
Residuation and Guarded Rules forChapter 22 in: Constraint Logic Programming: Selected Research,Fr�ed�eric Benhamou and Alain Colmerauer, eds., The MIT Press, 1993,pp. 405--419. Previous version as DFKI Research Report RR-91-13Constraint Logic ProgrammingGert SmolkaGerman Research Center for Arti�cial Intelligence (DFKI)andUniversit�at des SaarlandesStuhlsatzenhausweg 3, 6600 Saarbr�ucken 11, Germanysmolka@dfki.uni-sb.deAbstractCurrent constraint logic programming languages provide simpli�cationfor built-in constraints (e.g., arithmetic or boolean), but do not o�er con-straint propagation for user-de�ned predicates. We present two concepts,residuation and guarded rules, for obtaining user-de�ned constraint prop-agation.Residuation is a nonsequential control strategy similar to the so-calledAndorra Principle giving priority to the reduction of atoms to which atmost one clause applies. It achieves an interesting form of constraintpropagation for user-de�ned predicates, thus reducing the need for back-tracking.Residuation, of course, does not extract all useful constraint propaga-tion rules from the clausal de�nitions of user-de�ned predicates. Hencewe propose so-called guarded rules as a means by which the programmercan explicitly specify additional constraint propagation rules. Guardedrules are similar to guarded clauses in committed-choice languages, but incontrast to these languages our guarded rules run concurrently with theordinary clausal de�nition of a predicate. Our framework can in fact beseen as a combination of constraint logic programming with concurrentcommitted-choice programming.The second part of the paper o�ers a semantical model for the pro-posed family of languages, where goal reduction amounts to equivalence1

transformation and guarded rules appear as logical consequences of theclausal de�nitions of predicates.1 IntroductionA major di�culty with logic programming is combinatorial explosion: sincegoals are solved with possibly indeterminate (i.e., branching) reductions, theresulting search trees may grow wildly. Constraint logic programming systems[5, 12, 7] try to avoid combinatorial explosion by building in strong determi-nate (i.e., non-branching) reduction in the form of constraint simpli�cation. Inthis paper we present two concepts, residuation and guarded rules, for furtherstrengthening determinate reduction. Both concepts apply to constraint logicprogramming in general and yield an operational semantics that coincides withthe declarative semantics.1.1 ResiduationResiduation1 is a control strategy for constraint logic programming meant toreplace the rigid depth �rst strategy of Prolog, which amounts to eager gener-ation of usually wrong assumptions. Residuation makes determinate reductionthe rule and indeterminate reduction the exception that must be requested ex-plicitly by declaring relations as generating. Given a goal, an atom is calleddeterminate if reduction with all but possibly one clause de�ning the atom im-mediately fails due to constraint simpli�cation. Residuation is now the followingcontrol strategy:� given a goal that contains determinate atoms, a determinate atom mustbe reduced� given a goal that contains no determinate atoms, an atom whose relationis declared as generating must be reduced.Thus the user controls which atoms can reduce indeterminately by declaringrelations as generating. If no relation is declared generating, indeterminate re-duction cannot occur. Even with generating relations, indeterminate reductioncan only occur if determinate reduction is not possible. A relation is calledresiduating if it is not declared generating. Given a goal, an atom is calledresiduated if it is not determinate and its relation is residuating. An importantfeature of the residuation strategy is that goals whose atoms are all residuatedare taken as answers. Often such complex answers are �ne as they are. Forinstance, if length is a length predicate for lists, the goal9N (length(L;N) ^N � 47)1The term residuation was coined by Hassan A��t-Kaci [1] for delaying control schemes.2

(\L is a list with at most 47 elements") is a perfect answer. If the user is notsatis�ed with a complex answer, he can request indeterminate reduction of aresiduated atom.Residuation is similar to the control strategy of the Andorra model [8, 9],with the di�erence that residuation performs indeterminate reduction only onatoms whose relation is explicitly declared as generating. The philosophy behindresiduation is that for most relations indeterminate reduction simply does notmake sense, and that complex answers are often appropriate.In the examples of this paper we will assume a constraint system with treesand linear integer arithmetic.A length relation for lists can be de�ned as follows (constraints are writtenin italic font):length(L;N) $ L = nil ^N = 0_ 9H;R;M (L = H :R ^N > 0 ^M = N � 1^ length(R;M)):Instead of the conventional de�nite clause syntax we use de�nite equivalences,which make more explicit that the relation on the left hand side is in fact de�ned(we are committed to least model semantics).2Now, given a goal whose constraint is �, an atom length(L;N) in this goalis determinate if either the constraint � ^ L = nil ^N = 0 simpli�es to ?, orthe constraint � ^ 9H ;R (L = H :R ^N > 0) simpli�es to ?, where ? is thecanonical unsatis�able constraint. Assuming a su�ciently powerful constraintsimpli�er, the goal length(X;N) ^ N � 2 reduces in two steps determinately tothe goal 9Y;Z;U;M (X = Y:Z:U^M = N� 2 ^M � 0 ^ length(U;M));which is an answer if the relation length is residuating. In any case, it wouldnot make sense to reduce this goal further.Residuation is a simple and powerful alternative to delay primitives such asthe delay annotations of IC-Prolog [4], the freeze construct of Prolog II [6], orthe wait declarations of MU-Prolog [15]. Major advantages of residuation overthese delay primitives are:� residuation applies to every constraint system (rather than to tree systemsonly)� no annotations in clauses are needed|the programmer only decides whichrelations should be generating2For the special case of Horn clause programming, the translation from the conventionalde�nite clause syntax to de�nite equivalences is given by Clark's completion [2].3

� residuation is much more exible|even if all relations are declared gener-ating the search space is considerably pruned since determinate reductionsare performed �rst.An idealized method for solving problems with residuation splits the problemsolver in a propagating and a generating part:� a predicate propagate(S) that holds if and only if S is a solution of theproblem, and that depends only on residuating relations� a predicate generate(S) that de�nes candidates for (partial) solutions anddepends on generating relations.A problem instance is then given as a query� ^ propagate(S) ^ generate(S);where the constraint � describes the particular problem instance. With resid-uation � ^ propagate(S) will reduce determinately to a constraint propagationnetwork consisting of residuated atoms and a shared constraint. In general, theconstraint propagation network alone is too weak to exhibit solutions. Thusgenerate(S) is needed to incrementally generate assumptions about the value ofthe variable S. As soon as an assumption is made, the constraint propagationnetwork will become active since atoms that where residuated before can now�re. Typically, most of the generated assumptions will be invalidated immedi-ately by constraint propagation leading to a failure. To obtain a feasible searchspace, two things are essential: careful design of the propagation and generationcomponent, and an expressive underlying constraint system.1.2 Guarded RulesGuarded rules are logical consequences of the program introducing additionaldeterminate reduction rules. We will see that guarded rules can signi�cantlystrengthen the propagation component of a problem solver.Consider the following de�nition of list concatenation:app(X;Y;Z) $ X = nil ^ Y = Zj X = H:R ^ Z = H:U ^ app(R;Y;U):It is written in sugared syntax (indicated by writing j rather than _), whichsuppresses existential quanti�cation of auxiliary variables and allows nesting ofconstraint terms.With this de�nition the goal app(X;Y;Y) does not reduce determinatelyalthough it is equivalent to X = nil. In fact, the relation app satis�es theformula Y = Z! (app(X;Y;Z)$ X = nil);4

which validates the determinate reduction of the atom app(X;Y;Z) to the con-straint X = nil if the constraint of the goal entails the \guard" Y = Z.A guarded rule is a formula �! (A$ G);for convenience written as � 2 A > G;where � is a constraint (called the guard), A is an atom, and G is a goal. Aguarded rule is admissible if it is valid in every model of the declarative semantics(we are committed to least model semantics). Thus admissible guarded rulesare redundant as far as the declarative semantics is concerned.The operational semantics of guarded rules is de�ned as follows. Given agoal G 9X(� ^A ^R)and a guarded rule 2 A > G0;the goal G can reduce determinately to9X(� ^G0 ^R)if the constraint � entails the constraint , that is, the implication�! is validin every model of the constraint system. Note that 9X(� ^G0 ^R) is logicallyequivalent to G in all models of the declarative semantics if the guarded rule isadmissible. Moreover, 9X(� ^G0 ^R) is a goal up to constraint simpli�cationand minor syntactic rearrangement.Two further admissible guarded rules for app areY = nil 2 app(X;Y;Z) > X = Z ^ list(X)X = Z 2 app(X;Y;Z) > Y = nil ^ list(X);where the relation list is de�ned as follows:list(L) $ L = nil j L = H:R ^ list(R):Admissible guarded rules are a new concept that must not be confused withthe guarded clauses of committed-choice languages such as Concurrent Pro-log [16] or Parlog [3]. In these languages guarded clauses are used to de�neagents, while in our framework relations are de�ned by de�nite equivalencesand admissible guarded rules are logical consequences of the de�nitions. More-over, committed-choice languages usually do not have a declarative semantics.Maher [14] has given a declarative semantics for a strongly restricted class ofcommitted-choice languages, where guards must be mutually exclusive. This is5

usually not the case for guarded rules, as can be seen in the list concatenationexample.Guarded rules have some similarity with the demon predicates of CHIP [7],but are much more general. First, demon predicates in CHIP are de�ned byguarded rules only, while in our approach the relation is de�ned independentlyby clauses. Second, in CHIP guards are restricted to positive tree patterns.Third, in our approach guarded rules can be given for generating relations,while in CHIP demon predicates are residuating by de�nition. And last notleast, CHIP does not even outline a declarative semantics for demon predicates.In the presence of guarded rules, an atom in a goal is called determinate if iteither is determinate as de�ned before, or if it can reduce with a guarded rule.Residuation is de�ned as before, except that it now relies on the stronger notionof determinate atoms.Residuation with guarded rules yields a surprisingly strong constraint prop-agation mechanism, which we will illustrate with two further examples.Consider the following relational de�nition of the Boolean \and" function:and(X;Y;Z) $ X = 1 ^ Y = Z ^ bool(Y)j X = 0 ^ Z = 0 ^ bool(Y)bool(X) $ X = 1 j X = 0:First note that the de�nition of and in the presence of residuation already realizesfour implicit guarded rules:X 6= 1 2 and(X;Y;Z) > X = 0 ^ Z = 0 ^ bool(Y)Y 6= Z 2 and(X;Y;Z) > X = 0 ^ Z = 0 ^ bool(Y)X 6= 0 2 and(X;Y;Z) > X = 1 ^ Y = Z ^ bool(Y)Z 6= 0 2 and(X;Y;Z) > X = 1 ^ Y = Z ^ bool(Y):The second and fourth rule could be optimized since under their guards we haveY = 1, but residuation will reduce bool(Y) anyway to Y = 1. By exploiting thesymmetry of and with respect to its �rst two arguments we obtain the admissibleguarded rules Y 6= 1 2 and(X;Y;Z) > Y = 0 ^ Z = 0 ^ bool(X)X 6= Z 2 and(X;Y;Z) > X = 1 ^ Y = 0 ^ Z = 0Y 6= 0 2 and(X;Y;Z) > X = Z ^ Y = 1 ^ bool(X):By adding two further admissible guarded rulesX = Y 2 and(X;Y;Z) > X = Z ^ bool(X)X 6= Y 2 and(X;Y;Z) > Z = 0 ^ bool(X) ^ bool(Y);we obtain optimal constraint propagation.6

For our next example assume that we want to solve a crossword puzzle. Forthis task a predicate s(I;U; J;V) is useful that holds if and only if the I's letterof the word U is identical with the J's letter of the word V. This predicate isde�ned by s(I;U; J;V) $ I = 1 ^ U = H:R ^ at(J;V;H)j I > 1 ^ U = H:R ^ s(I� 1;R; J;V)at(I;U;X) $ I = 1 ^ U = X:Rj I > 1 ^ U = H:R ^ at(I� 1;R;X):Now the goal s(2;U; J;V) reduces to9X;Y;W (U = X:Y:W^ at(J;V;Y));which makes explicit that the word U consists of at least two characters. How-ever, the symmetric goal s(I;U; 2;V) does not reduce determinately. This canbe �xed by making the symmetry explicit with the admissible guarded rulesJ � 1 2 s(I;U; J;V) > 9H;R (J = 1 ^ V = H:R ^ at(I;U;H))J 6= 1 2 s(I;U; J;V) > 9H;R (J > 1 ^ V = H:R ^ s(I;U; J� 1;R)):9H;R (V = H:R) 2 s(I;U; J;V) > ?:1.3 Nondeclarative Use of Guarded RulesSo far we have only seen admissible guarded rules, that is, guarded rules thatwere logical consequences of the declarative semantics and whose operationale�ect was compatible with the declarative semantics. However, the operationalsemantics obtained by residuation and nonadmissible guarded rules is signi�-cantly stronger than what can be captured by classical declarative semantics.In fact, the object-oriented programming techniques developed for ConcurrentProlog [16] become available if determinate atoms are selected for reductionwith a fair strategy.For instance, an agent that reads two input streams X, Y and merges theminto one output stream Z can be de�ned by four nonadmissible guarded rules:X = nil 2 merge(X;Y;Z) > Y = ZX = H:R 2 merge(X;Y;Z) > 9U (Z = H:U ^merge(R;Y;U))Y = nil 2 merge(X;Y;Z) > X = ZY = H:R 2 merge(X;Y;Z) > 9U (Z = H:U ^merge(X;R;U)):Operationally this merge agent will behave just right: as soon as a messageappears on one of the two input streams, it can �re and put the message on theoutput stream. 7

It is easy to see that there is no relation merge such that the given guardedrules are admissible. For merge this could be cured by modeling streams as bags(i.e., lists whose order does not matter) rather than lists, but this would destroythe declarative semantics of most stream consumers.1.4 Rest of the PaperThe rest of the paper presents a simple and general framework for declarativeconstraint logic programming with residuation and admissible guarded rules.The complications of Ja�ar and Lassez's framework [11] are avoided by notproviding for negation as failure.2 Reduction SystemsThe abstract notion of a well-founded reduction system captures importantproperties of logic programming. It builds on predicate logic in that it takesfor granted �rst-order structures and formulae with the usual connectives andquanti�ers. We assume that ? (\falsity") is a variable-free formula that isinvalid in every structure.A reduction system consists of the following:� a set of formulae called goals containing the trivial goal ?� a set of structures called models in which the goals are interpreted� a set of equivalences G$ G1 _ : : :_Gn called reductions such that:{ G and G1; : : : ; Gn are goals, and G 6= ?{ G$ G1 _ : : :_Gn is valid in every model.A reduction G$ G1 _ : : :_Gn applies to the goal G and no other goal. Typ-ically, a reduction system contains many reductions with the same left handside, that is, more than one reduction applies to a goal. A reduction system canbe seen as a rewrite system, which allows to rewrite a disjunction of goals intoan equivalent disjunction of goals by replacing a goal according to a reduction.The idea is to rewrite until no further reduction applies. The reduction systemscorresponding to logic programs are in general nonterminating, that is, thereare goals from which in�nite rewrite derivations issue.A reduction system can be separated into a declarative component givenby its goals and models, and an operational component given by its goalsand reductions.We say that a goal G reduces in one step to G0 and write G) G0 ifthere exists a reduction G$ G1 _ : : :_Gn such that G0 = Gi for some i. Wesay that a goal G reduces to G0 if G)� G0, where)� is the reexive andtransitive closure of). 8

An interpretation is a pair consisting of a modelA and a variable valuation� into A. A solution of a goal G is an interpretation (A; �) such that G isvalid in A under �. A goal is satis�able if it has at least one solution.An answer is a goal to which no reduction applies. Note that ? is alwaysan answer (the trivial answer). An answer for a goal G is an answer G0such that G)� G0. A set of answers for a goal G is complete if it contains forevery solution � of G an answer G0 such that � is a solution of G0.The computational service to be provided by a reduction system is solv-ing of goals, that is, enumeration of a complete set of answers for a given goal.The declarative component of a reduction system speci�es a class of problems,where every goal corresponds to a particular problem instance, and the solutionsof the goal are the solutions of the problem instance. The operational compo-nent of a reduction system speci�es a method for solving problem instances,where solving means to enumerate a complete set of answers.A reduction system is well-founded if there exists a well-founded or-dering on pairs of goals and interpretations such that for every reductionG$ G1 _ : : :_Gn and every solution � of G there exist an i = 1; : : : ; n suchthat (G; �) > (Gi; �) and � is a solution of Gi. A well-founded reduction systemhas two important properties:� every goal has a complete set of answers� a complete set of answers for a goal G can be enumerated as follows: if noreduction applies to G, then fGg is a complete set of answers; otherwise,choose don't care any reduction G$ G1 _ : : :_Gn and solve the goalsG1; : : : ; Gn in parallel.We will see that every Horn clause program yields a well-founded reductionsystem.A reduction is determinate if its right hand side is a single goal. We saythat G reduces determinately to G0 if G reduces to G0 using only determi-nate reductions. If G reduces determinately to G0, then G and G0 have exactlythe same solutions. A reduction system is determinate if it has only determi-nate reductions. Note that in well-founded and determinate reduction systemsthere exist no in�nite reduction chains G) G1) G2) G3 � � � issuing from asatis�able goal G.A reduction system is terminating if there exists no in�nite chainG) G1) G2) G3) � � � of reduction steps. Note that a terminating reduc-tion system is always well-founded, but not vice versa. Even a well-founded anddeterminate reduction system may not terminate on unsatis�able goals.3 Constraint SystemsA constraint system is a terminating and determinate reduction system whosegoals are closed under conjunction, existential quanti�cation, and variable re-9

naming. In a constraint system we call the goals constraints, the answerssimpli�ed constraints, and the process of reducing a constraint to a simpli-�ed constraint constraint simpli�cation. Note that in a constraint systemone can compute for every constraint a simpli�ed constraint. Moreover, if aconstraint simpli�es to the trivial constraint ?, it must be unsatis�able. A con-straint system is called complete if a constraint is unsatis�able if and only if itsimpli�es to ?. Thus constraint simpli�cation in a complete constraint systemis a decision algorithm for satis�ability of constraints.The operational component of a constraint system is called a constraintsimpli�er, and the operational component of a complete constraint system iscalled a constraint solver. Our framework for constraint logic programmingdoes not require that the underlying constraint system is complete. Given aset of constraints with the corresponding models, one may prefer in practicean incomplete constraint simpli�er since a (tractable) constraint solver may notexist.Our notion of a constraint system is deliberately very general: every setof formulae with a corresponding class of models can be seen as a constraintsystem if we provide no reductions and close the formulae under conjunction,existential quanti�cation and variable renaming. Such trivial constraint systemsproviding no computational service are of course not what we want in practice.4 De�nite ConstructionWe now introduce de�nite construction, which is the principle underlying con-straint logic programming. We obtain a very simple framework for constraintlogic programming with residuation. The two theorems given in this section areconsequences of the results in [10].We assume that a constraint system and a set of de�nite relation symbolsare given, where the de�nite relation symbols take a �xed number of argumentsand do not occur in the constraint system.An atom takes the form r(x1; : : : ; xn), where r is a de�nite relation symboltaking n arguments and x1; : : : ; xn are pairwise distinct variables. A de�nitegoal takes the form 9X (� ^R);where X is a possibly empty set of existentially quanti�ed variables, � is a con-straint, and R is a possibly empty conjunction of atoms. Note that the de�nitegoals containing no atoms are exactly the constraints. A de�nite equivalencetakes the form A$ G1 _ : : :_Gn;where A is an atom and G1; : : : ; Gn are de�nite goals called the clauses of A.A de�nite speci�cation is a set of de�nite equivalences containing for every10

de�nite relation symbol r exactly one equivalence with r appearing at the lefthand side.In the following we assume that a de�nite speci�cation is given. Moreover,we assume that � and range over constraints, A over atoms, R over possiblyempty conjunctions of atoms, and G over de�nite goals. We will construct areduction system for de�nite goals by de�ning de�nite models (the declarativesemantics) and de�nite reductions (the operational semantics).For convenience, we will often refer to de�nite goals simply as goals.A de�nite structure is a structure that can be obtained from a model ofthe constraint system by adding interpretations for the de�nite relation sym-bols. De�nite structures are partially ordered as follows: A � B i� A andB extend the same constraint model and rA � rB for every de�nite relationsymbol r. A de�nite quasi-model is a de�nite structure that is a model ofthe de�nite speci�cation. A de�nite model is a minimal de�nite quasi-model.The following theorem validates our declarative semantics.Theorem 4.1 For every model of the constraint system there exists exactly onede�nite model extending it.Next we de�ne the operational semantics. We assume that the order inwhich atoms are written in a de�nite goal does not matter.An equivalence G$ D is a de�nite reduction i� the following conditionsare satis�ed:� G = 9X(� ^A ^R) is a de�nite goal� A $ Wni=1 9Yi (�i ^ Ri) is obtained from a de�nite equivalence of thede�nite speci�cation by variable renaming such that only the variables inA are shared with G� obtain for every clause 9Yi (�i ^Ri) of the de�nite equivalence the goalGi := �? if � ^ �i simpli�es to ?9X [Yi (i ^Ri ^R) if � ^ �i simpli�es to i 6= ?� D is the disjunction of all Gi 6= ?; if all Gi's are ?, then D = ?.Note that our de�nition of de�nite reductions corresponds exactly to SLD-resolution [13] for the special case of Horn clauses.Given a constraint system C and a de�nite speci�cation D over C, we de�neR(C;D) as the reduction system whose goals are the corresponding de�nitegoals, whose models are the corresponding de�nite models, and whose reductionsare the corresponding de�nite reductions together with the reductions of theconstraint system C. It is easy to verify that R(C;D) is in fact a reductionsystem. 11

Theorem 4.2 R(C;D) is a well-founded reduction system whose answers areexactly the simpli�ed constraints.It is now straightforward to build in residuation. We only have to discardunnecessary indeterminate reductions:� discard all indeterminate reductions for goals that do have determinatereductions� discard all indeterminate reductions obtained by reduction upon a resid-uating atom (an atom whose relation is not declared generating).Let us call the thus obtained reduction system R�(C;D;G), where G is the set ofgenerating relation symbols. Clearly, R�(C;D;G) is still a well-founded reduc-tion system. Moreover, let R�(C;D) be the reduction system R�(C;D;G) whereall de�nite relations are declared generating. Then R�(C;D) is well-foundedand has again exactly the simpli�ed constraints as answers (follows immediate-ly from the above theorem). The important di�erence between R(C;D) andR�(C;D) is that R�(C;D) has signi�cantly smaller search spaces (even for thecase of Horn clauses), a fact that has only been realized recently in the Andorramodel [8, 9].5 Guarded RulesLet a constraint system C and a de�nite speci�cation D over C be given. Aguarded rule is a formula �! (A$ G);where � is a constraint (called the guard), A is an atom, and G is a de�nitegoal. A guarded rule is admissible if it is valid in every de�nite model.Let F be a set of admissible guarded rules. Then G$ G0 is called a forwardreduction i� the following conditions are satis�ed:� G = 9X(� ^A ^R) is a de�nite goal� ! (A$ 9Y (�0 ^R0)) is obtained from a guarded rule in F by variablerenaming such that only the variables in the atom A are shared with G� � ^ : is a constraint that simpli�es to ?� G0 = �? if � ^ �0 simpli�es to ?9X [Y (�00 ^R0 ^R) if � ^ �0 simpli�es to �00 6= ?.If �^: simpli�es to ?, then � entails , that is, the implication �! is validin every model of the constraint system. Moreover, if the constraint system iscomplete, then � ^ : simpli�es to ? if and only if � entails .12

The reduction system R(C;D;F) is obtained from R(C;D) by adding theforward reductions de�ned by the admissible guarded rules in F . It is easyto verify that R(C;D;F) is in fact a reduction system, and that every goal ofR(C;D;F) has a complete set of answers.In general, R(C;D;F) is not well-founded; consider, for instance, the admis-sible guarded rule :? ! (A $ A). It is the responsibility of the programmerto design the guarded rules in F such that R(C;D;F) is well-founded. Furtherresearch is necessary to �nd good su�cient conditions for the well-foundednessof R(C;D;F).Residuation for R(C;D;F) is de�ned as before.6 ConclusionsResiduation is a control strategy for CLP meant to replace the rigid depth �rststrategy of Prolog, which amounts to eager generation of usually wrong assump-tions. Residuation makes determinate reduction the rule and indeterminate re-duction the exception that must be requested explicitly by declaring relations asgenerating. Consequently, residuation may produce complex answers containingresiduated atoms.Guarded rules are logical consequences of programs adding otherwise un-available determinate reductions. Together with residuation guarded rules yielda general and powerful constraint propagation mechanism resulting in drasti-cally smaller search spaces.Residuation overcomes the strictly sequential computation strategy of Pro-log. With residuation every determinate atom can be reduced next, whichamounts to multiple threads of computation if a fair selection strategy is used.The operational semantics of residuation and nonadmissible guarded rules ismore expressive than what can be captured by classical declarative semantics.In fact, the object-oriented programming techniques developed for ConcurrentProlog [16] can be expressed.Topics for further research include: investigation of abstract incrementalityproperties ensuring e�cient implementation if satis�ed by constraint simpli�ers;design of an abstract machine separating control from constraint simpli�cation;and investigation of parallel reduction strategies.Acknowledgments. The research reported in this paper wasinspired by my collaboration with Hassan A��t-Kaci and AndreasPodelski on the semantics of LIFE. I'm also thankful to RalfScheidhauer who contributed to the examples.13

References[1] H. A��t-Kaci and R. Nasr. Integrating logic and functional programming.Lisp and Symbolic Computation, 2:51{89, 1989.[2] K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logicand Databases, pages 293{322. Plenum Press, New York, NY, 1978.[3] K. Clark and S. Gregory. PARLOG: Parallel programming in logic. ACMTransactions on Programming Languages and Systems, 8(1):1{49, 1986.[4] K. L. Clark and F. G. McCabe. The control facilities of IC-PROLOG. InD. Mitchie, editor, Expert Systems in the Micro-Electronic Age. EdinburghUniversity Press, Edinburgh, Scotland, 1979.[5] A. Colmerauer. An introduction to PROLOG III. Communications of theACM, pages 70{90, July 1990.[6] A. Colmerauer, H. Kanoui, and M. V. Caneghem. Prolog, theoretical prin-ciples and current trends. Technology and Science of Informatics, 2(4):255{292, 1983.[7] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, andF. Berthier. The constraint logic programming language CHIP. In Pro-ceedings of the International Conference on Fifth Generation ComputerSystems FGCS-88, pages 693{702, Tokyo, Japan, Dec. 1988.[8] S. Haridi. A logic programming language based on the Andorra model.New Generation Computing, 7:109{125, 1990.[9] S. Haridi and S. Janson. Kernel Andorra Prolog and its computation model.In D. Warren and P. Szeredi, editors, Logic Programming, Proceedings ofthe 7th International Conference, pages 31{48, Cambridge, MA, June 1990.The MIT Press.[10] M. H�ohfeld and G. Smolka. De�nite relations over constraint languages.LILOG Report 53, IWBS, IBM Deutschland, Postfach 80 08 80, 7000Stuttgart 80, Germany, Oct. 1988.[11] J. Ja�ar and J.-L. Lassez. Constraint logic programming. In Proceedingsof the 14th ACM Symposium on Principles of Programming Languages,pages 111{119, Munich, Germany, Jan. 1987.[12] J. Ja�ar and S. Michaylov. Methodology and implementation of a CLPsystem. In J.-L. Lassez, editor, Proceedings of the 4th International Con-ference on Logic Programming, Cambridge, MA, 1987. The MIT Press.[13] J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation.Springer-Verlag, Berlin, Germany, 1984.14

[14] M. J. Maher. Logic semantics for a class of committed-choice programs.In J.-L. Lassez, editor, Logic Programming, Proceedings of the FourthInternational Conference, pages 858{876, Cambridge, MA, 1987. The MITPress.[15] L. Naish. Automating control for logic programs. Journal of Logic Pro-gramming, 3:167{183, 1985.[16] E. Shapiro and A. Takeuchi. Object oriented programming in ConcurrentProlog. New Generation Computing, 1:24{48, 1983.

15

