
Adding Constraint Systems to DFKI OzTobias M�ullerGerman Research Center for Arti�cial Intelligence (DFKI)D-66123 Saarbr�ucken,Stuhlsatzenhausweg 3,GermanyEmail: tmueller@dfki.uni-sb.deAbstractWe present an experimental C interface to Oz, which enables programmers to addmetaterms to the DFKI Oz system in a modular way. Low-level issues, as garbage collectionand waking up suspended computation, are transparent. Metaterms are fully compatiblewith the other components of the system, as for example the Oz Browser.Metaterms are a well-suited means to implement instances of the CLP(X ) framework.To demonstrate the use of the interface we implement a solver for CLP(Real Intervals).KeywordsImplementation of Constraint Systems, Extended Uni�cation, CLP(X ), C Interface, Oz,Metaterms 1. IntroductionMetaterms (or attributed variables) have a long history and have been studied by vari-ous authors. They were �rst used in [2] to implement coroutining in Prolog. Nowadays,metaterms are mainly used to add extra constraint systems to existing systems and to han-dle suspended computation [3, 6].The idea of a metaterm is very simple. A logic variable is annotated with attributes. Thesystem is extended by appropriate hooks into its uni�cation procedure, so that the metatermuni�cation can be user-de�ned, and abstractions to cope with the attributes of the variables.Basically, there are two approaches to provide metaterms, which di�er in the manner theneeded system extensions are provided. On one hand a high-level language, as for exampleProlog, is extended to allow the implementation of metaterms in the high-level language itself.Here, metaterms are provided by a set of built-ins to deal with attributions of variables anda uni�cation handler, which allows to run user-de�ned code when uni�cation of metatermsis invoked. This approach, as pursued in ECLiPSe [6], puts the programmer in a positionto stick with a high-level language at all stages of the implementation, which not necessarilyimplies that the implementation is simpler.The other alternative is to implement the uni�cation handler and the code to handle at-tributes in the implementation language of the system, which is mostly C/C++. Usually thecode is statically linked with the system itself and no modi�cations are possible except for theThe research reported in this paper has been supported by the Bundesminister f�ur Bildung, Wissenschaft,Forschung und Technologie (FTZ-ITW-9105), the Esprit Project ACCLAIM (PE 7195) and the Esprit WorkingGroup CCL (EP 6028).In Jean-Luc Cochard, ed., Proceedings of WOz'95, International Workshop on Oz Programming, Institut DalleMolle d'Intelligence Arti�cielle Perceptive (IDIAP), Martigny, Switzerland, 29 November{1 December 1995.



system implementors. Therefore this approach to o�er metaterms has often been abandonedin the past, because of its inexibility.Since DFKI Oz features a foreign function interface [5], which allows to dynamically linkobject �les to the runtime system, it was possible to design an interface for metaterms, whichprovides for high exibility and competitive performance.Simplicity was one design objective of the interface described in this paper. Applicationprogrammers need not care of garbage collection (if they meet some invariants), reinvocationof suspending computation, binding and trailing variables and other low-level issues. Further,the interface is fully compatible with other components of the system, as for example thebrowser1 and entailment of computation spaces.2. The Metaterm Interface of DFKI Oz2.1 Attributes of MetatermsA metaterm in DFKI Oz is a variable with an attribute �eld and of a certain type attached.The type is used to give a metaterm an identi�cation, which, for example, is used duringuni�cation to check the compatibility against Oz values2. The attribute �eld stores an Ozterm, which can refer to any Oz value, e.g., tuples, lists and records. Further, so-called heap-chunks are available, which allow to store a �xed number of C's chars. They can be referredto by Oz terms and can be seen as low-level extension of the Oz universe to store raw data3.Operations on attributes may safely be destructive, because they are encapsulated by themetaterm.The metaterm interface provides abstractions to cope with metaterms e�ciently. Theseabstractions will be explained as they are used in the example of Section 3.2.2 Uni�cation of MetatermsIf a metaterm of a certain type is to be uni�ed with an Oz value or with another metaterm,the uni�cation procedure of the Oz runtime system imposes the equality constraint and thenbranches to the uni�cation handler associated with this type of metaterm. Uni�cation of anOz variable and a metaterm is handled automatically by the uni�cation of the system, bysimply binding the variable to the metaterm.There are two uni�cation handlers for one type of metaterm. The �rst one is called ifthis type of metaterm is to be uni�ed with an Oz value. The second is reserved for theuni�cation with another metaterm. Both handlers get appropriate arguments passed, whichwill be explained by example in the next section.Both uni�cation handlers have one thing in common; they compute a new attribute byregarding only the attributes of the metaterms to be uni�ed4. The computed attribute is one1The browser displays metaterms and if a metaterms is changed by some computation the display isupdate accordingly.2An Oz value designates a determined Oz term.3Since heap-chunks are black boxes from the system's garbage collector's point of view, they must notcontain Oz terms.4Note that an Oz value can be regarded as a metaterm with an attribute designating this Oz value,2



return value of a uni�cation handler. The second return value describes how the computedattribute relates to the attributes of the metaterms to be uni�ed5. The metaterm interfaceprovides for an enumerated type for this purpose.2.3 Further IngredientsThere are two additional handlers required to integrate metaterms smoothly into the DFKIOz system.1. Displaying a metaterm in some way requires a handler that converts a metaterm in a Cstring. Such a handler is invoked, for example, whenever a metaterm shall be displayedby the browser.2. There are occasions when the Oz system has to decide whether the attribute of ametaterm su�ciently approximates an Oz value or not. We will see such a case inthe example of Section 4.3. An Example: CLP(Real Intervals)We will implement interval constraints over real numbers to illustrate the implementationof a concrete constraint system via the metaterm interface.The key idea of interval constraints over reals (or short interval constraints) is to approxi-mate a real number by an interval which bounds are oating point numbers. Operations areperformed on the bounds of an interval. The resulting interval coincides with the respectiveresult of the operation performed over real numbers, i.e., the resulting real number lies in thecorresponding interval. An extensive discussion of this subject can be found in [1].When building instances of CLP(X ), metaterms are used to implement constrained vari-ables, i.e., the attribute of a metaterm stores the current constraint of the variable. We willcall the new type of metaterm interval variable.The following explanation tries to be as self-contained as possible. The reader may �nddetailed information on the C interface of DFKI Oz in Section 8 of [5].3.1 The Attribute of a Metaterm stores the ConstraintAn interval constraint is represented as ordered pair of oat numbers. The metaterminterface expects an attribute to be an OZ_Term. Therefore, we have two alternatives torepresent a pair: Either we use a cons cell, produced by the abstraction OZ_cons, or we takea C data structure wrapped in an Oz heap-chunk. Since heap-chunks are more memory-e�cient than cons cells and we would like to take the opportunity to demonstrate their use,we decide to use them. First we de�ne a C datatype called ri_t, whereby OZ_Float is a Ctype provided by the DFKI Oz C interface to represent oat numbers.typedef struct fOZ Float lower, upper;g ri t;though the system converts as optimization such metaterms to Oz values.5The second return value is internally used, for example, to determine the direction of binding andwhether suspended computation has to be woken up or not.3



Next, we de�ne a couple of abstractions to get an abstract data type for the intervalrepresentation.The abstraction createRI(ri_t ri) expects one argument of type ri_t and returns areference to a newly created heap-chunk holding ri. It uses the metaterm interface abstrac-tions OZ_makeHeapChunk and OZ_getHeapChunkData. The former one takes the number ofchars to be stored in the heap-chunk and returns an OZ_Term referring to the newly cre-ated heap-chunk. The latter one takes an OZ_Term referring to a heap-chunk as argumentand returns a (char *), pointing to chars wrapped by the heap-chunk. The abstractiongetRI(OZ_Term t) is the actual access function. It wraps up OZ_getHeapChunkData andcasts OZ_getHeapChunkData's return type to ri_t.OZ Term createRI(ri t ri) fOZ Term t = OZ makeHeapChunk(sizeof(ri t));� (ri t �) OZ getHeapChunkData(t) = ri;return t;gri t getRI(OZ Term t) freturn � (ri t �) OZ getHeapChunkData(t);g3.2 The Most Essential First: The Uni�cation HandlersFour handlers are required for a new type of metaterm. They will be introduced to the Ozsystem by the interface function OZ_introMetaTerm, which is to be called when a C module6is opened.The metaterm interface requires two handlers for uni�cation, depending on whether ametaterm is uni�ed with another metaterm or an Oz value. For this example, we assert thatan interval variable can only be consistent with another interval variable or an OZ_Float.We discuss the uni�cation handler dealing with two metaterms in detail, since the han-dler for a metaterm and an Oz value is a simpli�ed version of the �rst one. The uni�-cation handler computes a new interval from the input intervals left and right, passedas attributes of the left and right variables to be uni�ed. The new interval is calculatedby [max(left; right);min(left; right)], whereby interval resp. interval designates the lowerresp. upper bound of interval.The C code for this uni�cation handler is given below. The value of the global variableri_type is returned by the metaterm interface abstraction introduceMetaTerm when themodule is opened. The �rst argument of the handler is a metaterm of the type the handleris associated with, standing on the left side. The second argument is the attribute of thismetaterm. The next three arguments belong to the metaterm on the right side, wherebyOZ_MetaType t denotes the type of rvar and consequently rattr. The last argument res isa pointer to an OZ_Term which is assigned to store the interval to be computed, but only ifres is not NULL7.6Here, the notion C module means either the C code to implement a constraint system or the object �leproduced by the compilation of the C code.7Occasionally, the system is only interested in how two metaterm relate to each other in terms of theirattributes. In this case res is NULL. 4



Interval variables, with respect to other metaterms, are only consistent with themselves,therefore any other value for the argument t reports failure. The computation of the resultinginterval is straightforward. In case the resulting interval denotes a single Oz oat, an appro-priate value is generated and assigned to *res using the interface abstraction OZ_CToFloat.A resulting consistent interval causes to generate a new attribute by the abstraction createRIof our abstract data type de�ned in Section 3.1.OZ MetaType ri type;mur t unify meta meta ri(OZ Term lvar, OZ Term lattr,OZ Term rvar, OZ Term rattr, OZ MetaType t,OZ Term � res)f if (t == ri type) fri t right = getRI(rattr), left = getRI(lattr), ri;ri.lower = max(left.lower, right.lower);ri.upper = min(left.upper, right.upper);if (ri.lower == ri.upper) fif (res) �res = OZ CToFloat(ri.lower);return (meta left constr j meta right constr j meta det);g else if (ri.lower < ri.upper) fOZ Float ri width = ri.upper - ri.lower;mur t ret l = ri width < (left.upper - left.lower)? meta left constr : meta unconstr;mur t ret r = ri width < (right.upper - right.lower)? meta right constr : meta unconstr;if (res) �res = createRI(ri);return (ret l j ret r);ggreturn meta fail;gA point, which probably requires further explanation is the generation of the return valuewhich describes how two intervals relate to each other. The metaterm interface providesfor the enumerate type mur_t, whereby the enumerables can be combined by C's bitwise oroperator.typedef enum fmeta unconstr, meta det, meta left constr, meta right constr, meta failg mur t;The value meta_fail is returned, if two intervals are inconsistent with each other, as forexample [1:0; 3:0] and [6:5; 7:0].The intervals [1:0; 3:0] and [3:0; 7:0] would cause meta_det to be returned, since the result-ing interval contains only 3:0, which determines the interval variable to an Oz value.In case both intervals are equal, meta_unconstr has to be returned, since apart from equal-ity, which is enforced by the systems uni�cation procedure, no other constraint is imposedon the interval variables. 5



If the resulting interval constrains the left resp. right interval the values meta_left_constrresp. meta_right_constr have to be returned. Let us suppose the left interval is[1:0; 2:5] and the right interval is [1:5; 3:0] then the resulting interval yields [1:5; 2:5] and(meta_left_constr | meta_right_constr) has to be returned, since the resulting intervalconstrains both input intervals.As mentioned before, the uni�cation handler which deals with an interval variable and anOz value is a special case of the uni�cation handler just described.mur t unify meta det ri(OZ Term lvar, OZ Term lattr,OZ Term rval, OZ TermType t,OZ Term � res)f if (t == OZ Type Float) fOZ Float f = OZ floatToC(rval);ri t lri = getRI(lattr);if (lri.lower � f && f � lri.upper) fif (res) �res = rval;return meta left constr j meta det;ggreturn meta fail;gThe Oz values which are consistent with intervals over reals are Oz oats, consequently allother types of Oz values produce meta_failed as return value. In case rvalue is of typeOZ_Type_Float, i.e. t is OZ_Type_Float, it is simply checked, whether the oat numberdesignated by rval is contained in the interval designated by rattr. If this test is successfulrval is assigned to *res and the result of bitwise oring of meta_left_constr and meta_detis returned. This makes sense, since an Oz value of type OZ_Type_Float is a single Oz valueand constrains the interval further.3.3 The Conversion HandlerThe conversion handler gets as argument a metaterm i.e., an interval variable, and convertsit to a C string, i.e. an array of chars.The conversion handler for intervals over reals �rst retrieves the constraint data to a Cvariable of type ri_t and then converts it to a C string via the C library function sprintfand functions provided by the foreign function interface.char � print meta ri(OZ Term t) fstatic char print meta ri buffer[100];ri t ri = getRI(t);char � a = OZ CfloatToCString(ri.lower),� b = OZ CfloatToCString(ri.upper);sprintf(print meta ri buffer, "[%s, %s]", a, b);OZ free(a); OZ free(b);return print meta ri buffer;g 6



This handler uses the static variable print_meta_ri_buffer as bu�er and the interfaceabstraction OZ_CfloatToCString to convert the lower and upper bounds of an interval, whichare OZ_Float's to a C string. Note that OZ_CfloatToCString allocates memory which hasto be explicitely freed by OZ_free. Finally the conversion handler returns a pointer to itsbu�er. 4. Implementing a PropagatorIn constraint programming usually demons are spawned over a set of variables to keep theset of variables in a consistent state and constrain the variables further when more constraintsbecome available. Eventually a demon vanishes if it is unable to constrain the variables anyfurther. In Oz such demons are called propagators. The metaterm interface provides forabstractions to support their implementation in C.A common criterion for a propagator to vanish is the number of variables left. But thiscan be critical regarding termination. Imagine an asymptotically converging computationwhich eventually reaches a �xpoint. It may take very long to terminate and the achievedprecision is usually not necessary. Otherwise, the implementation of a constraint system maybecome (more) incomplete, since computation possibly terminates before it can detect aninconsistency. For a detailed discussion in the context of interval constraints see [4].Detecting Intervals as Sufficiently Close. For the reasons given above there is afourth handler, the single value handler, was introduced to give the programmer a means toterminate a propagator if its variables are su�ciently constrained. The handler is a predicatewhich returns a truth value depending on whether or not a metaterm approximates a valuewith su�cient precision. Such a handler for interval variables is straightforward, i.e., it detectswhether or not the width of an interval is su�ciently small. For our example we assume 0:001to be sensible.int is single value ri(OZ Term d) fri t ri = getRI(d);return (ri.upper - ri.lower) � 0.001;gThe Less-Equal Propagator. Let us take the relation X � Y over real intervals asexample. The semantics of the corresponding propagator is to enforce that the lower boundof Y is never less than the lower bound of X and that the upper bound of X is never greaterthan the upper bound of Y . The propagator may cease to exist if the upper bound of Xis less than the lower bound of Y or if only one interval variable is left after imposing theconstraints.Before we implement the propagator itself, it is useful to declare a couple of C macroswhich help to reduce the code size a lot. They use abstractions provided by the metaterminterface.#define RI getCArg(I, RI) nif (OZ isMetaTerm(OZ getCArg(I))) f nif (OZ getMetaTermType(OZ getCArg(I)) 6= ri type) nreturn FAILED; nRI = getRI(OZ getMetaTermAttr(OZ getCArg(I))); ng else if (OZ isFloat(OZ getCArg(I))) f nRI.lower = RI.upper = OZ floatToC(OZ getCArg(I)); n7



g else f nOZ warning("Expecting real interval or float."); nreturn FAILED; ngThe macro RI_getCArg(I, RI) checks if the Ith argument is a Oz oat or an intervalvariable and initialises RI appropriately. In case it encounters an inconsistent type, it quitsthe propagator with signalling failure.#define RI putCArg(I, RI) nif (OZ constrainMetaTerm(OZ getCArg(I), ri type, createRI(RI)) == FAILED) nreturn FAILED;The macro RI_putCArg(I, RI) imposes the constraint in RI to the Ith arguments andwakes up propagators resp. tasks suspending on this variable to be constrained.#define RI isDet(I) OZ isSingleValue(OZ getCArg(I))The macro RI_isDet(I) checks if the Ith argument denotes a single value according tothe single value handler.The actual propagator is a straightforward implementation of its semantics given above.The macro OZ_MetaPropSuspend adds appropriate suspensions to non-single values left toallow a rerun of the propagator.OZ C proc begin(ri lesseq, 2) fri t x, y;RI getCArg(0, x); RI getCArg(1, y);if (x.upper � y.lower) return PROCEED;if (x.lower > y.lower) y.lower = x.lower;if (y.upper < x.upper) x.upper = y.upper;RI putCArg(0, x); RI putCArg(1, y);if (RI isDet(0) + RI isDet(1) � 1) return PROCEED;return OZ MetaPropSuspend;g OZ C proc endThe macros OZ_C_proc_begin and OZ_C_proc_end are provided by the foreign functioninterface of DFKI Oz to implement built-ins resp. propagators.5. Using Interval Variables in Oz ProgramsThough, all handlers and a propagator are available now, two C built-ins are still required.First, the handlers have to be introduced to the Oz system which has to be done by a C built-in. Second, the Oz programmer has to be able to constrain an Oz variable to an intervalvariable.The introduction of the handlers to the Oz system is carried out by the C interface functionOZ_introMetaTerm which takes as arguments pointers to the handlers and a string for thename to be used when displaying interval variables. This metaterm interface abstraction8



returns a type value which is assigned to the previously declared global C variable ri_type.This type value associates the handlers introduced with interval variables.OZ C proc begin(ri init, 0) fri type = OZ introMetaTerm(unify meta det ri, unify meta meta ri,print meta ri, is single value ri, "ri");return PROCEED;g OZ C proc endConstraining an Oz variable to an interval variable is done by the C built-in ri_var. Itrequires three Oz terms as arguments. The �rst and second arguments are expected to beOz oats describing the bounds of the interval variable of the interval variable to be created.This newly created interval variable is then uni�ed with the third argument. Therefore, afterdeclaring the local variables of the C function it is checked whether or not the �rst twoarguments are Oz oat values. If it is not the case the built-in reports failure. The built-inuni�es the �rst argument with the third argument if the lower and upper bound are equal.In case the interval is not empty the third arguments is bound to a newly created intervalvariable. Creating a new metaterm requires to specify type of the metaterm, which is ourcase ri_type. If the third argument is not consistent with the created interval variable orthe interval is empty the built-in returns FAILED.OZ C proc begin(ri var, 3) fOZ Term l = OZ getCArg(0), u = OZ getCArg(1), ri var = OZ getCArg(2);ri t ri;if (! OZ isFloat(l) jj ! OZ isFloat(u)) fOZ warning("1st and 2nd argument expected to be float.");return FAILED;gri.lower = OZ floatToC(l); ri.upper = OZ floatToC(u);if (ri.lower == ri.upper) freturn OZ unify(l, ri var);g else if (ri.lower < ri.upper) freturn OZ unify(OZ makeMetaTerm(ri type, createRI(ri)), ri var);greturn FAILED;g OZ C proc endThe C code for implementing interval variables is complete now. It has to be compiledin order to obtain the module in object format, which is required to dynamically link themodule to the Oz runtime system. Supposing the module in object format is stored in the�le 'ri.o', the following Oz code triggers the dynamic linking to the runtime system.declare RI = {Foreign.load [ri.o] ri(init: 0 var: 3 lesseq: 2)}The C built-ins ri_init and ri_var are accessible via the Oz applications {RI.init} and{RI.var Lower Upper Var} respectively.The following code, fed in line by line, shows the constraint system in action. We can usethe Oz Browser to observe the current constraints of the interval variables. The commentappended to each line shows the produced output in the browser window.9



declare F1 F2 in{Browse F1#F2} % F1#F2{RI.var ~1.0 2.5 F1} % F1<ri:[~1.0, 2.5]>#F2{RI.var 1.5 3.0 F2} % F1<ri:[~1.0, 2.5]>#F2<ri:[1.5, 3.0]>F1 = F2 % F2<ri:[1.5, 2.5]>#F2<ri:[1.5, 2.5]>F1 = 1.5 % 1.5#1.5The following Oz code demonstrates how constraints are imposed to interval variables bythe less-equal propagator. We can indirectly observe that a propagator ceases to exist by thereduction of a conditional if the propagator was spawned in the conditional's guard.declare X Y in{Browse X#Y} % X#Y{RI.var 2.0 4.5 X} % X<ri:[2.0, 4.5]>#Y{RI.var 1.5 3.0 Y} % X<ri:[2.0, 4.5]>#Y<ri:[1.5, 3.0]>if {RI.lesseq X Y} then {Browse yes} else {Browse no} fi{RI.lesseq X 2.5} % X<ri:[2.0, 2.5]>#Y<ri:[1.5, 3.0]>{RI.lesseq 2.5 Y} % X<ri:[2.0, 2.5]>#Y<ri:[2.5, 3.0]> and yes appears6. ConclusionThe paper presents an experimental interface to add constraint systems to DFKI Oz. Ituni�es the performance of low-level techniques with the exibility of high-level implementa-tions. Due to the expressiveness of the abstractions provided by the metaterm interface, theimplementation e�ort for a constraint system is reasonable.There are not any performance benchmarks available yet. The performance of a constraintsystem depends mainly on the performance of its propagators, which have to make heavy useof deep computation in case of a pure Oz implementation. Therefore an estimation, basedon the di�erent stages of the �nite domain constraint implementation in DFKI Oz, suggestsa performance bene�t of factor 5 - 10 against a pure Oz implementation of propagators overinterval variables. AcknowledgementsI would like to thank Martin M�uller and J�org W�urtz for their comments on this paper.References[1] Fr�ed�eric Benhamou. Interval constraint logic programming. In Andreas Podelski, editor, Constraints:Basics and Trends, Lecture Notes in Computer Science, vol. 910, pages 1{21. Springer Verlag, 1995.[2] M. Carlsson. Freeze, Indexing, and Other Implementation Issues in the Wam. In 4th ICLP, pages 40{58.University of Melbourne, MIT Press, May 1987.[3] Christian Holzbaur. Speci�cation of Constraint Based Inference Mechanisms through Extended Uni�cation.PhD thesis, Technisch-Naturwissenschaftliche Fakult�at der Technischen Universit�at Wien, October 1990.[4] Olivier Lhomme. Consistency techniques for numeric CSPs. In Ruzena Bajcsy, editor, Proceedings of theInternational Joint Conference on Arti�cial Intelligence, pages 232{238, 1993.[5] Michael Mehl, Tobias M�uller, Konstantin Popow, and Ralf Scheidhauer. DFKI Oz user's manual. DFKI Ozdocumentation series, Deutsches Forschungszentrum f�ur K�unstliche Intelligenz GmbH, Stuhlsatzenhausweg3, D-66123 Saarbr�ucken, Germany, 1994.[6] M. Meier and P. Brisset. Open architecture for CLP. Technical Report ECRC-95-10, European Computer-Industry Research Centre, 1995. 10


