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Abstract. Separation Logic is a sub-structural logic that supports local
reasoning for imperative programs. It is designed to elegantly describe
sharing and aliasing properties of heap structures, thus facilitating the
verification of programs with pointers. In past work, separation logic
has been developed for heaps containing records of basic data types.
Languages like C or ML, however, also permit the use of code pointers.
The corresponding heap model is commonly referred to as “higher-order
store” since heaps may contain commands which in turn are interpreted
as partial functions between heaps.
In this paper we make Separation Logic and the benefits of local rea-
soning available to languages with higher-order store. In particular, we
introduce an extension of the logic and prove it sound, including the
Frame Rule that enables specifications of code to be extended by invari-
ants on parts of the heap that are not accessed.

1 Introduction and Motivation

Since the beginning of program verification for high-level languages [7], pointers
(and the aliasing they cause) have presented a major stumbling block for formal
correctness proofs. Some of the pain of verifying pointer programs has been
removed in recent years with the introduction of Separation Logic, developed by
Reynolds, O’Hearn and others [25, 9, 14]. This is a variant of Hoare logic where
assertions may contain the separation conjunction: The assertion P ∗ Q states
that P and Q hold for disjoint parts of the heap store – in particular, there
is no sharing between these regions. The separation connective allows for the
elegant formulation of a frame rule which is key to local reasoning: In a triple
{P} c {Q}, the assertions P and Q need to specify the code c only in terms of the
heap cells that are actually used (the “footprint”). Clients can add invariants R
for disjoint heap areas in a modular fashion, to obtain {P ∗R} c {Q ∗R} without
reproving c.

Some impressive results have been obtained within this formalism, including
the verification of several algorithms operating on heap-based graph structures
such as the Schorr-Waite graph marking algorithm [29, 4]. Separation logic has
been extended in several directions, covering shared-variable concurrent pro-
grams [13], modules [16] and higher-order procedures [5]. However, in all cases
only values of basic data types can be stored. On the other hand, languages like
C, ML, Scheme, and (implicitly) Java provide code pointers. In object-oriented



programs, stored procedures are commonly used as callbacks. Moreover, code
pointers “also appear in low-level programs that use techniques of higher-order
or object-oriented programming” [25].

In this paper we address the problem of extending Separation Logic to lan-
guages that allow the storage of procedures. Reynolds emphasized the impor-
tance of code pointers in [25], speculating that the marriage of separation logic
with continuation semantics could provide a way to reason about them. A step
in this direction has been taken in [28] (although mutual dependencies of stored
procedures were initially excluded) and [12]. Building on our results in [23, 22,
21] we suggest a much more direct extension of Separation Logic, by using a
denotational semantics instead of an operational one. This allows us to model
code pointers by means of a higher-order store, i.e., as a (mixed-variant) re-
cursively defined domain where stores map locations to basic values or to state
transformers (denoting partial maps from store to store).

The starting point for our work is [23] where a Hoare-style logic for a language
with higher-order store is presented. This language assumes a global store and
does not provide explicit means to allocate or dispose memory. The logic in [23]
extends traditional Hoare logic by rules to reason about the (mutual) recursion
through the store that becomes possible with command storage [10].

We extend the language of [23] with memory allocation constructs, and the
logic with the rules of Separation Logic. The semantics of dynamically allocated
memory raises a subtle point in connection with Separation Logic: soundness
of the frame rule relies on the fact that the choice of a fresh location made
by the allocation mechanism is irrelevant, as far as the logic is concerned. To
the best of our knowledge, in all previous approaches this requirement has been
enforced by making allocation non-deterministic so that valid predicates can-
not possibly depend on assumptions about particular locations. However, in the
presence of higher-order store where we have to solve recursive domain equations
we found the use of (countable) non-determinism quite challenging (for instance,
programs would no longer denote ω-continuous functions, see also [6, 2]). Stan-
dard techniques [18] for proving the existence of recursively defined predicates
over recursively defined domains are not immediately applicable.

Instead, our technical development takes place in a functor category so that
the semantic domains are indexed by sets w of locations. Intuitively, w contains
all the locations that are in use, and we can define a deterministic memory
allocator. Non-determinism is not needed, due to the following observations:

– A renaming f : w → w′ between location sets gives rise to a corresponding
transformation in the semantics of programs.

– We can identify a class of predicates (over stores) that are invariant under
location renamings. This property captures the irrelevance of location names.

In contrast to previous uses of possible worlds models [24, 17, 15, 11] our seman-
tics is not “tight” in the sense that stores may have allocated only a subset of the
locations in w. Thus runtime errors are still possible by dereferencing dangling
pointers. Memory faults are unavoidable because the language includes a free
operation that may create dangling pointers. Moreover, once stores are “taken



Table 1. Syntax of expressions and commands

x, y ∈ Var variables
b, e ∈ Exp ::= true | false | e1≤e2 | ¬b | b1 ∧ b2 | . . . | boolean expressions

0 | −1 | 1 | . . . | x | e1 + e2 | . . . | integer expressions
‘c’ quote (command as expression)

c ∈ Com ::= skip | c1;c2 | if b then c1 else c2 fi | no op, composition, conditional
let x = new e in c | free x | memory allocation, disposal
[x]:=e | let y=[x] in c | assignment, lookup
eval e unquote

apart” according to the separation conjunction, the concept of incomplete stores
is convenient, even in the context of a statically typed language [20]. Neverthe-
less, with respect to the logic, proved programs do not yield memory faults.

In summary, we extend Separation Logic to higher-order store, thereby facili-
tating reasoning about code pointers. Technically, this is achieved by developing
a functor category semantics that provides explicit location renamings, instead
of using a non-determistic computation model. We believe this latter aspect is
also of interest independently of the presence of higher-order store.
Structure of the paper. In Section 2 we present the syntax of programming lan-
guage and logic, along with the proof rules. Section 3 develops the necessary
background to interpret the language and logic, the semantics itself is given in
Section 4. Section 5 concludes with an outlook on related and future work.

2 Programming Language and Logic

We present a variant of the language considered by Reus and Streicher [23], but
extended with constructs for the dynamic allocation and disposal of memory
cells. Two assumptions on the language simplify our presentation: Firstly, we
follow [5] in the slightly non-standard adoption of (ML-like) immutable identi-
fiers. That is, all mutation takes place in the heap, whereas the stack variables
are immutable. Secondly, expressions only depend on the stack but not on the
heap. As a consequence there is no need for modifies clauses in the proof rules.

2.1 Programming Language

The syntax of the language is given in Table 1. The set Exp of expressions
includes boolean and integer expressions. Additionally, a command c can be
turned into an expression (delaying its execution), via the quote operation ‘c’.

The set Com of commands consists of the usual no op, sequential composi-
tion, and conditional constructs. Because stack variables are not mutable, new
memory is allocated by let x = new e in c that introduces an identifier with local
scope c that is bound to (the location of) the new memory cell. We stress that
the initial contents e may be a (quoted) command. This is also the case for an
update, [x]:=e. The command free x disposes the memory cell that x denotes,



Table 2. Syntax of assertions

A, B ∈ pAssn ::= true | e1 ≤ e2 | pure basic predicates
¬A | A ∧B | ∀x. A predicate logic connectives

P, Q ∈ Assn ::= x 7→ e | emp | P ∗Q | separation logic connectives
A | P ∧Q | P ∨Q | ∀x. P | ∃x. P predicate logic connectives

Table 3. Specific proof rules

Frame
{P} c {Q}

{P ∗R} c {Q ∗R}
Free

{x 7→ } free x {emp}

New
{P ∗ x 7→ e} c {Q}

{P} let x = new e in c {Q}
x/∈fv(e, P, Q)

Eval
{P} c {Q}

{P} eval ‘c’ {Q}
Assign

{x 7→ } [x] := e {x 7→ e}

Deref
{P ∗ x 7→ e} c[e/y] {Q}

{P ∗ x 7→ e} let y = [x] in c {Q}
RecV

1≤i≤n {P1} eval x1 {Q1} . . . {Pn} eval xn {Qn} ` {Pi} ci {Qi}
{Pj [‘c’/x]} eval ‘cj ’ {Qj [‘c’/x]}

1 ≤ j ≤ n

and let y=[x] in c introduces a new stack variable y bound to the cell contents.
Finally, eval e is the “unquote” command, i.e., if e denotes a quoted command
c then c is executed. We give a formal semantics of this language in Section 4,
after developing the necessary machinery in Section 3.

Note that Table 1 does not include any looping constructs – recursion can be
expressed “through the store” [10]. Here is a simple example of a non-terminating
command: [x]:=‘let y=[x] in eval y’; let y=[x] in eval y.

2.2 Assertions and Proof Rules

The assertions used in Hoare triples are built from the formulae of predicate
logic and the additional separation logic assertions that describe the heap ( 7→ ,
emp describing the empty heap, and P ∗Q; cf. [25]). Note that in our language
variables can also be bound to quoted code. The syntax of the assertions is given
in Table 2. It is important to note that we distinguish between “pure” assertions
pAssn, i.e., those that do not depend on the heap, and normal assertions Assn
which do depend on the heap. Only the former allow negation. The reason for this
will become clear when we give the semantics in Section 4.1. As usual, assertion
e1 ≤ e2 ∧ e2 ≤ e1 is abbreviated e1 = e2 and assertion ∃z. x 7→ z is abbreviated
to x 7→ . For pure assertions pAssn the predicate false and connectives ∨, ⇒,
and ∃x.A can be derived as usual using negation.

The inference rules of our program logic contain the standard Hoare rules
(for skip, conditional, sequential composition, weakening and substitution), a
standard axiomatization of predicate logic as well as an axiomatization of the
Separation Logic connectives stating associativity and symmetry of ∗, neutrality
of emp with respect to ∗, and some distributive laws (see e.g. [25]). The rules
specific to our programming language are given in Table 3.



The frame rule extends triples by invariants for inaccessible parts of the heap.
Rules (Free) and (Assign) specify the corresponding heap operations “tightly”.
The inferences (New) and (Deref) combine heap allocation and dereferencing,
resp., with local variable definitions (and hence are not tight). Unlike [5] our
(New) permits (non-recursive) initializations (and self-reference can be intro-
duced by assignment as in Section 2.3). Substitution on c is used in the premiss
of (Deref) to avoid equations of the form y = e that would be problematic when
e is a stored procedure. Rule (Eval) is reminiscent of standard non-recursive
procedure call rules; it expresses that evaluating a quoted command has the same
effect as the command itself. Indeed, (Eval) is a degenerated case of rule (Rec)
that deals with recursion through the store. It is similar to the standard rule for
Hoare-calculus with (mutually) recursive procedures, but since procedures are
stored on the heap, they have to be accounted for in the assertions which leads
to the substitution in the conclusion.

2.3 Example

Let Σn be the sum
∑

0≤i≤n i, let cP be the command

let !y= [y] in let !x= [x] in if !x≤0 then skip else [y]:=!y+!x; [x]:=!x−1; let c= [f ] in eval c fi

and observe that !x and !y are stack variable names representing the values in
the cells denoted by (pointers) x and y, respectively. If cP is stored in f , the
program is defined by recursion through the store since cP calls the procedure
stored in heap cell f . This is also referred to as a “knot in the store.” We prove
below that cP adds to !y the sum Σ!x of natural numbers up to and including !x.
In the presentation we omit various applications of the weakening rule (which
are easy to insert).

New

Seq

Frame
Assign {f 7→‘skip’} [f ]:=‘cP ’ {f 7→‘cP ’}

{x7→n ∗ y 7→0 ∗ f 7→‘skip’} [f ]:=‘cP ’ {x7→ ∗ y 7→0 ∗ f 7→‘cP ’}

Deref

Subst

Rec
α

{x7→n ∗ y 7→m ∗ f 7→‘cP ’} eval ‘cP ’ {x7→ ∗ y 7→Σn+m ∗ f 7→‘cP ’}
{x7→n ∗ y 7→0 ∗ f 7→‘cP ’} eval ‘cP ’ {x7→ ∗ y 7→Σn ∗ f 7→‘cP ’}

{x7→n ∗ y 7→0 ∗ f 7→‘cP ’} let c= [f ] in eval c {x7→ ∗ y 7→Σn ∗ f 7→‘cP ’}
{x7→n ∗ y 7→0 ∗ f 7→‘skip’} [f ]:=‘cP ’; let c= [f ] in eval c {x7→ ∗ y 7→Σn ∗ f 7→‘cP ’}

{x7→n ∗ y 7→0} let f= new ‘skip’ in [f ]:=‘cP ’; let c= [f ] in eval c {x7→ ∗ y 7→Σn ∗ f 7→‘cP ’}

For the derivation tree α we let xP denote ‘cP ’ and assume

{x7→n ∗ y 7→m ∗ f 7→xP } eval xP {x7→n ∗ y 7→Σn+m ∗ f 7→xP } (†)

and prove {x7→n ∗ y 7→m ∗ f 7→xP } cP {x7→0 ∗ y 7→Σn+m ∗ f 7→xP }.

Deref2

If
βt βf

{x7→n ∗ y 7→m ∗ f 7→xP } if n≤0 then skip else . . . fi {x7→ ∗ y 7→Σn+m ∗ f 7→xP }
{x7→n ∗ y 7→m ∗ f 7→xP } let !y= [y] in . . . [y]:=!y+!x . . .| {z }

cP

{x7→ ∗ y 7→Σn+m ∗ f 7→xP }



where βt and βf , respectively, are:

Weak
Skip {x7→n ∗ y 7→m ∗ f 7→xP ∧ n ≤ 0} skip {x7→n ∗ y 7→m ∗ f 7→xP ∧ n ≤ 0}

{x7→n ∗ y 7→m ∗ f 7→xP ∧ n ≤ 0} skip {x7→ ∗ y 7→Σn+m ∗ f 7→xP }

Seq2
γ δ ε

{x7→n ∗ y 7→m ∗ f 7→xP ∧ n>0} [y]:= . . . ; [x]:= . . . ; let. . . {x7→ ∗ y 7→Σn+m ∗ f 7→xP }

The derivations γ, δ and ε are as follows:

Frame
Assign {y 7→m} [y]:=m+n {y 7→m+n}

{x7→n ∗ y 7→m ∗ f 7→xP } [y]:=m+n {x7→n ∗ y 7→m+n ∗ f 7→xP }

Frame
Assign {x7→n} [x]:=n−1 {x7→n−1}

{x7→n ∗ y 7→m+n ∗ f 7→xP } [x]:=n−1 {x7→n−1 ∗ y 7→m+n ∗ f 7→xP }

Deref

Subst
(†) ≡ {x7→n ∗ y 7→m ∗ f 7→xP } eval xP {x7→ ∗ y 7→Σn+m ∗ f 7→xP }
{x7→n−1 ∗ y 7→m+n ∗ f 7→xP } eval xP {x7→ ∗ y 7→Σn+m ∗ f 7→xP }

{x7→n−1 ∗ y 7→m+n ∗ f 7→xP } let c= [f ] in eval c {x7→ ∗ y 7→Σn+m ∗ f 7→xP }

Note how the Frame Rule is used to peel off those predicates of the assignment
rule that do not relate to the memory cell affected.

3 A Model of Dynamic Higher-order Store

This section defines the semantic domains in which the language of Section 2
finds its interpretation. The semantic properties (safety monotonicity and frame
property) that programs must satisfy to admit local reasoning [25] are rephrased,
using the renamings made available by the functor category machinery. Due to
the higher-order character of stores, these predicates are recursive and their
existence must be established. The framework of Pitts is used [18, 11].

3.1 Worlds

Fix a well-ordered, countably infinite set L of locations (e.g., the natural num-
bers). Let W be the category consisting of finite subsets w ⊆ L as objects and
injections f : w1 → w2 as morphisms. We call the objects w of W worlds. The
intuition is that w ∈ W describes (a superset of) the locations currently in use; in
particular, every location not in w will be fresh. The inclusion w ⊆ w′ is written
ιw

′

w , and the notation f : w1
∼→ w2 is used to indicate that f is a bijection.

The injections formalise a possible renaming of locations, as well as an ex-
tension of the set of available locations because of allocation.

3.2 Semantic Domains: Stores, Values and Commands

Let pCpo be the category of cpos (partial orders closed under taking least upper
bounds of countable chains, but not necessarily containing a least element) and
partial continuous functions. For a partial continuous function g we write g(a)↓ if



the application is defined, and g(a)↑ otherwise. By g;h we denote composition in
diagrammatic order. Let Cpo be the subcategory of pCpo where the morphisms
are total continuous functions. For cpos A and B we write A ⇀ B and A → B
for the cpos of partial and total continuous functions from A to B, respectively,
each with the pointwise ordering. For a family (Ai) of cpos,

∑
i Ai denotes their

disjoint union; we write its elements as 〈i, a〉 where a ∈ Ai.
For every w ∈ W we define a cpo of w-stores as records of values whose

domain is a subset of w (viewed as discrete cpo). The fields of such a store
contain values that may refer to locations in w:

St(w) = Recw(Val(w)) =
∑

w′⊆w

(w′ → Val(w)) (1)

We abuse notation to write s for 〈w′, s〉 ∈ St(w); we set dom(s) = w′ and may use
record notation {|l = vl|}l∈dom(s) where s(l) = vl. The order on (1) is defined in
the evident way, by r v s iff dom(r) = dom(s) and r(l) v s(l) for all l ∈ dom(r).

A value (over locations w ∈ W) is either a basic value in BVal , a location
l ∈ w, or a command, i.e.,

Val(w) = BVal + w + Com(w) (2)

We assume BVal is a discretely ordered cpo that contains integers and booleans.
Commands c ∈ Com(w) operate on the store; given an initial store the com-

mand may either diverge, terminate abnormally or terminate with a result store.
Abnormal termination is caused by dereferencing dangling pointers which may
refer to memory locations that either have not yet been allocated, or have al-
ready been disposed of. Thus, in contrast to [23] where store could not vary
dynamically, we need to have a defined result error to flag undefined memory
access. The possibility of dynamic memory allocation prompts a further refine-
ment compared to [23]: a command should work for extended stores, too, and
may also extend the store itself.

Formally, the collection of commands is given as a functor Com : W −→ Cpo,
defined on objects by

Com(w) =
∏

i:w→w′

(St(w′) ⇀ (error +
∑

j:w′→w′′

St(w′′))) (3)

and on morphisms by the obvious restriction of the product,

Com(f : w1 → w2)(c)i:w2→w3 = c(f ;i)

Viewing commands this way is directly inspired by Levy’s model of an ML-like
higher-order language with general references [11].

By considering BVal as constant functor, and locations as the functor W −→
Cpo that acts on f : w1 → w2 by sending l ∈ w1 to f(l) ∈ w2, Val can also be
seen as a functor W −→ Cpo. Note that, by expanding the requirements (1), (2)
and (3), Val is expressed in terms of a mixed-variant recursion. In Section 3.3
we address the issue of well-definedness of Val .



One might want to exclude run-time memory errors statically (which is pos-
sible assuming memory is never disposed, so that there is no way of introducing
dangling pointers from within the language). An obvious solution to model this
is by defining w-stores as

∏
w Val(w), i.e., all locations occurring in values are

guaranteed to exist in the current store. However, this approach means that there
is no canonical way to extend stores, nor can values be restricted to smaller lo-
cation sets. Consequently St is neither co- nor contravariantly functorial3. In
contrast, our more permissive definition of stores (that may lead to access er-
rors) does allow a functorial interpretation of St , as follows. For an injection
f : w1 → w2 we write f−1 : imf → w1 for the right-inverse to f , and let

St(f) : Recw1(Val(w1)) → Recw2(Val(w2))

St(f) = λ〈w ⊆ w1, s〉. 〈fw, f−1; s;Val(f)〉

The case where f is a bijection then corresponds to a consistent renaming of the
store and its contents. We will make some use of the functoriality of St in the
following, to lift recursively defined predicates from values to stores.

For s1, s2 ∈ St(w) we write s1 ⊥ s2 if their respective domains w1, w2 ⊆ w are
disjoint. In this case, their composition s1 ∗ s2 ∈ St(w) is defined by conjoining
them in the obvious way, it is undefined otherwise. Observe that for f : w → w′

we have St(f)(s1 ∗ s2) = St(f)(s1) ∗ St(f)(s2); the right-hand side is defined
because f is injective.

3.3 Domain Equations and Relational Structures on
Bilimit-Compact Categories

This section briefly summarises the key results from [11, 27] about the solution
of recursive domain equations in bilimit-compact categories. We will make use of
the generalisation of Pitts’ techniques [18] for establishing the well-definedness
of (recursive) predicates, as outlined in [11].

Definition 1 (Bilimit-Compact Category [11]). A category C is bilimit-
compact if

– C is Cpo-enriched and each hom-cpo C(A,B) has a least element ⊥A,B such
that ⊥ ◦ f = ⊥ = g ◦ ⊥;

– C has an initial object; and
– in the category CE of embedding-projection pairs of C, every ω-chain ∆ =

D0 → D1 → . . . has an O-colimit [27]. More precisely, there exists a cocone
(en, pn)n<ω : ∆ → D in CE such that tn<ω(pn; en) = idD in C(D,D).

It follows that every locally continuous functor F : Cop × C −→ C has
a minimal invariant, i.e., an object D and isomorphism i in C such that i :
F (D,D) ∼= D (unique up to unique isomorphism) and idD is the least fixed

3 Levy [11] makes this observation for a similar, typed store model.



Table 4. Solving the domain equation: FVal , FCom : Cop × C −→ C and FSt : C −→ C

On C-objects A−, A+, B, worlds w, w′ ∈ W and f : w → w′,
FVal(A

−, A+)(w) = BVal + w + FCom(A−, A+)(w)

FVal(A
−, A+)(f) = λv.

8><>:
v if v ∈ BVal

f(v) if v ∈ w

FCom(A−, A+)(f)(v) if v ∈ FCom(A−, A+)(w)

FCom(A−, A+)(w) =
Q

i:w→w′(FSt(A
−)(w′) ⇀ (error +

P
j:w′→w′′ FSt(A

+)(w′′)))

FCom(A−, A+)(f) = λcλi. c(f ;i)

FSt(B)(w) =
P

w1⊆w(w1 → B(w))

FSt(B)(f) = λ〈w1, s〉. 〈fw1, f
−1; s; B(f)〉

On C-morphisms h = (hw) : B− .
⇀ A− and k = (kw) : A+ .

⇀ B+,

FVal(h, k)w = λv.

(
v if v ∈ BVal or v ∈ w

FCom(h, k)w(v) if v ∈ FCom(A−, A+)

FCom(h, k)w = λcλi:w → w′λs.8>>>>>><>>>>>>:

undefined if FSt(h)w′(s)↑
or FSt(h)w′(s)↓ ∧ ci(FSt(h)w′(s))↑
or ci(FSt(h)w′(s)) = 〈j : w′ → w′′, s′〉 ∧ FSt(k)w′′(s′)↑

error if FSt(h)w′(s)↓ ∧ ci(FSt(h)w′(s)) = error

〈j, FSt(k)w′′(s′)〉 if ci(FSt(h)w′(s)) = 〈j : w′ → w′′, s′〉 ∧ FSt(k)w′′(s′)↓

FSt(k)w = λ〈w1, s〉.

(
〈w1, s; kw〉 if ∀l ∈ w1. kw(s(l))↓
undefined otherwise

point of the continuous endofunction δ : C(D,D) → C(D,D) defined by δ(e) =
i−1;F (e, e); i [18]. To ease readability the isomorphism i is usually omitted below.

To solve the domain equation of the preceding subsection we shall be inter-
ested in the case where C denotes the category [W,Cpo] of functors W −→ Cpo
and partial natural transformations, i.e., a morphism e : A

.
⇀ B in C is a

family e = (ew) of partial continuous functions ew : A(w) ⇀ B(w) such that
A(f); ew′ = ew;B(f) for all f : w → w′.

Lemma 1 (Bilimit-Compactness [11]). C = [W,Cpo] is bilimit-compact.

Thus, for well-definedness of Val it suffices to show that requirements (1),
(2) and (3) induce a locally continuous functor Cop × C −→ C for which Val is
the minimal invariant. Table 4 defines such a functor FVal in the standard way
[18], by separating positive and negative occurrences of St in (3).

Lemma 2 (Minimal Invariant). FVal : Cop × C −→ C is locally continuous.
In particular, the minimal invariant Val = FVal(Val ,Val) exists.

From this we can then define Com = FCom(Val ,Val) and St = FSt(Val)
which satisfy (3) and (1). The minimal invariant in fact lives in the category
of functors W −→ Cpo and natural transformations that are total, i.e., those
e = (ew) : A

.→ B where each ew is a total continuous function A(w) → B(w).



This is because FVal restricts to this category, which is sub-bilimit-compact
within C in the sense of [11]. A (normal) relational structure R on C in the
sense of Pitts [18] is given as follows.

Definition 2 (Kripke Relational Structure). For each A : W −→ Cpo
let R(A) consist of the W-indexed families R = (Rw) of admissible predicates
Rw ⊆ A(w) such that for all f : w → w′ and a ∈ A(w),

a ∈ Rw =⇒ A(f)(a) ∈ Rw′ (KripkeMon)

For each natural transformation e = (ew) : A
.

⇀ B and all R ∈ R(A), S ∈ R(B),

e : R ⊂ S :⇐⇒ ∀w ∈ W∀a ∈ A(w). a ∈ Rw ∧ ew(a)↓ =⇒ ew(a) ∈ Sw

Note that (KripkeMon) in particular covers the case where f : w → w is a
bijection, i.e., the Kripke relations are invariant under permutation of locations.

For an object A : W −→ Cpo and R-relation R = (Rw) ∈ R(A) we let
St(R) ∈ R(FSt(A)) be the relation where s ∈ St(R)w if and only if s(l) ∈ Rw

for all l ∈ dom(s). It is easy to check admissibility and (KripkeMon). Two
elementary properties are stated in the following lemma.

Lemma 3 (Relations over St). Let A,B : W −→ Cpo, R ∈ R(A), S ∈
R(B). Let e : A

.→ B and w ∈ W.

1. If e : R ⊂ S then FSt(e) : St(R) ⊂ St(S).
2. If s1, s2 ∈ FSt(A)(w) and s1 ⊥ s2 then s1 ∈ St(R)w and s2 ∈ St(R)w if and

only if s1 ∗ s2 ∈ St(R)w.

Theorem 1 (Invariant Relation [18]). Let FVal be the locally continuous
functor for which Val is the minimal invariant. Suppose Φ maps R-relations to
R-relations such that for all R,R′, S, S′ ∈ R(Val) and e v idVal ,

e : R′ ⊂ R ∧ e : S ⊂ S′ =⇒ F (e, e) : Φ(R,S) ⊂ Φ(R′, S′)

Then there exists a unique ∆ ∈ R(Val) such that Φ(∆, ∆) = ∆.

Proof. By [11], the proof of Pitts’ existence theorem [18, Thm. 4.16] gener-
alises from Cppo (pointed cpos and strict continuous maps) to arbitrary bilimit-
compact categories. Since the R-relations of Definition 2 are admissible in the
sense of [18] and R has inverse images and intersections, the theorem follows. ut

3.4 Safety Monotonicity and Frame Property

Safety monotonicity is the observation that if executing a command in heap
h does not result in a memory fault, then this is also true when running the
command in a heap that extends h. The second key semantic principle underlying
separation logic is the observation that if execution of a command does not result
in a memory fault (i.e., no dangling pointers are dereferenced), then running the
command in an extended heap does not influence its observable behaviour — in



particular, the additional heap region remains unaffected. The frame property
[25] formalises this idea. Since the actual results of these executions may differ in
the action of the memory allocator, the choice of locations is taken into account.

As the store may contain commands itself (which may be executed), both
safety monotonicity and frame property must already be required to hold of the
data in the initial store. In order to give a sufficiently strong induction hypothesis
later, we additionally require that the properties are preserved by the execution
of commands. Unfortunately, we cannot adopt separate definitions for safety
monotonicity and frame property (like [25]) but have to combine them. The
reason is that safety monotonicity is not preserved by composition of commands,
unless commands additionally satisfy the frame property.4 Because of the higher-
order store, both properties are expressed by mixed-variant recursive definitions,
and existence of a predicate satisfying these definitions requires a proof. It is in
this proof that both properties are needed simultaneously.

For this reason the following property LC (for “local commands”) is pro-
posed, subsuming both safety and frame property: For R,S ∈ R(Val) let Φ(R,S)
be the W-indexed family of relations where

c ∈ Φ(R,S)w :⇐⇒ c ∈ Com(w) =⇒
∀f :w→w2 ∀i:w2

∼→w′2 ∀g:w2→w3 ∀s1, s2 ∈ St(R)w2 ∀s′ ∈ St(w3). s1 ⊥ s2 =⇒
cf (s1)↑ =⇒ cf ;i(St(i)(s1 ∗ s2))↑
∧ cf (s1 ∗ s2) = error =⇒ cf ;i(St(i)(s1)) = error

}
safety mon.

∧ cf (s1) 6= error ∧ cf (s1 ∗ s2) = 〈g, s′〉 =⇒
∃g′:w′2→w′3 ∃j:w′3

∼→w3 ∃s′1 ∈ St(w′3)∃s′2 ∈ St(w2).
cf ;i(St(i)(s1)) = 〈g′, s′1〉 ∧ s′2 v s2 ∧ i; g′; j = g
∧ s′ = St(j)(s′1 ∗ St(i; g′)(s′2)) ∧ s′ ∈ St(S)w3

 frame property

and define the predicate LC ∈ R(Val) on values as the fixpoint LC = Φ(LC ,LC )
of this functional.

This definition is complex so some remarks are in order. Besides combining
safety and frame property, Φ strengthens the obvious requirements by allowing
the use of a renaming i on the initial store as well. This provides a strong
invariant that we need for the proof of Theorem 2 below in the case of sequential
composition. To obtain the fixed point of Φ, Lemma 4 appeals to Theorem 1
which forced us to weaken the frame property to an inequality (s′2 v s2). This
extends conservatively the usual notion of [25] to the case of higher-order stores.

Lemma 4 (Existence). LC is well-defined, i.e., there exists a unique LC ∈
R(Val) such that LC = Φ(LC ,LC ).

Proof. One checks that Φ maps Kripke relations to Kripke relations, i.e. for all
R,S ∈ R(Val), Φ(R,S) ∈ R(Val). By Theorem 1 it remains to show for all
e v idVal , if e : R′ ⊂ R and e : S ⊂ S′ then FVal(e, e) : Φ(R,S) ⊂ Φ(R′, S′). ut
4 As pointed out to us by Hongseok Yang, this is neither a consequence of using a de-

notational semantics, nor of our particular formulation employing renamings rather
than non-determinism; counter-examples can easily be constructed in a relational
interpretation of commands.



4 Semantics of Programs and Logic

Table 5 contains the interpretation of the language. Commands and expressions
depend on environments because of free (stack) variables, so that E JeK : Env .→
Val and C JcK : Env .→ Com where the functor Env is ValVar. The semantics of
boolean and integer expressions is standard and omitted from Table 5; because of
type mismatches (negation of integers, addition of booleans,. . . ) expressions may
denote error. The semantics of quote refers to the interpretation of commands
and uses the injection of Com into Val . Sequential composition is interpreted
by composition in the functor category but also propagates errors and non-
termination. Conditional and skip are standard. The semantics of the memory
commands is given in terms of auxiliary operations extend and update.

The following theorem shows the main result about the model: commands of
the above language satisfy (and preserve) the locality predicate LC .

Theorem 2 (Locality). Let w ∈ W and ρ ∈ Env(w) such that ρ(x) ∈ LCw for
all x ∈ Var. Let c ∈ Com. Then JcKw ρ ∈ LCw.

Proof. By induction on c. The case of sequential composition relies on LC taking
safety monotonicity and frame property into account simultaneously. ut

4.1 Interpretation of the Logic

The assertions of the logic are interpreted as predicates over St that are compati-
ble with the possible-world structure. In contrast to theR-relations of Section 3.3
they depend on environments, and downward-closure is required to prove the
frame rule sound. This is made precise by the following relational structure S.

Definition 3 (dclKripke Relational Structure). Let S consist of the W-
indexed families p = (pw) of predicates pw ⊆ Env(w) × St(w) such that for all
f : w → w′, ρ ∈ Env(w) and s ∈ St(w),

Kripke Monotonicity if (ρ, s) ∈ pw then (Env(f)(ρ),St(f)(s)) ∈ pw′ ;
Downward Closure {s ∈ St(w) | (ρ, s) ∈ pw} is downward-closed in St(w).

For each natural transformation e = (ew) : Val .
⇀ Val and p, q ∈ S we write

e : p ⊂ q if for all w ∈ W, ρ ∈ Env(w) and s ∈ St(w),

(ρ, s) ∈ pw ∧ (FEnv(e)w(ρ)↓ ∨FSt(e)w(s)↓) =⇒ (FEnv(e)w(ρ), FSt(e)w(s)) ∈ qw

where FEnv(e) = FVal
Var(e, e).

Assertions P ∈ Assn are interpreted by S-relations A JP K. Some cases of the
definition are given in Table 6. All assertions are indeed downward-closed in the
store component, and pure assertions denote either true or false since they do
not depend on the heap. The interpretation shows that ≤ is not supposed to
compare code (but yield false instead). Correspondingly, we assume the non-
standard axiom ¬(‘c1’ ≤ e2) ∧ ¬(e1 ≤ ‘c2’) for the comparison operator.

We can now give the semantics of Hoare triples. Correctness is only ensured
if the command in question is run on stores that contain local procedures only.



Table 5. Semantics of expressions and commands

E JeK : Env
.→ Val + error where f : w → w′

E J‘c’Kw ρ = C JcKw ρ

C JcK : Env
.→ Com where f : w → w′ and s ∈ St(w′)

(C JskipKw ρ)f (s) = 〈id , s〉

(C Jc1;c2Kw ρ)f (s) =

8><>:
undefined if (C Jc1Kw ρ)fs↑
error if (C Jc1Kw ρ)fs = error

(C Jc2Kw ρ)(f ;g)s
′ if (C Jc1Kw ρ)fs = 〈g, s′〉

(C Jif b then c1 else c2Kw ρ)f (s) =

8><>:
(C Jc1Kw ρ)fs if E JbKw ρ = true

(C Jc2Kw ρ)fs if E JbKw ρ = false

error otherwise

(C Jlet x=new e in cKw ρ)f (s) = let l = min{l ∈ L | l /∈ w}, s′ = extendw′,l(Val(f)(E JeKw ρ), s)

in (C JcKw′∪{l} (Env(f ; ι
w′∪{l}
w′ )(ρ))[x := l])ids′; shift

(f ;ι
w′∪{l}
w′ )

(C Jfree xKw ρ)f (s) =

8><>:
〈id , {|l′ = s(l′)|}l′∈dom(s), l′ 6=l〉

if ∃l ∈ w. E JxKw ρ = l and f(l) ∈ dom(s)

error otherwise

(C J[x]:=eKw ρ)f (s) =

8>>><>>>:
〈id , updatew′(f(l), s, Val(f)(E JeKw ρ))〉

if ∃l ∈ w. E JxKρ = l and f(l) ∈ dom(s)

and E JeKw ρ ∈ Val(w)

error otherwise

(C Jlet y = [x] in cKw ρ)f (s) =

8><>:
(C JcKw′ (Env(f)(ρ))[y := s(f(l))])id(s); shiftf

if ∃l ∈ w. E JxKw ρ = l and f(l) ∈ dom(s)

error otherwise

(C Jeval eKw ρ)f (s) =

(
(E JeKw ρ)fs if E JeKw ρ ∈ Com(w)

error otherwise

shiftf : (error +
P

g′:w′→w′′ St(w′′)) → (error +
P

g:w→w′′ St(w′′))

shiftf (v) =

(
error if v = error

〈f ; g′, s′〉 if v = 〈g′, s′〉
extendw,l : Val(w)× St(w) → St(w ] {l})
extendw,l(v, s) = St(ι

w∪{l}
w )(s) ∗ {|l = Val(ι

w∪{l}
w )(v)|}

updatew : w × St(w)×Val(w) → St(w)
updatew(l, s, v) = {|l=v|} ∗ {|l′=s(l′)|}l′∈dom(s),l′ 6=l

Definition 4 (Validity). Let w ∈ W, ρ ∈ Env(w), s ∈ St(LC )w, c ∈ Com(w)∩
LCw and p, q ∈ S. An auxiliary meaning of “semantical triples” with respect to
a fixed world, written (ρ, s) |=w {p} c {q}, holds if and only if for all f : w → w1,

∀g : w1 → w2 ∀s′ ∈ St(w2). (Env(f)(ρ),St(f)(s)) ∈ pw1 ∧
cf (St(f)(s)) = 〈g, s′〉 =⇒ (Env(f ; g)(ρ), s′) ∈ qw2

Observe that {p} c {true} means that, assuming p for the initial state, the com-
mand does not lead to a memory fault. Validity of syntactic triples in context



Table 6. Interpretation of assertions

A JP K : S
(ρ, s) ∈ A JtrueKw :⇐⇒ true
(ρ, s) ∈ A Je1 ≤ e2Kw :⇐⇒ E JeiKw ρ /∈ Com(w) ∧ E Je1Kw ρ ≤ E Je2Kw ρ
(ρ, s) ∈ A J¬AKw :⇐⇒ (ρ, s) /∈ A JAKw

(ρ, s) ∈ A JP ∧QKw :⇐⇒ (ρ, s) ∈ A JP Kw ∧ (ρ, s) ∈ A JQKw

(ρ, s) ∈ A J∀x. P Kw :⇐⇒ ∀v∈Val(w). (ρ[x 7→ v], s) ∈ A JP Kw

(ρ, s) ∈ A JempKw :⇐⇒ dom(s) = ∅
(ρ, s) ∈ A JP1 ∗ P2Kw :⇐⇒ ∃s1, s2 ∈ St(w). s = s1 ∗ s2 ∧ (ρ, si) ∈ A JPiKw

(ρ, s) ∈ A Jx 7→ eKw :⇐⇒ dom(s) = {ρ(x)} ∧ s(ρ(x)) v E JeKw ρ

of assumptions is written |= {P1} c1 {Q1} , . . . , {Pn} cn {Qn} ` {P} c {Q} and
holds if and only if for all w ∈ W,

∀ρ∈Env(w)∀s∈St(LC )w.
∧

1≤i≤n

(ρ, s) |=w {A JPiK} C JciKw ρ {A JQiK}

=⇒ (ρ, s) |=w {A JP K} C JcKw ρ {A JQK}

For an empty context we simply write |= {P} c {Q} instead of |= ` {P} c {Q}.

Theorem 3 (Soundness). The logic presented in Section 2.2 is sound with
respect to our semantics.

Proof. Lack of space permits only a sketch for the two most interesting rules.

Soundness of the frame rule (Frame). Except for exploiting the renaming of
locations the proof uses the standard argument: Suppose {P} c {Q} is valid, let
w1 ∈ W, ρ ∈ Env(w1) and s ∈ St(LC )w1 such that (Env(f)(ρ),St(f)(s)) ∈
A JP ∗RKw2

and cf (St(f)(s))↓, where f : w1 → w2. Thus, St(f)(s) = s1 ∗ s2 for
some s1, s2 with (Env(f)(ρ), s1) ∈ A JP Kw2

and (Env(f)(ρ), s2) ∈ A JRKw2
.

Now if cf (St(f)(s)) = error then, by assumption c ∈ LCw, also cf (s1) = error
which contradicts validity of {P} c {Q}. Thus, cf (St(f)(s)) = 〈g, s′〉 for some
g : w2 → w3 and s′ ∈ St(w3). By c ∈ LCw there exist g′ : w2 → w′3, j : w′3

∼→ w3,
s′1 ∈ St(w′3) and s′2 ∈ St(w2) such that s′2 v s2, cf (s1) = 〈g′, s′1〉 and

s′ = St(j)(s′1) ∗ St(g′; j)(s′2) (4)

Downward-closure of A JRK entails (Env(f)(ρ), s′2) ∈ A JRKw2
, and therefore

(Env(f ; g′; j)(ρ),St(g′; j)(s′2)) ∈ A JRKw3
by Kripke monotonicity. By validity of

{P} c {Q} we have (Env(f ; g′)(ρ), s′1) ∈ A JQKw′
3
. Kripke monotonicity of A JQK

and (4) entail (Env(f ; g)(ρ), s′) ∈ A JQ ∗RKw3
, proving |= {P ∗R} c {Q ∗R}.

Soundness of the recursion rule (Rec). This is proved along the lines of [23]:
Pitts’ technique (cf. Theorem 1) is used to establish existence of a suitable re-
cursive S-relation containing the commands defined by mutual recursion. As in
[23] one shows for all assertions P that A JP K ∈ S satisfies the following prop-
erties: for all w ∈ W, the set {s | (ρ, s) ∈ A JP Kw} is downward closed, the set
{ρ | (ρ, s) ∈ A JP Kw} is upward closed, and e : A JP K ⊂ A JP K for all e v idVal .



The first property is built into the definition of S-relations, the latter two can
be established by induction on assertions. Note that the way x 7→ e and e1 ≤ e2

are defined in Table 6 is essential for this result. In particular, e1 ≤ e2 had to
be defined differently in [23] where the extra level of locations was absent. ut

5 Conclusions and Further Work

We have presented a logic for higher-order store that admits a local reasoning
principle in form of the (first-order) frame rule. Soundness relies on a denota-
tional semantics employing powerful constructions known from domain theory.

Our reasoning principle for recursion through the store (Rec) is based on
explicitly keeping track of the code in pre- and postconditions. Instead of code,
Honda et al. [8] use abstract specifications of code, in terms of nested triples
in assertions. Their logic is for programs of an ML-like imperative higher-order
language, with dynamic memory allocation and function storage. In contrast
to our work, it builds on operational techniques and does not address local
reasoning. Consequently, an improvement of our logic would be the integration
of nested triples in assertions while admitting a frame rule that is proved sound
employing the semantical approach presented here.

Stored procedures are particularly important for object-oriented program-
ming, and we are currently investigating how a separation logic for higher-order
store can be extended to simple object-based languages like the object calculus
to obtain a logic that combines the power of local reasoning with the principle
ideas of Abadi and Leino’s logic [1, 21]. To achieve that, our results need to be
generalised from Hoare triples to more general transition relations. Separation
conjunction in such a framework has been considered in [19].

There are several possibilities for further improvements. It would be inter-
esting to see if the FM models of [26, 3], rather than a presheaf semantics, can
simplify the semantics. It also needs to be investigated whether a higher-order
frame rule can be proven sound in our setting analogous to [16, 5].
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