Records for Logic Programming

Gert Smolka and Ralf Treinen

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D 66123 Saarbriicken, Germany
{smolka, treinen}@dfki.uni-sh.de

Abstract

CFT is a new constraint system providing records as logical data
structure for constraint (logic) programming. It can be seen as a gen-
eralization of the rational tree system employed in Prolog II, where
finer-grained constraints are used, and where subtrees are identified by
keywords rather than by position.

CFT is defined by a first-order structure consisting of so-called
feature trees. Feature trees generalize the ordinary trees corresponding
to first-order terms by having their edges labeled with field names
called features. The mathematical semantics given by the feature tree
structure 1s complemented with a logical semantics given by five axiom
schemes, which we conjecture to comprise a complete axiomatization
of the feature tree structure.

We present a decision method for CFT, which decides entailment
and disentailment between possibly existentially quantified constraints.
Since CFT satisfies the independence property, our decision method
can also be employed for checking the satisfiability of conjunctions of
positive and negative constraints. This includes quantified negative
constraints such as VyVz(x # f(y, z)).

The paper also presents an idealized abstract machine processing
negative and positive constraints incrementally. We argue that an op-
timized version of the machine can decide satisfiability and entailment
in quasi-linear time.

Journal of Logic Programming, 18(3), April 1994, pp. 229-258.

A short version appeared in Krzysztof Apt, ed., Proceedings of the Joint Interna-
tional Conference and Symposium on Logic Programming, Washington D.C., 9-12
Nov 1992, MIT Press, pp. 240-254.

A previous version appeared as DFKI Research Report RR-92-23, Aug 1992.

Contents

1 Introduction

1.1 Records are Feature Trees

1.2 Record Descriptions . .
1.3 Constraint Simplification
1.4 Related Work

1.5 Organization of the Paper,

2 The Feature Tree Structure

3 The Theory CFT

4 Relationship to Constructor Trees

5 The Decision Method

5.1 Congruences and Normalizers

5.2 Entailment without 3 .
5.3 Entailment with 3 . . .
5.4 Independence

6 The Proofs

6.1 Congruences and Normalizers

6.2 Determined Equations .

6.3 Entailment and Independence

7 The Abstract Machine
7.1 The Heap

7.2 Imposing Positive Constraints

7.3 Imposing Negated Constraints.

7.4 Worst-Case Complexity

8 Summary and Conclusion

11

12
13
16
17
18

19
19
23
25

28
29
30
33
35

36

1 Introduction

Records are an important data structure in programming languages. They
appeared first with imperative languages such as ALGOL 68 and Pascal, but
are now also present in modern functional languages such as SML. A major
reason for providing records is the fact that they serve as the canonical data
structure for expressing object-oriented programming techniques.

In this paper we will show that records can be incorporated into logic pro-
gramming in a straightforward and natural manner. We will model records
with a constraint system CFT, which can serve as the basis of future con-
straint (logic) programming languages.! Since CFT is a conservative exten-
sion of Prolog II's rational tree system [12, 13], the familiar term notation
can still be used.?

1.1 Records are Feature Trees

We model records as feature trees [7, 9]. A feature tree (examples are shown
in Figure 1) is a tree whose edges are labeled with symbols called features,
and whose nodes are labeled with symbols called sorts. The features labeling
the edges correspond to the field names of records. As one would expect, the
labeling with features must be deterministic, that is, every direct subtree
of a feature tree is uniquely identified by the feature of the edge leading
to it. Feature trees without subtrees model atomic values (e.g., numbers).
Feature trees may be finite or infinite. Infinite feature trees provide for
the convenient representation of cyclic data structures. The last example
in Figure 1 gives a finite graph representation of an infinite feature tree,
which may arise as the representation of the recursive type equation nat =

0 + s(nat).

A ground term, say f(g(a, b), h(c)), can be seen as a feature tree whose nodes
are labeled with function symbols and whose arcs are labeled with numbers:

Ve
/N

Thus the trees corresponding to first-order terms are in fact feature trees

'Such languages can, for instance, be obtained as instances of the frameworks CLP
[18], ALPS [25] and CC [27].

2We haven chosen to admit infinite trees so that cyclic data structures can be repre-
sented directly. However, a set-up admitting only finite trees as in the original Horn clause
model is also possible.

point

point
xval yval xval yval color
2 3 2 \3 red
circle type
radius center name def
2 point nat or
xval yval 1 5
1
2 7 0 .

Figure 1: Examples of Feature Trees.

observing certain restrictions (e.g., the features departing from a node must
be consecutive positive integers).

1.2 Record Descriptions

In CFT, records (i.e., feature trees) are described by first-order formulae.
To this purpose, we set up a first-order structure 7 (CFT’s standard model)
whose universe is the set of all feature trees (over given alphabets of features
and sorts), and whose descriptive primitives are defined as follows:

e Every sort symbol A is taken as a unary predicate, where a sort con-
straint z: A holds if and only if the root of the tree z is labeled with A.

e Every feature symbol f is taken as a binary predicate, where a feature
constraint z[f]y holds if and only if the tree 2 has the direct subtree
y at feature f.

e Every finite set F' of features is taken as a unary predicate, where an
arity constraint xF holds if and only if the tree x has direct subtrees
exactly at the features appearing in F.

The descriptions or constraints of CFT are now exactly the first-order for-
mulae obtained from the primitive forms specified above, where we include
equations “x = y” between variables.

A feature constraint z[f]y corresponds to field selection for records. A more
familiar notation for [f]y might be y = x.f or y = z[f]. Note that the field
selection function “z.f” is partial since not every record has a field f.

Next we note that the familiar term notation can still be used in CFT if a
little syntactic sugar is provided. For instance, the equational constraint

X = point(Y,Z)
employing the binary constructor point translates into the conjunction
X:point A X{1,2} A X[1]Y A X[2]Z.
Note that constructors and features are dual in the sense that features are
argument selectors for constructors.

CFT can also express constructors that identify their arguments by keywords
rather than by position. For instance, the equation

P = point(xval: X, yval:Y, color: Z)
can be taken as an abbreviation for
P:point A P{xval, yval, color} A P[xval]X A P[yval]Y A P[color]Z.

Using nesting, which can be expressed in CFT with existentially quanti-
fied auxiliary variables, we can give the following description of the infinite
feature tree shown in Figure 1:

X = type(name: nat, def: or(0,s(X))).

Compared to the standard tree constraint systems, the major expressive
flexibility provided by CFT is the possibility to access a feature without
saying anything about the existence of other features. The constraint

X[color]Y

says that X must have a color field whose value is Y, but nothing else. Hence
we can express properties of the color of X without knowing whether X is
a circle, triangle, car or something else. Using constructor constraints, we
would have to write a disjunction

X=circle(...,Y,...) V X=triangle(...,Y,...) V ...

which means that we have to know statically which alternatives are pos-
sible dynamically. Moreover, disjunctions are expensive computationally.
In contrast, feature constraints like X[color]Y allow for efficient constraint
simplification, as we will see in this paper.

Descriptions leaving the arity of a record open are also essential for knowl-
edge representation, where a description like

X: person[father: Y, employer: Y]

should not disallow other features. In CFT this description can be expressed
by simply not imposing an arity constraint:

X:person A X[father]Y A X[employer]Y.

1.3 Constraint Simplification

The major technical contribution of this paper is the presentation and verifi-
cation of a constraint simplification method for CFT. This method provides
for incremental entailment and disentailment checking as it is needed for
advanced constraint programming frameworks [25, 27]. We show how the
decision method can be realized as an abstract machine processing positive
and negative constraints incrementally.

To state our technical results precisely, let a simple constraint be a formula

in the fragment
[$:A7 x[f]yv va r =Y, J—v T]/\,EI

obtained by closing the atomic formulae under conjunction and existential
quantification. Let v and ¢ be simple constraints. We give a method that
decides simultaneously entailment v =cpr ¢ and disentailment v Ecpp —¢.
This method can be implemented by an incremental algorithm having quasi-
linear complexity, provided the features possibly occurring in + and ¢ are
restricted a priori to some finite set. We also prove that CFT satisfies the
independence property,® that is,

9):CFT (bl V...V (bn — du 9):CFT (bZ

Hence, our decision method can decide the satisfiability of conjunctions of
positive and negative simple constraints since

YA gL AL A ¢, EorT L

is equivalent to
Y ECET o1 V...V by

All results are obtained under the assumption that the alphabets of sorts
and features are infinite.

1.4 Related Work

CFT can be viewed as the minimal combination of Colmerauer’s rational
tree system [12, 13] with the feature constraint system FT [7]. In fact, CF'T
is obtained from FT by simply adding arity constraints as new descriptive
primitive. However, the addition of arity constraints requires a nontrivial
extension of FT’s relative simplification method [7], which can be seen from
the fact that the entailment

v=flx,y) Ny=fy,y) Ecrr © =y

Since we allow for existential quantification in simple constraints, our independence
result is in fact stronger than what is usually stated in the literature [13, 23, 24]. See also
the discussion at the end of Section 5.4.

holds in CFT. (It of course also holds in Colmerauer’s rational tree system.)

Our operational investigations are based on congruences and normalizers of
constraints, two straightforward notions providing for an elegant presenta-
tion of the results.* We improve on Colmerauer’s [13] results for rational
trees since our constraints are closed under existential quantification. For
instance, our algorithm is complete for negative quantified constraints such
as —=Jy3z(z = f(y, 2)).

Feature descriptions have a long and winded history. One root are the
unification grammar formalisms FUG [21] and LFG [20] developed for ap-
plications in computational linguistics (see [11] for a more recent paper in
this area). Another, independent root is Ait-Kaci’s 1-term calculus [1, 2],
which is the basis of several constraint programming languages [4, 5, 6].
Smolka [29] gives a unified logical view of most earlier feature formalisms
and studies an expressive feature constraint logic.

Feature trees appeared only recently with the work on FT [9, 7]. To our
knowledge the notion of an arity constraint is new. Carpenter’s [11] exten-
sional types are somewhat related in that they fix an arity for all elements
of a type. Feature constraints with first class features have been considered
in [31].

A short version of this paper not containing the proofs and the description
of the abstract machine has appeared before [30].

1.5 Organization of the Paper

Section 2 gives a formal definition of the feature tree structure, thus fixing
syntax and semantics of CFT. Section 3 defines a first-order theory by means
of five axiom schemes, which we conjecture to be a complete axiomatization
of the feature tree structure. In Section 4 we show that CFT is indeed a
conservative extension of the theory of constructor trees. Section 5 presents
the decision method and states its properties. The proofs follow in Section 6.
Section 7 shows how the decision method can be realized as an abstract
machine processing positive and negative constraints incrementally.

2 The Feature Tree Structure

This section gives a formal definition of CFT’s standard model 7. T is a
first-order structure whose universe consists of all feature trees obtainable
from given alphabets of sorts and features.

*Huet [17] uses the related notion of “équivalence simplifiable” in his study of rational
tree unification.

From now on we assume that an infinite alphabet SOR of symbols called
sorts and an infinite alphabet FEA of symbols called features are given.
For several results of this paper (e.g., independence) it is essential that both
alphabets are infinite. The letters A, B will always denote sorts, the letters
f, g will always denote features, and the letters I/, G will always denote
finite sets of features.

We also assume an infinite alphabet of variables, ranged over by the letters
x, y, z. From the alphabets of sorts, features and variables we define the
following first-order language with equality:

1. Every sort symbol A is a unary predicate.
2. Every feature symbol f is a binary predicate.

3. Every finite set I of features is a unary predicate, called an arity
predicate.

4. The equality symbol = is a binary predicate that is always interpreted
as identity.

5. There is no function symbol, and there is no predicate symbol other
than the ones above.

Every formula and every structure in this paper will be taken with respect
to this signature. Note that under this signature every term is a variable.

For convenience, we will write Az, z fy and zF for A(z), f(z,y) and F(z),
respectively. (In Section 1 we have used yet another, Prolog compatible
syntax: X:a for sort and X[f]Y for feature constraints.) We assume the
usual connectives and quantifiers. We write L for “false” and T for “true”.
We use 3¢ [V¢] to denote the existential [universal] closure of a formula ¢.
Moreover, V(¢) is taken to denote the set of all variables occurring free in a
formula ¢.

A path is a word (i.e., a finite, possibly empty sequence) over the set of all
features. The symbol £ denotes the empty path, which satisfies ep = p = pe
for every path p. A path p is called a prefix of a path ¢, if there exists a
path p’ such that pp’ = ¢. We use FEA* to denote the set of all paths.

A tree domain is a nonempty set D C FEA* that is prefix-closed, that
is, if pg € D, then p € D. Note that every tree domain contains the empty
path.

A feature tree is a partial function ¢: FEA* ~+ SOR whose domain is a
tree domain. The paths in the domain of a feature tree represent the nodes
of the tree; the empty path represents its root. We use D, to denote the
domain of a feature tree o. A feature tree is called finite [infinite] if its

domain is finite [infinite]. The letters ¢ and 7 will always denote feature
trees.

The subtree po of a feature tree o at a path p € D, is the feature tree
defined (in relational notation) by:

po = {(q,A) | (pg; A) € o}
We now define the feature tree structure 7 as follows:

e The universe of 7 is the set of all feature trees;
e 0 c AT iff o(2) = A;

o (0,7)€ fTiff f€ Dy and 7 = fo;

e 0 FTiff D,NFEA = F.

Note that 7 contains all infinite feature trees, where nodes may have infinite-
ly many features. Another option is to admit only those infinite feature trees
that are rational (i.e., have only finitely many subtrees and where all nodes
are finitely branching). For the results of this paper this would not make a
difference. We also conjecture that the rational feature tree structure and
T are elementarily equivalent, analogous to the situation with constructor
trees [26].

3 The Theory CFT

We will now define a first-order theory CF'T having the feature tree structure
T as one of its models. All results of this paper actually hold for every
model of CFT. We conjecture that CF'T is a complete axiomatization of the
feature tree structure 7 and expect that this can be shown with a quantifier
elimination technique similar to the one used in [9].

We briefly review the notion of a theory. A theory is a set of closed formulae.
We say that a structure A is a model of a theory T' (A = T') if A satisfies
each formula of T'. A formula ¢ is a consequence of a theory 7' (T = ¢) if
V¢ is valid in every model of T. A formula ¢ is unsatisfiable in a theory
T if —¢ is a consequence of T.

A formula ¢ entails a formula ¢ in a structure A (¢ E4 1) if A satisfies
9((;5 —). A formula ¢ entails a formula 1 in a theory T (¢ =7) if ¢
entails ¢ in every model of T’ that is, if ¢ — 1 is a consequence of T'. Two
formulae ¢, 1 are equivalent in a theory T (¢ Hr) if they are equivalent
in every model A of T, that is, if ¢ <> 1 is a consequence of T'. A formula ¢
disentails a formula v in a theory T if ¢ entails =% in T". For convenience,
we will omit the index @ for the empty theory, that is, write = for =g.

CFT is defined by five axiom schemes. The first four schemes are straight-

forward:
(S) V(Az A Bz — 1) if A#B
(F) V(zfyhafz—y=2z)
(A1) V(aF Axfy— 1) if fg F
(A2) V(zF = Fy(zfy)) if feF.

The first two axiom schemes say that sorts are pairwise disjoint, and that
features are functional. The last two schemes say that, if x has arity F),
exactly the features f € F are defined on «.

To formulate the remaining axiom scheme, we need the notion of a deter-
minant. A determinant for z is a formula

Ax Na{fi, ..,y ANafirn Ao Axfuyn

which we will write more conveniently as

€ = A(fl:y17"'7fn:yn)-

(It is understood that all the feature symbols f; are different.) As we have
pointed out before, a determinant as the one above is similar to a constructor
equation z = f(y1,...,Yn). A determinant for pairwise distinct variables
X1,...,%y, i & conjunction

$1ID1/\/\$nIDn

of determinants for z1,...,z,. If § is a determinant, we use D(§) to denote
the set of variables determined by 4. In terms of constructor tree logic this
corrresponds to the systems of regular equations in [14] or to the rational
solved forms in [12, 26].

The remaining axiom scheme will say that every determinant determines a
unique solution for its determined variables. To this purpose we define the
quantifier 3'z¢ (“there exists a unique z such that”) as an abbreviation for

Jep ANV, y(p A ol yl = v =y).

(¢p[z + y] denotes the formula obtained from ¢ by replacing every free
occurrence of @ with y while possibly renaming bound variables in order to
avoid capturing.) The more general form 3!'.X ¢, where X is a finite set of
variables, is defined accordingly. The quantifier 3! satisfies

MXGAIX(GAD) Ea ¢ O (1)

for every structure A and all formulae ¢,).

Now we can state the fifth axiom scheme:

10

(D) V(3D(5)) if ¢ is a determinant.
An example of an instance of scheme (D) is:

r=A(frv, giy) A
Vu,v,w Az, y,2 | y=B(fra, g:z, hiu) A
z=A(frw, g1y, h:2)

The theory CFT is the set of all sentences that can be obtained as instances

of the axiom schemes (S), (F), (A1), (A2) and (D).

Proposition 3.1 The feature tree structure T is a model of CFT . More-
over, the substructure of T containing only the rational feature trees is also

a model of CFT .

Proof. That the first four axioms schemes are satisfied is obvious. To
show that 7 satisfies the fifth axiom, one assumes arbitrary feature trees
for the universally quantified variables and constructs feature trees for the
existentially quantified variables. a

Proposition 3.2 Let § be a determinant and ¢ any formula. Then:

)):CFT ¢ <«<— CFT): HD((S)((S A (b)

Proof. The direction “=" follows immediately from Axiom Scheme (D).
The other direction follows by Axiom Scheme (D) and (1). o

4 Relationship to Constructor Trees

In this section we show that the theory CFT can be seen as a conservative
extension of the theory RT . Let ¥ be a fixed infinite constructor signature.
The axioms set RT [26] is defined by the following axiom schemes:

(RT1) V(f(@)=fly) w2y fex
(RT2) V-(f(z)=f(y)) flaeX f#yg
(RT3) vV3izz =t T = is a rational solved form

A rational solved form is a set of equations z1 = {; A...Ax, = t, where all
z; are different variables and no term ¢; is a variable. [26] shows that RT is
a complete set of axioms.

Given X, we define the signature ¥ of CFT as FEA = ¥ and SOR =
{1,2,...}. We present an effective translation of of an Y-formula o in-
to an LF-formula of" such that RT |= o iff CFT | of. Since we

11

may assume without loss of generality that o contains only flat equations
= f(x1,...,2,), we can define the translation as the homomorphic exten-
sion of

[z = f(z1,...,2.)]" = fene{l,...,n}Azleg AL Azna, .

Every ¥ -model A of CFT translates into a ¥-model A® with same domain
by

(@, ... an,a) EfAC iff aef*andae{l,...,n}" and
(a,a;) € i** for every i € {1,...,n}.

By axiom scheme (D) of CFT, f# is indeed a function. An easy inductive
argument yields

Proposition 4.1 For all ¥ -models A with A = CFT and for all X-
formulae o we have (O'F)A = (A9 and A° ERT.

Theorem 4.2 For every Y-formula o: RT = o iff CFT = of.

Proof. For the first direction, let A be a model of CFT. By Proposi-
tion 4.2, A% is a model of RT, hence AY |= o, and A |= of follows from

Proposition 4.2.

For the other direction, let CFT = o, Since RT is complete and consistent,
either RT |= o or RT |= —o holds. By assumption 7 }= o, hence T = o
by Proposition 4.2. Since 7¢ is a model of RT , we conclude RT Eo. O

5 The Decision Method

In this section we develop in several steps a method for deciding simultane-
ously entailment and disentailment in CFT. The proofs of the results stated
here will follow in the next section.

A basic constraint is a possibly empty conjunction of atomic constraints
(i.e., Az, afy, F, z = y). The empty conjunction is the formula T. We
assume that the conjunction of formulae is associative and commutative, and
that it satisfies ¢ A T = ¢. We can thus see a basic constraint equivalently
as a finite multiset of atomic constraints, where A corresponds to multiset
union and T to the empty multiset. For basic constraints ¢, ¥, we will
write 10 C ¢ (or ¢ € ¢, if 1 is an atomic constraint) if there exists a basic
constraint ¢’ such that ¢ A ¢’ = ¢.

Let 7, ¢ be basic constraints and X, Y be finite sets of variables. We will
eventually arrive at an incremental method for deciding

Yy Ecpr 3IX¢
¥y Ecprr —3Xo

12

simultaneously. We will also see that the equivalences

Yy err 3X¢ = Yy 4TINS (2)
Yy Ecrr 73X¢ <= Wy Ea-3IXo (3)

hold for every model A of the theory CFT.

We say that a basic constraint clashes if it simplifies to L with one of the
following rules:

(SC1) W A+B

(ACI) 7$FAiGA¢ F#4G

(FC1) W fer

We call a basic constraint clash-free if it does not clash.
Proposition 5.1 A clashing basic constraint is unsatisfiable in CFT .

Proof. For rule (SCI) the claim follows from axiom scheme (S), for rule
(FCl) from axiom scheme (A1), and for rule (ACI) the claim follows from
schemes (A1) and (A2).]

Consider the basic constraint
r=yAzfa ANyfy ANAz' ABY, (4)

where A, B are distinct sorts. Clearly, this constraint is unsatisfiable in
CFT: If there was a solution, it would have to identify 2’ and 3’ (since
features are functional), which is impossible since A and B are disjoint. This
suggests that a constraint simplification method must infer all equalities
between variables that are induced by the functionality of features (axiom
scheme (F')). This observation leads us to the central notions of congruences
and normalizers of constraints.

5.1 Congruences and Normalizers

We call an equivalence relation &~ between variables a congruence of a
basic constraint ¢ if:

o if v =y € ¢, then z ~ y;

o if ufy, 2'fy € ¢ and x = 2’ | then y = y/'.

13

It is easy to see that the set of congruences of a basic constraint is closed
under intersection. Since the equivalence relation identifying all variables
is a congruence of every basic constraint, every basic constraint has a least
congruence. We use (¢) to denote the least congruence of a basic con-
straint ¢. Note that we have the equivalence z (¢) y <= ¢ = 2 = y in the
special case where ¢ is a conjunction of equations.

The least congruence of the basic constraint (4) has two nontrivial equiva-
lence classes: {z,y} and {2/, y'}.

Technically, it will be most convenient to represent congruences as idempo-
tent substitutions mapping variables to variables. We call a substitution 6
a normalizer of an equivalence relation = on the set of all variables if

1. 6 maps variables to variables;
2. 8 is idempotent (that is, 00 = 6);

3. 8z = Oy if and only if x ~ y (for all variables z, y).

Given =2, we can obtain a normalizer of &~ by choosing a canonical member
for every equivalence class and mapping every variable to the canonical
member of its class.

Let 6 be a substitution. We use Dom(6) (the domain of #) to denote the
set of all variables z such that a2 # z. A substitution is called finite if
its domain is finite. A finite substitution § with the domain Dom(8) =

{x1,...,2,} can be represented as an equation system
21 =021 A... Az, = 0z,.

For convenience, we will simply use # to denote this formula. Now, if € is a
substitution and ¢ is a quantifier-free formula, we have

ONd H 0AN60,

where the application of 8 to ¢ is defined as one would expect.

We call a substitution # a normalizer of a basic constraint ¢ if 6 is a
normalizer of the least congruence of ¢. Every basic constraint ¢ has a finite
normalizer since its least congruence can only identify variables occurring
in ¢.

The least congruence of the basic constraint (4) has two nonsingleton equiva-
lence classes: {x,y} and {2/, y'}. Hence the constraint (4) has 4 normalizers,
each representing a different choice for the normal forms of identified vari-
ables. One possible normalizer is the substitution {z — y, 2" — y'}.

Let 6 be a normalizer of ¢. Then (§)=(¢) and z (8) y <= 6z = by for all
variables z, y (() is the least congruence of the equational representation

of 6).

14

Let ¢ and 1 be basic constraints. We write ¢ L 1 for the constraint that
is obtained from ¢ by deleting all constraints occurring in ¥. We write ¢
for the formula obtained from ¢ by deleting all equations “z = y”. We
call a basic constraint ¢ equation-complete if (¢)=(¢ L ¢) (that is, the
least congruence of ¢ coincides with the least congruence of the equations
contained in ¢).

Theorem 5.2 Let A be a model of CFT, ¢ a basic constraint, and 6 a
normalizer of ¢. Then:

1. ¢ is unsatisfiable in A if and only if 8¢ clashes;

2. 6 Herr 0 A 09 and 0 A 8¢ is equation-complete.

The first statement of the theorem gives us a method for deciding the sat-
isfiability of basic constraints, provided we have a method for computing
normalizers. The second statement gives us a solved form for satisfiable
basic constraints. Since the first statement implies that a basic constraint is
satisfiable in one model of CFT if and only if it is satisfiable in every model
of CFT, we know that the theory CFT is satisfaction complete [18].

Let ¢ be the basic constraint (4) and 6 be the normalizer {a — y, 2’ — y'}.
Then #¢ is the clashing constraint

yfynyfy nAy ABy

The following simplification rules for basic constraints provide a method for
computing normalizers:

(Triv) 7$£;Aq§

(Cong) xfyAhzfzAo
y=zAzxfzAo

(Blim) —L=UAS sy 4 e V(9)
=y A ez y]

(¢p[z + y] denotes the formula obtained from ¢ by replacing every free
occurrence of x with y while possibly renaming bound variables in order

to avoid capture.) Each of these rules is an equivalence transformation for
CEFT (rule (Cong) corresponds to axiom scheme (F)). It is also easy to
see that the rules preserve the congruences of a constraint, and hence its
least congruence. Furthermore, the rules are terminating. Hence we can
compute for every basic constraint ¢ a normal form that has exactly the
same normalizers as ¢. The next proposition says that normal constraints
exhibit a normalizer (a constraint is normal with respect to a set of rules if
none of the rules applies to it):

15

Proposition 5.3 Let ¢ be a basic constraint that is normal with respect to
the rules (Triv), (Cong) and (Elim). Then the unique substitution 6 such
that ¢ = 0 A ¢ is a normalizer of ¢ satisfying ¢ = 06.

5.2 Entailment without 3

Next we will give a method for deciding entailment v |Ecpr ¢ between basic
constraints. The constraint + will be required to have a special form called
saturated graph.

A basic constraint v is called a graph if it is clash-free, contains no equation,
and satisfies z fy € YAz fz € v = y = z. Hence a clash-free basic constraint
~ not containing equations is a graph if and only if the identity substitution
is the only normalizer of ~.

A basic constraint ¢ is called saturated if for every arity constraint z F € ¢
and every feature f € F' there exists a feature constraint x fy € ¢.

We call a variable # determined in a basic constraint ¢ if ¢ contains a
determinant for 2 (see Section 3). We use D(¢) to denote the set of all
variables determined in ¢. We say that an equation # = y is determined
in ¢ if and y are both determined in ¢.

The next theorem says that in a satisfiable and equation-complete basic
constraint we can delete determined equations without losing information.

Theorem 5.4 (Determined Equations) Let n be a conjunction of equa-
tions and ¢ be a basic constraint such that n A ¢ is equation-complete and
satisfiable in CFT. Then n A ¢ Horr ¢, provided every equation in 1 is
determined in ¢.

Theorem 5.5 Let A be a model of CFT, v a saturated graph, ¢ a basic
constraint, and let 8 be a normalizer of v A ¢. Then:
1. v =a —¢ if and only if 0(y A @) clashes;
2. v Ea ¢ if and only if
(a) 0(y A @) is clash-free and
(b) 66 C 6y and

(c) every equation in 0 is determined in .

The first statement follows immediately from Theorem 5.2 (since for every
structure A, v E4 —¢ iff ¥ A ¢ is unsatisfiable in \A). The second statement
is nontrivial. Note that deciding entailment and disentailment is straight-
forward once a normalizer is computed.

16

To see an example, let us verify

e=A(fx,9:y) Ny=A(fry,9:y) Ecrr =y (5)

with the method provided by Theorem 5.5. Without syntactic sugar we
have

Az N a{f,g} N afr AN xgy A Ay A y{f, g9} AN yfyAygy Ecrr T =Y.

The left-hand side v is in fact a saturated graph. If we apply the simplifi-
cation rule (Elim) to v A ¢ (¢ is the right-hand side z = y), we obtain (up
to duplicates) the normal and clash-free constraint

r=y N Ay N y{fig} N yfy A ygy.

Hence # := {z — y} is a normalizer of ¥ A é. Since ¢ = T and z = y is
determined in v, we know by Theorem 5.5 that v entails ¢ in every model

of CFT.

5.3 Entailment with 3

We now extend Theorem 5.5 to the general case Yy Ecpr IX ¢.

First we note that, after possibly renaming quantified variables, we have

Yy epr 3X¢ <= v Fcrr 3X¢.

Hence it suffices to consider the case where only the right-hand side has
existential quantifiers.

Next we will see that we can assume without loss of generality that v is a
saturated graph. Given a basic constraint v, we can first apply the simpli-
fication rules (Triv), (Cong) and (Elim) and obtain an equivalent normal
form @ A «', where € is a normalizer and +' either clashes or is a graph. If
7" clashes, then v Ecpr 3X ¢ trivially holds. Otherwise, we can assume
without loss of generality that 8 A 4" and X have no variable in common.
Thus we have

v Ecrr 3X¢ <= 0 A+ Ecrr 3X¢ — + Ecpr IX(09)

since # is idempotent and 6y’ = 4’. Now we know by axiom scheme (A2)
that there exists a saturated graph 4" such that v/ Hopr IY4” for some
set Y of new variables. Thus we have

v Ecrr 3X¢ = IV fcrr IX(00) = " Ecrr IX(09).

Hence it suffices to exhibit a decision method for the case v Ecpr IX @,
where « is a saturated graph and X is disjoint from V(7).

17

We say that a variable x is constrained in a basic constraint ¢ if ¢ contains
an atomic constraint of the form & =y, Az, 2 F or z fy. We write C(¢) for
the set of all variables that are constrained in a basic constraint ¢. The
basic constraint (4), for instance, constrains the variables z, y, 2’ and ¥’

In the following X will be a finite set of variables. We write L X for the com-
plement of X. We call a normalizer § X-oriented if (LX) C LX. Given
an equivalence relation between variables, we can obtain an X-oriented nor-
malizer by choosing the canonical member of a class from 1 X whenever
the class contains an element that is not in X. To compute X-oriented
normalizers, it suffices to add the rule

(Orient) w ifzeXandygX
r=yAN¢

to the simplification rules (Triv), (Cong) and (Elim). With this additional
rule normal forms will always exhibit an X-oriented normalizer.

The restriction 6|x of a normalizer 6 to a set X of variables is the substi-
tution that agrees with # on X and is the identity on LX.

Theorem 5.6 (Entailment) Let A be a model of CFT, v a saturated
graph, ¢ a basic constraint, X a finite set of variables not occurring in v,
and let 8 be an X -oriented normalizer of v A ¢. Then:

1. v A ~3X 6 if and only if 0(y A @) clashes;

2. v Ea 33X ¢ if and only if
(a) 0(y A @) is clash-free and
(b) C(8¢ L 6v) C X and

(c) every equation in 0|_x is determined in 7.

Theorem 5.5 is obtained from the Entailment Theorem as the special case
where X = (). Since the criteria of Theorem 5.6 do not depend on the
particular model A, we obtain the claims (2) and (3) stated at the beginning
of this section.

5.4 Independence

Theorem 5.7 (Independence) Let ¢, ¢y, ..., ¢, be basic constraints and
Xi,..., X, be finite sets of variables. Then:

PEAIX 11 V... VIX,d, = Ti: o FATXig

for every model A of CFT .

18

The Independence Theorem does not hold for finite alphabets of sorts and
features. For finitely many sorts Aq,..., A, we have

T EBEr AjzVv...V Az,

and for finitely many features fi,..., f, we have
T Er 23 vIylehy) V...V Iy(zfoy).

Since we allow for existential quantification, our Independence Theorem is
stronger than what is usually stated in the literature [13, 23, 24]. Inde-
pendence of existentially quantified constraints has been shown for a class
of Boolean constraint systems in [16] and for finite and rational constructor
trees over an infinite signature in [26]. In fact, independence for existentially
quantified constraints over finite or rational constructor trees does not hold
if the alphabet of constructors is finite. To see this, note that the disjunction

Fyi(z = A1) VoV TG = fulF)

is valid if there are no other constructors but fi,..., f,..

6 The Proofs

We now give the proofs of the results stated in the preceding section.

6.1 Congruences and Normalizers

We first study the properties of the simplification system given by the rules
(Triv), (Cong), (Elim), and (Orient). Since the rule (Orient) is not applica-
ble for X = (), the subsystem (Triv), (Cong), (Elim) is in fact a special case
of the full system.

A basic constraint is called a graph constraint if it contains no equation.
Note that a graph constraint is a graph if and only if it is equation-complete
and clash-free.

We say that a congruence ~ contains an equation z = y if = ~ y.

Proposition 6.1 Let 8 A v be a normal form of a basic constraint ¢ with
respect to the rules (1'riv), (Cong), (Elim), (Orient), where 8 is a set of
equations and where v is a graph constraint. Then:

1. ¢ HCFT 0/\7,‘

2. 0 is an X -oriented normalizer of ¢;

19

3. y=0v.

Proof. It is obvious that the rules perform equivalence transformations in
CFT, so ¢ and 8 A v are equivalent in CFT.

The rule (Elim) forces all variables occurring at the left side of an equation to
occur only once. Hence, 6 is an idempotent substitution, and (LX) C L X
by (Orient). Since Dom(#) is disjoint from V(v), the third claim follows.

To prove that # is a normalizer of ¢, it remains to show that (#) is the least
congruence of ¢. To this end, we first show that the simplification rules
preserve congruences. So assume ¢ simplifies to ¢ with one of the rules. We
have to show that an equivalence relation between variables is a congruence
of ¢ iff it is a congruence of . For the rules (Triv) and (Orient) this is
trivial.

If =~ is a congruence of z fy A zfz A ¢, then it is as well a congruence of
vfz A ¢, and ~ contains y = z since 6 is a congruence of z fy A xfz. If ~
is a congruence of y = z Axfz A ¢, then y = z, hence ~ is a congruence of
zfynxfzA¢. This proves that application of (Cong) preserves congruences.

For the case of (Elim), every congruence of @ = y A ¢ is a congruence of
x = yA¢[x + y], and vice versa, since in either case every congruence must
contain z = y.

Now we show by contradiction that (#) is a congruence of §Ay. By definition,
(#) contains all equations of #. Hence, if (#) is not a congruence of 6 A 7,
then there must be z fy, ' fy' € v with « () 2', y # 3" and not y (8) v'.

If = ', then (Cong) applies, which contradicts the normal form assump-
tion. If z and 2’ are different variables, then at least one of them is contained
in Dom(0) since §z = #z2’. Hence (Elim) applies, which again contradicts
the normal form assumption.

Since every congruence of 6 A 4 must contain 6, we conclude that (6) is in
fact the least congruence of 8 A v. Since the simplification rules preserve
congruences, () is the least congruence of ¢. a

Proof of Proposition 5.3. Follows from Proposition 6.1. a

We say that a variable z is eliminated in a basic constraint ¢ if ¢ contains
an equation z = y and x occurs in ¢ only once.

Proposition 6.2 The simplification system consisting of (Triv), (Cong),
(Elim) and (Orient) is terminating.

Proof. Obviously, there cannot be a derivation using (Triv) or (Cong)
infinitely often. Hence, it suffices to show that the rules (Elim) and (Orient)
terminate.

20

(Elim) and (Orient) do not introduce new variables. For a given basic con-
straint ¢, consider the lexicographically ordered cross-product (see, e.g.,
[15]) of the following measures:

1. the number of variables in X N V(¢) that are not eliminated in ¢,
2. the number of equations = y such that « ¢ X,

3. the number of variables in LX N V(¢) that are not eliminated in ¢.
Application of the rule (Elim) with 2 € X decreases the first component in
this lexicographic ordering, while application of (Orient) does not increase
the first component but decreases the second. Application of (Elim) with

x ¢ X does not increase the first or second component and decreases the
third. O

Proposition 6.3 For every normalizer 8 of a basic constraint ¢:
¢ Herr 0 A 66

Proof. It is easy to show that two normalizers of a basic constraint, when
considered as formulas, are equivalent in every structure. By Proposition 6.2
and Proposition 6.1 there is a normalizer p of ¢ satisfying ¢ Ecpr p, hence

¢ Ecrr 9.

Let n be the equational part of ¢. Then

§ =crT 1

since the least congruence of ¢, that is (#), contains all equations of ¢. Hence

¢ Herr 6A¢ Herr 0A7AS Herr 8A ¢ Herr 0 A 60, 0

Proposition 6.4 If 6 is a normalizer of a congruence of a basic con-
straint ¢, then 8¢ either clashes or is a graph.

Proof. Obvious. a

We say that the feature f is realized for a variable 2 in a basic constraint
¢ if ¢ contains a feature constraint z fy for some variable y.

Proposition 6.5 Let ¢ be a graph and let C(¢) C X. Then CFT vaX ¢.

Proof. Since ¢ is a graph, the following implications hold:

21

1. Az, Bz € ¢ = A= B;
2. zF xfyec ¢ = ferF;
3. 2F,2G € o= F =Gy
4. zfy,afz € o= y=z.

Furthermore we may assume without loss of generality that ¢ does not
contain any multiple occurrence of an atomic constraint. We will construct

a determinant 6 2 ¢ with D(d) = X. Then
CFT = V3Xs

by axiom (D), which proves the claim since ¢ = ¢.

For each 2 € X, let F, denote the set of feature symbols that are realized
for z in ¢. We define the determinant § by adding to ¢ for each variable
x € X the following atomic constraints:

e Az, provided there is no sort constraint for z in ¢;
e ¢ F,, provided there is no arity constraint for x in ¢;

e 2 fz, provided there is an arity constraint zF € ¢ and f € F' is not
realized for z in ¢. a

Lemma 6.6 Let A be a model of CFT and 6 a normalizer of the basic con-
straint ¢. Then the following statements are equivalent:

1. 0¢ is clash-free;
2. ¢ is satisfiable in every model of CFT ;
3. ¢ is satisfiable in A.

Proof. By Proposition 6.3, ¢ Hcepr 6 A 6¢. Since 8 is an idempotent
substitution, 8 A 8¢ is satisfiable in a structure iff 8¢ is satisfiable in this
structure.

Hence for any model B of CFT, ¢ is satisfiable in B iff 8¢ is. By Propo-
sition 6.4, 8¢ is either a graph or clashes. Hence, if 8¢ is clash-free, then
(2) and (3) follow by Proposition 6.5. Otherwise (2) and (3) do not hold by
Proposition 5.1. a

Proof of Theorem 5.2. The first statement of Theorem 5.2 follows imme-
diately from Lemma 6.6. The second statement is a consequence of Propo-
sition 6.3. a

22

Proposition 6.7 Let ¢, ¢ be basic constraints, X a finite set of variables
not occurring in 1, and 8 a normalizer of Y A ¢. Then

¢ l=crr 3X ¢+ IX (0 A 65).

Proof. The claim follows from the following equivalence:

PYAIXP Herr Y AIX (YA Q) since X disjoint from V(1))
Hepr ®AIX (0 A0 A0OS) by Proposition 6.3
Horr ¢ A3X (0N 600) since 0 A v = 0. 0

Proposition 6.8 Let A be a model of CFT, 1, ¢ basic constraints, 6 a
normalizer of ¢ Ay and X a finite set of variables disjoint from V(10). Then
the following statements are equivalent:

1 ¢ Fa-3X6;

2. e —3X (01 60) ;
3. ¢ EA-IXOAG);
4. 0D A D) clashes;

5. 0(A J) clashes.

Proof. (1) and (2) are equivalent by Proposition 6.7, and the equivalence
of (2) and (3) is a basic property of substitutions. The equivalence of (1)
and (4) can be seen as follows:

YpEA-IXG & ARV — -3Xe)
& AEVY-3X()AP)

& AE-IWA9)
& (1 A @) clashes by Lemma 6.6.

Finally, (4) and (5) are equivalent, since by definition of normalizers (1) A @)
and 6(¢) A @) differ only by trivial equations z = z. a

6.2 Determined Equations

We use V() to denote the set of all variables occurring in the equational
representation of a substitution 6.

Lemma 6.9 Let v be a graph constraint and let 8 be a normalizer of some
congruence of v. If 0y is clash-free and if V(6) C D(v), then

v Ecrr 0.

23

Proof. Suppose 6v is clash-free and V() C D(y). Then v contains a
determinant ¢ such that D(8) = V(#). Hence it suffices to prove that

o):CFT 0. (6)

Since ¢ is clash-free, we know by Proposition 6.4 that 8§ is a graph. Since
C(#3) € D(8) U V() = D(5), we know by Proposition 6.5 that CFT =
VaD(5) 65. Hence, since 4 is idempotent

CFT =VY3D(8) (0 A6).

Thus we have (6) by Proposition 3.2. o

Lemma 6.10 Let n, 17 be sets of equations, and let v be a graph constraint
such that n An' A~ is equation-complete and satisfiable in CFT . If V(n') C
D(y), then

nAYy Ecrr 7.

Proof. Let # be a normalizer of . First note that, since 8 is an idempotent
substitution,

ONG Ay = 00400 (M)

for any structure A and basic constraints ¢,1. Since n H 6, we know by
our assumptions that 6 A5’ A~ is equation-complete and satisfiable in CFT .
We first show that

6n' A 6 is equation-complete. (8)

Assume that fx f82' 0y f0y’ € 6y and 6z (67) 8y. By (7) we have 0 A =
v = y. Since zfz',yfy’ € v and ' A @ A~ is equation complete, we have
&' (0 A7) y' and thus 8z’ (07) 6y’ by (7), which completes the proof of (8).

Now let 6" be a normalizer of 1. As a consequence of (8), ' is normalizer
of some congruence of #y. Since 8 A iy’ A v is satisfiable in CFT | 6’ A 0~
is satisfiable in CFT and we know by Lemma 6.6 that 6’8~ is clash-free.
Furthermore, V(8') = V(6n) C D(6v), since by assumption V(') C D(y).
Hence

v Fcrr 0
by Lemma 6.9. Since we have 5 6 and 6’ H 67/, we obtain

nAy Ecrr

using (7).]

Proof of Theorem 5.4. Follows immediately from Lemma 6.10. a

24

6.3 Entailment and Independence

The next lemma is the key to the proofs of the Entailment and the Inde-
pendence Theorems of Section 5.

Lemma 6.11 Let v be a saturated graph, and for every i, 1 <1 < n, ¢; a
basic constraint, X; a finite set of variables disjoint from V(v), and 0; an
X;-oriented normalizer of v A ¢;. If for each ¢

C(6:p; LO:y) € Xi or V(0i|_x,) € D(v),
then
CFT E3(yA-3X1(01 Ad) A ... A=3X, (0, A D).

Proof. We may assume without loss of generality that 6;(yA ;) is clash-free
for all 7, since otherwise by Proposition 6.8

v A=3X;(0; A ¢;) Herr 7

We will construct a graph ¢ O + such that ¢ disentails each 3X;(6; A ¢;)
in CFT. This proves the claim since ¢ is a graph and hence is satisfiable
in CFT (Proposition 6.5).

Let Z be the set of all variables z such that there exists an ¢ such that
x ¢ X; and

1. Az € 6;¢; L 8,y for some A or
2. oF € 0,0, L 0,y for some F or
3. xfy € 6;¢, L ;v for some f,y or

4.z € V(0)|-x,) L D(v).

By the assumptions, to each ¢ at least one of these cases applies. Now we
fix for every variable z € Z

e a sort A, not occurring in v or in any of the ¢;, and

e afeature f, not occurring in v or in any of the ¢; (neither as a feature
constraint nor as element of an arity constraint).

It is understood that A, # A, and f, # f, if # y. This is possible, since
we have assumed that the alphabets of sorts and features are infinite.

25

For every & € Z let F, be the set of features that are realized for z in 7.
Now we are ready to define the graph (:

¢

=
U {A,z |2 € Z, v contains no sort constraint for 2}
U {afsx |z € Z, v contains no arity constraint for z}

U {a(F,U{f.})]|z € Z, v contains no arity constraint for z}.

It remains to show that ¢ disentails 3X;(0; A &;) in CFT for every i. By
Proposition 6.8, it suffices to show that each 6;(¢ A ¢;) contains a clash. To
this end we take a closer look at the four cases in the definition of Z. Recall
that for every ¢ at least one case applies.

1.

Az € 0,0, 1 8;v and = € X;.

Since 6;(y A ¢;) is clash-free, ;7 does not contain a sort constraint
for z. Since z € V(0;¢;) and 6; is idempotent, @ = 6;z, thus v also
does not contain a sort constraint for . Hence by the definition of (,

Az € ¢ with A, # A, which causes a clash in 6;(C A &;).

. aF €0;6; L0;yand x ¢ X;.

Since 6;(y A ¢;) is clash-free, §;7 does not contain an arity constraint
for x. Since z € V(6;¢;) and 6; is idempotent, we have = ;2 and
thus v does not contain an arity constraint for . Hence z f.z € (and

fz € F, which causes a clash in 6;(C A ¢,).

.afy €00, L0y and v ¢ X,.

Since #; is a normalizer of yA¢;, there is no z such that z fz € 6,7, that
is, 0,7 does not realize f for z. Since x € V(6;¢;) and 6; is idempotent,
x = 6;z, thus v also does not realize f for z. By assumption v is
saturated, hence v does not contain an arity constraint for z, since
any arity constraint for would exclude f for x and therefore would

lead to a clash in 8;(yA ;). Hence 2(F,U{f,}) € Cand f & F,U{f.},
which implies that 6;(C A ¢,) contains a clash.

. x€V(il_x,) LD(y).

There must be an equation z = y or y = x in 6;. Since 6; is X;-
oriented, we know that y ¢ X;. Hence either y € D(v) or y € Z,
which means that both 2 and y are determined in (.

If either z or y has no sort constraint in 7, then #;(contains a sort
clash. Otherwise, either or y has no arity constraint in v since z
and y are not both determined in v and ~ is saturated by assumption.
Hence 0, contains an arity clash. a

26

Proposition 6.12 Let A be a model of CFT, v a saturated graph, ¢ a
basic constraint, X a finite set of variables disjoint from V(vy), and 6 an
X -oriented normalizer of ¥ N ¢. Then v =4 AX ¢ iff

1. 0(y A @) is clash-free and
2. C(0p L 6y) C X and
3. V(6l_x) € D).
Proof. Suppose that v E4 3X¢. Then (1) follows from Proposition 6.8

since the graph v is satisfiable in .4 (Proposition 6.5). The claims (2) and
(3) follow with Lemma 6.11.

For the other direction, first observe that

v Eafl-x
follows with Lemma 6.9 from the assumptions (1) and (3). Since V(y) is
disjoint from X, 6y = (6|_x)~, hence,
7 Ea (Ol-x Av) E 0l-x Aby.

Since 8(y A @) is clash-free, we know by Proposition 6.4 that 86 L 6y is a

graph. Thus .
VX (60 L 6v)

by Proposition 6.5 and assumption (2). Hence,
v Ea Ol_x A0y ATX (80 L Oy)
Ea 3X(0]-x A (86 L 6v) Aby) since X is disjoint from
V(Ol_x) and V(3)
Ea 3X(0]_x A600)
Ea 3X(0]_x A0lx A6d) since # is idempotent
and X-oriented
a4 3X(0N00). O

Proof of Theorem 5.6. The first part of Theorem 5.6 is Proposition 6.8,
the second part is Proposition 6.12. a

Proof of Theorem 5.7. The implication from right to left is trivial. It re-
mains to show that for every model A of CFT, basic constraints ¢, ¢q, ..., ¢,
and finite sets Xy,..., X, of variables,

plEA TN bV .. VIXnd, = Ti: ¢4 TN

27

Without loss of generality we can assume that ¢ is a saturated graph, and
that no X; has a variable in common with ¢. By Proposition 6.7, we may
decompose each ¢; into 6; A8;¢; for some X;-oriented normalizer 8; of ¢; A ¢.
We may assume without loss of generality that 6;(¢ A ;) is clash-free for
any ¢, since otherwise by Proposition 6.8

¢ A=3Xi(6; A @) Ha ¢

Moreover, it follows by Lemma 6.11 that C(6;¢, L ;¢) C X and V(6;| _x,) C
D(¢) for some i. Hence, the claim follows with Proposition 6.12. a

7 The Abstract Machine

The decision method developed in Section 5 is abstract and does not provide
directly for a discussion of important algorithmic aspects such as worst-case
complexity and incrementality. We will now present an algorithmic formula-
tion of the method showing how constraints can be processed incrementally,
an aspect that is of crucial importance for a constraint system to be used
in a “real” constraint programming system. The algorithmic formulation
will also provide for an upper bound on the computational complexity of
entailment checking.

To keep the presentation of the algorithm manageable, we will assume that
the features that can actually occur in constraints are restricted to some
a priori known finite set. Note that this assumption only restricts the set
of inputs formulae of the algorithm, it does not affect the theory under
consideration. This assumption can certainly not be made in practise, but
our idealized algorithm nevertheless illustrates important techniques that
do carry over to the general case. We will see that our algorithm decides
entailment and disentailment in at most quasi-linear time. The develop-
ment of truly efficient implementation techniques for the general case is not
straightforward and will require further research.

The algorithm is presented as an abstract machine consuming a conjunction
of possibly negated basic constraints

Y1 A -3AX 101 A Y2 A =3AXo¢9 A Y3 A ...

from left to right and detecting unsatisfiability as early as possible. The
abstract machine is incremental in the sense that it avoids redoing work when
further constraints arrive. This means that already processed information
must be stored in a simplified form allowing for maximal reuse of work
already done.

Let v = 41 A 2 A ... be the conjunction of the positive constraints seen
so far. By the Independence Theorem we know that the conjunction of the

28

positive and negated constraints seen so far is satisfiable if and only if (1) v
is satisfiable and (2) no negated constraint 3.X;¢; is entailed by . Moreover,
a negated constraint 3X;¢; can be discarded if it is disentailed by v. But
what do we do with negated constraints that are neither entailed nor dis-
entailed by 4?7 These undetermined negated constraints pose two questions
concerning incrementality: Given a further positive constraint -, which of
the undetermined negated constraints 3.X;¢; need to be reconsidered? And,
if a negated constraint must be reconsidered, how can previous work be
reused? Both questions will be answered in the following.

Our abstract machine for CFT has been inspired by Warren’s abstract ma-
chine for Prolog [3] and the actual implementations of SICStus Prolog [10]
and AKL [19].

7.1 The Heap

The algorithm employs a variable-centered representation of basic con-
straints. The represented constraint is kept in a form exhibiting a suitably
oriented normalizer. The representation is built stepwise by including one
atomic constraint at a time. Inclusion of an atomic constraint corresponds
to application of the simplification rules (Triv), (Cong), (Elim) and (Orient).
Whenever the represented constraint is extended, satisfiability is checked by
means of the clash rules.

The representation is variable-centered in that an atomic constraint is al-
ways stored with the variable it is constraining (see Subsection 4.3). We
assume that some finite enumeration type feature is given having as ele-
ments the features that can be used in constraints. The definition of the
type variable appears in Figure 2. An equation z = y is represented by
having the field ref of z point to y. The field isglobal is false if the variable
is existentially quantified in a negated constraint, and true otherwise. Sort
and arity constraints are represented as one would expect. A feature con-
straint « fy is represented by having the field subtree[f] of the variable z
point to the variable y. If no feature constraint is known for # and f, then
subtree[f] = nil. A new, completely unconstrained variable is created by
the function newvar, also shown in Figure 2.

The collection of all variable records in the store is called the heap. From
what we have said it is clear that the heap represents a basic constraint.
The heap always satisfies three invariants:

1. the graph defined by the ref-pointers is acyclic (which means that it
is a forest, where the ref-pointers are directed towards the roots)

2. the mapping obtained by dereferencing a variable to the root of the
ref-pointer tree it appears in is an X-oriented normalizer of the repre-

29

arity = set of feature
variable = record
isglobal : bool
ref : tvariable
sort : sort ¥ {none}
arity : arity & {none}
subtree : array [feature] of {variable
end

function newvar(is_global: bool): tvariable
var x: Tvariable
new(x)
with x1 do
isglobal < is_global
ref < nil sort ¢ none arity ¢ none
for every f € feature do subtree[f] + nil
return x
end newvar

procedure deref(var x: tvariable)
while xf.ref # nil do x + xt.ref
end deref

Figure 2: Representation, creation and dereferencing of variables.

sented constraint (where X is the set of all local variables)

3. the represented constraint is saturated.

The first invariant ensures that the procedure deref defined in Figure 2
always terminates.

7.2 Imposing Positive Constraints

For every atomic constraint there is a procedure imposing it on the heap:

Ax putsort(x, A)

zfy putfeature(x,f,y)
zF putarity (x, F)

T =y unify (x,y).

The procedures are given in Figure 3 and 4. They are justified by the simpli-
fication and clash rules of Section 5. If a clash is discovered, control jumps
to the label failure (see Figure 5). It is easy to verify that the constraint
imposition procedures preserve the heap invariants. If no clash is discovered,
the constraint represented by the heap is satisfiable.

30

procedure putsort(x: tvariable; A: sort)
deref(x)
if xt.sort = none
then setsort(x, A)
else if x1.sort # A then goto failure
end putsort

procedure setsort(x: tTvariable; A: sort)

xt.sort < A

if x1.isglobal then push (trail, “putsort(x,A)”)
end setsort

procedure putfeature(x:{variable; f:feature; y:tvariable)
deref(x) deref(y)
if xt.arity # none A f & xt.arity
then goto failure
else if xt.subtree[f] # nil
then unify (xt.subtree[f],y)
else setfeature(x,f,y)
end putfeature

procedure setfeature(x:{variable; f:feature; y:1variable)
xt.subtree[f] « y
if x1.isglobal then push (trail, “putfeature(x,f,y)”)
end setfeature

procedure putarity (x: tvariable; F: arity)
deref(x)
if xt.arity = none
then setarity(x, F)
for every f € feature do
if f¢& F A xt.subtree[f] # nil then goto failure
else if xt.arity # F then goto failure
end putarity

procedure setarity (x: {variable; F: arity)
xt.arity « F
for every f € F do % maintain saturation
if xt.subtree[f] = nil then setfeature(x,f,newvar(xt1.isglobal))
if x1.isglobal then push (trail, “putarity (x,F)”)
end setarity

Figure 3: Imposing sort, feature and arity constraints.

31

procedure unify(x,y: Tvariable)
deref(x) deref(y)
ifx#y
then if xt.isglobal
then bind(y,x)
else bind(x,y)
end unify

procedure bind(x,y: tvariable)
setref(x,y)
if xt.sort # none then putsort(y,xt.sort)
for every f € feature do

if xt.subtree[f] # nil then putfeature(y,f,xt.subtree[f])

if xt.arity # none then putarity (y,xt.arity)
end bind

procedure setref(x,y: tvariable)
xtref <y
if xt1.isglobal
then if xt.sort # none A xt.arity # none A
vt.sort # none A yt.arity # none
then push (trail, “setref(x,y)”)
else push (trail, “unify (x,y)”)
end setref

Figure 4: Imposing equality constraints.

failure: while = empty (trail) do undo(pop(trail))

procedure undo(e: stackentry)
case e of

“putsort (x,A)” : xt.sort < none
“putarity (x,F)” : xt.arity < none
“putfeature(x,fy)” : xt.subtree[f] + nil
“unify (x,y)” : xt.ref « nil
“setref(x,y)” : xt.ref < nil

end undo

Figure 5: Restoring the heap after failure.

32

procedure residuate(var script: stack)
var e: stackentry
clear(script)
while - empty (trail) do
e « pop(trail)
undo(e)
if e # “setref(...)” then push(script,e)
end residuate

procedure resume(script: stack)

clear(trail)

while = empty (script) do execute(pop(script))
end resume

Figure 6: Residuating and resuming negated constraints.

Every change to a global variable is recorded on a stack called trail. Note
that the procedure setref records new equations between global variables
differently depending on whether they are determined (ref(x,y)) or not (uni-
fy(x,y)). The reason for this distinction will be given later.

If control jumps to the label failure (see Figure 5), the trail is popped and
previous changes to global variables are undone. In case there are no local
variables, untrailing upon failure will in fact delete all constraints from the
heap.

So far we have a machinery that can be fed piece by piece with atomic
constraints. A new constraint is imposed by applying the appropriate pro-
cedure. Control jumps to the label failure if and only if the resulting heap
is unsatisfiable. After a constraint is imposed without failure, the result-
ing heap is equivalent to the conjunction of the imposed constraint and
the previous heap (provided auxiliary variables introduced by the procedure
setarity to maintain saturation are quantified existentially). Clearly, the ab-
stract machine presented so far is sound, incremental, and discovers failure
as early as possible.

7.3 Imposing Negated Constraints

We will now see how a negated constraint =3X ¢ is processed. First, the
trail is cleared (i.e., set to the empty stack). Then ¢ is fed like a positive
constraint, where the existentially quantified variables X are created as local
variables. If failure occurs, the resulting untrailing undoes all changes to
global variables and the negated constraint is discarded (which is sound
since in this case —3X ¢ is entailed by the positive constraints 7; seen so
far). If ¢ has been fed completely without causing a failure, the negated
constraint is “residuated” by calling the procedure residuate of Figure 6,

33

which returns a stack of constraints called a script. Residuation untrails
and moves constraints from the heap to the script, such that the global part
of the heap is restored to what it had been before processing the negated
constraint, and such that the equivalence

restored heap A script Hcpr heap before residuation (9)

holds. This equivalence would be obvious if the setref-entries in the trail
(recording determined equations between global variables) were pushed as
unif-entries on the script. Discarding them is however justified by Theo-
rem 5.4 since the heap is equation-complete before residuation.

Next we will see that 3X ¢ is entailed by the positive constraints if and only
if the script obtained by residuation is empty. This means that a negative
constraint —=3.X;¢; causes unsatisfiability of the conjunction

Y1 A -3AX 101 A Y2 A =3AXo¢9 A Y3 A ...

if and only if 9X;¢; is processed without failure and residuates with an
empty script.

To see the claim about residuation, suppose X ¢ is imposed without failure
on a heap whose global variables represent a constraint v and residuates
with a script representing the constraint ¢. Moreover, suppose that i is
the constraint represented by the local variables X in the heap just after
residuation. By Equivalence (9) we have v A ¢ Herr v A ¥ A o. (This
equivalence is slightly simplified since it ignores existentially quantified aux-
iliary variables introduced to maintain saturation of the heap.) Moreover,
C(v) € X, and 7 is satisfiable and equation-complete. Hence we know
CFT | 3X1% by the Entailment Theorem.

1. Suppose the script is empty. Then v A ¢ Herr v A % and hence
Y AIXé Herr ¥ A IX. Since CEFT = IX o, we have v Ecpr 3X 0.

2. Suppose the script is nonempty. Then we know by the Entailment
Theorem that v does not entail 3X ¢ since the heap before residuation
violates either condition (2.c) (i.e., there is a unify-entry on the trail)
or condition (2.b) (i.e., there is a put-entry on the trail)).

We now know that a negative constraint residuating with a nonempty script
is neither entailed nor disentailed by the positive constraints seen so far.
Moreover, the script together with the records of the local variables X in the
heap represent a simplified form of the negated constraint. This simplified
form depends both on the negated constraint and the already seen positive
constraints. If more positive information becomes available, the negated
constraint must possibly be reconsidered. Rather than imposing the original
negated constraint anew, its residuated script is resumed with the procedure

34

resume in Figure 6. It suffices to resume a residuated script if one of the
following events occurs:

e the script contains an entry putsort(x,.) and variable x is made a
reference or acquires a sort;

e the script contains an entry putfeature(x,f,_) and variable x is made a
reference or acquires feature f or an arity;

e the script contains an entry putarity(x,-) and variable x is made a
reference or acquires an arity or a feature;

e the script contains an entry unify(x,y) and variable x or y is made a
reference or acquires a sort, an arity, or a feature.

Resumption of a script is handled in the same way a negated constraint is
imposed initially. In particular, a resumed script may residuate again with
a new script.

7.4 Worst-Case Complexity

We will now see that an optimized version of our abstract machine can
decide v E=cpr 3X ¢ in time at most quasi-linear in the size of v and ¢. The
necessary optimization concerns the implementation of the forest consisting
of the ref-pointers by means of an efficient union-find method [22].

For our worst-case analysis we assume that v and ¢ are fed to the empty
machine as a sequence of newvar, put and unify procedure calls. The con-
straint v is fed first, then the trail is cleared, then ¢ is fed, and finally the
procedure residuate is called. If failure occurs while + is being processed,
then v is unsatisfiable and trivially entails 3X ¢. If failure occurs while ¢ is
being processed, then (and only then) v disentails 3X ¢. If no failure occurs,
~ entails X ¢ if and only if the script obtained by residuation is empty.

It suffices to show that the machine does not require more than quasi-linear
time in the case where failure does not occur. Clearly, the size of the heap
built after processing v and ¢ is linear in the size of v and ¢. Since the
procedure bind, through which all recursion is channelled, always sets a ref-
pointer whose value was nil before, the total number of calls to putsort,
putarity, putfeature and unify is linear. If we do not count recursive calls,
these procedures require constant time plus the time for one or two calls
of deref. Thus, the entire time needed is linear plus the time for a linear
number of calls of deref. Hence, if we implement the congruence represent-
ed by the refpointers with an efficient union-find method employing path
compression, the abstract machine will run in at most quasi-linear time [22].

35

Our abstract machine and hence our worst-case analysis assume that the
features that can occur in v and ¢ are restricted to some a priori known
finite set. Without this assumption, the time for obtaining y given z and f
such that x fy is in the heap is no longer constant. In this case entailment
checking can certainly be implemented with a complexity not worse than
quadratic in the size of v and ¢.

8 Summary and Conclusion

We have shown that records can be incorporated into constraint (logic) pro-
gramming in a straightforward and natural manner. Semantically, records
are modeled as feature trees generalizing the trees corresponding to first-
order terms. The first-order language we have set up for describing feature
trees is richer than the equational language employed with classical trees in
that it allows for finer-grained descriptions. The resulting constraint system
CFT is a conservative extension of both Prolog II’s rational tree system
[12, 13] and the feature tree system FT [9, 7]. Thus CFT brings together
the work on classical tree constraints (e.g., [17, 12, 13, 23, 26]) and the work
on feature descriptions (e.g., [21, 20, 1, 2, 4, 5, 6,29, 9, 7, 11])—two lines of
research that seemed to be rather far apart in the past.

The declarative semantics of CF'T was specified both algebraicly (the feature
tree structure 7) and logically (the first-order theory CFT given by five
axiom schemes). For the constraint problems considered in the paper the
coincidence of the algebraic and logical semantics was shown. We conjecture
that CFT is in fact a complete recursive axiomatization of the feature tree
structure.

We have established abstract decision methods for satisfiability and entail-
ment of constraints. Moreover, we have shown that CFT satisfies the Inde-
pendence Property, which means that our methods can decide the satisfia-
bility of conjunctions of positive and negative constraints.

We have presented an idealized abstract machine processing positive and
negative constraints incrementally. The correctness of the machine was ver-
ified using the abstract decision method established before. Under the as-
sumption that the features that can appear in constraints are restricted to
some a priori known finite set, an optimized version of the machine can
decide satisfiability and entailment in quasi-linear time.

Our abstract machine shows that an implementation of CFT will be more
complex than an implementation of the classical rational tree system us-
ing established Prolog technology [3]. Really efficient implementations of
CFT will require further research. However, since the classical rational
tree system is a subsystem of CFT, a gracefully degrading implementation

36

of CFT seems feasible, which pays for CFT’s extra-expressivity only when
non-classical constraints are used.

Acknowledgements

We are grateful to Michael Mehl and Ralf Scheidhauer for having pointed
out to the first author how unification and residuation are implemented in
SICStus Prolog and AKL. Discussions with Andreas Podelski and Peter van
Roy also helped with the design of the abstract machine. Hubert Comon
suggested Proposition 3.2. One of the anonymous referees provided helpful
comments. Last not least the paper profited from discussions with Joachim
Niehren and Jorg Wiirtz.

The research reported in this paper has been supported by the Bundesmi-
nister fiir Forschung und Technologie under contract I'TW 9105, the Es-
prit Project ACCLAIM (PE 7195) and the Esprit Working Group CCL
(EP 6028).

References

[1] H. Ait-Kaci. A Lattice-Theoretic Approach to Computation Based on a
Calculus of Partially Ordered Type Structures. PhD thesis, University
of Pennsylvenia, Philadelphia, PA, 1984.

[2] H. Ait-Kaci. An algebraic semantics approach to the effective resolution
of type equations. Theoretical Comput. Sci., 45:293-351, 1986.

[3] H. Ait-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction.
Logic Programming. MIT Press, Cambridge, MA, 1991.

[4] H. ATt-Kaci and R. Nasr. LOGIN: A logic programming language with
built-in inheritance. Journal of Logic Programming, 3:185-215, 1986.

[6] H. Ait-Kaci and R. Nasr. Integrating logic and functional programming.
Lisp and Symbolic Computation, 2:51-89, 1989.

[6] H. Ait-Kaci and A. Podelski. Towards a meaning of LIFE. In
J. Maluszynski and M. Wirsing, editors, Proceedings of the 3rd Inter-
national Symposium on Programming Language Implementation and
Logic Programming, Springer LNCS vol. 528, pages 255-274. Springer-
Verlag, 1991.

[7] H. Ait-Kaci, A. Podelski, and G. Smolka. A feature-based constraint
system for logic programming with entailment. In Proceedings of the
International Conference on Fifth Generation Computer Systems, pages

37

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

1012-1021, ICOT, Japan, 1992. Association for Computing Machinery.
Full version will appear in Theoretical Computer Science.

R. Backofen and G. Smolka. A complete and recursive feature the-
ory. Research Report RR-92-30, Deutsches Forschungszentrum fiir
Kiinstliche Intelligenz, Stuhlsatzenhausweg 3, D 66123 Saarbriicken,
Germany, Sept. 1992.

R. Backofen and G. Smolka. A complete and recursive feature theory.
In Proc. of the 31 ** ACL, Columbus, Ohio, 1993. Complete version
as [8].

M. Carlsson, J. Widén, J. Andersson, S. Andersson, K. Boortz, H. Nils-
son, and T. Sjdland. SICStus Prolog Users’s manual. SICS, Box 1263,
164 28 Kista, Sweden, 1991.

B. Carpenter. Typed feature structures: A generalization of first-order
terms. In Saraswat and Ueda [28], pages 187-201.

A. Colmerauer. Prolog and infinite trees. In K. Clark and S.-
A. Térnlund, editors, Logic Programming, pages 153-172. Academic
Press, 1982.

A. Colmerauer. Equations and inequations on finite and infinite trees.
In Proceedings of the 2nd International Conference on Fifth Generation
Computer Systems, pages 8599, 1984.

B. Courcelle. Fundamental properties of infinite trees. Theoretical
Comput. Sci., 25(2):95-169, 1983.

N. Dershowitz. Termination of rewriting. Journal of Symbolic Compu-
tation, 3:69-116, 1987.

R. Helm, K. Marriott, and M. Odersky. Constraint-based query op-
timization for spatial databases. In Tenth ACM Symposium on the
Principles of Database Systems, pages 181-191, Denver, CO, May 1991.

G. Huet. Résolution d’equations dans des langages d’ordre 1,2, .-+, w.
These de Doctorat d’Etat, I’Université Paris VII, Sept. 1976.

J. Jaffar and J.-L. Lassez. Constraint logic programming. In Pro-
ceedings of the 14th ACM Conference on Principles of Programming
Languages, pages 111-119, Munich, Germany, Jan. 1987. ACM.

S. Janson and S. Haridi. Programming paradigms of the Andorra kernel
language. In Saraswat and Ueda [28], pages 167—186.

38

[20]

[24]

[25]

[26]

[31]

R. M. Kaplan and J. Bresnan. Lexical-Functional Grammar: A for-
mal system for grammatical representation. In J. Bresnan, editor, The
Mental Representation of Grammatical Relations, pages 173-381. MIT
Press, Cambridge, MA, 1982.

M. Kay. Functional grammar. In Proceedings of the Fifth Annual Meet-
ing of the Berkeley Linguistics Society, Berkeley, CA, 1979. Berkeley
Linguistics Society.

D. C. Kozen. The Design and Analysis of Algorithms. Springer-Verlag,
1992.

J.-L. Lassez, M. J. Maher, and K. G. Marriott. Unification revisited.
In J. Minker, editor, Foundations of Deductive Databases and Logic
Programming, chapter 15, pages 587-625. Morgan-Kauffman, 1988.

J. L. Lassez and K. McAloon. A constraint sequent calculus. In Fifth
Annual IEEE Symposium on Logic in Computer Science, pages 52-61,
June 1990.

M. J. Maher. Logic semantics for a class of committed-choice programs.
In J.-L. Lassez, editor, Proceedings of the Fourth International Confer-
ence on Logic Programming, pages 858-876. MIT Press, 1987.

M. J. Maher. Complete axiomatizations of the algebras of finite, ratio-
nal and infinite trees. In Proceedings of the Third Annual Symposium
on Logic in Computer Science, pages 348-357. IEEE Computer Society,
1988.

V. Saraswat and M. Rinard. Concurrent constraint programming. In
Proceedings of the 7th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 232-245, San Francisco, CA, January 1990.

V. Saraswat and K. Ueda, editors. Logic Programming, Proceedings of
the 1991 International Symposium, San Diego, USA, 1991. The MIT
Press.

G. Smolka. Feature constraint logics for unification grammars. Journal
of Logic Programming, 12:51-87, 1992.

G. Smolka and R. Treinen. Records for logic programming. In K. Apt,
editor, Proceedings of the Joint International Conference and Sympo-
sium on Logic Programming, pages 240-254, Washington, USA, Nov.
1992. The MIT Press.

R. Treinen. Feature constraints with first-class features. In
A. Borzyszkowski and S. Sokolowski, editors, Mathematical Founda-
tions of Computer Science, Lecture Notes in Artificial Intelligence
vol. 711, pages 734-743. Springer-Verlag, Sept. 1993.

39

