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which is said to be parked out back. In sen-tence (1), the problem is that Peter can onlybegin an activity; in understanding it, we must�ll in what, exactly, Peter begins to do withthe book { for example, reading it, writing it,etc. However, traditional semantic constructionwould derive something like (3) as the semanticsof (1):(3) 9x:book(x) ^ begin(peter; x);Formula (3) is not well-typed because beginexpects a proposition as its second argument,but x denotes an individual. The reinterpretedreading, which is what a human understands, issomething like (4).(4) 9x:book(x)^begin(peter; read(peter; x ) ):What reinterpretion does here, intuitively, is to�ll in semantic material that wasn't present onthe surface, namely read(peter; �), at the loca-tion of the type conict. We call this locationthe reinterpretation site, and the additional se-mantic material, the reinterpretation operator.Recently, Egg (1999) has proposed to describesentences requiring reinterpretation in an un-derspeci�ed way, thereby avoiding conicts. Hismain idea is to derive su�ciently relaxed seman-tic representations in which gaps are left openat all possible reinterpretation sites. The actualreinterpretation step simply is further special-ization, i.e instantiation of gaps; the approachassumes that suitable reinterpretation operatorscan be determined by some independent pro-cess. For illustration, Egg's semantic construc-tion applied to (1) derives a relaxed semanticrepresentation that looks, oversimplifying a bit,as in (5).(5) 9x:book(x) ^ begin(peter; : : : x : : : )



The expression (5) can be seen as a descriptionof both formulas (3) and (4), since the gap in(5) can be �lled with the identity or the reinter-pretation operator read(peter; �).A key advantage of Egg's approach to reinter-pretation is that it is compatible with an under-speci�ed treatment of semantics.1 Underspeci�-cation is a general approach to coping with am-biguity that has recently found wide attentionin formal semantics (van Deemter and Peters,1996). Its main idea is to represent all readingsof an ambiguous sentence by one compact de-scription. The readings can be extracted fromthe description, but this step is delayed as longas possible. 9x �& �book �x � begin �peter � �x �Figure 1: A tree description for (5).Tree descriptions based on dominance con-straints are powerful underspeci�ed representa-tions (Egg et al., 1998; Muskens, 1995). Theidea is to consider a formula of some object lan-guage { e.g. predicate logic { as a tree whichin turn can be described in some metalanguage.For example, the relaxed semantic representa-tion (5) corresponds to the tree description inFigure 1. This graph describes all trees that canbe formed from it by inserting arbitrary sub-trees (of solid edges) into the gap left open bythe dotted edge. This dotted edge is a dom-inance constraint ; it expresses that the lowernode must be somewhere below the upper onein the tree.Scope underspeci�cation and sort conictscan be present in the same sentence, as shownby Example (6).(6) Every student began a book.According to Egg's analysis, an underspeci-�ed representation of the semantics of (6) would1Another advantage of Egg's analysis is that it canaccount for so-called landing site coercions in a straight-forward way.
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Figure 2: Underspeci�ed representation for (6)�f � Z� g �a � X;Y relax=) �f � Z� g �� Xa � YFigure 3: An unsafe constraint and its relax-ation.be as in Figure 2. The graph accounts for thescope ambiguity by leaving the relative positionof the two quanti�ers open, in this way describ-ing a set of trees in each of which the scoping is�xed in one way or the other. The representa-tion in Figure 2 is relaxed at the reinterpretationsite (at the verb) such that the reinterpretationoperator can be added even before resolving thescope relation.There is, however, a potential problem withrelaxing underspeci�ed representations. Relax-ation may lead to overgeneration, as illustratedin the abstract example in Figure 3. The graphon the left-hand side describes those trees thatcontain some node labeled with f and a subtreeof the form g(a). There is a unique minimal treesatisfying this description, which can be writtenas f(g(a)). The graph on the right-hand side ofFigure 3 is a relaxation which is obtained byopening a dominance gap between X and Y .The relaxed graph describes more trees than theoriginal graph, as is the purpose of relaxation.However, some of the trees described are notintended, e.g. g(f(a)). Here, the newly openedgap is �lled by material already present in theoriginal graph, but opening the gap was meantto open space just for the reinterpretation op-



erator.In this paper, we investigate the overgener-ation problem within the framework of CLLS(Egg et al., 1998; Niehren and Koller, 1998),which provides tree descriptions subsumingdominance constraints (Marcus et al., 1983;Vijay-Shanker, 1992). We present a safety cri-terion which, if satis�ed, ensures that an un-derspeci�ed description can be relaxed withoutadding unwanted readings. We then apply thiscriterion systematically to Egg's analysis andshow that his approach avoids overgeneration.To this end, we present a toy grammar and asyntax/semantics interface which computes re-laxed underspeci�ed representations, and provethat all relaxations are safe by applying oursafety criterion.As a convenient tool for verifying that theSafety Criterion applies, we will introduce thenotions of fragments and chains of fragmentsin a dominance constraint. Chains are subcon-straints with very pleasant structural proper-ties. As an additional example of their expres-sive power, we also use them to show that everyconstraint produced by the grammar is satis�-able.Plan of the paper. Section 2 introduces treedescriptions in CLLS; we apply the formalismto some examples in Section 3. In Section 4, weformalize the notions of relaxation and safety,and state the Safety Criterion. In Section 5, wede�ne chains and fragments and use them to de-rive some techniques for proving the Safety Cri-terion, which we will illustrate by means of anexample in Section 6. Section 7 presents a gram-mar fragment with a syntax-semantics interfacefor deriving relaxed underspeci�ed representa-tions, and an outline of the proof of their safety.For omitted proofs, we globally refer to the longversion of this paper (Koller et al., 1999).2 Tree descriptions in CLLSWe now give a formal introduction to CLLS, theunderspeci�cation formalism we employ in thispaper. As object language, we now use higher-order rather than �rst-order predicate logic.CLLS, the Constraint Language over LambdaStructures (Egg et al., 1998; Niehren and Koller,1998; Koller et al., 1998; Koller, 1999), is a lan-guage of tree descriptions. The trees describedencode �-terms of higher-order logic. We call

these trees �-structures and consider them tobe standard �rst-order model structures. Atthe heart of CLLS is the language of dominanceconstraints, which has been used for variouspurposes throughout linguistics (Marcus et al.,1983; Vijay-Shanker, 1992; Gardent and Web-ber, 1998). With a varying degree of explicity, ithas been used especially for representing scopeambiguities (Reyle, 1993; Bos, 1996; Muskens,1995). For the purposes of this paper, we con-�ne ourselves to the sublanguage of CLLS con-sisting only of dominance and �-binding con-straints, but note in passing that the full lan-guage also provides parallelism and anaphoraconstraints; for details, see (Egg et al., 1998).Figure 4 illustrates the levels of abstractionthat CLLS distinguishes by means of an exam-ple: On its semantical side, the basic object isthe �-structure, which uniquely represents a �-term modulo renaming of variables. On the syn-tactic side, there are constraints { the formulaeof CLLS { which can be written in a more per-spicuous way as constraint graphs.2.1 Lambda StructuresA �-structure is a tree structure extended with apartial �-binding function. It can be drawn as atree-like graph with dashed arrows representing�-binding (see e.g. Figure 4c).For the de�nition of �-structures, we assumea signature � = f@j2; lamj1; varj0; carj0; : : : g ofnode labels, each of which is equipped with a�xed arity n � 0. The labels lam, var, and @(application) are used to model �-terms. Nodelabels are ranged over by f; g; a; b, and the arityof a label f is denoted by ar(f); i.e. if fjn 2 �then ar(f) = n.Let N be the set of natural numbers n � 1.As usual, we write N� for the set of words overN, � for the empty word, and ��0 for the con-catenation of two words �; �0 2 N� . A word �is a pre�x of �0 if there is a word �00 such that��00 = �0.A node of a tree is the word � 2 N� whichaddresses the node. The empty word � 2 N�is called the root node. A tree domain � is anonempty, pre�xed-closed subset of N� , whichis closed under the left-sibling relation. We saythat a node � dominates a node �0 and write����0 i� � is a pre�x of �0.De�nition 1. A tree structure is a tuple (�; �)



lam � X� Yvar � Z represents�! X:lam(Y ) ^Y��Z ^Z:var ^�(Z)=X ^X 6=Z model of � lam � �@ � 1car � 11 var � 12 represents�! �x:car(x)(a) constraint (b) constraint (c) �-structure (d) �-termgraph Figure 4: Levels of representation in CLLS.consisting of a �nite tree domain � and a totallabeling function � : � ! � such that for all� 2 � and i 2 N:�i 2 � , 1 � i � ar(�(�)):De�nition 2. A �-structure is a triple(�; �; �) consisting of a tree structure (�; �)and a partial �-binding function � : �  �which satis�es for all �; �0 2 �:�(�) = �0 then � �(�) = var; �(�0) = lam;and �0���As an example, consider the �-structure de-picted in Figure 4c which modulo renaming ofbound variables corresponds uniquely to the �-term in Figure 4d. The tree domain of this �-structure is f�; 1; 11; 12g, its �-binding functionis given by �(12) = �, and its labeling functionis de�ned by �(�) = lam, �(1) = @, �(11) = car,and �(12) = var.2.2 A Fragment of CLLSNow we de�ne the syntax and semantics of thatfragment of CLLS which contains labeling, dom-inance, and �-binding constraints.CLLS is a language which talks about rela-tions between nodes of a �-structure. Here weconsider dominance ����0, �-binding �(�) =�0, and inequality � 6=�0. Finally, for every labelf in the signature � with ar(f) = n, there is alabeling relation �:f(�1; : : : ; �n) which meansthat � is labeled with f and has the imme-diate successors �1; : : : ; �n. More formally,�:f(�1; : : : ; �n) holds in a tree structure (�; �)i� �(�) = f and �i = �i for all 1 � i � n.We assume an in�nite set of (node) variablesranged over by X;Y;Z; U; V;W: Node variablesshould not be confused with variables x; y; z of�-terms or predicate logic formulas. The syntaxof the fragment of CLLS we consider is de�ned

in Figure 5. It provides conjunctions of atomicconstraints for labeling X:f(X1; : : : ;Xn), dom-inance X��Y , lambda binding �(X)=Y , andinequality X 6=Y . We say that '0 in ' if allatomic constraints of '0 are also contained in'. The set of (free) node variables of a con-straint ' is denoted by V('). The semanticsof a constraint in CLLS is �xed by interpreta-tion over the class of �-structures; these providerelations for the interpretation of all relationsymbols in constraints. Note that we use thesame symbol for a relation and the correspond-ing relation symbol; they can be distinguishedby context (being applied to either paths � orvariables X).' ::= X:f(X1; : : : ;Xn) (fjn 2 �)j X��Yj �(X)=Yj X 6=Yj ' ^ '0:Figure 5: Syntax of a fragment of CLLS.A variable assignment into a �-structureM isa total function from the set of variables to thedomain of M. A pair (M; �) of a �-structureM and a variable assignment � intoM satis�esa constraint ' i� it satis�es all of its atomicconstraints (in the obvious way). We also callthe pair (M; �) a solution andM a model of '.In Figure 4, the �-structure (c) together with avariable assignment � that maps X to �, Y to1, and Z to 12 satis�es the constraint (b).We write ' j= '0 and say that ' entails '0if every solution of ' is a solution of '0. Thenotions of solutions and entailment can be liftedto �rst-order formulae built from constraints asusual.



A EFigure 6: Schematic representation of a scopeambiguity.2.3 Constraint GraphsFor underspeci�ed descriptions, we will only usenormal constraints ', which are distinguishedby requiring that any two labeled variables mustdenote distinct nodes.De�nition 3. A constraint ' is normal if foreach two distinct occurrences of labeling con-straints X:f(X1; : : : ;Xn) and Y :g(Y1; : : : ; Ym)in ' it holds that X 6=Y in ' (even if the samelabeling constraint occurs twice in ').We will usually draw normal constraints asconstraint graphs. The nodes of such a graphstand for variables in a normal constraint and,despite the similarity, should not be confusedwith the nodes in a �-structure. An examplefor a normal constraint and its graph is given inFigure 4 (a) and (b). In the graph metaphor,normality means that any two labeled nodes in agraph must denote di�erent nodes; \rigid frag-ments" of constraint graphs, i.e. parts whichare connected by solid edges, must not overlap.3 Underspeci�ed SemanticDescription in CLLSWe now discuss examples which illustrate theusage of CLLS in semantic underspeci�cation.3.1 Scope Underspeci�cationFirst, we consider the analysis of scope ambi-guities, introducing some terminology along theway.As in the introduction, a scope ambiguity ischaracterized by containing two or more quan-ti�ers whose relative scope is not �xed. A con-straint graph accounting for this fact typicallyhas a structure as shown in the schematic rep-resentation in Figure 6. The triangles in thispicture denote tree fragments, a fragment be-ing a set of nodes which are connected by solidedges. Each fragment has a unique root whichmust dominate all other nodes in the fragment.Leaves, which are not labeled, are called holes.

Since graphs represent normal constraints, twofragments in a graph can only overlap by iden-tifying a root with a hole. A formal de�nitionof fragments is crucial to this paper and it willbe given in Section 5 for now the intuitive ideais su�cient.In Figure 6 the two triangles annotated by Aand E denote the fragments for the two quanti-�ers. The scope ambiguitiy is accounted for byimposing the constraint that they must domi-nate a common node. As there can be no up-ward branching in trees, this enforces that oneof the quanti�er fragments has to be above theother in each tree described by the graph, butthe exact ordering is left open.For the linguistic application, the reading ofa sentence is usually represented by a solutionwhich is constructed from the \material" men-tioned in the underspeci�ed semantic represen-tation. As a matter of fact, most underspeci�-cation formalisms except CLLS assume this ingeneral (Reyle, 1993; Muskens, 1995; Bos, 1996;Dalrymple et al., 1997). CLLS does not makethis assumption because it is not strictly correctfor ellipses and reinterpretation, but we can in-corporate the concept by restricting ourselvesto so-called constructive solutions: A solution(M; �) of a constraint ' is constructive if forevery node � in the domain of M there existsa variable X 2 V(') such that �(X) = � andX:f(: : : ) in ' for some label f in �.3.2 Scope and ReinterpretationWe next investigate a more complex example,which contains both a scope ambiguity and atype conict, as in (6) in the introduction. Con-sider sentence (7), whose semantics is describedby the constraint graph in Figure 7.(7) Every driver of a ma�a boss is parked outback.In reading the constraint graph in Figure 7,it is �rst of all helpful to identify its variousfragments, most notably the contributions of\a ma�a boss", \every driver", \of", and \beparked out back". Next, note that the graph ex-hibits the same schematic structure as in Figure6. So as above, the scope ambiguity is correctlymodeled: We have expressed that one quanti�erhas to go on top, but we haven't said which one.Finally, note that there is no unintended inter-action between scope ambiguity and reinterpre-
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Figure 7: Relaxed underspeci�ed representation of Example (7).@ � Xulam �lam �9 �^ �@ �@ �own � var �var � ^ �@ �car � var � @ �var � var �
� X l

Figure 8: The reinterpretation operator for Figure 7.tation: none of the fragments for the quanti�ersmay be moved into the gap Xu��X l.Reinterpretation has to coerce \every driverof a ma�a boss" into their vehicles. We can dothis by �lling the appropriate reinterpretationoperator (given in Figure 8) into the gap leftopen by the dominance edge Xu��X l in thedescription of the verb semantics.4 The Safety CriterionNow that we have a de�nition of our under-speci�cation formalism, we can turn to mak-ing the notions of \relaxation", \intended so-lution", and \safety" precise. After introducingsome more terminology (disjointness), we thenformulate the Safety Criterion in the last partof the section, which can be used to verify safetyand is stated in purely logical terms.4.1 Constraint RelaxationFirst of all, the operation of constraint relax-ation is based on the idea of splitting a nodein the graph in two and adding a dominanceedge between the two new nodes. An exampleis drawn in Figure 9, where we split the node

corresponding to the variable X into two newnodes for the variables Xu and X l.@ �f � lam � X@ �g � var � relax at X) @ �f � � Xulam � X l@ �g � var �Figure 9: An example of relaxation.We now de�ne relaxation formally. Let ' bea normal constraint, X 2 V(') a variable, andeq'(X) = fY 2 V(') j ' j= X��Y ^ Y��Xgthe set of variables which must be equal toX. In a satis�able normal constraint, we cancompute eq'(X) syntactically by reexivity andtransitivity inferences about dominance con-straints.We partition the set of atomic constraints in' into three parts, corresponding to edges in thegraph of ' involving a variable in eq'(X) as theupper node, the lower node, or not at all. Theset UX(') contains all atomic constraints in 'that relate a Z 2 eq'(X) to a variable above,



i.e. that are of one of the following forms (forsome f; Y ):Y :f(: : : ; Z; : : : ); Y��Z;�(Z)=Y;Z 6=Y; or Y 6=ZThe set LX(') contains all atomic constraintsin ' that relate a Z 2 eq'(X) to some variablebelow, which are of the forms:Z:f(: : : ; Y; : : : ); Z��Y;�(Y )=Z;Z 6=Y; or Y 6=ZThe set OX(') contains those atomic con-straints of ' in which no variable of eq'(X)occurs.In the following de�nition, we write [Y=V] forthe substitution that maps all variables in thevariable set V to the variable Y .De�nition 4. Let ' be a normal constraint,X a variable in V(') such that a labelingconstraint X:f(: : : ) in ', and Xu;X l variablesfresh for '. Then the relaxation RX(') of aconstraint ' at the variable X is de�ned as theconjunctionXu��X l ^ Vf�[Xu=eq'(X)] j � 2 UX(')g^ Vf�[X l=eq'(X)] j � 2 LX(')g^ Vf� j � 2 OX(')g:Lemma 5. The relaxation RX(') of a normalconstraint ' at X is normal.4.2 Intended Solutions and SafetyThe point we made in the introduction (Figure3) was that sometimes, relaxation can produceunintended solutions, and that the overgenera-tion thus caused is undesirable. What we meanby an intended solution is a solution of a re-laxed graph whose overall structure is the sameas a solution for the original graph. New so-lutions of the relaxed graphs should only arisefrom introducing new material, i.e. labelingconstraints not present in the original graph,into the gap opened by relaxation. So the onlyplace where an intended solution of a relaxedconstraint should di�er from a solution of theoriginal constraint is at the relaxation site. Bycutting away the part of a solution that is lo-cated between the upper and lower end of thegap, we should thus come back to a solution

g �a � X;Y;Z project(= g �f � X;Za � YFigure 10: A solution of the relaxed constraintin Figure 3 and its projectionof the original constraint. We call this cutting-away operation projection and will de�ne it be-low. It will be the foundation of our formal def-inition of intended solutions. Safety will thenmean that all new solutions are intended.For illustration, let's apply the new terminol-ogy to the constraint of Figure 3. As arguedabove, the tree g(f(a)) is a solution of the re-laxed constraint (see Figure 10). This tree isan unintended solution because its projectionat the relaxation site is g(a), which is not asolution of the original constraint. Intuitively,the f -labeled node required by the original con-straint has slipped into the new gap and disap-peared in the projection. So the original con-straint is not safe for relaxation at X.De�nition 6 (Projection). Let M be a �-structure (�; �; �), and let �u���l be nodes in�. Let ��u�l � N� be the subset of � withoutthe tree fragment between �u and �l:��u�l = f� 2 � j if �u��� then �l���gThe projection p : ��u�l ! N� is the functionwhich satis�es for all paths � 2 ��u�l :p(�) = (� if not �u����u�0 if � = �l�0Note that p is one-to-one and that p(��u�l ) isa tree domain. The projection M�u�l of the �-structure M at nodes �u; �l is the �-structure(p(��u�l ); �0; �0) such that for all � 2 ��u�l :�0(p(�)) = �(�)�0(p(�)) = (p(�(�)) if �(�) 2 ��u�lunde�ned otherwise.The projection �0 of a variable assignmentintoM at nodes �u; �l is de�ned i��(Y ) 2 ��u�l for all Y 2 V('):



In this case, it is de�ned by �0(Y ) = p(�(Y ))for all Y 2 V(').De�nition 7 (Intended Solutions). Let 'be a constraint, X a variable and RX(') therelaxation of ' at X. A pair (M0; �0) is calledan intended solution of RX(') i�1. the projection � of �0 at �0(Xu); �0(X l) isde�ned;2. (M�0(Xu)�0(Xl) ; �) satis�es '.Lemma 8. An intended solution of RX(') isindeed a solution of RX(').De�nition 9 (Safety). A constraint ' iscalled safe at X i� all solutions of its relaxationRX(') at X are intended.4.3 DisjointnessTo state the Safety Criterion, we will need tobe able to speak about another relation betweennodes of a tree, namely disjointness. First, wede�ne that nodes �1; �2; �0 are in the disjoint-ness relation �1?�2 at �0i� there are paths �01; �02 and di�erent positiveintegers i; k such that:�1 = �0i�01�2 = �0k�02 :Informally speaking, �1 and �2 should not domi-nate each other, and �0 (called branching point)should be the lowest node that dominates themboth. The disjointness formulaX ?Y at fZ1; : : : ; Zngis satis�ed by a pair (M; �) i� there is an 1 �i � n such that �(X)?�(Y ) at �(Zi). Weabbreviate this to X ?Y if we do not care aboutthe branching point. The following entailmentholds of disjointness:Z:f(: : : ;X 0; : : : ; Y 0; : : : ) ^ X 0��X ^ Y 0��Yj= X ?Y at fZg:If we restrict ourselves to a �nite signatureand allow disjunctions, this formula can easilybe extended to an axiomatization of disjoint-ness.Note that for any two paths �1; �2, either�1���2, �2���1, or �1?�2.

4.4 The Safety CriterionFinally, we are ready to express the SafetyCriterion, a purely logical characterization ofsafety.Proposition 10 (Safety Criterion). Let 'be a constraint and X a variable in '. Then 'is safe at X if the following entailment is true:RX(') j= ^Y 2V(')nfXg(Y��Xu _ Y ?Xu _X l��Y ):For instance, the Safety Criterion is satis�edby the (safe) constraint in Figure 7; it is notsatis�ed by the (unsafe) constraint in Figure 3because Z can be mapped into the gap betweenX and Y .Note that this criterion does not state an \if-and-only-if" relation. However, it is still strongenough to cover all practically relevant cases.We will derive techniques for proving its satis-�edness in the next section and then apply themto show that the Safety Criterion holds for allconstraints generated by a simple grammar andall possible reinterpretation sites in these con-straints in Section 7.5 Proving Safety via Chains ofFragmentsThis section discusses some techniques for prov-ing satis�edness of the Safety Criterion. Wede�ne the notion of a fragment and introducechains of fragments as a key concept. Chainsallow powerful inferences about dominance anddisjointness.First, we note the following \quasi-transitivity" result about disjointness, which isuseful in the proofs of this section.Proposition 11. If V and W are sets of vari-ables, the following entailment is true:X ?Y at V ^ Y ?Z atW ^ V V 2VW2W V 6=Wj= X ?Z at V [WDe�nition 12 (Fragments). Let ' be a nor-mal CLLS constraint.1. Connectedness in ' is the smallest binaryequivalence relation between variables in 'which contains all pairs (X;Y ) such thatX:f(: : : Y : : : ) in '.



2. A fragment of ' is a subset F � V(') ofvariables that are pairwise connected in '.A node X 2 F is called a leaf of a fragmentF if F contains no variable Y such thatthere is a labeling constraint X:f(: : : Y : : : )in '. A hole is a leaf which is not labeledat all.It is easily shown that every fragment F hasa unique root, i.e. contains a variable that mustdominate all other members of F in any solu-tion, and that all of its leaves must always de-note pairwise disjoint nodes.We are usually interested in maximal frag-ments; however, maximality does not matter forthe proofs below.Fragments can be composed into chains. Achain is intuitively a construction as in Figure11, where fragments (drawn as triangles) areconnected via dominance constraints betweenleaves of the upper fragments and the roots ofthe lower fragments, which are called connectionpoints of the chain. For example, Figure 7 con-tains a chain of length 2, i.e. the chain containstwo upper fragments (corresponding to a ma�aboss and every driver) and one lower fragment(corresponding to the preposition). Below, wede�ne chains; afterwards, we state a theoremthat will help us verify the Safety Criterion forour grammar, along with a sketch of its proof.
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Figure 11: A chain of fragments.De�nition 13 (Chains). Let ' be a normalconstraint, and let F = (F1; : : : ; Fn) and G =(G1; : : : ; Gn�1) be sequences of fragments in 'such that no variable appears in two di�erentfragments. For all i, letXi; Yi be di�erent leavesof Fi, and let Zi be the root of Gi. Then thepair C = (F ;G) is called a chain in ' i� for all

1 � i � n� 1,Yi��Zi ^Xi+1��Zi in 'The variables X1; Z1; : : : ; Zn�1; Yn are calledthe connection points of C and n its length.Now we can formulate certain propositionsabout the respective positions of two variablesbelonging to di�erent fragments of the samechain.Proposition 14. Let C = (F ;G) be a chain oflength n in ', and let Zi; Zk (0 � i < k � n) beconnection points of C. Then' j= Zi?Zk at fVi+1; : : : ; Vkg;where the Vj 2 Fj.Theorem 15. Let C = (F ;G) be a chain in ',let F 2 F and G 2 G, and let Z be the root ofG. Then for all X 2 F ,' j= X ?Z _X��Z:Proof. Let i be the index of F in F , and letk be the index of G in G. The claim followsimmediately for k 2 fi� 1; ig.For the other cases, it can be shown by con-tradiction: We assume that a pair (M; �) satis-�es both ' and Z��X. Under this assumption,we distinguish cases as to whether �(Z) 6= �(X)or �(Z) = �(X).The �rst case is easy. As fragments can onlyoverlap at leaves, �(Z) must be a pre�x of theroot of F ; hence, it follows that �(Z)���(Z 0)for one of the connection points Z 0 below F ; Z 0is not Z, as k =2 fi � 1; ig. Now we can show(although we will not do so here) that all dis-tinct connection points of a chain must denotedisjoint nodes. Hence �(Z)?�(Z 0), in contrad-ication to �(Z)���(Z 0).In the second case, we can further distinguishwhether i is larger or smaller than k. The twocases can be handled analogously, so we onlyconsider the case i > k here. In this case, wepick F 0 2 F to be the fragment whose Y daugh-ter dominates Z. Because fragments can onlyoverlap at leaves, this implies that the root ofF 0 dominates the root of F in (M; �). But wecan also show that in such a situation, the Xdaughter of F 0 must dominate the root of F ,which contradicts the disjointness of leaves ofF 0.
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Figure 12: Every rich person of a town expects to be on every guest list.6 An Example of Using Chains toProve SafetyNow, we will demonstrate by means of an exam-ple how the techniques of the previous sectioncan be applied to prove that the relaxation of aconstraint at a speci�c relaxation point is safe.To this end, consider the following (pretty com-plex) example, whose semantic representation isas in Figure 12.(8) Every rich person of a town expects to beon every guest list.We can distinguish seven fragments in therepresentation, which we have labeled with Ro-man numbers for convenience. The three nomi-nal phrases every rich person, a town, and everyguest are represented by the three fragments inthe top row, namely, I, II, and III. The scopeambiguity between them is accounted for byleaving their relative ordering open; but it is re-stricted by specifying that fragment IV must bedominated by fragments I and II, and fragmentV I by fragments II and III, respectively. Thisyields exactly the �ve scope orderings which arepredicted for this sentence.Reinterpretation is needed in this example be-cause it is not the person himself who is appear-ing on the guest list, but the person's name. Toaccount for this, we have relaxed the originalsemantic description to the constraint in Fig-ure 12; the new gap introduced by relaxation is

between the variables Xu and X l. As a conse-quence, X l has become a seventh fragment byitself.Finally, the control verb expects is repre-sented as fragment V . A schematic view of thestructure of this constraint is given in Figure 13.I II IIIIV V VIVIIrelaxation site )Figure 13: Schematic view of the Example.We now want to show (informally) that itwas safe to do this relaxation. What we needto prove, according to the Safety Criterion, isthat every variable in the constraint either dom-inates or is disjoint to Xu or is dominated byX l. In our case, the only variable dominated byX l is X l itself, so we will show that all othervariables either dominate Xu or are disjoint toXu. We do this by covering the entire constraintwith chains in which fragment V I takes part asa lower fragment. Then we can apply resultsfrom the previous section: By Proposition 14,



variables belonging to di�erent lower fragmentsof a chain are pairwise disjoint, and Theorem15 means that all variables belonging to upperfragments are either disjoint from or dominateall variables belonging to lower fragments.Now there are two di�erent chains in Figure12 in which fragment V I takes part. The �rstof those has the upper fragments I, II, and IIIand the lower fragments IV and V I. The sec-ond one has the upper fragments III and V andthe lower fragment V I.As Xu is dominated by the root of fragmentV I, this implies that all variables in fragmentsother than V I are disjoint to Xu or dominateit (by one of the two results from the previoussection mentioned above); the same is triviallytrue of the variables in fragment V I. So wehave shown that all variables in the semanticrepresentation except for X l must be either dis-joint to Xu or dominate it. Hence, the SafetyCriterion is satis�ed here.Note how we had to employ two chains, eachof them covering only part of the representation,to get the desired result. Taken together, how-ever, they covered the whole constraint (withthe exception of fragment V II, i.e. node X l)in such a way that we were able to concludesomething about every variable in the represen-tation. This technique of intelligently distin-guishing chains in an underspeci�ed semanticrepresentation is the basis for our proofs in thenext section.7 Correctness of Underspeci�edReinterpretationIn this section, we �nally present a grammarwith a syntax/semantics interface which canproduce constraints that can (but needn't nec-essarily) be relaxed at any node that carries thesemantics of a verb. We state the result that inany constraint generated by the grammar, theSafety Criterion holds for relaxation at everysingle unrelaxed verb node. By multiple appli-cation of this theorem, it follows that even thecompletely relaxed version of the constraint hasonly intended solutions with respect to the com-pletely unrelaxed version. In the last part of thesection, we also sketch a proof for the satis�a-bility of all generated constraints. This resultis the bare minimum for linguistic adequacy ofour formalism and is presented here as an addi-

tional example for the range of applications ofthe notions from Section 5.(a1) S ! NP VP(a2) NP ! Det N(a3) N ! N(a4) N ! N PP(a5) PP! P NP
(a6) VP ! VP Adv(a7) VP ! IV(a8) VP ! TV NP(a9) VP ! CV VP(a10) � ! Wif (W;�) 2 LexFigure 14: The grammarThe grammar fragment we consider is dis-played in Figure 14 (where IV = intransitiveverb; TV = transitive verb; CV = control verb).Lex is a relation between words W and lexi-cal categories � 2 fDet; N; IV; TV; CV; Advg whichrepresents the lexicon. The coverage of thisgrammar is limited, but it should be a sim-ple matter to extend our results to a largergrammar that covers constructions like relativeclauses, sentential complement verbs, and di-transitive verbs. Of course, any serious NLPsystem would employ some uni�cation gram-mar formalism, which would then also allow totake care of aspects such as agreement which wehave ignored completely; as a matter of fact, wehave implemented an HPSG grammar produc-ing the same constraints that does care aboutthese things.The syntax/semantics interface of the gram-mar associates subconstraints with each node �of the parse tree. The contributions of theseare then conjoined. The rules by which subcon-straints are introduced are presented in Figure15. We take [�:P Q R] to mean that node �in the syntax tree is labeled with P , and itstwo daughter nodes �1 and �2 are labeled withQ and R, respectively. The constraint intro-duced by such a rule then imposes a CLLS con-straint on the variables X� ;X�1;X�2, which arethe roots of the fragments contributed by nodes�, �1, and �2 respectively.Some nodes are given a special name, e.g.Xscope� in the fragment introduced by rule (b1).This is to make it easier to refer to them lateron. Furthermore, it clari�es their function inthe �nal constraint; in the example, Xscope� is in-tuitively the scope of the quanti�er representedby the NP.Figure 15 doesn't completely specify all the



[�:S NP VP] (b1)) @ � X�� X�1 lam � Xscope�1�� X�2[�:NP Det N] (b2)) @ � X�� X�1 � X�2;Xrestr�[�:N N] (b3)) � X� ;X�1[�:N N PP] (b4)) lam � X�& �@ �� X�1 var � �� X�2[�:PP P NP] (b5)) @ �� X�2 lam ��@ � X�@ �� X�1 var � Xarg2�1var � Xarg1�1[�:VP VP Adv] (b6)) @ � X�� X�2 � X�1

[�:VP IV] (b7)) @ � X�� X�1 var � Xarg1�1[�:VP TV NP] (b8)) @ �� X�2 lam � Xscope�2�@ � X�@ �� X�1 var � Xarg2�1var � Xarg1�1[�:VP CV VP] (b9)) @ � X�@ �� X�1 �� X�2var � Xarg1�1[�:� W ] (b10)) �(W ) � X� ;X�1where � 2 fDet; N; IV; TV; CV; Advg, (W;�) 2 Lex,and �(W ) is the semantic content of W[�:� W ] (b100)) � Xu��(W ) � X l�where � 2 fIV; TV; CVg, (W;�) 2 Lex, and �(W )is the semantic content of WFigure 15: The syntax/semantics interfacenecessary �-binding constraints. This is becausevariable binding sometimes requires contextualinformation which could be easily maintained ina uni�cation-based grammar formalism. For therules (b7), (b8), and (b9), we therefore assumethe availability of additional information aboutthe subjects of the verbs considered. Supposethat � is a VP node in the parse tree and � 0 isthe NP node that represents the subject, thenwe add the following �-binding constraint:�(Xarg1� ) = Xscope�0Similarly for rule (b5), if � 0 is the NP node mod-i�ed by the PP at � then we add the following�-binding constraint:�(Xarg1� ) = Xrestr�0Next, note how relaxation is compiled intothe syntax/semantics interface. Rules (b10) and(b10') are the semantic construction rules forthe syntactic rules subsumed under (a10). Forall categories other than verbs, we can only ap-ply the rule (b10), which just contributes a vari-able with the appropriate label. For verbs, how-ever, we have a choice between application of

(b10) and (b10'); (b10') introduces a dominanceconstraint for potential reinterpretation. Thischoice can be made nondeterministically. How-ever, in \real" semantic construction, we willalways apply (b10') to verbs; that is, we pro-duce maximally relaxed constraints. We keep(b10) for verbs so we can formulate Theorem7 below. If the semantics for a syntactic verbnode � is constructed with (b10), we call X� a(potential) unrelaxed reinterpretation site; if itis constructed with (b10'), we call Xu� a (poten-tial) relaxed interpretation site.To give an impression of how semantic con-struction works, we return briey to Exam-ple (7), whose (relaxed) underspeci�ed seman-tic representation we showed in Figure 7. Theparse tree that the grammar assigns to this sen-tence is shown in Figure 16. Consider, by wayof example, the semantic construction for thelower NP node (\a ma�a boss") in the parsetree, which will give rise to the top left frag-ment in Figure 7. First of all, we apply Rule(b2), which represents the application of thedeterminer \a" to the restriction \ma�a boss".Technically, this is done by introducing a single
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Figure 16: Every driver of a ma�a boss is parkedout back.node into the constraint graph, labeled with @.By Rule (b10), we add the determiner semantics�(\a") = a as a label at the node X�1. Then weapply Rule (b3), which only identi�es the nodescorresponding to the N and the N. Finally, wecan again apply Rule (b10) to add the nounsemantics �(\ma�a boss") = ma�a boss at thecorrect node. The additional application andabstraction nodes that belong to the fragmentin Figure 7 are introduced earlier by Rule (b5).Now we are ready to state the main resultfor this grammar and its syntax/semantics in-terface:Theorem 16. Let ' be a constraint which wasconstructed by the syntax/semantics interface ofthe example grammar, and let X� be an unre-laxed potential interpretation site in '. Thenthe Safety Criterion is satis�ed for the relax-ation of ' at X�.Assume that '0 is a constraint that was con-structed from a parse tree without using rule(b10'), but possibly (b10). Using this theorem,we can replace applications of (b10) to verbs byapplications of (b10') one by one; in each step,the relaxation is safe. After a �nite number ofsteps, we have obtained a constraint for whoseconstruction (b10) wasn't used, and we knowthat all of its solutions are intended with re-spect to '0. That is, we never need to worrywhether we can safely reinterpret if we want to.The main proof idea is to distinguish, givena potential reinterpretation site, chains of frag-ments that cover the constraint and that havethe fragment containing the reinterpretationsite as a lower fragment (as in the previous sec-tion). Then we can employ the results of Section5 to prove satis�edness of the Safety Criterion.

Here we only sketch one part of the proof to il-lustrate the avour: namely, that the constraintcorresponding to a nested NP is a chain. But be-fore we do so, we will outline the general struc-ture of the constraints our syntax/semantics in-terface produces, which should give an intuitionabout why the proof works out just �ne for therest of the syntax/semantic interface as well.Look at the outline of a constraint displayedin Figure 17. The picture suggests that for eachreinterpretation site in the displayed constraintwe can cover the constraint with chains thathave the fragment with the reinterpretation siteas a lower fragment.For our grammar, we can show that the struc-ture of any constraint produced by the syn-tax/semantics interface is as in Figure 17. Nounphrases (in particular, subjects and objects) caneither consist of just one determiner and a com-mon noun, or they can be complex, i.e. thenoun is modi�ed by a prepositional phrase. Inany case, their semantic contributions form achain (possibly of length 1) with the contribu-tions of the determiners and nouns as upperfragments and the contributions of the preposi-tions as lower fragments. A verb phrase in ourexample grammar can consist of zero or moreVP-nesting control verbs and either a transitiveverb or an intransitive verb at the bottom. Thenesting structure of control verbs in syntax ismirrored by a nested structure in the seman-tic representation (as in the verb part of Figure17). Finally, VPs can be modi�ed by adverbs;but this makes no di�erence, as the processingof an adverb simply attaches additional materialto the VP fragment. This overall structure of theconstraints generated by our syntax/semanticsinterface suggests that Theorem should actuallyhold.Now we will actually prove that the semanticcontribution of an NP is a chain.Proposition 17. Let T be a parse tree of ourgrammar, and let ' be the constraint thatour syntax/semantics interface assigns to it.Furthermore, let t be a subtree of T whoseroot is labeled with NP, let n be the num-ber of NP nodes in t, and let 't be the con-junction of the constraints corresponding tothe nodes of t. Then there is a chain C =((F1; : : : ; Fn); (G1; : : : ;Gn�1)) of length n cov-
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TVFigure 17: Output of the syntax/semantics interface: schematic viewering ': V('t) = [F2F F [ [G2GG:Proof. By induction over n.n = 1: In this case, t has the formNP(Det(W1) N(N(W2))), where W1 and W2 arewords. As we can easily see from the rules (b2)and (b3), the resulting constraint 't is a sin-gle fragment, so C = ((V('t)); ()) is a chain oflength 1.n� 1! n: Let t0 be the largest proper sub-tree of t whose root is labeled with NP; thent = NP(N(W1) PP(P(W2) t0)), where W1 and W2are again words, and t0 contains n�1 NP nodes.By induction hypothesis, the semantics 't0 oft0 is a chain C0 = (F 0;G0) of length n � 1 suchthat the fragments in F 0 and G0 form a partitionof V('t0); say, F 0 = (F 01; : : : ; F 0n�1) and G0 =(G01; : : : ; G0n�2).According to the syntax/semantics interface,we obtain 't from 't0 by applications of therules (b2), (b4), and (b5). These rules intro-duce two new fragments; let F0 be the fragmentconsisting of the contributions of rules (b2) and(b4), and let G0 be the fragment introduced byrule (b5). Furthermore, rule (b5) extends frag-ment F 01 to a fragment F1 which contains a newleaf, namely the scope. Finally, there are dom-inance constraints, demanding that the root ofG0 be dominated by the new leaf of fragmentF1 as well as a leaf of fragment F0.This means that (F0; F1; F 02; : : : ; F 0n) and(G0; G01; : : : ; G0n�1) form a chain in '. Its length

is n, and as it contains all variables that thethree rule applications introduced, its fragmentscontain all variables in 't.As a �nal application, chains can also be usedto prove the following result.Proposition 18. Every constraint generatedby the grammar is satis�able.The intuition is simple. First of all, it isnot di�cult to show that every chain is satis-�able. So we can replace the chains for the sub-ject and (if it exists) object in a constraint 'that was generated by the grammar by frag-ments that fully describe the trees satisfyingthese chains. Furthermore, the \verb" sectionof the constraint is satis�able as well; we re-place it by a third fragment that fully describesa satisfying tree. Now '0, the result of thesereplacements, clearly entails '; but it is also achain and hence, satis�able. So ' is satis�ableas well.8 ConclusionIn this paper, we developed a general crite-rion for underspeci�ed semantic representationswhich, if satis�ed, ensures that relaxation at acertain position is safe. We utilised this notionof safe relaxation for the underspeci�ed repre-sentation of reinterpretation phenomena, andshowed that it is possible to build grammarsin such a way that only semantic descriptionswhich are safe for reinterpretation are gener-ated. To prove satis�edness of the criterion for



a given constraint, we de�ned chains of frag-ments, a very pleasant type of substructure ofconstraints which has applications independentof the one presented here.Although in this paper, we applied theSafety Criterion only to a very speci�c example,namely reinterpretation within the semantics ofverb phrases as treated in CLLS, we believe thatit is not restricted to this application. CLLScould be replaced by other representation for-malisms for semantic underspeci�cation. Othertypes of reinterpretation could also be treated,e.g. reinterpretation within the semantics ofnoun phrases.Finally, we would like to emphasis a di�er-ent view point. In principle, Egg shows howto replace tree adjunction in traditional ap-proaches to reinterpretation by instantiation ofdominance constraints. The presented methodbased on chains of fragments allows to show inthis case { and possibly others { that it is cor-rect to substitute tree adjunction by using dom-inance constraints.ReferencesManfred Bierwisch. 1983. Semantische undkonzeptionelle Repr�asentation lexikalischerEinheiten. In R. Ruzicka and W. Motsch,editors, Untersuchungen zur Semantik, pages61{99. Akademie-Verlag, Berlin.Johan Bos. 1996. Predicate logic unplugged.In Proceedings of the 10th Amsterdam Collo-quium, pages 133{143.A. Copestake and T. Briscoe. 1995. Semi-productive polysemy and sense extension.Journal of Semantics, 12:15{67.Mary Dalrymple, John Lamping, FernandoPereira, and Vijay Saraswat. 1997. Quanti-�ers, anaphora, and intensionality. Journalof Logic, Language, and Information, 6:219{273.J. D�olling. 1994. Sortale Selektions-beschr�ankungen und systematische Be-deutungsvariation. In M. Schwarz, editor,Kognitive Semantik/Cognitive Semantics,pages 41{59. Narr, T�ubingen.M. Egg, J. Niehren, P. Ruhrberg, and F. Xu.1998. Constraints over Lambda-Structures inSemantic Underspeci�cation. In ProceedingsCOLING/ACL'98, Montreal.
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