
Records for Logic ProgrammingGert Smolka and Ralf TreinenGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, D 66123 Saarbr�ucken, Germanyfsmolka, treineng@dfki.uni-sb.deAbstractCFT is a new constraint system providing records as logical datastructure for constraint (logic) programming. It can be seen as a gen-eralization of the rational tree system employed in Prolog II, where�ner-grained constraints are used, and where subtrees are identi�ed bykeywords rather than by position.CFT is de�ned by a �rst-order structure consisting of so-calledfeature trees. Feature trees generalize the ordinary trees correspondingto �rst-order terms by having their edges labeled with �eld namescalled features. The mathematical semantics given by the feature treestructure is complemented with a logical semantics given by �ve axiomschemes, which we conjecture to comprise a complete axiomatizationof the feature tree structure.We present a decision method for CFT, which decides entailmentand disentailment between possibly existentially quanti�ed constraints.Since CFT satis�es the independence property, our decision methodcan also be employed for checking the satis�ability of conjunctions ofpositive and negative constraints. This includes quanti�ed negativeconstraints such as 8y8z(x 6= f(y; z)).The paper also presents an idealized abstract machine processingnegative and positive constraints incrementally. We argue that an op-timized version of the machine can decide satis�ability and entailmentin quasi-linear time.Journal of Logic Programming, 18(3), April 1994, pp. 229{258.A short version appeared in Krzysztof Apt, ed., Proceedings of the Joint Interna-tional Conference and Symposium on Logic Programming, Washington D.C., 9{12Nov 1992, MIT Press, pp. 240{254.A previous version appeared as DFKI Research Report RR-92-23, Aug 1992.

Contents1 Introduction 31.1 Records are Feature Trees : 31.2 Record Descriptions : 41.3 Constraint Simpli�cation : 61.4 Related Work : 61.5 Organization of the Paper : 72 The Feature Tree Structure 73 The Theory CFT 94 Relationship to Constructor Trees 115 The Decision Method 125.1 Congruences and Normalizers : : : : : : : : : : : : : : : : : : 135.2 Entailment without 9 : 165.3 Entailment with 9 : 175.4 Independence : 186 The Proofs 196.1 Congruences and Normalizers : : : : : : : : : : : : : : : : : : 196.2 Determined Equations : 236.3 Entailment and Independence : : : : : : : : : : : : : : : : : : 257 The Abstract Machine 287.1 The Heap : 297.2 Imposing Positive Constraints : : : : : : : : : : : : : : : : : : 307.3 Imposing Negated Constraints : : : : : : : : : : : : : : : : : : 337.4 Worst-Case Complexity : 358 Summary and Conclusion 362

1 IntroductionRecords are an important data structure in programming languages. Theyappeared �rst with imperative languages such as algol 68 and Pascal, butare now also present in modern functional languages such as SML. A majorreason for providing records is the fact that they serve as the canonical datastructure for expressing object-oriented programming techniques.In this paper we will show that records can be incorporated into logic pro-gramming in a straightforward and natural manner. We will model recordswith a constraint system CFT, which can serve as the basis of future con-straint (logic) programming languages.1 Since CFT is a conservative exten-sion of Prolog II's rational tree system [12, 13], the familiar term notationcan still be used.21.1 Records are Feature TreesWe model records as feature trees [7, 9]. A feature tree (examples are shownin Figure 1) is a tree whose edges are labeled with symbols called features,and whose nodes are labeled with symbols called sorts. The features labelingthe edges correspond to the �eld names of records. As one would expect, thelabeling with features must be deterministic, that is, every direct subtreeof a feature tree is uniquely identi�ed by the feature of the edge leadingto it. Feature trees without subtrees model atomic values (e.g., numbers).Feature trees may be �nite or in�nite. In�nite feature trees provide forthe convenient representation of cyclic data structures. The last examplein Figure 1 gives a �nite graph representation of an in�nite feature tree,which may arise as the representation of the recursive type equation nat =0 + s(nat).A ground term, say f(g(a; b); h(c)), can be seen as a feature tree whose nodesare labeled with function symbols and whose arcs are labeled with numbers:b cg 2 ha1 1 12fThus the trees corresponding to �rst-order terms are in fact feature trees1Such languages can, for instance, be obtained as instances of the frameworks CLP[18], ALPS [25] and CC [27].2We haven chosen to admit in�nite trees so that cyclic data structures can be repre-sented directly. However, a set-up admitting only �nite trees as in the original Horn clausemodel is also possible. 3

yval
xval yval2 pointcircle2 7centerradius typenat or0 1sdef1 22 3pointxval yval xval2 redpointname 3 color
Figure 1: Examples of Feature Trees.observing certain restrictions (e.g., the features departing from a node mustbe consecutive positive integers).1.2 Record DescriptionsIn CFT, records (i.e., feature trees) are described by �rst-order formulae.To this purpose, we set up a �rst-order structure T (CFT's standard model)whose universe is the set of all feature trees (over given alphabets of featuresand sorts), and whose descriptive primitives are de�ned as follows:� Every sort symbol A is taken as a unary predicate, where a sort con-straint x:A holds if and only if the root of the tree x is labeled with A.� Every feature symbol f is taken as a binary predicate, where a featureconstraint x[f]y holds if and only if the tree x has the direct subtreey at feature f .� Every �nite set F of features is taken as a unary predicate, where anarity constraint xF holds if and only if the tree x has direct subtreesexactly at the features appearing in F .The descriptions or constraints of CFT are now exactly the �rst-order for-mulae obtained from the primitive forms speci�ed above, where we includeequations \x = y" between variables.A feature constraint x[f]y corresponds to �eld selection for records. A morefamiliar notation for x[f]y might be y = x:f or y = x[f]. Note that the �eldselection function \x:f" is partial since not every record has a �eld f .4

Next we note that the familiar term notation can still be used in CFT if alittle syntactic sugar is provided. For instance, the equational constraintX = point(Y;Z)employing the binary constructor point translates into the conjunctionX: point ^ Xf1; 2g ^ X[1]Y ^ X[2]Z:Note that constructors and features are dual in the sense that features areargument selectors for constructors.CFT can also express constructors that identify their arguments by keywordsrather than by position. For instance, the equationP = point(xval:X; yval:Y; color:Z)can be taken as an abbreviation forP: point ^ Pfxval; yval; colorg ^ P[xval]X ^ P[yval]Y ^ P[color]Z:Using nesting, which can be expressed in CFT with existentially quanti-�ed auxiliary variables, we can give the following description of the in�nitefeature tree shown in Figure 1:X = type(name: nat; def: or(0; s(X))):Compared to the standard tree constraint systems, the major expressiveexibility provided by CFT is the possibility to access a feature withoutsaying anything about the existence of other features. The constraintX[color]Ysays that X must have a color �eld whose value is Y, but nothing else. Hencewe can express properties of the color of X without knowing whether X isa circle, triangle, car or something else. Using constructor constraints, wewould have to write a disjunctionX = circle(: : : ;Y; : : :) _ X = triangle(: : : ;Y; : : :) _ : : :which means that we have to know statically which alternatives are pos-sible dynamically. Moreover, disjunctions are expensive computationally.In contrast, feature constraints like X[color]Y allow for e�cient constraintsimpli�cation, as we will see in this paper.Descriptions leaving the arity of a record open are also essential for knowl-edge representation, where a description likeX: person[father: Y; employer: Y]should not disallow other features. In CFT this description can be expressedby simply not imposing an arity constraint:X: person ^ X[father]Y ^ X[employer]Y:5

1.3 Constraint Simpli�cationThe major technical contribution of this paper is the presentation and veri�-cation of a constraint simpli�cation method for CFT. This method providesfor incremental entailment and disentailment checking as it is needed foradvanced constraint programming frameworks [25, 27]. We show how thedecision method can be realized as an abstract machine processing positiveand negative constraints incrementally.To state our technical results precisely, let a simple constraint be a formulain the fragment [x:A; x[f]y; xF; x = y; ?; >]^ ;9obtained by closing the atomic formulae under conjunction and existentialquanti�cation. Let and � be simple constraints. We give a method thatdecides simultaneously entailment j=CFT � and disentailment j=CFT :�.This method can be implemented by an incremental algorithm having quasi-linear complexity, provided the features possibly occurring in and � arerestricted a priori to some �nite set. We also prove that CFT satis�es theindependence property,3 that is, j=CFT �1 _ : : :_ �n () 9i: j=CFT �i:Hence, our decision method can decide the satis�ability of conjunctions ofpositive and negative simple constraints since ^ :�1 ^ : : : ^ :�n j=CFT ?is equivalent to j=CFT �1 _ : : :_ �n:All results are obtained under the assumption that the alphabets of sortsand features are in�nite.1.4 Related WorkCFT can be viewed as the minimal combination of Colmerauer's rationaltree system [12, 13] with the feature constraint system FT [7]. In fact, CFTis obtained from FT by simply adding arity constraints as new descriptiveprimitive. However, the addition of arity constraints requires a nontrivialextension of FT's relative simpli�cation method [7], which can be seen fromthe fact that the entailmentx = f(x; y) ^ y = f(y; y) j=CFT x = y3Since we allow for existential quanti�cation in simple constraints, our independenceresult is in fact stronger than what is usually stated in the literature [13, 23, 24]. See alsothe discussion at the end of Section 5.4. 6

holds in CFT. (It of course also holds in Colmerauer's rational tree system.)Our operational investigations are based on congruences and normalizers ofconstraints, two straightforward notions providing for an elegant presenta-tion of the results.4 We improve on Colmerauer's [13] results for rationaltrees since our constraints are closed under existential quanti�cation. Forinstance, our algorithm is complete for negative quanti�ed constraints suchas :9y9z(x = f(y; z)).Feature descriptions have a long and winded history. One root are theuni�cation grammar formalisms FUG [21] and LFG [20] developed for ap-plications in computational linguistics (see [11] for a more recent paper inthis area). Another, independent root is A��t-Kaci's -term calculus [1, 2],which is the basis of several constraint programming languages [4, 5, 6].Smolka [29] gives a uni�ed logical view of most earlier feature formalismsand studies an expressive feature constraint logic.Feature trees appeared only recently with the work on FT [9, 7]. To ourknowledge the notion of an arity constraint is new. Carpenter's [11] exten-sional types are somewhat related in that they �x an arity for all elementsof a type. Feature constraints with �rst class features have been consideredin [31].A short version of this paper not containing the proofs and the descriptionof the abstract machine has appeared before [30].1.5 Organization of the PaperSection 2 gives a formal de�nition of the feature tree structure, thus �xingsyntax and semantics of CFT. Section 3 de�nes a �rst-order theory by meansof �ve axiom schemes, which we conjecture to be a complete axiomatizationof the feature tree structure. In Section 4 we show that CFT is indeed aconservative extension of the theory of constructor trees. Section 5 presentsthe decision method and states its properties. The proofs follow in Section 6.Section 7 shows how the decision method can be realized as an abstractmachine processing positive and negative constraints incrementally.2 The Feature Tree StructureThis section gives a formal de�nition of CFT's standard model T . T is a�rst-order structure whose universe consists of all feature trees obtainablefrom given alphabets of sorts and features.4Huet [17] uses the related notion of \�equivalence simpli�able" in his study of rationaltree uni�cation. 7

From now on we assume that an in�nite alphabet SOR of symbols calledsorts and an in�nite alphabet FEA of symbols called features are given.For several results of this paper (e.g., independence) it is essential that bothalphabets are in�nite. The letters A, B will always denote sorts, the lettersf , g will always denote features, and the letters F , G will always denote�nite sets of features.We also assume an in�nite alphabet of variables, ranged over by the lettersx, y, z. From the alphabets of sorts, features and variables we de�ne thefollowing �rst-order language with equality:1. Every sort symbol A is a unary predicate.2. Every feature symbol f is a binary predicate.3. Every �nite set F of features is a unary predicate, called an aritypredicate.4. The equality symbol �= is a binary predicate that is always interpretedas identity.5. There is no function symbol, and there is no predicate symbol otherthan the ones above.Every formula and every structure in this paper will be taken with respectto this signature. Note that under this signature every term is a variable.For convenience, we will write Ax, xfy and xF for A(x), f(x; y) and F (x),respectively. (In Section 1 we have used yet another, Prolog compatiblesyntax: X: a for sort and X[f]Y for feature constraints.) We assume theusual connectives and quanti�ers. We write ? for \false" and > for \true".We use ~9� [~8�] to denote the existential [universal] closure of a formula �.Moreover, V(�) is taken to denote the set of all variables occurring free in aformula �.A path is a word (i.e., a �nite, possibly empty sequence) over the set of allfeatures. The symbol " denotes the empty path, which satis�es "p = p = p"for every path p. A path p is called a pre�x of a path q, if there exists apath p0 such that pp0 = q. We use FEA? to denote the set of all paths.A tree domain is a nonempty set D � FEA? that is pre�x-closed, thatis, if pq 2 D, then p 2 D. Note that every tree domain contains the emptypath.A feature tree is a partial function �: FEA? ; SOR whose domain is atree domain. The paths in the domain of a feature tree represent the nodesof the tree; the empty path represents its root. We use D� to denote thedomain of a feature tree �. A feature tree is called �nite [in�nite] if its8

domain is �nite [in�nite]. The letters � and � will always denote featuretrees.The subtree p� of a feature tree � at a path p 2 D� is the feature treede�ned (in relational notation) by:p� := f(q; A) j (pq; A) 2 �g:We now de�ne the feature tree structure T as follows:� The universe of T is the set of all feature trees;� � 2 AT i� �(") = A;� (�; �) 2 fT i� f 2 D� and � = f�;� � 2 F T i� D� \ FEA = F .Note that T contains all in�nite feature trees, where nodes may have in�nite-ly many features. Another option is to admit only those in�nite feature treesthat are rational (i.e., have only �nitely many subtrees and where all nodesare �nitely branching). For the results of this paper this would not make adi�erence. We also conjecture that the rational feature tree structure andT are elementarily equivalent, analogous to the situation with constructortrees [26].3 The Theory CFTWe will now de�ne a �rst-order theory CFT having the feature tree structureT as one of its models. All results of this paper actually hold for everymodel of CFT. We conjecture that CFT is a complete axiomatization of thefeature tree structure T and expect that this can be shown with a quanti�erelimination technique similar to the one used in [9].We briey review the notion of a theory. A theory is a set of closed formulae.We say that a structure A is a model of a theory T (A j= T) if A satis�eseach formula of T . A formula � is a consequence of a theory T (T j= �) if~8� is valid in every model of T . A formula � is unsatis�able in a theoryT if :� is a consequence of T .A formula � entails a formula in a structure A (� j=A) if A satis�es~8(� !). A formula � entails a formula in a theory T (� j=T) if �entails in every model of T , that is, if �! is a consequence of T . Twoformulae �, are equivalent in a theory T (� j=jT) if they are equivalentin every model A of T , that is, if �$ is a consequence of T . A formula �disentails a formula in a theory T if � entails : in T . For convenience,we will omit the index ; for the empty theory, that is, write j= for j=;.9

CFT is de�ned by �ve axiom schemes. The �rst four schemes are straight-forward:(S) ~8 (Ax ^ Bx! ?) if A 6= B(F) ~8 (xfy ^ xfz ! y �= z)(A1) ~8 (xF ^ xfy ! ?) if f 62 F(A2) ~8 (xF ! 9y(xfy)) if f 2 F .The �rst two axiom schemes say that sorts are pairwise disjoint, and thatfeatures are functional. The last two schemes say that, if x has arity F ,exactly the features f 2 F are de�ned on x.To formulate the remaining axiom scheme, we need the notion of a deter-minant. A determinant for x is a formulaAx ^ xff1; : : : ; fng ^ xf1y1 ^ : : :^ xfnynwhich we will write more conveniently asx �= A(f1: y1; : : : ; fn: yn):(It is understood that all the feature symbols fi are di�erent.) As we havepointed out before, a determinant as the one above is similar to a constructorequation x := f(y1; : : : ; yn). A determinant for pairwise distinct variablesx1; : : : ; xn is a conjunctionx1 := D1 ^ : : : ^ xn := Dnof determinants for x1; : : : ; xn. If � is a determinant, we use D(�) to denotethe set of variables determined by �. In terms of constructor tree logic thiscorrresponds to the systems of regular equations in [14] or to the rationalsolved forms in [12, 26].The remaining axiom scheme will say that every determinant determines aunique solution for its determined variables. To this purpose we de�ne thequanti�er 9!x� (\there exists a unique x such that") as an abbreviation for9x� ^ 8x; y(�^ �[x y]! x �= y):(�[x y] denotes the formula obtained from � by replacing every freeoccurrence of x with y while possibly renaming bound variables in order toavoid capturing.) The more general form 9!X�, where X is a �nite set ofvariables, is de�ned accordingly. The quanti�er 9! satis�es9!X� ^ 9X(�^) j=A �! (1)for every structure A and all formulae �; .Now we can state the �fth axiom scheme:10

(D) ~8 (9!D(�) �) if � is a determinant.An example of an instance of scheme (D) is:8u; v; w 9! x; y; z 0B@ x �= A(f : v; g: y)^y �= B(f : x; g: z; h: u)^z �= A(f :w; g: y; h: z) 1CA :The theory CFT is the set of all sentences that can be obtained as instancesof the axiom schemes (S), (F), (A1), (A2) and (D).Proposition 3.1 The feature tree structure T is a model of CFT . More-over, the substructure of T containing only the rational feature trees is alsoa model of CFT .Proof. That the �rst four axioms schemes are satis�ed is obvious. Toshow that T satis�es the �fth axiom, one assumes arbitrary feature treesfor the universally quanti�ed variables and constructs feature trees for theexistentially quanti�ed variables. 2Proposition 3.2 Let � be a determinant and � any formula. Then:� j=CFT � () CFT j= 9D(�)(� ^ �):Proof. The direction \)" follows immediately from Axiom Scheme (D).The other direction follows by Axiom Scheme (D) and (1). 24 Relationship to Constructor TreesIn this section we show that the theory CFT can be seen as a conservativeextension of the theory RT . Let � be a �xed in�nite constructor signature.The axioms set RT [26] is de�ned by the following axiom schemes:(RT1) ~8 (f(�x) �= f(�y)! �x �= �y) f 2 �(RT2) ~8:(f(�x) �= f(�y)) f; g 2 �; f 6= g(RT3) ~89!�x�x �= �t �x �= �t is a rational solved formA rational solved form is a set of equations x1 �= t1 ^ : : :^ xn �= tn where allxi are di�erent variables and no term ti is a variable. [26] shows that RT isa complete set of axioms.Given �, we de�ne the signature �F of CFT as FEA = � and SOR =f1; 2; : : :g. We present an e�ective translation �F of an �-formula � in-to an �F -formula �F such that RT j= � i� CFT j= �F . Since we11

may assume without loss of generality that � contains only at equationsx �= f(x1; : : : ; xn), we can de�ne the translation as the homomorphic exten-sion of[x �= f(x1; : : : ; xn)]F := fx ^ xf1; : : : ; ng ^ x1x1 ^ : : :^ xnxn :Every �F -model A of CFT translates into a �-model AC with same domainby (a1; : : : ; an; a) 2 fAC i� a 2 fA and a 2 f1; : : : ; ngA and(a; ai) 2 iA for every i 2 f1; : : : ; ng :By axiom scheme (D) of CFT , fA is indeed a function. An easy inductiveargument yieldsProposition 4.1 For all �F -models A with A j= CFT and for all �-formulae � we have (�F)A = �(AC) and AC j= RT .Theorem 4.2 For every �-formula �: RT j= � i� CFT j= �F .Proof. For the �rst direction, let A be a model of CFT . By Proposi-tion 4.2, AC is a model of RT , hence AC j= �, and A j= �F follows fromProposition 4.2.For the other direction, let CFT j= �F . Since RT is complete and consistent,either RT j= � or RT j= :� holds. By assumption T j= �F , hence T C j= �by Proposition 4.2. Since T C is a model of RT , we conclude RT j= �. 25 The Decision MethodIn this section we develop in several steps a method for deciding simultane-ously entailment and disentailment in CFT. The proofs of the results statedhere will follow in the next section.A basic constraint is a possibly empty conjunction of atomic constraints(i.e., Ax, xfy, xF , x := y). The empty conjunction is the formula >. Weassume that the conjunction of formulae is associative and commutative, andthat it satis�es � ^ > = �. We can thus see a basic constraint equivalentlyas a �nite multiset of atomic constraints, where ^ corresponds to multisetunion and > to the empty multiset. For basic constraints �, , we willwrite � � (or 2 �, if is an atomic constraint) if there exists a basicconstraint 0 such that ^ 0 = �.Let , � be basic constraints and X , Y be �nite sets of variables. We willeventually arrive at an incremental method for deciding9Y j=CFT 9X�9Y j=CFT :9X�12

simultaneously. We will also see that the equivalences9Y j=CFT 9X� () 9Y j=A 9X� (2)9Y j=CFT :9X� () 9Y j=A :9X� (3)hold for every model A of the theory CFT .We say that a basic constraint clashes if it simpli�es to ? with one of thefollowing rules:(SCl) Ax ^Bx ^ �? A 6= B(ACl) xF ^ xG ^ �? F 6= G(FCl) xF ^ xfy ^ �? f 62 FWe call a basic constraint clash-free if it does not clash.Proposition 5.1 A clashing basic constraint is unsatis�able in CFT .Proof. For rule (SCl) the claim follows from axiom scheme (S), for rule(FCl) from axiom scheme (A1), and for rule (ACl) the claim follows fromschemes (A1) and (A2). 2Consider the basic constraintx �= y ^ x f x0 ^ y f y0 ^ A x0 ^B y0; (4)where A, B are distinct sorts. Clearly, this constraint is unsatis�able inCFT: If there was a solution, it would have to identify x0 and y0 (sincefeatures are functional), which is impossible since A and B are disjoint. Thissuggests that a constraint simpli�cation method must infer all equalitiesbetween variables that are induced by the functionality of features (axiomscheme (F)). This observation leads us to the central notions of congruencesand normalizers of constraints.5.1 Congruences and NormalizersWe call an equivalence relation � between variables a congruence of abasic constraint � if:� if x �= y 2 �, then x � y;� if xfy, x0fy0 2 � and x � x0 , then y � y0.13

It is easy to see that the set of congruences of a basic constraint is closedunder intersection. Since the equivalence relation identifying all variablesis a congruence of every basic constraint, every basic constraint has a leastcongruence. We use h�i to denote the least congruence of a basic con-straint �. Note that we have the equivalence x h�i y () � j= x := y in thespecial case where � is a conjunction of equations.The least congruence of the basic constraint (4) has two nontrivial equiva-lence classes: fx; yg and fx0; y0g.Technically, it will be most convenient to represent congruences as idempo-tent substitutions mapping variables to variables. We call a substitution �a normalizer of an equivalence relation � on the set of all variables if1. � maps variables to variables;2. � is idempotent (that is, �� = �);3. �x = �y if and only if x � y (for all variables x, y).Given �, we can obtain a normalizer of � by choosing a canonical memberfor every equivalence class and mapping every variable to the canonicalmember of its class.Let � be a substitution. We use Dom(�) (the domain of �) to denote theset of all variables x such that �x 6= x. A substitution is called �nite ifits domain is �nite. A �nite substitution � with the domain Dom(�) =fx1; : : : ; xng can be represented as an equation systemx1 �= �x1 ^ : : :^ xn �= �xn:For convenience, we will simply use � to denote this formula. Now, if � is asubstitution and � is a quanti�er-free formula, we have� ^ � j=j � ^ ��;where the application of � to � is de�ned as one would expect.We call a substitution � a normalizer of a basic constraint � if � is anormalizer of the least congruence of �. Every basic constraint � has a �nitenormalizer since its least congruence can only identify variables occurringin �.The least congruence of the basic constraint (4) has two nonsingleton equiva-lence classes: fx; yg and fx0; y0g. Hence the constraint (4) has 4 normalizers,each representing a di�erent choice for the normal forms of identi�ed vari-ables. One possible normalizer is the substitution fx 7! y; x0 7! y0g.Let � be a normalizer of �. Then h�i=h�i and x h�i y () �x = �y for allvariables x, y (h�i is the least congruence of the equational representationof �). 14

Let � and be basic constraints. We write � � for the constraint thatis obtained from � by deleting all constraints occurring in . We write �for the formula obtained from � by deleting all equations \x := y". Wecall a basic constraint � equation-complete if h�i=h�� � i (that is, theleast congruence of � coincides with the least congruence of the equationscontained in �).Theorem 5.2 Let A be a model of CFT , � a basic constraint, and � anormalizer of �. Then:1. � is unsatis�able in A if and only if �� clashes;2. � j=jCFT � ^ �� and � ^ �� is equation-complete.The �rst statement of the theorem gives us a method for deciding the sat-is�ability of basic constraints, provided we have a method for computingnormalizers. The second statement gives us a solved form for satis�ablebasic constraints. Since the �rst statement implies that a basic constraint issatis�able in one model of CFT if and only if it is satis�able in every modelof CFT , we know that the theory CFT is satisfaction complete [18].Let � be the basic constraint (4) and � be the normalizer fx 7! y; x0 7! y0g.Then �� is the clashing constrainty f y0 ^ y f y0 ^A y0 ^B y0:The following simpli�cation rules for basic constraints provide a method forcomputing normalizers:(Triv) x �= x ^ ��(Cong) xfy ^ xfz ^ �y := z ^ xfz ^ �(Elim) x �= y ^ �x �= y ^ �[x y] x 6= y; x 2 V(�)(�[x y] denotes the formula obtained from � by replacing every freeoccurrence of x with y while possibly renaming bound variables in orderto avoid capture.) Each of these rules is an equivalence transformation forCFT (rule (Cong) corresponds to axiom scheme (F)). It is also easy tosee that the rules preserve the congruences of a constraint, and hence itsleast congruence. Furthermore, the rules are terminating. Hence we cancompute for every basic constraint � a normal form that has exactly thesame normalizers as �. The next proposition says that normal constraintsexhibit a normalizer (a constraint is normal with respect to a set of rules ifnone of the rules applies to it): 15

Proposition 5.3 Let � be a basic constraint that is normal with respect tothe rules (Triv), (Cong) and (Elim). Then the unique substitution � suchthat � = � ^ � is a normalizer of � satisfying � = ��.5.2 Entailment without 9Next we will give a method for deciding entailment j=CFT � between basicconstraints. The constraint will be required to have a special form calledsaturated graph.A basic constraint is called a graph if it is clash-free, contains no equation,and satis�es xfy 2 ^ xfz 2) y = z. Hence a clash-free basic constraint not containing equations is a graph if and only if the identity substitutionis the only normalizer of .A basic constraint � is called saturated if for every arity constraint xF 2 �and every feature f 2 F there exists a feature constraint xfy 2 �.We call a variable x determined in a basic constraint � if � contains adeterminant for x (see Section 3). We use D(�) to denote the set of allvariables determined in �. We say that an equation x := y is determinedin � if x and y are both determined in �.The next theorem says that in a satis�able and equation-complete basicconstraint we can delete determined equations without losing information.Theorem 5.4 (Determined Equations) Let � be a conjunction of equa-tions and � be a basic constraint such that � ^ � is equation-complete andsatis�able in CFT . Then � ^ � j=jCFT �, provided every equation in � isdetermined in �.Theorem 5.5 Let A be a model of CFT , a saturated graph, � a basicconstraint, and let � be a normalizer of ^ �. Then:1. j=A :� if and only if �(^ �) clashes;2. j=A � if and only if(a) �(^ �) is clash-free and(b) �� � � and(c) every equation in � is determined in .The �rst statement follows immediately from Theorem 5.2 (since for everystructure A, j=A :� i� ^ � is unsatis�able in A). The second statementis nontrivial. Note that deciding entailment and disentailment is straight-forward once a normalizer is computed.16

To see an example, let us verifyx �= A(f : x; g: y) ^ y �= A(f : y; g: y) j=CFT x �= y (5)with the method provided by Theorem 5.5. Without syntactic sugar wehaveAx ^ xff; gg ^ xfx ^ xgy ^ Ay ^ yff; gg ^ yfy ^ ygy j=CFT x �= y:The left-hand side is in fact a saturated graph. If we apply the simpli�-cation rule (Elim) to ^ � (� is the right-hand side x �= y), we obtain (upto duplicates) the normal and clash-free constraintx �= y ^ Ay ^ yff; gg ^ yfy ^ ygy:Hence � := fx 7! yg is a normalizer of ^ �. Since � = > and x := y isdetermined in , we know by Theorem 5.5 that entails � in every modelof CFT .5.3 Entailment with 9We now extend Theorem 5.5 to the general case 9Y j=CFT 9X�.First we note that, after possibly renaming quanti�ed variables, we have9Y j=CFT 9X� () j=CFT 9X�:Hence it su�ces to consider the case where only the right-hand side hasexistential quanti�ers.Next we will see that we can assume without loss of generality that is asaturated graph. Given a basic constraint , we can �rst apply the simpli-�cation rules (Triv), (Cong) and (Elim) and obtain an equivalent normalform � ^ 0, where � is a normalizer and 0 either clashes or is a graph. If 0 clashes, then j=CFT 9X� trivially holds. Otherwise, we can assumewithout loss of generality that � ^ 0 and X have no variable in common.Thus we have j=CFT 9X� () � ^ 0 j=CFT 9X� () 0 j=CFT 9X(��)since � is idempotent and � 0 = 0. Now we know by axiom scheme (A2)that there exists a saturated graph 00 such that 0 j=jCFT 9Y 00 for someset Y of new variables. Thus we have j=CFT 9X� () 9Y 00 j=CFT 9X(��) () 00 j=CFT 9X(��):Hence it su�ces to exhibit a decision method for the case j=CFT 9X�,where is a saturated graph and X is disjoint from V().17

We say that a variable x is constrained in a basic constraint � if � containsan atomic constraint of the form x := y, Ax, xF or xfy. We write C(�) forthe set of all variables that are constrained in a basic constraint �. Thebasic constraint (4), for instance, constrains the variables x, y, x0 and y0.In the following X will be a �nite set of variables. We write �X for the com-plement of X . We call a normalizer � X-oriented if �(�X) � �X . Givenan equivalence relation between variables, we can obtain an X-oriented nor-malizer by choosing the canonical member of a class from �X wheneverthe class contains an element that is not in X . To compute X-orientednormalizers, it su�ces to add the rule(Orient) y �= x ^ �x �= y ^ � if x 2 X and y 62 Xto the simpli�cation rules (Triv), (Cong) and (Elim). With this additionalrule normal forms will always exhibit an X-oriented normalizer.The restriction �jX of a normalizer � to a set X of variables is the substi-tution that agrees with � on X and is the identity on �X .Theorem 5.6 (Entailment) Let A be a model of CFT , a saturatedgraph, � a basic constraint, X a �nite set of variables not occurring in ,and let � be an X-oriented normalizer of ^ �. Then:1. j=A :9X� if and only if �(^ �) clashes;2. j=A 9X� if and only if(a) �(^ �) is clash-free and(b) C(��� �) � X and(c) every equation in �j�X is determined in .Theorem 5.5 is obtained from the Entailment Theorem as the special casewhere X = ;. Since the criteria of Theorem 5.6 do not depend on theparticular model A, we obtain the claims (2) and (3) stated at the beginningof this section.5.4 IndependenceTheorem 5.7 (Independence) Let �; �1; : : : ; �n be basic constraints andX1; : : : ; Xn be �nite sets of variables. Then:� j=A 9X1�1 _ : : :_ 9Xn�n () 9i : � j=A 9Xi�ifor every model A of CFT . 18

The Independence Theorem does not hold for �nite alphabets of sorts andfeatures. For �nitely many sorts A1; : : : ; An we have> j=T A1x _ : : :_ Anx;and for �nitely many features f1; : : : ; fn we have> j=T xfg _ 9y(xf1y) _ : : :_ 9y(xfny):Since we allow for existential quanti�cation, our Independence Theorem isstronger than what is usually stated in the literature [13, 23, 24]. Inde-pendence of existentially quanti�ed constraints has been shown for a classof Boolean constraint systems in [16] and for �nite and rational constructortrees over an in�nite signature in [26]. In fact, independence for existentiallyquanti�ed constraints over �nite or rational constructor trees does not holdif the alphabet of constructors is �nite. To see this, note that the disjunction9y1(x = f1(y1)) _ : : : _ 9yn(x = fn(yn))is valid if there are no other constructors but f1; : : : ; fn.6 The ProofsWe now give the proofs of the results stated in the preceding section.6.1 Congruences and NormalizersWe �rst study the properties of the simpli�cation system given by the rules(Triv), (Cong), (Elim), and (Orient). Since the rule (Orient) is not applica-ble for X = ;, the subsystem (Triv), (Cong), (Elim) is in fact a special caseof the full system.A basic constraint is called a graph constraint if it contains no equation.Note that a graph constraint is a graph if and only if it is equation-completeand clash-free.We say that a congruence � contains an equation x �= y if x � y.Proposition 6.1 Let � ^ be a normal form of a basic constraint � withrespect to the rules (Triv), (Cong), (Elim), (Orient), where � is a set ofequations and where is a graph constraint. Then:1. � j=jCFT � ^ ;2. � is an X-oriented normalizer of �;19

3. = �.Proof. It is obvious that the rules perform equivalence transformations inCFT, so � and � ^ are equivalent in CFT.The rule (Elim) forces all variables occurring at the left side of an equation tooccur only once. Hence, � is an idempotent substitution, and �(�X) � �Xby (Orient). Since Dom(�) is disjoint from V(), the third claim follows.To prove that � is a normalizer of �, it remains to show that h�i is the leastcongruence of �. To this end, we �rst show that the simpli�cation rulespreserve congruences. So assume � simpli�es to with one of the rules. Wehave to show that an equivalence relation between variables is a congruenceof � i� it is a congruence of . For the rules (Triv) and (Orient) this istrivial.If � is a congruence of xfy ^ xfz ^ �, then it is as well a congruence ofxfz ^ �, and � contains y �= z since � is a congruence of xfy ^ xfz. If �is a congruence of y �= z ^ xfz ^ �, then y � z, hence � is a congruence ofxfy^xfz^�. This proves that application of (Cong) preserves congruences.For the case of (Elim), every congruence of x �= y ^ � is a congruence ofx �= y^�[x y], and vice versa, since in either case every congruence mustcontain x �= y.Now we show by contradiction that h�i is a congruence of �^. By de�nition,h�i contains all equations of �. Hence, if h�i is not a congruence of � ^ ,then there must be xfy; x0fy0 2 with x h�i x0, y 6= y0 and not y h�i y0.If x = x0, then (Cong) applies, which contradicts the normal form assump-tion. If x and x0 are di�erent variables, then at least one of them is containedin Dom(�) since �x = �x0. Hence (Elim) applies, which again contradictsthe normal form assumption.Since every congruence of � ^ must contain �, we conclude that h�i is infact the least congruence of � ^ . Since the simpli�cation rules preservecongruences, h�i is the least congruence of �. 2Proof of Proposition 5.3. Follows from Proposition 6.1. 2We say that a variable x is eliminated in a basic constraint � if � containsan equation x �= y and x occurs in � only once.Proposition 6.2 The simpli�cation system consisting of (Triv), (Cong),(Elim) and (Orient) is terminating.Proof. Obviously, there cannot be a derivation using (Triv) or (Cong)in�nitely often. Hence, it su�ces to show that the rules (Elim) and (Orient)terminate. 20

(Elim) and (Orient) do not introduce new variables. For a given basic con-straint �, consider the lexicographically ordered cross-product (see, e.g.,[15]) of the following measures:1. the number of variables in X \ V(�) that are not eliminated in �,2. the number of equations x �= y such that x 62 X ,3. the number of variables in �X \ V(�) that are not eliminated in �.Application of the rule (Elim) with x 2 X decreases the �rst component inthis lexicographic ordering, while application of (Orient) does not increasethe �rst component but decreases the second. Application of (Elim) withx 62 X does not increase the �rst or second component and decreases thethird. 2Proposition 6.3 For every normalizer � of a basic constraint �:� j=jCFT � ^ ��:Proof. It is easy to show that two normalizers of a basic constraint, whenconsidered as formulas, are equivalent in every structure. By Proposition 6.2and Proposition 6.1 there is a normalizer � of � satisfying � j=CFT �, hence� j=CFT �:Let � be the equational part of �. Then� j=CFT �since the least congruence of �, that is h�i, contains all equations of �. Hence� j=jCFT � ^ � j=jCFT � ^ � ^ � j=jCFT � ^ � j=jCFT � ^ ��. 2Proposition 6.4 If � is a normalizer of a congruence of a basic con-straint �, then �� either clashes or is a graph.Proof. Obvious. 2We say that the feature f is realized for a variable x in a basic constraint� if � contains a feature constraint xfy for some variable y.Proposition 6.5 Let � be a graph and let C(�) � X. Then CFT j= ~89X�.Proof. Since � is a graph, the following implications hold:21

1. Ax;Bx 2 �) A = B;2. xF; xfy 2 �) f 2 F ;3. xF; xG 2 �) F = G;4. xfy; xfz 2 �) y = z.Furthermore we may assume without loss of generality that � does notcontain any multiple occurrence of an atomic constraint. We will constructa determinant � � � with D(�) = X . ThenCFT j= ~89X�by axiom (D), which proves the claim since � j= �.For each x 2 X , let Fx denote the set of feature symbols that are realizedfor x in �. We de�ne the determinant � by adding to � for each variablex 2 X the following atomic constraints:� Ax, provided there is no sort constraint for x in �;� xFx, provided there is no arity constraint for x in �;� xfx, provided there is an arity constraint xF 2 � and f 2 F is notrealized for x in �. 2Lemma 6.6 Let A be a model of CFT and � a normalizer of the basic con-straint �. Then the following statements are equivalent:1. �� is clash-free;2. � is satis�able in every model of CFT ;3. � is satis�able in A.Proof. By Proposition 6.3, � j=jCFT � ^ ��. Since � is an idempotentsubstitution, � ^ �� is satis�able in a structure i� �� is satis�able in thisstructure.Hence for any model B of CFT, � is satis�able in B i� �� is. By Propo-sition 6.4, �� is either a graph or clashes. Hence, if �� is clash-free, then(2) and (3) follow by Proposition 6.5. Otherwise (2) and (3) do not hold byProposition 5.1. 2Proof of Theorem 5.2. The �rst statement of Theorem 5.2 follows imme-diately from Lemma 6.6. The second statement is a consequence of Propo-sition 6.3. 222

Proposition 6.7 Let ; � be basic constraints, X a �nite set of variablesnot occurring in , and � a normalizer of ^ �. Then j=CFT 9X�$ 9X(� ^ ��):Proof. The claim follows from the following equivalence: ^ 9X� j=jCFT ^ 9X(^ �) since X disjoint from V()j=jCFT ^ 9X(� ^ � ^ ��) by Proposition 6.3j=jCFT ^ 9X(� ^ ��) since � ^ j= � . 2Proposition 6.8 Let A be a model of CFT , ; � basic constraints, � anormalizer of �^ and X a �nite set of variables disjoint from V(). Thenthe following statements are equivalent:1. j=A :9X� ;2. j=A :9X(� ^ ��) ;3. j=A :9X(� ^ �) ;4. �(^ �) clashes;5. �(^ �) clashes.Proof. (1) and (2) are equivalent by Proposition 6.7, and the equivalenceof (2) and (3) is a basic property of substitutions. The equivalence of (1)and (4) can be seen as follows: j=A :9X� , A j= ~8(! :9X�), A j= ~8:9X(^ �), A j= :~9(^ �), �(^ �) clashes by Lemma 6.6.Finally, (4) and (5) are equivalent, since by de�nition of normalizers �(^�)and �(^ �) di�er only by trivial equations x := x. 26.2 Determined EquationsWe use V(�) to denote the set of all variables occurring in the equationalrepresentation of a substitution �.Lemma 6.9 Let be a graph constraint and let � be a normalizer of somecongruence of . If � is clash-free and if V(�) � D(), then j=CFT �:23

Proof. Suppose � is clash-free and V(�) � D(). Then contains adeterminant � such that D(�) = V(�). Hence it su�ces to prove that� j=CFT �: (6)Since �� is clash-free, we know by Proposition 6.4 that �� is a graph. SinceC(��) � D(�) [V(�) = D(�), we know by Proposition 6.5 that CFT j=~89D(�) ��. Hence, since � is idempotentCFT j= ~89D(�) (� ^ �):Thus we have (6) by Proposition 3.2. 2Lemma 6.10 Let �; �0 be sets of equations, and let be a graph constraintsuch that � ^ �0 ^ is equation-complete and satis�able in CFT . If V(�0) �D(), then � ^ j=CFT �0:Proof. Let � be a normalizer of �. First note that, since � is an idempotentsubstitution, � ^ � j=A () �� j=A � (7)for any structure A and basic constraints �; . Since � j=j �, we know byour assumptions that �^�0^ is equation-complete and satis�able in CFT .We �rst show that ��0 ^ � is equation-complete. (8)Assume that �xf�x0; �yf�y0 2 � and �x h��0i �y. By (7) we have � ^ �0 j=x �= y. Since xfx0; yfy0 2 and �0 ^ � ^ is equation complete, we havex0 h� ^ �0i y0 and thus �x0 h��0i �y0 by (7), which completes the proof of (8).Now let �0 be a normalizer of ��0. As a consequence of (8), �0 is normalizerof some congruence of �. Since � ^ �0 ^ is satis�able in CFT , �0 ^ �is satis�able in CFT and we know by Lemma 6.6 that �0� is clash-free.Furthermore, V(�0) = V(��0) � D(�), since by assumption V(�0) � D().Hence � j=CFT �0by Lemma 6.9. Since we have � j=j � and �0 j=j ��0, we obtain� ^ j=CFT �0using (7). 2Proof of Theorem 5.4. Follows immediately from Lemma 6.10. 224

6.3 Entailment and IndependenceThe next lemma is the key to the proofs of the Entailment and the Inde-pendence Theorems of Section 5.Lemma 6.11 Let be a saturated graph, and for every i, 1 � i � n, �i abasic constraint, Xi a �nite set of variables disjoint from V(), and �i anXi-oriented normalizer of ^ �i. If for each iC(�i�i � �i) 6� Xi or V(�ij�Xi) 6� D();then CFT j= ~9(^ :9X1(�1 ^ �1) ^ : : :^ :9Xn(�n ^ �n)):Proof. We may assume without loss of generality that �i(^�i) is clash-freefor all i, since otherwise by Proposition 6.8 ^ :9Xi(�i ^ �i) j=jCFT :We will construct a graph � � such that � disentails each 9Xi(�i ^ �i)in CFT . This proves the claim since � is a graph and hence is satis�ablein CFT (Proposition 6.5).Let Z be the set of all variables x such that there exists an i such thatx 62 Xi and1. Ax 2 �i�i � �i for some A or2. xF 2 �i�i � �i for some F or3. xfy 2 �i�i � �i for some f; y or4. x 2 V(�ij�Xi)� D().By the assumptions, to each i at least one of these cases applies. Now we�x for every variable x 2 Z� a sort Ax not occurring in or in any of the �i, and� a feature fx not occurring in or in any of the �i (neither as a featureconstraint nor as element of an arity constraint).It is understood that Ax 6= Ay and fx 6= fy if x 6= y. This is possible, sincewe have assumed that the alphabets of sorts and features are in�nite.25

For every x 2 Z let Fx be the set of features that are realized for x in .Now we are ready to de�ne the graph �:� := [fAxx j x 2 Z, contains no sort constraint for xg[fxfxx j x 2 Z, contains no arity constraint for xg[fx(Fx [ffxg) j x 2 Z, contains no arity constraint for xg:It remains to show that � disentails 9Xi(�i ^ �i) in CFT for every i. ByProposition 6.8, it su�ces to show that each �i(� ^ �i) contains a clash. Tothis end we take a closer look at the four cases in the de�nition of Z. Recallthat for every i at least one case applies.1. Ax 2 �i�i � �i and x 62 Xi.Since �i(^ �i) is clash-free, �i does not contain a sort constraintfor x. Since x 2 V(�i�i) and �i is idempotent, x = �ix, thus alsodoes not contain a sort constraint for x. Hence by the de�nition of �,Axx 2 � with Ax 6= A, which causes a clash in �i(� ^ �i).2. xF 2 �i�i � �i and x 62 Xi.Since �i(^ �i) is clash-free, �i does not contain an arity constraintfor x. Since x 2 V(�i�i) and �i is idempotent, we have x = �ix andthus does not contain an arity constraint for x. Hence xfxx 2 � andfx 62 F , which causes a clash in �i(� ^ �i).3. xfy 2 �i�i � �i and x 62 Xi.Since �i is a normalizer of ^�i, there is no z such that xfz 2 �i, thatis, �i does not realize f for x. Since x 2 V(�i�i) and �i is idempotent,x = �ix, thus also does not realize f for x. By assumption issaturated, hence does not contain an arity constraint for x, sinceany arity constraint for x would exclude f for x and therefore wouldlead to a clash in �i(^�i). Hence x(Fx[ffxg) 2 � and f 62 Fx[ffxg,which implies that �i(� ^ �i) contains a clash.4. x 2 V(�ij�Xi)� D().There must be an equation x �= y or y �= x in �i. Since �i is Xi-oriented, we know that y 62 Xi. Hence either y 2 D() or y 2 Z,which means that both x and y are determined in �.If either x or y has no sort constraint in , then �i� contains a sortclash. Otherwise, either x or y has no arity constraint in since xand y are not both determined in and is saturated by assumption.Hence �i� contains an arity clash. 226

Proposition 6.12 Let A be a model of CFT, a saturated graph, � abasic constraint, X a �nite set of variables disjoint from V(), and � anX-oriented normalizer of ^ �. Then j=A 9X� i�1. �(^ �) is clash-free and2. C(��� �) � X and3. V(�j�X) � D().Proof. Suppose that j=A 9X�. Then (1) follows from Proposition 6.8since the graph is satis�able in A (Proposition 6.5). The claims (2) and(3) follow with Lemma 6.11.For the other direction, �rst observe that j=A �j�Xfollows with Lemma 6.9 from the assumptions (1) and (3). Since V() isdisjoint from X , � = (�j�X), hence, j=A (�j�X ^) j= �j�X ^ �:Since �(^ �) is clash-free, we know by Proposition 6.4 that �� � � is agraph. Thus ~89X(��� �)by Proposition 6.5 and assumption (2). Hence, j=A �j�X ^ � ^ 9X(��� �)j=A 9X(�j�X ^ (��� �)^ �) since X is disjoint fromV(�j�X) and V()j=A 9X(�j�X ^ ��)j=A 9X(�j�X ^ �jX ^ ��) since � is idempotentand X-orientedj=A 9X(� ^ ��): 2Proof of Theorem 5.6. The �rst part of Theorem 5.6 is Proposition 6.8,the second part is Proposition 6.12. 2Proof of Theorem 5.7. The implication from right to left is trivial. It re-mains to show that for every model A of CFT, basic constraints �; �1; : : : ; �nand �nite sets X1; : : : ; Xn of variables,� j=A 9X1�1 _ : : :_ 9Xn�n) 9i : � j=A 9Xi�i:27

Without loss of generality we can assume that � is a saturated graph, andthat no Xi has a variable in common with �. By Proposition 6.7, we maydecompose each �i into �i^�i�i for some Xi-oriented normalizer �i of �i^�.We may assume without loss of generality that �i(� ^ �i) is clash-free forany i, since otherwise by Proposition 6.8� ^ :9Xi(�i ^ �i) j=jA �:Moreover, it follows by Lemma 6.11 that C(�i�i��i�) � X and V(�ij�Xi) �D(�) for some i. Hence, the claim follows with Proposition 6.12. 27 The Abstract MachineThe decision method developed in Section 5 is abstract and does not providedirectly for a discussion of important algorithmic aspects such as worst-casecomplexity and incrementality. We will now present an algorithmic formula-tion of the method showing how constraints can be processed incrementally,an aspect that is of crucial importance for a constraint system to be usedin a \real" constraint programming system. The algorithmic formulationwill also provide for an upper bound on the computational complexity ofentailment checking.To keep the presentation of the algorithm manageable, we will assume thatthe features that can actually occur in constraints are restricted to somea priori known �nite set. Note that this assumption only restricts the setof inputs formulae of the algorithm, it does not a�ect the theory underconsideration. This assumption can certainly not be made in practise, butour idealized algorithm nevertheless illustrates important techniques thatdo carry over to the general case. We will see that our algorithm decidesentailment and disentailment in at most quasi-linear time. The develop-ment of truly e�cient implementation techniques for the general case is notstraightforward and will require further research.The algorithm is presented as an abstract machine consuming a conjunctionof possibly negated basic constraints1 ^ :9X1�1 ^ 2 ^ :9X2�2 ^ 3 ^ : : :from left to right and detecting unsatis�ability as early as possible. Theabstract machine is incremental in the sense that it avoids redoing work whenfurther constraints arrive. This means that already processed informationmust be stored in a simpli�ed form allowing for maximal reuse of workalready done.Let = 1 ^ 2 ^ : : : be the conjunction of the positive constraints seenso far. By the Independence Theorem we know that the conjunction of the28

positive and negated constraints seen so far is satis�able if and only if (1) is satis�able and (2) no negated constraint 9Xi�i is entailed by . Moreover,a negated constraint 9Xi�i can be discarded if it is disentailed by . Butwhat do we do with negated constraints that are neither entailed nor dis-entailed by ? These undetermined negated constraints pose two questionsconcerning incrementality: Given a further positive constraint k, which ofthe undetermined negated constraints 9Xi�i need to be reconsidered? And,if a negated constraint must be reconsidered, how can previous work bereused? Both questions will be answered in the following.Our abstract machine for CFT has been inspired by Warren's abstract ma-chine for Prolog [3] and the actual implementations of SICStus Prolog [10]and AKL [19].7.1 The HeapThe algorithm employs a variable-centered representation of basic con-straints. The represented constraint is kept in a form exhibiting a suitablyoriented normalizer. The representation is built stepwise by including oneatomic constraint at a time. Inclusion of an atomic constraint correspondsto application of the simpli�cation rules (Triv), (Cong), (Elim) and (Orient).Whenever the represented constraint is extended, satis�ability is checked bymeans of the clash rules.The representation is variable-centered in that an atomic constraint is al-ways stored with the variable it is constraining (see Subsection 4.3). Weassume that some �nite enumeration type feature is given having as ele-ments the features that can be used in constraints. The de�nition of thetype variable appears in Figure 2. An equation x := y is represented byhaving the �eld ref of x point to y. The �eld isglobal is false if the variableis existentially quanti�ed in a negated constraint, and true otherwise. Sortand arity constraints are represented as one would expect. A feature con-straint xfy is represented by having the �eld subtree[f] of the variable xpoint to the variable y. If no feature constraint is known for x and f , thensubtree[f] = nil. A new, completely unconstrained variable is created bythe function newvar, also shown in Figure 2.The collection of all variable records in the store is called the heap. Fromwhat we have said it is clear that the heap represents a basic constraint.The heap always satis�es three invariants:1. the graph de�ned by the ref-pointers is acyclic (which means that itis a forest, where the ref-pointers are directed towards the roots)2. the mapping obtained by dereferencing a variable to the root of theref-pointer tree it appears in is an X-oriented normalizer of the repre-29

arity = set of featurevariable = recordisglobal : boolref : "variablesort : sort] fnonegarity : arity] fnonegsubtree : array [feature] of "variableendfunction newvar(is global: bool) : "variablevar x: "variablenew(x)with x" doisglobal is globalref nil sort none arity nonefor every f 2 feature do subtree[f] nilreturn xend newvarprocedure deref(var x: "variable)while x".ref 6= nil do x x".refend derefFigure 2: Representation, creation and dereferencing of variables.sented constraint (where X is the set of all local variables)3. the represented constraint is saturated.The �rst invariant ensures that the procedure deref de�ned in Figure 2always terminates.7.2 Imposing Positive ConstraintsFor every atomic constraint there is a procedure imposing it on the heap:Ax putsort(x;A)xfy putfeature(x; f ; y)xF putarity(x;F)x := y unify(x; y):The procedures are given in Figure 3 and 4. They are justi�ed by the simpli-�cation and clash rules of Section 5. If a clash is discovered, control jumpsto the label failure (see Figure 5). It is easy to verify that the constraintimposition procedures preserve the heap invariants. If no clash is discovered,the constraint represented by the heap is satis�able.30

procedure putsort(x: "variable; A: sort)deref(x)if x".sort = nonethen setsort(x, A)else if x".sort 6= A then goto failureend putsortprocedure setsort(x: "variable; A: sort)x".sort Aif x".isglobal then push(trail,\putsort(x,A)")end setsortprocedure putfeature(x:"variable; f:feature; y:"variable)deref(x) deref(y)if x".arity 6= none ^ f 62 x".aritythen goto failureelse if x".subtree[f] 6= nilthen unify(x".subtree[f],y)else setfeature(x,f,y)end putfeatureprocedure setfeature(x:"variable; f:feature; y:"variable)x".subtree[f] yif x".isglobal then push(trail,\putfeature(x,f,y)")end setfeatureprocedure putarity(x: "variable; F: arity)deref(x)if x".arity = nonethen setarity(x, F)for every f 2 feature doif f 62 F ^ x".subtree[f] 6= nil then goto failureelse if x".arity 6= F then goto failureend putarityprocedure setarity(x: "variable; F: arity)x".arity Ffor every f 2 F do % maintain saturationif x".subtree[f] = nil then setfeature(x,f,newvar(x".isglobal))if x".isglobal then push(trail,\putarity(x,F)")end setarityFigure 3: Imposing sort, feature and arity constraints.31

procedure unify(x,y: "variable)deref(x) deref(y)if x 6= ythen if x".isglobalthen bind(y,x)else bind(x,y)end unifyprocedure bind(x,y: "variable)setref(x,y)if x".sort 6= none then putsort(y,x".sort)for every f 2 feature doif x".subtree[f] 6= nil then putfeature(y,f,x".subtree[f])if x".arity 6= none then putarity(y,x".arity)end bindprocedure setref(x,y: "variable)x".ref yif x".isglobalthen if x".sort 6= none ^ x".arity 6= none ^y".sort 6= none ^ y".arity 6= nonethen push(trail,\setref(x,y)")else push(trail,\unify(x,y)")end setref Figure 4: Imposing equality constraints.failure: while : empty(trail) do undo(pop(trail))procedure undo(e: stackentry)case e of\putsort(x,A)" : x".sort none\putarity(x,F)" : x".arity none\putfeature(x,f,y)" : x".subtree[f] nil\unify(x,y)" : x".ref nil\setref(x,y)" : x".ref nilend undo Figure 5: Restoring the heap after failure.32

procedure residuate(var script: stack)var e: stackentryclear(script)while : empty(trail) doe pop(trail)undo(e)if e 6= \setref(: : :)" then push(script,e)end residuateprocedure resume(script: stack)clear(trail)while : empty(script) do execute(pop(script))end resumeFigure 6: Residuating and resuming negated constraints.Every change to a global variable is recorded on a stack called trail. Notethat the procedure setref records new equations between global variablesdi�erently depending on whether they are determined (ref(x,y)) or not (uni-fy(x,y)). The reason for this distinction will be given later.If control jumps to the label failure (see Figure 5), the trail is popped andprevious changes to global variables are undone. In case there are no localvariables, untrailing upon failure will in fact delete all constraints from theheap.So far we have a machinery that can be fed piece by piece with atomicconstraints. A new constraint is imposed by applying the appropriate pro-cedure. Control jumps to the label failure if and only if the resulting heapis unsatis�able. After a constraint is imposed without failure, the result-ing heap is equivalent to the conjunction of the imposed constraint andthe previous heap (provided auxiliary variables introduced by the proceduresetarity to maintain saturation are quanti�ed existentially). Clearly, the ab-stract machine presented so far is sound, incremental, and discovers failureas early as possible.7.3 Imposing Negated ConstraintsWe will now see how a negated constraint :9X� is processed. First, thetrail is cleared (i.e., set to the empty stack). Then � is fed like a positiveconstraint, where the existentially quanti�ed variables X are created as localvariables. If failure occurs, the resulting untrailing undoes all changes toglobal variables and the negated constraint is discarded (which is soundsince in this case :9X� is entailed by the positive constraints i seen sofar). If � has been fed completely without causing a failure, the negatedconstraint is \residuated" by calling the procedure residuate of Figure 6,33

which returns a stack of constraints called a script. Residuation untrailsand moves constraints from the heap to the script, such that the global partof the heap is restored to what it had been before processing the negatedconstraint, and such that the equivalencerestored heap ^ script j=jCFT heap before residuation (9)holds. This equivalence would be obvious if the setref-entries in the trail(recording determined equations between global variables) were pushed asunif-entries on the script. Discarding them is however justi�ed by Theo-rem 5.4 since the heap is equation-complete before residuation.Next we will see that 9X� is entailed by the positive constraints if and onlyif the script obtained by residuation is empty. This means that a negativeconstraint :9Xi�i causes unsatis�ability of the conjunction1 ^ :9X1�1 ^ 2 ^ :9X2�2 ^ 3 ^ : : :if and only if 9Xi�i is processed without failure and residuates with anempty script.To see the claim about residuation, suppose 9X� is imposed without failureon a heap whose global variables represent a constraint and residuateswith a script representing the constraint �. Moreover, suppose that isthe constraint represented by the local variables X in the heap just afterresiduation. By Equivalence (9) we have ^ � j=jCFT ^ ^ �. (Thisequivalence is slightly simpli�ed since it ignores existentially quanti�ed aux-iliary variables introduced to maintain saturation of the heap.) Moreover,C() � X , and is satis�able and equation-complete. Hence we knowCFT j= 9X by the Entailment Theorem.1. Suppose the script is empty. Then ^ � j=jCFT ^ and hence ^ 9X� j=jCFT ^ 9X . Since CFT j= 9X , we have j=CFT 9X�.2. Suppose the script is nonempty. Then we know by the EntailmentTheorem that does not entail 9X� since the heap before residuationviolates either condition (2.c) (i.e., there is a unify-entry on the trail)or condition (2.b) (i.e., there is a put-entry on the trail)).We now know that a negative constraint residuating with a nonempty scriptis neither entailed nor disentailed by the positive constraints seen so far.Moreover, the script together with the records of the local variables X in theheap represent a simpli�ed form of the negated constraint. This simpli�edform depends both on the negated constraint and the already seen positiveconstraints. If more positive information becomes available, the negatedconstraint must possibly be reconsidered. Rather than imposing the originalnegated constraint anew, its residuated script is resumed with the procedure34

resume in Figure 6. It su�ces to resume a residuated script if one of thefollowing events occurs:� the script contains an entry putsort(x,) and variable x is made areference or acquires a sort;� the script contains an entry putfeature(x,f,) and variable x is made areference or acquires feature f or an arity;� the script contains an entry putarity(x,) and variable x is made areference or acquires an arity or a feature;� the script contains an entry unify(x,y) and variable x or y is made areference or acquires a sort, an arity, or a feature.Resumption of a script is handled in the same way a negated constraint isimposed initially. In particular, a resumed script may residuate again witha new script.7.4 Worst-Case ComplexityWe will now see that an optimized version of our abstract machine candecide j=CFT 9X� in time at most quasi-linear in the size of and �. Thenecessary optimization concerns the implementation of the forest consistingof the ref-pointers by means of an e�cient union-�nd method [22].For our worst-case analysis we assume that and � are fed to the emptymachine as a sequence of newvar, put and unify procedure calls. The con-straint is fed �rst, then the trail is cleared, then � is fed, and �nally theprocedure residuate is called. If failure occurs while is being processed,then is unsatis�able and trivially entails 9X�. If failure occurs while � isbeing processed, then (and only then) disentails 9X�. If no failure occurs, entails 9X� if and only if the script obtained by residuation is empty.It su�ces to show that the machine does not require more than quasi-lineartime in the case where failure does not occur. Clearly, the size of the heapbuilt after processing and � is linear in the size of and �. Since theprocedure bind, through which all recursion is channelled, always sets a ref-pointer whose value was nil before, the total number of calls to putsort,putarity, putfeature and unify is linear. If we do not count recursive calls,these procedures require constant time plus the time for one or two callsof deref. Thus, the entire time needed is linear plus the time for a linearnumber of calls of deref. Hence, if we implement the congruence represent-ed by the ref-pointers with an e�cient union-�nd method employing pathcompression, the abstract machine will run in at most quasi-linear time [22].35

Our abstract machine and hence our worst-case analysis assume that thefeatures that can occur in and � are restricted to some a priori known�nite set. Without this assumption, the time for obtaining y given x and fsuch that xfy is in the heap is no longer constant. In this case entailmentchecking can certainly be implemented with a complexity not worse thanquadratic in the size of and �.8 Summary and ConclusionWe have shown that records can be incorporated into constraint (logic) pro-gramming in a straightforward and natural manner. Semantically, recordsare modeled as feature trees generalizing the trees corresponding to �rst-order terms. The �rst-order language we have set up for describing featuretrees is richer than the equational language employed with classical trees inthat it allows for �ner-grained descriptions. The resulting constraint systemCFT is a conservative extension of both Prolog II's rational tree system[12, 13] and the feature tree system FT [9, 7]. Thus CFT brings togetherthe work on classical tree constraints (e.g., [17, 12, 13, 23, 26]) and the workon feature descriptions (e.g., [21, 20, 1, 2, 4, 5, 6, 29, 9, 7, 11])|two lines ofresearch that seemed to be rather far apart in the past.The declarative semantics of CFT was speci�ed both algebraicly (the featuretree structure T) and logically (the �rst-order theory CFT given by �veaxiom schemes). For the constraint problems considered in the paper thecoincidence of the algebraic and logical semantics was shown. We conjecturethat CFT is in fact a complete recursive axiomatization of the feature treestructure.We have established abstract decision methods for satis�ability and entail-ment of constraints. Moreover, we have shown that CFT satis�es the Inde-pendence Property, which means that our methods can decide the satis�a-bility of conjunctions of positive and negative constraints.We have presented an idealized abstract machine processing positive andnegative constraints incrementally. The correctness of the machine was ver-i�ed using the abstract decision method established before. Under the as-sumption that the features that can appear in constraints are restricted tosome a priori known �nite set, an optimized version of the machine candecide satis�ability and entailment in quasi-linear time.Our abstract machine shows that an implementation of CFT will be morecomplex than an implementation of the classical rational tree system us-ing established Prolog technology [3]. Really e�cient implementations ofCFT will require further research. However, since the classical rationaltree system is a subsystem of CFT, a gracefully degrading implementation36

of CFT seems feasible, which pays for CFT's extra-expressivity only whennon-classical constraints are used.AcknowledgementsWe are grateful to Michael Mehl and Ralf Scheidhauer for having pointedout to the �rst author how uni�cation and residuation are implemented inSICStus Prolog and AKL. Discussions with Andreas Podelski and Peter vanRoy also helped with the design of the abstract machine. Hubert Comonsuggested Proposition 3.2. One of the anonymous referees provided helpfulcomments. Last not least the paper pro�ted from discussions with JoachimNiehren and J�org W�urtz.The research reported in this paper has been supported by the Bundesmi-nister f�ur Forschung und Technologie under contract ITW 9105, the Es-prit Project ACCLAIM (PE 7195) and the Esprit Working Group CCL(EP 6028).References[1] H. A��t-Kaci. A Lattice-Theoretic Approach to Computation Based on aCalculus of Partially Ordered Type Structures. PhD thesis, Universityof Pennsylvenia, Philadelphia, PA, 1984.[2] H. A��t-Kaci. An algebraic semantics approach to the e�ective resolutionof type equations. Theoretical Comput. Sci., 45:293{351, 1986.[3] H. A��t-Kaci. Warren's Abstract Machine: A Tutorial Reconstruction.Logic Programming. MIT Press, Cambridge, MA, 1991.[4] H. A��t-Kaci and R. Nasr. LOGIN: A logic programming language withbuilt-in inheritance. Journal of Logic Programming, 3:185{215, 1986.[5] H. A��t-Kaci and R. Nasr. Integrating logic and functional programming.Lisp and Symbolic Computation, 2:51{89, 1989.[6] H. A��t-Kaci and A. Podelski. Towards a meaning of LIFE. InJ. Maluszy�nski and M. Wirsing, editors, Proceedings of the 3rd Inter-national Symposium on Programming Language Implementation andLogic Programming, Springer LNCS vol. 528, pages 255{274. Springer-Verlag, 1991.[7] H. A��t-Kaci, A. Podelski, and G. Smolka. A feature-based constraintsystem for logic programming with entailment. In Proceedings of theInternational Conference on Fifth Generation Computer Systems, pages37

1012{1021, ICOT, Japan, 1992. Association for Computing Machinery.Full version will appear in Theoretical Computer Science.[8] R. Backofen and G. Smolka. A complete and recursive feature the-ory. Research Report RR-92-30, Deutsches Forschungszentrum f�urK�unstliche Intelligenz, Stuhlsatzenhausweg 3, D 66123 Saarbr�ucken,Germany, Sept. 1992.[9] R. Backofen and G. Smolka. A complete and recursive feature theory.In Proc. of the 31 th ACL, Columbus, Ohio, 1993. Complete versionas [8].[10] M. Carlsson, J. Wid�en, J. Andersson, S. Andersson, K. Boortz, H. Nils-son, and T. Sj�oland. SICStus Prolog Users's manual. SICS, Box 1263,164 28 Kista, Sweden, 1991.[11] B. Carpenter. Typed feature structures: A generalization of �rst-orderterms. In Saraswat and Ueda [28], pages 187{201.[12] A. Colmerauer. Prolog and in�nite trees. In K. Clark and S.-A. T�arnlund, editors, Logic Programming, pages 153{172. AcademicPress, 1982.[13] A. Colmerauer. Equations and inequations on �nite and in�nite trees.In Proceedings of the 2nd International Conference on Fifth GenerationComputer Systems, pages 85{99, 1984.[14] B. Courcelle. Fundamental properties of in�nite trees. TheoreticalComput. Sci., 25(2):95{169, 1983.[15] N. Dershowitz. Termination of rewriting. Journal of Symbolic Compu-tation, 3:69{116, 1987.[16] R. Helm, K. Marriott, and M. Odersky. Constraint-based query op-timization for spatial databases. In Tenth ACM Symposium on thePrinciples of Database Systems, pages 181{191, Denver, CO, May 1991.[17] G. Huet. R�esolution d'equations dans des langages d'ordre 1; 2; � � � ; !.Th�ese de Doctorat d'Etat, l'Universit�e Paris VII, Sept. 1976.[18] J. Ja�ar and J.-L. Lassez. Constraint logic programming. In Pro-ceedings of the 14th ACM Conference on Principles of ProgrammingLanguages, pages 111{119, Munich, Germany, Jan. 1987. ACM.[19] S. Janson and S. Haridi. Programming paradigms of the Andorra kernellanguage. In Saraswat and Ueda [28], pages 167{186.38

[20] R. M. Kaplan and J. Bresnan. Lexical-Functional Grammar: A for-mal system for grammatical representation. In J. Bresnan, editor, TheMental Representation of Grammatical Relations, pages 173{381. MITPress, Cambridge, MA, 1982.[21] M. Kay. Functional grammar. In Proceedings of the Fifth Annual Meet-ing of the Berkeley Linguistics Society, Berkeley, CA, 1979. BerkeleyLinguistics Society.[22] D. C. Kozen. The Design and Analysis of Algorithms. Springer-Verlag,1992.[23] J.-L. Lassez, M. J. Maher, and K. G. Marriott. Uni�cation revisited.In J. Minker, editor, Foundations of Deductive Databases and LogicProgramming, chapter 15, pages 587{625. Morgan-Kau�man, 1988.[24] J. L. Lassez and K. McAloon. A constraint sequent calculus. In FifthAnnual IEEE Symposium on Logic in Computer Science, pages 52{61,June 1990.[25] M. J. Maher. Logic semantics for a class of committed-choice programs.In J.-L. Lassez, editor, Proceedings of the Fourth International Confer-ence on Logic Programming, pages 858{876. MIT Press, 1987.[26] M. J. Maher. Complete axiomatizations of the algebras of �nite, ratio-nal and in�nite trees. In Proceedings of the Third Annual Symposiumon Logic in Computer Science, pages 348{357. IEEE Computer Society,1988.[27] V. Saraswat and M. Rinard. Concurrent constraint programming. InProceedings of the 7th Annual ACM Symposium on Principles of Pro-gramming Languages, pages 232{245, San Francisco, CA, January 1990.[28] V. Saraswat and K. Ueda, editors. Logic Programming, Proceedings ofthe 1991 International Symposium, San Diego, USA, 1991. The MITPress.[29] G. Smolka. Feature constraint logics for uni�cation grammars. Journalof Logic Programming, 12:51{87, 1992.[30] G. Smolka and R. Treinen. Records for logic programming. In K. Apt,editor, Proceedings of the Joint International Conference and Sympo-sium on Logic Programming, pages 240{254, Washington, USA, Nov.1992. The MIT Press.[31] R. Treinen. Feature constraints with �rst-class features. InA. Borzyszkowski and S. Soko lowski, editors, Mathematical Founda-tions of Computer Science, Lecture Notes in Arti�cial Intelligencevol. 711, pages 734{743. Springer-Verlag, Sept. 1993.39

