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Abstract. Parallelism constraints are logical desciptions of trébgy are as ex-
pressive as context unification, i.e. second-order linedrcation. We present a
semi-decision procedure enumerating all “most generdieus? of a parallelism

constraint and prove it sound and complete. In contrastl tknalvn procedures
for context unification, the presented procedure termgfatiethe important frag-
ment of dominance constraints and performs reasonablyinvaliecent applica-
tion to underspecified natural language semantics.

1 Introduction

Parallelism constraints [7,17] are logical descriptioh¢rees. They are equal in ex-
pressive power to context unification [4], a variant of lineacond-order unification
[14,19]. The decidability of context unification is a prorairt open problem [21] even
though several fragments are known decidable [23, 22, 4].

Parallelism constraints state relations be-
tween the nodes of a tree: mother-of, sibling-
of and labeling, dominance (ancestor-of), dis-
jointness, inequality, and parallelism. Parallelism
w1 /mo~mg /74, @s illustrated in Figure 1, holds
in a tree if the structure of the tree between the

nodesm; andrwy — i.e., the tree belowr; mi-
nus the tree below; — is isomorphic to that
betweenrs andn,. Fig. 1. Parallelismry /mo~mg /74

Parallelism constraints differ from context

unification in their perspective on trees. They view treesrfrinside, talking about
thenodesof a single tree, rather than from the outside, talking abelations between
severatrees This difference has important consequences. First, ibionly a differ-
ence of nodes versus trees but also one of occurrences \wtrsosire. Second, dif-
ferent decidable fragments can be distinguished for pgdisth constraints and context
unification. Third, different algorithms can be devisedr Fstance, the language of
dominance constraintd 6, 25, 1, 9] is a decidable fragment of parallelism coristsa

* Supported by the DFG through the Graduiertenkolleg Kognith Saarbriicken.
** Supported by the Collaborative Research Center (SFB) 378e0DFG, the Esprit Working
Group CCL Il (EP 22457), and the Procope project of the DAAD.



for which powerful solver exist [6, 5, 17]. But when encodatbicontext unification,
dominance constraints are not subsumed by any of the ddeiftagments mentioned
above, not even by subtree constraints [24], although thely similar. The difference
is again that dominance constraints speak about occurehsabtrees whereas subtree
constraints speak about their structure.

Parallelism constraints form the backbone of a recent wpaeified analysis of
natural language semantics [7, 12]. This analysis usesdgeient ofdominance con-
straintsto describe scope ambiguities in a similar fashion as [20vB]le the full ex-
pressivity of parallelism is needed for modeling ellipgis.earlier treatment of seman-
tic underspecification [18] was based directly on contexXfieation. The implementa-
tion used an incomplete procedure [10] which guesses topeddwn by imitation and
projection, leaving out flex-flex. This procedure perfornediven the parallelism phe-
nomena encountered in ellipsis resolution, but when dgalith scope ambiguities, it
consistently runs into combinatoric explosion. To put ffetiently, this procedure does
not perform well enough on the context unification equivbdgilominance constraints.

In this paper, we propose a hew semi-decision procedureafallplism constraints
built on top of a powerful, terminating solver for dominanmanstraints. We prove
our procedure sound and complete: We define the notiomufhanal solved fornior
parallelism constraints, which plays the same rolmast general unifiers unification
theory. We then show that our procedure enumerates all ralrsiofved forms of a given
parallelism constraint.

Plan of the paperin the following section, we describe the syntax and seroaruf
dominance and parallelism constraints. Section 3 presenddgorithm for dominance
constraints which in section 4 is extended to a semi-detisiocedure for parallelism
constraints. In sections 5 and 6 we sketch a proof of sousdimascompleteness. Sec-
tion 7 concludes. Many proofs are omitted for lack of spacedam be found in an
extended version [8].

2 Syntax and semantics

SemanticsWe assume a signatufe of function symbols ranged over by g, . . ., each

of which is equipped with an arityr(f) > 0. Constants are function symbols of arity
denoted by, b. We further assume that contains at least one constant and a symbol
of arity at least 2.

A (finite) tree 7 is a ground term over, for instance cof
f(g(a,a)). A nodeof a tree can be identified with ifgath from
the root down, expressed by a word o€y, the set of natural .9
numbers excluding 0. We writefor the empty path and, 7> for 1 \. 12
the concatenation of; andr,. A pathr is a prefix of a pathr’ if a a
there exists some (possibly emp#yf) such thatrr’’ = ', Fig.2. f(g(a,a))

A tree can be characterized uniquely by a tree domain (the set
of its paths) and a labeling function.tfee domainD is a finite nonempty prefix-closed
set of paths. A pathri € D is thei-th child of the node/patir € D. A labeling
functionis a function. : D — X fulfilling the condition that for everyr € D and



k> 1,nk € Diff k < ar(L(r)). We write D, for the domain of a tree and L. for
its labeling function. For instance, the tree= f(g(a, a)) displayed in Fig. 2 satisfies
D, ={¢1,11,12}, L, (e) = f, L.(1) = g,andL.(11) = a = L,(12).

Definition 1. Thetree structureMT™ of a treer is a first-order structure with domain
D.. It provides a labeling relatiorf™ € DY)*! for eachf € X

:f’r:{(ﬂ—a’n]-a---aﬂn)‘LT(ﬂ—) :faar(f):n}

We write M™ = 7 f (m1, ..., m) fOr (m, 71, ..., m,)€ :f7; this relation states that
noder of 7 is labeled byf and hasr; as itsi-th child (for1 < ¢ < n). Every tree
structureM™ can be extended conservatively by relations for dominais@intness,
and parallelismDominancas the prefix relation between paths*#’; restricted taD,,
it is the ancestor relation of, we writer<* 7’ if 7<*#’ andr # «’. Disjointnessr L7’
holds if neitherr<*z’ nor 7’<*x. Concerning parallelism, létetw. (71, m2) be the set
of nodes in the substructure obetweenr; andmrs: If m1<*ms holds inMT7, we define

betw, (71, 7m2) = {7 € D, | m;<*x but notma<™ x}.

The noder;, plays a special role: it is part of the substructure dfetweenr; andmns,
but its label is not. This is expressed in Def. 2, which issitated in Fig. 1.

Definition 2. ParallelismMT™ |= my /mo~m3 /74 holds iff 11 <* 79 andmrs<*m4 are valid
in M7 and there exists eorrespondence functian: betw, (71, m2) — betw, (73, 74),

a bijective function which satisfiegm,) = 73 andc(m2) = 74 and preserves the tree
structure ofM7, i.e. for allw € betw, (71, m2) — {m}, f € X, andn = ar(f):

M™ Emf(rl,...,mn) iff M" |=c(n):fle(rl),..., c(mn))

Lemma 3. If ¢ : betw,(m,m) — betw, (73, 74) is a correspondence function, then
c(mm) = wgmw for all my7 € betw, (71, 72).

Syntax. We assume an infinite seV of (node) variables ranged over by
X, Y, Z, U, V,W.A (parallelism) constraint is a conjunction ohtomic constrainter
literals for parallelism, dominance, labeling, disjointness, aretjuality. Adominance
constraintis a constraint without parallelism literals. The abstsaettax of parallelism
constraints is defined as follows:

(,0,1/) = Xl/XQNyl/YQ ‘ XY ‘ Xf(Xl,Xn) (ar(f) = n)
| X1Y | X#Y |false|¢ A o

Abbreviations: X=Y for X<*Y AY<*X and X<'Y for X<*Y A XAY

For simplicity, we view parallelism, inequality, and disjmess literals as symmet-
ric. We also writeX RY, whereR € {<* <™, L, #,=}. Aricher set of relations could
be used, as proposed in [6], but this would complicate neasightly. For a compari-
sion to context unification, we refer to [17]. An example foe tsimpler case of string
unification is given below (see Figure 4).



First order formulag? built from constraints and the usual logical connectives ar
interpreted over the class of tree structures in the usuakiem way. We write) (&)
for the set of variables occurring ih. If a pair (M™, «) of a tree structuré\{™ and a
variable assignment : G — D., for some sef D V(®), satisfiesb, we write this as
(MT™,a) = & and say thatMT™, ) is asolutionof &. We say thatb is satisfiableff it
possesses a solution. Entailmeént ¢’ means that all solutions df are also solutions
of &'.

We often draw constraints as graphs with the nodes rep- Xg f
resenting variables; a labeled variable is connected to its / \.
children by solid lines, while a dotted line represents domi X1 X2
nance. For example, the graph 8t f (X7, Xo) A X1<*Y A oy
XY is. displayeq ip Fig. 3._ As trees do not branch uF?—'ig.S. An unsatisfiable
wards, this constraint is unsatisfiable. constraint

Parallelism literals are shown graphically as well as x, g
textually: the square brackets in Fig. 4 illustrate the para v, e x
lelism literal written beside the graph. This graph encodﬁs w9

. PR . X/ X~ Y, 1Y,
the string unification [15] problengz = xg; the two oY,
brackets represent the two occurences.obisjointness
and inequality literals are not represented graphically.

2

Fig. 4. String unification

3 Solving dominance constraints

Our semi-decision procedure for parallelism constraintssists of two parts: a termi-
nating dominance constraint solver, and a part dealing pattallelism proper. Having
our procedure terminate for general dominance constraimtgperform well for domi-
nance constraints in linguistic applications was an imgadrtlesign requirement for us.

In this section, we present the first part of our proceduee, th Yo
solver for dominance constraints. This solver, which isilsim 5 ‘{'\.
to the algorithms in [13, 6] and could in principle be repldce A:s. BLARE
by them, terminates in non-deterministic polynomial tirAe-
tually, satisfiability of dominance constraints is NP-cdete
[13]. Boolean satisfiability is encoded by forcing graphgirents to “overlap” and
making the algorithm choose between different possiblelappings. For instance, the
constraint to the right entail® =Y v X=Y;. The solver is intended to perform well in
cases without overlap, where distinct variables denotedis/alues. This can typically
be assumed in linguistic applications.

We organize all procedures in this papersaturation algorithmsA saturation al-
gorithm consists of a set sfturation ruleseach of which has the form — V*_;¢;
for somen > 1. A rule is apropagation ruleif n = 1, and adistribution rule oth-
erwise. The only critical rules with respect to terminateme those which introduce
fresh variables on their right hand side. A rgde— & is correctif ¢ = 3V ® where
V =V(®) - V(g).

By a slight abuse of notation, we identify a constraint witagetof its literals. This
way, subset inclusion defines a partial orderihgn constraints; we also write¢t for

Fig.5.Overlap



Propagation rules:
(D.Clash.lneq) X=Y A X#Y — false
(D.Clash.Disj) X_LX — false
(D.Dom.Refl) ¢ — X<*X  whereX € V(p)
(D.Dom.Trans) X<*Y A Y<'Z — X<*7
(D.Eg.Decom) X:f(Xi,...,Xn) A Y:f(Y1,...,Yn) A X=Y = AL 1 X;=Y;
(D.Lab.Ineq) X:f(...) AN Yig(...)—= X#Y wheref #g
(D.Lab.Disj) X:f(...Xi,...,Xj,...)HXI'J_X]' fori<i<j<n
(D.Prop.Disj) X1Y A X<*X' A Y'Y -Y'1LX'
(D.Lab.Dom)  X:f(...,Y,...) — X<'Y

Distribution rules:
(D.Distr.NotDisj) X<*Z A Y<*Z — X<'Y V Y<'X
(D.Distr.Child)  X<*Y A X:f(Xi1,...,Xn) > Y=X VvV \I_ X;<"Y

Fig. 6. Solving dominance constraints: rule et

the corresponding equality N O, andc for the strict variantZ N #%¢t. This way, we
can define saturation for a seof saturation rules as follows: We assume that each rule
p € Scomes with an application conditid@r}, (¢) deciding whethep can be applied to

© or not. Asaturation step—s consists of one application of a rule $

¢ Ce peS
p—ose N i

For this section, we le€y, .=, () be trueiffy; Z pforall 1 <i < n.We calla
constraintS-saturatedf it is irreducible with respect te~s andclash-fredf it does not
containfalse. We also say that a constraint is$solved fornif it is S-saturated and
clash-free.

Figure 6 contains schemata for saturation rules that tegstiive dominance con-
straints. LeD be the (infinite) set of instances of these schemata. Bogihdehemata
are obvious. Next, there are standard schemata for refigxiransitivity, decomposi-
tion, and inequality. Schema (D.Lab.Dom) declares thatargalominates its children.

We illustrate the remaining schemata of propagation rujearbexample: We re-
consider the unsatisfiable constraiitf (X1, X2) A X1<*Y A X2<*Y of Fig. 3. By
(D.Lab.Disj), we inferX; L X5, from which (D.Prop.Disj) yield&” L Y, which then
clashes by (D.Clash.Disj).

There are only two situations where distribution is necgssa xeo oy
The situation shown in Fig. 7 is handled by (D.Distr.Notis;j .
the tree nodes denoted by and Y cannot be at disjoint po- z
sitions because they both dominate The distribution rule Fig. 7. Nondisjoint-
(D.Distr.Children) is applicable to the constraint in F&§.As pess
the constraint containg: (Y7, Y2) A Y<* X, we must have ei-
therY=X or Y1<*X or Yo<*X. Propagation proves that the third choice results in a
clash, while the others lead to satisfiable constraints.

if C,(¢) wherepis ¢’ — Vi p;



Proposition 4 (Soundness) Any dominance constraint in D-solved form is satisfiable.

Along the lines of [13]. On the other hand, the saturatiowgtgm forD is complete
in the sense that it computes evenjnimal solved fornof a dominance constraint.

Definition 5. Let ¢, ¢’ be constraintsSa set of saturation rules an¢lan partial order
on constraints. Theg' is a <-minimal S-solved form fop iff ¢’ is anS-solved form
that is<-minimal satisfyingy < ¢'.

For dominance constraints, we can simply use set inclusgisn.
an example, &-minimal D-solved form for the constraint in Fig. e
BiIsXI*'Y ANXT*ZANX* X NY<Y A Z<*Z. (Note thatX does ve ez
not need to be labeled.)

Lemma 6 (Completeness)Let ¢ be a dominance constraint anc{;'?r'f' A solved

¢' a C-minimal D-solved form fop. Theny —§ ¢'.

Proof. By well-founded induction on the strict partial orderon the se{vy | ) C ¢'}.

If ¢ is D-solved thenp =%¢* ¢’ by minimality and we are done. Otherwise, there is a
ruleyy — VvI_;4; in D which applies top. Sincep C ¢’ and¢’ is in D-solved form,
there exists ansuch thaty;, C ¢'. By the inductive hypothesig, A ¢; —} ¢’ and thus

¢ —=p ¢ O

4 Processing parallelism constraints

We extend the dominance constraint solver of the previocisoseto a semi-decision
procedure for parallelism constraints. The main idea itopgute the correspondence
functions for all parallelism literals in the input constria(compare Def. 2). We use a
new kind of literalspath equalitiesto accomplish this with as much propagation and
as little case distinction as possible.

We define the set of variabléstw, (X, X») betweenX; and X, as the syntactic
counterpart of the set of nodestw,, (71, m2): If X1<4* X5 € ¢, then

betw, (X1, X2) = {X € V() | X1<*X € ¢ and (X<*Xo € ¢ or X1X5 € ¢)}

Given a parallelism literaK / Xo~Y7 /Y5, we need to establish a syntactic corre-
spondence function: betw, (X1, X2) — betw, (Y7, Y2). In doing this, we may have
to add new local variables t@. In the following, we always consider a constrajnt
together with a sef C V of globalvariables; all other variables ai@cal. For an input
constraintp, we assume’(¢) C G.

We record syntactic correspondences by use of a new, awdiiiad of constraints:
apath equalityp (};’g ";}) states, informally speaking, that below X; corresponds to
Y belowY;. More precisely, a path equality relatiod™ = p (7! ) is true iff there
exists a pathr such thatro = w7 andmy = w3, and for each’'<tn, L (m7') =
L. (mam’).

Figure 9 shows the schemata of the $2&ndN of saturation rules for computing
correspondences, and Fig. 14 shows the schemata of tfie which deal with inter-
acting parallelism literals (and thus interacting cormasgences). The rule sBtU P U
N U T forms a sound and complete semi-decision procedure foll@lism constraints,
which we abbreviate bPPNT (and accordingly for other rule set combinations).



Propagation Rules:

(P.Root) X1/X2nY1/Ya = p (X 31) A P(X3)
(P.Copy.Dom) UiRU> A AI_, P(3!11) A X1/Xa~Y1/Ys — ViRV,

whereR € {<*, L, #} andU;, Us € betw, (X1, X2).
(P.Copy.Lab) Uo:f(Ur,...,Un) A Ny P(3} 1) A X1/ XanY1/Ye —

Vo:f(Vi,...,Va) wherelUp L Xs € porlUp<at Xz € ¢
(P.Path.Sym) XYy p(h¥)

Uuv VU
(P.Path.Dom) XY) = X<'U A YV
(PPathEq.l) %! X°) A A, Xi=Yi— p(71 1)

(P.Path.Eq.2) XX) U=V

Distribution Rules:
(P.Distr.Crown) X1<]*X A\ X1/X2NY1/Y2 —)X<1*X2 vV X1Xs V X2<]+X
(P.Distr.Project)p — X=Y Vv X#£Y whereX,Y € V(p)

Introduction of local variables:
(N.New) e N X1/Xo~Y1 /Yo — p (2 X)) whereX € betw, (X1, X2);
X’ new and locall

Fig. 9. Schemata of rule seBandN for computing correspondence

The main rules. We start out with discussing the most 2o f
important rules for computing correspondence functions, A'%.
namely (P.Root), (N.New), (P.Copy.Dom), (P.Copy.Lab). ] §
Schema (P.Root) states, with respect to a parallelism lit- oX Yo
eral X;/Xo~Y1/Ys, that X; corresponds td; and X, : ‘
corresponds td%. To see how to go on from there, con-
sider the constraint in Fig. 10. Variahl¢ is betweenX;
and X5, andY is betweenY; andY>. But they are just
dominatedy X; andY, respectively, their position is not
fixed. So it would be precipitous to assume tikaandY
correspond — there is nothing in the constraint which woatdé us to do that. Schema
(N.New) acts on this idea as follows: Given a litefdl / X3~Y;/Y> and a variable

X € betw, (X1, X2), correspondence (Y %) is stated betweeX and a variable
X' ¢ V(¢) U G. If the structure of the constraint enforces corresponedratween

X and some other variable € betw,(Y7,Y3), then this will be inferred by satura-
tion. (N.New) need only be applied X does not yet possess a correspondent within
X1/X2~Y1 /Y. We adapt the application condition for (N.New) rules adangly:

X, Y0
X,/ X~ Y, 1Y,

Fig. 10.Correspondence

Corp () istrueift X' ¢V(g)uGand p( 3 ¢ o forall variablesy

Recall thatG is the set of global variables with respect to which we satuoarr con-
straint. GivenX;/X2~Y1/Y, € ¢, (P.Copy.Dom) and (P.Copy.Lab) copy dominance,



Fig. 11.Resolving an atomic parallelism constraint

disjointness, inequality, and labeling literals frdsstw, (X1, X2) to betw,(Y7,Y3)
and vice versa. The condition on the positiorigfin (P.Copy.Lab) makes sure that the
labels of X» andY; are not copied.

P contains two additional distribution rule schemata. X1e S
(P.Distr.Crown) deals with situations like that in Fig. 12: ' } { :
We have to decide whethéf is in betw,, (X1, X») or not. ¢ o o2

Xy

Only then do we know whether we need to apply (N.New) XXy 1Y,
1" "2 1° 2

to X. (P.Distr.Project), on the other hand, guesses whether

two variables should be identified or not. It is a very pOV\"I‘:-Ig' 12.X “inside” or

. 7 H noy
erful schema, so we do not want to use it too often in prac?—ms'de ’
tice.

Examples. Before we turn to the rules i, let us discuss two more examples that can
be handled by the rules we have seen up to now. How does sgntactespondence
as established bpPNTrelate to semantic correspondence functions as definedfin De
2? (P.Root) implements the first property of correspondémeetions, the "preserva-
tion of tree structure” property remains to be examined.<iier Fig. 11. Constraint 1
constitutes the input to the procedure, while constraiftd®s, as grey arcs, the corre-
spondences that must hold by Def. 2. These correspondereesraputed bYpPNT:

We infer p(¥'}1) A p (%! 31) by (P.Root). (N.New) is applicable t& and yields
X1 h

p (Y ) foranew local variabl&’. We haveX; <* X by (D.Lab.Dom), so we may
apply (P.Copy.Lab) td&;: f (X2, X ) and geft7: f (Y2, X'). But since the constraint also
containsYy:f(Y2,Y), (D.Eq.Decom) gives uX’=Y’, from which (P.Path.Eq.1) infers
p (};1 ";} ). We see that the structure of the constraint has enforcedsmyndence be-

tweenX andY’, and saturation has made the correct inferences.

While DPNT computes only finitely many solved forms for
the constraint in Fig. 11, the constraint in Fig. 13 possesee Y1§
finitely many different solved forms. One solved form congai x,g
X1=X,=Y;=Y>. Another contains{;<t X>=Y;,<1Y5. For the case
of X1<tYi<t X5aTY53, there is one solved form with one local vari-

X10

2@

able, two with two, one with three, two with four, and so on afini- X/ X2= %1 /%
t Fig. 13. Self-
um.

overlap

Interacting correspondences. We now turn to the set of saturation
rulesT, the schemata of which are shown in Fig. T/andles the interaction of cor-
respondence functions for “overlapping” parallelism et$. Schema (T.Trans.H) de-



(TTransH) p(;v) A p(L2)— p(X 7)
(T.Trans.V) p(! 71) A P(X232) — P(xiy)

- X Y] X1 Y1 Xo Vo
(TDIﬁl) p(Xz Yz) A p(XsY) A X2<] X3 A Y2<1 YSH p(XS YS)
(T.Diff.2)  p(X1Y) A p(£2) A Xud"Xa A Yic'Ya — p(2 1)

X1 Xz X3
L L L

: '~. d
L Y Vs
Y, 1 Y, 2 Y, 3

Xyl Y1~ X 1Yy~ Xl Yo~ X I Y Xl Y= X 1Y,

Fig.15.UsingT

scribes horizontal transitivity of path equality constitaj while (T.Trans.V), (T.Diff.1)

and (T.Diff.2) all deal with vertical transitivity. The cactness of these rules is obvious.
We discuss an example whefeis needed to ensure correct interaction of cor-

respondences. Consider the constraint in Fig. 15. We BgweU, and X,;<*V; for

1 < i < 3, so (P.Distr.Crown) is applicable. Suppose that in eaclk,oas choose

U, LY; andV; LY;. Suppose further that using (P.Distr.Project), we chddsgV;.

(N.New) can be applied td/;,V;7 € betw,(X;,Y7), yielding new local variables

Uy andV{ with p (! 5,2) p (3! 32)- Suppose that by (P.Distr.Project), we choose

Ui=U, and V/=V3, hence we get p' ?) and p(3! 32) by (P.Path.Eq.1). We

can use (N.New) ori/s, Vo € betw,(Xo,Ys), getting p(gj )[52) and p(}? ‘)523)

for new local variabled/;, V3. Suppose that again, we chodsé=Us and V,=V3
by (P.Distr.Project). This yields @;” 3*) and p(3? 7°) by (P.Path.Eq.1). Now we
turn to the third parallelism IiteraD(3/Y3~X1/Y1 Agam by (N.New), we can add

P 531) and p(y} ﬁ; ) for new local variable®7}, V4.

But now, we chooseU;=V; and Vi=U; by X, Y

1
(P.Distr.Project), which gives us (4 ') and p( Wb fI If
This constraint is unsatisfiable: In a tree structure satigf pU;s Vi
this constraint, the path fro; to U; would have to be the X, Y,
same one as the path fralfy to V5, but the constraint con- ? ®
tains U;#V;. However, (T.Trans.H) can detect this: From oUs Voo
P 32) and p(y? Xz) we get p(3' ), and com-
bined with p(3? Xl) this gives p( 7 Xg) to which we X1 X% 1

can addVz=Us by (P Path.EQ.2). As (P Copy Dom) copies Ui/ U= 7Y

U1 # V1 to Us#Vs3, this results in a clash by (D.Clash.Ineq)Fig. 16. Vertical transi-
Each path equality inferred iyPN saturation describestivity

a correspondence for some parallelism literal. Wittthis

is different. Consider, for example, Fig. 16 wh&®N saturation can infer the corre-



spondence py;! ;). (P.Root) yields [} ). Now (T.Trans.V) can add ;! 1}),
a path equality that does not describe any syntactic casrelgmce for any of the two
parallelism literals present. In this case, the additiquagth equality is not vital. But in
other cases, e.g. if we extend the example in Fig. 15 by alf@ortext and a fourth par-
allelism literal, the ability to infer path equalities beybcorrespondence is necessary
to ensure proper interaction of parallelism literals. Adly the reason why we record

correspondence by path equalities, as quadruples of \esiab that they support this.

Implementation. A first prototype implementation dPNT is available as an applet
on the Internet [3]. Saturation rules are applied in an oreléning the order mentioned
above: A distribution rule is only applied to a constrairttisated under the propagation
rules fromDPT. A rule fromN is only applied to a constraint saturated unB@T. This
implementation handles ellipses in natural language gqwall as the previously men-
tioned implementation based on context unification [18} tBe two implementations
differ with respect to scope ambiguities, i.e. dominancest@int solving: While the
context unification based program could handle scope arntigigwith at most 3 quan-
tifiers, the parallelism constraint procedure resolvepe@mbiguities of 5 quantifiers
in only 6 seconds and can even deal with more quantifiers.

5 Soundness

Clearly, all rules irDPNTare correct. For the soundnes€X¥NT-saturation is remains
to show that generatddPNT-solved forms are satisfiable. First, we show that a special
class ofDPNT-solved forms, called "simple”, are satisfiable. Then weth result to
arbitraryDPNT-solved forms.

However, we only regardeneratedconstraints, where each path equality either
establishes a correspondence for some parallelism |it@réd the result of combining
several such correspondence statementsbiuée.

Definition 7. Let ¢ be a constraint.
A path equality p(g; K;) €  is correspondence-generated ¢niff there exists
some atomic parallelism constrailit / X>~Y7 /Y5 € ¢ such that/;=X; A V1=Y1 is
in @, andlU, € betW@(Xl., Xz) orV, € betw¢(Y1., Yg)

Let C'P() be the set of correspondence-generated path equalitigsaind letpq
be ¢ without all its path equalities, then a path equalitgénerated inp iff it is in the
T-saturation ofC'P(y) U ¢q.

 is calledgeneratedff each of its parallelism literals is.

Concerning correspondence-generated path equaliti€s,df betw,, (X1, X»), then it
must correspond t&; and inference will determine thdk must be betweeir; and
Y5, and vice versa. EvepPNT-solved form of a parallelism constraint is generated,
so we can safely restrict our attention to generated canttra

Lemma 8. Let ¢ be a constraint without path equalities, and {et—jpnt ¢’ With ¢
in DPNT-solved form. Thep’ is generated.



Definition 9. Let ¢ be a constraint. A variabl& € V() is calledlabeledin ¢

iff 3X’ € V(¢) such thatX=X" and X":f(X4,...,X,) are iny for some term
f(Xq,...,X,). We callg simpleif all its variables are labeled and there exists some
root variableZ € V(¢) such thatZ<*X is in ¢ for all X € V().

Proposition 10. A simple generated constraint in DPNT-solved form is satid.

Proof. The constraint graph of a simple generated constraiimt DPNT-solved form

can be seen as a tree (plus redundant dominance edgesglFmaiind path equality

literals). So we can transform into a treer by a standard construction. For every

parallelism literal inyp, the corresponding parallelism holdsM™: As suggested by

the examples in the previous secti@PNT enforces that the computed path equalities

encode valid correspondence functionsutt . O
Now suppose we have a generated non-simple con-

strainte in DPNT-solved form. Take for instance the con- X’ YzXzZ

straint in Fig. 17. We want to show that there iseatten- :

sionp A ¢’ of it that is simple, generated, andDPNT-

solved form. We proceed by successively labeling unla- Fig. 17. Extension

beled variables. Suppose we want to laBeffirst. The

main idea is to make all variables minimally dominated¥ynto X's children, i.e. all

variablesV with X<tV such that there is no intervenifg with X<tW<+V.

So in the constraint in Fig. 1%;, Z, U are minimally dominated.

Yye  ez=y

X Y
However, we choose only one 4t U as we haveZ =U. Hence, o )
we would like to labelX by some function symbol of arity 2, X X

extending the constraint, for instance, Byf (Y, Z). (If there is :
no symbol of suitable arity itt’, we can always simulate itby a Le
constant symbol and a symbol of arity 2.) However, we have X,/ Xy~ Y, 1Y,

to make sure that we preserve solvedness during extengion. F

example, when adding’: (Y, Z) to the constraint in Fig. 17, Fig. 18.Extension

we also addY" L Z so as not to make (D.Lab.Disj) applicableand parallelism
Specifically, we have to be careful when labeling a variailike |

X, in Fig. 18 (where grey arcs stand for path equality literals)is in betw,, (X1, X2),

and when we add&’;:¢g(X) for some unary), we also have to adil,:g(X"), otherwise
(P.Copy.Lab) would be applicable.

So, by adding a finite number of atomic constraints and wittaolding any new
local variables, we can label at least one further unlabedeble in the constraint,
while keeping it inDPNT-solved form. Thus, if we repeat this process a finite number
of times, we can extend our generated constraifDRNT-solved form to a simple
generated constraint DPNT-solved form, from which we can then read off a solution
right away.

Theorem 11 (Soundness)A generated constraint in DPNT-solved form is satisfiable.

6 Completeness

DPNT-saturation is complete in the sense that it computes ewarimal solved form
of a parallelism constraint. For parallelism constraitfig, set inclusion order we have



(1) Eliminating/introducing a local variable
X=Z N p=g°¢ X ZG X ZV(p),ZecV(p)

(2) Renaming a local variable
p=g°plY/X] X EGY EV(p)UG

(3) Exchanging representatives of an equivalence classamstraint
X=Y A p=2°X=Y A ¢]Y/X]

(4) Set equivalence (associativity, commutativity, idenemcy)
="V if g = ¢

Fig. 20. The equivalence relatios° on constraints handling local variables

used previously is not sufficient; we adapt it such that ietalocal variables into ac-
count.
Consider Fig. 19. If (N.New) is applied t& first, this yields
p (X! ¥1) for a new local variablet’, plusY;:g(X') and X'=Y v
by (P.Copy.Lab) and (D.Eg.Decom). Accordingly, if (N.Nds/ap- g®X Y eg
plied toY first, we get p( ! 31 )AX1:9(Y')AY'=X foranew lo- X, Y 7
cal variableY”. The nondeterministic choice in applying (N.New) X,/ X,~ Y, 1Y,
leads to twdDPNT-solved forms incomparable by which, how-
ever, we do not want to distinguish. Fig. 19.Local

To solve this problem, we use an equivalence relation hagdlj, 4 izples?
local variables: Let; C V, then:lg"C is the smallest equivalence
relation on constraints satisfying the axioms in Fig. 2@rfithis equivalence and sub-
set inclusion, we define the new partial ordey.

Definition 12. ForG C V let <g be the reflexive and transitive closui@ U =.¢)*.

We also write=¢ for <g N >¢. We return to our above example concerning Fig. 19.
LetGg = {Xl, X5,Y1,Y5, X, Y} ThenXlzg(X) A Yllg(Y) A Yllg(X/) ANX'=Y :lgoc
X1:9(X) A Y1:9(Y) A X'=Y by axioms (3) and (4). This, in turn, islg"c equivalent
to X1:9(X) A Y:g(Y) by axiom (1). Again by axiom (1), this islg"c equivalent to
X1:9(X)AY1:9(Y) AY'=X, which equalsX1:g(X) A X1:g(Y) AY1:g(Y)AY'=X
by axioms (4) and (3).

Lemma 13. The partial order<g can be factored out into the relational composition
of its components, i.esg is C o =lc.

Lemma 14. If ¢ <g ¢ andv is a DPNT-solved form, then there exists a DPNT-solved
form¢’ such thaty C ¢’ =l9¢ 4.

Lemma 15. Let ¢ be a constraintg C V, andiy a DPNT-solved form witlp <g .
If a rule p € DPNT is applicable top, then there exists a constraipt satisfying

© =y ¥ andy’ <g 1.

Proof. By Lemma 14 there exists@PNT-solved formy)’ with ¢ C o’ :lg"C 1. First,
suppose is aruleg — VI, %, in DPT. Then there exists arsuch thatz, C ', hence



¢ A, C19'. Now suppose that € N: Let p bep — p (fg }?,) with X’ & G U V().
Then p(% 1) € 4 for some variabl@”. But then by axiom (2) of Fig. 20, we have
@' =lee y/[Z'/X'] for someZ’ ¢ G U V(¢') U V(y), which by axiom (1) is=¢°
equivalentta)’[Z'/X'|AY =X', which in turn equals’[Z'/ X'|\Y =X'A p (X )
by axiom (3). Call this last constraigt’, theny A p (X! ¥1) C ¢ =le 4. 0

It remains to show that there exist&@NT-branch of finite length
from ¢ to each of its minimal solved forms. If saturation rules carap- 1o
plied in any orderN can speculatively generate an arbitrary number of e
local variables. For example, for the constraint in Fig.i2tould suc- Yzj

H Y3 X1 Y; .
cessively postulate (o’;; Y}), p( Yl} Yl’l’ ), .... We solve this problem Xse
by choosing a special rule application order in our compless proof: XX~ Y, 1Y,

After each—y step, we first form ®PT-saturation before considering

another rule fronN. We use alistance measureetween a smaller andFig. 21. Ter-

a larger constraint to prove completenessB&NT saturation obeying ination?
this application order. The two elements of the measuretheenum-

ber of distinct variables in the larger constraint not pné$e the smaller one; and the
minimum number of correspondences still to be computed tmmestraint.

Definition 16. We define the numbec(S, ¢) of lacking correspondenis ¢ for a set
S CV(¢) by

€(8,9) = > {IN (X 0) + I TL(X ) | X € S and Xy /XonYi /Y2 € 0}
where we fix the values of the auxiliary terms be setting foWglU, U’, V, V' € V():

LU W) = {1 if W & betw,,(U, V) and p(4 ) is noting for any W’
Ve 0 otherwise

Definition 17. For constraintsp; Cyo, let diff(¢1, ¢2) be the size of the setX €
V(p2) | X#£Y € ¢ forall Y € V(p1)}.

We call a setS C V() of variables arninequality set forg iff X#£Y € ¢ for any
distinctX,Y € S.

For constraints, that are saturated with respect to (P.Distr.Projeiff(,1, ¢2) is
the number of variableX in s such thatX=Y ¢ ¢, forallY € V(¢1).

Definition 18. Let ¢, ¢ be constraints an@ C V with ¢ <g . Then theG-measure
1ig (0, 1) for ¢ andy is the sequenclug (¢, 1), 1% (¢)), where:

- ,ué((p, ¥) = min{diff(¢,¢’) | ¢ C ¢’ =k° ¢ andy’ is DPNT-solved}
— p*(p) = min{lc(S, ¢) | S is a maximal inequality set fop}.

We orderg-measures by the lexicographic orderingn sequences of natural numbers,
which is well-founded. The main idea of the following prostthat after each-y step
and subsequemPT-saturation, th€-measure between a constraint and its solved form
has strictly decreased.



Theorem 19 (Completeness)Let ¢ be a constraintg C V, and« a <g-minimal
DPNT-solved form forp. Then there exists a DPNT-solved forrh =g 1 which can
be reached fronp, i.e. —fpnt ¥

Proof. W.l.0.g. lety be DPT-closed. If no rule fronN is applicable tap theny =g ¥
by the minimality ofy. If a rulep € Nis applicable tag, then by Lemma 15 there exist
¢’ ¢" such thaty — ¢ ¢ —ppr ¢ <¢ ¥, andy' is DPT-saturated. By induction,
it is sufficient to show thatig (¢, ¥) < ug(y, ). Note that becausge is DPT-closed,
a maximal inequality set withip contains exactly one variable from each syntactic
variable equivalence class representeghjrandlc({X}, ) = Ic({Y'}, ») whenever
X=Y € ¢ because of saturation under (P.Path.Eq.1). The valdé&fdp, v’) is mini-
mal, i.e. equal tqu§ (¢, ), if forany Y € V(¢') with Y£X € ¢/ forall X € V(y)
the following holds:Y is local and there is no variablg ¢ V(y') distinct fromY
withY=2 € '

Let” bep A p (Y ). In¢, (P.Distr.Project) has been applied X3 and all
variables inV(¢). Lett)’ =¢ ¢ with ¢ C +' and minimaldiff (¢, 7). The constraint
¢’ contains p(! 1) for someZ. W.L.o.g. we pick a)’ that does not contaii”.

—If X'=Y € ¢ for someY € V(g), thenp?(¢') < p?(p) andpg (¢’ ) =
ps (@' ) le({V¢') < Ic({X}, ¢) whenevel/ =X € ¢/, and eithetX or some
other member of its equivalence class must be in each maxireqlality set. At
the same time, a maximal inequality set witiihcan contain only one ok’ and
Y, so X’ contributes nothing additional @*(¢’).

Lety” bey' AX'=ZAY'[X'/Z]. Themy)” is DPNT-solved, and>’ C ¢"’. We have

diff (o', ") = diff(p, ") because forany #Y € ¢/, ¢" containsV/ £Y AV#£X".

Furthermorediff(¢’, ¢") is minimal because the only variable ¢’ not in ¢’ is

X',

- f X'£Y € ¢/ forallY € V(g), thenu§(¢', ) < ug(e,v): Lety” bey'[X'/Z].
Thus,y’ = ¢ by axiom (2) and becausemust be local, and=2’ is notiny"”
for any distinctZ’ because of the minimality afiff(¢, ¢’), as pointed out above.
Obviouslyy" is aDPNT-solved form withy’ C " . Furthermorediff(y’, v") =
diff (¢, ¥) — 1 because we must have had:tV € ¢ forall V € V(). O

7 Conclusion

We have presented a semi-decision procedure for paralle@mstraints which termi-
nates for the important fragment of dominance constraihtsses path equality con-
straints to record correspondence, allowing for strongagation. We have proved the
procedure sound and complete. In the process, we have utddhe concept of a
minimal solved form for parallelism constraints.

Many things remain to be done. One important problem is tarites the linguisti-
cally relevant fragment of parallelism constraints andwkether it is decidable. Then,
the prototype implementation we have is not optimized inany. We would like to

! The variableY is local becaus®(¢') N G = V(¥) N G = V() N G, otherwiseyy would not
be aminimalsolved form forep.



replace it by one using constraint technology and to see haivdcales up to large
examples from linguistics. Also, we would like to apply péetism constraints to a
broader range of linguistic phenomena.
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A Correspondence Functions

In the following appendix sections, we give the proofs oetitearlier for brevity. The

first proof we still owe is that of lemma 3: We prove that whesrewe have a corre-

spondence function, then corresponding nodes are reaéh#dtevsame paths from the
parallelism roots down.

Lemma 3. If ¢ : betw, (71, m2) — betw. (73, m4) iS a correspondence function, then
c(mm) = wgn for all mym € betw, (71, m2).

Proof. By induction onw. The case ofr = ¢ is obvious. So letr = 7'i € D
with mym € betw,(m,72) and lett = mn’. As«’i € D,, we haver#£ny. Sup-
poseMT |= w:f(7L,...,7n), thenM™ = ¢(7):f(c(71),...,c(7n)) asc is a cor-
respondence function. By the inductive hypothes() = c(mn’) = m37’. Hence
c(mn'j) = mgn’jforl < j < n. Asw € D,, we havei € {1,...,n}, so
c(mm) = m3m. O

B Soundness of rule seb for dominance constraints

We proceed in two steps, as sketched for the soundness pgr@®NT in section 5.
First, we identifysimple D-solved formand show that they are satisfiable (Proposi-
tion 21). Then we show how to extend evddysolved form into a simpl®-solved
form by adding further constraints (Lemma 26).

Definition 20. A variableX is labeled ing iff X=Y € ¢ andY:f(Y1,...,Y,) € ¢
for some variablé” and termf (Y1, ...,Y,). A variableY is aroot variablefor ¢ if

Y<*Z € pforall Z € V(¢). We call a constraing simpleiff all its variables are
labeled, and if there is a root variable for

The constraint graph of a simple constrainbirsolved form (Def. 9) is tree-shaped.
Lemma 21. A simple D-solved form is satisfiable.

Proof. By induction on the number of literals in a simfdesolved formy. Let Z be a
root variable inp. Since all variables i are labeled, there is a variab® and a term
f(Z1,...,Z,) suchthaZ=2"andZ": f(Z:, ..., Z,) are inyp. Let

V={XeV(p) | Z=X € ¢} andV; = {X € V(¢) | Zi<*X € p}.

foralll < i < n.ToseethaV(¢) = VUV U...UV,, letX € V(p) such that
Zi<*X g pforalll <i <n.AsZis arootvariableZ<*X € ¢, and by saturation
with (D.Distr.Child), must containz=X.

For a seti? C V(y) we definepy, as the conjunction of all literalg € ¢ with
V() C W. We show that

¢ H ¢ holdswhere ¢ =gy AZ:f(Z1,...,7,) A /\ o
i=1

because is in D-solved form: Each literal ip is entailed byy'.



— SupposeX:g(X1,...,Xm) € ¢ for some variableX and termg(X1,..., Xm).
If Z;<*X € ¢ for somel < i < n, thenX:g(Xy,...,Xpn) € o)y, since
@ Iis saturated under (D.Lab.Dom) and (D.Dom.Trans). Otheewi =X € ¢,
and thusZ=X € ¢y. In this case,f = g andn = m by saturation with
(D.Lab.Ineq) and (D.Clash.lneq) coupled with the clagtefress ofp. As ¢ is
saturated under (D.Eq.Decom), it must contdip=X; for 1 < i < n, hence
Zi=X; € ¢ly,. S0,¢’ containsZ=X A Z:f(Z1,...,Zn) N Nj—; Zi=X;, which
entailsX:g(X1, ..., X) as required.

— Now supposeX RY € ¢ for some variableX(,Y andR € {<*,#, L }. There are
four possible cases:

o If X eV}, Y € Vwithl < i # j <n, thenR cannot be* by (D.Dom.Refl),
(D.Prop.Disj) and (D.Clash.Disj) combined with the cldsteness ofp. ¢
entailsZ; L Z; and thusX 1Y as well asX #Y".

e The cases wher& andY both belong td” or to the samé/; are obvious.

e If X € VandY € V; for somei, then X<*Y € ¢ by (D.Lab.Dom)
and (D.Dom.Trans).R cannot be | by saturation under (D.Dom.Refl),
(D.Prop.Disj) and (D.Clash.Disj) and the clash-freenéss @’ entailsZ<* Z;
and thusX<*Y and X £Y.

e The case of{ € V andY € V; is symmetric to the previous one.

Next note that all|y, are simpleD-solved forms. By the inductive hypothesis there
exist solutions(M™,a;) = ¢y, forall 1 < i < n. Thus,(M/(0m™) a) is a
solution ofy if )y, = o; anda(X) = a(Z) is the root node of (71, ..., 7,) for all
XeV. 0

Now suppose we have a constrajnin D-solved form. We want to show that there
is anextensiong A ¢’ of ¢ such thatp A ¢’ is in D-solved form as well as simple. We
proceed by successively labeling unlabeled variaBles ¢, taking asX's children
the variables minimally dominated by it, as sketched in Eig. We formalize this as
follows: Given a constraing we define an ordering,, on its variables such thaf <.,

Y holds iff X<*Y € ¢ but notY <*X € ¢.

Definition 22. Let ¢ be a dominance constraint add € V() unlabeled. Then we
define the set cop(X) of variablesconnected toX in ¢ as follows:

con,(X) ={Y € V(¢) | Y minimalwithX <, Y’}

For the constraintin Fig. 17, con(X) = {Y, Z, U }. However, when picking variables
to serve as children ok, we do not use all of cop(X): In the example above, we
choose only one of, U as we haveZ =U.

Definition 23. We callV' C V(y) ay-disjointnessset if for any two distinct variables
Yl,YQ cV, Y=Y, g ©.

The idea is that all variables in @-disjointness set can safely be placed at disjoint
positions in at least one of the trees solving



Lemma 24. Let ¢ be D-saturated and¥ € V(¢). If V is a maximalp-disjointness
set within con,(X), then for allY” € con,(X) there exists somg& € V such that
Y=7 €.

Proof. If Y=Z ¢ pforall Z € V, then{Y'} U V is a disjointness set; thds € V by
the maximality ofl/. O

Lemma 25 (Extension by Labeling). Every D-solved fornp with an unlabeled vari-
able X can be extended to a D-solved form in whiXhs labeled.

Proof. Let{X3,..., X, } be amaximalp-disjointness setin cop(X). Let us assume
for the moment thak’ contains a function symbdgl of arity n. We define the following
extensiorext(y) of o A X:f(X1,...,Xp):

ext(g) = AN X:f(X1,...,Xn) A /n\X;éXi A

i=1

A ULV A A Z#X
Xid*U,XjQ*VEQP, Z:g(...)Ego,
1<i#j<n g#f V ar(g)#ar(f)

Note thatX is labeled inext(¢) sinceX=X € ¢ by (D.Dom.Refl). We consider
each rule oD in turn and show that it is not applicabledet ().

(D.Clash.lneq): No new dominance constraints have been introduced.

Suppose a new inequalitk #X; has made (D.Clash.Ineq) applicable. Then
X=X, € ¢, butX; € con,(X).

Suppose a new inequality #X has made (D.Clash.lneq) applicable. Then
Z:g(...)andX=Z are ing, but X is unlabeled ing.

(D.Clash.Disj): Suppose a new literall LV has made (D.Clash.Disj) applicable,
where X;<*U, X;<*V € ¢ with i # j. ThenU=V € ¢. As ¢ is saturated un-
der (D.Distr.NotDisj), we must have eith&F;<* X; or X;<*X, in ¢. But{X;, X;}
is a disjointness set.

(D.Dom.Refl): No new variables have been added.

(D.Dom.Trans): No new dominance constraints have been added.

(D.Eq.Decom): For (D.Eq.Decom) to be applicable f6:f(X3,...,X,) and some
literal Z:f(Z1,...,Zn) € v, Z=X must be inp already. ButX is unlabeled irp.

(D.Lab.Ineq): The only new labeling constraint iX:f(Xy,...,X,). Z#X is in
ext(y) for all Z labeled anything buf.

(D.Lab.Disj): The only new labeling constraint i&:f(X3,...,X,). By saturation
under (D.Dom.Refl) X;<*X; € ¢ for1 < i < n, soX,;LX; is inext(y) for all
1 <i # 7 < n by definition.

(D.Prop.Disj): The only disjointness constraints neweixt(¢) have the formi/ LV,
where X, <*U, X;<*V € o for j # i. If U<*U’ andV<*V' are iny, then by
saturation under (D.Dom.TranX),<*U’, X;<*V' € ¢, soU’' LV" is in ext(¢p).

(D.Lab.Dom): X:f(X;,...,X,) is the only labeling constraint iaxt(¢) — ¢. We
haveX<*X,; € pforall 1 <i < nbecausd Xi,...,X,} C con,(X). X#X;
is in ext(y) by definition for alll < i < n.



(D.Distr.Child): SupposeX<*Z € ¢, but neitherZ<*X nor X;<*Z is in ¢ for any
ie{l,...,n}.ThenX <, Z.If Z € con,(X), we have the following situation:
The disjointness sefXy,..., X, } is maximal within con,(X), so Z=X, for
somei € {1,...,n} by lemma 24, a contradiction. So suppd&és not minimal,
i.e. there exists somE € con,(X) such that’<*Z € ¢. But then againX;=Y
forsomei € {1,...,n}, SOX;<*Z.

(D.Distr.NotDisj): No new dominance constraints have been added.

We now turn to the case that the signature does not containcidn symbol for
the arity we need. We can get around this problem by encodiegymbols with a
nullary symbol and one symbol of arity 2, whose existence we have assumed. This
encoding may introduce new variables, but only finitely mé&uy a detailed description
of this construction, see [11], lemma 4.11. If a function gphof the appropriate arity
is present inY, then the labeling oK does not introduce new variables. O

Lemma 26. Every D-solved form can be extended to a simple D-solved form

Proof. Let ¢ be D-saturated and withodtlse. Without loss of generality, we can as-
sume thaty has a root variable (otherwise, we choose a fresh varidgldaed consider
o A N{X<*Y|Y € V(p)} instead ofg). By Lemma 25, we can successively label all
variables inp. O

Together, lemmas 21 and 26 show the soundneBs of

Proposition 4 (Soundness) Any dominance constraint in D-solved form is satisfiable.

C Soundness of rule seDPNT for parallelism constraints

Generatedness is about where path equality literals may.d&ee Def. 7.) In proving
soundness dDPNT, we may restrict ourselves to generated constraints, sihselved
forms that are computed are generated:

Lemma 8. Let¢ be a constraint without path equalities and let—{p\r ¢ with ¢
in DPNT-solved form. The@' is generated.

Proof. Let ¢4, ..., ¢, be a sequence of constraints such that=5¢ ¢, ¢,, =€t ¢/,
andp; —ppnT @ir1 for 1 < i < n — 1. We show by induction on that (1) each
P(XY) € ¢ is generated i/, (2) alongside with ) %) and every {3, 7))
with X'=X,U'=U,Y'=Y,V'=V € ¢'.

@1 contains no path qualities. So let —¢,, .11, Wherep is an instance of
(P.Root), (P.Path.Sym), (P.Path.Eq.1) or (N.New) erT.

If pis an instance of (P.Root), then,; has the formp; A p (3! 31 ) A p (! 32)
for some X1, X5,Y7,Ys. Then X;/Xo~Y;1/Ys € ¢, and we haveX;, Xy €
betw, (X1, X5) by closure under (D.Dom.Refl) and (P.Path.Dom). Sop;. ),



p (ﬁ; 2) are correspondence-generatedsn Condition (2) from above holds for

p(3¥'}) and p(y!y!) by closure of¢’ under (P.Path.Sym), (P.Path.Eq.1) and
(D.Dom.Trans).
X1 b

If p is an instance of (N.New), thep; ; has the formp; A p (7 ), and
X1/X2~Y1/Ys € @, for someXs, Y such that € betw,: (X1, X2). So p( )
is correspondence-generategin Condition (2) holds for pifg }?,) by closure under
(P.Path.Sym), (P.Path.Eg.1), (D.Dom.Trans) and (D.®is}).

If p € Tandy,.1 has the formp; A p (3 1), then p(3; 1) is generated by def-
inition. Concerning condition (2), we just consider theecad (T.Trans.H), the oth-

ers are analogous. Suppgséas the form gy Z) A p(7 1) — p(; ). Then

p(7 %), p(} 7) areing by closure under (T.Trans.H) and generated by the in-

ductive hypothesis. So (r{ )[5) € ¢’ is generated i’ as well. The case of a literal

p (X Y)) whereX'=X,U'=U,Y'=Y,V'=V € ¢ is analogous.
If pis an instance of (P.Path.Sym) or (P.Path.Eq.1) @and has the formp; A

p (4 1), then p(3; 1) is generated i’ because of inductive hypothesis (2). O

As for the case of dominance constraints, we first prove fhgtle generated con-
straints inDPNT-solved form are satisfiable.

Proposition 10. A simple generated constraint in DPNT-solved form is satid.

Proof. Let ¢ be a simple generated constrainDRPNT-solved form, and lep4,,, be
the maximal subset gf that is a dominance constraigty,,, is in D-solved form, so
it is satisfiable (Lemma 21). It remains to show that all pajbhadity literals and all
parallelism literals ofy are satisfied in a solutiopM™, «) of ¢4,m a@s constructed in
lemma 21. Note that by this constructiongife D, then there exists som€ € V(¢)
with a(X) = 7.

Path equality literals.Let p (}[5 ";) be a path equality literal ip. As ¢ is simple, either
X=U € ¢, or there exisXy, ..., X,, € V(p) for somen such thatX,=X, X,,=U €
pandforall0 <i<n—1, Xg:f(X] ..., X] )€ ¢forsomeX;,....X] €
V(p) and f; € X of arity m;, and X}, =X, € ¢ for someyj; € {i1,...,im,}. n and
the f;, 1 < i < n, are unique ag is clash-free and closed under (D.Distr.NotDisj),
(D.Distr.Child) and (D.Lab.Ineq). We show, by induction thre length of a proof of
generatedness for (pg ";), that if X=U € ¢ thenY=V € ¢, and that otherwise for
allo<i<n, p(y y.) € ¢ forsomeY; € V() insuchaway thatfod <i <n-1,
Yifi(Y{, .. .,Y;’mi) € ¢ for someyy , .. -sz'/mi € V(p), andY} =Yiy1 € ¢.

Suppose mg";) is correspondence-generated. Then there exists some paral
lelism literal Wy /WanW3 /W3 € ¢ with W1=X,W5=Y € ¢. W.l.o.g. suppose
U € betw, (W1, Ws), thenV € betw, (W3, Wy) by (P.Copy.Dom). IfX=U € ¢,
then alsoY'=V € ¢ by closure under (P.Copy.Dom). Suppose-U ¢ ¢. We proceed
by induction om.

Supposen = 1. We have {}°}’) € ¢ by closure under (P.Root) and

(P.Path.Eq.1). IfX:f(X1,..., X)) € ¢, thenX],..., X, € betw,(W;, W3) by



closure under (D.Lab.Dom), (D.Dom.Trans), (P.Distr.Ondpwand the fact that/ €
betw,, (W1, W2). ¢ must contain eitheX <*W, or X LW, asX € betw, (W1, Wa),
and if X <*W, then alsoX #W> by (P.Distr.Project) sinc& € betw, (W1, W>) and
X#U by (P.Lab.Dom); so by closure gf under (N.New) and (P.Copy.Lab), we must
haveY:f(Y{,...,Y,,) € ¢ for someYy,.... Y, € V(p). Likewise, if U=X], then
V=Y by (P.Copy.Lab), (P.Path.Eq.1).

Now supposen > 1. As p(g‘t) is correspondence-generated, there exists

someW; /WaonWs3 /W3 € ¢ with W1=X,W3=Y € ¢ andU € betw, (W1, Ws),
V € betw, (W3, Wy). Asn > 1, there existsX,,_; such thatX<*X,,_; € ¢ and
Xn-1:f(X1,...,X},) € pforsomef,m, Xi,..., X, andU=X] € ¢ for somej.
As X,U € betw, (Wi, W) andX<*X,,_1<*U € ¢ by (D.Lab.Dom), (D.Dom.Trans),
Xn—1 € betw, (W5, W) must have been chosen by (P.Distr.Crown), so by (N.New)
there existd;, y with p (" ) € ¢. By theinductive hypothesis, [y, y.) € ¢
forall0 <i<n-—1.AsX, 1,U € betw, (Wi, W) andX,,_;#X/for1 <i<m
by (D.Lab.Dom), we must hav&y, ..., X/, € betw, (Wi, Ws) by (P.Distr.Crown). So
by (N.New) there ar&7,...,Y,, such that [ 3, ) € ¢ for 1 < i < m. As above,
we can argue that eithéf,,_1 L W5 or X,_1<T W, must be inp, so by (P.Copy.Lab),
Yo—1:f(Y{,...,Y},) € ¢. Furthermorey must contain/=Y; by (P.Path.Eq.1).

Suppose mg ";) is generated but not correspondence-generated, i.e.dkiste a
rulep € Twith rhs p(; 1) such that all path equality literals in the Ihsjofire gener-
ated. Supposg s an instance of (T.Trans.H) and the lhsgdé p (5, %) A p (7 v )

If X=U € pthenZ=W € ¢ and thus alsd& =V € ¢ by the inductive hypothe-
sis. So suppos& =U ¢ ¢, and suppose we have sequen&esXy, ..., X,,=U and
Z=2Zy,. .., Zn,=W. By the inductive hypothesis, we must have=n.

Now supposg is an instance of (T.Diff.2) and the Ins pfs p (), & )A P ([ o)A
X<UNY V. If X=U' € ¢, thenX=U € ¢ by (D.Dom.Trans), and by the induc-
tive hypothesi¥"=V" and thusY' =V are iny¢ by (D.Dom.Trans). fU=U" € ¢, then
V=V'" € ¢ by the inductive hypothesis, and (é 5) €  even without applica-
tion of p. Suppose otherwise, and I&8=X,, ..., X,,,=U’ andU=U, ..., U,,=U".
By closure under (D.Lab.Dom), (D.Dom.Trans) and (D.DittDisj), there exists a
minimali € {0,...,n1} with Up<*X; € ¢. ¢ is simple, so by (D.Distr.Child), we
must haveX,=U, € ¢, i.e. we can choose the sequenXg, ..., X,,, such that it
equalsXy, ..., X;_1,U,..., Uy,,. But then the inductive hypotheses already hold for
p (4 1) and the sequencE = Xy, ..., X, 1,Us=U. The cases op being an in-
stance of (T.Trans.V) or (T.Diff.1) are analogous.

Now let

‘10/ = Pdom U {XI/X2NY1/Y2 c (p}U
{p(é”)\;) €y ‘ ElfanaiaXla---,Xn-X:f(Xl,---,Xn),XZ‘:U € (p}

Theng H ¢': ¢ |= ¢’ sincey’ C ¢. ¢’ |= ¢ since all path equalities ip of the form
p (§ ﬁ) are entailed anyway, and the remaining path equalities in o are entailed
by T and the instances of (P.Path.Eq.1).

Let (M7, ) be a solution ofg4,,, constructed as in lemma 21. It remains to

show that each path equality i#f is satisfied by(M™, ). So let p(),j ";) € ¢, and



let X:f(X1,...,Xn),X;=U € ¢. Then, as shown, there ai§, ...,Y, such that
Y:f(Y1,...,Ys),Y;=V € ¢. Then by the construction from lemma 21, the subtree
of 7 with roota(X) is labeledf, as is the subtres- of 7 with roota(Y"), and the path
from o (X) to a(X;) = a(U) in 7x is i, as is the path from(Y") to a(Y;) = a(V) in
TY .

Parallelism literals. Let X;/Xo~Y1/Ys € ©, and let
a(Xl):m, a(XQ):’/TQ, a(Yl):’/Tg, a(Yg):’/T4. Then7r1<*7r2, m3<*m4 hold in M7 as
it is a model ofp 40, . We define a function : betw, (71, m2) — betw. (73, 74) by

X1
XY
It remains to show thatis the correspondence function for/mo~7s /4.

c is well-defined because if @Y 1), p(¥ %) € ¢, then by closure under
(T.Trans.H), (P.Path.Sym), (P.Path.Eq.1) &seZ < ¢.

The domain ofc is betw, (1, m2): we first show that the domain afis a subset
of betw, (71, m2). Let X € betw, (X7, X2). As M7 is a model ofpgom, m1<*a(X)
and either(X)<* 7 or a(X) Lme must hold inM™. Soa(X) € betw. (71, m2). We
now show thabetw. (71, 72) is a subset of the domain of Let 7 € betw. (71, m2),
then, as noted above, there existsXmwith a(X) = w. We need to show thaX €
betw, (X1, X»). ¢ possesses a root variable, calKig, and we haveXy<* X, Xo<* X
in ¢. Let X/, be a<™-maximal variable such that)<* X, X|<*X € ¢. If X[=X €
o, then X<*X; by closure under (D.Dom.Trans), and must containX=X; by
(P.Distr.Project) because <*x. If Xg=X{, X{:f(Z1,...,2Z,) € ¢, then we cannot
haveZ;<* X1, Z;<*X € pforl < i # j < n, since thenX_LX; € ¢ by closure
under (D.Dom.Trans), (D.Prop.Distr). We cannot haye* X, Z;<*X € ¢ for some
i € {1,...,n} since we have choseXy, to be maximal. The only remaining possibility
is X)=X1 € ¢ andZ;<*X € ¢ forsomei € {1,...,n}. Inany caseX;<*X € ¢.
By (P.Distr.Crown), we must have chosen eithés* X, or X | X,. By an analogous
argument, one can see that the rangeisfoetw, (73, 74).

c is one-to-one (injective) because if (K 1), p(}' ) € ¢ for X,V ¢
betw, (X1, X»), thenX=Y € ¢ by closure under (P.Copy.Dom). It is onto (surjec-
tive) by closure under (N.New).

¢(m1) = w3, ande(ms) = w4 by closure under (P.Root).

¢ is structure-preserving: suppos® € betw,(m,m2) — {m2}, and M7 |=
Yo:f(¢1,...,%,). Then there exists &y € V(¢) with a(Uy) = ¢ and, as
shown abovel/y € betw, (X1, X2). As ¢ is simple,Uy must be labeledy must
containUp=U}, U}:f(Un,...,U,) for someU}, Uy, ..., U,. By (P.Distr.Project) we
must havelUy#X> € ¢ since Yy#ms. So by (P.Distr.Crown), eithet/y<t X, or
UpL Xy € ¢. ThusUy, ..., U, € betw,(X1,X2). By closure under (N.New), con-
tains p(3! 1), 0 < i < n, for someVy, ..., V,, and by closure under (P.Path.Eq.1)
and (P.Copy.Lab), it containgj: f(Va,..., V). By the construction of, we have

c(;) = c(a(U;)) = a(V;) for 0 < i < n, and as(M™,a) = @dom, We must
have M = a(V):£(0(V4), ..., (V) = c(o):F(e(hy). ... cltn)). The opposite
direction, starting from\™ \— c(wg) fle(¥r),...,c(¢y)), is proved by an analogous
argument. 0

c(a(X))=a(Y) iff X € betw,(X1,X2) and p( ) € .



Now we show how to extend a non-simple generated constraiDPiNT-solved
form to a simple one. As mentioned in Sec. 5, if we label an helled variableX
occurring within some parallelism context, we have to laelultaneously the corre-
spondent ofX, as well as allts correspondents. We formalize this in the notion of the
copy sebf a labeling literalX: f (X, ..., X,).

Definition 27. Let ¢ be a constraint withX, X;,...,X,,Y,Y1,...,Y, € V(p) and
let f be a function symbol of arity. Then we define—, by

X:f(Xi,..., Xp) =g Yif(Ya, ..., Yy)

iff there exists somé&/; /Ua~V1/Va € ¢ such thatX, X,..., X, € betw,(U1,U2)
andX=U, ¢ pbut p( 1) € pand p( 1) € pforl <i<n.
Furthermore,

copyw(X:f(Xl,...,Xn)) ={Y:f(h,...,Y,) |
X:f(Xl',' e aXn) L):(o Yf(Yl e aYn)}

where as usuat-7 is the reflexive and transitive closure<ef,,.

Lemma 28. Let ¢ be a constraint in DPNT-solved form, and bétf (Y1, ..., Y,) €
Copyw(X:f(Xl, . ,Xn)).

— If X is unlabeled inp, then so isY'.

- If{X1,..., X, } C con,(X), then{Ys,...,¥,} C cony(Y).

- If {Xy,...,X,} is a maximaly-disjointness set in cop(X), then{Ys,...,Y,}
is a maximaly-disjointness setin cop(Y).

Proof. By well-founded induction on the strict partial order on the set{S |
{X:f(Xq,...,Xn)} CSC copy@(X:f(Xl, e ,Xn))}.

The case ofS = {X:f(Xy,...,X,)} is trivial. Otherwise,S has the formS’ U
{Y:f(Y1,...,Y,)} andthere exist&: f(Z1,...,Z,) € S'with Z:f(Z1,...,Zy,) <
Y:f(Y1,...,Y,) (becauseX:f(Xi,...,X,) € &, so if there were no such
Z:f(Zy,...,Z,) € §', thenS ¢ Copyw(X:f(Xl, . Xy))). LetUy /Us~Vy Vs €
¢ With Z, Zy,...,Z, € betw,(Uy,Uz) and Z=U, ¢ ¢ but p(} V}) € ¢ and
p(7 ) € pforl <i < n. ThenY,Yi,...,Y, € betw,(V,V2) by closure un-
der (P.Copy.Dom), antf=V> ¢ ¢, again by closure under (P.Copy.Dom).

— SupposeZ is unlabeled. Thert” must be unlabeled too, as any labeling literal
would have been copied by (P.Copy.Lab).

— Suppose{Zi,...,Z,} C con,(Z). Then by closure under (P.Copy.Dom),
Y'Y, € o butY;<*Y & ¢ for1 < i < n. Assume that’; is not minimal
with Y <, Y;, i.e. there exists som@” with Y <, W <, Y;. ThenWW €
betw,,(V1,V2) by closure under (D.Dom.Trans), (D.Prop.Disj), (P.Di&tawn).
So by (N.New), there exists sorfi’ € betw, (Us, Us) with p (7} ). But then
Z<*W'e*Z; € ¢ by (P.Copy.Dom), but neithé#’<*Z nor Z,<*W"' is in ¢, s0Z;
is not minimal either, a contradiction.



— Suppos€ Z,. .., Z,} is a maximalg-disjointness set in cop(Z). Assume that
{Y;,Y;} is not a disjointness set for sorhe< i # j < n. SoY;=Y; € ¢. Butthen
by (P.Copy.Dom)Z;=Z; € ¢, a contradiction.

Assume{Y1,...,Y,} is not maximal, i.e. there exists sor& ¢ {Y1,...,Y,}
suchthafYs,...,Y,, Y’} C con,(Y)is adisjointness set. We must havier*Y”’
by (D.Dom.Trans) and eith&f’<*V, or Y’ LV, or Vo<™Y” by (P.Distr.Crown). But
if Vo<tY”’, thenY’ ¢ con,(Y') becaus& =V ¢ ¢. SoY"’ € betw, (V4, V2). By
closure under (N.New) and (P.Copy.Dom), there exist$ a betw,, (U1, Us) such
that p(Y} V3) € . By closure under (P.Copy.Dom), we hagé € con,(Z).
Z' cannot be in{Z:,...,Z,}: If Z'=Z; € ¢ for somei € {1,...,n}, then
p(yy). p( 1) € ¢ by (PPath.Eq.1), sd”=Y; € ¢ by (P.Path.Eq.2).
Hence {Z:,...,Z,,Z'} is a¢-disjointness set in cop(Z) that is bigger than
{Zy,...,Z,}, acontradiction.

Proposition 29. Every DPNT-solved formp with an unlabeled variablé& can be ex-
tended to a DPNT-solved form in whiéhis labeled.

Proof. Let {X;,...,X,} be a maximalg-disjointness set in cog(X). Let f be
a function symbol inX’ of arity n. (If there exists no suitablg, this problem is
solved the same way as in Lemma 25). Then we define the extensi¢p) of
e ANX:f(X1,...,X,)as

ext(p) == A A (Y:f(Yl,...,Yn) A AL YAY: A
Y:f(Y1,...,Yn)€E /\ ULlV A

Yi<*U,Y;<*Vep,
copy,, (X:f(X1,...X)) y U Yiaver

Z;éY)
Z:g(...)Eep,
g#f NV ar(g)Far(f)
This definition extends the one in Lemma 25 from a single labeliteral

X:f(X1,...,X,) toasetopy,, (X:f(Xi,..., X,)) of labeling literals.

(D.Clash.lneq): ext(y) contains no new dominance literals. If a new inequalitydite
Y +£Y; were to make (D.Clash.Ineq) applicable, themmust containy =Y}, but
V:f(Y1,...,Yy,) € copy, (X:f(X1,...,X,)),s0Y; € con,(Y) by lemma 28.

If a new inequalityZ+#Y were to make the clash rule applicable, ti#p(. . .) and
Y =7 must be inp, but by lemma 28Y" is unlabeled becausg is.

(D.Clash.Disj): The only new disjointness literals ixt(¢) have the fornl/ LV for
Y;<*U,Y;<*V in @ with ¢ # j. AssumeU=V is in . Then by (D.Distr.NotDis}),
eitherY;<*Y; or Y;<*Y; must be inp. But {X;, X,} is a disjointness set, and so,
by lemma 28, ifY;, Y} }.

(D.Dom.Refl): No new variables have been added.

(D.Dom.Trans), (D.Distr.NotDisj): No new dominance literals have been added.

(D.Eq.Decom): Suppos&’: f(Y1,...,Y,) € copy, (X:f(X1,...,X,)) andY=Z is
in ¢. ThenY andZ must be unlabeled by lemma 28, so for (D.Eq.Decom) to be
applicable, bottY": f(Y1,...,Y,) and Z:f(Z;, ..., Z,) must be inext(p) — ¢,
which means thak:f(Z1, ..., Zy,) € copy,, (X:f(X1,..., Xy)), too.



If copy,, (X:f(X1,...,X,)) is asingleton, then we must ha¥e=Y;=Z7; for 1 <
i < n. So suppose otherwise. L€t f (U1, ..., U,) € copy,, (X:f(Xl, o Xn)).
We use induction on the length ofa,, sequence starting IN: f (X1, ..., X,)and
ending inU:f(Uy, ..., Uy) to show that [( ) € pforl < i < n.We start
with a sequence of length 0. Aspy, (X.f(Xl, e ,Xn)) is not a singleton, there
exists somdV, /WonWs /Wy € ¢ with X, Xq,..., X, € betw,(W;, Ws). By
closure under (N.New), there exi&t’, X/,..., X/, such that {'%' 'V3) € p as
wellas p('y! V;g?) € ¢forl <i<n.By(P. Path sym), 'y ). p (' V) €
¢, so by (T.Trans.H), g '), p("}‘(f1 W) epforl <i<n. AsX<'X; € ¢,
closure under (T.Diff.1) yields p ) cpfor1 <i<n.
SupposeV:f(Vi,...,V,) € copyw(X.f(Xl, ..., Xn)) with p (jé_ “2) € o
for1 < ¢ < n, and V:f(Vh,...,V,) <, U:f(Us,...,U,). Then ¢
contains someWy/Wo~Ws5 /Wy with V,V4,...,V,, € betw, (Wi, W>) and

P p(YEYE) € pfor1 < i < n. Then by closure under (T.Diff.1),

p(y U)Ecpfor1<z<n and so, by (T.Trans.H), are (i%’, ;)

Hence p({ 1), P(%, /) € ¢ for1 < i < n.By closure under (P.Path.Sym)
7 7

and (TTrans H);p contains p(Y z ) and asY=Z € ¢, p(y ;) € ¢ by
(P.Path.Eq.1), whence by (P.Path.Eq¥2}:Z; € ¢ already (all forl < i < n).

(D.Lab.Ineq): SupposeY:f(Yi,...,Y,) € ext(p) — ¢. ThenZ#Y is in ext(y) by
definition for all Z labeled anything buf.

(D.Lab.Disj): Suppos&”:f(Yi,...,Y,) € ext(p) — ¢. SinceY;<*Y;, Y;<*Y; € ¢ for
1 < i < n by closure under (D.Dom.Refly; LY; is in ext(¢) by definition.

(D.Prop.Disj): Suppos&’:f(Y1, ..., Y,) € copy,(X:f(Xi,...,X,)) andULV €
ext(yp) — ¢ for someY;<*U, Y;<*V, j # i. If U<*U" andV<*V’ are iny, then
we also havé’;<*U’,Y;<*V' € ¢ by closure under (D.Dom.Trans), 88_LV’ is
in ext(y).

(D.Lab.Dom): SupposeY:f(Yi,...,Y,) € ext(p) — ¢. We haveY<*Y; € ¢ by
lemma 28Y £Y; € ext(y) by definition.

(D.Distr.Child): Suppos&”:f(Y1,...,Y,) € ext(p) — ¢ andY<*Z € ¢.
If Z<*Y € ¢, then (D.Distr.Child) is not applicable iext(¢). OtherwiseY <.,
Z. If Z is minimal withY <, Z, thenZ € con,(Y), and as{}3,...,Y,}
is a maximalp-disjointness set in cop(Y'), we haveZ=Y; € ¢ for somei €
{1,...,n}.If Zis not minimal, there exists som& < con,(Y") such that”<*Z
is in ¢. But then againY;=Y" for some; € {1,...,n}, soY;<*Z.

(P.Root), (P.Path.Sym), (P.Path.Dom), (P.Path.Eq.1), @®ath.Eq.1), (P.Distr.Crown):
No new dominance, parallelism, or path equality literalsehaeen added.

(P.Copy.Dom): Any dominance literal irext(¢y) is in  already, so the case &f = <*
does not apply.

— We next consider the cage= L. LetU LV be inext(y) — ¢, where for some
Vif(Y1,...,Yn) € copy,(X:f(X1,...,X,)) and somel < i # j < n,
Y;<*U,Y;<*V € ¢. (Thus,{Y1,...,Y,} # (.) Supposep contains a par-
allelism literal W1 /WonW3 /Wy with U,V € betw, (W7, W2). By closure
under (N.New), there exigt’, V' such that g}’ V3 ), p (1! V%) € ¢. So



Wi<*U, W1<*V € ¢, and by closure under (D.Dom.Tran®)s*U, Y <*V €

. Hence by (D.Distr.NotDisj)y contains eithet’<*W; or Wy <*Y'.

If ¢ containsY’ <*W; but notY =W4, thenY <, Wi. {Y3,...,Y,} is a maxi-
mal p-disjointness setin cog(Y’) by lemma 28. So iV, € con,(Y), then
by lemma 24W; =Y} is in ¢ for somek € {1,...,n}. If W is not minimal
with Y <, W7, then there exists som¥¢’ € con,(Y) such thaty” <, W;.
Again by lemma 24 containsY’=Y}, for somek € {1,...,n} and hence,
by closure under (D.Dom.Trang),<*WW; € . But then we cannot have both
Wi<*U andW1<*V in ¢ since at least one d&f; LY}, andY; LY} is in ¢, and

@ is clash-free. So (D.Distr.NotDisj) must have made the cati <*Y € ¢.

@ is closed under (P.Distr.Crown), but the choice made cabedl/><*Y,
sinceY<tU,Y<tV € ¢ by closure under (D.Dom.Trans), (D.Lab.Dom),
(P.Distr.Project) and on the other habdV € betw, (W1, Ws). So either
Y<tW, € ¢ by (P.Distr.Crown) and (P.Distr.Project), & LW, € ¢
by (P.Distr.Crown). In the first case, (P.Distr.Crown) mhstve chosen ei-
ther Y; LW, or Y;<*W,y for eachl < i < n because all they; are
minimal with Y <, Y;. In the second case, we hateLlW, € ¢ for

1 < i < n by closure under (D.Prop.Disj). In both cas&sY,...,Y, €
betw, (W1, Ws). By closure under (N.New), there a& Z,,...,Z, such
that p(* ') € ¢ and p(}2 %) € ¢ for 1 < i < n. Since
Y=Wa & o, Z:f(Z1,...,Zn) € copy¢(X f(X1,...,X,)). By closure un-
der (P.Copy.Dom)Z;<* U’ Z;<*V' € ¢, 50U’ LV € ext(np) by definition.
Lastly, we consider the case oR = #. Let Y:f(Y1,...,Y,) €
copy¢(X:f(X1, ey Xn))

SupposeY#Y; € ext(g) — ¢ for somei €< {1,...,n}. (Again,
{Y1,...,Y,} # 0.) Suppose further thatV, /WorW3 /W, € ¢ with
Y.Y; € betw, (Wi, W>). By closure under (N.New), there exi&t Z; such
that p('(* 7). p(§ 7)€ .

We must hav&” <™, € ¢ by closure under (P.Distr.Crown), (P.Distr.Project)
and the fact thal; € betw, (Wi, Ws). SoYi,...,Y, € betw, (W, W)
by closure under (P.Distr.Crown)V><*Y; cannot have been chosen for any
j €{1,...,n} becaus& <t W, and eaclt; is minimal withY” <., Y;.
Sotherear¢;, ..., Z, such that qu WS) cpforl <j<n.Y=W,¢ ¢,
S0Z:f(Z1,...,Zy) € copy@(X:f(Xl, ..., Xn)). Hence Z#Z; is in ext(¢)

by definition.

Now suppose&£Y € ext(¢)—p, WhereZ:g(. . .) is in ¢ for somey with either

g # forar(g) # ar(f). Suppose further thal’; /WornW5 /Wy € ¢ with
Y,Z € betw, (Wi, W>). By closure under (P.Distr.Project), we have either
Z=Y € porZ+Y € p. Z=Y € ¢ is impossible sinc&” is unlabeled by
lemma 28. S&Z£Y must be ing already.

(P.Copy.Lab): Let Y:f(Y1,...,Yy) € copy, (X:f(X1,..., X)) with
YVif(Y1,...,Yn) € ext(p) — ¢. SupposeW;/Wo~W3 /Wy € ¢ with
Y.Y1,...,Y, € betw,(Wi,Ws). Then there existZ, Zi,...,Z, such that

p(

W1 Ws

Y Z)E‘Pand p(Wl WS)

cpforl <i<n.



By closure under (P.Distr.Project), eithBecWy € ¢ or Y=Ws5 € . If Y#W,
ising, thenZ:f(Z1,...,Z,) € copy, (X:f(X1,...,Xn)), so the labeling literal
Z:f(Z1,...Zy,) has been added tat(yp). If Y=W; € ¢, then (P.Copy.Lab) is not
applicable since it does not copy the label of the exception.

(P.Distr.Project): No new variables have been added.

(N.New): SupposéV,/WorW3 /Wy € ¢ andW;<*Y € g andY LW € ext(¢) — .
But then by closure under (P.Distr.Crown), on&¥ef*Ws, Y LWs, Wa<™Y must

already be inp.
(T.Trans.H), (T.Trans.V), (T.Diff.1), (T.Diff.2): Now new path equality literals have
been added. O

Lemma 30. Every generated DPNT-solved form can be extended to a sgepkrated
DPNT-solved form.

Proof. By lemma 29, analogous to lemma 26; generatedness is peglsasvno addi-
tional path equality literals are added. O

Theorem 11 (Soundness)A generated constraint in DPNT-solved form is satisfiable.

Proof. By lemmas 10 and 30. O

D Completeness: handling the order<g

Lemma 13. The partial order<g can be factored out into the relational composition
of its components, i.es;g is C o =L*.

Proof. Let ¢1, 2 be constraints withp; <g ¢o. There exists a sequengsg, ..., ¥,
of constraints such that; = ¥y <1 ¥1 <2 ... <n ¥n = o with <;€ {C| :lg“} for
1 <i<n,andif=<;is C, then=,, is=%¢for 1 <i < n— 1. We use induction on the
number ofC relationships that occur to the right O%’C relationship in the sequence.
W.l.o.g. we assume that the sequence starts wWithC 1, :lg"C 19, and that if
{a :lgoc ¥i11, then there exists a single axiom from Fig. 20 by which thislbo
Let k& be such that)g C :lg"C Yr C Y41 holds. (If there is no such, then
o C Yy :lg“ 1, and we are done.) We show by induction brhatyy C ¢ C
Y’ :lg“ Yr+1 holds for some constraint’. We construct a constraint such that
Yr_1 C ¢ =1%¢ r,1. (The basic idea is to mowgy.,; to the left ofy, and to use)
to make the necessary adjustments.)

— Suppose)y,_1 =2° 1, by axiom (1) of Fig. 20, andh,_; has the formX =2 A1y,
whereX ¢ GU V(y) andZ € V().
If X occurs inyyy1, it has been introduced by adding constraints. Weyset
X=7 Nppy1|X’/X] whereX’ ¢ G does not occur iy )}, ;:

Y1 = X=Z A py C 0 =1¢ 1 [ X7/ X]
=8¢ (e [ X/ X)X/ X" =% hpeya.



— Suppose),_1 =2° ¢y, by axiom (1) of Fig. 20, and;, has the formX =2 A ;4
whereX ¢ G U V(¢Yi—1) andZ € V(¢—1). But then we already have,_; C
Yk C Yrta.

— Suppose)y_1 :lg"c ¥y by axiom (2) of Fig. 20. Thery,, has the formp,_1[Y/ X]
for X ¢ GandY & V(1) UG.

o If X € V(¢ry1), lety” = p11[X'/X], whereX’ ¢ G does not occur in
U’ ¢;. Otherwisep)” = y41.
e If Y € V(¢k+1), then it has to be replaced By while 1,1 is moved to the
left of 1. In this case, let) = " [X/Y]. Otherwisey = ¢".
We have

Y1 C ¥ =g° Y[Y/X] =g° WIY/X])X/X'] =°* Y1,
— Suppose)y_1 :lg"c ¥ by axiom (3) of Fig. 20, and supposge 1 has the form
X=Y A4, ¢y hasthe formX =Y Ay _, [Y/X], andi1 has the formX =Y A
Y [Y/X] Ay We setp = X=Y Av,_, A/ .Then

Ye-1 C P =2 X=Y A (Y}_q AN)[Y/X] =2° Py

— Suppose)i_1 :lg“ Y by axiom (3) of Fig. 20, and supposg. has the form
X =Y Ay, whiley_1 hasthe formX =Y Ay, [Y/X] andyi 1 is X=Y Ay Ay,
We setyy = X=Y Ay [Y/X] Ay, then

Ye-1 S Y =¢° X=Y A WL[Y/X]AY)[Y/X] =G° .
— The case of axiom (4) is trivial.

Hence, there exists a constraifit such thaty, C ¥ C o' :lgoc ¥r+1 holds. This
new sequence is longer thag C :lg“ :lgoc Y C i1 by a finite number of
:g’c relationships. But we have not introduced any additiagnhaklationships. So we
can still eliminate eackt relationship that is to the right of somelec relationship in
finitely many steps.

Lemma 14. If ¢ <g 1 andy is a DPNT-solved form, then there exists a DPNT-solved
form’ such thatp C ¢/ = ¢.

Proof. For a constrainp and X € V(y), letEq,(X) be the reflexive and transitive
closure of=in ¢, i.e. X € Eq,(X), and ifY € Eq,(X) andY=Z € ¢, then
7 € Eq,(X). Furthermore, let

SUbS((p) = {‘pl[yl/Xla sy Yn/Xn} ‘ (pl € ¢, V((pl) = {Xla s 7X’rl}7
Y, € Eq@(XZ-) for 1 <i<n}

We next show thaBubs(yp) =%° ¢. Eq, forms an equivalence relation on the
variables occurring inp. Let there ben different setskq,(X;), and Eq,(X;) =
{Z{,...Z%, }for1 <i<n.Then

=l ZI=Li A ... N ZL =L A ... A
Zi=Ln A ... N Z1 =L, A
Ol /2, .. L1 )Z) . L) 7Y, L 70, ]

mi? Mn



for Li,..., L, & G UV(¢): The L; may be introduced by axiom (1). Axiom (3)
lets us replaceZJ’i by L; for1 < 5 < my, 1 < i < n. From there, by duplicating
elL1/Z,...,L1/Z}, ... Ly/Z},... L,/ Z7, ]asuitable number of times, using ax-
iom (4), and replacind.; by eachZ! according to axiom (1), we arrive &tibs(¢').

Now suppose <g 1, wherey is in DPNT-solved form. By lemma 13, there exists
a constraint’ with ¢ C ¢’ =° . ¢’ need not be iDPNT-solved form, buBubs(y’)
is.

Lety = g =90¢ opy =2° ... =Lo¢ ¢, = ¢ wherey; =1¢ ;11 by a single axiom
from Fig. 20 for alll < i < n — 1. We use induction om to show thatSubs(¢);) is
DPNT-solved for alli < n. Foriygy = 1, this is trivial.

Suppose); =%° ;1 by axiom (1) of Fig. 20, and; has the formX=2 A ¢4,
whereX ¢ G U V(¢,41) andZ € V(¢i4+1). ThenX is a superfluous local variable
in ¢;, andEqy, (X) N V(¥ir1) # 0. So the constrainbubs(:)|yy,)—1x3 =
Subs(v;+1) must be in solved form, too.

Suppose); =1¢ ;1 by axiom (1), and); 11 has the formX =2 A, for variables
X g gu V(’Q/JZ) and”Z € V(wz) ThenSubs(g/JHl) = Subs(X:Z A ’(,/JZ) Subs(v,/JHl)
is in solved form because for all saturation rules that wdagldome applicable because
of the added dominance literals=~7, the consequent has already been added by Subs.

Suppose); =%¢ ;1 by axiom (2) of Fig. 20, and);; has the formy;[Y/X]
whereX ¢ G andY ¢ V(¥;) U G. So all occurrences of a local variabl&shave
been replaced by a new local variaBfe and if Subs(¢;) is in solved form, then so is
Subs(t;)[Y/X] =%¢t Subs(y’).

In both cases wherg; :lgoc ¥;+1 by axiom (3), we hav8ubs(¢;) = Subs(v;41).

O

The main completeness theorem has already been shown indinepart of the
text:

Theorem 19 (Completeness)Let ¢ be a constraintG C V, and« a <g-minimal
DPNT-solved form forp. Then there exists a DPNT-solved forrh =g v which can
be reached frong, i.e.o —fpnT ¥

Lemma 31. Lety be a constraint satisfied fy\M ™, «). Then there exists &g-minimal
DPNT-solved form fop which is also satisfied byM™, o).

Proof. Let¢ be a constraint satisfied B\ ™, o) and lety) be p extended by all literals
entailed by(M7, «). ¢ is satisfiable — it is satisfied byM™, «). It is also in solved
form since each saturation rule only adds entailed coms&dit remains to show that
there exists ag-minimal DPNT-solved form¢’ for ¢ with ¢’ C . There are two
possibilities: either n@’ C ¢’ is in DPNT-solved form; then) itself is a<g-minimal
DPNT-solved form forp. Otherwise, there exists sonié C 1) such that)’ is in DPNT-
solved form but na)” C ¢’ is. O



