals are Oz floats, consequently all
other types of Oz values produce meta_failed as return value. In case rvalue is of type
0Z_Type_Float, i.e. t is 0Z_Type_Float, it is simply checked, whether the float number
designated by rval is contained in the interval designated by rattr. If this test is successful
rval is assigned to *res and the result of bitwise oring of meta_left_constr and meta_det
is returned. This makes sense, since an Oz value of type 0Z_Type_Float is a single Oz value
and constrains the interval further.

3.3 The Conversion Handler

The conversion handler gets as argument a metaterm i.e., an interval variable, and converts
it to a C string, i.e. an array of chars.

The conversion handler for intervals over reals first retrieves the constraint data to a C
variable of type ri_t and then converts it to a C string via the C library function sprintf
and functions provided by the foreign function interface.

char * printmetari(0ZTerm t) {
static char print metari buffer[100];
rit ri = getRI(t);
char * a = 0Z_CfloatToCString(ri.lower),
* b

0Z_CfloatToCString(ri.upper);
sprintf (print meta ri buffer, "[%s, %sl", a, b);

0Z_free(a); 0Z_free(b);
return print meta ri buffer;

1

This handler uses the static variable print_meta_ri_buffer as buffer and the interface
abstraction 0Z_CfloatToCString to convert the lower and upper bounds of an interval, which
are 0Z_Float’s to a C string. Note that 0Z_CfloatToCString allocates memory which has
to be explicitely freed by 0Z_free. Finally the conversion handler returns a pointer to its

buffer.

4. IMPLEMENTING A PROPAGATOR

In constraint programming usually demons are spawned over a set of variables to keep the
set of variables in a consistent state and constrain the variables further when more constraints
become available. Eventually a demon vanishes if it is unable to constrain the variables any
further. In Oz such demons are called propagators. The metaterm interface provides for
abstractions to support their implementation in C.

A common criterion for a propagator to vanish is the number of variables left. But this
can be critical regarding termination. Imagine an asymptotically converging computation
which eventually reaches a fixpoint. It may take very long to terminate and the achieved
precision is usually not necessary. Otherwise, the implementation of a constraint system may
become (more) incomplete, since computation possibly terminates before it can detect an
inconsistency. For a detailed discussion in the context of interval constraints see [4].

DETECTING INTERVALS AS SUFFICIENTLY CLOSE. For the reasons given above there is a
fourth handler, the single value handler, was introduced to give the programmer a means to
terminate a propagator if its variables are sufficiently constrained. The handler is a predicate
which returns a truth value depending on whether or not a metaterm approximates a value
with sufficient precision. Such a handler for interval variables is straightforward, i.e., it detects
whether or not the width of an interval is sufficiently small. For our example we assume 0.001
to be sensible.

int is single valueri(0Z.Term d) {
rit ri = getRI(d);
return (ri.upper - ri.lower) < 0.001;

1

THE LEss-EQUAL PROPAGATOR. Let us take the relation X < Y over real intervals as
example. The semantics of the corresponding propagator is to enforce that the lower bound
of Y is never less than the lower bound of X and that the upper bound of X is never greater
than the upper bound of Y. The propagator may cease to exist if the upper bound of X
is less than the lower bound of Y or if only one interval variable is left after imposing the
constraints.

Before we implement the propagator itself, it is useful to declare a couple of C macros
which help to reduce the code size a lot. They use abstractions provided by the metaterm
interface.

#define RI getCArg(I, RI) \
if (0Z_isMetaTerm(0Z getCArg(I))) { \
if (0Z_getMetaTermType(0Z getCArg(l)) # ri_type) \
return FAILED; \
RI = getRI(0Z getMetaTermAttr (0Z getCArg(I))); \
} else if (0Z_isFloat(0Z.getCArg(I))) { \
RI.lower = RI.upper = 0Z_floatToC(0ZgetCArg(I)); \

} else { \

0Zwarning ("Expecting real interval or float."); \
return FAILED; \

1

The macro RI_getCArg(I, RI) checks if the Ith argument is a Oz float or an interval
variable and initialises RI appropriately. In case it encounters an inconsistent type, it quits
the propagator with signalling failure.

#define RI_putCArg(I, RI) \
if (0Z_constrainMetaTerm(0Z getCArg(I), ri_type, createRI(RI)) == FAILED) \
return FAILED;

The macro RI_putCArg(I, RI) imposes the constraint in RI to the Ith arguments and
wakes up propagators resp. tasks suspending on this variable to be constrained.

#define RI_isDet(I) 0Z_isSingleValue(0Z_getCArg(I))

The macro RI_isDet(I) checks if the Ith argument denotes a single value according to
the single value handler.

The actual propagator is a straightforward implementation of its semantics given above.
The macro 0Z_MetaPropSuspend adds appropriate suspensions to non-single values left to
allow a rerun of the propagator.

0Z_C_procbegin(rilesseq, 2) {
rit x, y;

RI_getCArg(0, x); RI_getCArg(l, y);

if (x.upper < y.lower) return PROCEED;

if (x.lower > y.lower) y.lower = x.lower;
if (y.upper < x.upper) x.upper = y.upper;

RI_putCArg(0, x); RI_putCArg(l, y);
if (RI_isDet(0) + RI_isDet(1) > 1) return PROCEED;

return 0Z_MetaPropSuspend;
} 0Z_C_proc_end

The macros 0Z_C_proc_begin and 0Z_C_proc_end are provided by the foreign function
interface of DFKI Oz to implement built-ins resp. propagators.

5. USING INTERVAL VARIABLES IN OZ PROGRAMS

Though, all handlers and a propagator are available now, two C built-ins are still required.
First, the handlers have to be introduced to the Oz system which has to be done by a C built-
in. Second, the Oz programmer has to be able to constrain an Oz variable to an interval
variable.

The introduction of the handlers to the Oz system is carried out by the C interface function
0Z_introMetaTerm which takes as arguments pointers to the handlers and a string for the
name to be used when displaying interval variables. This metaterm interface abstraction

returns a type value which is assigned to the previously declared global C variable ri_type.
This type value associates the handlers introduced with interval variables.

0Z_C_procbegin(riinit, 0) {
ritype = 0Z_introMetaTerm(unify meta det ri, unify metametari,
printmetari, is_singlewvalueri, "ri");
return PROCEED;
} 0Z_C_proc_end

Constraining an Oz variable to an interval variable is done by the C built-in ri_var. It
requires three Oz terms as arguments. The first and second arguments are expected to be
Oz floats describing the bounds of the interval variable of the interval variable to be created.
This newly created interval variable is then unified with the third argument. Therefore, after
declaring the local variables of the C function it is checked whether or not the first two
arguments are Oz float values. If it is not the case the built-in reports failure. The built-in
unifies the first argument with the third argument if the lower and upper bound are equal.
In case the interval is not empty the third arguments is bound to a newly created interval
variable. Creating a new metaterm requires to specify type of the metaterm, which is our
case ri_type. If the third argument is not consistent with the created interval variable or
the interval is empty the built-in returns FAILED.

0Z_C_proc begin(rivar, 3) {
0Z_Term 1 = 0Z_getCArg(0), u = 0Z_getCArg(l), rivar = 0Z_getCArg(2);
rit ri;

if (! 0Z_isFloat(1) || ! 0Z_isFloat(u)) {
0Z_warning("1st and 2nd argument expected to be float.");
return FAILED;

1

ri.lower = 0Z_floatToC(l); ri.upper = 0Z_floatToC(u);

if (ri.lower == ri.upper) {
return 0Z unify(1l, ri_var);
} else if (ri.lower < ri.upper) {
return 0Z unify(0ZmakeMetaTerm(ritype, createRI(ri)), rivar);

1

return FAILED;
} 0Z_C_proc_end

The C code for implementing interval variables is complete now. It has to be compiled
in order to obtain the module in object format, which is required to dynamically link the
module to the Oz runtime system. Supposing the module in object format is stored in the
file ’ri.o’, the following Oz code triggers the dynamic linking to the runtime system.

declare RI = {Foreign.load [ri.o] ri(init: O var: 3 lesseq: 2)}

The C built-ins ri_init and ri_var are accessible via the Oz applications {RI.init} and
{RI.var Lower Upper Var} respectively.

The following code, fed in line by line, shows the constraint system in action. We can use
the Oz Browser to observe the current constraints of the interval variables. The comment
appended to each line shows the produced output in the browser window.

declare F1 F2 in

{Browse F1#F2} % F1#F2

{RI.var 1.0 2.5 F1} J Fi<ri:[~1.0, 2.5]>#F2

{RI.var 1.5 3.0 F2} J Fi<ri:[~1.0, 2.5]>#F2<ri:[1.5, 3.0]>

F1 = F2 % F2<ri:[1.5, 2.5]>#F2<ri:[1.5, 2.5]>
F1 =1.5 % 1.5%#1.5

The following Oz code demonstrates how constraints are imposed to interval variables by
the less-equal propagator. We can indirectly observe that a propagator ceases to exist by the
reduction of a conditional if the propagator was spawned in the conditional’s guard.

declare X Y in

{Browse X#Y} 7% X#y

{RI.var 2.0 4.5 X} 7 X<ri:[2.0, 4.5]>#Y

{RI.var 1.5 3.0 Y} % X<ri:[2.0, 4.5]>#Y<ri:[1.5, 3.0]>

if {RI.lesseq X Y} then {Browse yes} else {Browse no} fi

{RI.lesseq X 2.5} /% X<ri:[2.0, 2.5]>#Y<ri:[1.5, 3.0]>

{RI.lesseq 2.5 Y} /% X<ri:[2.0, 2.5]>#Y<ri:[2.5, 3.0]> and yes appears

6. CONCLUSION

The paper presents an experimental interface to add constraint systems to DFKI Oz. It
unifies the performance of low-level techniques with the flexibility of high-level implementa-
tions. Due to the expressiveness of the abstractions provided by the metaterm interface, the
implementation effort for a constraint system is reasonable.

There are not any performance benchmarks available yet. The performance of a constraint
system depends mainly on the performance of its propagators, which have to make heavy use
of deep computation in case of a pure Oz implementation. Therefore an estimation, based
on the different stages of the finite domain constraint implementation in DFKI Oz, suggests
a performance benefit of factor 5 - 10 against a pure Oz implementation of propagators over
interval variables.

ACKNOWLEDGEMENTS

I would like to thank Martin Miiller and Jorg Wiirtz for their comments on this paper.

REFERENCES

[1] Frédéric Benhamou. Interval constraint logic programming. In Andreas Podelski, editor, Constrainis:
Basics and Trends, Lecture Notes in Computer Science, vol. 910, pages 1-21. Springer Verlag, 1995.

[2] M. Carlsson. Freeze, Indexing, and Other Implementation Issues in the Wam. In 40 ICLP, pages 40-58.
University of Melbourne, MIT Press, May 1987.

[3] Christian Holzbaur. Specification of Constraint Based Inference Mechanisms through Ezxtended Unification.
PhD thesis, Technisch-Naturwissenschaftliche Fakultat der Technischen Universitat Wien, October 1990.

[4] Olivier Lhomme. Consistency techniques for numeric CSPs. In Ruzena Bajcsy, editor, Proceedings of the
International Joint Conference on Artificial Intelligence, pages 232-238, 1993.

[5] Michael Mehl, Tobias Miller, Konstantin Popow, and Ralf Scheidhauer. DFKI Oz user’s manual. DFKI Oz
documentation series, Deutsches Forschungszentrum fiur Kiinstliche Intelligenz GmbH, Stuhlsatzenhausweg
3, D-66123 Saarbriicken, Germany, 1994.

[6] M. Meier and P. Brisset. Open architecture for CLP. Technical Report ECRC-95-10, European Computer-
Industry Research Centre, 1995.

10

