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Abstract. Parallelism constraints are logical desciptions of trees.They are as ex-
pressive as context unification, i.e. second-order linear unification. We present a
semi-decision procedure enumerating all “most general unifiers” of a parallelism
constraint and prove it sound and complete. In contrast to all known procedures
for context unification, the presented procedure terminates for the important frag-
ment of dominance constraints and performs reasonably wellin a recent applica-
tion to underspecified natural language semantics.

1 Introduction

Parallelism constraints [7, 17] are logical descriptions of trees. They are equal in ex-
pressive power to context unification [4], a variant of linear second-order unification
[14, 19]. The decidability of context unification is a prominent open problem [21] even
though several fragments are known decidable [23, 22, 4].
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Fig. 1.Parallelism�1=�2��3=�4
Parallelism constraints state relations be-

tween the nodes of a tree: mother-of, sibling-
of and labeling, dominance (ancestor-of), dis-
jointness, inequality, and parallelism. Parallelism�1=�2��3=�4, as illustrated in Figure 1, holds
in a tree if the structure of the tree between the
nodes�1 and�2 — i.e., the tree below�1 mi-
nus the tree below�2 — is isomorphic to that
between�3 and�4.

Parallelism constraints differ from context
unification in their perspective on trees. They view trees from inside, talking about
thenodesof a single tree, rather than from the outside, talking aboutrelations between
severaltrees. This difference has important consequences. First, it is not only a differ-
ence of nodes versus trees but also one of occurrences versusstructure. Second, dif-
ferent decidable fragments can be distinguished for parallelism constraints and context
unification. Third, different algorithms can be devised. For instance, the language of
dominance constraints[16, 25, 1, 9] is a decidable fragment of parallelism constraints? Supported by the DFG through the Graduiertenkolleg Kognition in Saarbrücken.?? Supported by the Collaborative Research Center (SFB) 378 ofthe DFG, the Esprit Working
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for which powerful solver exist [6, 5, 17]. But when encoded into context unification,
dominance constraints are not subsumed by any of the decidable fragments mentioned
above, not even by subtree constraints [24], although they look similar. The difference
is again that dominance constraints speak about occurencesof subtrees whereas subtree
constraints speak about their structure.

Parallelism constraints form the backbone of a recent underspecified analysis of
natural language semantics [7, 12]. This analysis uses the fragment ofdominance con-
straintsto describe scope ambiguities in a similar fashion as [20, 2], while the full ex-
pressivity of parallelism is needed for modeling ellipsis.An earlier treatment of seman-
tic underspecification [18] was based directly on context unification. The implementa-
tion used an incomplete procedure [10] which guesses trees top-down by imitation and
projection, leaving out flex-flex. This procedure performs well on the parallelism phe-
nomena encountered in ellipsis resolution, but when dealing with scope ambiguities, it
consistently runs into combinatoric explosion. To put it differently, this procedure does
not perform well enough on the context unification equivalent of dominance constraints.

In this paper, we propose a new semi-decision procedure for parallelism constraints
built on top of a powerful, terminating solver for dominanceconstraints. We prove
our procedure sound and complete: We define the notion of aminimal solved formfor
parallelism constraints, which plays the same role asmost general unifiersin unification
theory. We then show that our procedure enumerates all minimal solved forms of a given
parallelism constraint.

Plan of the paper.In the following section, we describe the syntax and semantics of
dominance and parallelism constraints. Section 3 presentsan algorithm for dominance
constraints which in section 4 is extended to a semi-decision procedure for parallelism
constraints. In sections 5 and 6 we sketch a proof of soundness and completeness. Sec-
tion 7 concludes. Many proofs are omitted for lack of space but can be found in an
extended version [8].

2 Syntax and semantics

Semantics.We assume a signature� of function symbols ranged over byf; g; : : :, each
of which is equipped with an arityar(f) � 0. Constants are function symbols of arity0
denoted bya; b. We further assume that� contains at least one constant and a symbol
of arity at least 2.
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Fig. 2.f(g(a; a))
A (finite) tree � is a ground term over�, for instancef(g(a; a)). A nodeof a tree can be identified with itspath from

the root down, expressed by a word overN+, the set of natural
numbers excluding 0. We write" for the empty path and�1�2 for
the concatenation of�1 and�2. A path� is a prefix of a path�0 if
there exists some (possibly empty)�00 such that��00 = �0.

A tree can be characterized uniquely by a tree domain (the set
of its paths) and a labeling function. Atree domainD is a finite nonempty prefix-closed
set of paths. A path�i 2 D is the i-th child of the node/path� 2 D. A labeling
function is a functionL : D ! � fulfilling the condition that for every� 2 D and



k � 1, �k 2 D iff k � ar(L(�)). We writeD� for the domain of a tree� andL� for
its labeling function. For instance, the tree� = f(g(a; a)) displayed in Fig. 2 satisfiesD� = f�; 1; 11; 12g,L� (�) = f , L� (1) = g, andL� (11) = a = L� (12).
Definition 1. The tree structureM� of a tree� is a first-order structure with domainD� . It provides a labeling relation:f� � Dar(f)+1� for eachf 2 �::f� = f(�; �1; : : : ; �n) j L� (�) = f; ar(f) = ng

We writeM� j= �:f(�1; : : : ; �n) for (�; �1; : : : ; �n)2 :f� ; this relation states that
node� of � is labeled byf and has�i as itsi-th child (for 1 � i � n). Every tree
structureM� can be extended conservatively by relations for dominance,disjointness,
and parallelism.Dominanceis the prefix relation between paths�/��0; restricted toD� ,
it is the ancestor relation of� ; we write�/+�0 if �/��0 and� 6= �0. Disjointness�?�0
holds if neither�/��0 nor�0/��. Concerning parallelism, letbetw� (�1; �2) be the set
of nodes in the substructure of� between�1 and�2: If �1/��2 holds inM� , we definebetw� (�1; �2) = f� 2 D� j �1/�� but not�2/+�g:
The node�2 plays a special role: it is part of the substructure of� between�1 and�2,
but its label is not. This is expressed in Def. 2, which is illustrated in Fig. 1.

Definition 2. ParallelismM� j= �1=�2��3=�4 holds iff�1/��2 and�3/��4 are valid
inM� and there exists acorrespondence function : betw� (�1; �2)! betw� (�3; �4),
a bijective function which satisfies(�1) = �3 and(�2) = �4 and preserves the tree
structure ofM� , i.e. for all� 2 betw� (�1; �2)� f�2g, f 2 �, andn = ar(f):M� j= �:f(�1; : : : ; �n) iff M� j= (�):f((�1); : : : ; (�n))
Lemma 3. If  : betw� (�1; �2) ! betw� (�3; �4) is a correspondence function, then(�1�) = �3� for all �1� 2 betw� (�1; �2).

Syntax. We assume an infinite setV of (node) variables ranged over byX;Y; Z; U; V;W . A (parallelism) constraint� is a conjunction ofatomic constraintsor
literals for parallelism, dominance, labeling, disjointness, and inequality. Adominance
constraintis a constraint without parallelism literals. The abstractsyntax of parallelism
constraints is defined as follows:';  ::= X1=X2�Y1=Y2 j X/�Y jX :f(X1; : : : ; Xn) (ar(f) = n)j X?Y j X 6=Y j false j ' ^  

Abbreviations:X=Y for X/�Y ^ Y /�X and X/+Y for X/�Y ^X 6=Y
For simplicity, we view parallelism, inequality, and disjointness literals as symmet-

ric. We also writeXRY , whereR 2 f/�; /+;?; 6=;=g. A richer set of relations could
be used, as proposed in [6], but this would complicate matters slightly. For a compari-
sion to context unification, we refer to [17]. An example for the simpler case of string
unification is given below (see Figure 4).



First order formulas� built from constraints and the usual logical connectives are
interpreted over the class of tree structures in the usual Tarskian way. We writeV(�)
for the set of variables occurring in�. If a pair (M� ; �) of a tree structureM� and a
variable assignment� : G ! D� , for some setG � V(�), satisfies�, we write this as(M� ; �) j= � and say that(M� ; �) is asolutionof �. We say that� is satisfiableiff it
possesses a solution. Entailment� j= �0 means that all solutions of� are also solutions
of �0.
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Fig. 3. An unsatisfiable
constraint

We often draw constraints as graphs with the nodes rep-
resenting variables; a labeled variable is connected to its
children by solid lines, while a dotted line represents domi-
nance. For example, the graph forX :f(X1; X2)^X1/�Y ^X2/�Y is displayed in Fig. 3. As trees do not branch up-
wards, this constraint is unsatisfiable.
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Fig. 4.String unification

Parallelism literals are shown graphically as well as
textually: the square brackets in Fig. 4 illustrate the paral-
lelism literal written beside the graph. This graph encodes
the string unification [15] problemgx = xg; the two
brackets represent the two occurences ofx. Disjointness
and inequality literals are not represented graphically.

3 Solving dominance constraints

Our semi-decision procedure for parallelism constraints consists of two parts: a termi-
nating dominance constraint solver, and a part dealing withparallelism proper. Having
our procedure terminate for general dominance constraintsand perform well for domi-
nance constraints in linguistic applications was an important design requirement for us.
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Fig. 5.Overlap

In this section, we present the first part of our procedure, the
solver for dominance constraints. This solver, which is similar
to the algorithms in [13, 6] and could in principle be replaced
by them, terminates in non-deterministic polynomial time.Ac-
tually, satisfiability of dominance constraints is NP-complete
[13]. Boolean satisfiability is encoded by forcing graph fragments to “overlap” and
making the algorithm choose between different possible overlappings. For instance, the
constraint to the right entailsX=Y _X=Y1. The solver is intended to perform well in
cases without overlap, where distinct variables denote distinct values. This can typically
be assumed in linguistic applications.

We organize all procedures in this paper assaturation algorithms. A saturation al-
gorithm consists of a set ofsaturation rules, each of which has the form' ! _ni=1'i
for somen � 1. A rule is apropagation ruleif n = 1, and adistribution ruleoth-
erwise. The only critical rules with respect to terminationare those which introduce
fresh variables on their right hand side. A rule' ! � is correct if ' j= 9V � whereV = V(�)� V(').

By a slight abuse of notation, we identify a constraint with thesetof its literals. This
way, subset inclusion defines a partial ordering� on constraints; we also write=set for



Propagation rules:

(D.Clash.Ineq) X=Y ^ X 6=Y ! false
(D.Clash.Disj) X?X ! false
(D.Dom.Refl) '!X/�X whereX 2 V(')
(D.Dom.Trans) X/�Y ^ Y /�Z ! X/�Z
(D.Eq.Decom) X:f(X1; : : : ; Xn) ^ Y :f(Y1; : : : ; Yn) ^ X=Y !^ni=1Xi=Yi
(D.Lab.Ineq) X:f(: : :) ^ Y :g(: : :)! X 6=Y wheref 6= g
(D.Lab.Disj) X:f(: : : Xi; : : : ; Xj ; : : :)!Xi?Xj for 1 � i < j � n
(D.Prop.Disj) X?Y ^ X/�X 0 ^ Y /�Y 0 ! Y 0?X 0
(D.Lab.Dom) X:f(: : : ; Y; : : :)! X/+Y

Distribution rules:

(D.Distr.NotDisj) X/�Z ^ Y /�Z ! X/�Y _ Y /�X
(D.Distr.Child) X/�Y ^ X:f(X1; : : : ; Xn)! Y=X _ Wni=1Xi/�Y

Fig. 6. Solving dominance constraints: rule setD

the corresponding equality� \ �, and� for the strict variant� \ 6=set. This way, we
can define saturation for a setSof saturation rules as follows: We assume that each rule� 2 Scomes with an application conditionC�(') deciding whether� can be applied to' or not. Asaturation step!S consists of one application of a rule inS:'0 � ' � 2 S'!S ' ^ 'i if C�(') where� is'0 ! _ni=1'i
For this section, we letC'0!_ni=1'i(') be true iff'i 6� ' for all 1 � i � n. We call a
constraintS-saturatedif it is irreducible with respect to!S andclash-freeif it does not
containfalse. We also say that a constraint is inS-solved formif it is S-saturated and
clash-free.

Figure 6 contains schemata for saturation rules that together solve dominance con-
straints. LetD be the (infinite) set of instances of these schemata. Both clash schemata
are obvious. Next, there are standard schemata for reflexivity, transitivity, decomposi-
tion, and inequality. Schema (D.Lab.Dom) declares that a parent dominates its children.

We illustrate the remaining schemata of propagation rules by an example: We re-
consider the unsatisfiable constraintX :f(X1; X2) ^ X1/�Y ^ X2/�Y of Fig. 3. By
(D.Lab.Disj), we inferX1?X2, from which (D.Prop.Disj) yieldsY?Y , which then
clashes by (D.Clash.Disj).

X

Z

Y

Fig. 7. Nondisjoint-
ness

There are only two situations where distribution is necessary.
The situation shown in Fig. 7 is handled by (D.Distr.NotDisj):
the tree nodes denoted byX andY cannot be at disjoint po-
sitions because they both dominateZ. The distribution rule
(D.Distr.Children) is applicable to the constraint in Fig.5: As
the constraint containsY :f(Y1; Y2) ^ Y /�X , we must have ei-
therY=X or Y1/�X or Y2/�X . Propagation proves that the third choice results in a
clash, while the others lead to satisfiable constraints.



Proposition 4 (Soundness).Any dominance constraint in D-solved form is satisfiable.

Along the lines of [13]. On the other hand, the saturation algorithm forD is complete
in the sense that it computes everyminimal solved formof a dominance constraint.

Definition 5. Let', '0 be constraints,Sa set of saturation rules and� an partial order
on constraints. Then'0 is a�-minimal S-solved form for' iff '0 is anS-solved form
that is�-minimal satisfying' � '0.
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Fig. 8. A solved
form

For dominance constraints, we can simply use set inclusion.As
an example, a�-minimal D-solved form for the constraint in Fig.
8 isX/�Y ^X/�Z ^X/�X ^ Y /�Y ^Z/�Z. (Note thatX does
not need to be labeled.)

Lemma 6 (Completeness).Let' be a dominance constraint and'0 a�-minimal D-solved form for'. Then'!�
D '0.

Proof. By well-founded induction on the strict partial order� on the setf j  � '0g.
If ' is D-solved then' =set '0 by minimality and we are done. Otherwise, there is a
rule ! _ni=1 i in D which applies to'. Since' � '0 and'0 is in D-solved form,
there exists ani such that i � '0. By the inductive hypothesis,'^ i !�

D '0 and thus'!�
D '0. ut

4 Processing parallelism constraints

We extend the dominance constraint solver of the previous section to a semi-decision
procedure for parallelism constraints. The main idea is to compute the correspondence
functions for all parallelism literals in the input constraint (compare Def. 2). We use a
new kind of literals,path equalities, to accomplish this with as much propagation and
as little case distinction as possible.

We define the set of variablesbetw'(X1; X2) betweenX1 andX2 as the syntactic
counterpart of the set of nodesbetw� (�1; �2): If X1/�X2 2 ', thenbetw'(X1; X2) = fX 2 V(') jX1/�X 2 ' and (X/�X2 2 ' or X?X2 2 ')g

Given a parallelism literalX1=X2�Y1=Y2, we need to establish a syntactic corre-
spondence function : betw'(X1; X2) ! betw'(Y1; Y2). In doing this, we may have
to add new local variables to'. In the following, we always consider a constraint'
together with a setG � V of globalvariables; all other variables arelocal. For an input
constraint', we assumeV(') � G.

We record syntactic correspondences by use of a new, auxiliary kind of constraints:
apath equalityp (X1X Y1Y ) states, informally speaking, thatX belowX1 corresponds toY belowY1. More precisely, a path equality relationM� j= p (�1�2 �3�4 ) is true iff there
exists a path� such that�2 = �1� and�4 = �3�, and for each�0/+�, L� (�1�0) =L� (�3�0).

Figure 9 shows the schemata of the setsP andN of saturation rules for computing
correspondences, and Fig. 14 shows the schemata of the setT, which deal with inter-
acting parallelism literals (and thus interacting correspondences). The rule setD [ P [
N[ T forms a sound and complete semi-decision procedure for parallelism constraints,
which we abbreviate byDPNT(and accordingly for other rule set combinations).



Propagation Rules:

(P.Root) X1=X2�Y1=Y2 ! p (X1X1 Y1Y1 ) ^ p (X1X2 Y1Y2 )
(P.Copy.Dom) U1RU2 ^ V2i=1 p (X1Ui Y1Vi ) ^ X1=X2�Y1=Y2 ! V1RV2

whereR 2 f/�;?; 6=g andU1; U2 2 betw'(X1; X2).
(P.Copy.Lab) U0:f(U1; : : : ; Un) ^ Vni=0 p (X1Ui Y1Vi ) ^ X1=X2�Y1=Y2 !V0:f(V1; : : : ; Vn) whereU0?X2 2 ' orU0/+X2 2 '
(P.Path.Sym) p(XU YV )! p (YV XU )
(P.Path.Dom) p(XU YV )! X/�U ^ Y /�V
(P.Path.Eq.1) p(X1X2 X3X4 ) ^ V4i=1Xi=Yi ! p (Y1Y2 Y3Y4 )
(P.Path.Eq.2) p(XU XV )! U=V

Distribution Rules:

(P.Distr.Crown)X1/�X ^ X1=X2�Y1=Y2 ! X/�X2 _ X?X2 _ X2/+X
(P.Distr.Project)'! X=Y _ X 6=Y whereX;Y 2 V(')

Introduction of local variables:

(N.New) ' ^ X1=X2�Y1=Y2 ! p (X1X Y1X0 ) whereX 2 betw'(X1; X2);X 0 new and local

Fig. 9. Schemata of rule setsP andN for computing correspondence
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Fig. 10.Correspondence

The main rules. We start out with discussing the most
important rules for computing correspondence functions,
namely (P.Root), (N.New), (P.Copy.Dom), (P.Copy.Lab).
Schema (P.Root) states, with respect to a parallelism lit-
eralX1=X2�Y1=Y2, thatX1 corresponds toY1 andX2
corresponds toY2. To see how to go on from there, con-
sider the constraint in Fig. 10. VariableX is betweenX1
andX2, andY is betweenY1 andY2. But they are just
dominatedbyX1 andY1, respectively, their position is not
fixed. So it would be precipitous to assume thatX andY
correspond — there is nothing in the constraint which would force us to do that. Schema
(N.New) acts on this idea as follows: Given a literalX1=X2�Y1=Y2 and a variableX 2 betw'(X1; X2), correspondence p(X1X Y1X0 ) is stated betweenX and a variableX 0 62 V(') [ G. If the structure of the constraint enforces correspondence betweenX and some other variableY 2 betw'(Y1; Y2), then this will be inferred by satura-
tion. (N.New) need only be applied ifX does not yet possess a correspondent withinX1=X2�Y1=Y2. We adapt the application condition for (N.New) rules accordingly:C'0! p (X1X Y1X0 )(') is true iff X 0 62 V(') [ G and p(X1X Y1Y ) 62 ' for all variablesY
Recall thatG is the set of global variables with respect to which we saturate our con-
straint. GivenX1=X2�Y1=Y2 2 ', (P.Copy.Dom) and (P.Copy.Lab) copy dominance,



1

f

f
U

Y
f

X  / X  ~ Y  / Y

11X

2X X 2 YY

2121

f

f
U

Y
f

X  / X  ~ Y  / Y

11X

2X X 2 YY

2121
2

Fig. 11.Resolving an atomic parallelism constraint

disjointness, inequality, and labeling literals frombetw'(X1; X2) to betw'(Y1; Y2)
and vice versa. The condition on the position ofU0 in (P.Copy.Lab) makes sure that the
labels ofX2 andY2 are not copied.
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Fig. 12.X “inside” or
“outside”?

P contains two additional distribution rule schemata.
(P.Distr.Crown) deals with situations like that in Fig. 12:
We have to decide whetherX is in betw'(X1; X2) or not.
Only then do we know whether we need to apply (N.New)
toX . (P.Distr.Project), on the other hand, guesses whether
two variables should be identified or not. It is a very pow-
erful schema, so we do not want to use it too often in prac-
tice.

Examples. Before we turn to the rules inT, let us discuss two more examples that can
be handled by the rules we have seen up to now. How does syntactic correspondence
as established byDPNTrelate to semantic correspondence functions as defined in Def.
2? (P.Root) implements the first property of correspondencefunctions, the ”preserva-
tion of tree structure” property remains to be examined. Consider Fig. 11. Constraint 1
constitutes the input to the procedure, while constraint 2 shows, as grey arcs, the corre-
spondences that must hold by Def. 2. These correspondences are computed byDPNT:
We infer p(X1X1 Y1Y1 ) ^ p (X1X2 Y1Y2 ) by (P.Root). (N.New) is applicable toX and yields

p (X1X Y1X0 ) for a new local variableX 0. We haveX1/+X2 by (D.Lab.Dom), so we may
apply (P.Copy.Lab) toX1:f(X2; X) and getY1:f(Y2; X 0). But since the constraint also
containsY1:f(Y2; Y ), (D.Eq.Decom) gives usX 0=Y , from which (P.Path.Eq.1) infers
p (X1X Y1Y ). We see that the structure of the constraint has enforced correspondence be-
tweenX andY , and saturation has made the correct inferences.
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Fig. 13. Self-
overlap

While DPNT computes only finitely many solved forms for
the constraint in Fig. 11, the constraint in Fig. 13 possesses in-
finitely many different solved forms. One solved form containsX1=X2=Y1=Y2. Another containsX1/+X2=Y1/+Y2. For the case
of X1/+Y1/+X2/+Y2, there is one solved form with one local vari-
able, two with two, one with three, two with four, and so on ad infini-
tum.

Interacting correspondences. We now turn to the set of saturation
rulesT, the schemata of which are shown in Fig. 14.T handles the interaction of cor-
respondence functions for “overlapping” parallelism contexts. Schema (T.Trans.H) de-



(T.Trans.H) p(XU YV ) ^ p (YV ZW )! p (XU ZW )
(T.Trans.V) p(X1X2 Y1Y2 ) ^ p (X2X3 Y2Y3 )! p (X1X3 Y1Y3 )
(T.Diff.1) p (X1X2 Y1Y2 ) ^ p (X1X3 Y1Y3 ) ^ X2/�X3 ^ Y2/�Y3 ! p (X2X3 Y2Y3 )
(T.Diff.2) p (X1X3 Y1Y3 ) ^ p (X2X3 Y2Y3 ) ^ X1/�X2 ^ Y1/�Y2 ! p (X1X2 Y1Y2 )

Fig. 14.Rule setT: interaction of correspondences
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Fig. 15.UsingT

scribes horizontal transitivity of path equality constraints, while (T.Trans.V), (T.Diff.1)
and (T.Diff.2) all deal with vertical transitivity. The correctness of these rules is obvious.

We discuss an example whereT is needed to ensure correct interaction of cor-
respondences. Consider the constraint in Fig. 15. We haveXi/�Ui andXi/�Vi for1 � i � 3, so (P.Distr.Crown) is applicable. Suppose that in each case, we chooseUi?Yi and Vi?Yi. Suppose further that using (P.Distr.Project), we chooseU1 6=V1.
(N.New) can be applied toU1; V1 2 betw'(X1; Y1), yielding new local variablesU 01 andV 01 with p (X1U1 X2U 01 ); p (X1V1 X2V 01 ). Suppose that by (P.Distr.Project), we chooseU 01=U2 andV 01=V2, hence we get p(X1U1 X2U2 ) and p(X1V1 X2V2 ) by (P.Path.Eq.1). We

can use (N.New) onU2; V2 2 betw'(X2; Y2), getting p(X2U2 X3U 02 ) and p(X2V2 X3V 02 )
for new local variablesU 02; V 02 . Suppose that again, we chooseU 02=U3 and V 02=V3
by (P.Distr.Project). This yields p(X2U2 X3U3 ) and p(X2V2 X3V3 ) by (P.Path.Eq.1). Now we
turn to the third parallelism literal,X3=Y3�X1=Y1. Again by (N.New), we can add
p (X3U3 X1U 03 ) and p(X3V3 X1V 03 ) for new local variablesU 03; V 03 .
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Fig. 16. Vertical transi-
tivity

But now, we chooseU 03=V1 and V 03=U1 by
(P.Distr.Project), which gives us p(X3V3 X1U1 ) and p(X3V3 X1U1 ).
This constraint is unsatisfiable: In a tree structure satisfying
this constraint, the path fromX1 toU1 would have to be the
same one as the path fromX1 to V1, but the constraint con-
tainsU1 6=V1. However, (T.Trans.H) can detect this: From
p (X1U1 X2U2 ) and p(X2U2 X3U3 ), we get p(X1U1 X3U3 ), and com-

bined with p(X3V3 X1U1 ) this gives p(X3V3 X3U3 ), to which we
can addV3=U3 by (P.Path.Eq.2). As (P.Copy.Dom) copiesU1 6=V1 toU3 6=V3, this results in a clash by (D.Clash.Ineq).

Each path equality inferred byDPNsaturation describes
a correspondence for some parallelism literal. WithT, this
is different. Consider, for example, Fig. 16 whereDPN saturation can infer the corre-



spondence p(X1U1 Y1V1 ). (P.Root) yields p(U1U2 V1V2 ). Now (T.Trans.V) can add p(X1U2 Y1V2 ),
a path equality that does not describe any syntactic correspondence for any of the two
parallelism literals present. In this case, the additionalpath equality is not vital. But in
other cases, e.g. if we extend the example in Fig. 15 by a fourth context and a fourth par-
allelism literal, the ability to infer path equalities beyond correspondence is necessary
to ensure proper interaction of parallelism literals. Actually, the reason why we record
correspondence by path equalities, as quadruples of variables, is that they support this.

Implementation. A first prototype implementation ofDPNT is available as an applet
on the Internet [3]. Saturation rules are applied in an orderrefining the order mentioned
above: A distribution rule is only applied to a constraint saturated under the propagation
rules fromDPT. A rule fromN is only applied to a constraint saturated underDPT. This
implementation handles ellipses in natural language equally well as the previously men-
tioned implementation based on context unification [18]. But the two implementations
differ with respect to scope ambiguities, i.e. dominance constraint solving: While the
context unification based program could handle scope ambiguities with at most 3 quan-
tifiers, the parallelism constraint procedure resolves scope ambiguities of 5 quantifiers
in only 6 seconds and can even deal with more quantifiers.

5 Soundness

Clearly, all rules inDPNTare correct. For the soundness ofDPNT-saturation is remains
to show that generatedDPNT-solved forms are satisfiable. First, we show that a special
class ofDPNT-solved forms, called ”simple”, are satisfiable. Then we lift the result to
arbitraryDPNT-solved forms.

However, we only regardgeneratedconstraints, where each path equality either
establishes a correspondence for some parallelism literal, or is the result of combining
several such correspondence statements by aT rule.

Definition 7. Let' be a constraint.
A path equality p(U1U2 V1V2 ) 2 ' is correspondence-generated in' iff there exists

some atomic parallelism constraintX1=X2�Y1=Y2 2 ' such thatU1=X1 ^ V1=Y1 is
in ', andU2 2 betw'(X1; X2) or V2 2 betw'(Y1; Y2).

LetCP (') be the set of correspondence-generated path equalities in', and let'0
be' without all its path equalities, then a path equality isgenerated in' iff it is in the
T-saturation ofCP (') [ '0.' is calledgeneratediff each of its parallelism literals is.

Concerning correspondence-generated path equalities, ifU2 2 betw'(X1; X2), then it
must correspond toV2 and inference will determine thatV2 must be betweenY1 andY2, and vice versa. EveryDPNT-solved form of a parallelism constraint is generated,
so we can safely restrict our attention to generated constraints:

Lemma 8. Let' be a constraint without path equalities, and let' !�
DPNT '0 with '0

in DPNT-solved form. Then'0 is generated.



Definition 9. Let ' be a constraint. A variableX 2 V(') is called labeled in '
iff 9X 0 2 V(') such thatX=X 0 andX 0:f(X1; : : : ; Xn) are in' for some termf(X1; : : : ; Xn). We call' simpleif all its variables are labeled and there exists some
root variableZ 2 V(') such thatZ/�X is in' for all X 2 V(').
Proposition 10. A simple generated constraint in DPNT-solved form is satisfiable.

Proof. The constraint graph of a simple generated constraint' in DPNT-solved form
can be seen as a tree (plus redundant dominance edges, parallelism and path equality
literals). So we can transform' into a tree� by a standard construction. For every
parallelism literal in', the corresponding parallelism holds inM� : As suggested by
the examples in the previous section,DPNTenforces that the computed path equalities
encode valid correspondence functions inM� . ut

X

Y Z=U

Y = X = Z

Fig. 17.Extension

Now suppose we have a generated non-simple con-
straint' in DPNT-solved form. Take for instance the con-
straint in Fig. 17. We want to show that there is anexten-
sion' ^ '0 of it that is simple, generated, and inDPNT-
solved form. We proceed by successively labeling unla-
beled variables. Suppose we want to labelX first. The
main idea is to make all variables minimally dominated byX intoX ’s children, i.e. all
variablesV with X/+V such that there is no interveningW with X/+W/+V .

X Y

X X’

X Y

X  / X  ~ Y  / Y

1 1

2 2

2121

Fig. 18.Extension
and parallelism

So in the constraint in Fig. 17,Y; Z; U are minimally dominated.
However, we choose only one ofZ;U as we haveZ=U . Hence,
we would like to labelX by some function symbol of arity 2,
extending the constraint, for instance, byX :f(Y; Z). (If there is
no symbol of suitable arity in�, we can always simulate it by a
constant symbol and a symbol of arity� 2.) However, we have
to make sure that we preserve solvedness during extension. For
example, when addingX :f(Y; Z) to the constraint in Fig. 17,
we also addY?Z so as not to make (D.Lab.Disj) applicable.
Specifically, we have to be careful when labeling a variable likeX1 in Fig. 18 (where grey arcs stand for path equality literals):X1 is inbetw'(X1; X2),
and when we addX1:g(X) for some unaryg, we also have to addX2:g(X 0), otherwise
(P.Copy.Lab) would be applicable.

So, by adding a finite number of atomic constraints and without adding any new
local variables, we can label at least one further unlabeledvariable in the constraint,
while keeping it inDPNT-solved form. Thus, if we repeat this process a finite number
of times, we can extend our generated constraint inDPNT-solved form to a simple
generated constraint inDPNT-solved form, from which we can then read off a solution
right away.

Theorem 11 (Soundness).A generated constraint in DPNT-solved form is satisfiable.

6 Completeness

DPNT-saturation is complete in the sense that it computes everyminimal solved form
of a parallelism constraint. For parallelism constraints,the set inclusion order we have



(1) Eliminating/introducing a local variableX=Z ^ ' =loG ' if X 62 G,X 62 V('), Z 2 V(')
(2) Renaming a local variable'=loG '[Y=X℄ if X 62 G, Y 62 V(') [ G
(3) Exchanging representatives of an equivalence class in aconstraintX=Y ^ ' =loG X=Y ^ '[Y=X℄
(4) Set equivalence (associativity, commutativity, idempotency)'=loG  if ' =set  

Fig. 20.The equivalence relation=loG on constraints handling local variables

used previously is not sufficient; we adapt it such that it takes local variables into ac-
count.

gg

X  / X  ~ Y  / Y
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Fig. 19.Local
variables?

Consider Fig. 19. If (N.New) is applied toX first, this yields
p (X1X Y1X0 ) for a new local variableX 0, plusY1:g(X 0) andX 0=Y
by (P.Copy.Lab) and (D.Eq.Decom). Accordingly, if (N.New)is ap-
plied toY first, we get p(X1Y 0 Y1Y )^X1:g(Y 0)^Y 0=X for a new lo-
cal variableY 0. The nondeterministic choice in applying (N.New)
leads to twoDPNT-solved forms incomparable by� which, how-
ever, we do not want to distinguish.

To solve this problem, we use an equivalence relation handling
local variables: LetG � V , then=loG is the smallest equivalence
relation on constraints satisfying the axioms in Fig. 20. From this equivalence and sub-
set inclusion, we define the new partial order�G .

Definition 12. ForG � V let�G be the reflexive and transitive closure(� [ =loG )�.
We also write=G for�G \ �G . We return to our above example concerning Fig. 19.

LetG = fX1; X2; Y1; Y2; X; Y g. ThenX1:g(X)^ Y1:g(Y )^ Y1:g(X 0)^X 0=Y =loGX1:g(X) ^ Y1:g(Y ) ^ X 0=Y by axioms (3) and (4). This, in turn, is=loG equivalent
to X1:g(X) ^ Y :g(Y ) by axiom (1). Again by axiom (1), this is=loG equivalent toX1:g(X)^Y1:g(Y )^Y 0=X , which equalsX1:g(X)^X1:g(Y 0)^Y1:g(Y )^Y 0=X
by axioms (4) and (3).

Lemma 13. The partial order�G can be factored out into the relational composition
of its components, i.e.,�G is� Æ =loG .

Lemma 14. If ' �G  and is a DPNT-solved form, then there exists a DPNT-solved
form'0 such that' � '0 =loG  .

Lemma 15. Let' be a constraint,G � V , and a DPNT-solved form with' �G  .
If a rule � 2 DPNT is applicable to', then there exists a constraint'0 satisfying'!f�g '0 and'0 �G  .

Proof. By Lemma 14 there exists aDPNT-solved form 0 with ' �  0 =loG  . First,
suppose� is a rule'! _ni=1'i in DPT. Then there exists ani such that'i �  0, hence



' ^ 'i �  0. Now suppose that� 2 N: Let � be'! p (X1X Y1X0 ) with X 0 62 G [ V(').
Then p(X1X Y1Y ) 2  for some variableY . But then by axiom (2) of Fig. 20, we have 0 =loG  0[Z 0=X 0℄ for someZ 0 62 G [ V( 0) [ V('), which by axiom (1) is=loG
equivalent to 0[Z 0=X 0℄^Y=X 0, which in turn equals 0[Z 0=X 0℄^Y=X 0^ p (X1X Y1X0 )
by axiom (3). Call this last constraint 00, then' ^ p (X1X Y1X0 ) �  00 =loG  . ut
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Fig. 21. Ter-
mination?

It remains to show that there exists aDPNT-branch of finite length
from' to each of its minimal solved forms. If saturation rules can be ap-
plied in any order,N can speculatively generate an arbitrary number of
local variables. For example, for the constraint in Fig. 21,it could suc-
cessively postulate p(X1Y1 Y1Y 01 ), p (X1Y 01 Y1Y 001 ), . . . . We solve this problem
by choosing a special rule application order in our completeness proof:
After each!N step, we first form aDPT-saturation before considering
another rule fromN. We use adistance measurebetween a smaller and
a larger constraint to prove completeness forDPNTsaturation obeying
this application order. The two elements of the measure are:the num-
ber of distinct variables in the larger constraint not present in the smaller one; and the
minimum number of correspondences still to be computed for aconstraint.

Definition 16. We define the numberl(S; ') of lacking correspondentsin ' for a setS � V(') byl(S; ') =XnlX1Y1X2Y2(X;') + lY1X1Y2X2(X;') j X 2 S andX1=X2�Y1=Y2 2 'o
where we fix the values of the auxiliary terms be setting for all W;U;U 0; V; V 0 2 V('):lUU 0V V 0(W;') = �1 if W 2 betw'(U; V ) and p( UW U 0W 0 ) is not in' for anyW 00 otherwise

Definition 17. For constraints'1�'2, let di�('1; '2) be the size of the setfX 2V('2) j X 6=Y 2 '2 for all Y 2 V('1)g.
We call a setS � V(') of variables aninequality set for' iff X 6=Y 2 ' for any

distinctX;Y 2 S.

For constraints'2 that are saturated with respect to (P.Distr.Project),di�('1; '2) is
the number of variablesX in '2 such thatX=Y 62 '2 for all Y 2 V('1).
Definition 18. Let ',  be constraints andG � V with ' �G  . Then theG-measure�G(';  ) for ' and is the sequence

��1G(';  ); �2(')�, where:

– �1G(';  ) = minfdi�(';  0) j ' �  0 =loG  and 0 is DPNT-solvedg
– �2(') = minfl(S; ') j S is a maximal inequality set for'g.

We orderG-measures by the lexicographic ordering< on sequences of natural numbers,
which is well-founded. The main idea of the following proof is that after each!N step
and subsequentDPT-saturation, theG-measure between a constraint and its solved form
has strictly decreased.



Theorem 19 (Completeness).Let ' be a constraint,G � V , and a �G-minimal
DPNT-solved form for'. Then there exists a DPNT-solved form 0 =G  which can
be reached from', i.e.'!�

DPNT  0.
Proof. W.l.o.g. let' beDPT-closed. If no rule fromN is applicable to' then' =G  
by the minimality of . If a rule� 2 N is applicable to', then by Lemma 15 there exist'0; '00 such that' !f�g '00 !�

DPT '0 �G  , and'0 is DPT-saturated. By induction,
it is sufficient to show that�G('0;  ) < �G(';  ). Note that because' is DPT-closed,
a maximal inequality set within' contains exactly one variable from each syntactic
variable equivalence class represented in'; and l(fXg; ') = l(fY g; ') wheneverX=Y 2 ' because of saturation under (P.Path.Eq.1). The value ofdi�(';  0) is mini-
mal, i.e. equal to�1G(';  ), if for any Y 2 V( 0) with Y 6=X 2  0 for all X 2 V(')
the following holds:Y is local1 and there is no variableZ 2 V( 0) distinct fromY
with Y=Z 2  0.

Let '00 be' ^ p (X1X Y1X0 ). In '0, (P.Distr.Project) has been applied toX 0 and all
variables inV('). Let 0 =loG  with ' �  0 and minimaldi�(';  0). The constraint 0 contains p(X1X Y1Z ) for someZ. W.l.o.g. we pick a 0 that does not containX 0.

– If X 0=Y 2 '0 for someY 2 V('), then�2('0) < �2(') and�1G('0;  ) =�1G('0;  ): l(fV g; '0) < l(fXg; ') wheneverV=X 2 '0, and eitherX or some
other member of its equivalence class must be in each maximalinequality set. At
the same time, a maximal inequality set within'0 can contain only one ofX 0 andY , soX 0 contributes nothing additional to�2('0).
Let 00 be 0^X 0=Z^ 0[X 0=Z℄. Then 00 is DPNT-solved, and'0 �  00. We havedi�('0;  00) = di�(';  0) because for anyV 6=Y 2  0, 00 containsV 6=Y ^V 6=X 0.
Furthermore,di�('0;  00) is minimal because the only variable in 00 not in 0 isX 0.

– If X 0 6=Y 2 '0 for all Y 2 V('), then�1G('0;  ) < �1G(';  ): Let 00 be 0[X 0=Z℄.
Thus, 0 =loG  00 by axiom (2) and becauseZ must be local, andZ=Z 0 is not in 00
for any distinctZ 0 because of the minimality ofdi�(';  0), as pointed out above.
Obviously 00 is aDPNT-solved form with'0 �  00. Furthermore,di�('0;  00) =di�(';  )� 1 because we must have hadZ 6=V 2  0 for all V 2 V('). ut

7 Conclusion

We have presented a semi-decision procedure for parallelism constraints which termi-
nates for the important fragment of dominance constraints.It uses path equality con-
straints to record correspondence, allowing for strong propagation. We have proved the
procedure sound and complete. In the process, we have introduced the concept of a
minimal solved form for parallelism constraints.

Many things remain to be done. One important problem is to describe the linguisti-
cally relevant fragment of parallelism constraints and seewhether it is decidable. Then,
the prototype implementation we have is not optimized in anyway. We would like to
1 The variableY is local becauseV( 0) \ G = V( ) \ G = V(') \ G, otherwise would not

be aminimalsolved form for'.



replace it by one using constraint technology and to see how that scales up to large
examples from linguistics. Also, we would like to apply parallelism constraints to a
broader range of linguistic phenomena.
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A Correspondence Functions

In the following appendix sections, we give the proofs omitted earlier for brevity. The
first proof we still owe is that of lemma 3: We prove that whenever we have a corre-
spondence function, then corresponding nodes are reached via the same paths from the
parallelism roots down.

Lemma 3. If  : betw� (�1; �2) ! betw� (�3; �4) is a correspondence function, then(�1�) = �3� for all �1� 2 betw� (�1; �2).
Proof. By induction on�. The case of� = " is obvious. So let� = �0i 2 D�
with �1� 2 betw� (�1; �2) and let� = �1�0. As �0i 2 D� , we have� 6=�2. Sup-
poseM� j= �:f(�1; : : : ; �n), thenM� j= (�):f((�1); : : : ; (�n)) as is a cor-
respondence function. By the inductive hypothesis,(�) = (�1�0) = �3�0. Hence(�1�0j) = �3�0j for 1 � j � n. As � 2 D� , we havei 2 f1; : : : ; ng, so(�1�) = �3�. ut
B Soundness of rule setD for dominance constraints

We proceed in two steps, as sketched for the soundness proof of DPNT in section 5.
First, we identifysimple D-solved formsand show that they are satisfiable (Proposi-
tion 21). Then we show how to extend everyD-solved form into a simpleD-solved
form by adding further constraints (Lemma 26).

Definition 20. A variableX is labeled in' iff X=Y 2 ' andY :f(Y1; : : : ; Yn) 2 '
for some variableY and termf(Y1; : : : ; Yn). A variableY is a root variablefor ' ifY /�Z 2 ' for all Z 2 V('). We call a constraint' simple iff all its variables are
labeled, and if there is a root variable for'.

The constraint graph of a simple constraint inD-solved form (Def. 9) is tree-shaped.

Lemma 21. A simple D-solved form is satisfiable.

Proof. By induction on the number of literals in a simpleD-solved form'. LetZ be a
root variable in'. Since all variables in' are labeled, there is a variableZ 0 and a termf(Z1; : : : ; Zn) such thatZ=Z 0 andZ 0:f(Z1; : : : ; Zn) are in'. LetV = fX 2 V(') j Z=X 2 'g andVi = fX 2 V(') j Zi/�X 2 'g:
for all 1 � i � n. To see thatV(') = V [ V1 [ : : : [ Vn, let X 2 V(') such thatZi/�X 62 ' for all 1 � i � n. AsZ is a root variable,Z/�X 2 ', and by saturation
with (D.Distr.Child),' must containZ=X .

For a setW � V(') we define'jW as the conjunction of all literals 2 ' withV( ) �W . We show that' j=j '0 holds where '0 := 'jV ^ Z:f(Z1; : : : ; Zn) ^ n̂i=1'jVi
because' is in D-solved form: Each literal in' is entailed by'0.



– SupposeX :g(X1; : : : ; Xm) 2 ' for some variableX and termg(X1; : : : ; Xm).
If Zi/�X 2 ' for some1 � i � n, thenX :g(X1; : : : ; Xm) 2 'jVi since' is saturated under (D.Lab.Dom) and (D.Dom.Trans). Otherwise,Z=X 2 ',
and thusZ=X 2 'jV . In this case,f = g and n = m by saturation with
(D.Lab.Ineq) and (D.Clash.Ineq) coupled with the clash-freeness of'. As ' is
saturated under (D.Eq.Decom), it must containZi=Xi for 1 � i � n, henceZi=Xi 2 'jVi . So,'0 containsZ=X ^ Z:f(Z1; : : : ; Zn) ^ Vni=1 Zi=Xi, which
entailsX :g(X1; : : : ; Xm) as required.

– Now supposeXRY 2 ' for some variablesX;Y andR 2 f/�; 6=;?g. There are
four possible cases:� If X 2 Vi, Y 2 Vj with 1 � i 6= j � n, thenR cannot be/� by (D.Dom.Refl),

(D.Prop.Disj) and (D.Clash.Disj) combined with the clash-freeness of'. '0
entailsZi?Zj and thusX?Y as well asX 6=Y .� The cases whereX andY both belong toV or to the sameVi are obvious.� If X 2 V and Y 2 Vi for some i, thenX/�Y 2 ' by (D.Lab.Dom)
and (D.Dom.Trans).R cannot be? by saturation under (D.Dom.Refl),
(D.Prop.Disj) and (D.Clash.Disj) and the clash-freeness of '.'0 entailsZ/+Zi
and thusX/�Y andX 6=Y .� The case ofX 2 V andY 2 Vi is symmetric to the previous one.

Next note that all'jVi are simpleD-solved forms. By the inductive hypothesis there
exist solutions(M�i ; �i) j= 'jVi for all 1 � i � n. Thus,(Mf(�1;:::;�n); �) is a
solution of' if �jVi = �i and�(X) = �(Z) is the root node off(�1; : : : ; �n) for allX 2 V . ut

Now suppose we have a constraint' in D-solved form. We want to show that there
is anextension' ^ '0 of ' such that' ^ '0 is in D-solved form as well as simple. We
proceed by successively labeling unlabeled variablesX 2 ', taking asX ’s children
the variables minimally dominated by it, as sketched in Fig.17. We formalize this as
follows: Given a constraint' we define an ordering�' on its variables such thatX �'Y holds iffX/�Y 2 ' but notY /�X 2 '.

Definition 22. Let ' be a dominance constraint andX 2 V(') unlabeled. Then we
define the set con'(X) of variablesconnected toX in ' as follows:

con'(X) = fY 2 V(') j Y minimal withX �' Y g
For the constraint in Fig. 17, con'(X) = fY; Z; Ug. However, when picking variables
to serve as children ofX , we do not use all of con'(X): In the example above, we
choose only one ofZ;U as we haveZ=U .

Definition 23. We callV � V(') a'-disjointnessset if for any two distinct variablesY1; Y2 2 V , Y1=Y2 62 '.

The idea is that all variables in a'-disjointness set can safely be placed at disjoint
positions in at least one of the trees solving'.



Lemma 24. Let ' be D-saturated andX 2 V('). If V is a maximal'-disjointness
set within con'(X), then for allY 2 con'(X) there exists someZ 2 V such thatY=Z 2 '.

Proof. If Y=Z 62 ' for all Z 2 V , thenfY g [ V is a disjointness set; thusY 2 V by
the maximality ofV . ut
Lemma 25 (Extension by Labeling).Every D-solved form' with an unlabeled vari-
ableX can be extended to a D-solved form in whichX is labeled.

Proof. Let fX1; : : : ; Xng be a maximal'-disjointness set in con'(X). Let us assume
for the moment that� contains a function symbolf of arityn. We define the following
extensionext(') of ' ^X :f(X1; : : : ; Xn):ext(') := ' ^ X :f(X1; : : : ; Xn) ^ n̂i=1X 6=Xi ^^Xi/�U;Xj/�V 2';1�i6=j�n U?V ^ ^Z:g(:::)2';g 6=f _ ar(g)6=ar(f) Z 6=X

Note thatX is labeled inext(') sinceX=X 2 ' by (D.Dom.Refl). We consider
each rule ofD in turn and show that it is not applicable toext(').
(D.Clash.Ineq): No new dominance constraints have been introduced.

Suppose a new inequalityX 6=Xi has made (D.Clash.Ineq) applicable. ThenX=Xi 2 ', butXi 2 con'(X).
Suppose a new inequalityZ 6=X has made (D.Clash.Ineq) applicable. ThenZ:g(: : :) andX=Z are in', butX is unlabeled in'.

(D.Clash.Disj): Suppose a new literalU?V has made (D.Clash.Disj) applicable,
whereXi/�U;Xj/�V 2 ' with i 6= j. ThenU=V 2 '. As ' is saturated un-
der (D.Distr.NotDisj), we must have eitherXi/�Xj orXj/�Xi in '. ButfXi; Xjg
is a disjointness set.

(D.Dom.Refl): No new variables have been added.
(D.Dom.Trans): No new dominance constraints have been added.
(D.Eq.Decom): For (D.Eq.Decom) to be applicable toX :f(X1; : : : ; Xn) and some

literalZ:f(Z1; : : : ; Zn) 2 ', Z=X must be in' already. ButX is unlabeled in'.
(D.Lab.Ineq): The only new labeling constraint isX :f(X1; : : : ; Xn). Z 6=X is inext(') for all Z labeled anything butf .
(D.Lab.Disj): The only new labeling constraint isX :f(X1; : : : ; Xn). By saturation

under (D.Dom.Refl),Xi/�Xi 2 ' for 1 � i � n, soXi?Xj is in ext(') for all1 � i 6= j � n by definition.
(D.Prop.Disj): The only disjointness constraints new inext(') have the formU?V ,

whereXi/�U;Xj/�V 2 ' for j 6= i. If U/�U 0 andV /�V 0 are in', then by
saturation under (D.Dom.Trans)Xi/�U 0; Xj/�V 0 2 ', soU 0?V 0 is in ext(').

(D.Lab.Dom): X :f(X1; : : : ; Xn) is the only labeling constraint inext(') � '. We
haveX/�Xi 2 ' for all 1 � i � n becausefX1; : : : ; Xng � con'(X). X 6=Xi
is in ext(') by definition for all1 � i � n.



(D.Distr.Child): SupposeX/�Z 2 ', but neitherZ/�X norXi/�Z is in ' for anyi 2 f1; : : : ; ng. ThenX �' Z. If Z 2 con'(X), we have the following situation:
The disjointness setfX1; : : : ; Xng is maximal within con'(X), soZ=Xi for
somei 2 f1; : : : ; ng by lemma 24, a contradiction. So supposeZ is not minimal,
i.e. there exists someY 2 con'(X) such thatY /�Z 2 '. But then again,Xi=Y
for somei 2 f1; : : : ; ng, soXi/�Z.

(D.Distr.NotDisj): No new dominance constraints have been added.

We now turn to the case that the signature does not contain a function symbol for
the arity we need. We can get around this problem by encoding the symbols with a
nullary symbol and one symbol of arity� 2, whose existence we have assumed. This
encoding may introduce new variables, but only finitely many. For a detailed description
of this construction, see [11], lemma 4.11. If a function symbol of the appropriate arity
is present in�, then the labeling ofX does not introduce new variables. ut
Lemma 26. Every D-solved form can be extended to a simple D-solved form.

Proof. Let ' beD-saturated and withoutfalse. Without loss of generality, we can as-
sume that' has a root variable (otherwise, we choose a fresh variableX and consider' ^ VfX/�Y jY 2 V(')g instead of'). By Lemma 25, we can successively label all
variables in'. ut

Together, lemmas 21 and 26 show the soundness ofD:

Proposition 4 (Soundness).Any dominance constraint in D-solved form is satisfiable.

C Soundness of rule setDPNT for parallelism constraints

Generatedness is about where path equality literals may occur. (See Def. 7.) In proving
soundness ofDPNT, we may restrict ourselves to generated constraints, sinceall solved
forms that are computed are generated:

Lemma 8. Let' be a constraint without path equalities and let' !�
DPNT '0 with '0

in DPNT-solved form. Then'0 is generated.

Proof. Let '1; : : : ; 'n be a sequence of constraints such that'1 =set ', 'n =set '0,
and'i !DPNT 'i+1 for 1 � i � n� 1. We show by induction oni that (1) each
p (XU YV ) 2 'i is generated in'0, (2) alongside with p(YV XU ) and every p(X0U 0 Y 0V 0 )
with X 0=X;U 0=U; Y 0=Y; V 0=V 2 '0.'1 contains no path qualities. So let'i !f�g 'i+1, where� is an instance of
(P.Root), (P.Path.Sym), (P.Path.Eq.1) or (N.New), or� 2 T.

If � is an instance of (P.Root), then'i+1 has the form'i ^ p (X1X1 Y1Y1 ) ^ p (X1X2 Y1Y2 )
for someX1; X2; Y1; Y2. Then X1=X2�Y1=Y2 2 ', and we haveX1; X2 2betw'0(X1; X2) by closure under (D.Dom.Refl) and (P.Path.Dom). So p(X1X1 Y1Y1 ),



p (X1X2 Y1Y2 ) are correspondence-generated in'0. Condition (2) from above holds for

p (X1X1 Y1Y1 ) and p(X1X2 Y1Y2 ) by closure of'0 under (P.Path.Sym), (P.Path.Eq.1) and
(D.Dom.Trans).

If � is an instance of (N.New), then'i+1 has the form'i ^ p (X1X Y1X0 ), andX1=X2�Y1=Y2 2 'i for someX2; Y2 such thatX 2 betw'0(X1; X2). So p(X1X Y1X0 )
is correspondence-generated in'0. Condition (2) holds for p(X1X Y1X0 ) by closure under
(P.Path.Sym), (P.Path.Eq.1), (D.Dom.Trans) and (D.Prop.Disj).

If � 2 T and'i+1 has the form'i ^ p (XU YV ), then p(XU YV ) is generated by def-
inition. Concerning condition (2), we just consider the case of (T.Trans.H), the oth-
ers are analogous. Suppose� has the form p(XU ZW ) ^ p ( ZW YV ) ! p (XU YV ). Then
p ( ZW XU ); p (YV ZW ) are in'0 by closure under (T.Trans.H) and generated by the in-
ductive hypothesis. So p(YV XU ) 2 '0 is generated in'0 as well. The case of a literal

p (X0U 0 Y 0V 0 ) whereX 0=X;U 0=U; Y 0=Y; V 0=V 2 '0 is analogous.
If � is an instance of (P.Path.Sym) or (P.Path.Eq.1) and'i+1 has the form'i ^

p (XU YV ), then p(XU YV ) is generated in'0 because of inductive hypothesis (2). ut
As for the case of dominance constraints, we first prove that simple generated con-

straints inDPNT-solved form are satisfiable.

Proposition 10. A simple generated constraint in DPNT-solved form is satisfiable.

Proof. Let ' be a simple generated constraint inDPNT-solved form, and let'dom be
the maximal subset of' that is a dominance constraint.'dom is in D-solved form, so
it is satisfiable (Lemma 21). It remains to show that all path equality literals and all
parallelism literals of' are satisfied in a solution(M� ; �) of 'dom as constructed in
lemma 21. Note that by this construction, if� 2 D� , then there exists someX 2 V(')
with �(X) = �.

Path equality literals.Let p (XU YV ) be a path equality literal in'. As' is simple, eitherX=U 2 ', or there existX0; : : : ; Xn 2 V(') for somen such thatX0=X;Xn=U 2' and for all0 � i � n � 1, Xi:fi(X 0i1 ; : : : ; X 0imi ) 2 ' for someX 0i1 ; : : : ; X 0imi 2V(') andfi 2 � of aritymi, andX 0ji=Xi+1 2 ' for someji 2 fi1; : : : ; imig. n and
the fi, 1 � i � n, are unique as' is clash-free and closed under (D.Distr.NotDisj),
(D.Distr.Child) and (D.Lab.Ineq). We show, by induction onthe length of a proof of
generatedness for p(XU YV ), that ifX=U 2 ' thenY=V 2 ', and that otherwise for
all 0 � i � n, p ( XXi YYi ) 2 ' for someYi 2 V(') in such a way that for0 � i � n�1,Yi:fi(Y 0i1 ; : : : ; Y 0imi ) 2 ' for someY 0i1 ; : : : ; Y 0imi 2 V('), andY 0ji=Yi+1 2 '.

Suppose p(XU YV ) is correspondence-generated. Then there exists some paral-
lelism literal W1=W2�W3=W3 2 ' with W1=X;W3=Y 2 '. W.l.o.g. supposeU 2 betw'(W1;W2), thenV 2 betw'(W3;W4) by (P.Copy.Dom). IfX=U 2 ',
then alsoY=V 2 ' by closure under (P.Copy.Dom). SupposeX=U 62 '. We proceed
by induction onn.

Supposen = 1. We have p(X0X0 Y0Y0 ) 2 ' by closure under (P.Root) and
(P.Path.Eq.1). IfX :f(X 01; : : : ; X 0m) 2 ', thenX 01; : : : ; X 0m 2 betw'(W1;W2) by



closure under (D.Lab.Dom), (D.Dom.Trans), (P.Distr.Crown) and the fact thatU 2betw'(W1;W2). ' must contain eitherX/�W2 or X?W2 asX 2 betw'(W1;W2),
and ifX/�W2 then alsoX 6=W2 by (P.Distr.Project) sinceU 2 betw'(W1;W2) andX 6=U by (P.Lab.Dom); so by closure of' under (N.New) and (P.Copy.Lab), we must
haveY :f(Y 01 ; : : : ; Y 0m) 2 ' for someY 01 ; : : : ; Y 0m 2 V('). Likewise, if U=X 0j , thenV=Y 0j by (P.Copy.Lab), (P.Path.Eq.1).

Now supposen > 1. As p(XU YV ) is correspondence-generated, there exists
someW1=W2�W3=W3 2 ' with W1=X;W3=Y 2 ' andU 2 betw'(W1;W2),V 2 betw'(W3;W4). As n > 1, there existsXn�1 such thatX/�Xn�1 2 ' andXn�1:f(X 01; : : : ; X 0m) 2 ' for somef;m;X 01; : : : ; X 0m, andU=X 0j 2 ' for somej.
AsX;U 2 betw'(W1;W2) andX/�Xn�1/�U 2 ' by (D.Lab.Dom), (D.Dom.Trans),Xn�1 2 betw'(W1;W2) must have been chosen by (P.Distr.Crown), so by (N.New)
there existsYn�1 with p ( XXn�1 YYn�1 ) 2 '. By the inductive hypothesis, p( XXi YYi ) 2 '
for all 0 � i � n� 1. AsXn�1; U 2 betw'(W1;W2) andXn�1 6=X 0i for 1 � i � m
by (D.Lab.Dom), we must haveX 01; : : : ; X 0m 2 betw'(W1;W2) by (P.Distr.Crown). So
by (N.New) there areY 01 ; : : : ; Y 0m such that p( XX0i YY 0i ) 2 ' for 1 � i � m. As above,

we can argue that eitherXn�1?W2 orXn�1/+W2 must be in', so by (P.Copy.Lab),Yn�1:f(Y 01 ; : : : ; Y 0m) 2 '. Furthermore,' must containV=Y 0j by (P.Path.Eq.1).

Suppose p(XU YV ) is generated but not correspondence-generated, i.e. thereexists a
rule� 2 T with rhs p(XU YV ) such that all path equality literals in the lhs of� are gener-
ated. Suppose� is an instance of (T.Trans.H) and the lhs of� is p (XU ZW ) ^ p ( ZW YV ).
If X=U 2 ' thenZ=W 2 ' and thus alsoY=V 2 ' by the inductive hypothe-
sis. So supposeX=U 62 ', and suppose we have sequencesX=X0; : : : ; Xn1=U andZ=Z0; : : : ; Zn2=W . By the inductive hypothesis, we must haven1=n2.

Now suppose� is an instance of (T.Diff.2) and the lhs of� is p ( XU 0 YV 0 )^ p ( UU 0 VV 0 )^X/�U ^ Y /�V . If X=U 0 2 ', thenX=U 2 ' by (D.Dom.Trans), and by the induc-
tive hypothesisY=V 0 and thusY=V are in' by (D.Dom.Trans). IfU=U 0 2 ', thenV=V 0 2 ' by the inductive hypothesis, and p(XU YV ) 2 ' even without applica-
tion of �. Suppose otherwise, and letX=X0; : : : ; Xn1=U 0 andU=U0; : : : ; Un2=U 0.
By closure under (D.Lab.Dom), (D.Dom.Trans) and (D.Distr.NotDisj), there exists a
minimal i 2 f0; : : : ; n1g with U0/�Xi 2 '. ' is simple, so by (D.Distr.Child), we
must haveXi=U0 2 ', i.e. we can choose the sequenceX0; : : : ; Xn1 such that it
equalsX0; : : : ; Xi�1; U0; : : : ; Un2 . But then the inductive hypotheses already hold for
p (XU YV ) and the sequenceX = X0; : : : ; Xi�1; U0=U . The cases of� being an in-
stance of (T.Trans.V) or (T.Diff.1) are analogous.

Now let'0 = 'dom [ fX1=X2�Y1=Y2 2 'g[f p (XU YV ) 2 ' j 9f; n; i;X1; : : : ; Xn: X :f(X1; : : : ; Xn); Xi=U 2 'g:
Then' j=j '0: ' j= '0 since'0 � '. '0 j= ' since all path equalities in' of the form
p (XX YY ) are entailed anyway, and the remaining path equalities in'0 � ' are entailed
by T and the instances of (P.Path.Eq.1).

Let (M� ; �) be a solution of'dom constructed as in lemma 21. It remains to
show that each path equality in'0 is satisfied by(M� ; �). So let p(XU YV ) 2 '0, and



let X :f(X1; : : : ; Xn); Xi=U 2 '. Then, as shown, there areY1; : : : ; Yn such thatY :f(Y1; : : : ; Yn); Yi=V 2 '. Then by the construction from lemma 21, the subtree�X
of � with root�(X) is labeledf , as is the subtree�Y of � with root�(Y ), and the path
from�(X) to �(Xi) = �(U) in �X is i, as is the path from�(Y ) to �(Yi) = �(V ) in�Y .

Parallelism literals. Let X1=X2�Y1=Y2 2 ', and let�(X1)=�1; �(X2)=�2; �(Y1)=�3; �(Y2)=�4. Then�1/��2; �3/��4 hold inM� as
it is a model of'dom. We define a function : betw� (�1; �2)! betw� (�3; �4) by(�(X))=�(Y ) iff X 2 betw'(X1; X2) and p(X1X Y1Y ) 2 ':
It remains to show that is the correspondence function for�1=�2��3=�4. is well-defined because if p(X1X Y1Y ); p (X1X Y1Z ) 2 ', then by closure under
(T.Trans.H), (P.Path.Sym), (P.Path.Eq.1) alsoY=Z 2 '.

The domain of is betw� (�1; �2): we first show that the domain of is a subset
of betw� (�1; �2). LetX 2 betw'(X1; X2). AsM� is a model of'dom, �1/��(X)
and either�(X)/��2 or �(X)?�2 must hold inM� . So�(X) 2 betw� (�1; �2). We
now show thatbetw� (�1; �2) is a subset of the domain of. Let � 2 betw� (�1; �2),
then, as noted above, there exists anX with �(X) = �. We need to show thatX 2betw'(X1; X2). ' possesses a root variable, call itX0, and we haveX0/�X1; X0/�X
in '. LetX 00 be a/+-maximal variable such thatX 00/�X1; X 00/�X 2 '. If X 00=X 2', thenX/�X1 by closure under (D.Dom.Trans), and' must containX=X1 by
(P.Distr.Project) because�1/��. If X 00=X 000 ; X 000 :f(Z1; : : : ; Zn) 2 ', then we cannot
haveZi/�X1; Zj/�X 2 ' for 1 � i 6= j � n, since thenX?X1 2 ' by closure
under (D.Dom.Trans), (D.Prop.Distr). We cannot haveZi/�X1; Zi/�X 2 ' for somei 2 f1; : : : ; ng since we have chosenX 00 to be maximal. The only remaining possibility
is X 00=X1 2 ' andZi/�X 2 ' for somei 2 f1; : : : ; ng. In any case,X1/�X 2 '.
By (P.Distr.Crown), we must have chosen eitherX/�X2 or X?X2. By an analogous
argument, one can see that the range of is betw� (�3; �4). is one-to-one (injective) because if p(X1X Y1Z ); p (X1Y Y1Z ) 2 ' for X;Y 2betw'(X1; X2), thenX=Y 2 ' by closure under (P.Copy.Dom). It is onto (surjec-
tive) by closure under (N.New).(�1) = �3, and(�2) = �4 by closure under (P.Root). is structure-preserving: suppose 0 2 betw� (�1; �2) � f�2g, andM� j= 0:f( 1; : : : ;  n). Then there exists aU0 2 V(') with �(U0) =  and, as
shown above,U0 2 betw'(X1; X2). As ' is simple,U0 must be labeled:' must
containU0=U 00; U 00:f(U1; : : : ; Un) for someU 00; U1; : : : ; Un. By (P.Distr.Project) we
must haveU0 6=X2 2 ' since 0 6=�2. So by (P.Distr.Crown), eitherU0/+X2 orU0?X2 2 '. ThusU1; : : : ; Un 2 betw'(X1; X2). By closure under (N.New),' con-
tains p(X1Ui Y1Vi ), 0 � i � n, for someV0; : : : ; Vn, and by closure under (P.Path.Eq.1)
and (P.Copy.Lab), it containsV0:f(V1; : : : ; Vn). By the construction of, we have( i) = (�(Ui)) = �(Vi) for 0 � i � n, and as(M� ; �) j= 'dom, we must
haveM� j= �(V0):f(�(V1); : : : ; �(Vn)) = ( 0):f(( 1); : : : ; ( n)). The opposite
direction, starting fromM� j= ( 0):f(( 1); : : : ; ( n)), is proved by an analogous
argument. ut



Now we show how to extend a non-simple generated constraint in DPNT-solved
form to a simple one. As mentioned in Sec. 5, if we label an unlabeled variableX
occurring within some parallelism context, we have to labelsimultaneously the corre-
spondent ofX , as well as allits correspondents. We formalize this in the notion of the
copy setof a labeling literalX :f(X1; : : : ; Xn).
Definition 27. Let ' be a constraint withX;X1; : : : ; Xn; Y; Y1; : : : ; Yn 2 V(') and
let f be a function symbol of arityn. Then we define,!' byX :f(X1; : : : ; Xn) ,!' Y :f(Y1; : : : ; Yn)
iff there exists someU1=U2�V1=V2 2 ' such thatX;X1; : : : ; Xn 2 betw'(U1; U2)
andX=U2 62 ' but p(U1X V1Y ) 2 ' and p(U1Xi V1Yi ) 2 ' for 1 � i � n.

Furthermore,opy'�X :f(X1; : : : ; Xn)� := fY :f(Y1; : : : ; Yn) jX :f(X1; : : : ; Xn) ,!�' Y :f(Y1; : : : ; Yn)g
where as usual,!�' is the reflexive and transitive closure of,!'.

Lemma 28. Let' be a constraint in DPNT-solved form, and letY :f(Y1; : : : ; Yn) 2opy'�X :f(X1; : : : ; Xn)�.
– If X is unlabeled in', then so isY .
– If fX1; : : : ; Xng � con'(X), thenfY1; : : : ; Yng � con'(Y ).
– If fX1; : : : ; Xng is a maximal'-disjointness set in con'(X), thenfY1; : : : ; Yng

is a maximal'-disjointness set in con'(Y ).
Proof. By well-founded induction on the strict partial order� on the setfS jfX :f(X1; : : : ; Xn)g � S � opy'�X :f(X1; : : : ; Xn)�g.

The case ofS = fX :f(X1; : : : ; Xn)g is trivial. Otherwise,S has the formS 0 [fY :f(Y1; : : : ; Yn)g and there existsZ:f(Z1; : : : ; Zn) 2 S 0 with Z:f(Z1; : : : ; Zn) ,!'Y :f(Y1; : : : ; Yn) (becauseX :f(X1; : : : ; Xn) 2 S, so if there were no suchZ:f(Z1; : : : ; Zn) 2 S 0, thenS 6� opy'�X :f(X1; : : : ; Xn)�). LetU1=U2�V1=V2 2' with Z;Z1; : : : ; Zn 2 betw'(U1; U2) andZ=U2 62 ' but p(U1Z V1Y ) 2 ' and
p (U1Zi V1Yi ) 2 ' for 1 � i � n. ThenY; Y1; : : : ; Yn 2 betw'(V1; V2) by closure un-
der (P.Copy.Dom), andY=V2 62 ', again by closure under (P.Copy.Dom).

– SupposeZ is unlabeled. ThenY must be unlabeled too, as any labeling literal
would have been copied by (P.Copy.Lab).

– SupposefZ1; : : : ; Zng � con'(Z). Then by closure under (P.Copy.Dom),Y /�Yi 2 ' but Yi/�Y 62 ' for 1 � i � n. Assume thatYi is not minimal
with Y �' Yi, i.e. there exists someW with Y �' W �' Yi. ThenW 2betw'(V1; V2) by closure under (D.Dom.Trans), (D.Prop.Disj), (P.Distr.Crown).
So by (N.New), there exists someW 0 2 betw'(U1; U2) with p ( U1W 0 V1W ). But thenZ/�W 0/�Zi 2 ' by (P.Copy.Dom), but neitherW 0/�Z norZi/�W 0 is in ', soZi
is not minimal either, a contradiction.



– SupposefZ1; : : : ; Zng is a maximal'-disjointness set in con'(Z). Assume thatfYi; Yjg is not a disjointness set for some1 � i 6= j � n. SoYi=Yj 2 '. But then
by (P.Copy.Dom),Zi=Zj 2 ', a contradiction.
AssumefY1; : : : ; Yng is not maximal, i.e. there exists someY 0 62 fY1; : : : ; Yng
such thatfY1; : : : ; Yn; Y 0g � con'(Y ) is a disjointness set. We must haveV1/�Y 0
by (D.Dom.Trans) and eitherY 0/�V2 orY 0?V2 orV2/+Y 0 by (P.Distr.Crown). But
if V2/+Y 0, thenY 0 62 con'(Y ) becauseY=V2 62 '. SoY 0 2 betw'(V1; V2). By
closure under (N.New) and (P.Copy.Dom), there exists aZ 0 2 betw'(U1; U2) such
that p(U1Z0 V1Y 0 ) 2 '. By closure under (P.Copy.Dom), we haveZ 0 2 con'(Z).Z 0 cannot be infZ1; : : : ; Zng: If Z 0=Zi 2 ' for somei 2 f1; : : : ; ng, then
p (U1Zi V1Y 0 ); p (U1Zi V1Yi ) 2 ' by (P.Path.Eq.1), soY 0=Yi 2 ' by (P.Path.Eq.2).
Hence,fZ1; : : : ; Zn; Z 0g is a'-disjointness set in con'(Z) that is bigger thanfZ1; : : : ; Zng, a contradiction.

Proposition 29. Every DPNT-solved form' with an unlabeled variableX can be ex-
tended to a DPNT-solved form in whichX is labeled.

Proof. Let fX1; : : : ; Xng be a maximal'-disjointness set in con'(X). Let f be
a function symbol in� of arity n. (If there exists no suitablef , this problem is
solved the same way as in Lemma 25). Then we define the extension ext(') of' ^X :f(X1; : : : ; Xn) asext(') := ' ^ ^Y :f(Y1;:::;Yn)2opy'�X:f(X1;:::;Xn)� �Y :f(Y1; : : : ; Yn) ^ Vni=1 Y 6=Yi ^V Yi/�U;Yj/�V 2';1�i6=j�n U?V ^VZ:g(:::)2';g 6=f _ ar(g)6=ar(f) Z 6=Y �

This definition extends the one in Lemma 25 from a single labeling literalX :f(X1; : : : ; Xn) to a setopy'�X :f(X1; : : : ; Xn)� of labeling literals.

(D.Clash.Ineq): ext(') contains no new dominance literals. If a new inequality literalY 6=Yi were to make (D.Clash.Ineq) applicable, then' must containY=Yi, butY :f(Y1; : : : ; Yn) 2 opy'�X :f(X1; : : : ; Xn)�, soYi 2 con'(Y ) by lemma 28.
If a new inequalityZ 6=Y were to make the clash rule applicable, thenZ:g(: : :) andY=Z must be in', but by lemma 28,Y is unlabeled becauseX is.

(D.Clash.Disj): The only new disjointness literals inext(') have the formU?V forYi/�U; Yj/�V in ' with i 6= j. AssumeU=V is in '. Then by (D.Distr.NotDisj),
eitherYi/�Yj or Yj/�Yi must be in'. But fXi; Xjg is a disjointness set, and so,
by lemma 28, isfYi; Yjg.

(D.Dom.Refl): No new variables have been added.
(D.Dom.Trans), (D.Distr.NotDisj): No new dominance literals have been added.
(D.Eq.Decom): SupposeY :f(Y1; : : : ; Yn) 2 opy'�X :f(X1; : : : ; Xn)� andY=Z is

in '. ThenY andZ must be unlabeled by lemma 28, so for (D.Eq.Decom) to be
applicable, bothY :f(Y1; : : : ; Yn) andZ:f(Z1; : : : ; Zn) must be inext(') � ',
which means thatZ:f(Z1; : : : ; Zn) 2 opy'�X :f(X1; : : : ; Xn)�, too.



If opy'�X :f(X1; : : : ; Xn)� is a singleton, then we must haveXi=Yi=Zi for 1 �i � n. So suppose otherwise. LetU :f(U1; : : : ; Un) 2 opy'�X :f(X1; : : : ; Xn)�.
We use induction on the length of a,!' sequence starting inX :f(X1; : : : ; Xn) and
ending inU :f(U1; : : : ; Un) to show that p( XXi UUi ) 2 ' for 1 � i � n. We start

with a sequence of length 0. Asopy'�X :f(X1; : : : ; Xn)� is not a singleton, there
exists someW1=W2�W3=W4 2 ' with X;X1; : : : ; Xn 2 betw'(W1;W2). By
closure under (N.New), there existX 0; X 01; : : : ; X 0n such that p(W1X W3X0 ) 2 ' as
well as p(W1Xi W3X0i ) 2 ' for 1 � i � n. By (P.Path.Sym), p(W3X0 W1X ); p (W3X0i W1Xi ) 2' , so by (T.Trans.H), p(W1X W1X ); p (W1Xi W1Xi ) 2 ' for 1 � i � n. AsX/�Xi 2 ',

closure under (T.Diff.1) yields p( XXi XXi ) 2 ' for 1 � i � n.

SupposeV :f(V1; : : : ; Vn) 2 opy'�X :f(X1; : : : ; Xn)� with p ( XXi VVi ) 2 '
for 1 � i � n, and V :f(V1; : : : ; Vn) ,!' U :f(U1; : : : ; Un). Then '
contains someW1=W2�W3=W4 with V; V1; : : : ; Vn 2 betw'(W1;W2) and
p (W1V W3U ); p (W1Vi W3Ui ) 2 ' for 1 � i � n. Then by closure under (T.Diff.1),

p ( VVi UUi ) 2 ' for 1 � i � n, and so, by (T.Trans.H), are p( XXi UUi ).
Hence p( XXi YYi ); p ( XXi ZZi ) 2 ' for 1 � i � n. By closure under (P.Path.Sym)

and (T.Trans.H),' contains p( YYi ZZi ), and asY=Z 2 ', p ( ZYi ZZi ) 2 ' by
(P.Path.Eq.1), whence by (P.Path.Eq.2),Yi=Zi 2 ' already (all for1 � i � n).

(D.Lab.Ineq): SupposeY :f(Y1; : : : ; Yn) 2 ext(') � '. ThenZ 6=Y is in ext(') by
definition for allZ labeled anything butf .

(D.Lab.Disj): SupposeY :f(Y1; : : : ; Yn) 2 ext(')�'. SinceYi/�Yi; Yj/�Yj 2 ' for1 � i � n by closure under (D.Dom.Refl),Yi?Yj is in ext(') by definition.
(D.Prop.Disj): SupposeY :f(Y1; : : : ; Yn) 2 opy'�X :f(X1; : : : ; Xn)� andU?V 2ext(') � ' for someYi/�U , Yj/�V , j 6= i. If U/�U 0 andV /�V 0 are in', then

we also haveYi/�U 0; Yj/�V 0 2 ' by closure under (D.Dom.Trans), soU 0?V 0 is
in ext(').

(D.Lab.Dom): SupposeY :f(Y1; : : : ; Yn) 2 ext(') � '. We haveY /�Yi 2 ' by
lemma 28.Y 6=Yi 2 ext(') by definition.

(D.Distr.Child): SupposeY :f(Y1; : : : ; Yn) 2 ext(')� ' andY /�Z 2 '.
If Z/�Y 2 ', then (D.Distr.Child) is not applicable inext('). OtherwiseY �'Z. If Z is minimal with Y �' Z, thenZ 2 con'(Y ), and asfY1; : : : ; Yng
is a maximal'-disjointness set in con'(Y ), we haveZ=Yi 2 ' for somei 2f1; : : : ; ng. If Z is not minimal, there exists someY 0 2 con'(Y ) such thatY 0/�Z
is in '. But then again,Yi=Y 0 for somei 2 f1; : : : ; ng, soYi/�Z.

(P.Root), (P.Path.Sym), (P.Path.Dom), (P.Path.Eq.1), (P.Path.Eq.1), (P.Distr.Crown):
No new dominance, parallelism, or path equality literals have been added.

(P.Copy.Dom): Any dominance literal inext(') is in' already, so the case ofR = /�
does not apply.

– We next consider the caseR = ?. LetU?V be inext(')�', where for someY :f(Y1; : : : ; Yn) 2 opy'�X :f(X1; : : : ; Xn)� and some1 � i 6= j � n,Yi/�U; Yj/�V 2 '. (Thus,fY1; : : : ; Yng 6= ;.) Suppose' contains a par-
allelism literalW1=W2�W3=W4 with U; V 2 betw'(W1;W2). By closure
under (N.New), there existU 0; V 0 such that p(W1U W3U 0 ); p (W1V W3V 0 ) 2 '. So



W1/�U;W1/�V 2 ', and by closure under (D.Dom.Trans),Y /�U; Y /�V 2'. Hence by (D.Distr.NotDisj),' contains eitherY /�W1 orW1/�Y .
If ' containsY /�W1 but notY=W1, thenY �' W1. fY1; : : : ; Yng is a maxi-
mal'-disjointness set in con'(Y ) by lemma 28. So ifW1 2 con'(Y ), then
by lemma 24,W1=Yk is in ' for somek 2 f1; : : : ; ng. If W1 is not minimal
with Y �' W1, then there exists someY 0 2 con'(Y ) such thatY 0 �' W1.
Again by lemma 24,' containsY 0=Yk for somek 2 f1; : : : ; ng and hence,
by closure under (D.Dom.Trans),Yk/�W1 2 '. But then we cannot have bothW1/�U andW1/�V in ' since at least one ofYi?Yk andYj?Yk is in ', and' is clash-free. So (D.Distr.NotDisj) must have made the choiceW1/�Y 2 '.' is closed under (P.Distr.Crown), but the choice made cannotbeW2/�Y ,
sinceY /+U; Y /+V 2 ' by closure under (D.Dom.Trans), (D.Lab.Dom),
(P.Distr.Project) and on the other handU; V 2 betw'(W1;W2). So eitherY /+W2 2 ' by (P.Distr.Crown) and (P.Distr.Project), orY?W2 2 '
by (P.Distr.Crown). In the first case, (P.Distr.Crown) musthave chosen ei-
ther Yi?W2 or Yi/�W2 for each 1 � i � n because all theYi are
minimal with Y �' Yi. In the second case, we haveYi?W2 2 ' for1 � i � n by closure under (D.Prop.Disj). In both cases,Y; Y1; : : : ; Yn 2betw'(W1;W2). By closure under (N.New), there areZ;Z1; : : : ; Zn such
that p(W1Y W3Z ) 2 ' and p(W1Yi W3Zi ) 2 ' for 1 � i � n. SinceY=W2 62 ', Z:f(Z1; : : : ; Zn) 2 opy'�X :f(X1; : : : ; Xn)�. By closure un-
der (P.Copy.Dom),Zi/�U 0; Zj/�V 0 2 ', soU 0?V 0 2 ext(') by definition.

– Lastly, we consider the case ofR = 6=. Let Y :f(Y1; : : : ; Yn) 2opy'�X :f(X1; : : : ; Xn)�.
SupposeY 6=Yi 2 ext(') � ' for some i 2 f1; : : : ; ng. (Again,fY1; : : : ; Yng 6= ;.) Suppose further thatW1=W2�W3=W4 2 ' withY; Yi 2 betw'(W1;W2). By closure under (N.New), there existZ;Zi such
that p(W1Y W3Z ); p (W1Yi W3Zi ) 2 '.

We must haveY /+W2 2 ' by closure under (P.Distr.Crown), (P.Distr.Project)
and the fact thatYi 2 betw'(W1;W2). So Y1; : : : ; Yn 2 betw'(W1;W2)
by closure under (P.Distr.Crown).W2/+Yj cannot have been chosen for anyj 2 f1; : : : ; ng becauseY /+W2 and eachYj is minimal withY �' Yj .
So there areZ1; : : : ; Zn such that p(W1Yj W3Zj ) 2 ' for 1 � j � n. Y=W2 62 ',

soZ:f(Z1; : : : ; Zn) 2 opy'�X :f(X1; : : : ; Xn)�. Hence,Z 6=Zi is in ext(')
by definition.
Now supposeZ 6=Y 2 ext(')�', whereZ:g(: : :) is in' for someg with eitherg 6= f or ar(g) 6= ar(f). Suppose further thatW1=W2�W3=W4 2 ' withY; Z 2 betw'(W1;W2). By closure under (P.Distr.Project), we have eitherZ=Y 2 ' or Z 6=Y 2 '. Z=Y 2 ' is impossible sinceY is unlabeled by
lemma 28. SoZ 6=Y must be in' already.

(P.Copy.Lab): Let Y :f(Y1; : : : ; Yn) 2 opy'�X :f(X1; : : : ; Xn)� withY :f(Y1; : : : ; Yn) 2 ext(') � '. SupposeW1=W2�W3=W4 2 ' withY; Y1; : : : ; Yn 2 betw'(W1;W2). Then there existZ;Z1; : : : ; Zn such that
p (W1Y W3Z ) 2 ' and p(W1Yi W3Zi ) 2 ' for 1 � i � n.



By closure under (P.Distr.Project), eitherY 6=W2 2 ' or Y=W2 2 '. If Y 6=W2
is in', thenZ:f(Z1; : : : ; Zn) 2 opy'�X :f(X1; : : : ; Xn)�, so the labeling literalZ:f(Z1; : : : Zn) has been added toext('). If Y=W2 2 ', then (P.Copy.Lab) is not
applicable since it does not copy the label of the exception.

(P.Distr.Project): No new variables have been added.
(N.New): SupposeW1=W2�W3=W4 2 ' andW1/�Y 2 ' andY?W2 2 ext(')�'.

But then by closure under (P.Distr.Crown), one ofY /�W2, Y?W2, W2/+Y must
already be in'.

(T.Trans.H), (T.Trans.V), (T.Diff.1), (T.Diff.2): Now new path equality literals have
been added. ut

Lemma 30. Every generated DPNT-solved form can be extended to a simplegenerated
DPNT-solved form.

Proof. By lemma 29, analogous to lemma 26; generatedness is preserved as no addi-
tional path equality literals are added. ut
Theorem 11 (Soundness).A generated constraint in DPNT-solved form is satisfiable.

Proof. By lemmas 10 and 30. ut
D Completeness: handling the order�G
Lemma 13. The partial order�G can be factored out into the relational composition
of its components, i.e.,�G is� Æ =loG .

Proof. Let '1; '2 be constraints with'1 �G '2. There exists a sequence 0; : : : ;  n
of constraints such that'1 =  0 �1  1 �2 : : : �n  n = '2 with �i2 f�;=loG g for1 � i � n, and if�i is�, then�i+1 is=loG for 1 � i � n�1. We use induction on the
number of� relationships that occur to the right of a=loG relationship in the sequence.

W.l.o.g. we assume that the sequence starts with 0 �  1 =loG  2, and that if i =loG  i+1, then there exists a single axiom from Fig. 20 by which this holds.
Let k be such that 0 �  1 =loG  k �  k+1 holds. (If there is no suchk, then 0 �  1 =loG  n and we are done.) We show by induction onk that 0 �  1 � 0 =loG  k+1 holds for some constraint 0. We construct a constraint such that k�1 �  =loG  k+1. (The basic idea is to move k+1 to the left of k and to use 

to make the necessary adjustments.)

– Suppose k�1 =loG  k by axiom (1) of Fig. 20, and k�1 has the formX=Z ^ k
whereX 62 G [ V( k) andZ 2 V( k).
If X occurs in k+1, it has been introduced by adding constraints. We set =X=Z ^  k+1[X 0=X ℄ whereX 0 62 G does not occur in

Sni=1  i: k�1 =set X=Z ^  k �  =loG  k+1[X 0=X ℄=loG ( k+1[X 0=X ℄)[X=X 0℄ =set  k+1:



– Suppose k�1 =loG  k by axiom (1) of Fig. 20, and k has the formX=Z ^ k�1
whereX 62 G [ V( k�1) andZ 2 V( k�1). But then we already have k�1 � k �  k+1.

– Suppose k�1 =loG  k by axiom (2) of Fig. 20. Then k has the form k�1[Y=X ℄
for X 62 G andY 62 V( k�1) [ G.� If X 2 V( k+1), let  00 =  k+1[X 0=X ℄, whereX 0 62 G does not occur inSni=1  i. Otherwise, 00 =  k+1.� If Y 2 V( k+1), then it has to be replaced byX while  k+1 is moved to the

left of  k. In this case, let =  00[X=Y ℄. Otherwise, =  00.
We have  k�1 �  =loG  [Y=X ℄ =loG ( [Y=X ℄)[X=X 0℄ =set  k+1:

– Suppose k�1 =loG  k by axiom (3) of Fig. 20, and suppose k�1 has the formX=Y ^ 0k�1, k has the formX=Y ^ 0k�1[Y=X ℄, and k+1 has the formX=Y ^ 0k�1[Y=X ℄ ^  0. We set = X=Y ^  0k�1 ^  0.Then k�1 �  =loG X=Y ^ ( 0k�1 ^  0)[Y=X ℄ =loG  k+1:
– Suppose k�1 =loG  k by axiom (3) of Fig. 20, and suppose k has the formX=Y ^ 0k, while k�1 has the formX=Y ^ 0k[Y=X ℄ and k+1 isX=Y ^ 0k^ 0.

We set = X=Y ^  0k[Y=X ℄ ^  0, then k�1 �  =loG X=Y ^ ( 0k [Y=X ℄ ^  0)[Y=X ℄ =loG  k+1:
– The case of axiom (4) is trivial.

Hence, there exists a constraint 0 such that 0 �  1 �  0 =loG  k+1 holds. This
new sequence is longer than 0 �  1 =loG : : : =loG  k �  k+1 by a finite number of=loG relationships. But we have not introduced any additional� relationships. So we
can still eliminate each� relationship that is to the right of some=loG relationship in
finitely many steps.

Lemma 14. If ' �G  and is a DPNT-solved form, then there exists a DPNT-solved
form 0 such that' �  0 =loG  .

Proof. For a constraint' andX 2 V('), let Eq'(X) be the reflexive and transitive
closure of= in ', i.e. X 2 Eq'(X), and if Y 2 Eq'(X) andY=Z 2 ', thenZ 2 Eq'(X). Furthermore, letSubs(') := f'0[Y1=X1; : : : ; Yn=Xn℄ j '0 2 ';V('0) = fX1; : : : ; Xng;Yi 2 Eq'(Xi) for 1 � i � ng

We next show thatSubs(') =loG '. Eq' forms an equivalence relation on the
variables occurring in'. Let there ben different setsEq'(Xi), andEq'(Xi) =fZi1; : : : Zimig for 1 � i � n. Then' =loG Z11=L1 ^ : : : ^ Z1m1=L1 ^ : : : ^Zn1=Ln ^ : : : ^ Znmn=Ln ^'[L1=Z11 ; : : : ; L1=Z1m1 ; : : : Ln=Zn1 ; : : : Ln=Znmn ℄



for L1; : : : ; Ln 62 G [ V('): The Li may be introduced by axiom (1). Axiom (3)
lets us replaceZij by Li for 1 � j � mi, 1 � i � n. From there, by duplicating'[L1=Z11 ; : : : ; L1=Z1m1 ; : : : Ln=Zn1 ; : : : Ln=Znmn ℄ a suitable number of times, using ax-
iom (4), and replacingLi by eachZij according to axiom (1), we arrive atSubs('0).

Now suppose' �G  , where is in DPNT-solved form. By lemma 13, there exists
a constraint'0 with ' � '0 =loG  .'0 need not be inDPNT-solved form, butSubs('0)
is.

Let =  0 =loG  1 =loG : : : =loG  n = '0 where i =loG  i+1 by a single axiom
from Fig. 20 for all1 � i � n � 1. We use induction onn to show thatSubs( i) is
DPNT-solved for alli � n. For 0 =  , this is trivial.

Suppose i =loG  i+1 by axiom (1) of Fig. 20, and i has the formX=Z ^  i+1,
whereX 62 G [ V( i+1) andZ 2 V( i+1). ThenX is a superfluous local variable
in  i, andEq i(X) \ V( i+1) 6= ;. So the constraintSubs( i)jV( i)�fXg =setSubs( i+1) must be in solved form, too.

Suppose i =loG  i+1 by axiom (1), and i+1 has the formX=Z^ i for variablesX 62 G [ V( i) andZ 2 V( i). ThenSubs( i+1) = Subs(X=Z ^  i). Subs( i+1)
is in solved form because for all saturation rules that wouldbecome applicable because
of the added dominance literalsX=Z, the consequent has already been added by Subs.

Suppose i =loG  i+1 by axiom (2) of Fig. 20, and i+1 has the form i[Y=X ℄
whereX 62 G andY 62 V( i) [ G. So all occurrences of a local variablesX have
been replaced by a new local variableY , and ifSubs( i) is in solved form, then so isSubs( i)[Y=X ℄ =set Subs('0).

In both cases where i =loG  i+1 by axiom (3), we haveSubs( i) = Subs( i+1).ut
The main completeness theorem has already been shown in the main part of the

text:

Theorem 19 (Completeness).Let ' be a constraint,G � V , and a �G-minimal
DPNT-solved form for'. Then there exists a DPNT-solved form 0 =G  which can
be reached from', i.e.'!�

DPNT  0.
Lemma 31. Let' be a constraint satisfied by(M� ; �). Then there exists a�G-minimal
DPNT-solved form for' which is also satisfied by(M� ; �).
Proof. Let' be a constraint satisfied by(M� ; �) and let be' extended by all literals
entailed by(M� ; �).  is satisfiable – it is satisfied by(M� ; �). It is also in solved
form since each saturation rule only adds entailed constraints. It remains to show that
there exists a�G-minimal DPNT-solved form'0 for ' with '0 �  . There are two
possibilities: either no 0 �  0 is in DPNT-solved form; then itself is a�G-minimal
DPNT-solved form for'. Otherwise, there exists some 0 �  such that 0 is in DPNT-
solved form but no 00 �  0 is. ut


