
Denotational Semantics for Abadi and Leino’s
Logic of Objects

Bernhard Reus and Jan Schwinghammer�

Informatics, University of Sussex, Brighton, UK
Fax +44 1273 877873

{bernhard, j.schwinghammer}@sussex.ac.uk

Abstract. Abadi-Leino Logic is a Hoare-calculus style logic for a simple
imperative and object-based language where every object comes with its
own method suite. Consequently, methods need to reside in the store
(”higher-order store”). We present a new soundness proof for this logic
using a denotational semantics where object specifications are recursive
predicates on the domain of objects. Our semantics reveals which of the
limitations of Abadi and Leino’s logic are deliberate design decisions and
which follow from the use of higher-order store. We discuss the implica-
tions for the development of other, more expressive, program logics.

1 Introduction

When Hoare presented his seminal work about an axiomatic basis of computer
programming [7], high-level languages had just started to gain broader accep-
tance. Meanwhile programming languages are evolving ever more rapidly, whereas
verification techniques seem to be struggling to keep up. For object-oriented lan-
guages several formal systems have been proposed, e.g. [2, 6, 14, 13, 5, 21, 20]. A
“standard” comparable to the Hoare-calculus for imperative While-languages
[4] has not yet emerged. Nearly all the approaches listed above are designed for
class-based languages (usually a sub-language of sequential Java), where method
code is known statically.

One notable exception is Abadi and Leino’s work [2] where a logic for an
object-based language is introduced that is derived from the imperative object
calculus with first-order types, impς, [1]. In object-based languages, every object
contains its own suite of methods. Operationally speaking, the store for such a
language contains code (and is thus called higher-order store) and modularity
is for free simply by the fact that all programs can depend on the objects’ code
in the store. We therefore consider object-based languages ideal for studying
modularity issues that occur also in class-based languages. Class-based programs
can be compiled into object-based ones (see [1]), and object-based languages can

� Supported by the EPSRC under grant GR/R65190/01, “Programming Logics for
Denotations of Recursive Objects”.

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 264–279, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Denotational Semantics for Abadi and Leino’s Logic of Objects 265

naturally deal with classes defined on-the-fly, like inner classes and classes loaded
at run-time (cf. [16, 17]).

Abadi and Leino’s logic is a Hoare-style system, dealing with partial cor-
rectness of object expressions. Their idea was to enrich object types by method
specifications, also called transition relations, relating pre- and post-execution
states of program statements, and result specifications describing the result in
case of program termination. Informally, an object satisfies such a specification

A ≡ [fi: Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m]

if it has fields fi satisfying Ai and methods mj that satisfy the transition relation
Tj and, in case of termination of the method invocation, their result satisfies Bj .
However, just as a method can use the self-parameter, we can assume that an
object a itself satisfies A in both Bj and Tj when establishing that A holds for
a. This yields a powerful and convenient proof principle for objects.

We are going to present a new proof using a (untyped) denotational semantics
(of the language and the logic) to define validity. Every program and every
specification have a meaning, a denotation. Those of specifications are simply
predicates on (the domain of) objects. The properties of these predicates provide
a description of inherent limitations of the logic. Such an approach is not new,
it has been used e.g. in LCF, a logic for functional programs [11].

The difficulty in this case is to establish predicates that provide the powerful
reasoning principle for objects. Reus and Streicher have outlined in [19] how
to use some classic domain theory [12] to guarantee existence and uniqueness
of appropriate predicates on (isolated) objects. In an object-calculus program,
however, an object may depend on other objects (and its methods) in the store.
So object specifications must depend on specifications of other objects in the
store which gives rise to “store specifications” (already present in the work of
Abadi and Leino).

For the reasons given above, this paper is not “just” an application of the
ideas in [19]. Much care is needed to establish the important invariance property
of Abadi-Leino logic, namely that proved programs preserve store specifications.
Our main achievement, in a nutshell, is that we have successfully applied the
ideas of [19] to the logic of [2] to obtain a soundness proof that can be used to
analyse this logic and to develop similar but more powerful program logics as
well.

Our soundness proof is not just “yet another proof” either. We consider it
complementary (if not superior) to the one in [2] which relies on the opera-
tional semantics of the object calculus and does not assign proper “meaning” to
specifications. Our claim is backed up by the following reasons:

– By using denotational semantics we can introduce a clear notion of valid-
ity with no reference to derivability. This helps clarifying what the proof is
actually stating in the first place.

– We can extend the logic easily e.g. for recursive specifications. This has been
done for the Abadi-Leino logic in [9] but for a slightly different language
with nominal subtyping.

266 B. Reus and J. Schwinghammer

– Some essential and unavoidable restrictions of the logic are revealed and
justified.

– Analogously, it is revealed where restrictions have been made for the sake of
simplicity that could be lifted to obtain a more powerful logic. For example,
in [2] transition specifications cannot talk about methods at all.

– Our proof widens the audience for Abadi and Leino’s work to semanticists
and domain theorists.

The outline of this paper is as follows. In the next section, syntax and seman-
tics of the object-calculus are presented. Section 3 introduces the Abadi-Leino
logic and the denotational semantics of its object specifications. A discussion
about store specifications and their semantics follows (Section 4). The main re-
sult is in Section 5 where the logic is proved sound. Of the various extensions
discussed in Section 6, we present recursive specifications in some detail (Sec-
tion 6.2). Section 7 concludes with a brief comparison to the original proof [2].

When presenting the language and logic, we deliberately keep close to the
original presentation [2]. For a full version of this paper containing detailed proofs
we refer to the technical report [18].

2 The Object Calculus

Below, we review the language of [2], which is based on the imperative object cal-
culus of Abadi and Cardelli [1]. Following [19] we give a denotational semantics.
The syntax of terms is defined by

a, b ::= x | true | false | if x then a else b | let x = a in b

| [fi = xi
i=1...n, mj = ς(yj)bj

j=1...m] | x.f | x.f := y | x.m

where f ∈ F and m ∈ M range over countably infinite sets of field and method
names, resp. Object construction [fi = xi, mj = ς(yj)bj] allocates new storage
and returns (a reference to) an object containing fields fi (with initial value
the value of xi) and methods mj . In a method mj , ς is a binder for the self
parameter yj in the method body bj . During method invocation, the method
body is evaluated with the self parameter bound to the host object.

We extend the syntax with integer constants and operations, and consider
an object-based modelling of a bank account as an example:

acc(x) ≡ [balance = 0,
deposit10 = ς(y) let z = y.balance+10 in y.balance:=z,
interest = ς(y) let r = x.manager.rate in

let z = y.balance∗r/100 in y.balance:=z]

Note how the self parameter y is used in both methods to access the balance
field. Object acc depends on a “managing” object x in the context that provides
the interest rate, through a field manager, for the interest method.

Denotational Semantics for Abadi and Leino’s Logic of Objects 267

Semantics of Objects. We work in the category PreDom of predomains (cpos that
do not necessarily contain a least element) and partial continuous functions. Let
A ⇀ B denote the partial continuous function space between predomains A and
B. For f ∈ A ⇀ B and a ∈ A we write f(a) ↓ if f applied to a is defined, and
f(a)↑ otherwise.

If L is a set, then P(L) is its powerset, Pfin(L) denotes the set of its finite
subsets, and AL is the set of all total functions from L to A. For a countable
set L and a predomain A we write RecL(A) =

∑
L∈Pfin(L) AL for the predomain

of records with entries from A and labels from L. Note that RecL extends to a
locally continuous endofunctor on PreDom.

We write {|l1 = a1, . . . , ln = an|} for a record r = (L, f ∈ AL), with labels
L = {l1, . . . , ln} and corresponding entries f(li) = ai. Update (and extension)
r[l := a] is defined in the obvious way. Selection of labels is written r.l.

The language of the previous section finds its interpretation within the fol-
lowing system of recursively defined predomains in PreDom:

Val = BVal + Loc

St = RecLoc(Ob)
Ob = RecF (Val) × RecM(Cl)
Cl = St ⇀ (Val + {error}) × St

(1)

where Loc is a countably infinite set of locations ranged over by l, and BVal is
the of truth values true and false, considered as flat predomains.

Let Env = Var →fin Val be the set of environments, i.e. maps between Var and
Val with finite domain. Given an environment ρ ∈ Env, the interpretation [[a]]ρ
of an object expression a in St ⇀ (Val + {error}) × St is given in Table 1, where
the (strict) semantic let is also “strict” wrt. error. Note that for o ∈ Ob we just
write o.f and o.m instead of π1(o).f and π2(o).m, respectively. Similarly, we omit
the injections for elements of Val +{error}. Because Loc is assumed to be infinite,
the condition l /∈ dom(σ) in the case for object creation can always be satisfied,
i.e., object creation will never raise error because we run out of memory.

We will also use a projection to the part of the store that contains just data
in Val (no closures), πVal : St → StVal defined by (πVal σ).l.f = σ.l.f, where
StVal = RecLoc(RecF (Val)). We refer to πVal(σ) as the flat part of σ.

3 Abadi-Leino Logic

We briefly recall Abadi and Leino’s logic. For a more detailed presentation see [2,
8] or the technical report [18]. A transition relation T is a first-order formula over
program variables that relates pre- and post-execution states of computations.
There are function symbols σ̀, σ́ and result that refer to the (flat parts of the)
initial and final stores, and the result of a computation, resp. For instance, σ̀(x, f)
denotes the value of x.f in the initial store, and analogously for σ́. Predicate
symbols include Tres, Tupd and Tobj with the following meaning:

– Tres(x) holds if result = x, and the (flat part of the) store remains unchanged
– Tupd(x, f, y) holds if result = x, σ́(x, f) = y, and σ̀ equals σ́ everywhere else
– Tobj(f1 = x1, . . . , fn = xn) holds if result denotes a fresh location such that

xi = σ́(result, fi) for all i, and the store remains unchanged otherwise.

268 B. Reus and J. Schwinghammer

Table 1. Denotational semantics

[[x]]ρσ =
{

(ρ(x), σ) if x ∈ dom(ρ)
(error, σ) otherwise

[[true]]ρσ = (true, σ)

[[false]]ρσ = (false, σ)

[[if x then b1 else b2]]ρσ =

⎧⎨
⎩

[[b1]]ρσ′ if [[x]]ρσ = (true, σ′)
[[b2]]ρσ′ if [[x]]ρσ = (false, σ′)
(error, σ′) if [[x]]ρσ = (v, σ′) for v /∈ BVal

[[let x = a in b]]ρσ = let (v, σ′) = [[a]]ρσ in [[b]]ρ[x := v]σ′

[[[fi = xi
i=1...n, mj = ς(yj)bj

j=1...m]]]ρσ =
{

(l, σ[l := (o1, o2)]) if xi∈dom(ρ), 1 ≤ i ≤ n
(error, σ) otherwise

where l /∈ dom(σ)
o1 = {|fi = ρ(xi)|}i=1...n

o2 = {|mj = λσ.[[bj]]ρ[yj := l]σ|}j=1...m

[[x.f]]ρσ = let (l, σ′) = [[x]]ρσ

in
{

(σ′.l.f, σ′) if l ∈ dom(σ′) and f ∈ dom(σ′.l)
(error, σ′) otherwise

[[x.f := y]]ρσ = let (l, σ′) = [[x]]ρσ, (v, σ′′) = [[y]]ρσ′

in

⎧⎨
⎩

(l, σ′′[l := σ′′.l[f := v]]) if l ∈ dom(σ′′)
and f ∈ dom(σ′′.l)

(error, σ′′) otherwise

[[x.m]]ρσ = let (l, σ′) = [[x]]ρσ

in
{

σ′.l.m(σ′) if l ∈ dom(σ′) and m ∈ dom(σ′.l)
(error, σ′) otherwise

Specifications combine transition relations for each method as well as the spec-
ifications of their results into a single specification for the whole object. They
generalise the first-order types of [1], and are

A, B ::= Bool | [fi: Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m]

where each Tj is a transition relation, and in general both Bj and Tj depend on
the self parameter yj .

Table 2 shows a specification for bank accounts as in the previous example.1

Observe how the specification Tinterest depends not only on the self parameter
y of the host object but also on the statically enclosing object x.

Judgments of the logic are of the form x1:A1, . . . , xn:An � a : A :: T . Infor-
mally, such a judgment means that if program a terminates when executed in a
context where program variables x1, . . . , xn denote values that satisfy specifica-
tions A1, . . . , An, resp., then A describes properties of the result, and T describes
the dynamic behaviour of a.

1 Note that although we are using UML-like notation, these diagrams actually stand
for individual objects, not classes – in fact there are no classes in the language.

Denotational Semantics for Abadi and Leino’s Logic of Objects 269

Table 2. An example of transition and result specifications

Tdeposit(y) ≡ ∃z.z = σ̀(y, balance)
∧Tupd(y, balance, z + 10)

Tinterest(x, y) ≡ ∃z.z = σ̀(y, balance)
∧∃m.m = σ̀(x, manager)
∧∃r.r = σ̀(m, rate)
∧Tupd(y, balance, z ∗ r/100)

Tcreate(x) ≡ Tobj(balance = 0)

AAccount(x) ≡ [balance : Int,
deposit10 : ς(y)[] :: Tdeposit(y),
interest : ς(y)[] :: Tinterest(x, y)]

AAccFactory ≡ [manager : [rate : Int],
create : ς(x)AAccount(x) :: Tcreate(x)]

AManager ≡ [rate : Int,
accFactory : AAccFactory]

Manager

 rate: Int

 accFactory

AccFactory

 manager

 create()

Account

 balance: Int

 deposit10()

 interest()

We can use the proof rules of Abadi and Leino’s logic to derive the judgment

x:AAccFactory � acc(x) : AAccount(x) :: Tobj(balance = 0) (2)

for the acc object. In the logic there is one rule for each syntactic form of the
language. As indicated in the introduction, the most interesting and powerful
rule of the logic is the object introduction rule,

A ≡ [fi: Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m]
Γ � xi:Ai::Tres(xi)

i=1...n
Γ, yj :A � bj :Bj ::T

j=1...m
j

Γ � [fi = xi
i=1...n, mj = ς(yj)bj

j=1...m] : A :: Tobj(fi = xi
i=1...n)

In order to establish that the newly created object satisfies specification A one
has to verify the methods bj . When doing that one can assume that the host
object (through the self parameter yj) already satisfies A. Essentially, this causes
the semantics of store specifications, introduced in the next section, to be defined
by a mixed-variant recursion.

Using the object introduction rule, (2) can be reduced to a trivial proof
obligation for the field balance, a judgment for the method deposit10,

Γ � let z=(y.balance)+10 in y.balance:=z : [] :: Tdeposit(y) (3)

where Γ is the context x:AAccFactory, y:AAccount(x), and a similar judgment for
the method interest. A proof of (3) involves showing

Γ � (y.balance)+10 : Int :: Tres(σ̀(y, balance) + 10) (4)
Γ, z:Int � y.balance:=z : [] :: Tupd(y, balance, z) (5)

270 B. Reus and J. Schwinghammer

for the constituents of the let expression. These can be proved from the rules for
field selection and field update, resp., which have the general form

Γ � x:[f:A]::Tres(x)
Γ � x.f:A::Tres(σ̀(x, f))

A ≡ [fi: Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m]
Γ � x:A::Tres(x) Γ � y:Ak::Tres(y)

Γ � x.fk := y:A::Tupd(x, fk, y)
1≤k≤n

The logic also provides a (structural) notion of subspecification, which gen-
eralises the usual notion of subtyping. So x � A <: B holds if all fields of B are
also fields of A with the same specification, and hereditarily all methods of B
are methods of A with a stronger transition specification.

For instance, in the example in Tab. 2, � AManager <: [rate : Int] would be
used in order to prove

m:AManager, x:AAccFactory � x.manager:=m : AAccFactory :: Tupd(x, manager, m)

when creating the reference to the manager object in the manager field of the
factory object.

Semantics of Specifications. We give a denotational semantics of specifications.
Each transition relation x � T with free variables contained in x denotes a
predicate

[[x � T]]ρ ∈ P(StVal × Val × StVal)

depending on an environment ρ. This can be defined in a straightforward way [18].
Observe that the meaning of a transition relation � T without free variables does
not depend on the environment, and we sometimes simply write [[T]] in this case.

Similarly, an object specification x � A gives rise to a predicate that depends
on values for the free variables (since the underlying logic in the transition rela-
tions is untyped, the specifications of the free variables x are not relevant here).
The interpretation of specifications

[[x � A]]ρ ∈ P(Val × St)

is given in Table 3. Subspecifications are simply set containment: If x � A <: B
then [[x � A]]ρ ⊆ [[x � B]]ρ.

4 Store Specifications

Object specifications are not sufficient. This is a phenomenon of languages with
higher-order store well known from subject reduction and type soundness proofs
(see [1–Ch. 11], [10]). Since statements may call subprograms residing in the
store it has to be verified as well.

The standard remedy – also used in [2] – is to relativise the typing judgement
such that it only needs to hold for “verified” stores. In other words, judgements

Denotational Semantics for Abadi and Leino’s Logic of Objects 271

Table 3. Semantics of specifications

[[x � Bool]]ρ = BVal × St

[[x � [fi: Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m]]]ρ =⎧⎪⎪⎨
⎪⎪⎩

(l, σ) ∈ Loc × St

∣∣∣∣∣∣∣∣

(F) for all 1 ≤ i ≤ n. σ.l.fi ∈ [[x � Ai]]ρ
(M) for all 1 ≤ j ≤ m, if σ.l.mj(σ) = (v, σ′)↓

then (v, σ′) ∈ [[x, yj � Bj]]ρ[yj := l]
and (πVal(σ), v, πVal(σ′)) ∈ [[x, yj � Tj]]ρ[yj := l]

⎫⎪⎪⎬
⎪⎪⎭

are interpreted wrt. store specifications. A store specification assigns a specifi-
cation to each location in a store. When an object is created, the specification
assigned to it at the time of creation is included in the store specification.

In this section we will interpret such store specifications using the techniques
from [19]. Since their denotations will rely on mixed-variant recursion, it is im-
possible to define a semantic notion of subspecification. Alas, the Abadi-Leino
logic makes essential use of subspecifications. We get around this problem by
only using a subset relationship on (denotations of) object specifications (where
there is no contravariant occurrence of store as the semantics of objects is w.r.t.
one fixed store, cf. Table 3).

Unfortunately, we are restricted by the logic’s requirement that verified state-
ments never break the validity of store specifications. In the case of field update
this implies that subspecifications need to be invariant in their fields. As the
semantic interpretation of the subspecification relation cannot reflect this, we
were forced to sometimes use the syntactic subspecification relation.

Store Specifications and their Semantics. A store specification Σ assigns closed
specifications to (a finite set of) locations:

Definition 1 (Store Specification). A store specification Σ is a record Σ ∈
RecLoc(Spec) s.t. Σ.l = A implies � A. For store specifications Σ, Σ′ we say Σ′

extends Σ, written Σ′ � Σ, if Σ.l = Σ′.l for all l ∈ dom(Σ).

Because we focus on closed specifications in the following, we need a way to turn
the components Bj of a specification [fi: Ai

i=1...n, mj : ς(yj)Bj ::Tj
j=1...m] (recall

that they may depend on yj) into closed specifications. This is done by extending
the syntax of expressions with locations: There is one symbol l for each l ∈ Loc.
When clear from context we will simply write l in place of l. Further we write
A[ρ/Γ] for the simultaneous substitution of all x ∈ [Γ] in A by ρ(x).

We can then abstract away from particular stores σ ∈ St, and interpret closed
result specifications � A with respect to such store specifications:

Definition 2 (Object Specifications). For closed A let ||A||Σ ⊆ Val be

||Bool||Σ = BVal

||A||Σ = {l ∈ Loc | � Σ.l <: A}

272 B. Reus and J. Schwinghammer

where A ≡ [fi: Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m]. This extends to contexts in the
natural way.

Observe that for all A, if Σ′ � Σ then ||A||Σ ⊆ ||A||Σ′ . We obtain the following
lemma about context extensions.

Lemma 1 (Context Extension). If ρ ∈ ||Γ ||Σ, Γ, x:A is a well-formed con-
text and v ∈ ||A[ρ/Γ]||Σ then ρ[x := v] ∈ ||Γ, x:A||Σ.

In light of the object introduction rule, we would like to interpret store specifi-
cations as predicates over stores, as follows.

σ ∈ [[Σ]] :⇔
∀l ∈ dom(Σ) where Σ.l = [fi: Ai

i=1...n, mj : ς(yj)Bj ::Tj
j=1...m] :

(F) σ.l.fi ∈ ||Ai||Σ for all 1 ≤ i ≤ n, and
(M) ∀Σ′ � Σ ∀σ′ ∈ [[Σ′]] ∀v ∈ Val ∀σ′′ ∈ St, if σ.l.mj(σ′) = (v, σ′′)↓ then

(M1) (πVal(σ′), v, πVal(σ′′)) ∈ [[Tj [l/yj]]]
(M2) ∃Σ′′ � Σ′ s.t. σ′′ ∈ [[Σ′′]]
(M3) v ∈ ||Bj [l/yj]||Σ′′ , for all 1 ≤ j ≤ m

The universal quantification over extensions Σ′ in (M) acccounts for (the speci-
fications) of objects allocated between definition time and call time of methods.
The existential quantification over extensions Σ′′ in (M2) and (M3) provides
for objects allocated by the method. In particular, since the result of a method
call may be a freshly allocated object it is not sufficient to simply use Σ′ in
(M2) and (M3). This semantic structure also appears in possible world models
of other languages with dynamic allocation [10, 15].

Note the contravariant occurrence of [[−]] in ∀σ′ ∈ [[Σ′]] in (M). Unfortu-
nately, the usual techniques for establishing the existence of such predicates
involving a mixed-variance recursion [12, 19] do not apply. They require the
functional corresponding to the above recursion to map admissible predicates to
admissible predicates. Due to the existential quantification in (M2) and (M3)
this is not the case here.

We get around this problem by observing that the dynamic behaviour of
programs (wrt. allocation of storage) can in fact be described more exactly,
and the existential quantifier can be replaced: The elements of the (recursively
defined) domain

φ ∈ SF = RecLoc(RecM(St × SF × Spec ⇀ Spec × SF)) (6)

are called choice functions, or Skolem Functions. The intuition is that, given
a store σ ∈ [[Σ]], if σ′ ∈ [[Σ′]] with choice function φ′, for some extension
Σ′ � Σ and the method invocation σ.l.m(σ′) terminates, then φ.l.m(σ′, φ′, Σ′) =
(Σ′′, φ′′) yields a store specification Σ′′ � Σ′ such that σ′′ ∈ [[Σ′′]] (and φ′′ is a
choice function for the extension Σ′′ of Σ).

Using SF in the definition below has the effect of constraining the existential
quantifier to work uniformly on the elements of increasing chains.

Denotational Semantics for Abadi and Leino’s Logic of Objects 273

Definition 3 (Store Predicate). Let P = P(St × SF)RecLoc(Spec) denote the
collection of families of subsets of St × SF, indexed by store specifications. We
define a functional Φ : Pop × P → P as follows.

(σ, φ) ∈ Φ(Y, X)Σ :⇔
(1) dom(Σ) = dom(φ) and ∀l ∈ dom(Σ). dom(π2(Σ.l)) = dom(φ.l), and
(2) ∀l ∈ dom(Σ) where Σ.l = [fi: Ai

i=1...n, mj : ς(yj)Bj ::Tj
j=1...m] :

(F) σ.l.fi ∈ ||Ai||Σ for all 1 ≤ i ≤ n, and
(M) ∀Σ′ � Σ ∀(σ′, φ′) ∈ YΣ′ . if σ.l.mj(σ′) = (v, σ′′)↓ then

(M1) (πVal(σ′), v, πVal(σ′′)) ∈ [[Tj [l/yj]]]
(M2) φ.l.mj(σ′, φ′, Σ′) = (Σ′′, φ′′) s.t. Σ′′ � Σ′ and (σ′′, φ′′) ∈ XΣ′′

(M3) v ∈ ||Bj [l/yj ||Σ′′ for all 1 ≤ j ≤ m

We write σ ∈ [[Σ]] if there is some φ ∈ SF s.t. (σ, φ) ∈ fix(Φ)Σ.

Lemma 2. Functional Φ, defined in Def. 3, does have a unique fixpoint.

Proof. Firstly, one shows that Φ is monotonic and maps admissible predicates
to admissible predicates, in the sense that for all X and Y ,

∀Σ. XΣ ⊆ St × SF admissible ⇒ ∀Σ. Φ(Y, X)Σ ⊆ St × SF admissible

Next, define for all admissible X, Y ∈ P, e1 ∈ [St ⇀ St] and e2 ∈ [SF ⇀ SF]:

〈e1, e2〉 : X ⊂ Y iff ∀Σ, σ, φ. (σ, φ) ∈ XΣ ∧ 〈e1, e2〉(σ, φ)↓ ⇒ 〈e1, e2〉(σ, φ) ∈ YΣ

such that e : X ⊂ Y states that e = 〈e1, e2〉 maps pairs of stores and choice
functions that are in XΣ to pairs of stores and choice functions that are in
corresponding component YΣ of Y . Let F be the locally continuous, mixed-
variant functor associated with the domain equations (1) and (6), for which
F ((St, SF), (St, SF)) = (St, SF) is the minimal invariant [12]. According to [12] it
only remains to be shown that

e : X ⊂ X ′ ∧ e : Y ′ ⊂ Y ⇒ F (e, e) : Φ(Y, X) ⊂ Φ(Y ′, X ′) (†)

for all X, Y, X ′, Y ′ ∈ P and e � idSt×SF which follows from a similar line of
reasoning as in [19]

Predicates denoting transition specifications must be upward-closed in the
pre-execution store and downward-closed in the post-execution store. This holds
in Abadi-Leino logic as transition specifications are only defined on the flat part
of the store; if they referred to the method part, (†) could not necessarily be
shown.

The next lemma establishes the relation between store and object specifica-
tions.

Lemma 3. For all object specifications A, store specifications Σ, stores σ, and
locations l, if σ ∈ [[Σ]] and l ∈ dom(Σ) such that � Σ.l <: A then (l, σ) ∈ [[A]].

274 B. Reus and J. Schwinghammer

5 Soundness

We can now define the semantics of judgements of Abadi-Leino logic and prove
the key lemma.

Definition 4 (Validity). Γ � a : A :: T if and only if for all store specifications
Σ ∈ RecLoc(Spec), for all ρ ∈ ||Γ ||Σ and all σ ∈ [[Σ]], if [[a]]ρσ = (v, σ′) then
(v, σ′) ∈ [[[Γ] � A]]ρ and (πVal(σ), v, πVal(σ′)) ∈ [[[Γ] � T]]ρ.

Lemma 4 (Soundness and Invariance). Suppose
(H1) Γ � a : A :: T
(H2) Σ ∈ RecLoc(Spec) is a store specification
(H3) ρ ∈ ||Γ ||Σ

Then there exists φ ∈ [St × SF × Spec ⇀ Spec × SF] s.t. for all Σ′ � Σ and
for all (σ′, φ′) ∈ fix(Φ)Σ′ , if [[a]]ρσ′ = (v, σ′′)↓ then the following holds:
(S1) there exists Σ′′ � Σ′ and φ′′ ∈ SF s.t. φ(σ′, φ′, Σ′) = (Σ′′, φ′′)
(S2) (σ′′, φ′′) ∈ fix(Φ)Σ′′

(S3) v ∈ ||A[ρ/Γ]||Σ′′

(S4) (πVal(σ′), v, πVal(σ′′)) ∈ [[[Γ] � T]]ρ

Note that condition (S1) explicates that store specifications are preserved by the
execution of proved programs, which allows the inductive proof to go through.

Proof. The proof is by induction on the derivation of Γ � a : A :: T (whereas the
original proof [2] is by induction on the length of the computation). Generally,
we have to distinguish the case of objects, which are stored in the heap, and
Booleans, which are stack allocated.

– Lemma 1 is applied in the cases (let) and (object construction), where an
extended specification context is used in the induction hypothesis.

– Invariance of the field components in subspecifications is needed in the case
for (field update).

– In the cases where the store changes, i.e., (object construction) and (field
update), we must show explicitly that the resulting store satisfies the store
specification, according to Definition 3. This is tedious but not difficult, due
to the definition of σ ∈ [[Σ]].

Lemma 3 and Lemma 4 immediately prove

Theorem 1 (Soundness). If Γ � a : A :: T then Γ � a : A :: T .

6 Denotational Analysis of Abadi-Leino Logic

For the proof of Theorem 2, establishing the existence of store predicates, it is
necessary that transition relations are upwards and downwards closed in their
first and second store argument, respectively. A sufficient condition is that tran-
sition relations work on the flat part of stores only. This provides an explanation
why the transition relations of the Abadi-Leino do not refer to methods.

Denotational Semantics for Abadi and Leino’s Logic of Objects 275

6.1 Extensions

This section contains a list of possible extensions of the Abadi-Leino logic. We
think that the denotational semantics helps to clarify their feasibility.

Invariants of Fields. Abadi and Leino’s logic is peculiar in that verified programs
need to preserve store specifications. Put differently, only properties which are in
fact preserved can be expressed in object specifications. In particular, specifying
fields in object specifications is limited. Invariants like e.g. balance ≥ 0, stating
that an account comes without overdraft, cannot be formulated. The same axiom
in a transition specification would only guarantee that the actual balance is
positive. For “private” (local) fields, invisible to other objects, such invariants
can be easily accommodated.

Method Parameters. Formal method parameters of the form x : A can be at-
tached to method specifications, e.g.,

deposit(x : Int) : ς(y)[] :: ∃z.z = σ̀(y, balance) ∧ Tupd(y, balance, z + x)

by adding an extra assumption to the definition of store specifications. When
σ′ ∈ [[Σ′]] then (M1)–(M3) have to be shown for all v ∈ ||A||Σ′ where v is the
actual parameter replacing formal parameter x in the method call.

Dynamic Loading. Dynamic loading of objects is, in a way, already available in
the object calculus (this is one of its advantages over class-based languages).
Loading an object of which only its specification A ≡ [fi:Ai, mj :ς(xj)Bj ::Tj] is
known corresponds to using a command of which one only knows its result speci-
fication A. Thus, x : [m : ς(y)A :: ∃z. Tobj(fi = zi)] � x.m() : A :: ∃z. Tobj(fi = zi)
describes dynamic loading where the load command is x.m(). It can be used to
load any object fulfilling specification A.

Parametric Method Specifications. Transition specifications cannot refer to meth-
ods. While this is adequate when all method specifications are known it prevents
verification of programs that use delegations (similar to the Command pattern).
The flatness of transition relations is sufficient but not necessary for the exis-
tence of store specifications. Therefore “parametric” method specifications may
be possible.

Method Update. Although method update is not allowed in Abadi-Leino logic,
fields can be updated and thus the methods in a field object (similar to the Dec-
orator pattern). By the invariance of object specifications, the object used for
the update must satisfy the specification of the field to be updated. Any extra
conditions that the new object may fulfil are not recorded and cannot be used
later. More useful would be a “behavioural” update where result and transi-
tion specifications of the overriding method are subspecifications of the original
method. This seems to be impossible as there is no notion of subspecification for
store specifications.

276 B. Reus and J. Schwinghammer

Recursive Specifications. Recursive specifications are necessary when a field of
an object or a result of one of the object’s methods are supposed to satisfy the
same specification as the object itself. They are needed to specify any recursive
datatype. For example, if AManager should include a list of accounts, we would
need a recursive specification µX. [head : AAccount, tail : X].

Below we discuss in more detail how recursive specifications can be dealt with
in the logic.

6.2 Recursive Specifications

Syntax and Proof Rules. We introduce recursive specifications µ(X)A. To pre-
vent meaningless specifications such as µ(X)X we only allow recursion through
object specifications, thereby enforcing “formal contractiveness”.

A ::= � | Bool | [fi: Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m] | µ(X)A
A, B ::= A | X

where X ranges over an infinite set TyVar of specification variables. X is bound
in µ(X)A, and as usual we identify specifications up to the names of bound
variables.

In addition to specification contexts Γ we introduce contexts ∆ that contain
specification variables with an upper bound, X <: A, where A is either another
variable or �. In the rules of the logic we replace Γ � . . . by Γ ; ∆ � . . . , and the
definitions of well-formed specifications and well-formed specification contexts
are extended, similar to the case of recursive types [1].

Subspecifications for recursive specifications are obtained by the “usual” re-
cursive subtyping rule [3],

Γ ; ∆, Y <: �, X <: Y � A <: B

Γ ; ∆ � µX.A <: µY.B

As will be seen from the semantics below, in our model a recursive specifi-
cation and its unfolding are not just isomorphic but equal, i.e., [[µX.A]] =
[[A[(µX.A)/X]]]. Hence we can add Γ ; ∆ � A[(µX.A)/X] <: µX.A and Γ ; ∆ �
µX.A <: A[(µX.A)/X] and do not need to introduce fold and unfold terms.

Semantics of Recursive Specifications. We extend the interpretation of specifi-
cations to the new cases, where η maps type variables to admissible subsets of
Val × St:

[[Γ ; ∆ � �]]ρη = Val × St

[[Γ ; ∆ � X]]ρη = η(X)
[[Γ ; ∆ � µ(X)A]]ρη = gfp(λχ.[[Γ ; ∆, X <:� � A]]ρη[X = χ])

We write η � ∆ if, for all X <: Y in ∆, η(X) ⊆ η(Y). The set of admissible
subsets of Val×St is closed under arbitrary intersections, hence forms a complete

Denotational Semantics for Abadi and Leino’s Logic of Objects 277

lattice when ordered by set inclusion, as do environments η with the point-
wise ordering ≤. Using well-known facts about lattices and monotonic maps one
observes that the semantics preserves meets:

η0 ≥ η1 ≥ . . . ⇒ [[Γ ; ∆ � A]]ρ(
∧

i ηi) =
⋂

i[[Γ ; ∆ � A]]ρηi

In particular, the greatest fixed point in the interpretation above is guaranteed
to exist, as gfp(f) =

⋂
i f i(�) for monotonic and meet preserving f .

Existence of Store Predicates. Next, we adapt our notion of store specification
to recursive specifications. A store specification is now taken to be a record
Σ ∈ RecLoc(Spec) such that Σ.l = µ(X)[fi: Ai

i=1...n, mj : ς(yj)Bj ::Tj
j=1...m] is

a closed (recursive) object specification, for each l ∈ dom(Σ). Because of the
(fold) and (unfold) rules, the requirement that only object specifications with a
µ-binder in head position occur in Σ is no real restriction. The definition of the
functional Φ of Section 4 remains virtually the same apart from an unfolding of
the recursive specification in the cases for field and method result specification:

(σ, φ) ∈ Φ(R, S)Σ :⇔
(1) . . .
(2) ∀l ∈ dom(Σ) where Σ.l = µ(X)[fi: Ai

i=1...n, mj : ς(yj)Bj ::Tj
j=1...m] :

(F) σ.l.fi ∈ ||Ai[Σ.l/X]||Σ
. . .

(M3) v ∈ ||Bj [Σ.l/X, l/yj]||Σ′′
. . .

The proof of Lemma 2 can be easily adapted to show that this functional also
has a unique fixpoint.

Syntactic Approximations. In Section 5, Lemma 3 was proved by induction on
the structure of A. This inductive proof cannot be extended directly to prove a
corresponding result for recursive specifications: The recursive unfolding in cases
(F) and (M3) of the definition of σ ∈ [[Σ]] would force a similar unfolding of A
in the inductive step. We consider finite approximations as in [3], where we get
rid of recursion by unfolding a finite number of times and replacing all remaining
occurrences of recursion by �.
Definition 5 (Approximations). For each A and k ∈ N, we define A|k as

• A|0 = � • �|k+1 = �
• µ(X)A|k+1 = A[µ(X)A/X]|k+1 • X|k+1 = X

• [fi: Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m]|k+1 = • Bool|k+1 = Bool
[(fi : Ai|k)i=1...n

,mj : ς(yj)Bj |k :: Tj
j=1...m]

Lemma 5. For all Γ ; ∆ � A and η � ∆, [[Γ ; ∆ � A]]ρη =
⋂

k∈N
[[Γ ; ∆ � A|k]]ρη.

Lemma 6. For all σ ∈ [[Σ]], l ∈ dom(Σ) and (possibly recursive) A s.t. �
Σ.l <: A, (l, σ) ∈ [[A]].

Proof. Similar to the proof of Lemma 3 one shows (l, σ) ∈ [[A|k]] for all k. Then
by Lemma 5, (l, σ) ∈ ⋂

k∈N
[[A|k]] = [[A]].

278 B. Reus and J. Schwinghammer

7 Conclusion

Based on a denotational semantics, we have given a soundness proof for Abadi
and Leino’s program logic of an object-based language. Compared to the original
proof, which was carried out wrt. an operational semantics, our techniques al-
lowed us to distinguish the notions of derivability and validity. Further, we used
the denotational framework to extend the logic to recursive object specifications.
In comparison to a similar logic presented in [9] our notion of subspecification
is structural rather than nominal.

Although our proof is very much different from the original one, the nature
of the logic forces us to work with store specifications too. Information for lo-
cations referenced from the environment Γ will be needed for derivations. Since
the Γ cannot reflect the dynamic aspect of the store (which is growing) one
uses store specifications Σ. They do not show up in the Abadi-Leino logic as
they are automatically preserved by programs. By contrast to [2], we can view
store specifications as predicates on stores which need to be defined by mixed-
variant recursion due to the form of the object introduction rule. Unfortunately,
such recursively defined predicates do not directly admit an interpretation of
subsumption (nor weakening).

Conditions (M1) – (M3) in the semantics of store specifications ensure that
methods in the store preserve not only the current store specification but also
arbitrary extensions Σ′ � Σ. Clearly, not every predicate on stores is preserved.
As we lack a semantic characterisation of those specifications that are syntacti-
cally definable (as Σ), specification syntax appears in the definition of σ ∈ [[Σ]]
(Def. 3). More annoyingly, field update requires subspecifications to be invariant
in the field components. We do not know how to express this property of ob-
ject specifications semantically (on the level of predicates) and need to use the
inductively defined subspecification relation instead.

The proof of Lemma 2, establishing the existence of store predicates, pro-
vides an explanation why transition relations of the Abadi-Leino logic express
properties of the flat part of stores only and allows for a quick check whether
extensions are feasible. We have enumerated several extensions in Section 6.1.
Based on this list and the results presented we intend to design a variation of
the Abadi-Leino logic that is more expressive. We hope that this will also shed
some light on modular reasoning for class-based languages.

Acknowledgement. We wish to thank Thomas Streicher for discussions and
comments.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer, New York, 1996.
2. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In N. Der-

showitz, editor, Verification: Theory and Practice, pages 11–41. Springer, 2004.
3. R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on

Programming Languages and Systems, 15(4):575–631, 1993.

Denotational Semantics for Abadi and Leino’s Logic of Objects 279

4. K. R. Apt. Ten years of Hoare’s logic: A survey — part I. ACM Transactions on
Programming Languages and Systems, 3(4):431–483, 1981.

5. F. S. de Boer. A WP-calculus for OO. In W. Thomas, editor, FOSSACS’99,
volume 1578 of LNCS, pages 135–149, 1999.

6. U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in object-
oriented languages: Logical models and tools. In C. Hankin, editor, ESOP’98,
volume 1381 of LNCS, pages 105–121, 1998.

7. C. A. R. Hoare. An Axiomatic Basis of Computer Programming. Communications
of the ACM, 12:576–580, 1969.

8. M. Hofmann and F. Tang. Generation of verification conditions for Abadi and
Leino’s logic of objects. Presented at 9th International Workshop on Foundations
of Object-Oriented Languages, 2002.

9. K. R. M. Leino. Recursive object types in a logic of object-oriented programs. In
C. Hankin, editor, ESOP’98, volume 1381 of LNCS, pages 170–184, 1998.

10. P. B. Levy. Possible world semantics for general storage in call-by-value. In J. Brad-
field, editor, CSL’02, volume 2471 of LNCS. Springer, 2002.

11. L. C. Paulson. Logic and Computation : Interactive proof with Cambridge LCF,
volume 2 of Cambridge Tracts in Theoretical Computer Science. 1987.

12. A. M. Pitts. Relational properties of domains. Information and Computation,
127:66–90, 1996.

13. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In
S. D. Swierstra, editor, ESOP’99, volume 1576 of LNCS, pages 162–176, 1999.

14. U. S. Reddy. Objects and classes in algol-like languages. Information and Com-
putation, 172(1):63–97, 2002.

15. U. S. Reddy and H. Yang. Correctness of data representations involving heap data
structures. Science of Computer Programming, 50(1–3):129–160, 2004.

16. B. Reus. Class-based versus object-based: A denotational comparison. In H. Kirch-
ner and C. Ringeissen, editors, Proceedings of AMAST’02, volume 2422 of LNCS,
pages 473–488, 2002.

17. B. Reus. Modular semantics and logics of classes. In M. Baatz and J. A. Makowsky,
editors, CSL’03, volume 2803 of LNCS, pages 456–469. Springer Verlag, 2003.

18. B. Reus and J. Schwinghammer. Denotational semantics for Abadi and Leino’s
logic of objects. Technical Report 2004:03, Informatics, University of Sussex, 2004.

19. B. Reus and T. Streicher. Semantics and logic of object calculi. Theoretical Com-
puter Science, 316:191–213, 2004.

20. B. Reus, M. Wirsing, and R. Hennicker. A Hoare-Calculus for Verifying Java
Realizations of OCL-Constrained Design Models. In H. Hussmann, editor, FASE
2001, volume 2029 of LNCS, pages 300–317, Berlin, 2001. Springer.

21. D. von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency and Compu-
tation: Practice and Experience, 13(13):1173–1214, 2001.

	Introduction
	The Object Calculus
	Abadi-Leino Logic
	Store Specifications
	Soundness
	Denotational Analysis of Abadi-Leino Logic
	Extensions
	Recursive Specifications

	Conclusion

