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2. A functional programmer has to reason about the com-plexity of his programs [San95]. Denotational seman-tics are too abstract in general.3. Based on the notion of uniform conuence, complexityarguments provide for powerful proof techniques.Our main technical result is that call-by-need complexityis dominated by call-by-value and call-by-name complexity,i.e. for all closed �-expressions M :Cneed(M) � minfCvalue(M); Cname(M)gThese two estimations can be interpreted as follows: Call-by-need reduction shares the evaluation of functional argu-ments and evaluates only needed arguments.As a formal basis, we use a uniformly conuent applica-tive core of a concurrent calculus that we call �0-calculus.This is a proper subset of the polyadic asynchronous �-calculus [Mil91, HT91, Bou92] and of the �-calculus [NM95,Smo94], the latter being a foundation of higher-order con-current constraint programming. The choice of �0 has thefollowing advantages:1. Delay and triggering mechanisms as needed for pro-gramming laziness are expressible within �0.2. Mutually recursive de�nitions are expressible in a call-by-value and a call-by-need manner.3. Cyclic data structures and the corresponding equali-ty relations are expressible in an extension of �0 withconstraints, the �-calculus.The �0-calculus is de�ned via expressions, structural con-gruence, and reduction. Expressions are formed by abstrac-tion, application, composition, and declaration:E; F ::= x:y=E jj xy jj EjF jj (�x)EIn the terminology of the �-calculus, abstractions arereplicated input-agents and applications are output-agents.Once-only input-agents as in the �-calculus are not provid-ed, nor constraints or cells as in the �-calculus.We identify expressions up to the structural congruenceof the �-calculus. Reduction in �0 is de�ned by the followingapplication axiom:(x:y=E) j xz ! (x:y=E) j E[z=y]1Originally, Smolka's -calculus [Smo94] and the �-calculus [NS94]have been technically distinct. In [NM95], they have been combined ina re�ned version of the �-calculus. We note that Smolka's -calculusand Boudol's -calculus [Bou89] are completely unrelated.



We do not allow for reduction below abstraction. In termsof the �-calculus, this means that we consider standard re-duction only.We embed the call-by-value and the call-by-name �-calculus into �0, the latter with call-by-need complexity.This is done in two steps: We �rst extend �0 by addingmechanisms for single assignment, delay, and triggering. Weobtain a new calculus that we call �-calculus. Surprisingly �can be embedded into �0 itself. The idea is to express singleassignment by forwarders. In the second step, we encode theabove mentioned �-calculi into �. Formulating these embed-dings into � rather than into �0 is motivated by our beliefthat the abstraction level of � is relevant for programming,theory, and implementation.The notion of single assignment we use in � is known froma directed usage of logic variables [Pin87], as for instance inthe data-ow language Id [ANP89, BNA91]. Alternative-ly, we could express single assignment via equational con-straints, but these are not available in the �-calculus. Infact, the directed single assignment mechanism in this pa-per is motivated by a data-ow discussion for polymorphictyping a concurrent constraint language [M�ul95].The approach of this paper is based on the idea of uni-form conuence [Nie94, NS94]. This is a simple criterionthat ensures complexity is independent of the execution or-der. Unfortunately, we can not even expect conuence for�0. This is due to expressions such as x:y=E j x:y=F thatwe consider inconsistent. Inconsistencies may arise dynam-ically. We can however exclude them statically by a lin-ear type system. In fact, the restriction of �0 to well-typedexpressions is uniformly conuent and su�ciently rich forembedding �-calculi. We note that a well-typed �rst-orderrestriction of �0 has been proved conuent in [SRP91].We base all our adequacy proofs for embeddings on anovel technique that combines uniform conuence and short-ening simulations [Nie94, NS94]. Shortening simulations aremore powerful than bisimulations, once uniform conuenceis available. Nevertheless, the de�nitions of concrete short-ening simulations in this paper are strongly inspired by Mil-ner's bisimulations in [Mil92].We are able to compare the complexity of call-by-needand call-by-value in �, since up to our embeddings, everycall-by-need step is also a call-by-value step. In particular,we do not require in � that a call-by-value function evalu-ates its arguments before application. This additional free-dom compared to the call-by-value �-calculus does not a�ectcomplexity. This is a consequence of the uniform conuenceof the well-typed restriction of �.Related Work. Many call-by-need models have been pro-posed over the last years but none of them has been fullysatisfactory.Our call-by-need model is closely related to the call-by-need �-calculus of Ariola et al. [AFMOW95]. We showhow to embed the call-by-need �-calculus into � such thatcomplexity is preserved (but not vice versa). The main dif-ference between both approaches is the level on which lazycontrol is de�ned. In the case of the call-by-need �-calculus,laziness is de�ned on meta level, by evaluation contexts. Inthe case of the �-calculus, laziness is expressible within thelanguage itself. In other words, the call-by-need �-calculusis more abstract, or, the �-calculus is more general. Thedisadvantage of the abstraction level of the call-by-need �-calculus is that mutual recursion and cyclic data structures

are di�cult to de�ne. On the other hand side, � is abstractenough for hiding most implementation details. We illus-trated this fact by simple complexity reasoning based onshortening simulations and uniform conuence. This tech-nique is again more general than the specialised �-calculustechnique in [AFMOW95].The setting of the call-by-need �-calculus is quite similarto Yoshida's �f -calculus [Yos93]. She proves that a call-by-need reduction strategy is optimal for weak reduction, butshe does not compare call-by-need to call-by-name.Embeddings of the call-by-value and the call-by-name �-calculus into the �-calculus have been proposed and provedcorrect by Milner [Mil92]. A embedding of the call-by-need�-calculus into the �-calculus is proved correct in [BO95].The advantage of the here presented embeddings is that theydo need not make use of once-only input channels, which areincompatible with uniform conuence.Embeddings of the call-by-value and the call-by-name �-calculus into the �-calculus are presented in [Smo94], thelatter with call-by-need complexity. These embeddings mo-tivated those presented here. The di�erence lies in the us-age of constraints for single assignment and triggering. In[Smo94] no proofs are given, but the call-by-value embed-ding is proved correct in [Nie94]. There, most of the prooftechniques presented in this paper have been introduced.An abstract big-step semantics for call-by-need has beenpresented by Launchbury [Lau93]. It is complexity sensitive,since computation steps are reected in proof trees. Launch-bury's correctness result however does not cover complexity.This is a consequence of using a proof technique based ondenotational semantics.Many other attempts for call-by-need have been present-ed. To our knowledge, all of them are quite implementationoriented such that they su�er from low-level details. Wenote the approaches based on explicit substitutions [PS92,ACCL91] and on graph reduction [Jef94].Structure of the Paper. As a �rst example we discuss thesquare function in a concurrent setting. We de�ne �0 in Sec-tion 3. We then introduce the notion of uniform conuenceand discuss its relationship to complexity and conuence.In Section 5, we prove uniform conuence for a subset of�0. In Section 6, we de�ne the �-calculus. Following, wediscuss uniform conuence for �. In Sections 8 and 9, weembed the call-by-value, the call-by-name, and the call-by-need �-calculus into �. We introduce a linear type system inSection 10 and prove that our embeddings fall into the uni-formly conuent subset of �. In Section 11, we show how toencode single assignment and triggering in �0. We introducethe simulation proof technique in Section 12 and apply it forproving the adequacy our calculus embeddings in Sections13 and 14.2 The Square Function: An ExampleWe informally introduce the �-calculus by representing thesquare function in call-by-value and call-by-need manner.This motivates our embeddings of �-calculi into � and indi-cates the adequacy results we can expect.We assume a in�nite set of variables ranged over by x,y, z, s, and t. Sequences of variables are written as x, y, : : :and integers are denoted with n, m, and k.In a concurrent setting, we consider functions as relations2



S (2�3)S 66�636 (�y)(syz j y=2�3)(�y)(syz j y=6) (�y)(z=y�y j y=2�3)(�y)(z=y�y j y=6)! �z=36 2Figure 1: Square Function: Call-by-ValueS (2�3)(2�3)�(2�3)6�(2�3) (2�3)�66�636
(�y)(�t)(s0ytz j t:y=2�3)! �(�y)(z=y�y j y=2�3) 3(�y)(z=y�y j y=6)! �z=36 2Figure 2: Square Function: Call-by-Name versus Call-by-Needwith an explicit output argument, for example:S = �x:x�x versus s:xz=z=x�xThe expression on the right-hand side is a call-by-value def-inition of the square function in the �-calculus. The formalparameter z is the explicit output argument. The expressionz=x�x is syntactic sugar for an application of a prede�nedternary relation �. We assume the following application ax-iom for all integers n, m, k and variables x:x=n�m ! x=k if k = n �mFor forwarding values in equations x=n, we copy them intothose positions where they are needed. This kind of adminis-tration is de�nable in many di�erent manners, for instance:(�y)(y=n j E) ! E[n=y]Figure 1 illustrates the call-by value evaluation of the squareof 2�3 in the �-calculus and the �-calculus. If we ignore for-warding steps, then all possible computations in Figure 1have length 3. In other words, our call-by-value embeddingof the square function preserves time complexity measuredin terms of application steps. Ignoring forwarding is correctin the sense that the number of forwarding steps in com-putations of functional expressions is linearly bounded bythe number of application steps. We do no prove this claimformally.It is interesting that call-by-value evaluation in � is moreexible than in the �-calculus, as shown by an additionalcall-by-value computation in our example. This is in the
rightmost computation in Figure 1, where the square func-tion is applied before its argument has been evaluated.For de�ning a call-by-need square function in a concur-rent setting, we need a delay and a triggering mechanism.For this purpose, we introduce two new expressions t:E andtr(t). We say that E is delayed in t:E until t is triggered.This behaviour can be provided by following triggering ax-iom: t:E j tr(t) ! E j tr(t)Note that multiple triggering is possible. A call-by-needversion of the square function can be de�ned as follows:s0:xtz=(z=x�x j tr(t))This function can be applied with a delayed argument xwaiting on t to be triggered. Figure 2 presents call-by-nameand call-by-need computations of the square of 2�3. Bothcall-by-name computations have length 4, since the func-tional argument 2�3 is evaluated twice. If we ignore trigger-ing and forwarding steps, then our call-by-need computationhas length 3. This illustrates that call-by-need complexityis dominated by call-by-name and by call-by-value complex-ity. In this example, the �rst estimation is proper (raised2Here, !� stands a forwarding followed by an application step:(�y)(z=y�y j y=6) ! z=6�6 ! z=363Here, !� consists of an application and a triggering step:(�t)(s0ytz j t:y=2�3) ! (�t)(z=y�y j tr(t) j t:y=2�3)! z=y�y j y=2�3 j (�t)(tr(t))The garbage expression (�t)(tr(t)) is omitted in Figure 2.3



Variables x; y; z; s; t ::=Expressions E; F ::= x:y=E jj xy jj E j F jj (�x)EReduction x:y=E j xz !A x:y=E j E[z=y]Figure 3: The �0-Calculus.Structural Congruence E j F � F j E E1 j (E2 j E3) � (E1 j E2) j E3(�x)(�y)E � (�y)(�x)E (�x)E j F � (�x)(E j F ) if x =2 V(F )E � F if E =� FContextual Rules E ! E0E j F ! E0 j F E ! E0(�x)E ! (�x)E0 E1 � E2 E2 ! F2 F2 � F1E1 ! F1Figure 4: Structural Congruence and Contextual Rulesby sharing), whereas the second is not (since the argumentof the square function is needed).We note that our call-by-need computation in Figure 2has a direct relative in the call-by-value case, the rightmostcomputation in Figure 1. This statement holds in generaland enables us to compare call-by-need and call-by-valuecomplexity in the �-calculus.3 The Applicative Core of the �-CalculusWe de�ne �0 as the applicative core of the polyadic asyn-chronous �-calculus [Mil91, HT91, Bou92] and the �-calculus [NM95, Smo94]. Interestingly, �0 as formulated hereis part of the Oz computation model [Smo94] and the Pictcomputation model [PT95b], which have been developed in-dependently.We de�ne the calculus �0 via expressions, structural con-gruence, and reduction. The de�nition is given in Figures 3and 4. Expressions are abstractions, applications, composi-tions, or declarations. An abstraction x:y=E is named by x,has formal arguments y and body E. An application xy ofx has actual arguments y. In the standard �-notation, ab-stractions are replicated input-agents and applications asyn-chronous output-agents.Bound variables are introduced as formal arguments ofabstractions and by declaration. The set of free variablesof an expression E is denoted by V(E). We write E =� Fif E and F are equal up to consistent renaming of boundvariable. As usual for �-calculi, we assume all expressions tobe �-standardised and omit freeness conditions throughoutthe paper.The structural congruence � of �0 coincides with thatof the �-calculus. It is the least congruence on expres-sions satisfying the axioms in Figure 4. With respect to thestructural congruence, bound variables can be renamed con-sistently, composition is associative and commutative, anddeclaration is equipped with the usual scoping rules.The reduction! synonymously denoted by!A is de�nedby a single axiom for application. The application axiomuses the simultaneous substitution operator [z=y], which re-places the components of y elementwise by z. We implicitlyassume in case of application of [z=y] that the sequence y islinear and of the same length as z. Note that reduction is in-

variant under structural congruence and closed under weakcontexts. This means that reduction is applicable below dec-laration and composition, but not inside of abstraction. Interms of �-calculi, this means that consider standard reduc-tions only.Example 3.1 (Continuation Passing Style) The iden-tify function I = �x:x can be de�ned in �0 in continuationpassing style: i:xy=yx. An application let i=I in ii re-ferred to by z is de�nable as follows:(�i)(i:xy=yx j (�y0)(iiy0 j y0:c=zc))In composition with i:xy=yx we obtain the following com-putation:(�y0)( iiy0 j y0:c=zc) !A (�y0)( y0 i j y0:c=zc)!A zi j (�y0)(y0:c=zc)Example 3.2 Explicit Recursion The computation ofthe following recursive expression does not terminate:xy j x:y=xy !A xy j x:y=xy !A : : :Compared to the asynchronous �-calculus [Mil91, Bou92,HT91], �0 does not provide for non-replicated input-agents.These are not needed for functional computation and are in-compatible with uniform conuence if not restricted linearly[KPT96]. In absence of once-only inputs, it is not clear ifthe unary restriction of �0 is Turing complete.4 Uniform ConuenceWe formalise the notions of a calculus, complexity, and uni-form conuence as in [Nie94, NS94] and discuss their rela-tionships. These simple concepts will prove extremely usefulin the sequel.The notion of a calculus that we will de�ne extendsKlop's abstract rewrite systems [Klo87] by the concept ofa congruence: A calculus is a triple (E; �; !), where E is aset, � an equivalence relation, and ! a binary relation onE. Elements of E are called expressions, � congruence, and! reduction of the calculus. We require that reduction is4



E EE1 E2 or E1 � E2FFigure 5: Uniform Conuenceinvariant under congruence, i.e., (� � ! � �) � !. Typi-cal calculi are: �0, �, �, �-calculi, abstract rewrite systems,Turing machines, etc.A derivation in a calculus is a �nite or in�nite sequenceof expressions such that Ei ! Ei+1 holds for all subsequentelements. A derivation of an expression E is a derivation,whose �rst element is congruent to E. A computation ofE is a maximal derivation of E, i.e. an in�nite derivationor a �nite one, whose last element is irreducible. The leasttransitive relation containing ! and � is denoted with !�.The length of a �nite derivation (Ei)ni=0 is n and thelength of in�nite derivation is 1. We call an expressionE uniform with respect to complexity (and termination), ifall its computations have the same length. We de�ne thecomplexity C(E) of a uniform expression E by the lengthof its computations. We call a calculus uniform if all itsexpressions are uniform.We call a calculus uniformly conuent, if its reductionand congruence satisfy the following condition visualised inFigure 5: ( � !) � ((! �  ) [ �)Typically, �-calculi equipped with standard reductions areuniformly conuent, subject to weak contexts.Proposition 4.1 A uniformly conuent calculus is conu-ent and uniform with respect to complexity.Proof. By a standard inductive argument [Nie94] as for thenotion of strong conuence [Hue80] (which is weaker thanuniform conuence). 25 Uniform Conuence for �0In this Section, we distinguish a uniformly conuent subcal-culus of �0 that is su�cient for functional computation. Wecall a �0-expression inconsistent, if it is of the form:x:y=E j x:y=Fwhere E 6� F . A typical example for non-conuence inthe case of inconsistencies is to reduce the expression xz incomposition with x:y=sy j x:y=ty:sz A xz !A tzThese results are irreducible but not congruent under theassumption s 6= t.We call E admissible, if there exists no expression F con-taining an inconsistency and satisfying E !� F . The advan-tage of this condition is that it is very simple. Unfortunately,it is undecidable if a given expression E is admissible, sinceadmissibility depends on the result of a Turing completesystem. This failure is harmless, since we can prove admis-sibility for all functional expression of � with the help of thelinear type system in Section 10.

Theorem 5.1 The restriction of �0 to admissible expres-sions is uniformly conuent.Together with Proposition 4.1 this implies that all admis-sible expressions E of �0 are uniform with respect to com-plexity such that C(E) is well-de�ned.Proof of Theorem 5.1. Let E be an admissible �0-expression. Every application step on E can be performedon an arbitrary prenex normal form of E (compare [Nie94]for details). Since declarations are not involved during appli-cation, we can assume that E is a prenex normal form withan empty declaration pre�x. On such E, reduction amountsto rewriting on multisets of abstractions and applications.Let F1 and F2 be expressions such that F1 A E !AF2. There exists an application x1z1 reduced during theapplication step E !A F1 and an application x2z2 reducedduring E !A F2. If these applications are distinct, then wecan join F1 and F2 by reducing the respective other one. Ifboth applications coincide then x1 = x2. Hence, the appliedabstractions have to be congruent by admissibility such thatF1 � F2. 26 Single Assignment and TriggeringWe extend �0 with directed single assignment and trigger-ing. The resulting calculus is called �. We do not excludemultiple assignment syntactically. This is a matter of thelinear type system in Section 10.For our extension, we need three new types of expressionsand two additional reduction axioms. A directed equation1x=y is used for single assignment directed from the rightto the left. A synchroniser x:E delays the computation ofE until t is triggered. A trigger expression tr(t) triggers adelayed computation waiting on t.The structural congruence of � coincides with that of �0.Its reduction ! is a union of three relations, application!A, forwarding!F , and triggering!T :! = !A [ !F [ !TEach of these relations is de�ne by the corresponding axiomin Figure 6 and the contextual rules in Figure 4.Example 6.1 (Single Assignment Style) The identityfunction I = �x:x can be expressed in � by i:xy=y=x. Com-pared to Example 3.1 we use single assignment instead ofcontinuation passing. An application let i=I in (ii)i re-ferred to by z is represented in � as follows:(�i)(i:xy=y=x j (�y0)(iiy0 j y0 iz))1The original version of the �-calculus [Nie94] uses symmetricequations instead of directed ones. This choice does not matter forwell-typed expressions.5



Expressions E;F ::= x:y=E jj xy jj E j F jj (�x)E jj x=y jj tr(t) jj t:EReduction x:y=E j xz !A x:y=E j E[z=y] x=y j y:z=E !F x:z=E j y:z=Etr(t) j t:E !T tr(t) j EFigure 6: The �-CalculusIn composition with i:xy=y=x we obtain the following com-putation:(�y0)( iiy0 j y0 iz) !A (�y0)( y0=i j y0 iz)!F (�y0)(y0:xy=y=x j y0 iz )!A z=i j (�y0)(y0:xy=y=x)!F z:xy=y=x j (�y0)(: : :)Example 6.2 (Call-by-Need Selector Function) Thecall-by-need selector function F = �xy:x can be represent-ed in � by the abstraction f :xtxytyz=(z=x j tr(tx)). Thesymbols tx and ty stand for ordinary variables. Their usageis for triggering the computations of x and y respectively. Acall-by-need application f (ii)(ii) has the form:(�x)(�tx)(�y)(�ty)(fxtxytyz j tx :iix j ty :iiy)In composition with the abstractions named i and f , weobtain the following computation:(�x)(�tx)(�y)(�ty)( fxtxytyz j tx :iix j ty :iiy)!A (�x)(�tx)(z=x j tr(tx) j tx :iix ) j (�y)(�ty)(ty :iiy)!T (�x)(�tx)( z=x j tr(tx) j iix ) j (�y)(�ty)(: : :)!� z:xy=y=x j (�y)(�ty)(�x)(�tx)(: : :)The resulting expression is irreducible. We note that onlythe needed �rst argument has been evaluated. The synchro-niser ty :iiy for the second argument suspends forever.7 Uniform Conuence for �For proving a uniform conuence result for �, we have toconsider how uniform conuence behaves with respect to aunion of calculi. We �rst present a variation of the Hindley-Rosen Lemma [Bar84] for uniform conuence and then applyit to the �-calculus. But the general results of this Sectionare also applicable to other unions of calculi such as the call-by-need �-calculus [AFMOW95] and the �-calculus [NM95].The union of two calculi (E; �; !1) and (E; �; !2) isde�ned by (E; �; !1 [ !2). We say that the relations !1and !2 commute, if (1 � !2) � (!1 � 2 ).Lemma 7.1 (Hindley-Rosen) The union of two uni-formly conuent calculi with commuting reductions is uni-formly conuent.The proof is straightforward. Note that Lemma 7.1 im-plies the classical Hindley-Rosen Lemma, since a relationis conuent, if and only if its reexive transitive closure isuniformly conuent. The next lemma allows us to ignore ad-ministrative steps such as forwarding and triggering in thecase of �:

Lemma 7.2 (Administrative Steps) Let (E; �; !1) bea uniformly conuent calculus and (E; �; !2) a conuentand terminating calculus such that !1 and !2 commute.If E is an expression in E, then every computation of E inthe union (E; �; !1 [ !2) contains the same number of!1steps.Proof. The idea is to apply Proposition 4.1 to(E; �; !�2 � !1 � !�2). This calculus is uniform but notuniformly conuent. This de�ciency can be remedied byreplacing � with (2 [ !2)�. The details can be found in[Nie94]. 2Next, we apply the above results to the �-calculus. We �rstnote that the notion of admissibility carries over from �0 to� without change.Proposition 7.3 The relations !F and !T terminate.The relation!T is uniformly conuent and!F is uniform-ly conuent when restricted to admissible expressions. Therelations!A, !F , and !T commute pairwise.Proof. Termination is trivial, since !F decreases the num-ber of directed equations and !T the number of synchronis-ers. All other properties can be established by the normalform technique used in the proof of Theorem 5.1. 2Theorem 7.4 The restriction of the �-calculus to admissi-ble expressions is uniformly conuent.Proof. Follows from Theorem 5.1, Proposition 7.3, andLemma 7.1. 2Theorem 7.5 If E is admissible, then all computations ofE contain the same number of application steps.Proof. Follows from Theorem 5.1, Proposition 7.3, andLemma 7.2. 2De�nition 7.6 We de�ne the A-complexity CA(E) of anadmissible �-expression E as the number of !A steps incomputations of E.Theorem 7.5 ensures that A-complexity is well de�ned. Weconsider forwarding and triggering steps as administrativesteps and ignore them in favour of simpler complexity state-ments and adequacy proofs. However, we could prove for allfunctional expressions (but not in general) that the numberof administrative steps is linearly bound by the number of!A steps. This would require showing stronger invariantsin adequacy proofs.6



Expressions M;N ::= x jj V jj MN V ::= �x:MReduction (�x:M)V !val M [V=x] (�x:M)N !name M [N=x]Contextual Rules M !val M 0MN !val M 0N N !val N 0MN !val MN 0 M !name M 0MN !name M 0NFigure 7: The Call-by-Value and the Call-by-Name �-Calculusz=vMN � (�x)(x=vM j (�y)(xyz j y=vN))z=v�x:M � z:xy=y=vMz=vx � z=x z=nMN � (�x)(x=nM j (�y)(�ty)(xytyz j ty :y=nN))z=n�x:M � z:xtxy=y=nM [x�tx=x]z=nx�tx � z=x j tr(tx)Figure 8: Call-by-Value and Call-by-Need in the �-Calculus8 Functional Computation in �We embed the call-by-value and the call-by-name �-calculusinto the �-calculus, the latter with call-by-need complexity.The call-by-value and the call-by-name �-calculus are re-visited in Figure 8. Note that we consider standard reduc-tion only. A congruence allowing for consistent renaming ofbound variables is left implicit as usual.Proposition 8.1 The call-by-value and the call-by-name �-calculus are uniformly conuent.The statement for call-by-name is trivial, since call-by-namereduction is deterministic. The proof for call-by-value can bedone by a simple induction on the structure of �-expressions.Proposition 8.1 allows us to de�ne the call-by-value complex-ity Cval(M) and the call-by-name complexity Cname(M) of a�-expression M by the length of its computations in therespective �-calculus.Given an arbitrary variable z, Figure 8 presents an em-bedding M 7! z=vM of the call-by-value �-calculus into �.The de�nition of z=vM is given up to structural congruence.All variables introduced during this de�nition are supposedto be fresh.Theorem 8.2 For all closed �-expressionsM and variablesz the call-by-value complexity of M and the A-complexity ofz=vM coincide: Cval(M) = CA(z=vM) :A complete proof based on the techniques of Section 12 ispresented in [Nie94]. It makes heavy use of uniform conu-ence for covering the additional freedom provided by call-by-value reduction in �.An embedding z 7! z=nM of the call-by-name �-calculusinto � is given in Figure 8. It is symmetric to our call-by-value embedding and provides for call-by-need complex-ity. Our de�nition of a �-expression x=nM makes sense forclosed M only and goes through intermediate �-expressionscontaining pairs y�ty. For instance:z=n�x:x � z:xtxy=y=nx�tx � z:xtxy=(y=x j tr(tx))As we will show in the next Section, our embedding ofthe call-by-name �-calculus provides in fact for call-by-needcomplexity. In this sense, the next theorem states that call-by-need complexity is dominated by call-by-value and bycall-by-name complexity.

Theorem 8.3 Let M be a closed �-expression and z a vari-able. Call-by-name reduction of M terminates if and only if�-reduction of z=nM terminates. Furthermore:CA(z=nM) � minfCval(M); Cname(M)g :The most di�cult statements of Theorem 8.3 are proved inSections 12, 13, and 14. These are the adequacy with respectto termination and the estimation CA(z=nM) � Cname(M).The estimation C(z=nM) � Cval(M) can also be establishedby the simulation technique of Section 12. It is su�cientto relate the expressions z=vM and z=nM . For applyingthe simulation technique, we need the admissibility of theseexpressions as proved in Section 10.It is straightforward to express mutual recursion in �,both in a call-by-value and in a call-by-need manner:z=vletrec x=M inN � (�x)(x=vM j z=vN)z=n letrec x=M inN � (�x)(�t)(t:x=nM� j z=nN�)where � = [x�t=x]. We do not claim a correctness result formutual recursion in this paper.9 Embedding the Call-by-Need �-CalculusWe show that the A-complexity of z=nM equals to the com-plexity of M in the call-by-need �-calculus.The de�nition of the call-by-need �-calculus [AF-MOW95] is revisited in Figure 9. Again, we only considerstandard reduction. The reduction!need of the call-by-need�-calculus is a union of four relations:!need = !I [ !V [ !Ans [ !CThe latter three relations are of administrative character,whereas !I steps correspond to �-reduction steps.Proposition 9.1 The call-by-need �-calculus is determin-istic and hence uniformly conuent.The proof is simple. Applying Proposition 9.1, it makessense to de�ne the call-by-need complexity Cneed(L) of anexpression the call-by-need �-calculus by the number of !Isteps in the computation of L.We extend the mapping M 7! z=nM to an embeddingL 7! z=nL of the call-by-need �-calculus into �, de�ning:z=nlet x=L2 in L1 � (�x)(x=nL2 j z=nL1)7



Expressions L ::= x jj V jj L1L2 jj let x=L2 in L1 V ::= �x:LAnswers A ::= V jj let x=L in AEvaluation Contexts E ::= [ ] jj EL jj let x=L in E jj let x=E2 in E1[x]Reduction (�x:L1)L2 !I let x=L2 in L1 let x=V in E[x] !V let x=V in E[V ]let y=(let x=L in A) in E[y] !Ans let x=L in (let y=A in E[y])(let x=L1 in A)L2 !C let x=L1 in AL2 L! L0E[L]! E[L0]Figure 9: The Call-by-Need �-CalculusThe following Theorem states the adequacy of the extendedembedding, and that our embedding of the call-by-name �-calculus into � yields in fact call-by-need complexity:Theorem 9.2 If L is a closed �-expression and z a variablethen Cneed(L) = CA(z=nL).This can be shown by a complexity simulation (Section 12).10 Linear Types for ConsistencyWe de�ne a linear type system for � that statically excludesinconsistencies. It tests for single assignment and determinesthe data ow of a �-expression via input and output modes.We assume an in�nite set of type variables denoted by �and use the following recursive types � internally annotatedwith modes �:� ::= ((�)) jj ��:� jj � jj tr ; � ::= ��� ::= in jj outOur type systems distinguishes two classes of variables, trig-ger and single assignment variables. We use tr as type fortrigger variables. A single assignment variable has a proce-dural type ((� )), where � is a sequence of argument types. Forinstance, the variable z in z=vM is typed by ��:((�in �out)).This recursive type expresses that a call-by-value functionis a binary relation, which inputs a call-by-value function in�rst position and outputs a call-by-value function in secondposition.A type environment � is a sequence of type assumptionsx: � with scoping to the right. A variable x has type � in�, written �(x) = �, if there exists �1 and �2 such that� = �1; x: �;�2 and x does not occur in �2. The domainof an environment � is the set of all variables typed by �.We identify environments �1 and �2 if they have the samedomain and �1(x) = �2(x) for all x in this domain. Theoutput variables O(y: ��) in a sequence of annotated typesare de�ned as follows, where y = (yi)ni=1, � = (�i)ni=1, and� = (�i)ni=1:O(y: ��) = fyi jj �i = out and �i 6= trgA judgement for E is a triple �; O > E, where � is an en-vironment and O is a set of variables. An expression E iswell-typed, if there exists a judgement for E derivable withthe rules in Figure 10. If �; O > E is derivable, then Ocontains those single assignment variables, to which an ab-straction may be assigned during a computation of E.

Lemma 10.1 If E is well-typed and E !� F , then F iswell-typed. An inconsistent expression is not well-typed.The �rst property is often called subject reduction property.It can be checked by induction on derivations of judgements.The second property is straightforward. Lemma 10.1 imme-diately implies the following corollary:Corollary 10.2 Well-typed expressions are admissible.Proposition 10.3 All expressions z=vM and z=nL arewell-typed.Proof. We can check by induction on the structure of Mthat the following judgements are derivable with the rulesin Figure 10, where � is arbitrary:z: ��:((�in �out)); fzg > z=vMz: ��:((�in tr� �out)); fzg > z=nL11 Encoding � in �0Directed single assignment and triggering can be expressedin �0. For technical simplicity, we formalise this statementfor n-ary �-expressions, i.e. those containing n-ary abstrac-tions and applications only. This is su�cient to carry overour �-calculus embeddings from � to �0, since z=vM andz=nL are binary and ternary respectively. An embeddingof n-ary �-expressions into �0 is given in Figure 11 and�0(E) � E for all expressions E of �0.Theorem 11.1 For all well-typed n-ary �-expressions E,�0(E) is admissible and terminates if and only if E termi-nates.The proof is omitted, but can be done with the simulationtechnique of Section 12. Adequacy with respect to termina-tion follows from the fact that the embedding preserves thelength of computations up to a factor of 2 (which is neededfor triggering). This does however not imply the adequacywith respect to complexity measured in terms of applicationsteps. This is the only point where ignoring !F and !Tsteps weakens our results.12 Complexity Simulations and UniformityMilner [Mil92] uses bisimulations for proving the adequacyof �-calculus embeddings into the �-calculus. We show thatsimulations are su�cient for uniform calculi.8



�; O > E�; Onfxg > (�x)E �; O1 > E1 �; O2 > E2�; O1 [O2 > E1 j E2 O1 \O2 = ;�; t: tr; O > E�; t: tr; O > t:E �; y: �; O > E�; x: ((��)); fxg > x:y=E O � O(y: ��)�; t: tr; ; > tr(t) �; x: ((�)); y: ((�)); fxg > x=y �; x: ((��)); y: �; O > xy ; O(y: ��) � OFigure 10: Linear Type Checking�0(t:E) � (�y)(ty j y:=�0(E)) �0(tr(t)) � t:y=y �0(x=y) � x:z=yz ; length(z) = nFigure 11: Embedding n-ary �-expressions in �0Let (E; �E ; !E) and (G; �G; !G) be two uniform calculiwith expressions ranged over by E and G respectively. Weomit the indices E and G whenever they are clear from thecontext. We call a function � : E ! G an embedding of Einto G, if � is invariant under congruence.De�nition 12.1 A shortening simulation for an embedding� : E ! G is a relation S on E � G satisfying the followingconditions for all E, E0, and G:(Sho1) (E; �(E)) 2 S.(Sho2) If E is irreducible and (E; G) 2 S, then G is irre-ducible.(Sho3) If E ! E0 and (E; G) 2 S, then exists E00 and G0with C(E0) � C(E00), (E00; G0) 2 S, and G!G0.We call a shortening simulation complexity simulation ifit satis�es (Sho3) with C(E0) = C(E00) instead of C(E0) �C(E00).Theorem 12.2 Let � : E ! G be an embedding betweenuniform calculi. If there exists a shortening simulation for�, then � preserves termination and improves complexity,i.e. C(�(E)) � C(E) for all E. If there exists a complexitysimulation for �, then � preserves complexity: C(�(E)) =C(E) for all E.Proof. We assume a shortening simulation S for � and(E; G) 2 S. First, we claim C(G) � C(E) if C(E) 6= 1 byinduction on C(E). Second, we claim C(G) � C(E) if C(E) =1. This can be shown by proving C(G) � n inductivelyfor all n � 0. The theorem follows from these claims andcondition (Sho1). 213 A Shortening Simulation for Call-by-NeedWe sketch the adequacy proof for our embedding of the call-by-name �-calculus into � as stated in Theorem 8.3. Weprove that the embedding M 7! z=nM preserves termi-nation such that CA(z=nM) � Cname(M) for all closed �-expressions M .For reecting A-complexity, we consider the alternativereduction ,! � !A � ,! where ,!= (!F [ !T )�. Restrict-ed to admissible expressions, this reduction yields a uniformcalculus by Theorem 7.5. By Proposition 10.3, Corollary10.2, and Proposition 8.1, it is su�cient to apply Theorem

12.2 once we have constructed a shortening simulation forthe embedding M 7! z=nM .As syntactical convenience, we write let y=M in N forthe �-expression N [Mn=yn] : : : [M1=y1] where y = (yi)ni=1and M = (Mi)ni=1. Before formally de�ning a shorteningsimulation (see Section 14) we illustrate it by a simple ex-ample. We �rst consider a call-by-name reduction step of(II) I with I = �x:x:(II) I= let y1=I z1=I y2=y1z1 z2=I y3=y2z2 in y3!name let y1=I z1=I y2=z1 z2=I y3=y2z2 in y3= let y1=I z1=I y2=I z2=I y3=y2z2 in y3In the corresponding �-reduction steps, we omit top-leveldeclarations and write E � F if E � (�x)F .y3=n(II) I� y1=nI j t1 :z1=nI j y1z1t1y2 j t2 :z2=nI j y2z2t2y3!A y1=nI j t1 :z1=nI j y2=nz1�t1 j t2 :z2=nI j y2z2t2y3!T y1=nI j z1=nI j y2=z1 j tr(t1) j t2 :z2=nI j y2z2 t2y3!F y1=nI j z1=nI j y2=nI j tr(t1) j t2 :z2=nI j y2z2t2y3The correspondence in this example is very close when ig-noring !F and !T steps2. A more interesting examplecomes with sharing, when reducing z=n(�x:(x�y:x))(II ).In this case, we can formulate the relationship via strong�-reduction: We write M )name M 0 if M reduces to M 0 byapplication of the �-axiom at any position in M .Lemma 13.1 (The Invariant) There exists a relation Sbetween closed �-expressions and admissible �-expressionssatisfying (Sho1) and (Sho2) and the following property: If(M; E) 2 S and M !name M 0, then there exists M 00 andE0, such that M 0 )�name M 00, E ,! � !A � ,! E0, and(M 00; E0) 2 S.The proof is sketched in Section 14. Lemma 13.1 impliesthe existence of a shortening simulation for the embeddingM 7! z=nM . To verify condition (Sho3) we make use ofLemma 13.2:Lemma 13.2 If M 0 )�name M 00, then Cname(M 0) �Cname(M 00).Proof. This is a reformulation of Plotkin's standardisationtheorem [Plo75]. 22The number of !F and !T steps in computations of y3=nM isbounded by 3 times the number of !A steps. This can be provedwith a simulation for an amortised cost analysis.9



14 Proof of Lemma 13.1Our idea for de�ning a shorting simulation is to make sub-stitutions explicit as in [Mil92, ACCL91] and to reect lazycontrol by a notion of needed variables.Explicit substitutions are already introduced in the def-inition of let y=M in N . For de�ning needed variables, wewrite �<i for the sequence (�j)i�1j=1, if � = (�j)nj=1 is a se-quence of variables or expressions.De�nition 14.1 (Needed Variables)A variable x is needed in let y=M in N , if the judgementN (x; let y=M in N) is derivable by the following rules:N (x; x) N (x; N1)N (x; N1N2) N (x; N)N (x; let y=M in N)N (x; let y<i=M<i in Mi) N (yi; N)N (x; let y=M in N)For instance in let y1=I y2=y1y1 y3=y1y2 in y3 , the vari-ables y3 and y1 are needed whereas y2 is not needed.De�nition 14.2 (Representation) A representation for(M; E) is a �ve-tuple (n; M; y; t; D), where M = (Mi)ni=1,y = (yi)ni=1, t = (ti)ni=1, and D � fy1; : : : yng called thedelay set, such that the following properties hold for all i 2f1 : : : ng:(S1) V(Mi) � fy1 : : : yi�1g(S2) M � let y=M in yn.(S3) There exists (Ei)ni=1, �, and � such that � is a compo-sition of trigger expressions ftr(j) j yj =2 Dg,E � E1 j : : : j En j �;� is the substitution [y�t=y], and:Ei = 8><>: ti :yi=nMi� if yi 2 Dyjyk tkyi if yi =2 D, Mi = yjykyi=yj if yi =2 D, Mi = yjyi=nMi� if yi =2 D, Mi = �z:N(S4) If yi =2 D and Mi is an application then Mi is anapplication of variables.(S5) If yi is needed in let y=M in yn, then yi =2 D.(S6) If yi is not needed in let y=M in yn, then yi 2 D orMi is an abstraction.(S7) The composed sequence yt is linear.De�nition 14.3 (Simulation S) The relation S is the setof all pairs (M; E) for which a representation exists.Lemma 14.4 (Correctness of S) The relation S satis�esthe conditions of Lemma 13.1.15 ConclusionWe have presented a simple execution model for eager andlazy functional computation. We have applied concurren-cy for integration of programming paradigms. We havepresented the concurrent �-calculus, which features usefulabstractions for programming, implementation, and theory.We have worked out a powerful proof technique based onuniform conuence and complexity simulations.
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