
An Overview of the Design of Distributed OzSeif HaridiSwedish Institute of Computer Science (SICS), Swedenseif@sics.sePeter Van RoyUniversit�e catholique de Louvain (UCL), Belgiumpvr@info.ucl.ac.beGert SmolkaUniversit�at des Saarlandes, Saarbr�ucken, Germanysmolka@ps.uni-sb.deAbstractWe present a design for a distributed programming sys-tem, Distributed Oz, that abstracts away the network. Thismeans that all network operations are invoked implicitly bythe system as an incidental result of using particular lan-guage constructs. However, since network operations areexpensive, the programmer must retain control over net-work communication patterns. This control is providedthrough the language constructs. While retaining their cen-tralized semantics, they are extended with a distributed se-mantics. Distributed Oz is an extension of Oz, a concur-rent state-aware language with �rst-class procedures. Dis-tributed Oz extends Oz with just two concepts: mobilitycontrol and asynchronous ordered communication. Mobil-ity control provides for truly mobile objects in a simple andclean way. Asynchronous ordered communication allows toconveniently build servers. These two concepts give theprogrammer a control over network communications thatis both simple and predictable. We give scenarios to showhow common distributed programming tasks can be imple-mented e�ciently. There are two reasons for the simplicityof Distributed Oz. First, Oz has a simple formal semantics.Second, the distributed extension is built using network pro-tocols that are natural extensions to the centralized languageoperations. We discuss the operational semantics of Oz andDistributed Oz and the architecture of the distributed im-plementation. We give an overview of the basic networkprotocols for communication and mobility.Keywords. Language-based Distribution, Mobile Objects,Network Transparency, Semantics, Implementation, Con-current Constraints1 IntroductionThe number of computers in the world and their inter-connectedness both continue to increase at an exponentialrate [17]. This leads one to predict that eventually most ap-plications will run across a network, i.e., will be distributed.To manage the increasing complexity of application devel-opment, we propose that a long-term solution to distributed

programming must reduce its programming complexity to becomparable to centralized (i.e., non-distributed) program-ming. We propose to achieve this by designing and imple-menting a language, Distributed Oz, that abstracts away thenetwork. All network operations are then invoked implic-itly by the system. However, for e�ciency the programmershould retain control over network communication patterns.In Distributed Oz there are no explicit operations (such asmessage sending or receiving) to transfer data. All networktransfers are done implicitly through the same language con-structs of centralized programming. In order for this to bepractical, these language constructs must be extended to adistributed environment such that network communicationpatterns are clearly perceived by the programmer. For ex-ample, the language must give clear meanings to replicateddata and mobile objects.1.1 Extending the basic language operationsAll systems that we know of except Obliq [3] and Emer-ald [13] do distributed execution by adding a distributionlayer on top of an existing language [18, 26, 27, 30]. Thishas the disadvantage that distribution is not a seamless ex-tension to the language, and therefore distributed extensionsto language operations (such as mobile objects or replicateddata) must be handled by explicit programmer e�ort. Abetter technique is to look carefully at the basic operationsof the language and to conservatively extend them to a dis-tributed setting. For example, the Remote Procedure Call(RPC) [26] is designed to mimic centralized procedure call-ing and is therefore a precursor to the design given in thispaper. This second approach has two consequences. First,in order to carry it out successfully, the language must havea well-de�ned operational semantics that clearly identi�esthe basic operations and separates them from each other.Second, to do the distributed extensions right one mustdesign a network protocol for each basic operation of the lan-guage. Obliq has taken a �rst step towards this goal. Obliqdistinguishes between values and locations. Moving valuescauses them to be copied (replicated) between sites. Mov-ing locations causes network references to them to be cre-ated. Distributed Oz goes further towards this goal by tak-ing this approach for the complete language. Distributed Oz1



distinguishes between variables, records, procedures, cellsand ports. Cells are used to implement concurrent objectstate. Ports are used to implement many-to-one and many-to-many channels. Each of these entities has a network pro-tocol that is used whenever a basic operation is performed onit. The network protocols are designed to preserve languagesemantics while providing a simple model for the communi-cation patterns.1.2 Oz as the foundationThe Oz language appears to the programmer as a concur-rent object-oriented language that is state-aware and hasdataow synchronization [8].1 In a broader context, Ozis a successful attempt to integrate several programmingparadigms (including object-oriented, functional, and con-straint logic) into a simple model [22]. This model allows tounderstand various forms of computation as facets of a sin-gle phenomenon. This increases the range of problems thatcan easily be cast into the language [23]. Oz has a fully de-�ned formal semantics [24] as well as an e�cient and robustimplementation [19]. Oz has been used in many researchprojects [1, 5, 6, 7, 12, 11, 21, 29].We take Oz as the foundation of our design because itprovides four key concepts in a clear and formal way. First,Oz is a concurrent language, which is necessary since dis-tributed systems are inherently parallel. Second, Oz hasdataow synchronization. Threads block when the data theyrequire is not yet available. This blocking is invisible fromthe point of view of the thread. Third, Oz has �rst-classprocedureswith lexical scoping. This means that mobile pro-cedures and objects will behave correctly no matter wherethey are executed. One might say that they take their en-vironments with them. Fourth, Oz is state-aware: it makesa distinction between stateless and stateful data. Statelessdata (which does not change) is replicated between sites.Stateful data (which can change) is the basis of an objectsystem that models stationary servers and mobile agents asfacets of the same concept (they are both objects).1.3 Distributed Oz is almost OzTo the programmer, a Distributed Oz program is almostidentical to an Oz program. The latter is converted to theformer with only minor modi�cations to the source text.For example, the graphic editor of Section 2 is made dis-tributed by specifying the mobility behavior of the objectsused to represent the picture state. In a �rst approximation,Distributed Oz extends Oz with just two notions speci�cto distribution: mobility control and asynchronous orderedcommunication. These concepts are de�ned in Section 4.2.1.4 Organization of the paperThis paper is organized into �ve parts. Section 2 motivatesthe design by means of an example application written inDistributed Oz. Section 3 presents a set of high-level re-quirements that we assume the design must satisfy. The sec-tion then determines for each requirement what mechanismsare needed to achieve it. Section 4 de�nes the semantics ofa language, Distributed Oz, whose language constructs pro-vide these mechanisms. The centralized semantics of Dis-tributed Oz are given in terms of a model called OPM (Oz1The constraint programming part of Oz is outside the scope ofthis paper.
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Objects for Figure 1: A shared graphic editorProgramming Model). Section 5 gives examples to illus-trate programming in Distributed Oz. Finally, Section 6summarizes the graph model of distributed OPM execution,the mobility protocols for stateful entities (cells and ports),which are de�ned in terms of this model, and the model'simplementation architecture.2 A shared graphic editorWriting an e�cient distributed application can be much sim-pli�ed by using transparency and mobility. We have sub-stantiated this claim by designing and implementing a pro-totype shared graphic editor, an application which is usefulin a collaborative work environment. The editor is seen byan arbitrary number of users. We wish the editor to behavelike a shared virtual environment. This implies the follow-ing set of requirements. We require that all users can makeupdates to the drawing at any time, that each user sees hisown updates without any noticeable delays, and that the up-dates must be visible to all users in real time. Furthermore,we require that the same graphical entity can be updatedby multiple users. This is useful in a collaborative CAD en-vironment when editing complex graphic designs. Finally,we require that all updates are sequentially consistent, i.e.,each user has exactly the same view of the drawing at alltimes. The last two requirements are what makes the ap-plication interesting. Using multicast to update each user'svisual representation, as is done for example in the wb white-board [14], does not satisfy the last two requirements.Figure 1 outlines the architecture of our prototype. Thedrawing state is represented as a set of objects. These ob-jects denote graphical entities such as geometric shapes andfreehand drawing pads. When a user updates the drawing,either a new object is created or a message is sent to modifythe state of an existing object. The object then posts the up-date to a distributed agenda. The agenda sends the updateto all users so they can update their displays. The users seea shared stream, which guarantees sequential consistency.New users can connect themselves to the editor at anytime. The mechanism is extremely simple: the implementa-tion provides primitives for saving and loading a languageentity in a �le named by a URL. We use URLs becauseof convenience. They are Ascii strings that are part of a2



global naming service that is available on any site that hasan HTTP server. The graphic editor saves a reference tothe object responsible for managing new users. A new userloads a reference to this object. The two computations thenshare a reference to the same entity. This opens a connec-tion between two sites in the two computations. From thatpoint onward, the computation space is shared. When thereare no more references between two sites in a computation,then the connection between them is closed by the garbagecollector. Computations can therefore connect and discon-nect at will. The issue of how to manage the shared namesrepresented by the URLs leads us into the area of distributedmulti-agent computations. This is beyond the scope of thepaper.The design was initially built with stationary objectsonly. This satis�es all requirements except performance.It works well on low-latency networks such as LANs, butperformance is poor when users who are far apart, e.g., inStockholm, Brussels, and Saarbr�ucken, try to draw freehandsketches or any other graphical entity that needs continuousfeedback. This is because a freehand sketch consists of manysmall line segments being drawn in a short time. In our im-plementation, up to 30 motion events per second are sentfrom the graphics subsystem to the Oz process. Each linesegment requires updating the drawing pad state and send-ing this update to all users. If the state is remote, then thelatency for one update is often several hundred millisecondsor more, with a large variance.To solve the latency problem, we re�ne the design torepresent the picture state and the distributed agenda asfreely mobile objects rather than stationary objects. Thee�ect of this re�nement is that parts of the picture stateare cached at sites that modify them. Implementing there�nement required changing some of the calls that createnew objects and adding locks to these objects. In all, lessthan 10 lines of code out of 500 had to be changed. Withthese changes, freehand sketches do not need any networkoperations to update the local display, so performance issatisfactory. Remote users see the sketch being made in realtime, with a delay equal to the network latency.This illustrates the two-part approach for building appli-cations in Distributed Oz. First, build and test the appli-cation using stationary objects. Second, reduce latency bycarefully selecting a few objects and changing their mobilitybehavior. Because of transparency, this can be done withquite minor changes to the code of the application itself. Inboth the stationary and mobile designs, fault tolerance is aseparate issue that must be taken into account explicitly. Itcan be done by recording on a reliable site a log of all displayevents. Crashed users disappear, and new users are sent acompressed version of the log.In general, mobile objects are useful both for �ne-grainmobility (caching of object state) as well as coarse-grainmobility (explicit transfer of groups of objects). The keyability that the system must provide is transparent controlof mobility. Section 5.1 shows how this is done in DistributedOz.3 Requirements and mechanismsAs a �rst step in the design process, we determine whatthe requirements are for our distributed system. We assumethe system must satisfy at least four requirements: networktransparency, network awareness, latency tolerance, and lan-

Requirements MechanismsNetwork transparency Shared computation spaceConcurrencyNetwork awareness State awarenessMobility controlLatency tolerance ConcurrencyLogic variableLanguage security Lexical scopingFirst-class proceduresTable 1: System requirements and their mechanismsguage security. Table 1 gives these requirements and themechanisms that we provide to achieve them. For brevity,we omit in this paper the discussion of other requirementssuch as resource localization, multicast support, implemen-tation security and fault tolerance.3.1 Network transparencyNetwork transparency2 means that computations behave inthe same way independent of the distribution structure. Thelanguage satis�es the centralized semantics de�ned in Sec-tion 4.1. This requires an shared computation space, whichprovides the illusion of a single network-wide memory for alldata values (including objects and procedures). The distinc-tion between local references (on the same site) and remotereferences (to another site) is invisible to the programmer.Furthermore, a program running on many sites (i.e., in par-allel) must behave in the same way when running on a sin-gle site. Therefore we must provide concurrency, that is,to allow multiple computational activities that coexist andevolve independently.3.2 Network awarenessNetwork awareness means that network communication pat-terns are simply and predictably derivable from the prim-itive language operations. The resulting model gives theprogrammer explicit control over network communicationpatterns. The language satis�es the distributed semanticsde�ned in Section 4.2. To achieve network awareness, thebasic insight is that stateful data (e.g., objects) must resideon one site3 and that stateless data (e.g., records) can bereplicated. The system must therefore distinguish betweenthese two kinds of data, that is, it is state-aware. For state-ful data, we need control over its location. We introduce theconcept of mobility control, which is the ability for entitiesto migrate between sites or to remain stationary at one site.With the concepts of state awareness and mobility con-trol, the programmer has control over network communica-tion patterns. Mobile entities migrate to each remote siteinvoking them. For predictability, mobile entities must notleave a trail. This is implemented using a mobility proto-col (see Section 6.2). Stationary entities require a networktransaction on each remote invocation. A replicable entitycan either be copied implicitly whenever a network referencewould be created (eager replication) or the network referenceis created and the entity is copied on request (lazy replica-tion). Mobile and lazy replicable entities require a networktransaction only on the �rst access.2The terms \network transparency" and \network awareness" were�rst introduced by Cardelli [3].3They can of course be referenced from any site.3



3.3 Latency toleranceLatency tolerance means that the e�ciency of computationsis as little a�ected as possible by the latency of network op-erations. In this paper, we assume that this means thatcomputations are concurrent and stall only on data depen-dency (not on send or receive). Concurrency provides la-tency tolerance between threads: while one thread waitsfor the network, the other threads continue. To stall onlyon data dependency, we provide logic variables. The logicvariable describes an entity that is possibly not yet known.4Communicating and synchronizing between two threads canbe done with a shared logic variable. The �rst thread puts aconstraint on the variable and the second thread has a con-ditional on the variable. Logic variables provide latency tol-erance within threads by decoupling the operations of calcu-lating and using the value (which de�ne a data dependency)from the operations of sending and receiving the value.3.4 Language securityLanguage security means that given secure communications,the language guarantees integrity of computations and data.It is important to distinguish between language security andimplementation security. The latter means that integrity ofcomputations is protected against adversaries that have ac-cess to the system's implementation. We provide languagesecurity by giving the programmer the means to restrictaccess to data, through lexical scoping and �rst-class proce-dures. Lexical scoping means that one can only access datato which one has an explicit reference; and that the initialreferences are determined by the program's static structure.In particular, one cannot address data indirectly throughaddress calculation or dynamic binding. First-class proce-dures means that procedures are a kind of data value andcan be passed around. Procedures can encapsulate refer-ences and restrict operations on them. Passing proceduresaround thus transfers access rights, which gives the e�ect ofcapabilities.4 Semantics of Distributed OzThe semantics of Distributed Oz are de�ned by reduction toa simple kernel language, called the Oz Programming Model(OPM). OPM is carefully designed to factor out the di�er-ent concepts of Oz and is therefore quite a simple model.5OPM in fact gives the semantics of Oz, which is a central-ized system. We therefore give the semantics of DistributedOz in two parts. First, we de�ne the centralized semantics,which coincides with the semantics of Oz. Then, we de�nethe distributed semantics, which de�nes what network op-erations are invoked by the operations of OPM when thecomputation is partitioned on multiple sites.4.1 Centralized semanticsThe centralized semantics of Distributed Oz de�nes the op-erational behavior when sites are disregarded. This seman-tics is identical to the operational semantics of Oz, which isgiven by the Oz Programming Model (OPM). This sectionpresents OPM and discuss its operational semantics. Thefull formal treatment is not much more complex than this4Like a box that may be empty or full. Boxes can be passed aroundwithout looking inside.5In this paper we consider OPM with sequential composition.

discussion. We refer the reader to [24] for a formal de�nitionof OPM.6OPM is concurrent, provides synchronization throughlogic variables, provides higher-order procedures, and clearlydistinguishes between stateless and stateful computation.The execution is de�ned as the reduction of expressions E.The data elements are modeled with constraints C. A con-straint is a relation between data items that partially de-termines each data item's value. Representing data by con-straints is important for latency tolerance. Furthermore,such a representation can be made very e�cient. It allowssending and receiving a data item before its value is com-pletely known. We give a BNF-style de�nition of the ex-pression and constraint syntax together with a discussion oftheir semantics.
Thread
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. . .ThreadFigure 2: The basic execution model4.1.1 Concurrent constraintsThe basic model is similar to Saraswat's concurrent con-straint model [20], providing for concurrent control and syn-chronization via logic variables.E ::= E;E j thread E end j local x in E end jC j if C then E else E endC ::= x= y j x= f(a1 : y1 ; :::; an : yn) j C ^ CAs depicted in Figure 2, computation takes place in a compu-tation space hosting a number of threads connected to a sin-gle shared store, each reducing an expression E. The store ispartitioned into compartments for constraints, procedures,and cells. As computation proceeds, the store accumulatesconstraints on variables in the constraint store.Computation proceeds by reduction of expressions thatinteract with the store and may create new threads. Oncean expression becomes reducible, it stays reducible. Reduc-tion is fair between threads. The basic control primitivefor thread reduction is sequential composition (E1;E2). Athread can thus be decomposed into a sequence of primi-tive tasks. Reduction of (E1;E2) yields (E01;E2), where E1reduces to E01. E2 is reduced only when E01 disappears.Therefore the control ow of a thread is strictly sequen-tial. If an expression E representing a thread is not re-ducible then the thread blocks. Thread creation is expressedby thread E end. New variables (i.e., new referencesin the constraint store) are introduced by the declaration (
local x in E end). The variable x is only visible insideE (lexical scoping). There are two primitives to manipulatedata. First, putting a constraint in the store (C) is used to6The constraint programming part of Oz (with search spaces anddisjunctions) is outside the scope of this paper.4



communicate information. The constraints represent com-mon data types (records, numbers, strings, etc.) which wegroup together under the collective name record. The newinformation is only put in the store if it is not inconsistentwith what is already there. In the contrary case, the storeis unchanged and an exception is raised in the thread con-taining the constraint. Second, waiting for a constraint toappear ( if C then E1 else E2 end) is used to syn-chronize.4.1.2 First-class proceduresProcedures are the basic primitives for abstracting compu-tation. Procedures are triples of the form �:y1:::yn=E con-sisting of a unique name �, formal arguments y1:::yn and abody E. Procedures may be created and applied as follows:E ::= : : : j proc {x y1:::yn } E end j {x y1:::yn }Procedures are created by reducing a task of the form
proc {x y1:::yn } E end. This binds the variable x to afreshly created name � and enters the procedure �:y1:::yn=Einto the procedure store. There is one basic operation,namely procedure application {x z1:::zn }. This waits untilthe procedure store contains a procedure �:y1:::yn=E suchthat the constraint store contains x = �. Then, it can re-duce to the task E[z1:::zn=y1:::yn], which is obtained fromthe procedure body E by replacing the formal argumentsy1:::yn by the actual ones z1:::zn.4.1.3 StateThe model supports state by means of cells. A cell is apair �:x representing the mutable binding of a name � to avariable x. Cells may be created and updated as follows:E ::= : : : j {NewCell y x } j {Exchange x y z }Cells are created by reducing the task {NewCell y x }.Similar to procedure de�nition, reduction of this task picksa fresh name �, binds x to � and enters the pair �:y into thethird compartment of the store, the cell store. The pair �:yis called the cell's content-edge. There is one operation oncells, namely {Exchange x y z }. This waits until the cellstore contains a cell �:u and the constraint store containsx=�. In that case, there is an atomic transaction consistingof two parts: the cell binding is updated to �:z and the ex-change reduces to the expression y= u. The latter can thenreduce in its turn. The e�ect is that y will be given accessto the cell's old binding, and z is the cell's new binding. Us-ing cells allows to model data that change arbitrarily overtime (stateful data). In contrast, the constraint and proce-dure stores only accumulate data that are consistent withprevious data (stateless data).4.2 Distributed semanticsThe distributed semantics are motivated by the desire toprovide network awareness. The distributed semantics arede�ned as the network operations done by the primitives ofOPM when the execution is done in a distributed setting,that is, the computation is partitioned on multiple sites. Ifthe concept of site is disregarded, then the behavior coin-cides with the centralized semantics.

4.2.1 Mobility controlThe basic concept that is added to the language is mobilitycontrol, as de�ned in Section 3. This property a�ects statefulentities, namely cells and ports. Ports are de�ned below;for now consider them to be similar to cells in that theycontain a state and can update this state. Each entity hasa set of basic operations, including a basic state-updatingoperation. This operation can cause the state to move tothe invoking site, or to remain on the same site. In the �rstcase, the entity is called mobile. In the second case, it iscalled stationary. In the current model, cells are mobile andports are stationary.A cell has one state-updating operation, exchange, whichcauses the state to move atomically to the site invoking it.A port has two operations, send and localize. Doing a senddoes not change the site of the port's state. Doing a local-ize causes the port's state to move atomically to the siteinvoking it. Section 5 shows how to use cells and ports tode�ne objects and servers with arbitrary migratory behav-ior. Section 6.2 presents the mobility protocol for cells andports.In addition, we de�ne records, procedures, and variablesto be replicable. Since they are stateless, records and proce-dures can be copied to a site. In the current model, recordsand their arguments are copied eagerly i.e., a network ref-erence to a record cannot exist. Procedures are copied onlyupon request. Both a procedure's code and its closure havea network address. Therefore a site has at most one copyof each code block or closure. Binding a variable causes itto be eliminated eagerly, that is, the fact of its being boundis transmitted eagerly to all its representatives on di�erentsites. If it is bound to a record, then the record is copiedeagerly to all the variable's sites.Network awareness for OPM primitives is derived as fol-lows from the above classi�cation. A cell migrates to eachsite invoking it (through an Exchange). A port requires anetwork transaction on each remote send. Procedures arereplicated lazily and records are replicated eagerly. Cellsand procedures require a network transaction only on the�rst access.
proc {NewPort S Port}

local C in
{NewCell S C}
proc {Port Message}

local Old New in
% Create next element of stream
{Exchange C Old New}
thread Old=Message|New end

end
end

end
end

proc {Send Port X}
{Port X}

endFigure 3: De�ning a port in terms of OPM5



4.2.2 Asynchronous ordered communicationThe basic primitive for asynchronous ordered communica-tion is called the port. A port is the pair of an identi�er Portand a stream (a list with unbound tail). Applying {Send
Port X} appends X to the stream. We call this sending Xto the port. Ports allow many-to-one and many-to-manycommunication. On the sending side, any thread with a ref-erence to Port can send X to the port. Concurrent updatesto the stream are serialized. On the receiving side, since thestream is stateless, any number of threads can wait for andread its elements concurrently. Ports can be created andupdated as follows:E ::= : : : j {NewPort s p } j {Send p x }A port can be de�ned in OPM as a procedure that referencesa cell. Figure 3 shows how to de�ne NewPort and Send.A port is created by reducing the task {NewPort S
Port}. This creates Port and ties it to the stream S.A message X is sent to the port by {Send Port X}. Thisappends X to the stream and creates a new unbound endof the stream. One can build a server by creating a threadthat waits until new information appears on the sequenceand then takes action depending on this information.We de�ne the distributed semantics of a port's Sendoperation to be asynchronous and ordered. That is, Sendoperations from the same thread complete immediately andthe messages appear on the stream in the same order thatthey were sent. We provide ports as a primitive since theysupport common programming techniques and the asyn-chronous ordering can exploit popular network protocols.Distributed Oz provides three ways for threads to com-municate with each other:� In synchronous communication the sender waits for aresponse from the receiver before continuing. This isthe most deterministic yet least e�cient method if thethreads are on di�erent sites. For example, the senderinvokes {Send Server query(Q A)} {Wait A} where

Q is a query and A is the answer. Through {Wait A},the sender waits until the receiver has instantiated theanswer.� In asynchronous unordered communication the senderdoes not wait, but the messages do not necessarily ar-rive at the receiver in the order sent. This is the leastdeterministic yet most e�cient method if the threadsare on di�erent sites. For example, the sender invokes
thread {Send Server query(Q A)} end.� In asynchronous ordered communication the senderdoes not wait, yet the messages arrive at the receiverin the order sent. It is implemented by communi-cating through a port. For example, the sender caninvoke {Send P query(Q1 A1)} {Send P query(Q2
A2)}. Query Q1 will arrive at the receiver beforequery Q2, yet query Q2 can be sent before an an-swer is received for Q1. A practical example would bea database server that receives queries from di�erentthreads and performs transactions. From the viewpointof each thread, the transactions should be performed inthe order they were sent.

5 Programming Idioms5.1 Basic tools for the programmerThe primitives de�ned in Section 4 are part of the OPMsemantics. Using these primitives, we can provide manyuseful derived concepts to the programmer. We give fourtypical examples here.5.1.1 Concurrent objectsCells plus �rst-class procedures are su�cient to de�ne a pow-erful concurrent object system within OPM [10]. Seman-tically, objects are procedures that reference a cell whosecontent designates the current object state. Mutual exclu-sion of method bodies is supported through explicit thread-reentrant locking. A thread-reentrant lock allows the samethread to reenter the lock, i.e., to enter a dynamically-nestedcritical region guarded by the same lock. The implementa-tion optimizes object invocations to make them as e�cientas procedure calls.5.1.2 Freely mobile concurrent objectsAn object is called freely mobile if it is implemented by amobile cell. When a site sends a message to the object,then the object will be moved to the sending site and themessage will be handled there. The mobile cell semantics,implemented by the mobile cell protocol (see Section 6),guarantees a correct serialization of the object state. Freelymobile objects are optimized to reduce latency as much aspossible: they are e�ectively cached at the sites that usethem. Any further messages will be handled locally.
proc {MakeServer ObjQ ServQ}

Str
proc {ServeLoop S}

if X Sx in S=X|Sx then
{ObjQ X}
{ServeLoop Sx}

else
{ObjQ close}

end
end

in
{NewPort Str ServQ}
thread {ServeLoop Str} end

end Figure 4: A stationary server5.1.3 Stationary serversWe de�ne a stationary server as an object that is �xed toone site and to which messages can be sent asynchronouslyand ordered. Such a server can be de�ned as a port whosestream is read by a new thread that passes the messagesto the object. For example, Figure 4 shows how an object
ObjQ can be converted to a server called ServQ. A port isused to \protect" the object from being moved and from be-ing executed by more than one thread at a time. Remotelyinvoking a stationary server is similar to a remote procedure6



call (RPC). It is more general because it may pass incom-plete messages (logic variables) which can be �lled in at somelater time.
proc {MakeServer ObjQ ServQ Move}

Str Prt Key
proc {ServeLoop S}

if Stopped Rest Sx in
S=Key(Stopped Rest)|Sx then
Rest=Sx
Stopped= unit

elseif X Sx in S=X|Sx then
{ObjQ X}
{ServeLoop Sx}

else
{ObjQ close}

end
end

in
{NewName Key}
{NewPort Str Prt}
proc {Move}
Stopped Rest in

{Send Prt Key(Stopped Rest)}
{Wait Stopped}
{Localize Prt}
thread {ServeLoop Rest} end

end
proc {ServQ M} {Send Prt M} end
thread {ServeLoop Str} end

end Figure 5: A mostly-stationary server5.1.4 Mostly-stationary serversA mostly-stationary server behaves in the same way as aserver, except that an operation Move is de�ned that movesthe server to the site invoking the move. The move is doneatomically. After the move, it is eventually true that mes-sages sent to the server will go directly to the new locationin a single network hop. From this point onwards, no for-warding is done. A mostly-stationary server is similar to butmore powerful than the \mobile agent" concept that has re-cently become popular (e.g., with Telescript [16]). Movingthe server enables it to compute with resources of its newsite. Like all entities in Oz, the server can access only thereferences that it has been explicitly given, which gives lan-guage security.Figure 5 shows how an object ObjQ can be convertedto a server called ServQ and a move operation Move.The server loop can be stopped by sending the stop mes-sage Key(Stopped Rest), where Key is an Oz name usedto identify the stop message and Stopped and Rest areoutputs. Since Key is unforgeable and known only inside
MakeServer, the server loop can be stopped only by Move.The port Prt must be hidden inside a procedure, otherwiseit can be localized by any client. When the loop is stopped,
Rest is bound to the unprocessed remainder of the messagestream. The new server loop takes Rest as its input.

5.2 Scenarios5.2.1 A distributed virtual reality systemThe DIVE system (Distributed Virtual Environment) [7]provides views to a common virtual world from many sites.A basic operation of the environment is to make events inthe virtual world visible from all the sites. An e�cient wayto do this is with a port. The messages written to the portcontain updates to the virtual world. Each site reads theupdates on the port's stream and uses them to update itsvisual representation of the virtual world. The port serial-izes the writers. Since the stream is stateless, an arbitrarynumber of readers can access it concurrently and they donot interfere with the writers. This desirable property isa consequence of the clear separation between stateful andstateless data. That is, one can have a stateful referenceto stateless data. The writer updates the stateful reference.Because stateless data cannot change, the reader accesses itunbothered by the writer.5.2.2 A client/server with mobilityAssume that a client wants to access a database server. Theserver is exible and lets the client provide its own searchprocedure. The server is modeled by a port and the client'srequest by a mobile object. The request object encapsulatesthe client's search procedure as well as having a reference toaccumulate the results. The client keeps the same reference.The client sends a message containing the request object tothe server. When the server invokes the search, it transpar-ently causes the request object to move to the server site.The client's search procedure is then executed on the serversite. Through its reference, the client has access to the re-sults as soon as they become available.5.2.3 A distributed MUDThe MUD (Multi-User Dimension) shell Munchkins [9] is amulti-user game written in Oz and using the existing Inter-net libraries to provide a limited distribution ability. TheMunchkins implementation allows transparent distributionof records and transparent message sending to remote ob-jects through proxy objects. Porting Munchkins to Dis-tributed Oz will simplify the mapping of di�erent parts of itssimulated world to di�erent sites. Objects within the MUDworld can be modeled as mobile objects in Distributed Oz.An object that moves in the MUD world will migrate in theDistributed Oz system. This will much improve the scala-bility of the MUD since objects will only use resources inthe room that they are in.6 Implementation conceptsThe Distributed Oz implementation is based on a dis-tributed execution model for OPM (see Table 2). A majordesign goal was that distribution should not hinder the cen-tralized implementation. This has two main consequences.First, the implementation should be a minimal extensionof the centralized implementation of Oz. Second, the ex-tension must not a�ect the performance of non-distributedprograms.We �rst explain the graph model of distributed OPM ex-ecution. Then we present the mobility protocol for cells andports. Full details on the part of the graph model dealing7



Distributed Oz+Oz Programming Model(semantic de�nition of Distributed Oz)+Language graph(graph model of OPM)+Distribution graph(language graph + notion of site)+Network protocols(distributed algorithms between communicating nodes)Table 2: Modeling the implementation of Distributed Ozwith mobility can be found in [28]. Finally, we present anoverview of the implementation architecture.
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SFigure 6: Nodes in the language graph6.1 Graph models of Distributed OzWe present a graph model of the distributed execution ofOPM. An OPM computation space can be represented interms of two graphs: a language graph, in which there is nonotion of site, and a distribution graph, which makes explicitthe notion of site. We then explain what mobility means interms of the distribution graph. Finally, we summarize thefailure model in terms of the distribution graph.6.1.1 The language graphWe introduce distribution into the execution model of OPMin two steps. The �rst step, depicted in Figure 6, modelsthe threads and store of OPM (see Section 4.1) as a graphcalled the language graph. The language graph of Oz was�rst introduced by Smolka et al [25]. The graph has six dif-ferent node types: thread, record, procedure, variable,cell, and port. The �ve non-thread nodes are also calleddata nodes. A thread node points to its external references.A record node points to its arguments. A procedure nodepoints to its external references (which lexical scoping hasgiven it). A variable node points to the threads waitingon the variable. A cell node points to its value (which canbe accessed through an exchange operation). A port nodepoints to its value (the end of the stream).Each reduction of an OPM expression corresponds toa graph transformation. These transformations can be ef-fected by the nodes themselves by considering them to be

concurrent objects that exchange messages along the edgesof the graph. The nodes must contain su�cient state to en-able them to perform the graph operations. For example, aprocedure node contains the procedure de�nition and a tasknode contains the expression to be reduced.
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Figure 7: From language graph to distribution graph6.1.2 The distribution graphThe second step is to extend the language graph with thenotion of site (see Figure 7). Introduce a �nite set of sitesand annotate each node of the language graph with a site.If a node is referenced by a node on another site, then wemap it to a set of nodes in the distribution graph. This setis called the access structure of the original node. The graphresulting after all nodes have been so transformed is calledthe distribution graph.Access structures contain two new types of nodes, calledmanagers and proxies. An access structure consists of onemanager node and any number of proxy nodes (which mayincrease or decrease during execution). An access structureis shaped like a star, with the manager at the center, and8



referenced by proxies. On each site, the proxy is the localreference to the access structure.Legal transformations of the distribution graph mustcorrespond to legal transformations of the language graph.Both must correspond to legal OPM reductions. These con-ditions on the node objects in each graph reect the require-ment of network transparency.6.1.3 Mobility in the distribution graphAt this point, it is useful to clarify how cell mobility �tsinto the distribution graph model. First, the nodes of thedistribution graph never change sites. A manager node hasa global name that is unique across the network and neverchanges. This makes memory management very simple, asexplained in Section 6.3.3. Second, access structures canmove across the network (albeit slowly) by creating prox-ies on fresh sites and by losing local references to existingproxies. Third, the cell's content-edge (its state pointer) isknown by exactly one proxy, i.e., it is localized to a sin-gle site. The content-edge can change sites (quickly) if re-quested to do so by a remote exchange. This is implementedby a change of state in the cell proxies that is coordinatedby the mobility protocol.The mobility protocol is designed to provide e�cient andpredictable network behavior for the common case of no fail-ure. It would be extremely ine�cient to inform all proxieseach time the content-edge changes site. Therefore, we as-sume that proxies do not in general know where the content-edge is located. A proxy knows only the location of its man-ager node. If a proxy wants to do an exchange operationand it does not have the content-edge, then it must ask itsmanager node. The latency of object mobility is thereforeat most three network hops (less if the manager node is atthe source or destination).It is sometimes necessary for a proxy to change managers.For example, object movement within Belgium is expensiveif the manager is in Sweden. We assume that changing man-agers will be relatively infrequent. We can therefore use amore expensive protocol. For example, assume the old man-ager knows all its proxies. Then it sends messages to eachproxy informing it of its new manager. This guarantees thateventually each proxy registers itself to the new manager.The protocol to change managers has been designed but notyet implemented.6.1.4 The failure modelFailure detection must reliably inform the programmer ifand when a failure occurs. A failure due to distributionappears in the language as an exception. This section sum-marizes the current design of how to extend the cell mobilityprotocol to provide precise failure detection. Since this issueis still under discussion, the �nal design may di�er.We distinguish between network failure and site failure.The current failure model handles site failure only. Eitherkind of failure becomes visible lazily in a proxy. When theproxy attempts to do a cell operation, then it �nds out thatthere has been a failure. The proxy then becomes a failurenode and any further messages to it are ignored. An excep-tion is raised in the thread that initiated the cell operation.In the case of site failure, a cell access structure has twofailure modes:� Complete access structure failure. This happens ifeither the manager node fails or a proxy that may con-

tain the content-edge fails. The manager does not knowat all times precisely where the content-edge is. Themanager can bound the set of proxies that may con-tain the content-edge (see [28]). The manager knowsthat the content-edge is somewhere in this bounded set.If one proxy in the chain fails, then complete accessstructure failure is assumed to occur.� Proxy failure. This happens if a proxy fails that isnot in the chain. This does not a�ect the computationand may be safely ignored.
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Figure 8: Exchange initiates migration of content-edge6.2 The mobility protocolThis section gives an informal presentation of the mobilityprotocol for cells and ports. The protocol is very similarto a cache coherence protocol, as used in shared-memorymultiprocessing. See [28] for a formal de�nition and a proofthat the protocol is network transparent, i.e., that it is animplementation of the language semantics.6.2.1 Cell mobilityThe mobility protocol is de�ned with respect to a single cell.Assume that the cell is accessible from a set of sites. Each9



of these sites has a proxy node responsible for the part ofthe protocol on that site. The proxy node is responsiblefor all cell behavior visible from its site. In addition, thereis a single manager node that is responsible for coordinat-ing the proxy nodes. These nodes together implement thedistributed semantics of one cell.The content-edge is stored at one of the cell proxies. Cellproxies exchange messages with threads in the engine. Toask for the cell content, a thread sends a message to a proxy.The thread then blocks waiting for a reply. After execut-ing its protocol, the proxy sends a reply giving the content.This enables the thread to do the binding. Figure 8 showshow this works. We assume that the content-edge is notat the current proxy. A proxy requests the content-edge bysending a message to the manager. The manager serializespossible multiple requests and sends forwarding commandsto the proxies. The current location of the content-edge maylag behind the manager's knowledge of who is the eventualowner. This is all right: the content-edge will eventually beforwarded to every requesting site.Many requests may be invoked concurrently to the sameand di�erent proxies, and the protocol takes this intoaccount. A request message from a thread that issued
{Exchange C X Y} will atomically achieve the following re-sults: the content Z is transferred to the requesting site,the old content-edge is invalidated, a new content-edge iscreated bound to Y, and the binding operation X=Z is en-abled in the requesting thread.Messages. P i denotes the addresses of a proxy in thedistribution graph corresponding to cell C. N x, N y, N zdenote the addresses of nodes corresponding to variables X,
Y, and Z. A manager understands get(P). A proxy under-stands put(N), fwd(P) and request(T,N), where T is therequesting thread. A thread understands proceed(N).Outline of protocol. (see Figure 8)1. Proxy P 1 receives a request(T,N y) from the engine.This message is sent by thread T as part of executing

{Exchange C X Y}. Thread T blocks until the proxyreplies. N y is stored in P 1 (but does not yet becomethe content-edge). If the content-edge is at P 1, thenP 1 immediately sends proceed(P z) to T. Otherwise,get(P 1) is sent to the manager.2. Manager M receives get(P 1). Manager sendsfwd(P 1) to the current owner P 2 of the content-edge,and updates the current owner to be P 1.3. Proxy P 2 receives fwd(P 1). If P 2 has the content-edge, which points to N z, then it sends put(N z) toP 1 and invalidates its content-edge. Otherwise, thecontent-edge will eventually arrive at P 2. The messageput(N z) causes the creation of a new access structurefor N z, for all entities N z except records. For theaccess structure N z is converted to P z.4. Proxy P 1 receives put(N z). At this point, thecontent-edge of P 1 points to N y. P 1 then sendsproceed(N z) to thread T.5. Thread T receives proceed(N z). The thread theninvokes the binding of N x and N z.

6.2.2 Port mobilityThe port protocol is an extension of the cell protocol de�nedin the previous section. As explained in Section 4.2.1, a porthas two operations, send and localize, which are initiated bya thread referencing the port. The localize operation usesthe same protocol as the cell exchange operation. For acorrect implementation of the send operation, the port pro-tocol must maintain the FIFO order of messages even duringport movement. Furthermore, the protocol is de�ned so thatthere are no dependencies between proxies when moving aport. This means that a single very slow proxy cannot slowdown a localize operation.Each port home is given a generation identi�er. Whenthe port home changes sites, then the new port home getsa new generation identi�er. Each port proxy knows a gen-eration which it believes to be the generation of the currentport home. No order relation is needed on generations. Itsu�ces for all generations of a given port to be pairwise dis-tinct. For simplicity they can be implemented by integers.The send operation is asynchronous. A send operationcauses the port proxy to send a message to the port homeon a FIFO channel. The message is sent together with theproxies' generation. If a message arrives at a node that isnot the home or has the wrong generation, then the messageis bounced back to the sending proxy on a FIFO channel. Ifa proxy gets a bounced message then it does four things. Itno longer accepts send operations. It then asks the managerwhere the current home is. When it knows this, it then re-covers all the bounced messages in order and forwards themto the new home. Finally, when it has forwarded all thebounced messages, then it again accepts send operationsfrom threads on its site.
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Memory management layerFigure 9: The implementation architecture6.3 The implementation architectureThe implementation architecture is given in Figure 9. Moreinformation can be found in [28]. Here we give a brief sum-mary of the functionality of each layer.6.3.1 Extended engineThe engine extends the centralized Oz implementation withan interface to the protocol layer. The engine recognizes cer-tain events and passes them to the protocol layer. A typical10



example is binding a variable through its proxy. Inversely,the protocol layer can initiate operations in the engine. Twotypical examples are the arrival of the content of a cell fromanother site and passing a procedure from the network tothe engine.6.3.2 Protocol layerThe nodes of the distribution graph are modeled as concur-rent objects. These objects exchange messages along theedges of the graph. The algorithms controlling these mes-sages are known as the distribution protocols of the imple-mentation. These protocols de�ne the behavior of the sys-tem. Each access structure has its own distribution protocol.These protocols are summarized as follows:� Variable access structure. This represents a glob-alized variable. The proxies are local representatives ofthe variable on each site. The proxies go away (i.e., be-come references, like local variables) when the variableaccess structure is merged into another access struc-ture. The manager's sole purpose is to wait for the�rst merge request and then to tell all proxies to changemanagers. The set of proxies forms a multicast group.This protocol is the basic primitive used to add infor-mation to the constraint store.� Procedure access structure. This represents a glob-alized procedure, which is stateless and therefore canbe copied to other sites (replicated) when needed there.The protocol ensures that each closure or code block ofa procedure is unique on a site. The manager handlesrequests for copies. The manager is associated with alocal node representing the structure or procedure.� Mobility access structure. This represents a cell orport. The state is localized, that is, the content-edgeis always on exactly one site. The content-edge canmove from one proxy to another. A proxy that needsthe content-edge will ask the manager. The managerdecides who gets the content-edge next, and sends a for-warding request to the proxy that will eventually getthe content-edge. Section 6.2 gives an informal presen-tation of this protocol.6.3.3 Memory management layerThe memory management layer translates the distributiongraph structure into byte sequences to be transferred acrossthe network. This translation is intimately tied with thebuilding of access structures and the reclamation of theirnodes that are no longer accessible.� The messages exchanged between nodes of the distri-bution graph may reference subgraphs (e.g., large datastructures). When subgraphs are transferred from onesite to another, their nodes must become members ofaccess structures that have nodes both on the senderand receiver site.� Access structures are identi�ed by network-wide uniqueaddresses, called network addresses. A network addressis reclaimed when the access structure that it identi�esis no longer locally accessible on any of its sites. This isdetected by using the local garbage collectors togetherwith a credit mechanism. Each network address is cre-ated with a �xed large number of credits. The manager

initially owns the credits and gives credits to any site(including messages in transit) that has the networkaddress. When a site no longer locally references theaccess structure then the credits are sent back to themanager. When the manager recovers all its credit andis no longer locally referenced, then it is reclaimed.6.3.4 Network layerThe network layer implements a cache of TCP connectionsto provide reliable transfer between arbitrary sites on a wide-area network [4]. Recent implementations of TCP can out-perform UDP [2]. This layer implements a cache of TCPconnections. We assume a reliable network with no boundson transfer time and no assumptions on relative orderingof messages (no FIFO) for all distribution protocols exceptthe stationarity access structure. To send arbitrary-lengthmessages from fair concurrent threads, the implementationmanages its own bu�ers and uses non-blocking send and re-ceive system calls.7 Status and future workDistributed Oz is a conservative extension to Oz for dis-tributed programming. The prototype implementation in-corporates all of the ideas presented in this article, includingmobile objects with predictable network behavior and sup-port for open computing. The prototype is an extension ofthe centralized Oz 2.0 system and has been developed jointlyby the Deutsches Forschungszentrum f�ur K�unstliche Intelli-genz (DFKI) in the Perdio project [25] and by the SwedishInstitute of Computer Science. Oz 2.0 is a publicly-availablesystem with a full-featured development environment [19].The original DFKI Oz system [19], a robust and e�cient im-plementation of Oz, has been available since Jan. 1995. Ozprovides a sophisticated concurrent object system as well asconstraint programming facilities.Current work includes improving the e�ciency and ro-bustness of the prototype, using it in actual applications,and building the standard services needed for distributedapplication development. Future work includes adding faulttolerance based on precise failure detection, distributed ex-ception handling, and persistence, adding support for re-source management and multiprocessor execution (through\virtual sites") and adding support for security.AcknowledgementsWe thank our colleagues at SICS and DFKI for their con-tributions, and especially Per Brand. This research is sup-ported by the Bundesminister f�ur Bildung, Wissenschaft,Forschung und Technologie (FTZ-ITW-9105) and the EspritWorking Group CCL (EP 6028). This research is funded inSweden by the Swedish national board for industrial andtechnical development (NUTEK) and SICS.References[1] Tomas Axling, Seif Haridi, and Lennart Fahlen. VirtualReality Programming in Oz. Feb. 1996.[2] Brent Callaghan. WebNFS{The �le system for theWorld-Wide Web. SunSoft, Inc., May 1996. Available athttp://www.sun.com/solaris/networking/webnfs/.11
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