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Abstract

We present a design for a distributed programming sys-
tem, Distributed Oz, that abstracts away the network. This
means that all network operations are invoked implicitly by
the system as an incidental result of using particular lan-
guage constructs. However, since network operations are
expensive, the programmer must retain control over net-
work communication patterns. This control is provided
through the language constructs. While retaining their cen-
tralized semantics, they are extended with a distributed se-
mantics. Distributed Oz is an extension of Oz, a concur-
rent state-aware language with first-class procedures. Dis-
tributed Oz extends Oz with just two concepts: mobility
control and asynchronous ordered communication. Mobil-
ity control provides for truly mobile objects in a simple and
clean way. Asynchronous ordered communication allows to
conveniently build servers. These two concepts give the
programmer a control over network communications that
is both simple and predictable. We give scenarios to show
how common distributed programming tasks can be imple-
mented efficiently. There are two reasons for the simplicity
of Distributed Oz. First, Oz has a simple formal semantics.
Second, the distributed extension is built using network pro-
tocols that are natural extensions to the centralized language
operations. We discuss the operational semantics of Oz and
Distributed Oz and the architecture of the distributed im-
plementation. We give an overview of the basic network
protocols for communication and mobility.

Keywords. Language-based Distribution, Mobile Objects,
Network Transparency, Semantics, Implementation, Con-
current Constraints

1 Introduction

The number of computers in the world and their inter-
connectedness both continue to increase at an exponential
rate [17]. This leads one to predict that eventually most ap-
plications will run across a network, i.e., will be distributed.
To manage the increasing complexity of application devel-
opment, we propose that a long-term solution to distributed

programming must reduce its programming complexity to be
comparable to centralized (i.e., non-distributed) program-
ming. We propose to achieve this by designing and imple-
menting a language, Distributed Oz, that abstracts away the
network. All network operations are then invoked implic-
itly by the system. However, for efficiency the programmer
should retain control over network communication patterns.
In Distributed Oz there are no explicit operations (such as
message sending or receiving) to transfer data. All network
transfers are done implicitly through the same language con-
structs of centralized programming. In order for this to be
practical, these language constructs must be extended to a
distributed environment such that network communication
patterns are clearly perceived by the programmer. For ex-
ample, the language must give clear meanings to replicated
data and mobile objects.

1.1 Extending the basic language operations

All systems that we know of except Obliq [3] and Emer-
ald [13] do distributed execution by adding a distribution
layer on top of an existing language [18, 26, 27, 30]. This
has the disadvantage that distribution is not a seamless ex-
tension to the language, and therefore distributed extensions
to language operations (such as mobile objects or replicated
data) must be handled by explicit programmer effort. A
better technique is to look carefully at the basic operations
of the language and to conservatively extend them to a dis-
tributed setting. For example, the Remote Procedure Call
(RPC) [26] is designed to mimic centralized procedure call-
ing and is therefore a precursor to the design given in this
paper. This second approach has two consequences. First,
in order to carry it out successfully, the language must have
a well-defined operational semantics that clearly identifies
the basic operations and separates them from each other.
Second, to do the distributed extensions right one must
design a network protocol for each basic operation of the lan-
guage. Obliq has taken a first step towards this goal. Obliq
distinguishes between values and locations. Moving values
causes them to be copied (replicated) between sites. Mov-
ing locations causes network references to them to be cre-
ated. Distributed Oz goes further towards this goal by tak-
ing this approach for the complete language. Distributed Oz



distinguishes between variables, records, procedures, cells
and ports. Cells are used to implement concurrent object
state. Ports are used to implement many-to-one and many-
to-many channels. Each of these entities has a network pro-
tocol that is used whenever a basic operation is performed on
it. The network protocols are designed to preserve language
semantics while providing a simple model for the communi-
cation patterns.

1.2 Oz as the foundation

The Oz language appears to the programmer as a concur-
rent object-oriented language that is state-aware and has
dataflow synchronization [8].! In a broader context, Oz
is a successful attempt to integrate several programming
paradigms (including object-oriented, functional, and con-
straint logic) into a simple model [22]. This model allows to
understand various forms of computation as facets of a sin-
gle phenomenon. This increases the range of problems that
can easily be cast into the language [23]. Oz has a fully de-
fined formal semantics [24] as well as an efficient and robust
implementation [19]. Oz has been used in many research
projects [1, 5, 6, 7, 12, 11, 21, 29].

We take Oz as the foundation of our design because it
provides four key concepts in a clear and formal way. First,
Oz 1s a concurrent language, which is necessary since dis-
tributed systems are inherently parallel. Second, Oz has
dataflow synchronization. Threads block when the data they
require 1s not yet available. This blocking is invisible from
the point of view of the thread. Third, Oz has first-class
procedures with lexical scoping. This means that mobile pro-
cedures and objects will behave correctly no matter where
they are executed. One might say that they take their en-
vironments with them. Fourth, Oz is state-aware: it makes
a distinction between stateless and stateful data. Stateless
data (which does not change) is replicated between sites.
Stateful data (which can change) is the basis of an object
system that models stationary servers and mobile agents as
facets of the same concept (they are both objects).

1.3 Distributed Oz is almost Oz

To the programmer, a Distributed Oz program is almost
identical to an Oz program. The latter is converted to the
former with only minor modifications to the source text.
For example, the graphic editor of Section 2 is made dis-
tributed by specifying the mobility behavior of the objects
used to represent the picture state. In a first approximation,
Distributed Oz extends Oz with just two notions specific
to distribution: mobility control and asynchronous ordered
communication. These concepts are defined in Section 4.2.

1.4 Organization of the paper

This paper is organized into five parts. Section 2 motivates
the design by means of an example application written in
Distributed Oz. Section 3 presents a set of high-level re-
quirements that we assume the design must satisfy. The sec-
tion then determines for each requirement what mechanisms
are needed to achieve it. Section 4 defines the semantics of
a language, Distributed Oz, whose language constructs pro-
vide these mechanisms. The centralized semantics of Dis-
tributed Oz are given in terms of a model called OPM (Oz

!The constraint programming part of Oz is outside the scope of
this paper.

| o :
) O 3
7”::7””””HiUs’er”B‘
Objectsfor,” O |1 Distributed Oz
picture state 0 ‘
! O | process
3 | Graphics subsystem

UsrCl | 1 (Tel/tk)

Figure 1: A shared graphic editor

Programming Model). Section 5 gives examples to illus-
trate programming in Distributed Oz. Finally, Section 6
summarizes the graph model of distributed OPM execution,
the mobility protocols for stateful entities (cells and ports),
which are defined in terms of this model, and the model’s
implementation architecture.

2 A shared graphic editor

Writing an efficient distributed application can be much sim-
plified by using transparency and mobility. We have sub-
stantiated this claim by designing and implementing a pro-
totype shared graphic editor, an application which is useful
in a collaborative work environment. The editor is seen by
an arbitrary number of users. We wish the editor to behave
like a shared virtual environment. This implies the follow-
ing set of requirements. We require that all users can make
updates to the drawing at any time, that each user sees his
own updates without any noticeable delays, and that the up-
dates must be visible to all users in real time. Furthermore,
we require that the same graphical entity can be updated
by multiple users. This is useful in a collaborative CAD en-
vironment when editing complex graphic designs. Finally,
we require that all updates are sequentially consistent, i.e.,
each user has exactly the same view of the drawing at all
times. The last two requirements are what makes the ap-
plication interesting. Using multicast to update each user’s
visual representation, as is done for example in the wb white-
board [14], does not satisfy the last two requirements.
Figure 1 outlines the architecture of our prototype. The
drawing state is represented as a set of objects. These ob-
jects denote graphical entities such as geometric shapes and
freehand drawing pads. When a user updates the drawing,
either a new object is created or a message is sent to modify
the state of an existing object. The object then posts the up-
date to a distributed agenda. The agenda sends the update
to all users so they can update their displays. The users see
a shared stream, which guarantees sequential consistency.
New users can connect themselves to the editor at any
time. The mechanism is extremely simple: the implementa-
tion provides primitives for saving and loading a language
entity in a file named by a URL. We use URLs because
of convenience. They are Ascii strings that are part of a



global naming service that is available on any site that has
an HTTP server. The graphic editor saves a reference to
the object responsible for managing new users. A new user
loads a reference to this object. The two computations then
share a reference to the same entity. This opens a connec-
tion between two sites in the two computations. From that
point onward, the computation space is shared. When there
are no more references between two sites in a computation,
then the connection between them is closed by the garbage
collector. Computations can therefore connect and discon-
nect at will. The issue of how to manage the shared names
represented by the URLs leads us into the area of distributed
multi-agent computations. This is beyond the scope of the
paper.

The design was initially built with stationary objects
only. This satisfies all requirements except performance.
It works well on low-latency networks such as LANs, but
performance is poor when users who are far apart, e.g., in
Stockholm, Brussels, and Saarbriicken, try to draw freehand
sketches or any other graphical entity that needs continuous
feedback. This is because a freehand sketch consists of many
small line segments being drawn in a short time. In our im-
plementation, up to 30 motion events per second are sent
from the graphics subsystem to the Oz process. Each line
segment requires updating the drawing pad state and send-
ing this update to all users. If the state is remote, then the
latency for one update is often several hundred milliseconds
or more, with a large variance.

To solve the latency problem, we refine the design to
represent the picture state and the distributed agenda as
freely mobile objects rather than stationary objects. The
effect of this refinement is that parts of the picture state
are cached at sites that modify them. Implementing the
refinement required changing some of the calls that create
new objects and adding locks to these objects. In all, less
than 10 lines of code out of 500 had to be changed. With
these changes, freehand sketches do not need any network
operations to update the local display, so performance is
satisfactory. Remote users see the sketch being made in real
time, with a delay equal to the network latency.

This illustrates the two-part approach for building appli-
cations in Distributed Oz. First, build and test the appli-
cation using stationary objects. Second, reduce latency by
carefully selecting a few objects and changing their mobility
behavior. Because of transparency, this can be done with
quite minor changes to the code of the application itself. In
both the stationary and mobile designs, fault tolerance is a
separate issue that must be taken into account explicitly. It
can be done by recording on a reliable site a log of all display
events. Crashed users disappear, and new users are sent a
compressed version of the log.

In general, mobile objects are useful both for fine-grain
mobility (caching of object state) as well as coarse-grain
mobility (explicit transfer of groups of objects). The key
ability that the system must provide is transparent control
of mobility. Section 5.1 shows how this is done in Distributed
Oz.

3 Requirements and mechanisms

As a first step in the design process, we determine what
the requirements are for our distributed system. We assume
the system must satisfy at least four requirements: network
transparency, network awareness, latency tolerance, and lan-

Mechanisms
Shared computation space
Concurrency
State awareness
Mobility control
Concurrency
Logic variable
Lexical scoping
First-class procedures

Requirements
Network transparency

Network awareness

Latency tolerance

Language security

Table 1: System requirements and their mechanisms

guage security. Table 1 gives these requirements and the
mechanisms that we provide to achieve them. For brevity,
we omit in this paper the discussion of other requirements
such as resource localization, multicast support, implemen-
tation security and fault tolerance.

3.1 Network transparency

Network transparency® means that computations behave in
the same way independent of the distribution structure. The
language satisfies the centralized semantics defined in Sec-
tion 4.1. This requires an shared computation space, which
provides the illusion of a single network-wide memory for all
data values (including objects and procedures). The distinc-
tion between local references (on the same site) and remote
references (to another site) is invisible to the programmer.
Furthermore, a program running on many sites (i.e., in par-
allel) must behave in the same way when running on a sin-
gle site. Therefore we must provide concurrency, that is,
to allow multiple computational activities that coexist and
evolve independently.

3.2 Network awareness

Network awareness means that network communication pat-
terns are simply and predictably derivable from the prim-
itive language operations. The resulting model gives the
programmer explicit control over network communication
patterns. The language satisfies the distributed semantics
defined in Section 4.2. To achieve network awareness, the
basic insight is that stateful data (e.g., objects) must reside
on one site® and that stateless data (e.g., records) can be
replicated. The system must therefore distinguish between
these two kinds of data, that is, it is state-aware. For state-
ful data, we need control over its location. We introduce the
concept of mobility control, which is the ability for entities
to migrate between sites or to remain stationary at one site.

With the concepts of state awareness and mobility con-
trol, the programmer has control over network communica-
tion patterns. Mobile entities migrate to each remote site
invoking them. For predictability, mobile entities must not
leave a trail. This is implemented using a mobility proto-
col (see Section 6.2). Stationary entities require a network
transaction on each remote invocation. A replicable entity
can either be copied implicitly whenever a network reference
would be created (eagerreplication) or the network reference
is created and the entity is copied on request (lazy replica-
tion). Mobile and lazy replicable entities require a network
transaction only on the first access.

?The terms “network transparency” and “network awareness” were
first introduced by Cardelli [3].
3They can of course be referenced from any site.



3.3 Latency tolerance

Latency tolerance means that the efficiency of computations
is as little affected as possible by the latency of network op-
erations. In this paper, we assume that this means that
computations are concurrent and stall only on data depen-
dency (not on send or receive). Concurrency provides la-
tency tolerance between threads: while one thread waits
for the network, the other threads continue. To stall only
on data dependency, we provide logic variables. The logic
variable describes an entity that is possibly not yet known.*
Communicating and synchronizing between two threads can
be done with a shared logic variable. The first thread puts a
constraint on the variable and the second thread has a con-
ditional on the variable. Logic variables provide latency tol-
erance within threads by decoupling the operations of calcu-
lating and using the value (which define a data dependency)
from the operations of sending and receiving the value.

3.4 Language security

Language security means that given secure communications,
the language guarantees integrity of computations and data.
It is important to distinguish between language security and
implementation security. The latter means that integrity of
computations is protected against adversaries that have ac-
cess to the system’s implementation. We provide language
security by giving the programmer the means to restrict
access to data, through lexical scoping and first-class proce-
dures. Lexical scoping means that one can only access data
to which one has an explicit reference; and that the initial
references are determined by the program’s static structure.
In particular, one cannot address data indirectly through
address calculation or dynamic binding. First-class proce-
dures means that procedures are a kind of data value and
can be passed around. Procedures can encapsulate refer-
ences and restrict operations on them. Passing procedures
around thus transfers access rights, which gives the effect of
capabilities.

4 Semantics of Distributed Oz

The semantics of Distributed Oz are defined by reduction to
a simple kernel language, called the Oz Programming Model
(OPM). OPM is carefully designed to factor out the differ-
ent concepts of Oz and is therefore quite a simple model.®
OPM in fact gives the semantics of Oz, which is a central-
ized system. We therefore give the semantics of Distributed
Oz in two parts. First, we define the centralized semantics,
which coincides with the semantics of Oz. Then, we define
the distributed semantics, which defines what network op-
erations are invoked by the operations of OPM when the
computation is partitioned on multiple sites.

4.1 Centralized semantics

The centralized semantics of Distributed Oz defines the op-
erational behavior when sites are disregarded. This seman-
tics is identical to the operational semantics of Oz, which is
given by the Oz Programming Model (OPM). This section
presents OPM and discuss its operational semantics. The
full formal treatment is not much more complex than this

4Like a box that may be empty or full. Boxes can be passed around
without looking inside.
5In this paper we consider OPM with sequential composition.

discussion. We refer the reader to [24] for a formal definition
of OPM.®

OPM is concurrent, provides synchronization through
logic variables, provides higher-order procedures, and clearly
distinguishes between stateless and stateful computation.
The execution is defined as the reduction of expressions E.
The data elements are modeled with constraints C. A con-
straint is a relation between data items that partially de-
termines each data item’s value. Representing data by con-
straints is important for latency tolerance. Furthermore,
such a representation can be made very efficient. It allows
sending and receiving a data item before its value is com-
pletely known. We give a BNF-style definition of the ex-
pression and constraint syntax together with a discussion of
their semantics.

Thread Thread

Figure 2: The basic execution model

4.1.1 Concurrent constraints

The basic model is similar to Saraswat’s concurrent con-
straint model [20], providing for concurrent control and syn-
chronization via logic variables.

E == FE;E | thread E end| local  inE end]
C| if C thenE elseE end
C = z=y|o=flar1:y1,man:yn) | CAC

As depicted in Figure 2, computation takes place in a compu-
tation space hosting a number of threads connected to a sin-
gle shared store, each reducing an expression E. The store is
partitioned into compartments for constraints, procedures,
and cells. As computation proceeds, the store accumulates
constraints on variables in the constraint store.
Computation proceeds by reduction of expressions that
interact with the store and may create new threads. Once
an expression becomes reducible, it stays reducible. Reduc-
tion is fair between threads. The basic control primitive
for thread reduction is sequential composition (Er; Ez). A
thread can thus be decomposed into a sequence of primi-
tive tasks. Reduction of (E1; E») yields (E'1; E»), where Fy
reduces to E'y. FEs is reduced only when E’; disappears.
Therefore the control flow of a thread is strictly sequen-
tial. If an expression F representing a thread is not re-
ducible then the thread blocks. Thread creation is expressed
by thread E end. New variables (i.e., new references
in the constraint store) are introduced by the declaration (
local z inE end). The variable & is only visible inside
E (lexical scoping). There are two primitives to manipulate
data. First, putting a constraint in the store (C) is used to

8The constraint programming part of Oz (with search spaces and
disjunctions) is outside the scope of this paper.



communicate information. The constraints represent com-
mon data types (records, numbers, strings, etc.) which we
group together under the collective name record. The new
information is only put in the store if it is not inconsistent
with what is already there. In the contrary case, the store
is unchanged and an exception is raised in the thread con-
taining the constraint. Second, waiting for a constraint to
appear ( if C then E; else E; end) is used to syn-
chronize.

4.1.2 First-class procedures

Procedures are the basic primitives for abstracting compu-
tation. Procedures are triples of the form &:yi...yn/E con-
sisting of a unique name £, formal arguments yi1...y, and a
body E. Procedures may be created and applied as follows:

E == ...| proc {zyi.yn} E end| {z y1...yn }

Procedures are created by reducing a task of the form

proc {z y1..yn } E end. This binds the variable x to a
freshly created name £ and enters the procedure &:y1...yn /E
into the procedure store. There is one basic operation,
namely procedure application {z z;...z,, }. This waits until
the procedure store contains a procedure £:y...yn/E such
that the constraint store contains £ = £. Then, it can re-
duce to the task F[z1...z2n/y1...yn], which is obtained from
the procedure body FE by replacing the formal arguments
y1...yn by the actual ones z;...z5.

4.1.3 State

The model supports state by means of cells. A cell is a
pair ¢:x representing the mutable binding of a name ¢ to a
variable x. Cells may be created and updated as follows:

E == ... | {NewCell yz} | {Exchange z y =z }

Cells are created by reducing the task {NewCell y z}.
Similar to procedure definition, reduction of this task picks
a fresh name &, binds z to £ and enters the pair £:y into the
third compartment of the store, the cell store. The pair £y
is called the cell’s content-edge. There is one operation on
cells, namely {Exchange = y z }. This waits until the cell
store contains a cell £:u and the constraint store contains
z=¢. In that case, there is an atomic transaction consisting
of two parts: the cell binding is updated to ¢:z and the ex-
change reduces to the expression y=u. The latter can then
reduce in its turn. The effect is that y will be given access
to the cell’s old binding, and z is the cell’s new binding. Us-
ing cells allows to model data that change arbitrarily over
time (stateful data). In contrast, the constraint and proce-
dure stores only accumulate data that are consistent with
previous data (stateless data).

4.2 Distributed semantics

The distributed semantics are motivated by the desire to
provide network awareness. The distributed semantics are
defined as the network operations done by the primitives of
OPM when the execution is done in a distributed setting,
that is, the computation is partitioned on multiple sites. If
the concept of site is disregarded, then the behavior coin-
cides with the centralized semantics.

4.2.1 Mobility control

The basic concept that is added to the language is mobility
control, as defined in Section 3. This property affects stateful
entities, namely cells and ports. Ports are defined below;
for now consider them to be similar to cells in that they
contain a state and can update this state. Each entity has
a set of basic operations, including a basic state-updating
operation. This operation can cause the state to move to
the invoking site, or to remain on the same site. In the first
case, the entity is called mobile. In the second case, it is
called stationary. In the current model, cells are mobile and
ports are stationary.

A cell has one state-updating operation, exchange, which
causes the state to move atomically to the site invoking it.
A port has two operations, send and localize. Doing a send
does not change the site of the port’s state. Doing a local-
ize causes the port’s state to move atomically to the site
invoking it. Section 5 shows how to use cells and ports to
define objects and servers with arbitrary migratory behav-
ior. Section 6.2 presents the mobility protocol for cells and
ports.

In addition, we define records, procedures, and variables
to be replicable. Since they are stateless, records and proce-
dures can be copied to a site. In the current model, records
and their arguments are copied eagerly i.e., a network ref-
erence to a record cannot exist. Procedures are copied only
upon request. Both a procedure’s code and its closure have
a network address. Therefore a site has at most one copy
of each code block or closure. Binding a variable causes it
to be eliminated eagerly, that is, the fact of its being bound
is transmitted eagerly to all its representatives on different
sites. If it is bound to a record, then the record is copied
eagerly to all the variable’s sites.

Network awareness for OPM primitives is derived as fol-
lows from the above classification. A cell migrates to each
site invoking it (through an Exchange). A port requires a
network transaction on each remote send. Procedures are
replicated lazily and records are replicated eagerly. Cells
and procedures require a network transaction only on the
first access.

proc {NewPort S Port}
local C in
{NewCel | S C}
proc {Port Message}
local Od New in
% Create next el enent of stream
{Exchange C O d New}
thread O d=Message| New end
end
end
end
end

proc {Send Port X}
{Port X}

end

Figure 3: Defining a port in terms of OPM




4.2.2 Asynchronous ordered communication

The basic primitive for asynchronous ordered communica-
tion is called the port. A port is the pair of an identifier Port
and a stream (a list with unbound tail). Applying {Send
Port X} appends X to the stream. We call this sending X
to the port. Ports allow many-to-one and many-to-many
communication. On the sending side, any thread with a ref-
erence to Port can send Xto the port. Concurrent updates
to the stream are serialized. On the receiving side, since the
stream is stateless, any number of threads can wait for and
read its elements concurrently. Ports can be created and
updated as follows:

E == ...| {NewPort sp} | {Sendp =z}

A port can be defined in OPM as a procedure that references
a cell. Figure 3 shows how to define NewPort and Send.

A port is created by reducing the task {NewPort S
Port}. This creates Port and ties it to the stream S.
A message Xis sent to the port by {Send Port X}. This
appends X to the stream and creates a new unbound end
of the stream. One can build a server by creating a thread
that waits until new information appears on the sequence
and then takes action depending on this information.

We define the distributed semantics of a port’s Send
operation to be asynchronous and ordered. That is, Send
operations from the same thread complete immediately and
the messages appear on the stream in the same order that
they were sent. We provide ports as a primitive since they
support common programming techniques and the asyn-
chronous ordering can exploit popular network protocols.

Distributed Oz provides three ways for threads to com-
municate with each other:

e In synchronous communication the sender waits for a
response from the receiver before continuing. This is
the most deterministic yet least efficient method if the
threads are on different sites. For example, the sender
invokes {Send Server query(Q A)} {Wait A} where
Qis a query and A is the answer. Through {wait A},
the sender waits until the receiver has instantiated the
answer.

e In asynchronous unordered communication the sender
does not wait, but the messages do not necessarily ar-
rive at the receiver in the order sent. This is the least
deterministic yet most efficient method if the threads
are on different sites. For example, the sender invokes
thread {Send Server query(Q A)} end.

e In asynchronous ordered communication the sender
does not wait, yet the messages arrive at the receiver
in the order sent. It is implemented by communi-
cating through a port. For example, the sender can
invoke {Send P query(QL A1)} {Send P query(Q@
A2)}. Query QL will arrive at the receiver before
query @, yet query @ can be sent before an an-
swer is received for QL. A practical example would be
a database server that receives queries from different
threads and performs transactions. From the viewpoint
of each thread, the transactions should be performed in
the order they were sent.

5 Programming Idioms

5.1 Basic tools for the programmer

The primitives defined in Section 4 are part of the OPM
semantics. Using these primitives, we can provide many
useful derived concepts to the programmer. We give four
typical examples here.

5.1.1 Concurrent objects

Cells plus first-class procedures are sufficient to define a pow-
erful concurrent object system within OPM [10]. Seman-
tically, objects are procedures that reference a cell whose
content designates the current object state. Mutual exclu-
sion of method bodies is supported through explicit thread-
reentrant locking. A thread-reentrant lock allows the same
thread to reenter the lock, i.e., to enter a dynamically-nested
critical region guarded by the same lock. The implementa-
tion optimizes object invocations to make them as efficient
as procedure calls.

5.1.2 Freely mobile concurrent objects

An object is called freely mobile if it 1s implemented by a
mobile cell. When a site sends a message to the object,
then the object will be moved to the sending site and the
message will be handled there. The mobile cell semantics,
implemented by the mobile cell protocol (see Section 6),
guarantees a correct serialization of the object state. Freely
mobile objects are optimized to reduce latency as much as
possible: they are effectively cached at the sites that use
them. Any further messages will be handled locally.

proc {MakeServer ObjQ ServQ
Str
proc {ServelLoop S}
if X Sx in S=X|Sx then
{0j Q X}
{ServeLoop Sx}
el se
{bj Q cl ose}
end
end
in
{NewPort Str ServQ
thread {ServeLoop Str} end
end

Figure 4: A stationary server

5.1.3 Stationary servers

We define a stationary server as an object that is fixed to
one site and to which messages can be sent asynchronously
and ordered. Such a server can be defined as a port whose
stream is read by a new thread that passes the messages
to the object. For example, Figure 4 shows how an object
Qbj Q can be converted to a server called ServQ A port is
used to “protect” the object from being moved and from be-
ing executed by more than one thread at a time. Remotely
invoking a stationary server is similar to a remote procedure



call (RPC). It is more general because it may pass incom-
plete messages (logic variables) which can be filled in at some
later time.

proc {MakeServer hj Q ServQ Myve}
Str Prt Key
proc {ServelLoop S}
if Stopped Rest Sx in
S=Key( St opped Rest)| Sx then
Rest =Sx
St opped=uni t
elseif X Sx in S=X]Sx then
{nj Q X}
{ServeLoop Sx}
el se
{bj Q cl ose}
end
end
in
{ NewNane Key}
{NewPort Str Prt}
proc {Move}
St opped Rest in
{Send Prt Key(Stopped Rest)}
{Wait Stopped}
{Localize Prt}
thread {ServelLoop Rest} end
end
proc {ServQ M {Send Prt M end
thread {ServeLoop Str} end
end

Figure 5: A mostly-stationary server

5.1.4 Mostly-stationary servers

A mostly-stationary server behaves in the same way as a
server, except that an operation Move is defined that moves
the server to the site invoking the move. The move is done
atomically. After the move, it is eventually true that mes-
sages sent to the server will go directly to the new location
in a single network hop. From this point onwards, no for-
warding is done. A mostly-stationary server is similar to but
more powerful than the “mobile agent” concept that has re-
cently become popular (e.g., with Telescript [16]). Moving
the server enables it to compute with resources of its new
site. Like all entities in Oz, the server can access only the
references that it has been explicitly given, which gives lan-
guage security.

Figure 5 shows how an object Obj Q can be converted
to a server called ServQ and a move operation Mbve.
The server loop can be stopped by sending the stop mes-
sage Key(Stopped Rest), where Key is an Oz name used
to identify the stop message and St opped and Rest are
outputs. Since Key is unforgeable and known only inside
MakeSer ver , the server loop can be stopped only by Myve.
The port Prt must be hidden inside a procedure, otherwise
it can be localized by any client. When the loop is stopped,
Rest is bound to the unprocessed remainder of the message
stream. The new server loop takes Rest as its input.

5.2 Scenarios
5.2.1 A distributed virtual reality system

The DIVE system (Distributed Virtual Environment) [7]
provides views to a common virtual world from many sites.
A basic operation of the environment is to make events in
the virtual world visible from all the sites. An efficient way
to do this is with a port. The messages written to the port
contain updates to the virtual world. Each site reads the
updates on the port’s stream and uses them to update its
visual representation of the virtual world. The port serial-
izes the writers. Since the stream is stateless, an arbitrary
number of readers can access it concurrently and they do
not interfere with the writers. This desirable property is
a consequence of the clear separation between stateful and
stateless data. That is, one can have a stateful reference
to stateless data. The writer updates the stateful reference.
Because stateless data cannot change, the reader accesses it
unbothered by the writer.

5.2.2 A client/server with mobility

Assume that a client wants to access a database server. The
server is flexible and lets the client provide its own search
procedure. The server is modeled by a port and the client’s
request by a mobile object. The request object encapsulates
the client’s search procedure as well as having a reference to
accumulate the results. The client keeps the same reference.
The client sends a message containing the request object to
the server. When the server invokes the search, it transpar-
ently causes the request object to move to the server site.
The client’s search procedure is then executed on the server
site. Through its reference, the client has access to the re-
sults as soon as they become available.

5.2.3 A distributed MUD
The MUD (Multi-User Dimension) shell Munchkins [9] is a

multi-user game written in Oz and using the existing Inter-
net libraries to provide a limited distribution ability. The
Munchkins implementation allows transparent distribution
of records and transparent message sending to remote ob-
jects through proxy objects. Porting Munchkins to Dis-
tributed Oz will simplify the mapping of different parts of its
simulated world to different sites. Objects within the MUD
world can be modeled as mobile objects in Distributed Oz.
An object that moves in the MUD world will migrate in the
Distributed Oz system. This will much improve the scala-
bility of the MUD since objects will only use resources in
the room that they are in.

6 Implementation concepts

The Distributed Oz implementation is based on a dis-
tributed execution model for OPM (see Table 2). A major
design goal was that distribution should not hinder the cen-
tralized implementation. This has two main consequences.
First, the implementation should be a minimal extension
of the centralized implementation of Oz. Second, the ex-
tension must not affect the performance of non-distributed
programs.

We first explain the graph model of distributed OPM ex-
ecution. Then we present the mobility protocol for cells and
ports. Full details on the part of the graph model dealing



Distributed Oz

Oz Programming Model
(semantic definition of Distributed Oz)
0
Language graph
(graph model of OPM)

Distribution graph
(language graph + notion of site)

Network protocols
(distributed algorithms between communicating nodes)

Table 2: Modeling the implementation of Distributed Oz

with mobility can be found in [28]. Finally, we present an
overview of the implementation architecture.
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Figure 6: Nodes in the language graph
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6.1 Graph models of Distributed Oz

We present a graph model of the distributed execution of
OPM. An OPM computation space can be represented in
terms of two graphs: a language graph, in which there is no
notion of site, and a distribution graph, which makes explicit
the notion of site. We then explain what mobility means in
terms of the distribution graph. Finally, we summarize the
failure model in terms of the distribution graph.

6.1.1 The language graph

We introduce distribution into the execution model of OPM
in two steps. The first step, depicted in Figure 6, models
the threads and store of OPM (see Section 4.1) as a graph
called the language graph. The language graph of Oz was
first introduced by Smolka et al [25]. The graph has six dif-
ferent node types: thread, record, procedure, variable,
cell, and port. The five non-thread nodes are also called
data nodes. A thread node points to its external references.
A record node points to its arguments. A procedure node
points to its external references (which lexical scoping has
given it). A variable node points to the threads waiting
on the variable. A cell node points to its value (which can
be accessed through an exchange operation). A port node
points to its value (the end of the stream).

Each reduction of an OPM expression corresponds to
a graph transformation. These transformations can be ef-
fected by the nodes themselves by considering them to be

concurrent objects that exchange messages along the edges
of the graph. The nodes must contain sufficient state to en-
able them to perform the graph operations. For example, a
procedure node contains the procedure definition and a task
node contains the expression to be reduced.

NL ¢ N2 | N3
O— —O
Sitel Site 2 Site 3

access structure for N2

|

P3 N3

Site 1 Site 2 Site 3

Figure 7: From language graph to distribution graph

6.1.2 The distribution graph

The second step is to extend the language graph with the
notion of site (see Figure 7). Introduce a finite set of sites
and annotate each node of the language graph with a site.
If a node is referenced by a node on another site, then we
map it to a set of nodes in the distribution graph. This set
is called the access structure of the original node. The graph
resulting after all nodes have been so transformed is called
the distribution graph.

Access structures contain two new types of nodes, called
managers and proxies. An access structure consists of one
manager node and any number of proxy nodes (which may
increase or decrease during execution). An access structure
is shaped like a star, with the manager at the center, and



referenced by proxies. On each site, the proxy is the local
reference to the access structure.

Legal transformations of the distribution graph must
correspond to legal transformations of the language graph.
Both must correspond to legal OPM reductions. These con-
ditions on the node objects in each graph reflect the require-
ment of network transparency.

6.1.3 Mobility in the distribution graph

At this point, it is useful to clarify how cell mobility fits
into the distribution graph model. First, the nodes of the
distribution graph never change sites. A manager node has
a global name that is unique across the network and never
changes. This makes memory management very simple, as
explained in Section 6.3.3. Second, access structures can
move across the network (albeit slowly) by creating prox-
ies on fresh sites and by losing local references to existing
proxies. Third, the cell’s content-edge (its state pointer) is
known by exactly one proxy, i.e., it is localized to a sin-
gle site. The content-edge can change sites (quickly) if re-
quested to do so by a remote exchange. This is implemented
by a change of state in the cell proxies that is coordinated
by the mobility protocol.

The mobility protocol is designed to provide efficient and
predictable network behavior for the common case of no fail-
ure. It would be extremely inefficient to inform all proxies
each time the content-edge changes site. Therefore, we as-
sume that proxies do not in general know where the content-
edge is located. A proxy knows only the location of its man-
ager node. If a proxy wants to do an exchange operation
and 1t does not have the content-edge, then it must ask its
manager node. The latency of object mobility is therefore
at most three network hops (less if the manager node is at
the source or destination).

It is sometimes necessary for a proxy to change managers.
For example, object movement within Belgium is expensive
if the manager is in Sweden. We assume that changing man-
agers will be relatively infrequent. We can therefore use a
more expensive protocol. For example, assume the old man-
ager knows all its proxies. Then it sends messages to each
proxy informing it of its new manager. This guarantees that
eventually each proxy registers itself to the new manager.
The protocol to change managers has been designed but not
yet implemented.

6.1.4 The failure model

Failure detection must reliably inform the programmer if
and when a failure occurs. A failure due to distribution
appears in the language as an exception. This section sum-
marizes the current design of how to extend the cell mobility
protocol to provide precise failure detection. Since this issue
is still under discussion, the final design may differ.

We distinguish between network failure and site failure.
The current failure model handles site failure only. Either
kind of failure becomes visible lazily in a proxy. When the
proxy attempts to do a cell operation, then it finds out that
there has been a failure. The proxy then becomes a failure
node and any further messages to it are ignored. An excep-
tion is raised in the thread that initiated the cell operation.

In the case of site failure, a cell access structure has two
failure modes:

o Complete access structure failure. This happens if
either the manager node fails or a proxy that may con-

tain the content-edge fails. The manager does not know
at all times precisely where the content-edge is. The
manager can bound the set of proxies that may con-
tain the content-edge (see [28]). The manager knows
that the content-edge is somewhere in this bounded set.
If one proxy in the chain fails, then complete access
structure failure is assumed to occur.

e Proxy failure. This happens if a proxy fails that is
not in the chain. This does not affect the computation
and may be safely ignored.

Sitel | Site 2
2.get(P1)/j( __3fwd(PD)
l.requeﬂ(T,NW Content-edgel

Content @
™

:

Sitel

- m)

O (»)
5.proceed(N§)/ @gontent-edge
™

Content

Figure 8: Exchange initiates migration of content-edge

6.2 The mobility protocol

This section gives an informal presentation of the mobility
protocol for cells and ports. The protocol is very similar
to a cache coherence protocol, as used in shared-memory
multiprocessing. See [28] for a formal definition and a proof
that the protocol is network transparent, i.e., that it is an
implementation of the language semantics.

6.2.1 Cell mobility

The mobility protocol is defined with respect to a single cell.
Assume that the cell is accessible from a set of sites. Each



of these sites has a proxy node responsible for the part of
the protocol on that site. The proxy node is responsible
for all cell behavior visible from its site. In addition, there
is a single manager node that is responsible for coordinat-
ing the proxy nodes. These nodes together implement the
distributed semantics of one cell.

The content-edge is stored at one of the cell proxies. Cell
proxies exchange messages with threads in the engine. To
ask for the cell content, a thread sends a message to a proxy.
The thread then blocks waiting for a reply. After execut-
ing its protocol, the proxy sends a reply giving the content.
This enables the thread to do the binding. Figure 8 shows
how this works. We assume that the content-edge is not
at the current proxy. A proxy requests the content-edge by
sending a message to the manager. The manager serializes
possible multiple requests and sends forwarding commands
to the proxies. The current location of the content-edge may
lag behind the manager’s knowledge of who is the eventual
owner. This is all right: the content-edge will eventually be
forwarded to every requesting site.

Many requests may be invoked concurrently to the same
and different proxies, and the protocol takes this into
account. A request message from a thread that issued
{Exchange C X Y} will atomically achieve the following re-
sults: the content Z is transferred to the requesting site,
the old content-edge is invalidated, a new content-edge is
created bound to Y, and the binding operation X=Z is en-
abled in the requesting thread.

Messages. P ; denotes the addresses of a proxy in the
distribution graph corresponding to cell C. Nx, Ny, Nyg
denote the addresses of nodes corresponding to variables X,
Y, and Z. A manager understands get(P). A proxy under-
stands put(N), fwd(P) and request(T,N), where T is the
requesting thread. A thread understands proceed(IN).

Outline of protocol. (see Figure 8)

1. Proxy P 1 receives a request(T,N y) from the engine.
This message is sent by thread T as part of executing
{Exchange C X Y}. Thread T blocks until the proxy
replies. N y is stored in P ; (but does not yet become
the content-edge). If the content-edge is at P 1, then
P | immediately sends proceed (P z) to T. Otherwise,
get(P 1) is sent to the manager.

2. Manager M receives get(P 7). Manager sends
fwd (P ;) to the current owner P 5 of the content-edge,
and updates the current owner to be P .

3. Proxy P 5 receives fwd(P ). If P 5 has the content-
edge, which points to N z, then it sends put(N z) to
P 1 and invalidates its content-edge. Otherwise, the
content-edge will eventually arrive at P 9. The message
put(N z) causes the creation of a new access structure
for N g, for all entities N z except records. For the
access structure N  is converted to P 4.

4. Proxy P 1 receives put(N z).
content-edge of P | points to N y.
proceed(N z) to thread T.

5. Thread T receives proceed(N z). The thread then
invokes the binding of N x and N 5.

At this point, the
P 1 then sends
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6.2.2 Port mobility

The port protocol is an extension of the cell protocol defined
in the previous section. As explained in Section 4.2.1, a port
has two operations, send and localize, which are initiated by
a thread referencing the port. The localize operation uses
the same protocol as the cell exchange operation. For a
correct implementation of the send operation, the port pro-
tocol must maintain the FIFO order of messages even during
port movement. Furthermore, the protocol is defined so that
there are no dependencies between proxies when moving a
port. This means that a single very slow proxy cannot slow
down a localize operation.

FEach port home is given a generation identifier. When
the port home changes sites, then the new port home gets
a new generation identifier. Each port proxy knows a gen-
eration which it believes to be the generation of the current
port home. No order relation is needed on generations. It
suffices for all generations of a given port to be pairwise dis-
tinct. For simplicity they can be implemented by integers.

The send operation is asynchronous. A send operation
causes the port proxy to send a message to the port home
on a FIFO channel. The message is sent together with the
proxies’ generation. If a message arrives at a node that is
not the home or has the wrong generation, then the message
is bounced back to the sending proxy on a FIFO channel. If
a proxy gets a bounced message then it does four things. [t
no longer accepts send operations. It then asks the manager
where the current home is. When it knows this, it then re-
covers all the bounced messages in order and forwards them
to the new home. Finally, when it has forwarded all the
bounced messages, then it again accepts send operations
from threads on its site.

Network
! i !

Network layer

T '

Memory management layer

T '

Protocol layer

T '

Extended engine

Figure 9: The implementation architecture

6.3 The implementation architecture

The implementation architecture is given in Figure 9. More
information can be found in [28]. Here we give a brief sum-
mary of the functionality of each layer.

6.3.1 Extended engine

The engine extends the centralized Oz implementation with
an interface to the protocol layer. The engine recognizes cer-
tain events and passes them to the protocol layer. A typical



example is binding a variable through its proxy. Inversely,
the protocol layer can initiate operations in the engine. Two
typical examples are the arrival of the content of a cell from
another site and passing a procedure from the network to
the engine.

6.3.2 Protocol layer

The nodes of the distribution graph are modeled as concur-
rent objects. These objects exchange messages along the
edges of the graph. The algorithms controlling these mes-
sages are known as the distribution protocols of the imple-
mentation. These protocols define the behavior of the sys-
tem. Each access structure has its own distribution protocol.
These protocols are summarized as follows:

e Variable access structure. This represents a glob-
alized variable. The proxies are local representatives of
the variable on each site. The proxies go away (i.e., be-
come references, like local variables) when the variable
access structure is merged into another access struc-
ture. The manager’s sole purpose is to wait for the
first merge request and then to tell all proxies to change
managers. The set of proxies forms a multicast group.
This protocol is the basic primitive used to add infor-
mation to the constraint store.

e Procedure access structure. This represents a glob-
alized procedure, which is stateless and therefore can
be copied to other sites (replicated) when needed there.
The protocol ensures that each closure or code block of
a procedure is unique on a site. The manager handles
requests for copies. The manager is associated with a
local node representing the structure or procedure.

o Mobility access structure. This represents a cell or
port. The state is localized, that is, the content-edge
is always on exactly one site. The content-edge can
move from one proxy to another. A proxy that needs
the content-edge will ask the manager. The manager
decides who gets the content-edge next, and sends a for-
warding request to the proxy that will eventually get
the content-edge. Section 6.2 gives an informal presen-
tation of this protocol.

6.3.3 Memory management layer

The memory management layer translates the distribution
graph structure into byte sequences to be transferred across
the network. This translation is intimately tied with the
building of access structures and the reclamation of their
nodes that are no longer accessible.

o The messages exchanged between nodes of the distri-
bution graph may reference subgraphs (e.g., large data
structures). When subgraphs are transferred from one
site to another, their nodes must become members of
access structures that have nodes both on the sender
and receiver site.

e Access structures are identified by network-wide unique
addresses, called network addresses. A network address
is reclaimed when the access structure that it identifies
is no longer locally accessible on any of its sites. This is
detected by using the local garbage collectors together
with a credit mechanism. Each network address is cre-
ated with a fixed large number of credits. The manager

initially owns the credits and gives credits to any site
(including messages in transit) that has the network
address. When a site no longer locally references the
access structure then the credits are sent back to the
manager. When the manager recovers all its credit and
is no longer locally referenced, then it is reclaimed.

6.3.4 Network layer

The network layer implements a cache of TCP connections
to provide reliable transfer between arbitrary sites on a wide-
area network [4]. Recent implementations of TCP can out-
perform UDP [2]. This layer implements a cache of TCP
connections. We assume a reliable network with no bounds
on transfer time and no assumptions on relative ordering
of messages (no FIFO) for all distribution protocols except
the stationarity access structure. To send arbitrary-length
messages from fair concurrent threads, the implementation
manages its own buffers and uses non-blocking send and re-
ceive system calls.

7 Status and future work

Distributed Oz is a conservative extension to Oz for dis-
tributed programming. The prototype implementation in-
corporates all of the ideas presented in this article, including
mobile objects with predictable network behavior and sup-
port for open computing. The prototype is an extension of
the centralized Oz 2.0 system and has been developed jointly
by the Deutsches Forschungszentrum fiir Kiinstliche Intelli-
genz (DFKI) in the Perdio project [25] and by the Swedish
Institute of Computer Science. Oz 2.0 is a publicly-available
system with a full-featured development environment [19].
The original DFKI Oz system [19], a robust and efficient im-
plementation of Oz, has been available since Jan. 1995. Oz
provides a sophisticated concurrent object system as well as
constraint programming facilities.

Current work includes improving the efficiency and ro-
bustness of the prototype, using it in actual applications,
and building the standard services needed for distributed
application development. Future work includes adding fault
tolerance based on precise failure detection, distributed ex-
ception handling, and persistence, adding support for re-
source management and multiprocessor execution (through
“virtual sites”) and adding support for security.
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