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Abstract

Type and sort conflicts in semantics are usu-
ally resolved by a process of reinterpretation.
Recently, Egg (1999) has proposed an alterna-
tive account in which conflicts are avoided by
underspecification. The main idea is to derive
sufficiently relaxed underspecified semantic rep-
resentations; addition of reinterpretation oper-
ators then simply is further specialization. But
in principle, relaxing underspecified representa-
tions bears the danger of overgeneration. In this
paper, we investigate this problem in the frame-
work of CLLS, where underspecified representa-
tions are expressed by tree descriptions subsum-
ing dominance constraints. We introduce some
novel properties of dominance constraints and
present a safety criterion that ensures that an
underspecified description can be relaxed with-
out adding unwanted readings. We then ap-
ply this criterion systematically to Egg’s analy-
sis and show why its relaxation operation does
not lead to overgeneration.

Keywords: natural language seman-
tics, underspecification, reinterpreta-
tion, tree descriptions, constraints.

1 Introduction

Type and sort conflicts between functors and
arguments in semantics are usually resolved by
a process of reinterpretation (Bierwisch, 1983;
Hobbs et al., 1993; Dolling, 1994; Copestake
and Briscoe, 1995; Pustejovsky, 1995; Nunberg,
1995). Two classical examples are:

(1) Peter began a book.
(2) Tam parked out back.

In sentence (2), it can be argued that persons
can’t be parked; it is really the speaker’s car
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which is said to be parked out back. In sen-
tence (1), the problem is that Peter can only
begin an activity; in understanding it, we must
fill in what, exactly, Peter begins to do with
the book — for example, reading it, writing it,
etc. However, traditional semantic construction
would derive something like (3) as the semantics
of (1):

(3) Fx.book(x) A begin(peter, ),

Formula (3) is not well-typed because begin
expects a proposition as its second argument,
but z denotes an individual. The reinterpreted
reading, which is what a human understands, is
something like (4).

(4) 3Fx.book(x) Abegin(peter, read(peter, z) ).

What reinterpretion does here, intuitively, is to
fill in semantic material that wasn’t present on
the surface, namely read(peter, o), at the loca-
tion of the type conflict. We call this location
the reinterpretation site, and the additional se-
mantic material, the reinterpretation operator.

Recently, Egg (1999) has proposed to describe
sentences requiring reinterpretation in an un-
derspecified way, thereby avoiding conflicts. His
main idea is to derive sufficiently relazed seman-
tic representations in which gaps are left open
at all possible reinterpretation sites. The actual
reinterpretation step simply is further special-
ization, i.e instantiation of gaps; the approach
assumes that suitable reinterpretation operators
can be determined by some independent pro-
cess. For illustration, Egg’s semantic construc-
tion applied to (1) derives a relaxed semantic
representation that looks, oversimplifying a bit,
as in (5).

(5) Jx.book(x) A begin(peter, ... x ...)



The expression (5) can be seen as a description
of both formulas (3) and (4), since the gap in
(5) can be filled with the identity or the reinter-
pretation operator read(peter,e).

A key advantage of Egg’s approach to reinter-
pretation is that it is compatible with an under-
specified treatment of semantics.! Underspecifi-
cation is a general approach to coping with am-
biguity that has recently found wide attention
in formal semantics (van Deemter and Peters,
1996). Its main idea is to represent all readings
of an ambiguous sentence by one compact de-
scription. The readings can be extracted from
the description, but this step is delayed as long
as possible.

dx

book begin

peter

Figure 1: A tree description for (5).

Tree descriptions based on dominance con-
straints are powerful underspecified representa-
tions (Egg et al., 1998; Muskens, 1995). The
idea is to consider a formula of some object lan-
guage — e.g. predicate logic — as a tree which
in turn can be described in some metalanguage.
For example, the relaxed semantic representa-
tion (5) corresponds to the tree description in
Figure 1. This graph describes all trees that can
be formed from it by inserting arbitrary sub-
trees (of solid edges) into the gap left open by
the dotted edge. This dotted edge is a dom-
inance constraint; it expresses that the lower
node must be somewhere below the upper one
in the tree.

Scope underspecification and sort conflicts
can be present in the same sentence, as shown
by Example (6).

(6) Every student began a book.

According to Egg’s analysis, an underspeci-
fied representation of the semantics of (6) would

! Another advantage of Egg’s analysis is that it can
account for so-called landing site coercions in a straight-
forward way.
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Figure 3: An unsafe constraint and its relax-
ation.

be as in Figure 2. The graph accounts for the
scope ambiguity by leaving the relative position
of the two quantifiers open, in this way describ-
ing a set of trees in each of which the scoping is
fixed in one way or the other. The representa-
tion in Figure 2 is relazed at the reinterpretation
site (at the verb) such that the reinterpretation
operator can be added even before resolving the
scope relation.

There is, however, a potential problem with
relaxing underspecified representations. Relax-
ation may lead to overgeneration, as illustrated
in the abstract example in Figure 3. The graph
on the left-hand side describes those trees that
contain some node labeled with f and a subtree
of the form g(a). There is a unique minimal tree
satisfying this description, which can be written
as f(g(a)). The graph on the right-hand side of
Figure 3 is a relaxation which is obtained by
opening a dominance gap between X and Y.
The relaxed graph describes more trees than the
original graph, as is the purpose of relaxation.
However, some of the trees described are not
intended, e.g. ¢g(f(a)). Here, the newly opened
gap is filled by material already present in the
original graph, but opening the gap was meant
to open space just for the reinterpretation op-



erator.

In this paper, we investigate the overgener-
ation problem within the framework of CLLS
(Egg et al., 1998; Niehren and Koller, 1998),
which provides tree descriptions subsuming
dominance constraints (Marcus et al., 1983;
Vijay-Shanker, 1992). We present a safety cri-
terion which, if satisfied, ensures that an un-
derspecified description can be relaxed without
adding unwanted readings. We then apply this
criterion systematically to Egg’s analysis and
show that his approach avoids overgeneration.
To this end, we present a toy grammar and a
syntax/semantics interface which computes re-
laxed underspecified representations, and prove
that all relaxations are safe by applying our
safety criterion.

As a convenient tool for verifying that the
Safety Criterion applies, we will introduce the
notions of fragments and chains of fragments
in a dominance constraint. Chains are subcon-
straints with very pleasant structural proper-
ties. As an additional example of their expres-
sive power, we also use them to show that every
constraint produced by the grammar is satisfi-
able.

Plan of the paper. Section 2 introduces tree
descriptions in CLLS; we apply the formalism
to some examples in Section 3. In Section 4, we
formalize the notions of relaxation and safety,
and state the Safety Criterion. In Section 5, we
define chains and fragments and use them to de-
rive some techniques for proving the Safety Cri-
terion, which we will illustrate by means of an
example in Section 6. Section 7 presents a gram-
mar fragment with a syntax-semantics interface
for deriving relaxed underspecified representa-
tions, and an outline of the proof of their safety.
For omitted proofs, we globally refer to the long
version of this paper (Koller et al., 1999).

2 Tree descriptions in CLLS

We now give a formal introduction to CLLS, the
underspecification formalism we employ in this
paper. As object language, we now use higher-
order rather than first-order predicate logic.
CLLS, the Constraint Language over Lambda
Structures (Egg et al., 1998; Niehren and Koller,
1998; Koller et al., 1998; Koller, 1999), is a lan-
guage of tree descriptions. The trees described
encode A-terms of higher-order logic. We call

these trees A-structures and consider them to
be standard first-order model structures. At
the heart of CLLS is the language of dominance
constraints, which has been used for various
purposes throughout linguistics (Marcus et al.,
1983; Vijay-Shanker, 1992; Gardent and Web-
ber, 1998). With a varying degree of explicity, it
has been used especially for representing scope
ambiguities (Reyle, 1993; Bos, 1996; Muskens,
1995). For the purposes of this paper, we con-
fine ourselves to the sublanguage of CLLS con-
sisting only of dominance and A-binding con-
straints, but note in passing that the full lan-
guage also provides parallelism and anaphora
constraints; for details, see (Egg et al., 1998).

Figure 4 illustrates the levels of abstraction
that CLLS distinguishes by means of an exam-
ple: On its semantical side, the basic object is
the A-structure, which uniquely represents a A-
term modulo renaming of variables. On the syn-
tactic side, there are constraints — the formulae
of CLLS — which can be written in a more per-
spicuous way as constraint graphs.

2.1 Lambda Structures

A A-structure is a tree structure extended with a
partial A-binding function. It can be drawn as a
tree-like graph with dashed arrows representing
A-binding (see e.g. Figure 4c).

For the definition of A-structures, we assume
a signature 3 = {@,lamyq, var|g, carg,... } of
node labels, each of which is equipped with a
fixed arity n > 0. The labels lam, var, and @
(application) are used to model A-terms. Node
labels are ranged over by f, g, a, b, and the arity
of a label f is denoted by ar(f); i.e. if fj,, € ¥
then ar(f) = n.

Let N be the set of natural numbers n > 1.
As usual, we write N* for the set of words over
N, € for the empty word, and 77’ for the con-
catenation of two words m, 7' € N*. A word 7
is a prefiz of ©’ if there is a word 7" such that
'’ =7,

A node of a tree is the word 7 € N* which
addresses the node. The empty word ¢ € N*
is called the root node. A tree domain A is a
nonempty, prefixed-closed subset of N*, which
is closed under the left-sibling relation. We say
that a node © dominates a node 7' and write
m<*n’" iff 7 is a prefix of 7.

Definition 1. A tree structure is a tuple (A, o)
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Figure 4: Levels of representation in CLLS.

consisting of a finite tree domain A and a total
labeling function o : A — ¥ such that for all
me€AandieN:

mieA & 1<i<ar(o(n)).

Definition 2. A A-structure is a triple
(A,0,)\) consisting of a tree structure (A, o)
and a partial A-binding function A : A ~ A
which satisfies for all 7,7’ € A:

/

A7) = 7’ then { Zr(lg)w’qv*a; o(r) = lam,

As an example, consider the A-structure de-
picted in Figure 4c which modulo renaming of
bound variables corresponds uniquely to the -
term in Figure 4d. The tree domain of this A-
structure is {e, 1,11, 12}, its A-binding function
is given by A(12) = ¢, and its labeling function
is defined by o(€) = lam, o(1) = @, o(11) = car,
and o(12) = var.

2.2 A Fragment of CLLS

Now we define the syntax and semantics of that
fragment of CLLS which contains labeling, dom-
inance, and A-binding constraints.

CLLS is a language which talks about rela-
tions between nodes of a A-structure. Here we
consider dominance w<t*z’, A-binding A(7) =
7', and inequality m#7’. Finally, for every label
f in the signature 3 with ar(f) = n, there is a
labeling relation 7:f(my,... ,m,) which means
that 7 is labeled with f and has the imme-
diate successors my,....m,. More formally,
m:f(m1,... ,m,) holds in a tree structure (A, o)
iff o(r) = f and m; = i for all 1 <i < n.

We assume an infinite set of (node) variables
ranged over by X,Y, Z, U, V,W. Node variables
should not be confused with variables x, y, z of
A-terms or predicate logic formulas. The syntax
of the fragment of CLLS we consider is defined

in Figure 5. It provides conjunctions of atomic
constraints for labeling X: f(Xy,..., X)), dom-
inance X <*Y, lambda binding A\(X)=Y, and
inequality X#Y. We say that ¢ in ¢ if all
atomic constraints of ¢’ are also contained in
. The set of (free) node variables of a con-
straint ¢ is denoted by V(¢). The semantics
of a constraint in CLLS is fixed by interpreta-
tion over the class of A\-structures; these provide
relations for the interpretation of all relation
symbols in constraints. Note that we use the
same symbol for a relation and the correspond-
ing relation symbol; they can be distinguished
by context (being applied to either paths 7 or
variables X).

X:f(Xl, e
XY
ANX)=Y
X£Y
Ay

Figure 5: Syntax of a fragment of CLLS.

A variable assignment into a A-structure M is
a total function from the set of variables to the
domain of M. A pair (M, a) of a A-structure
M and a variable assignment a into M satisfies
a constraint ¢ iff it satisfies all of its atomic
constraints (in the obvious way). We also call
the pair (M, «) a solution and M a model of .
In Figure 4, the A-structure (c) together with a
variable assignment « that maps X to e, Y to
1, and Z to 12 satisfies the constraint (b).

We write ¢ | ¢’ and say that ¢ entails ¢
if every solution of ¢ is a solution of ¢’. The
notions of solutions and entailment can be lifted
to first-order formulae built from constraints as
usual.
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Figure 6: Schematic representation of a scope
ambiguity.

2.3 Constraint Graphs

For underspecified descriptions, we will only use
normal constraints ¢, which are distinguished
by requiring that any two labeled variables must
denote distinct nodes.

Definition 3. A constraint ¢ is normal if for
each two distinct occurrences of labeling con-
straints X:f(Xy,...,X,) and Y:g(Yq,...,Y),)
in ¢ it holds that X#Y in ¢ (even if the same
labeling constraint occurs twice in ).

We will usually draw normal constraints as
constraint graphs. The nodes of such a graph
stand for variables in a normal constraint and,
despite the similarity, should not be confused
with the nodes in a A-structure. An example
for a normal constraint and its graph is given in
Figure 4 (a) and (b). In the graph metaphor,
normality means that any two labeled nodes in a
graph must denote different nodes; “rigid frag-
ments” of constraint graphs, i.e. parts which
are connected by solid edges, must not overlap.

3 Underspecified Semantic
Description in CLLS

We now discuss examples which illustrate the
usage of CLLS in semantic underspecification.

3.1 Scope Underspecification

First, we consider the analysis of scope ambi-
guities, introducing some terminology along the
way.

As in the introduction, a scope ambiguity is
characterized by containing two or more quan-
tifiers whose relative scope is not fixed. A con-
straint graph accounting for this fact typically
has a structure as shown in the schematic rep-
resentation in Figure 6. The triangles in this
picture denote tree fragments, a fragment be-
ing a set of nodes which are connected by solid
edges. Each fragment has a unique root which
must dominate all other nodes in the fragment.
Leaves, which are not labeled, are called holes.

Since graphs represent normal constraints, two
fragments in a graph can only overlap by iden-
tifying a root with a hole. A formal definition
of fragments is crucial to this paper and it will
be given in Section 5 for now the intuitive idea
is sufficient.

In Figure 6 the two triangles annotated by A
and E denote the fragments for the two quanti-
fiers. The scope ambiguitiy is accounted for by
imposing the constraint that they must domi-
nate a common node. As there can be no up-
ward branching in trees, this enforces that one
of the quantifier fragments has to be above the
other in each tree described by the graph, but
the exact ordering is left open.

For the linguistic application, the reading of
a sentence is usually represented by a solution
which is constructed from the “material” men-
tioned in the underspecified semantic represen-
tation. As a matter of fact, most underspecifi-
cation formalisms except CLLS assume this in
general (Reyle, 1993; Muskens, 1995; Bos, 1996;
Dalrymple et al., 1997). CLLS does not make
this assumption because it is not strictly correct
for ellipses and reinterpretation, but we can in-
corporate the concept by restricting ourselves
to so-called constructive solutions: A solution
(M, ) of a constraint ¢ is constructive if for
every node 7 in the domain of M there exists
a variable X € V(p) such that a(X) = 7 and
X:f(...) in ¢ for some label f in .

3.2 Scope and Reinterpretation

We next investigate a more complex example,
which contains both a scope ambiguity and a
type conflict, as in (6) in the introduction. Con-
sider sentence (7), whose semantics is described
by the constraint graph in Figure 7.

(7) Every driver of a mafia boss is parked out
back.

In reading the constraint graph in Figure 7,
it is first of all helpful to identify its various
fragments, most notably the contributions of
“a mafia boss”, “every driver”, “of”, and “be
parked out back”. Next, note that the graph ex-
hibits the same schematic structure as in Figure
6. So as above, the scope ambiguity is correctly
modeled: We have expressed that one quantifier
has to go on top, but we haven’t said which one.
Finally, note that there is no unintended inter-
action between scope ambiguity and reinterpre-
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Figure 7: Relaxed underspecified representation of Example (7).

own

Figure 8: The reinterpretation operator for Figure 7.

tation: none of the fragments for the quantifiers
may be moved into the gap X¥*<* X,

Reinterpretation has to coerce “every driver
of a mafia boss” into their vehicles. We can do
this by filling the appropriate reinterpretation
operator (given in Figure 8) into the gap left
open by the dominance edge X*<1*X! in the
description of the verb semantics.

4 The Safety Criterion

Now that we have a definition of our under-
specification formalism, we can turn to mak-
ing the notions of “relaxation”, “intended so-
lution”, and “safety” precise. After introducing
some more terminology (disjointness), we then
formulate the Safety Criterion in the last part
of the section, which can be used to verify safety
and is stated in purely logical terms.

4.1 Constraint Relaxation

First of all, the operation of constraint relax-
ation is based on the idea of splitting a node
in the graph in two and adding a dominance
edge between the two new nodes. An example
is drawn in Figure 9, where we split the node

corresponding to the variable X into two new
nodes for the variables X* and X'.

Q
Q fo/\X“

212N
X N\ relax at X E/\i\
| = lam ¢ X*.
\
/@K\
g var’

Figure 9: An example of relaxation.

N

g var

We now define relaxation formally. Let ¢ be
a normal constraint, X € V(¢) a variable, and
eq, (X) ={Y € V(p) | p F XY ANY "X}
the set of variables which must be equal to
X. In a satisfiable normal constraint, we can
compute eq,,(X) syntactically by reflexivity and
transitivity inferences about dominance con-
straints.

We partition the set of atomic constraints in
@ into three parts, corresponding to edges in the
graph of ¢ involving a variable in eq,,(X) as the
upper node, the lower node, or not at all. The
set Ux(y) contains all atomic constraints in ¢
that relate a Z € eq,(X) to a variable above,



i.e. that are of one of the following forms (for
some f,Y):

Yif(...,Z,...), Y<*2Z,
NZ)=Y, Z#Y, or Y4Z

The set Lx(p) contains all atomic constraints
in o that relate a Z € eq,(X) to some variable
below, which are of the forms:

Z:f(... . Y,...), Z4*Y,
NY)=Z.Z#Y, or Y42

The set Ox(yp) contains those atomic con-
straints of ¢ in which no variable of eq,(X)
occurs.

In the following definition, we write [Y/V] for
the substitution that maps all variables in the
variable set V to the variable Y.

Definition 4. Let ¢ be a normal constraint,
X a variable in V(p) such that a labeling
constraint X:f(...) in ¢, and X", X! variables
fresh for ¢. Then the relazation Rx(p) of a
constraint ¢ at the variable X is defined as the
conjunction

Xv<ar X A N{pXY/eq, (X)] | € Ux(p)}
A Np[X!/ea, (X)] | € Lx (o)}
AN | e Ox(p)}

Lemma 5. The relazation Rx () of a normal
constraint @ at X is normal.

4.2 Intended Solutions and Safety

The point we made in the introduction (Figure
3) was that sometimes, relaxation can produce
unintended solutions, and that the overgenera-
tion thus caused is undesirable. What we mean
by an intended solution is a solution of a re-
laxed graph whose overall structure is the same
as a solution for the original graph. New so-
lutions of the relaxed graphs should only arise
from introducing new material, i.e. labeling
constraints not present in the original graph,
into the gap opened by relaxation. So the only
place where an intended solution of a relaxed
constraint should differ from a solution of the
original constraint is at the relaxation site. By
cutting away the part of a solution that is lo-
cated between the upper and lower end of the
gap, we should thus come back to a solution

Figure 10: A solution of the relaxed constraint
in Figure 3 and its projection

of the original constraint. We call this cutting-
away operation projection and will define it be-
low. It will be the foundation of our formal def-
inition of intended solutions. Safety will then
mean that all new solutions are intended.

For illustration, let’s apply the new terminol-
ogy to the constraint of Figure 3. As argued
above, the tree ¢g(f(a)) is a solution of the re-
laxed constraint (see Figure 10). This tree is
an unintended solution because its projection
at the relaxation site is g(a), which is not a
solution of the original constraint. Intuitively,
the f-labeled node required by the original con-
straint has slipped into the new gap and disap-
peared in the projection. So the original con-
straint is not safe for relaxation at X.

Definition 6 (Projection). Let M be a \-
structure (A, o, \), and let m,<*m; be nodes in
A. Let ATr C N* be the subset of A without
the tree fragment between m, and m;:

ATv ={m € A| if m,<"m then m<*m}

The projection p : AT+ — N* is the function
which satisfies for all paths 7 € AT

!

T if not m,<*w
mur if = mn’

Note that p is one-to-one and that p(AZ7:) is
a tree domain. The projection M7 of the A-
structure M at nodes m,, 7 is the A-structure
(p(AZ),0', \') such that for all m € AT

o'(p(r)) = o(m)
’ ) p(A(m)) if A(m) € ATy
Ap(m)) = {undeﬁned otherwise.

The projection o' of a variable assignment
into M at nodes 7, 7 is defined iff

a(Y) € AT for all Y € V(p).



In this case, it is defined by o/'(Y) = p(a(Y))
for all Y € V(p).

Definition 7 (Intended Solutions). Let ¢
be a constraint, X a variable and Rx(y) the
relaxation of ¢ at X. A pair (M’', /) is called
an intended solution of Rx(p) iff

1. the projection a of o at o/ (X™),o/(X?) is
defined;
9. (Ma’(X“)

ol (X1) , «) satisfies .

Lemma 8. An intended solution of Rx () is
indeed a solution of Rx(p).

Definition 9 (Safety). A constraint ¢ is
called safe at X iff all solutions of its relaxation
Rx(p) at X are intended.

4.3 Disjointness

To state the Safety Criterion, we will need to
be able to speak about another relation between
nodes of a tree, namely disjointness. First, we
define that nodes w1, 2, g are in the disjoint-
ness relation

T, — T2 at ™0

iff there are paths 7, 75 and different positive
integers i, k such that:

i)

mokmh .

m™ =
T =

Informally speaking, 71 and 75 should not domi-
nate each other, and my (called branching point)
should be the lowest node that dominates them
both. The disjointness formula

- Zn}

is satisfied by a pair (M, «) iff there is an 1 <
i < n such that a(X)—a(Y) at a(Z;). We
abbreviate this to X — Y if we do not care about
the branching point. The following entailment
holds of disjointness:

X-Yat{Z,..

Zif( L XY
= X-Yat{Z)}.

) A X'<*X A Y'Y

If we restrict ourselves to a finite signature
and allow disjunctions, this formula can easily
be extended to an axiomatization of disjoint-
ness.

Note that for any two paths =y, mo, either
m <1y, mo<d*my, Or W — M.

4.4 The Safety Criterion

Finally, we are ready to express the Safety
Criterion, a purely logical characterization of
safety.

Proposition 10 (Safety Criterion). Let ¢
be a constraint and X a wvariable in @. Then @
is safe at X if the following entailment is true:

Rxlp) = N\ (V<X vY - X" v X'<*Y).
YeV(¢)\{X}

For instance, the Safety Criterion is satisfied
by the (safe) constraint in Figure 7; it is not
satisfied by the (unsafe) constraint in Figure 3
because Z can be mapped into the gap between
X and V.

Note that this criterion does not state an “if-
and-only-if” relation. However, it is still strong
enough to cover all practically relevant cases.
We will derive techniques for proving its satis-
fiedness in the next section and then apply them
to show that the Safety Criterion holds for all
constraints generated by a simple grammar and
all possible reinterpretation sites in these con-
straints in Section 7.

5 Proving Safety via Chains of
Fragments

This section discusses some techniques for prov-
ing satisfiedness of the Safety Criterion. We
define the notion of a fragment and introduce
chains of fragments as a key concept. Chains
allow powerful inferences about dominance and
disjointness.

First, we note the following “quasi-
transitivity” result about disjointness, which is
useful in the proofs of this section.

Proposition 11. If V and W are sets of vari-
ables, the following entailment is true:

X-YatVAY—-ZatW A ANvey VEW
Wwew
= X—-ZatVuUw

Definition 12 (Fragments). Let ¢ be a nor-
mal CLLS constraint.

1. Connectedness in ¢ is the smallest binary
equivalence relation between variables in ¢
which contains all pairs (X,Y’) such that
X:f(...Y...)in .



2. A fragment of ¢ is a subset F C V(p) of
variables that are pairwise connected in .
A node X € Fiscalled a leaf of a fragment
F if F contains no variable Y such that
there is a labeling constraint X:f(... Y ...)
in ¢. A hole is a leaf which is not labeled
at all.

It is easily shown that every fragment F' has
a unique root, i.e. contains a variable that must
dominate all other members of F' in any solu-
tion, and that all of its leaves must always de-
note pairwise disjoint nodes.

We are usually interested in maximal frag-
ments; however, maximality does not matter for
the proofs below.

Fragments can be composed into chains. A
chain is intuitively a construction as in Figure
11, where fragments (drawn as triangles) are
connected via dominance constraints between
leaves of the upper fragments and the roots of
the lower fragments, which are called connection
points of the chain. For example, Figure 7 con-
tains a chain of length 2, i.e. the chain contains
two upper fragments (corresponding to a mafia
boss and every driver) and one lower fragment
(corresponding to the preposition). Below, we
define chains; afterwards, we state a theorem
that will help us verify the Safety Criterion for
our grammar, along with a sketch of its proof.

TN [\
ANVAN

Figure 11: A chain of fragments.

Definition 13 (Chains). Let ¢ be a normal
constraint, and let F = (Fy,... ,F,) and G =
(G1,...,Gp_1) be sequences of fragments in ¢
such that no variable appears in two different
fragments. For all i, let X;, Y; be different leaves
of F;, and let Z; be the root of GG;. Then the
pair C = (F,G) is called a chain in ¢ iff for all

1<i<n-—1,
Y;<*Z; A XZ'_|_1<]*Zi mn

The variables Xy, 71,...,7,_1,Y, are called
the connection points of C and n its length.

Now we can formulate certain propositions
about the respective positions of two variables
belonging to different fragments of the same
chain.

Proposition 14. Let C = (F,G) be a chain of
length n in @, and let Z;, Zp, (0 <1 <k <n) be
connection points of C. Then

p |: Z; — 7y, at {Vi+1,... ,Vk},

where the V; € Fj.

Theorem 15. Let C = (F,G) be a chain in ¢,
let F € F and G € G, and let Z be the root of
G. Then for all X € F,

o=X—-2ZVXIZ.

Proof. Let i be the index of F' in F, and let
k be the index of G in G. The claim follows
immediately for k € {i — 1,i}.

For the other cases, it can be shown by con-
tradiction: We assume that a pair (M, «) satis-
fies both ¢ and Z<*X. Under this assumption,
we distinguish cases as to whether a(Z) # «a(X)
or a(Z) = a(X).

The first case is easy. As fragments can only
overlap at leaves, a(Z) must be a prefix of the
root of F; hence, it follows that a(Z)<*a(Z’)
for one of the connection points Z’ below F; 7'
isnot Z, as k ¢ {i —1,i}. Now we can show
(although we will not do so here) that all dis-
tinct connection points of a chain must denote
disjoint nodes. Hence a(Z) — a(Z'), in contrad-
ication to a(Z)<*a(Z’).

In the second case, we can further distinguish
whether ¢ is larger or smaller than k. The two
cases can be handled analogously, so we only
consider the case ¢ > k here. In this case, we
pick F' € F to be the fragment whose Y daugh-
ter dominates Z. Because fragments can only
overlap at leaves, this implies that the root of
F' dominates the root of F' in (M, a). But we
can also show that in such a situation, the X
daughter of F' must dominate the root of F,
which contradicts the disjointness of leaves of
F'. O
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Figure 12: Every rich person of a town expects to be on every guest list.

6 An Example of Using Chains to
Prove Safety

Now, we will demonstrate by means of an exam-
ple how the techniques of the previous section
can be applied to prove that the relaxation of a
constraint at a specific relaxation point is safe.
To this end, consider the following (pretty com-
plex) example, whose semantic representation is
as in Figure 12.

(8) Every rich person of a town expects to be
on every guest list.

We can distinguish seven fragments in the
representation, which we have labeled with Ro-
man numbers for convenience. The three nomi-
nal phrases every rich person, a town, and every
guest are represented by the three fragments in
the top row, namely, I, I1, and III. The scope
ambiguity between them is accounted for by
leaving their relative ordering open; but it is re-
stricted by specifying that fragment IV must be
dominated by fragments I and /1, and fragment
VI by fragments I1 and I11, respectively. This
yields exactly the five scope orderings which are
predicted for this sentence.

Reinterpretation is needed in this example be-
cause it is not the person himself who is appear-
ing on the guest list, but the person’s name. To
account for this, we have relaxed the original
semantic description to the constraint in Fig-
ure 12; the new gap introduced by relaxation is

between the variables X" and X'. As a conse-
quence, X' has become a seventh fragment by
itself.

Finally, the control verb expects is repre-
sented as fragment V. A schematic view of the
structure of this constraint is given in Figure 13.

A

relaxation site =

A

VAN

Figure 13: Schematic view of the Example.

We now want to show (informally) that it
was safe to do this relaxation. What we need
to prove, according to the Safety Criterion, is
that every variable in the constraint either dom-
inates or is disjoint to X" or is dominated by
X', In our case, the only variable dominated by
X! is X! itself, so we will show that all other
variables either dominate X" or are disjoint to
X*. We do this by covering the entire constraint
with chains in which fragment VI takes part as
a lower fragment. Then we can apply results
from the previous section: By Proposition 14,



variables belonging to different lower fragments
of a chain are pairwise disjoint, and Theorem
15 means that all variables belonging to upper
fragments are either disjoint from or dominate
all variables belonging to lower fragments.

Now there are two different chains in Figure
12 in which fragment VI takes part. The first
of those has the upper fragments I, 11, and 111
and the lower fragments IV and V' I. The sec-
ond one has the upper fragments 77 and V and
the lower fragment V1.

As X" is dominated by the root of fragment
VI, this implies that all variables in fragments
other than VI are disjoint to X" or dominate
it (by one of the two results from the previous
section mentioned above); the same is trivially
true of the variables in fragment VI. So we
have shown that all variables in the semantic
representation except for X! must be either dis-
joint to X% or dominate it. Hence, the Safety
Criterion is satisfied here.

Note how we had to employ two chains, each
of them covering only part of the representation,
to get the desired result. Taken together, how-
ever, they covered the whole constraint (with
the exception of fragment VII, i.e. node X')
in such a way that we were able to conclude
something about every variable in the represen-
tation. This technique of intelligently distin-
guishing chains in an underspecified semantic
representation is the basis for our proofs in the
next section.

7 Correctness of Underspecified
Reinterpretation

In this section, we finally present a grammar
with a syntax/semantics interface which can
produce constraints that can (but needn’t nec-
essarily) be relaxed at any node that carries the
semantics of a verb. We state the result that in
any constraint generated by the grammar, the
Safety Criterion holds for relaxation at every
single unrelaxed verb node. By multiple appli-
cation of this theorem, it follows that even the
completely relaxed version of the constraint has
only intended solutions with respect to the com-
pletely unrelaxed version. In the last part of the
section, we also sketch a proof for the satisfia-
bility of all generated constraints. This result
is the bare minimum for linguistic adequacy of
our formalism and is presented here as an addi-

tional example for the range of applications of
the notions from Section 5.

(al) S — NP VP (a6) VP — VP Adv
(a2) NP — Det N (a7) VP — IV
(a3) N —» N (a8) VP — TV NP
(a4) N — N PP
(a5) PP— P NP

(a9) VP — CV VP

(al0) @ — W
if (W,a) € Lex

Figure 14: The grammar

The grammar fragment we consider is dis-
played in Figure 14 (where IV = intransitive
verb; TV = transitive verb; CV = control verb).
Lex is a relation between words W and lexi-
cal categories & € {Det,N, IV, TV, CV, Adv} which
represents the lexicon. The coverage of this
grammar is limited, but it should be a sim-
ple matter to extend our results to a larger
grammar that covers constructions like relative
clauses, sentential complement verbs, and di-
transitive verbs. Of course, any serious NLP
system would employ some unification gram-
mar formalism, which would then also allow to
take care of aspects such as agreement which we
have ignored completely; as a matter of fact, we
have implemented an HPSG grammar produc-
ing the same constraints that does care about
these things.

The syntax/semantics interface of the gram-
mar associates subconstraints with each node v
of the parse tree. The contributions of these
are then conjoined. The rules by which subcon-
straints are introduced are presented in Figure
15. We take [,.p @ R] to mean that node v
in the syntax tree is labeled with P, and its
two daughter nodes v1 and v2 are labeled with
@ and R, respectively. The constraint intro-
duced by such a rule then imposes a CLLS con-
straint on the variables X, X1, X5, which are
the roots of the fragments contributed by nodes
v, vl, and v2 respectively.

Some nodes are given a special name, e.g.
X,°P¢ in the fragment introduced by rule (b1).
This is to make it easier to refer to them later
on. Furthermore, it clarifies their function in
the final constraint; in the example, X;,°?¢ is in-
tuitively the scope of the quantifier represented
by the NP.

Figure 15 doesn’t completely specify all the
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where o € {IV,TV,CV}, (W,a) € Lex, and §(WW)
is the semantic content of W

Figure 15: The syntax/semantics interface

necessary A-binding constraints. This is because
variable binding sometimes requires contextual
information which could be easily maintained in
a unification-based grammar formalism. For the
rules (b7), (b8), and (b9), we therefore assume
the availability of additional information about
the subjects of the verbs considered. Suppose
that v is a VP node in the parse tree and v/ is
the NP node that represents the subject, then
we add the following A-binding constraint:

)\(X;/zrgl) — X;[cope

Similarly for rule (b5), if / is the NP node mod-
ified by the PP at v then we add the following
A-binding constraint:

)\(Xargl) — Xrestr
v 1

Next, note how relaxation is compiled into
the syntax/semantics interface. Rules (b10) and
(b10’) are the semantic construction rules for
the syntactic rules subsumed under (al0). For
all categories other than verbs, we can only ap-
ply the rule (b10), which just contributes a vari-
able with the appropriate label. For verbs, how-
ever, we have a choice between application of

(b10) and (b10’); (b10’) introduces a dominance
constraint for potential reinterpretation. This
choice can be made nondeterministically. How-
ever, in “real” semantic construction, we will
always apply (b10’) to verbs; that is, we pro-
duce maximally relaxed constraints. We keep
(b10) for verbs so we can formulate Theorem
7 below. If the semantics for a syntactic verb
node v is constructed with (b10), we call X, a
(potential) unrelaxed reinterpretation site; if it
is constructed with (b10’), we call X a (poten-
tial) relazed interpretation site.

To give an impression of how semantic con-
struction works, we return briefly to Exam-
ple (7), whose (relaxed) underspecified seman-
tic representation we showed in Figure 7. The
parse tree that the grammar assigns to this sen-
tence is shown in Figure 16. Consider, by way
of example, the semantic construction for the
lower NP node (“a mafia boss”) in the parse
tree, which will give rise to the top left frag-
ment in Figure 7. First of all, we apply Rule
(b2), which represents the application of the
determiner “a” to the restriction “mafia boss”.
Technically, this is done by introducing a single
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Figure 16: Every driver of a mafia boss is parked
out back.

node into the constraint graph, labeled with Q.
By Rule (b10), we add the determiner semantics
d(“a”) = a as a label at the node X,;. Then we
apply Rule (b3), which only identifies the nodes
corresponding to the N and the N. Finally, we
can again apply Rule (b10) to add the noun
semantics §(“mafia boss”) = mafia_boss at the
correct node. The additional application and
abstraction nodes that belong to the fragment
in Figure 7 are introduced earlier by Rule (b5).

Now we are ready to state the main result
for this grammar and its syntax/semantics in-
terface:

Theorem 16. Let ¢ be a constraint which was
constructed by the syntaz/semantics interface of
the example grammar, and let X, be an unre-
laxzed potential interpretation site in @. Then
the Safety Criterion is satisfied for the relaz-
ation of ¢ at X,,.

Assume that ¢q is a constraint that was con-
structed from a parse tree without using rule
(b10’), but possibly (b10). Using this theorem,
we can replace applications of (b10) to verbs by
applications of (b10’) one by one; in each step,
the relaxation is safe. After a finite number of
steps, we have obtained a constraint for whose
construction (b10) wasn’t used, and we know
that all of its solutions are intended with re-
spect to ¢g. That is, we never need to worry
whether we can safely reinterpret if we want to.

The main proof idea is to distinguish, given
a potential reinterpretation site, chains of frag-
ments that cover the constraint and that have
the fragment containing the reinterpretation
site as a lower fragment (as in the previous sec-
tion). Then we can employ the results of Section
5 to prove satisfiedness of the Safety Criterion.

Here we only sketch one part of the proof to il-
lustrate the flavour: namely, that the constraint
corresponding to a nested NP is a chain. But be-
fore we do so, we will outline the general struc-
ture of the constraints our syntax/semantics in-
terface produces, which should give an intuition
about why the proof works out just fine for the
rest of the syntax/semantic interface as well.

Look at the outline of a constraint displayed
in Figure 17. The picture suggests that for each
reinterpretation site in the displayed constraint
we can cover the constraint with chains that
have the fragment with the reinterpretation site
as a lower fragment.

For our grammar, we can show that the struc-
ture of any constraint produced by the syn-
tax/semantics interface is as in Figure 17. Noun
phrases (in particular, subjects and objects) can
either consist of just one determiner and a com-
mon noun, or they can be complex, i.e. the
noun is modified by a prepositional phrase. In
any case, their semantic contributions form a
chain (possibly of length 1) with the contribu-
tions of the determiners and nouns as upper
fragments and the contributions of the preposi-
tions as lower fragments. A verb phrase in our
example grammar can consist of zero or more
VP-nesting control verbs and either a transitive
verb or an intransitive verb at the bottom. The
nesting structure of control verbs in syntax is
mirrored by a nested structure in the seman-
tic representation (as in the verb part of Figure
17). Finally, VPs can be modified by adverbs;
but this makes no difference, as the processing
of an adverb simply attaches additional material
to the VP fragment. This overall structure of the
constraints generated by our syntax/semantics
interface suggests that Theorem should actually
hold.

Now we will actually prove that the semantic
contribution of an NP is a chain.

Proposition 17. Let T be a parse tree of our
grammar, and let ¢ be the constraint that
our syntax/semantics interface assigns to it.
Furthermore, let t be a subtree of T whose
root is labeled with NP, let n be the num-
ber of NP nodes in t, and let p; be the con-
junction of the constraints corresponding to
the nodes of t. Then there is a chain C =
((Fiyee. s F2),(Giy.. s Gnot)) of length n cov-
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Proof. By induction over n.

n=1.1In this case, t has the form
NP(Det(W;) N(N(WW3))), where Wy and Wy are
words. As we can easily see from the rules (b2)
and (b3), the resulting constraint ¢; is a sin-
gle fragment, so C = ((V(¢+)),()) is a chain of
length 1.

n —1— n. Let ¢’ be the largest proper sub-
tree of ¢ whose root is labeled with NP; then
t = NP(N(Wy) PP(P(W>) t')), where Wy and W5
are again words, and ' contains n — 1 NP nodes.

By induction hypothesis, the semantics gy of
t' is a chain C' = (F',G’) of length n — 1 such
that the fragments in 7’ and G’ form a partition
of V(pp); say, F' = (F,... . F, ) and §' =
(GY,... .Gl _,).

According to the syntax/semantics interface,
we obtain ¢; from ¢y by applications of the
rules (b2), (b4), and (b5). These rules intro-
duce two new fragments; let Fy be the fragment
consisting of the contributions of rules (b2) and
(b4), and let Gy be the fragment introduced by
rule (b5). Furthermore, rule (b5) extends frag-
ment F| to a fragment F; which contains a new
leaf, namely the scope. Finally, there are dom-
inance constraints, demanding that the root of
Gy be dominated by the new leaf of fragment
Fy as well as a leaf of fragment Fj.

This means that (Fy, Fy,Fy,... ,F)) and
(Go, G, ..., Gl _y) form a chain in ¢. Its length

is n, and as it contains all variables that the
three rule applications introduced, its fragments
contain all variables in . O

As a final application, chains can also be used
to prove the following result.

Proposition 18. Fvery constraint generated
by the grammar is satisfiable.

The intuition is simple. First of all, it is
not difficult to show that every chain is satis-
fiable. So we can replace the chains for the sub-
ject and (if it exists) object in a constraint ¢
that was generated by the grammar by frag-
ments that fully describe the trees satisfying
these chains. Furthermore, the “verb” section
of the constraint is satisfiable as well; we re-
place it by a third fragment that fully describes
a satisfying tree. Now ¢', the result of these
replacements, clearly entails ¢; but it is also a
chain and hence, satisfiable. So ¢ is satisfiable
as well.

8 Conclusion

In this paper, we developed a general crite-
rion for underspecified semantic representations
which, if satisfied, ensures that relaxation at a
certain position is safe. We utilised this notion
of safe relaxation for the underspecified repre-
sentation of reinterpretation phenomena, and
showed that it is possible to build grammars
in such a way that only semantic descriptions
which are safe for reinterpretation are gener-
ated. To prove satisfiedness of the criterion for



a given constraint, we defined chains of frag-
ments, a very pleasant type of substructure of
constraints which has applications independent
of the one presented here.

Although in this paper, we applied the
Safety Criterion only to a very specific example,
namely reinterpretation within the semantics of
verb phrases as treated in CLLS, we believe that
it is not restricted to this application. CLLS
could be replaced by other representation for-
malisms for semantic underspecification. Other
types of reinterpretation could also be treated,
e.g. reinterpretation within the semantics of
noun phrases.

Finally, we would like to emphasis a differ-
ent view point. In principle, Egg shows how
to replace tree adjunction in traditional ap-
proaches to reinterpretation by instantiation of
dominance constraints. The presented method
based on chains of fragments allows to show in
this case — and possibly others — that it is cor-
rect to substitute tree adjunction by using dom-
inance constraints.
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