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AbstractWe present a calculus providing an abstract operational semantics for higher-order concurrent constraint programming. The calculus is parameterized witha �rst-order constraint system and provides �rst-class abstraction, guard-ed disjunction, committed-choice, deep guards, dynamic creation of uniquenames, and constraint communication. The calculus comes with a declarativesublanguage for which computation amounts to equivalence transformationof formulas. The declarative sublanguage can express negation.Abstractions are referred to by names, which are �rst-class values. Thisway we obtain a smooth and straightforward combination of �rst-order con-straints with higher-order programming.Constraint communication is asynchronous and exploits the presence oflogic variables. It provides a notion of state that is fully compatible withconstraints and concurrency.The calculus serves as the semantic basis of Oz, a programming languageand system under development at DFKI.
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1 IntroductionConcurrent constraint programming [28] brings together ideas from constraintand concurrent logic programming. Constraint logic programming [13, 2], on theone hand, originated with Prolog II [6] and was prompted by the need to inte-grate numbers and data structures in an operationally e�cient, yet logically soundmanner. Concurrent logic programming [30], on the other hand, originated withthe Relational Language [5] and was promoted by the Japanese Fifth GenerationProject, where logic programming was conceived as the basic system programminglanguage and thus had to account for concurrency, synchronization and indeter-minism. For this purpose, the conventional SLD-resolution scheme had to bereplaced with a new computation model based on the notion of committed-choice.At �rst, the new model developed as an ad hoc construction, but �nally Maher[18] realized that commitment of agents can be captured logically as constraintentailment. The �rst practical language design combining committed-choice withencapsulated search is AKL [14]. AKL's primary mechanism for encapsulation ofnondeterminism are deep guards.In 1991 the DFKI started the research project Hydra with the goal to design,investigate and implement a high-level concurrent programming language bringingtogether the merits of logic and object-oriented programming. Our starting pointwas the existing work on concurrent and constraint logic programming, and someideas for concurrent control of generalized constraint logic programming [31]. Itsoon became clear that some of our ideas were related to the ideas realized in AKL.However, to arrive at a smooth and practical integration of constraint and object-oriented programming, we felt that it is absolutely necessary that the underlyinglanguage is higher-order, that is, that procedures and agents are �rst-class citizens.We also came to the conclusion, that the established model of communication inconcurrent logic programming based on streams was not compatible with our goals,both because it induces a tedious and low-level programming style, and becauseit poses serious implementation problems due to the need for fair stream merging(for a similar argumentation see also [15]).Our investigations resulted 1992 in the design and implementation of a �rst ver-sion of Oz [11], a higher-order object-oriented concurrent constraint programminglanguage. Some aspects of Oz have been reported in [12, 32]. The major di�cultyencountered in the design of Oz was the lack of a su�ciently powerful frame-work for designing such a language (i.e., specifying its operational semantics).Saraswat's framework [28], for instance, accommodates neither deep guards nor�rst-class procedures. In fact, it not even accounts for the incremental aspectsof the operational semantics of 
at guards. The tree rewriting semantics specify-ing the Extended Andorra Model [9] and the structural operational semantics forAKL [10] turned out to be more helpful. Finally, we learned from the setup of the�-calculus [21] how a tree rewriting semantics can be made su�ciently abstract:rather than employing real trees, one can use abstract trees obtained by taking thequotient with respect to an abstract equality called structural congruence. Thisidea provided a su�cient base for coming up with a 
exible calculus specifying3



the abstract operational semantics of Oz. This setup nicely combines declarativeaspects with operational aspects: Aspects that are accounted for by laws for thestructural congruence are put in declaratively, while aspects that are accounted forby reduction rules are put in operationally. In our calculi constraint propagationand simpli�cation are accommodated purely declaratively.This paper attempts to convey the calculus underlying Oz to readers having abackground in logic programming. For this reason we start with a Calculus A stillmaintaining a close connection to �rst-order Predicate Logic. Calculus A consti-tutes an operational semantics for (constraint) logic programming with negationthat is profoundly di�erent from the conventional SLDNF-resolution [17]. Its dis-tinctive primitive is a deep guard conditional. Calculus A will convey a numberof important and general ideas: the setup of structural congruence and reduc-tion, nonclausal syntax, deep guards and propagation laws, relative simpli�cation,and internal representation of don't know choices. The next step adds guard-ed disjunction and a committed-choice combinator (generalizing the conditional).Another, orthogonal generalization gives �rst-class status to abstractions. Thisin turn necessitates the introduction of a facility for the dynamic creation of newand unique names. Taken together, these extensions lead to Calculus B. Finally,a new form of asynchronous communication, called constraint communication, isintroduced. Constraint communication also introduces a notion of state that isfully compatible with constraints and concurrency.The way our calculus provides for higher-order programming is unique in thatdenotation and equality of variables are captured by �rst-order logic only. In fact,denotation of variables and the facility for higher-order programming are complete-ly orthogonal concepts. This is in contrast to existing approaches to higher-orderlogic programming [22, 4]. The paper [24] investigates the relationship betweenhigher-order functional computation and higher-order relational computation asrealized in Calculus B.Chapters 2{4 provide the connection to Logic Programming and motivate andexplain the setup of Calculus B. Chapter 5 presents Calculus B in a technically self-contained manner. Chapter 6 extends Calculus B with constraint communication.Practical examples illustrating the expressivity of our calculus can be found in [32],where we show how concurrent objects and multiple inheritance can be expressedwith Calculus B and constraint communication.Calculus B can be conservatively extended with a facility for encapsulated search.This will be the subject of a future paper.2 ConstraintsThe calculi presented in this paper are parameterized with respect to a constraintsystem. One can see them as constructions extending constraint systems withprogramming facilities.For our purposes it will su�ce to found the notion of constraint system on4



�rst-order Predicate Logic, similar to how it is done in Ja�ar and Lassez' CLP-framework [13]. We are aware that there exist more general and foundationallyless heavy alternatives for setting up the notion of a constraint system (e.g., [29,7]); however, by taking Predicate Logic as the starting point, we can build on well-established intuitions, notions and notations, and proceed quickly to the issues wewant to bring across.A constraint system consists of a signature � (a set of �rst-order function andpredicate symbols) and a consistent theory � (a set of �rst-order sentences over� having at least one model). Often the constraint theory � will be given as theset of all sentences valid in a certain structure (e.g., the structures of �nite trees,rational trees, integers, or rational numbers). A constraint is any formula overthe signature of the constraint system (here we deviate from [13]). The basicconstraints are the atomic formulas over � closed under conjunction:�;  ::= ? j > j s := t j r(s1; : : : ; sn) j � ^  :The symbol ? is the truth constant false, > is the truth constant true, s and t areterms, and r is a predicate symbol. The letters x; y; z will always denote variables(of which we assume countably in�nitely many), and the overlined letters x; y; : : :are used to denote �nite, possibly empty sequences of variables. For a formula9x1 : : :9xn�, where n � 0, we will often write 9x�. Moreover, 9� abbreviates9x1 : : :9xn�, where x1; : : : ; xn are the free variables of �. The notations 8x� and8� are de�ned analogously.Our calculi make use of the following relationships for constraints:� j=j�  :() 8 (�$  ) is true in every model of �� j=�  :() � j=j� � ^  It is understood that � and  may have free variables. Given a constraint system,a constraint � is called satis�able if � 6j=� ? (i.e., there is at least one model of� in which � is satis�able).For examples we will use the �nite tree constraint system H (often called Her-brand) [16, 19] underlying conventional logic programming. The signature of Hconsists of in�nitely many function symbols for every arity, and the theory of H(known as Clark's Equality Theory) is given by the schemes:f(x) :=f(y) ! x :=yf(x) :=g(y) ! ? (f 6= g)x :=f(� � �x � � �) ! ?:3 Calculus ACalculus A is a didactic vehicle for conveying our model of concurrent deep guardcomputation. Its distinctive primitive is a deep guard conditional that can express5



negation.1 Calculus A is formulated in the familiar setting of �rst-order PredicateLogic, which we will leave for the full calculus. Although deep guards alreadyappeared with Concurrent Prolog, they resisted formalization for a long time. Theonly other formalization of deep guard computation we know of is the structuraloperational semantics of AKL [10].Calculus A models simpli�cation and propagation of constraints purely declara-tively by means of its structural congruence.2 Given this setup, deep guards canbe accommodated straightforwardly without any extra machinery. Moreover, ourmodel can account for the incremental aspects of constraint propagation and sim-pli�cation. This is in contrast to the structural operational semantics of AKL,which does not separate constraint propagation and simpli�cation from the re-duction rules.Calculus A employs a nonclausal syntax that alleviates the distinction betweenprogram and query. This prepares the ground for the switch to higher-orderabstraction in Calculus B.3.1 SyntaxThe syntax of Calculus A is shown in Figure 1. It is parameterized with respectto the signature of the underlying constraint system, and an additional alphabetof distinct symbols, called de�ned predicate symbols. We identify conjunctionand quanti�cation of constraints in the calculus with conjunction and existentialquanti�cation of constraints in Predicate Logic.Every expression of Calculus A corresponds to a �rst-order formula, where con-junction translates to conjunction, quanti�cation to existential quanti�cation, dis-junction to disjunction, and abstraction, application and conditional translate asfollows: p: x=E =) 8x (p(x)$ E)px =) p(x)if E then F else G � =) (E ^ F ) _ (:E ^ G):Abstractions serve as procedure de�nitions, and applications as procedure calls.We require that the formal arguments of an abstraction be pairwise distinct. Theconventional separation between program and query is alleviated by the nonclausalsyntax of the calculus. Given a conditional if E then F else G �, we call theconstituent E the guard of the conditional. A guard is called 
at if E is a1A deep guard conditional with the same declarative semantics as ours has been proposed andimplemented in Nu-Prolog by Lee Naish [23]. The operational semantics of Naish's conditionalis however di�erent from ours: it delays until its guard is ground. A deep guard conditional withunsound operational semantics based on cut existed already in Edinburgh's Dec-10 Prolog [25].2Note that SLD-resolution (i.e., the operational semantics of Horn clauses) accommodatesconstraints operationally rather than declaratively (e.g., the notion of uni�cation is an operationalnotion). 6



Symbolsx; y; z; u; v;w : variablep; q : de�ned predicateConstraints�;  ExpressionsE; F;G;H ::= � constraintE ^ F conjunction9xE quanti�cationp: x=E abstractionpx applicationE _ F disjunctionif E then F else G � conditionalFigure 1: Syntax of Calculus A.constraint, and deep otherwise. Since we have the logical equivalence:E j=j if E then ? else > �;Calculus A can express negation.The variable binders of Calculus A are quanti�cation and abstraction. A quan-ti�cation 9xE binds x with scope E, and an abstraction p: x=E binds its formalarguments x with scope E. The free variables of an expression are de�nedaccordingly. We use VE to denote the set of variables that occur free in E.An expression is called an actor if it is either an application, a disjunction, or aconditional.Logical equivalence for the expressions of Calculus A is de�ned asE j=j� F :() � j= 8(E $ F );where � is the theory of the underlying constraint system. The signature under-lying logical equivalence is the signature of the constraint system together withthe alphabet of de�ned predicate symbols.3.2 Structural CongruenceThe operational semantics of Calculus A will be de�ned as a reduction relation\E ! F" on expressions. It will respect logical equivalence in that E ! F alwaysimplies E j=j� F . The reduction relation will be de�ned on a quotient of the7



E � E E � FF � E E � F F � GE � GE � E 0 F � F 0E ^ F � E 0 ^ F 0 E � E 09xE � 9xE 0 E � E 0p: x=E � p: x=E 0 E � E 0 F � F 0E _ F � E 0 _ F 0E � E 0 F � F 0 G � G0if E then F else G � � if E 0 then F 0 else G0 �Figure 2: Structural congruence laws of Calculus A.expressions with respect to an equivalence relation called structural congruence.This setup is familiar in the theory of term rewriting [8], and has been applied tothe semantics of concurrent programming in the Chemical Abstract Machine [3]and the �-Calculus [21].A binary relation � on the expressions of Calculus A is called a congruence if itsatis�es the structural congruence laws in Figure 2.Proposition 3.1 The relation \E j=j� F" is a congruence.We de�ne the structural congruence \E � F" of Calculus A to be the leastcongruence satisfying the proper congruence laws appearing in Figure 3. Exceptfor the �rst and second propagation law, which are essential for deep guard com-putation, the laws are familiar from Predicate Logic.Proposition 3.2 For all expressions E, F and all constraints �,  :1. E � F ) E j=j� F2. � �  , � j=j�  .Proof. The second claim follows from the �rst claim and Law SS. To show the�rst claim, it su�ces to show that \E j=j� F" satis�es every congruence law inFigure 3, since \E j=j� F" is already established as a congruence. All laws butSPC are obvious. That j=j� satis�es SPC follows easily with:� ^ :E j=j� ? _ (� ^ :E) j=j� (� ^ :�)_ (� ^ :E)j=j� � ^ (:� _ :E)j=j� � ^ :(� ^E): 2Proposition 3.3 If x does not occur free in E, then 9xE � E.8



RenamingSR: E � F if E and F are equal up to consistentrenaming of bound variablesConjunctionSC: ^ is associative, commutative, and satis�es E � E ^ >Quanti�cationSQE: 9x9yE � 9y9xESQM: 9xE ^ F � 9x(E ^ F ) if x does not occur free in FDisjunctionSD: E _ F � F _ESimpli�cationSS: � �  if � j=j�  EqualitySE: x :=y ^E � x :=y ^E[y=x] if y free for x in Ewhere E[y=x] is obtained from E by replacing every free occurrence of xwith y.PropagationSPD: � ^ (E _ F ) � � ^ ((� ^ E)_ F )SPC: � ^ if E then F else G � � � ^ if � ^E then F else G �where � must be a constraint or an abstractionReplicationSPR: p: x=E � p: x=E ^ p: x=EFigure 3: Proper congruence laws of Calculus A.9



Proof. If x does not occur free in E, then9xE � 9x(> ^E) � 9x> ^ E � > ^E � Eby the congruence laws SC, SQM, and SS. 2It is important to have a good intuitive understanding of the quotient that struc-tural congruence imposes on the set of expressions. The laws for conjunctionmake conjunction into an operator building multisets of nonconjunctive expres-sions, where > plays the role of the empty multiset. To use the metaphor ofthe Chemical Abstract Machine [3], conjunction creates the chemical solution inwhich concurrent computation can take place. The Quanti�er Mobility Law SQMand the Renaming Law ensure that quanti�cation does not hinder the 
ow of thechemical solution. With the congruence laws mentioned so far we can rewriteevery expression into the form 9x (� ^E);where � is a conjunction of constraints and abstractions, and where E is a con-junction of actors. Law SQE (\quanti�er exchange") turns the variable sequence xinto a multiset. The commutativity law for disjunctions, SD, takes away the orderbetween the two branches. The Simpli�cation Law makes constraints denotation-al, that is, their syntax does not matter. The Equality Law extends equalitiesentailed by constraints to conjoined expressions.The two propagation laws SPD and SPC make conjoined constraints and abstrac-tions visible in the branches of disjunctions and the guards of conditionals. Readfrom right to left, they provide for the deletion of abstractions and constraintsthat are present higher up. For example, taking H as the underlying constraintsystem and \:" as a binary function symbol, we have0B@ x :=1:u:v:wy :=v:wx = 1:u:y _ x :=1:z:y 1CA � 0B@ x :=1:u:yy :=v:w> _ z :=u 1CAusing the laws for conjunction, simpli�cation and propagation. (The rows of amatrix are conjoined by conjunction.) Taken together, the laws for simpli�cationand propagation provide for something we call relative constraint simpli�cation.The intuition behind this name is made explicit in the next proposition, wherethe constraint in the guard of the conditional is simpli�ed with respect to theconstraint above. Similar statements hold for the branches of a disjunction.Proposition 3.4 (Relative Simpli�cation) If �^ j=j� �^ 0 and no variablein x occurs free in �, then� ^ if 9x ( ^E) then F else G � � � ^ if 9x ( 0 ^ E) then F else G �:The following variant of the above proposition will be useful in examples.10



AA �� %%% eeeeee%%%BlackboardActor Actor...Figure 4: The blackboard metaphor.Proposition 3.5 (Relative Simpli�cation) If � ^  j=j� � ^  0, then� ^ if  then E else F � � � ^ if  0 then E else F �:The Replication Law SPR allows for copying and merging of abstractions. It isneeded to render the reduction rules con
uent.3.3 The Blackboard MetaphorWe can visualize an expression modulo structural congruence as a computationspace consisting of a number of actors connected to a blackboard (see Fig. 4).The actors are either applications, disjunctions or conditionals. The blackboardconsists of constraints and abstractions. Conjunction and quanti�cation providethe glue keeping actors and blackboard together. Since conditional and disjunctiveactors spawn local computation spaces (i.e., the guards of conditionals and thebranches of disjunctions), the computation system is actually a tree-like structureof computation spaces (see Fig. 4).The reduction rules we will give in the next section can be seen as animationrules for computation spaces. The actors read the blackboard and reduce once theblackboard contains su�cient information. The information on the blackboardincreases monotonically. When an actor reduces, it may put new information onthe blackboard and create new actors. The actors of a computation space areshort-lived: once they reduce they disappear.3.4 ReductionWe de�ne the reduction relation ! of Calculus A to be the least relationsatisfying the structural laws in Figure 5 and the proper laws (called reductionrules) in Figure 6. Put more intuitively, we have E ! F if and only if thereare expressions E 0 and F 0 such that E � E 0, F � F 0, and F 0 is obtained fromE 0 by applying a reduction rule to a subexpression of E 0 not appearing in aprotected position. A position in an expression is called protected if it is withinan abstraction, or within the second or third constituent of a conditional. Due tothe fact that the reduction relation is de�ned as the least relation satisfying the11



E � E 0 E 0 ! F 0 F 0 � FE ! F E ! E 0E ^ F ! E 0 ^ F E ! E 09xE ! 9xE 0E ! E 0E _ F ! E 0 _ F E ! E 0if E then F else G �! if E 0 then F else G �Figure 5: Structural reduction laws of Calculus A.UnfoldingRU: px ^ p: y=E ! 9y (y :=x ^E) ^ p: y=Eif x and y are disjoint and of equal lengthDisjunctionRDF: (? ^E)_ F ! FRDT: > _ E ! >ConditionalRCF: if ? ^ E then F else G � ! GRCT: if > then F else G � ! FFigure 6: Reduction rules of Calculus A.reduction laws, the protected positions are in fact just those where the reductionrelation is not forced by a structural law to satisfy the compatibility property.Disallowing reduction at protected positions makes it possible to write terminatingrecursive programs. Note that the conditional is the only construct of the calculusthat can express sequentializing and synchronizing control.Proposition 3.6 For all expressions E, F : if E ! F then E j=j� F .Proof. It su�ces to show that j=j� satis�es all reduction laws. Since E j=j� F isa congruence and E � F ) E j=j� F by Proposition 3.2, it su�ces to show thatE j=j� F satis�es every reduction rule. This is easily veri�ed. 2The proposition states that reduction is sound with respect to logical equivalence.Of course, reduction is not complete with respect to logical equivalence. Forinstance, p ^ :p j=j� ? although p ^ :p is irreducible.Proposition 3.7 If x is free for y in E, then:px ^ p: y=E ! E[x=y] ^ p: y=E:12



Proof. Without loss of generality we can assume that x and y are distinct (other-wise we rename the formal argument of the abstraction to a fresh variable). Nowwe have:px ^ p: y=E ! 9y (y :=x ^E) ^ p: y=E by RU� 9y (y :=x) ^ E[x=y] ^ p: y=E by SE; SQM� E[x=y] ^ p: y=E by SS: 2Example 3.8 We will now see how reduction in Calculus A works. After goingthrough a 
at guard computation, we will see a deep guard computation.Let us assumeH as the underlying constraint system. Then the recursively de�nedpredicate natNAT := nat: x = if x :=0 then > else 9y (x := s(y)^ nat y) �holds exactly for the trees 0; s(0); s(s(0)); : : : . Now suppose we want to reducethe expression nat x ^ x :=s(0) ^ NAT:By unfolding according to Proposition 3.7 we obtainif x :=0 then > else 9y (x :=s(y) ^ nat y) � ^ x :=s(0) ^ NAT:As usual, we tacitly exploit the associativity and commutativity of conjunction.By relative simpli�cation (Proposition 3.5) we obtainif ? ^> then > else 9y (x :=s(y) ^ nat y) � ^ x :=s(0) ^ NAT :Application of the reduction rule RCF yields9y (x :=s(y) ^ nat y) ^ x :=s(0) ^ NAT ;from where we proceed to9y (y :=0 ^ if y :=0 then > else 9z (y :=s(z) ^ nat z) �) ^ x :=s(0) ^ NATusing constraint simpli�cation (x := s(y) ^ x := s(0) j=jH y := 0 ^ x := s(0)) andunfolding according to Proposition 3.7. By relative simpli�cation we obtain9y (y :=0 ^ if > then > else 9z (y :=s(z)^ nat z) �) ^ x :=s(0) ^ NATfrom where we proceed to 9y (y :=0 ^ >) ^ x := s(0) ^ NAT using the reduc-tion rule RCT. Now application of the Simpli�cation Law yields the irreducibleexpression x :=s(0) ^ NAT. 13



We are now ready to consider a deep guard computation (the capital letter B is avariable):if nat x then B :=1 else B :=0 � ^ x :=s(0) ^ NAT� if nat x ^ x :=s(0)^NAT then B :=1 else B :=0 � ^ x := s(0) ^ NAT!� if x :=s(0)^ NAT then B :=1 else B :=0 � ^ x :=s(0) ^ NAT� if > then B :=1 else B :=0 � ^ x :=s(0) ^ NAT! B :=1 ^ x :=s(0) ^ NAT:The �rst congruence follows by the propagation law for conditionals. The followingreduction chain on the guard was established above. (We exploit that reductioncan be applied to subexpressions if they are not in protected positions.) Using thePropagation Law in the opposite direction, we can rewrite the guard to >. Nowthe reduction rule RCT for conditionals applies and produces the �nal expression.2Example 3.9 Assume the constraint system H and consider the following de�-nition of a membership predicate for lists:MEM := mem :X L = if L :=nil then ?else 9H R (L :=H:R ^ (X :=H _ memX R)) �:One can verify the following two derivations:9L (L :=1:2:X:Y ^ memX L) ^ MEM !� MEM9X L (X :=7 ^ L :=1:Y:nil ^ memX L) ^ MEM !� Y :=7 ^ MEM :Note that the �rst derivation employs Rule RDT. 2Example 3.10 Assume the constraint system H and consider the following de�-nition of a length predicate for lists:LEN := len :LN = (L :=nil ^ N :=0) _9H RM (L :=H :R ^ N :=s(M) ^ lenRM):Due to the symmetry of the operational semantics of disjunctions, the predicatecomputes numbers for lists and lists for numbers:9L (L :=X:Y:nil ^ lenLN) ^ LEN !� N :=s(s(0)) ^ LEN9N (N :=s(0) ^ lenLN) ^ LEN !� 9X (L :=X:nil) ^ LEN :If we de�ne the length predicate with a conditionalLEN := len :LN = if L :=nil then N :=0else 9H RM (L :=H:R ^ N :=s(M) ^ lenRM) �;the symmetry is lost and only the �rst derivation remains possible. 214



3.5 TerminationAn expression E is called failed if E � ? ^ F for some F . The reduction rulesRDF and RCF are called failure rules. An expression is called nervous if itis not failed and a failure rule applies to it (e.g., ? _ E). An in�nite derivationE1 ! E2 ! E3 ! � � � is called admissible if no Ei is failed, and Ei+1 isobtained from Ei by a failure rule whenever Ei is nervous. An expression is calledterminating if there exists no admissible in�nite derivation issuing from it.Example 3.11 Assume the constraint system H and consider the recursivelyde�ned predicate nat from Example 3.8. It is easy to see that the expression� ^ nat x ^NAT is terminating for every constraint �. 2Example 3.12 Assume the constraint system H and considerDNAT := nat: x = x :=0 _ 9y (x :=s(y)^ nat y):Logically, NAT and DNAT are equivalent, that is, NAT j=jH DNAT. Operational-ly, they behave di�erently as it comes to termination. For instance, we obtain anadmissible in�nite derivation issuing from nat x^DNAT by applying the unfoldingrule repeatedly. However, if we constrain the argument of nat x su�ciently, weobtain termination. For instance, x = s(s(0))^ nat x ^ DNAT is terminating. 2The examples show that one needs the conditional to write recursive predicatesthat terminate for underconstrained arguments. Conditionals have however thedisadvantage that they destroy the symmetry of relational de�nitions (see forinstance the length predicate in Example 3.10). Calculus B will �x this problemby providing so-called guarded disjunctions, which can express the control neededfor termination.Example 3.13 Assume the constraint system H and consider the addition pred-icate ADD := add : x y z = if x :=0 then y :=zelse 9u v (x :=s(u)^ z :=s(v) ^ add u y v) �:It is not di�cult to see that the expressionx :=s(z) ^ add x y z ^ ADDis not terminating.3 Note that x :=s(z)^add x y z^ADD j=jH ?. We can enforcetermination by sequentializing with a deep guard:x :=s(z) ^ if nat x then add x y z else > � ^ADD: 23This example was brought to my attention by Thom Fr�uhwirth.15



3.6 Entailment and NegationKnowing Saraswat's ask and tell calculus [27, 28], one would expect a reductionrule for conditionals that �res upon entailment of the guard by the context:RCE: � ^ if  then F else G � ! F if � j=�  .It is clear that Rule RCE can simulate Rule RCT. However, RCT can also simulateRCE. To see this, assume � j=�  . Then� ^ if  then F else G � � � ^ if > then F else G �by constraint propagation and simpli�cation.A constraint system is called independent4 if it satis�es� j=� n_i=1 9xi i ) 9i: � j=� 9xi ifor all basic constraints �;  1; : : : ;  n. The usual tree constraint systems are in-dependent [33]. In particular, this is the case for the �nite tree constraint systemH (provided an in�nite signature is taken, as required in this paper; see [33] for acounter example).Proposition 3.14 Assume the constraint system is independent. Then� ^ n̂i=1 if 9yi i then ? else > � !� ? () � ^ n̂i=1:9yi i j=j� ?;provided �;  1; : : : ;  n are basic constraints.Proof. The direction from left to right is obvious since reduction is an equivalencetransformation (Proposition 3.6). To show the other direction, we can assume� j=� 9xi i for some i since the constraint system is independent. Thus we canuse Rule RCE, which yields �^if 9yi i then ? else > �!� �^?. Now we obtainthe left hand side of the equivalence by using Rule RCE with the context ?. 23.7 Relative Simpli�cationA relative simpli�cation procedure for a constraint system is a procedurethat, given two basic constraints � and  , where � must be satis�able, producesa constraint  0 such that �^ j=j� �^ 0. A relative simpli�cation procedure iscomplete if its output  0 satis�es1. � j= 9x ) � j= 9x 0 (provided no variable in x occurs in �)4Note that our de�nition of independence involves existential quanti�cation, which is not thecase for the conventional de�nition [16]. Our notion of independence agrees however with thede�nitions in [33, 20]. 16



2. � ^  j=j� ? )  0 = ?.A complete relative simpli�cation procedure together with a test \� j= 9x�" isthe basic operational machinery one has to provide for the underlying constraintsystem in order to decide whether a reduction rule is applicable. Relative simpli-�cation procedures for feature tree constraint systems have been developed in [1,33], and the full version of [33] provides an abstract machine for relative simpli�-cation.A complete relative simpli�cation procedure for the �nite tree constraint systemHcan easily be obtained from a uni�cation procedure. Given two basic constraints� and  , where � is satis�able, one �rst computes an idempotent most generaluni�er � of �. Next one computes an idempotent most general uni�er ! for � . If! does not exist, take  0 = ?. Otherwise, take for  0 the equational representationof !. That this in fact speci�es a complete relative simpli�cation procedure for Hfollows from the results in [16].3.8 Con
uenceAn expression is called admissible if it is congruent to an expression that containsat most one abstraction per predicate, and that does not nest abstractions intoabstractions. It is easy to see that reduction preserves admissibility of expressions.Conjecture 3.15 Reduction in Calculus A is con
uent on admissible expressions.That is, if E is admissible, E !� F , and E !� G, then there exists an expressionH such that F !� H and G!� H.Example 3.16 Consider the nonadmissible expression (a and b are distinct con-stants): N := (p: x=x :=a) ^ (p: x=x :=b):It is easy to see that N ^ py reduces to two noncongruent normal forms N ^ y :=aand N ^ y :=b. 23.9 Distribution RuleA rule obviously missing from Calculus A is the Distribution Rule:RDD: (E _ F ) ^ G ! (E ^G)_ (F ^ G).With the Distribution Rule the otherwise irreducible expression(x :=1 _ x :=2)^ (x :=3_ x :=4)(we assumeH as the underlying constraint system) reduces to?. The DistributionRule may quickly lead to combinatorial explosion since it introduces a new copy17



of the conjoined G. Moreover, adding the Distribution Rule destroys con
uenceon admissible expressions:(> _ p) ^ q ! > ^ q � q by RDT(> _ p) ^ q ! (> ^ q)_ (p ^ q) � q _ (p^ q) by RDD:We conjecture that con
uence can be preserved if Rule RDT is given preferenceover Rule RDD. Disallowing Rule RDT completely should also recover con
uence.3.10 Relation to SLD- and SLDNF-resolutionIt is interesting to relate Calculus A to SLD-resolution [17]. A goal is a conjunctionof constraints and applications. A de�nite abstraction is a closed (i.e., no freevariables) expression of the formp: x = n_i=1 9yiGiwhere the Gi's are goals. A de�nite program is an admissible conjunction ofde�nite abstractions. Clark's completion [17] translates Horn clause programs intode�nite programs.Now consider a de�nite program � and a goal G. An SLD-derivation with re-spect to � issuing from E can be simulated in Calculus A if the Distribution Ruleis added. The simulation does not employ the rules RDT, RCT and RCF. Fur-thermore, because there are no conditionals, and disjunctions are moved aboveconjunctions with the Distribution Rule, the propagation laws are not needed.However, it is necessary to add two new congruence laws:E _ (F _ G) � (E _ F ) _ G9x (E _ F ) � 9xE _ 9xF:The unfolding rule RU is applied only after an expression has been rewritten todisjunctive normal form Wni=1 (� ^ 9xiGi). The disjunctive normal form corre-sponds in fact to the frontier of an SLD-tree, and answers show up as goals Githat are satis�able constraints. Finite failure of a goal G amounts to a derivation� ^ G!� � ^ ?.Note that this simulation reveals backtracking as a space e�cient implementationof the distribution rule, which constructs only one clause of the disjunctive normalform at a time.We can also simulate SLDNF-resolution [17], where negation :E is expressed asif E then ? else > �. Now we need the reduction rules for the conditionaland also Rule RDT for disjunction. We also need the propagation law for theconditional, but the propagation law for disjunction is still not needed.18



3.11 FreezeProlog II's freeze can be expressed asif (if x :=a then > else > �) then E else > �where we assume H as the underlying constraint system, and a to be a constantof H. Note that this expression is logically equivalent to E, and that E is releasedfor reduction if and only if the context is strong enough to either entail or disentailX :=a. This will be the case if and only if x is \bound" to a nonvariable term bythe context.4 ExtensionsThis section discusses informally the extensions leading from Calculus A to Cal-culus B.4.1 Guarded DisjunctionThe problem with disjunction in Calculus A is that it lacks the control needed toobtain termination. This is illustrated by the recursive abstractionDNAT := nat: x = x :=0 _ 9y (x :=s(y) ^ nat y)and the nonterminating expression nat x ^DNAT.It is not di�cult to provide the missing control. To this purpose, we extend thesyntax of Calculus A with a clause combinatorE then Fwhose declarative reading is E^F . In contrast to conjunction, however, the clausecombinator is not commutative and prevents its second argument from reduction.The �rst argument is called the guard of the clause, and the second argument iscalled the body of the clause. If we rewrite DNAT toDNAT := nat: x = (x :=0 then >) _ 9y (x := s(y) then nat y);then the expression nat x ^ DNAT is obviously terminating. Of course, we needan additional propagation law� ^ (E then F ) � � ^ (� ^E then F )for clauses and must arrange things such that if a disjunction reduces to a clause,the body of the clause is released. To this purpose we replace the old reductionrules for disjunction with the following new ones:(? ^ E) then F ! ?9x (E then F ) _ ? ! 9x (E ^ F )9x (� then >) _ G ! > if 9x � � >:19



We can now rewrite the de�nition of the length predicate from Example 3.10 toLEN := len :LN = (L :=nil ^ N :=0 then >) _9H RM (L :=H:R ^ N :=s(M) then lenRM)and obtain a terminating and symmetric solution satisfying9L (L :=X:Y:nil ^ lenLN) ^ LEN !� N :=s(s(0)) ^ LEN9N (N :=s(0) ^ lenLN) ^ LEN !� 9X (L :=X:nil) ^ LEN :Our solution will work �ne with binary disjunctions, but not with disjunctionstaking more alternatives, for instance,(x :=1 then E1) _ (y :=2 then E2) _ (z :=3 then E3):This problem can be resolved by having a disjunction combinatoror (C1 � � � Cn)taking a multiset C1 � � � Cn of possibly quanti�ed clausesC ::= 9x (E then F )as argument.Let us summarize. The guarded disjunction combinator spawns any number ofpossibly quanti�ed clauses. The clauses can be thought of as competing computa-tions. Reduction takes place in the guards of the clauses, but not in their bodies.If a clause has failed (i.e., its guard has reduced to ?^E), it is discarded. If onlyone clause is left, the disjunction combinator commits to this clause and the bodyof the clause is released. Moreover, the disjunction can reduce to > if the guardof a clause whose body is > is satis�ed.4.2 Committed-ChoiceCalculus B will also have a committed-choice combinatorif C1 � � � Cn else Gtaking a multiset C1 � � � Cn of possibly quanti�ed clauses and an expression G asarguments. The clauses can be thought of as competing computations. Reductiontakes place in the guards of the clauses, but not in their bodies. If the guard ofa clause is satis�ed, the committed-choice combinator can commit to this clauseand the body of the clause is released:if 9x (� then F ) C2 � � � Cn else G ! 9x (� ^ F ) if 9x � � >:If a clause has failed (i.e., its guard has reduced to ? ^ E), it is discarded. If noclause is left, the committed choice combinator reduces to the else constituent G.20



The conditional of Calculus A can be obtained from the committed-choice combi-nator by having only one unquanti�ed clause: if E then F else G.Committed-choices with more than one clause introduce indeterminism and hencedestroy con
uence, as one can see from the examplex :=1 ^ y :=1 ^ if (x :=1 then z :=1) (y :=1 then z :=2) else >;which can reduce to either x :=1 ^ y :=1^ z :=1 or x :=1 ^ y :=1 ^ z :=2. In general,committed-choices with more than one clause cannot be translated to �rst-orderformulas such that the reduction rules amount to equivalence transformations.4.3 NamesHow can we extent Calculus A such that we can dynamically create new andunique names? The answer is surprisingly simple. First, we have to require thatthe constraint system comes with an in�nite alphabet of distinguished constantsymbols called names satisfying two conditions:1. � j= :(a :=b) for every two distinct names a, b2. � j= � $  for every two �rst-order sentences �,  over the signature ofthe constraint system such that  can be obtained from � by permutationof names.It is easy to see that the usual �nite and rational tree constraint systems (takenover an in�nite signature) satisfy these conditions for any set of constant symbolswe decide to distinguish as names.The following proposition says that names are di�erent from any other value thatcan be uniquely described by a formula.Proposition 4.1 Let a constraint system with names satisfying requirements (1)and (2) be given. Moreover, let � be a formula over the signature of the constraintsystem such that x is the only free variable of �, and such that � determines x,that is, � j= 9!x�. Then � j= :�[a=x] for every name a not occurring in �.Proof. We prove the claim by contradiction. Suppose A is a model of the con-straint system such that A j= �[a=x] for some name a not occurring in �. Now letb be a name di�erent from a that also does not occur in �. Since �[a=x] and �[b=x]are sentences that are equal up to permutation of names, we know by requirement(2) that A j= �[b=x]. Moreover, we know A j= :(a := b) by requirement (1). Sincewe know A j= 9!x� by assumption, we have a contradiction. 2A small generalization of Calculus A will do the rest of the job: we allow quanti�-cation over names, that is, 9aE is considered a well-formed exoression; moreover,we provide the same congruence laws for quanti�cation of names we already have21



for quanti�cation of variables, including renaming of quanti�ed names. Of course,9aE is not a formula of Predicate Logic and must not be thought of as existentialquanti�cation.With this simple formal machinery in place, we can create new and unique namesas follows: newname(x) =) 9ax :=a:That this construction indeed works can be seen from the congruencesnewname(x) ^ newname(y) ^ E � 9ax :=a ^ 9ay :=a ^ E� 9a(x :=a ^ 9by :=b ^ E)� 9a9b(x :=a ^ y :=b ^ E);which employ the Quanti�er Mobility Law, renaming of names, and the assump-tion that the names a, b do not occur free in E. For this construction to work itis crucial that conjunction of expressions is not idempotent.5 Hence9ax :=a ^ 9ax :=a � 9a9b(x :=a ^ x :=b) � 9a9b(?) � ?does not imply 9ax :=a � ?.The above treatment of names, which we �rst published in [12], usually puzzlespeople a lot on �rst sight. It is related to the treatment of names in the �-calculus [21], even so the �-calculus does not distinguish between variables andnames. We need this distinction because of the presence of constraints. A treat-ment of names similar to ours but in the context of an extended lambda calculuscan be found in [26].4.4 First-class AbstractionThe setup of Calculus A makes it straightforward to accommodate abstractionsas �rst-class citizens. We just forget the de�ned predicate symbols and use namesinstead: abstraction now takes the form a: x=E, and application becomes ax. Ifwe also allow applications of the form xy and assume the congruence lawx :=a ^E � x :=a ^ E[a=x] if a is free for x in E,the higher-order programming techniques known from functional programmingbecome available.Example 4.2 The following expression de�nes a function f that takes a predicateP as argument and returns a predicate Q, which holds i� its argument L is a listwhose elements all satisfy P :f :P Q = 9a (Q = a ^ a:L = if L :=nil then >else 9H9R(L :=H:R ^ P H ^QR) �): 25Incidentally, Linear Logic has a nonidempotent conjunction-like connective.22



Generalized abstraction and application do not destroy the logical semantics ofCalculus A (however, quanti�cation of names does). By assuming a predicatesymbol apply for every arity, we can translate generalized abstractions and appli-cations to �rst-order formulas:a: x=E =) 8x (apply(ax)$ E)ax =) apply(ax)xy =) apply(xy):Under this translation, the unfolding rule remains an equivalence transformation.From an operational point of view the congruence9a(a: x=E) � >seems reasonable: it allows throwing away abstractions that cannot be referred toanymore. This congruence will, for instance, enable the reduction of the condi-tional if 9a(a: x=E) then F else G � ! F;which otherwise would be irreducible. The Annulment Law of Calculus B sub-sumes the above congruence.5 Calculus BThis section gives a self-contained de�nition of Calculus B.5.1 Constraint SystemsConstraint systems as employed by Calculus B are based on �rst-order PredicateLogic with equality. A constraint system consists of1. a signature � (a set of constant, function and predicate symbols)2. a consistent theory � (a set of sentences over � having a model)3. an in�nite set of constants in � called names satisfying two conditions:(a) � j= :(a :=b) for every two distinct names a, b(b) � j= � $  for every two sentences �,  over � such that  can beobtained from � by permutation of names.Given a constraint system, we will call every formula over its signature a con-straint. We use ? for the constraint that is always false, and > for the constraint23



x; y; z : variablea; b; c : name� : constraintu; v; w ::= x j aE ::= � constraintj E1 ^E2 compositionj 9u E declarationj a: x=E abstraction (x linear)j uv applicationj if D else E conditionalj or (D) disjunctionC ::= E1 then E2 j 9u C clauseD ::= C j ? j D1 _D2 collectionFigure 7: Abstract syntax of Calculus B.that is always true. Moreover, we will use the following relationships for con-straints: � j=j�  :() 8 (�$  ) is valid in every model of �� j=�  :() � j=j� � ^  � satis�able :() � 6j=� ?:5.2 SyntaxThe abstract syntax of Calculus B appears in Figure 7. It supposes that someconstraint system is given, �xing in�nite sets of variables, names and constraints.We use x to denote a possibly empty sequence of variables. A sequence x is calledlinear if its elements are pairwise distinct.An expression a: x=E represents a binding of the name a to the abstraction x=E.For convenience, we call the entire expression a: x=E an \abstraction". We some-times write a:�, where � = x=E.The syntactic category D represents multisets of clauses, where ? stands for theempty multiset and _ for multiset union.We identify a conjunction �1 ^ �2 of two constraints with the corresponding com-position of constraints, and an existential quanti�cation 9x� of a constraint �with the corresponding declaration. 24



Calculus B has the following constructs for binding variables and names:� A declaration 9uE binds u (a variable or a name) with scope E.� An abstraction a: x=E binds its formal arguments x with scope E.� A clausal declaration 9uC binds u (a variable or a name) with scope C.� Quanti�cation of constraints (as in Predicate Logic).The free variables and free names of an expression are de�ned accordingly. Weuse FE to denote the set of variables and names occurring free in E.5.3 Structural CongruenceA congruence is an equivalence relation on the expressions of Calculus B (i.e.,the syntactic categories �, E, C, and D) that is compatible with all syntacticcombinators (e.g., if E1 � E 01 and E2 � E 02, then E1^E2 � E 01 ^E 02). The struc-tural congruence \E1 � E2" of Calculus B is de�ned as the least congruencesatisfying the congruence laws in Figure 8.The notation E[u=x] stands for the expression that is obtained fromE by replacingevery free occurrence of x with u.5.4 ReductionThe reduction relation of Calculus B is de�ned as the least relation \E1 ! E2" onexpressions satisfying the structural reduction laws in Figure 9 and the reductionrules in Figure 10. An instance E ! E 0 of the reduction relation expresses thatE 0 can be obtained from E by one reduction step.The structural reduction laws (Figure 9) say where the reduction rules (Figure 10)can be applied: everywhere but within abstractions, else constituents of condition-als, and then constituents of clauses. The �rst structural reduction lawE1 � E2 E2 ! E 02 E 02 � E3E1 ! E3says that the reduction rules can be applied modulo structural congruence, thatis, an expression can be rewritten according to the congruence laws in Figure 8before and after a reduction rule is applied.The Unfolding Rule should be clear from Calculus A. The Failure Rule fails a localcomputation space, which means that the associated clause is discarded. The �rstrule for conditionals reduces the conditional with a clause whose guard is entailed(see Proposition 5.4). The second rule for conditionals reduces the conditional tothe else constituent in case all clauses are failed. The �rst rule for disjunctionsreduces a disjunction that has only one clause left (recall that failed clauses arediscarded by the failure rule). The second rule reduces a disjunction that hasno clause left to the constraint ?. The third rule reduces a disjunction with anentailed clause whose body is the constraint > to >.25



Renaming� E1 � E2 if E1 and E2 are equal up to consistentrenaming of bound variables and namesComposition and Collection� ^ is associative, commutative and satis�es E ^ > � E� _ is associative, commutative and satis�es D _ ? � DDeclaration� 9u 9v E � 9v 9u E� 9u 9v C � 9v 9u C� 9u E1 ^E2 � 9u (E1 ^E2) if u does not occur free in E2� 9uE1 then E2 � 9u (E1 then E2) if u does not occur free in E2Simpli�cation� �1 � �2 if �1 j=j� �2Equality� x :=u ^ E � x :=u ^ E[u=x] if u is free for x in EPropagation� � ^ if 9u (E1 then E2) _D else E3 � � ^ if 9u (� ^E1 then E2) _D else E3� � ^ or (9u (E1 then E2) _D) � � ^ or (9u (� ^ E1 then E2) _D)if � is a constraint or an abstraction with F� \ Fu = ;Replication� a:� � a:� ^ a:�Annulment� 9x 9a9b (� ^ a:�) � > if 9x � j=j� >Figure 8: Congruence laws of Calculus B.26



E1 � E2 E2 ! E 02 E 02 � E3E1 ! E3 E1 ! E 01E1 ^ E2 ! E 01 ^E2 E ! E 09uE ! 9uE 0D! D0if D else E ! if D0 else E D! D0or (D)! or (D0)D1 ! D01D1 _D2 ! D01 _D2 E1 ! E 01E1 then E2 ! E 01 then E2 C ! C 09u C ! 9u C 0Figure 9: Structural reduction laws of Calculus B.Unfolding� au ^ a: x=E ! E[u=x ] ^ a: x=Eif x and u are of equal length and u is free for x in EFailure� 9u (? ^ E1 then E2) ! ?Conditional� if 9u (E1 then E2) _D else E3 ! 9u (E1 ^ E2) if 9u E1 � >� if ? else E ! EDisjunction� or (9u (E1 then E2)) ! 9u (E1 ^E2)� or (?) ! ?� or (> then > _D) ! >Figure 10: Reduction rules of Calculus B.27



Example 5.1 Consider the expression9x9y (9a (x :=a) ^ 9a (y :=a) ^ if x :=y then E1 else E2)and suppose that x and y are distinct variables that do not occur free in E1 andE2. Moreover, assume that a and b are two distinct names not occurring free inE1 and E2. We will show that this expression reduces in two steps to E2.First, we move the left declaration of the name a to the outside of the expressionusing the laws for declarations and compositions and exploiting the assumptionthat a does not occur free in E1 and E2.� 9a 9x9y (x :=a ^ 9a (y :=a) ^ if x :=y then E1 else E2)Next we apply the Equality Law to x :=a.� 9a 9x9y (x :=a ^ 9a (y :=a) ^ if a :=y then E1 else E2)Now we move the declaration of x inside using the laws for composition anddeclaration (we exploit that x does not occur free in E1 and E2 and that x isdi�erent from y).� 9a 9y (9x (x :=a) ^ 9a (y :=a) ^ if a :=y then E1 else E2)Since 9x (x :=a) is a constraint and 9x (x :=a) j=j� >, we can delete 9x (x :=a) usingthe Simpli�cation Law and the laws for compositions (in particular E ^ > � E).� 9a 9y (9a (y :=a) ^ if a :=y then E1 else E2)Next we rename the inner name a to the di�erent name b using the RenamingLaw. � 9a 9y (9b (y :=b) ^ if a :=y then E1 else E2)This brings us in a position where we can eliminate 9b (y :=b) in the same way wedid it before for 9a (x :=a).� 9a 9b (if a :=b then E1 else E2)Now, since a :=b j=j� ?, we obtain� 9a 9b (if ? ^? then E1 else E2)! 9a 9b (if ? else E2)! 9a 9bE2using the Simpli�cation Law, the Failure Rule, and the second rule for the condi-tional. It remains to get rid of the declarations of the names a and b. This canbe done using the Annulment Law together with the laws for compositions anddeclarations:� 9a 9b (> ^E2) � (9a 9b>) ^ E2 � > ^ E2 � E2: 228



Example 5.2 This example shows the reason for equipping Calculus B with theReplication Law. Consider the derivationa:� ^ or (E1 then E2)� a:� ^ or (a:�^ E1 then E2)! a:� ^ a:� ^ E1 ^ E2� a:� ^ E1 ^ E2:The �rst step is by the propagation law for disjunctions, the second step is by the�rst reduction rule for disjunctions, and the third step is by the Replication Law.Without the Replication Law it would be impossible to get rid of the second copyof the abstraction a:�. 2Example 5.3 The Annulment Law reconciles �rst-class abstraction with deepguards. To see this, consider the reductionif 9x 9a (x :=a ^ a: y=y :=x) then E1 else E2 ! E1which is justi�ed by the �rst rule for conditionals and the fact that9x9a (x :=a ^ a: y=y :=x) � >is an instance of the Annulment Law. 2The next propostition says that conditionals can reduce with clauses whose guardsare entailed.Proposition 5.4 Suppose �1 j=� 9x �2. Then�1 ^ if 9x (�2 then E1) else E2 ! �1 ^ 9x (�2 ^ E1):Proof. Because of the Renaming Law we can assume without loss of generalitythat no variable in x occurs in �1. It su�ces to show that there exists a constraint�3 such that �1 ^ �2 j=j� �1 ^ �3 and 9x �3 j=j� > since�1 ^ if 9x (�2 then E1) else E2 � �1 ^ if 9x (�1 ^ �2 then E1) else E2� �1 ^ if 9x (�1 ^ �3 then E1) else E2� �1 ^ if 9x (�3 then E1) else E2! �1 ^ 9x (�3 ^ E1)� 9x (�1 ^ �3 ^ E1)� 9x (�1 ^ �2 ^ E1)� �1 ^ 9x (�2 ^ E1):Let �3 := �1 ! �2 (here! is implication, not reduction). Then �1^�2 j=j� �1^�3is obviously satis�ed. Moreover, 9x�3 j=j� 9x (�1 ! �2) j=j� �1 ! 9x �2 j=j� >since �1 j=� 9x �2. 229



6 Constraint CommunicationCalculus B provides for stream-based communication, which is the establishedform of communication in concurrent logic programming [30]. From a theoreticalpoint of view, stream communication is nice since it comes for free, that is, withoutfurther primitives. From a practical point of view, we are however dissatis�ed withboth the expressivity and e�ciency of stream-based communication. Streamsand their problems are carefully discussed in [15], where a new communicationmechanism, called ports, is proposed for use with AKL. Our search for a betterform of communication for Oz �nally led us to constraint communication [12, 32].As we show in [12, 32], constraint communication introduces a notion of state thatis fully compatible with logical constraints and concurrency.We extend the abstract syntax of Calculus B with three new expressions calledcommunication tokens:E ::= : : :j 2 a a is channelj u ! v put u on vj u?v get u from v:The semantics of the new primitives is given by the communication rule:u ! a^ v?a ^2 a ! u :=v ^2 a:Moreover, we generalize the Annulment Law of Calculus B to9x9a 9b 9c (� ^ a:� ^ 2 c ^ u1 ! c1 ^ u2?c2) � >if 9x � j=j� >, and c1 and c2 are disjoint and contained in cso that it provides for the annulment of communication tokens. This formulationof the Annulment Law provides for a straightforward implementation of constraintcommunication.An example of an instance of the generalized Annulment Law is9x9a 9c (a: y=x?c ^ 2 c ^ a ! c ^ x :=a) � >:The next two examples show typical usages of constraint communication. For afurther discussion of its expressivity we refer the reader to [12, 32, 11].Example 6.1 We assume the constraint system H and a unary function symbolm. The expressiona: x y = 9z (z?x ^ if 9u z :=m(u) then z ! y ^ ax y else >)de�nes a procedure a that takes two channels x, y as arguments and transfersmessages from x to y. It is assumed that messages take the form m(: : :). Theconditional synchronizes upon the arrival of a message on the input channel x.Given the above abstraction, the expression axz ^ ayz merges two channels x andy into a channel z. 230
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