Saarland University
Faculty of Natural Sciences and Technology I
Department of Computer Science
Master’s Program in Computer Science

Master’s Thesis

Proof Representations for Higher-Order Logic

submitted by

Christine S Rizkallah
on December 5, 2009

Supervisor
Prof. Dr. Gert Smolka
Advisor
Dr. Chad E Brown

Reviewers

Prof. Dr. Gert Smolka
Dr. Chad E Brown

Eidesstattliche Erkliarung
Ich erkldre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbststindig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath
I hereby confirm under oath that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverstindniserklirung
Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die Biblio-
thek der Informatik aufgenommen und damit verdffentlicht wird.

Declaration of Consent
I agree to make both versions of my thesis (with a passing grade) accessible to the public by
having them added to the library of the Computer Science Department.

SAATDITCKEN, wvuviieieieiiiiiicie e e
(Datum / Date) (Unterschrift / Signature)

Acknowledgment

First of all, I would like to thank Chad E Brown and Prof. Gert Smolka for offering me this
exciting topic. I am very grateful to Chad for the huge amount of time that he invested and for
the constant assistance he gave me. I also thank Prof. Smolka for offering me advice when I
needed it. Finally, I thank Georg Neis for proofreading my thesis.

Abstract

We provide a mapping from classical extensional tableau proofs of higher-order formulas to
intuitionistic non-extensional natural deduction proofs of semantically equivalent formulas. We
show that the Kuroda transformation, which is known to map from first-order classical logic
to first-order intuitionistic logic, extends to elementary type theory. Moreover, we introduce a
transformation that we call Girard-Kuroda-Per and prove that this transformation maps from
classical extensional to intuitionistic non-extensional simple type theory.

vi

Contents

1 Introduction

2 Simple Type Theory
2.1 Syntax e e e e e
2.2 Semantics e e

3 Tableau Calculi
3.1 Definitions L e e e e e
3.2 Our Tableau Rules e
3.3 Examples L

4 Natural Deduction Calculus
4.1 A Natural Deduction Calculus N e
4.2 Coq . oo e

5 Logical Transformations
5.1 Definitionso
5.2 Translation e

6 The Girard Transformation
6.1 The Girard Transformation g oL,
6.2 The Tableau Calculus 7, | i
6.3 The Tableau Calculus Toee . .+« v v i v v i e s e e e e e e e e e
6.3.1 Wg does not Respect Tgee -« -« v v o oo oo
6.3.2 Tableau Rules in 7. that are Respected by ¥
6.3.3 Tableau Rules in 7,.. that are not Respected by \Ilg
6.4 The Tableau Calculus Try; « - - - v o o v v o e e e e e e e e e e
6.4.1 Wg does not Respect Tryn - -« o v o o o oo
6.4.2 Tableau Rules in 7p,;; that are Respected by e oo
6.4.3 Tableau Rules in 7p,;; that are not Respected by e o

7 The Girard-Kuroda Transformation
7.1 Properties of the Girard-Kuroda Transformation
7.2 The Tableau Calculus Tojem - « « v« v v v e e e e e e e e e e e e e

vii

= W

co 0o N

13
13
14

15
15
16

17
17
18
21
21
22
22
23
23
23
24

viii CONTENTS
8 The Girard-Kuroda-Per Transformation 29
8.1 The Girard-Kuroda-Per Transformation Wgxep 29
8.2 Wgkp is a Logical Transformation 30
8.3 Propertiesof R e 31
8.4 The Tableau Calculus Tpuii,,. - - - - « « « « o o v i e e e 36
8.5 Woiep TeSPECES TFull, e « « =+« v o e e e e e e e e e e e e 37

9 Conclusion and Future Work 43
A Girard Transformation 47
A.1 Defining basic types i, 0 L 47
A.2 Girard Transformation e 47
A2.1 Short Hand 47

A3 Symmetry of equality 47
A4 Transitivity of equality oL 48
A5 Negative transitivity 48
A6 Lemmas o e e e e e e 48
A6.1 ClosedFalse Rule. 48

A6.2 Closed Not True Rule 48

A6.3 ClosedRule e 48

A64 Closed Neg Equal Rule 48

A.6.5 Closed Symmetric Rule 48

A.6.6 Double Negation Rule 48

A6.7 CutRule e 49

A.6.8 TImplication Rule 49

A.6.9 Negative Implication Rule 49

A6.10 And Rule e 49
A6.11OrRule e 49

A6.12 Neg And Rule 49

A6.13 NegOrRule 49

A6.14 Forall Rule 49

A6.15 Exists Rule 50

A.6.16 DeMorgan Exists Rule L 50

A.6.17 Boolean Equality Rule o 50

A.6.18 Leibniz Rule - not used in the Thesis 50

A.6.19 Functional Equality Rule 50

A.6.20 Mating Rule - 2 argumentso 50

A.6.21 Decomposition Rule - 2 arguments 50

A.6.22 Confrontation Rule, 51

B Girard-Kuroda Transformation 53
B.1 Defining basic types i, 0o 53
B.2 Girard-Kuroda Transformation 53
B.2.1 Short Hand e 53

B.3 Symmetry of equalityo 53
B.4 Transitivity of equality Lo 54
B.5 Negative transitivityo 54
B.6 Lemmas o e e e e e e e e e e e 54

B.6.1 Closed False Rule. 54

CONTENTS ix

B.6.2 Closed Not True Rule 54
B.6.3 Closed Rule 54
B.6.4 Closed Neg Equal Rule 54
B.6.5 Closed Symmetric Rule, 54
B.6.6 Double Negation Rule 54
B.6.7 CutRule 55
B.6.8 Implication Rule 95
B.6.9 Negative Implication Rule 55
B.6.10 And Rule 55
B.6.11 Or Rule e 55
B.6.12 Neg And Rule 55
B.6.13 Neg Or Rule e 55
B.6.14 Forall Rule 55
B.6.15 DeMorgan Forall Rule, 56
B.6.16 Exists Rule 56
B.6.17 DeMorgan Exists Rule o 56
B.6.18 Boolean Equality Rule o o 56
B.6.19 Leibniz Rule 56
B.6.20 Functional Equality Rule, 56
B.6.21 Mating Rule - 2 arguments oo o 56
B.6.22 Decomposition Rule - 2 arguments 57
B.6.23 Confrontation Rule 57

C Girard-Kuroda-Per Transformation 59
C.1 Defining basic types ¢, 0 L 59
C.2 Girard-Kuroda-Per Transformation 59
C.2.1 Short Hand 59

C.3 Some Definitions 60
C.3.1 Definition of SymNego o 60
C.3.2 Recursive definition of Sym oo Lo o 60
C.3.3 Recursive definition of Tra 60
C.3.4 Definition of TraNeg relative to Tra 61

Cd Lemmas o o e e 61
C.4.1 Closed False Rule. 0 61
C.4.2 Closed Not True Rule 61
C43 Closed Rule o e 61
C.44 Closed Neg Equal Rule 61
C.4.5 Closed Symmetric Rule 61
C.4.6 Double Negation Rule 61
C.4.7 Restricted Cut Rule o 61
C.4.8 TImplication Rule 62
C.4.9 Negative Implication Rule 62
C410 And Rule oo e 62
C411 OrRule e 62
C4.12 Neg And Rule 62
C413 Neg OrRule 62
C.4.14 Restricted Forall Rule o 62
C.4.15 DeMorgan Forall Rule 62

C4.16 Exists Rule e 63

C.5

CONTENTS

C.4.17 DeMorgan Exists Rule L. . oo 63
C.4.18 Boolean Equality Rule L o 63
C.4.19 Boolean Extensionality Rule 63
C.4.20 Restricted Functional Equality Rule 63
C.4.21 Functional Extensionality Rule 63
C.4.22 Mating Rule - 1 argument 64
C.4.23 Mating Rule - 2 arguments L. 64
C.4.24 Decomposition Rule - 1 argument 64
C.4.25 Decomposition Rule - 2 arguments 64
C.4.26 Confrontation Rule L o 65
Other Lemmas e e e 65
C.5.1 Lemma 8.3.9 e 65
C.5.2 Lemma 8.3.8 65
C.5.3 Lemma 8.3.11 65
C.54 Lemma 8.3.12 65
C.5.5 Lemma 83.13 e 66
C.5.6 Lemma 83.14 66
C.5.7 Lemma 83.17 o e 66
C.5.8 Lemma 8.3.15 67
C.5.9 Lemma83.16 67

C.5.10 Lemma 8.3.19 e e e 68

Chapter 1

Introduction

Given a classical extensional tableau proof of a higher-order formula s, it is not always possible
to find an intuitionistic non-extensional natural deduction proof of s. For example, the formula
pV —p is provable classically but not intuitionistically. Our aim is to find a transformed formula
s’ that is semantically equivalent to s and for which we are able to give an intuitionistic non-
extensional natural deduction proof. We define a transformation which translates formulas s
to semantically equivalent formulas s’ and give a procedure for creating a intuitionistic non-
extensional natural deduction proof of s’ given a classical extensional proof of s.

Over the years a lot of work has been done on translating from classical to intuitionistic
logic. In 1929, Glivenko found a straightforward transformation from propositional classical to
propositional intuitionistic logic [19]. Glivenko’s theorem states that an arbitrary propositional
formula f is classically provable, if and only if == f is intuitionistically provable [19, 32, 31].

Glivenko’s theorem does not extend to first-order predicate logic. However, there are several
logical transformations that transform classical first-order logic to intuitionistic first-order logic:
the Kolmogorov negative translation [29], the Gddel-Gentzen negative translation [29], and the
Kuroda negative translation [29, 24]. The latter double negates the formula and adds double
negations after each occurrence of the V quantifier. A recent paper by Zdanowski [32] shows that
Glivenko’s theorem also holds for second-order propositional logic without the V quantifier.

The Kolmogorov negative translation and the Godel-Gentzen negative translation do not
extend using our definitions to higher-order logic. This is because they do not map propositional
variables to themselves but rather to their double negation and thus they are not compositional.
We depend on the fact that the transformations we use are compositional in proving that they
satisfy our goal. Thus we use the Kuroda transformation which is compositional and show that
it extends to elementary type theory.

In 1956, Gandy introduced a transformation that maps from extensional to non-extensional
simple type theory [14]. It translates equality with the help of a binary relation and a predicate
that are defined by mutual recursion. The transformation we introduce, called Girard-Kuroda-
Per, transforms equality with the help of a single binary relation that is defined inductively on
types, and which turns out to be a partial equivalence relation. We prove that our transformation
maps from classical extensional to intuitionistic non-extensional simple type theory.

As we have seen, mapping from one logic to another is an interesting problem that has been
investigated for a long time. Our practical motivation for working on this problem is related
to a software called JavaScript Interactive Higher-Order Tableau Prover (Jitpro) developed by
Brown [33]. Jitpro is a relatively new interactive theorem prover for higher-order logic that
outputs classical extensional tableau proofs. Our goal is to be able to translate these proofs

2 CHAPTER 1. INTRODUCTION

into intuitionistic non-extensional natural deduction proof terms, which can then be verified by
Coq [5], a widely used proof assistant.

The thesis is structured as follows. In Chapter 2 we give a brief overview of simple type theory
and in Chapter 3 we introduce the tableau calculi that we consider. We then present the targeted
natural deduction calculus A in Chapter 4. In Chapter 5 we declare some definitions and helpful
theorems that we extensively use in the subsequent three chapters. In particular, we introduce
in the notion of logical transformation and of a logical transformation respecting a tableau
calculus, and then prove that our problem is reducible to providing a logical transformation
that respects a complete higher-order tableau calculus. In Chapter 6 we introduce a logical
transformation (Girard transformation) that respects most of the tableau rules. In Chapter 7 we
modify this logical transformation to obtain one (Girard-Kuroda transformation) that respects
an additional rule. We show that Girard-Kuroda maps classical elementary type theory to
intuitionistic elementary type theory. Chapter 8 includes the Girard-Kuroda-Per transformation,
which respects a specific complete higher-order tableau calculus called 7g,;,... We conclude in
Chapter 9 and provide suggestions for future work.

Chapter 2

Simple Type Theory

We use simple type theory based on the simply typed A-calculus, which is the most prominent
form of higher-order logic [13, 2|. Simple type theory originated in 1940 with Church [10] but
goes back to ideas of Ramsey [26] and Chwistek [11] in the 1920s. Its purpose was to simplify the
ramified theory of types that was first introduced by Russell in 1908 [27], then used for formalizing
some fragments of mathematics in Principia Mathematica by Russell and Whitehead in 1913 [30].
It provides the logical base of the proof assistants Isabelle [25] and HOL [20].

Henkin defined standard and gemeral interpretations for typed A-calculus [21]. He proved
the completeness of simple type theory with respect to general interpretations [9]. We use the
general Henkin interpretation, since it corresponds to our tableau calculi and it makes our result
more general.

We now give a brief introduction to simple type theory. For more details, please see Baren-
dregt [3] and Hindley [22].

2.1 Syntax

We will now define simply typed terms as syntactic objects.

Definition 2.1.1 (Types). Let {0, ¢} be the set of basic types. The set T of types is defined
inductively as

T(o,7,...)i=t|0o|oc—T
where o is the type of propositions, ¢ the type of individuals, and — is a function type constructor.

We use « to range over the basic types and o,7,01,02,... to range over elements of T. A
type of the form o — 7 is called a function type. Parentheses in types will often be omitted by
association to the right. For example, by ¢ — ¢ — 7 we mean o — (¢ — 7). Moreover, we often
drop the arrows, so that the example becomes oo.

Definition 2.1.2 (Terms). Let V be a countably infinite set of variables. Assume TNV = {.
The set of terms Ter is defined as

Ter(s,t,...)u=z|c|st]|Ax.s
where x € Vand c € {T, L, -, — A, V}U{V?, 37, =, | 0 € T}.

3

4 CHAPTER 2. SIMPLE TYPE THEORY

This means that a term is either a variable, a logical constant, an application or a A-
abstraction. We use x, y to range over the variables and s, t, s1, S2, ... to range over elements of
Ter. The V, 3 and = constants are indexed by a type o to denote that the set of logical constants
includes quantifiers and equality at all types. The set is infinite.

We assume that every variable has a unique type. While names and abstractions are always
well-formed, an application st is only well-formed if the type of s is a function type whose
argument type is the type of t.

The following are the typing rules of simply typed terms:

.o S:T S: 0T t:o

x has type o _
T:o AL.S: 0T st:T

The types of the logical constants are as follows:
T:o, L:o, =:00, —: 000, A:o000, V: o000, Y :(c0)o, 37 : (00)o,=4: 000

Following the typing rules, every well-formed term will have a unique type. We write s : o
to say that s is a term of type 0. We use Ter? to mean the set of terms of type o. We only
consider well typed terms.

Definition 2.1.3 (Free Variables F'V). The set of free variables of a term s, written FV, is
defined as follows:

FV(x) = Az}
FV(st) = FV(s)UFV(t)
FV(Ax.s) = FV(s)—{a}

Definition 2.1.4 (Ground Term). A term s is ground if FV (s) = 0.

Definition 2.1.5 (Free Variables FV*). The set of free variables of a set of terms X is defined
as:
FV*(X):= |J FV(s)

seX

Definition 2.1.6 (Fragment). A fragment F is a subset of the set of terms Ter. Ter itself is
called the full fragment.

We have the usual notion of a-, -, 7- equivalence (~q, ~g, ~,) and of 8 normal form ([s]?).
We consider equality of terms up to a-equivalence.

We write s[x := t] for the capture avoiding substitution of term ¢ for variable z in term s. A
simultaneous substitution 0 substitutes several variables simultaneously. The identity substitution
substitutes each variable by itself yielding the same term it has been applied to. We use the
notation 6, [x := t] to mean the simultaneous substitution that agrees with 6 on all variables
except (possibly) x, which is mapped to ¢.

2.2 Semantics

In this section, we define the notion of a general Henkin interpretation of types and terms. We
will define formulas and interpretations and explain what it means that an interpretation satisfies
a formula.

Before we define what an interpretation is, we need a general notion of function.

2.2. SEMANTICS 5}

Definition 2.2.1 (Function). A function f is a set of pairs such that for no pair (z, y) € f
there is a z # y with (x, 2) € f. The domain and the range of a function f are defined as
follows:

Dom f := {x|3y: (z,y) € f}
Ran f := {y[3z: (2, y) € f}

We write f : M — N to state that f is a function such that Dom f = M and Ran f C N.
Moreover, we write f(z) to refer to the y such that (z, y) € f.

We first define the interpretation of types, then use it to define the interpretation of terms.

Definition 2.2.2 (Frame). A frame is a function D defined on T that satisfies the following
properties:

1. D(o) = {0,1}
2. Yo eT: Do) #0
3. Vo,1€T: D(or) C{f|f:D(o) —» D(1)}

We extend frames to assignments, which also give meaning to variables. Then we define an
operator that lifts an assignment to an evaluation, which assigns meanings to terms. Based on
that we define the class of interpretations we are actually interested in.

Definition 2.2.3 (Assignment). An assignment into a frame D is a function Z defined on TUV
such that

1. DCT
2. Z(z) € Z(o) for all types o and variables z : o

Let Z be an assignment into a frame D, x : o be a variable, and a € Z(0). We write Z% to
denote the assignment into D that agrees everywhere with Z except possibly on x where it yields
a.

Definition 2.2.4 (Evaluation Function). We define a function * that maps every assignment 7
into a function Z C {(s,a)|Jo: (s:0)Aa € Z(o)} as follows:

1. Z(z) := Z(x)

2. I(c) := f if c: o, f €Z(0), and f has the usual classical meaning of ¢

4. I(\x.s) == f if \e.s: o7, f €Z(o7), and Va € I(0) : f%(s) = fa
We call Z the evaluation function of T.

Definition 2.2.5 (Interpretation). Z is an interpretation if 7 is a total evaluation function, i.e.,
if 7 is an evaluation function that assigns a meaning to every (well typed) term. We write Interp
for the set of all interpretations.

Note that not every evaluation function is total. This is due to the interpretation of A-
abstractions and logical constants. Consider the logical constant — : oo. 7 (—) might not be
defined. This is because, even though we know that the negation function is in Z(0) — Z (o), it
might not be in Z(00). Recall that in the definition of frame we allow Z(00) to be a subset of
Z(0) — Z(o). For more details see [28].

6 CHAPTER 2. SIMPLE TYPE THEORY
Definition 2.2.6 (Satisfies). A formula is a term of type 0. We say an interpretation Z satisfies
a formula s if Z(s) = 1.

Definition 2.2.7 (Satisfiable / Unsatisfiable). A formula is satisfiable if there exists an inter-
pretation that satisfies it. It is unsatisfiable if it is not satisfiable.

Definition 2.2.8 (Valid). A formula is valid if all interpretations satisfy it.

Proposition 2.2.9. A formula is valid if and only if its negation is unsatisfiable.

Chapter 3

Tableau Calculi

In order to determine whether or not a given formula is valid, we could either introduce a proof
system for checking its validity or give a refutation system for checking the unsatisfiability of
the formula’s negation (recall Proposition 2.2.9). A tableau system is a refutation system that
provides a mechanical method of refuting a formula. In this section, we will introduce a tableau
refutation calculus and describe how to use it. First, we need to introduce some preliminary
definitions.

3.1 Definitions

Definition 3.1.1 (Branch). A branch is a finite set of S-normal formulas.

Given a fragment F, an F-branch is a branch containing only formulas that lie in F.
Definition 3.1.2 (Branches). Branches is the set of all branches.
Definition 3.1.3 (Ground Branch). A branch A is ground if FV*(A) = 0.

Definition 3.1.4 (Tableau Step). A tableau step is a tuple of branches (4, A;,..., A,) with
n > 0 such that A C A; for each i € 1,...,n. It is presented as a refutation rule of the form,

Arb, L . Anb, L
A, L

T
or in a tableau view of the form,

A
A 4,

We call A the head of the tableau step and each A; an alternative of the step. If n > 2 we
say the step is branching.

A tableau rule is a set of tableau steps. We often give these as schemas.

A tableau step applies to a branch A if A is the head of this step. A tableau rule applies to
a branch A if one of its steps applies to A.

Definition 3.1.5 (Tableau Calculus). A tableauw calculus T is a tuple (F,R) where F is a
fragment and R is a set of tableau rules. If the F is not explicitly specified, we assume it is the
full fragment.

8 CHAPTER 3. TABLEAU CALCULI

Definition 3.1.6 (Closed). A tableau step is closed if it has no alternatives. Let 7 be a tableau
calculus. A branch A is 7-closed if A is the head of one of the closed steps in the rules in 7.

Definition 3.1.7 (Refutable). Let 7 = (F,R) be a tableau calculus. An F-branch A is 7-
refutable if there is an r € R that contains a tableau step (A4, A;,..., A,) where A;,..., A, are
F-branches that are 7T-refutable.

Theorem 3.1.8. Let 7 = (F,R) and 7' = (F¥',R') be two tableau calculi such that R C R’
and F C F'. If an F-branch A is T-refutable, then it is also 7'-refutable.

Proof. Assume A is an F-branch that is 7-refutable. We prove this theorem by induction on the
derivation of A being 7 -refutable. By definition of 7 -refutable, there is an r € R that contains
a tableau step (A, Ay,..., A,) where Ay, ..., A, are F-branches that are 7-refutable. We know,
F C F' therefore A, Ay,..., A, are also F'-branches. Moreover, R C R’ therefore r € R’. By
induction hypothesis, if A1,..., A, are T-refutable then they are also 7’-refutable. O

3.2 Our Tableau Rules

Figure 3.1 presents all the tableau rules we will consider throughout this thesis and Figure 3.2
presents them in a tableau view. The tableau rules Closed |, Closed—T, Closed, Closed #, and
ClosedSym have no alternatives. The Cut rule is special in that its head has no restriction. This
means that it can be applied any time.

There are rules for each of the propositional logical constants and quantifiers. Namely, DNeg
for eliminating of a double negation. For each other logical constant a positive and a negative
rule is presented, for example, Imp and Neglmp for implication, And and NegAnd for conjunction,
and so on.

In addition, rules for handling equality at all types are presented. The rules for Boolean
equality and Boolean extensionality, called Bool= and BoolExt respectively, handle equality at
base type o.

The functional equality and functional extensionality rules (Func=, FuncExt) deal with equal-
ity at function types.

The Leibniz equality rule (Leibniz) is used to handle equality without introducing the concept
of extensionality. The reason we include this rule is to enable us to consider non-extensional
tableau calculi which include equality in their fragment.

The mating, decomposition and confrontation rules (Mat, Dec, Con) are included to enable
us to consider complete cut free tableau calculi (see [7, 8, 6]).

To prove that a formula is valid using tableaux, first we negate the formula, then we construct
a tableau proof by repeatedly applying the tableau rules until all branches are closed.

3.3 Examples

Now that we defined all the basic definitions regarding tableaux and presented the tableau rules
we consider, we illustrate how a tableau system could be used by giving some examples.

Example 3.3.1 (Peirce’s Law). Peirce’s law is simply the following formula
(p—a)—p)—p

where p, ¢ : o.

3.3. EXAMPLES 9

To prove that this formula is valid, a tableau refutation is constructed for its negation. We
construct a tableau refutation using the tableau calculus containing the rules Imp, Neglmp, and
Closed.

First, Neglmp rule is applied to =(((p — ¢) — p) — p) since the outermost logical constants
in this formula are negation and implication.

-(((p —q) —p) —p)
(p—q) —p
-p

Then, Imp rule is applied to (p — ¢) — p so we get,
~(((p = q) = p) —p)
pP—a)—p

—p
-(p—q) | p

The Closed rule is applied to the right branch of the tableau since it contains both p and —p.
Now, the right branch is closed.

Neglmp rule is applied to the formula —(p — ¢) resulting in a p on this branch also, so this
branch is similarly closed.

=(((p = q) = p) = D)

(p—q) —0p
—p
-(p—q) p
p
—q

This results in a full tableau refutation of the formula’s negation, since all branches are closed.
We can conclude that Peirce’s Law is valid.

Example 3.3.2 (Surjective Cantor Theorem). The surjective Cantor theorem states that
-39V f I ugu=f

The following is a tableau refutation of the negation of Cantor’s theorem, using the tableau
calculus containing the tableau rules DNeg, Exists, Forall, Func=, Closed and Bool=.

——=3g.Vf.Ju.gu = f
Jg.Vf.Au.gu = f
VfJu.gu=f
Ju.gu = A\z.—~gzz
gd = \x.—grx
gdd = —gdd
gdd —gdd
—gdd ——gdd

10 CHAPTER 3. TABLEAU CALCULI

Closed L Closed- T——————— Closed
AL, L A-TEH,L A s,—msk, L
Closed # ClosedSym
As#sk, L A(s=t), t#s)F, L
AstkH_ 1 A-sk_ L Ask_ L
Cut— 22 A+ Dneg’siﬂfﬁﬁs cA
AL AL
A stk L Ask, 1 Atk_ L
And—=2TT = oA e A or——2"r LT (svit)e A
AF, L AF, L
A—-sk_ 1 Atk_ 1L A-sk_ 1 A-tk_ 1
Imp—— 21T — T (s—t)eA NegAnd—— i ’ I — —(sAt)e A
A, L A L
A —s, otk L As, -tk L
NegOr—— > I— (svt)e A Neglmp ik I— —(s—t)eA
A, L AR, L
A st L A3dr-sab, L
Forall— [st]7Fr Vse A DeMorgany—— DT Vsed z ¢ FV(s)
AF. L AF, L
A Pr 1L
Exists—— [s 917 Fr ds € A, y is fresh
AR, L
ANVr.—sxz b, L
DeMorgan3—— DT 3¢ A, x & FV(s)
AR, L
As,itb_1 A stk L
Bool = — 207 T (s=t)e A
AF, L
As,—tH_ 1L At,—-sk_ L
BoolExt— > " T DTS (s=t)eA
A, (Vp.)y, L
Leibniz (p-ps = pb) Py (s=5t)€ A
AL
A t=,s9t]PH_ L
Func = [52417 by 51 =gy S2 € A
AF, L
A staP, L
FuncExt—— [sz#rtel’ by s #,r t € A, xis fresh
A1
A ti -, L AspFitp b L
Mat ighby 250 7 L (x81...80),(mxty...ty) €A
AR, L
A ti L Asy £ty b, L
Dec 170y 28 7 z TS1...8,F, Tty...t, €A
AR, L
A t F.1L A to, t to L
Con 7517552; 17&52 T 7517é 2 1#2 T $1=, t1, SQ#LtQEA
AF, L

Figure 3.1: Tableau rules we will consider

3.3. EXAMPLES 11
il = s, 8 §F# S
Closed L —— Closed—T Closed——— Closed # ————
(s=t), (t#s) -8 sAt sVt
ClosedSym Cut Dneg And Or
s | s s s, t s|t
s—t —(sAt) —(sVt) (s — t)
Imp——— NegAnd NegOr: Neglmp
s |t s | it -8, it s, it
Vs Vs
Forall DeMorganV: x ¢ FV(s) Exists y is fresh
[st]P Jr.—sx [s 918
—3s s=t -(s=t)
DeMorgan3 x & FV(s) Bool = BoolExt————
Vr.ms x s,t | —s,t s, 7t | t,—s
§=4t S1 =o7 52 S 7&0'7' t
Leibniz Func = FuncExt x is fresh
Vp.ps—pt [s1t =, 591 [sx #, tx]?
TS81...8,xly...ty TS1...8, F, rt1...Tp
Mat ! ! Dec ! i !
817ét1 Sn#tn 817ét1 Sn#tn
s1=,t1, So F#, t
Con 1 1, 52 2

51 # 82, U1 #82 | 51 F ta, t1 £t

Figure 3.2: Tableau view of rules we will consider

12

CHAPTER 3. TABLEAU CALCULI

Chapter 4

Natural Deduction Calculus

Natural deduction (ND) is a proof system introduced by Gentzen in 1935 [15]. Rules in this
system formalize proof patterns that are used in common mathematical proofs. For this reason,
the system is called natural.

Proof terms are syntactic objects which correspond to natural deduction proofs. A proof
term has a formula as its type, namely the formula that it proves. This idea of proofs as terms
and formulas as their types is called Curry-Howard isomorphism [17, 23, 29].

4.1 A Natural Deduction Calculus N

We consider the ND calculus A which is intuitionistic and non-extensional. It uses terms that
only contain the logical constants V and —.

Definition 4.1.1 (Natural Deduction Terms). The set N-terms of terms used in the Natural
Deduction Calculus N is defined as

N-terms(s,t,...) =z |st|A\v.s |V Az.s|s—t
where z € V and o € T.
We use L, as a short hand for V° Ap.p.
Definition 4.1.2 (Context). A context I is a subset of A/-terms.

Contexts is the set of all contexts.

Definition 4.1.3 (ND Rule). An ND Rule is a tuple of pairs ((T',s), (T'1,81), ..., (Tn,8n))
where I')Ty ..., T, are contexts and s,s1,...,S, are S-normal formulas that are elements of
N-terms. An ND rule is presented as follows:
Fl l_N.Sl Fnl_NSn
I'kys

Figure 4.1 presents the rules in our ND calculus N. Note that whenever we write I' -, s we
mean [I']% +, [s]7°.
Definition 4.1.4 (Derivable). Let I" be a context and s be a -normal formula that is an element
of N-terms. The pair (I, s) is derivable if s € T or if there is a rule ((I', s), (I'1,51), - .., (Tn, sn))
in the ND system N such that (I'1, s1), ..., (Tn, sn) are derivable.

We write I' -, s or say s is derivable in I" to mean that the pair (T', s) is derivable. Moreover,
we usually write -, s as a short hand for) I, s.

13

14 CHAPTER 4. NATURAL DEDUCTION CALCULUS

Note that if for some context I' and some formula s we are given a derivation of I' -, s that
uses the wk rule, we can construct a derivation of I' F,, s that does not use the wk rule. This
basically follows from how the hy rule is stated. We only add the wk rule for convenience.

tel bt o,

o= = NY C
hy TF. 1 wk TF, 1 el

I, t . skt

I T i ¢ V(D) IS S
VE ', Vx.s ~E NFys—t I'kys

T T/l e

Figure 4.1: Rules in our ND calculus N/

4.2 Coq

Coq is a formal proof management system that is based on the calculus of inductive construc-
tions [5]. It provides a formal language called Gallina to write definitions and theorems, in
addition it serves as an interactive theorem prover and a proof checker. We formulate many of
our lemmas and their proofs in Gallina. The proofs correspond to proof terms which correspond
to ND proofs. So any proof that is written in Coq could be directly translated to an ND proof
and vice versa. We use Coq to check those proofs. This way we get an assurance that the proofs
are correct.

We will now present a simple lemma that we use later on in some of our proofs. We provide
both an ND proof of the lemma and present in Figure 4.2 the corresponding Coq lemma and
Coq proof. This is done to provide an intuition about the correspondence of the proofs and to
make the reader familiar with Coq proofs. For more information about the correspondance of
ND proofs and proof terms please refer to [29].

Lemma 4.2.1. - Vp.p— (p—L1,)— L,

Proof. By VI and — I it is enough to prove p,p — L F,. L,,. We know this by — FE. O

Definition simple_lemma : ¥V p : Prop, p — (p — (V ¢q : Prop, q)) — (V ¢ : Prop, q)
=funpu v = (v u).

Figure 4.2: Lemma, 4.2.1 and its proof in Coq

Chapter 5

Logical Transformations

We first consider transformations ¥ that map terms to AV-terms. We would like the transforma-
tion to map tableau refutable formulas to ND-refutable A-terms. Note that unsatisfiability of
a formula s with free variables z1,...,x, is equivalent to unsatisfiability of the ground formula
Jx1,...,xps.s. For this reason we will be satisfied if the transformation ¥ maps ground tableau
refutable formulas to ND-refutable A/-terms. Since a tableau calculus operates on branches in-
stead of formulas, we will also need branch transformations U* that maps branches to contexts.
A branch ¥U* extends a logical transformation W if it agrees with ¥ on ground formulas.

5.1 Definitions

Definition 5.1.1 (Logical Transformation). A logical transformation is a function ¥ : Ter —
N-terms such that VI € Interp: Vs € F: Z(¥(s)) = Z(s).

Definition 5.1.2 (Compositional). A logical transformation ¥ is compositional if it satisfies the
following;:

U(x) = rrecy
U(st) = ‘I’(w(t)
(MS):i U(s)

FV(¥(c)) = 0 for all logical constants ¢
Definition 5.1.3 (Beta). A logical transformation ¥ respects beta if
Vs, t€ Ter: (s~gt) = (¥(s)~p ¥(t)).
Proposition 5.1.4. If a logical transformation is compositional then it respects beta.
Proof. This follows from the definition of a logical transformation being compositional. o
Definition 5.1.5 (Branch Transformation). A branch transformation is a function

U* : Branches — Contexts.

Definition 5.1.6 (Extends). Let ¥ be a logical transformation. A branch transformation U*
extends W if for all ground branches A we have U*(A) = {U(s)|s € A}. We say U* trivially
extends U, if for all branches A we have U*(A4) = {¥(s)|s € A}.

15

16 CHAPTER 5. LOGICAL TRANSFORMATIONS

Definition 5.1.7 (Branch Transformation Respects a Step). Let ¥* be a branch transformation
and A, Ay, ..., A, be branches. We say U* respects a step (A, A1,..., A,) if the following holds:

if U (A) by Ly ... U5(A,) Fy L, then U*(A) -, L,

A branch transformation respects a rule if it respects all the steps in the rule. Moreover, a
branch transformation respects a tableau calculus if it respects all the rules in the calculus. A
logical transformation ¥ respects a tableau calculus 7 if there exists a branch transformation ¥U*
which extends ¥ and ¥* respects 7.

5.2 Translation

Theorem 5.2.1 (Translation). Let 7 = (F,R) be a tableau calculus, U* be a branch transfor-
mation that respects 7, and A be an F-branch. If A is 7-refutable, then U*(A4) F,, L.

Proof. We know A is 7-refutable. By definition of 7-refutable, there exists an r € R that
contains a tableau step (A4, A;,..., A,,) where A;,..., A,, are F-branches that are 7 -refutable.
Suppose A is T-refutable. Then, there is an r € R that contains a tableau step (A, A;,..., A,)
and A, ..., A, are T-refutable. By induction hypothesis, ¥*(A;) F,, L, ..., T*(4,) F L, -
We want to show that ¥*(A) I, L,.. We know that ¥* respects 7. Hence, U*(A4) -, L.

O

Corollary 5.2.2. Let 7 = (F,R) be a tableau calculus, ¥ be a logical transformation that
respects 7, and s be a ground formula in F. If {s} is T-refutable, then {¥(s)} F,, L.

Proof. We know that ¥ respects 7. Therefore, there exists a branch transformation U* which
extends ¥ and ¥* respects 7. By Theorem 5.2.1, we know U*({s}) F,, L. Since s is ground
therefore, ¥*({s}) = {¥(s)}. Hence, {¥(s)} F, L, - O

Chapter 6

The Girard Transformation

In this chapter we give the Girard transformation Wg that maps all logical constants to terms
containing only the logical constants V and —. This is used to translate general terms Ter to
N-terms. The definition of Wg is based on Girard’s definitions given in [18§].

6.1 The Girard Transformation Vg

The Girard transformation Ug transforms terms as follows:

(
Ug(st) =Vg(s) Yg(t)
Ug(Az.s) = A\x.Ug(s)
Ug(—) = \y.x — y
Ug(V) = AfVa.f
Ug(=) = Az \y.Vp.px — py (Leibniz Equality)
Ug(L)=Vpp
Ug(T)=Vpp—p
Ug(—) = Az.x — Vp.p

(A)

(V)

g(3) = \f¥p.(Vo.f o — p) — p

We write — and L ;as shorthand for Wg(—) and Wg (L) respectively. We do the same for all
other logical constants.

Proposition 6.1.1. The Girard transformation ¥g is a logical transformation.

Proof. Follows from the obvious fact that this transformation is meaning preserving. O
Proposition 6.1.2. The Girard transformation Wg respects beta.

Proof. Follows from Proposition 5.1.4 since ¥g is compositional. O

Let g be the branch transformation that trivially extends ¥g.

Before considering the tableau calculus containing all the tableau rules and the full fragment,
we will consider two smaller tableau calculi. The first tableau calculus we consider is 7_, | . The
second is Tge.. In the following two sections we define these tableau calculi and state whether or
not the Girard transformation ¥g respects them.

17

18 CHAPTER 6. THE GIRARD TRANSFORMATION

6.2 The Tableau Calculus 7_,

Let F_. | ! be the fragment of terms containing only the logical constants L,—,and — and
R_.. 1 be the following set of rules:

{Closed L, Closed, DNeg, Imp, Neglmp, Cut}

The tableau calculus 7_. | is the pair (F_, |, R_ 1).

Lemma 6.2.1 (Neglmp). =, V°pq.(p — (=gq) = L) — (mg(p — @) — L

Proof. Figure 6.1 presents a derivation of -, Vp ¢.(p — (—,q) = L) = (= (p = ¢q)) — L. O
Lemma 6.2.2. U7 respects the rule Neglmp.

Proof. We need to prove that for any branch A and for any two formulas p and ¢ such that
“(p—q) € Aif UG(A), Vg(p),Yg(—q) Fy L then WE(A) L,

A proofis presented in Figure 6.2. Note that we implicitly make use of the fact that Ug(—(p —
q)) is equivalent to ~,Wg(p — ¢) and to —,(¥g(p) — ¥g(g)). In addition, this derivation
depends on the transformation of the logical constants = and — which are the ones used in the
Neglmp rule. O

Lemma 6.2.3 (Closedl). -, 1, — L

Lemma 6.2.4 (Closed). F,. V°p.p — (=,p) — L

Lemma 6.2.5 (DNeg). -, V°p.(p — L,) — (g7gp) — L

Lemma 6.2.6 (Imp). =, V°p q.((mgp) = Ly) = (¢ = L) = (p—q) = Ly
Lemma 6.2.7 (Cut). -, Vp.(p — L) — ((mgp) = L) = L

Lemma 6.2.8. ¥ respects all of the rules in 7_, .

Proof. In Appendix A, we provide a Coq proof of Lemmas 6.2.1, 6.2.3, 6.2.4, 6.2.5, 6.2.6, and 6.2.7
which correspond to each of the rules in R_, ;. Using those lemmas to prove that Vg respects
the lemma’s corresponding rule is straightforward. We presented a proof that W respects the
rule Neglmp by proving Lemma 6.2.2 using Lemma 6.2.1. The rest of the cases are very similar.
Thus, this step from now on will be left for the reader. O

Theorem 6.2.9. The Girard transformation ¥g respects 7_, | .
Proof. This follows directly from Lemma 6.2.8. O
Corollary 6.2.10. Let s be a ground formula. If {s} is 7_, | -refutable, then {Tg(s)} -, L, .

Proof. The proof follows directly from Corollary 5.2.2 and from Theorem 6.2.9 O

INote that we call this fragment F_.,1 because it includes the preimage of terms which only contain — and
1, under ¥g.

. I'p,gbyg
. o Lipgbye(p—9) I'pgtyp—yq
Lpbyp— (g > L " Topbyp) Lopghylg
Lpky(0gq) — L B L,pky (559)
T,p FNJ_Q
. Iipkyq
Ty~ p—qg 'yp—gq

(p — (ﬁg(Z) — Ly, (ﬁg(p —q) Fyly

(p— () > L)y (gp—¢q) — Ly

Py — (0g9) = Ly) = (0glp—4q) = L

FaVg.(p— (mgq) = L) = (mg(p—q) — Ly

FeVPa.(p — (mgq) = L) = (gl —q) — Ly
where I' = {(p — (=59) — L), (=g(p — 9))}-

Figure 6.1: Derivation of proposition corresponding to Neglmp translated using ¥g

hy
— I
— E
— I
— B
VE
— I
— E
— I
— I
VI

vI

T 1 SNINDTVD NVATAV.L AHI ‘C9

61

Lemma 6.2.1
|—NVt1t2.82 — (1 — tg) — L

}—Nth.sl — (tl — \I/g(q))

VE

W5 (A), Ug(p). = Tolg) by L

FNSHﬁg(\IIg() — ¥5(q)) —>i

VE

T A g (1) P oy @) 1

TEA) Fys — = (Tg(p) = Yg(@) — L, ™ UE (A) s

— I

— I

V(A by

¢ (Vg(p) — ¥g(q) — J-N

— E

Ve(A) F

e (Yg(p) — ¥g(g))

V5(A) Fa Ly

where s = (Vg(p) — —,¥g(q) = L),

= (t1 = ~;¥g(q) — L), and

S9 = (tl — tQ — J_N).

Figure 6.2: W7 respects Neglmp

hy

0¢

NOLLVINHOASNVYU.L d4VyIo HHL "9 H4LdVHO

6.3. THE TABLEAU CALCULUS Tspc 21

6.3 The Tableau Calculus 7.,

Let Fsec be the fragment of terms containing the logical constants T, L, -, —, A, V,V*, V9 3,
and 3*° and R be the following set of rules:

{Closed L, Closed—T, Closed, DNeg, And, NegAnd, Or, NegOr,

Imp, Neglmp, DeMorgan¥, DeMorgan3, Forall, Exists, Cut}
The tableau calculus 7g. is the pair (Fsee, Rsec)- This tableau calculus corresponds to second-

order logic.

6.3.1 VUY; does not Respect 7.
Definition 6.3.1 (Double Negation Shift). The double negation shift, DNS, is the formula:

(Ve.——f) - ~—Vo.fx
Lemma 6.3.2. ¥, (Vo.~,—, fx) = ~,~ V. f

Proof. Tt is known that DNS is not provable intuitionistically [16, 12, 31]. If we transform the
negations in this formula using the intuitionistic Girard transformation the result is also not
provable intuitionistically, and thus cannot be derived using our intutionistic ND system N. O

Lemma 6.3.3. - (Vg(V°f~((-V'z.fe)A—TFv.~fz)) = L) = (Ve fo) = ;- Vo fa

Proof. The Coq proof of this lemma is provided in Appendix A. O

Lemma 6.3.4. {Ug(V'°f.~((-V'z.fx) AN=Fz~fx)}F, L,

Proof. Assume {¥g(V*°f.~((=V'z.f x) A -F'z.~f z))} F,, L,,. By the — I rule we know F,,
V(v f~((-Va.f z) N-Fz~fzx)) — L,. Using Lemma 6.3.3 and the — E rule, we know
Fyv (Vomg,—, f) — —,=,Va.f . This leads to a contradiction with Lemma 6.3.2. Hence,
{Tg(Vf~((-V'a.fz) N=Fa-fa)} KL, O

Theorem 6.3.5. The Girard transformation ¥g does not respect Zgec.
Proof. Consider the following formula s:
wa.ﬁ((ﬁVLx.f .T) AN—-Fz.~f .T)

The Fsee-branch {—V*° f.~((=V'x.f x) A—F'a.~f x)} is Tgeo-refutable. A tableau proof that only
uses rules from R, is given in Figure 6.3. By Lemma 6.3.4 we know that {Ug(V*° f.=((=V'x. fz)A
-3z~ f x))} ¥, L,. Since s € Fgee and FV (s) = 0, therefore using Corollary 5.2.2 it follows
that the logical transformation ¥g does not respect Zgec. O

If Wg does not respect 7. then it also does not respect the tableau calculus containing all
the rules and the full fragment. Thus we need to create a modified transformation that respects
Tsec- In order to find this modified transformation, it is helpful to know which tableau rules W
respects and which rules it does not respect.

22 CHAPTER 6. THE GIRARD TRANSFORMATION

Vfo((=Va.f) A -3z~ f x)
Af = ((—Vo.f) A =Tz~ f x)
= ((=Vz.f) A -z~ f x)
(=Ve.fx)AN—Fz~f x
—Vx.f x
ﬁﬂx_ﬁf xr
dr.—f x

Figure 6.3: Tableau Proof of V*° f.—((=V'z.p) A =3'z.—p x)

6.3.2 Tableau Rules in 7,.. that are Respected by Vg

By Lemma 6.2.8 we know that W¢ respects the following rules:
Closed L, Closed, DNeg, Imp, Neglmp, Cut

Lemma 6.3.6 (Closed—T). -, (=, T,) — L,

g

Lemma 6.3.7 (And). -, Vpg.(p —q— L) — (pA;q) — L,

(
(
Lemma 6.3.8 (NegAnd). - Vpq.((—gp) = L) = ((mgq) — L) = g Ag @) = Ly
Lemma 6.3.9 (Or). - Vpg(p— L) —=(¢g—L,)—(®Vsq) — Ly

Lemma 6.3.10 (NegOr). b, Vp q.((mgp) — (mgq) — Ly) = (P Vg a) = Ly
Lemma 6.3.11 (Forall). -, V7°fvo¢t.(ft — L) — (VI f) — L,

Lemma 6.3.12 (Exists). I, V7°f.(Vo.fz — L) — (37f) — L

Lemma 6.3.13 (DeMorgan3). b V77 f.((V(Ar.~ f z)) — L) — (=g (3 f)) — L
Theorem 6.3.14. The branch transformation W¢ respects the following rules:

Closed L, Closed—T, Closed, DNeg, And, NegAnd, Or,

NegOr, Imp, Neglmp, DeMorgan3, Forall, Exists, Cut

Proof. Follows from Lemmas 6.2.3, 6.3.6, 6.2.4 ,6.2.5, 6.3.7, 6.3.8, 6.3.9, 6.3.10, 6.2.6, 6.2.2,
6.3.13, 6.3.11, 6.3.12, and 6.2.7 respectively. o

6.3.3 Tableau Rules in 7,.. that are not Respected by Vg

Theorem 6.3.15. The branch transformation W¢ does not respect the DeMorganV rule.

Proof. Let T be a tableau calculus containing exactly the following rules:
DeMorganV, Exists, DNeg, And, Closed

The tableau refutation of the branch {=V*°f.=((=V‘x.f) A =F‘a.—~f)} given in Figure 6.3
uses only the rules in 7. Therefore, this branch is 7-refutable. Following the same method used
to prove Theorem 6.3.5 we conclude that the logical transformation ¥g does not respect 7. We
know that W respects the rules Exists, DNeg, And, and Closed using Theorem 6.3.14. Therefore,
W% does not respect the DeMorganV rule. O

6.4. THE TABLEAU CALCULUS TryrLL 23

6.4 The Tableau Calculus 7z,

Trwy is the tableau calculus containing all the tableau rules presented in Figure 3.1 except for
the Leibniz rule. Moreover, it includes the full fragment of terms. The reason why we exclude
the Leibniz rule from 7p,; but still include the Cut rule (even though it is not needed for
completeness) is that we aim at obtaining the richest complete tableau calculus for which we
can find a logical transformation. We easily could handle Cut, but not Leibniz. It is known that
Leibniz equality does not follow from Boolean extensionality. Therefore we argue that Wgxp
does not respect the Leibniz rule at type o. We already know from Lemma 6.3.15 that W does
not respect the DeMorganV rule. Thus, Wg does not respect the full tableau calculus. However,
we still check which rules in this full calculus are respected by Wg. This is done to determine
which rules are not respected by this transformation, in order to get an intuition on how to
modify the transformation such that it respects those rules.

Proposition 6.4.1. The Tableau Calculus 7g,;; is complete.

Proof. This follows from the main result in [6]. O

6.4.1 VY; does not Respect Tpy

Theorem 6.4.2. The Girard transformation Wg does not respect Tpy;.

—Fx.~f z)} is Tgec-refutable. Therefore by Theorem 3.1.8 we know that {—V*° f.—((=V'z.f) A
—Jd'z.~f)} is Tpuy-refutable. Following the same method used to prove Theorem 6.3.5 we
conclude that the logical transformation Wg does not respect Zpy;. O

Proof. We know Fsee C Fruii, Rsee © Rpuu, and that the branch {=V°f.—((=V'a.f x) A

6.4.2 Tableau Rules in 75,; that are Respected by ¥

Using Theorem 6.3.14 we know that the branch transformation W¢ respects the following rules:
Closed L, Closed—T, Closed, DNeg, And, NegAnd, Or,

NegOr, Imp, Neglmp, DeMorgan3, Forall, Exists, Cut
Lemma 6.4.3 (Closed#). -, V7s.7,(s =, 5) — L,

Lemma 6.4.4 (ClosedSym). -, V7st.(s =,t) = —,(t =5 5) — L

(G
Lemma 6.4.5 (Bool=). -, V°pqg.(p — ¢ — L) = ((m;p) = (—,q9) = L) = (p=5q) — L
Lemma 6.4.6 (Func=). - V7 "khVot.((kt=, ht)— L) = (k=,h) — L,

Lemma 6.4.7 Mat). l_/v‘ Vo192::0n0p Y91 gy t1.¥9259 ty. ... Vo, tn.(ﬁg (81 =, tl) — J*N) —

(mg(s2 =5 t2) = L) = - = (g(sn =g tn) = L) = psisa...snp = (Pt ta...ty) —
J‘.l\/
Lemma 6.4.8 (Dec). FN Vglgz”'g”Lh.Vglsl tl.VUZSQ ta.Vg"Sn tn.(_‘g(sl = tl) — J‘N) —
(ﬁg(SQ =g tg) — l/\/‘) — s = (ﬁg(sn =g tn) — J*N) — ﬁg(h S81 82...8np =g htl t2...tn) —
J‘/\/’

For simplicity the Coq proofs provided in Appendix A for the Mat and Dec rules are for the
binary case.

24 CHAPTER 6. THE GIRARD TRANSFORMATION
Lemma 6.4.9 (Con). FN VL51 t1 So t2.(‘|g(51 =g 82) — ﬁg(tl =g 82) — J‘N> — (_‘g(Sl =g
t2) = gt =g t2) = L) = (81 =5 t1) = g(s2 = t2) = L

Theorem 6.4.10. The branch transformation Wg respects the following rules:

Closed L, Closed—T, Closed, DNeg, And, NegAnd, Or, NegOr, Imp, Neglmp, DeMorgand,

Forall, Exists, Cut, Closed #, ClosedSym, Bool =, Func =, Mat, Dec, Con

Proof. Follows directly from Theorem 6.3.14 and Lemmas 6.4.3, 6.4.4, 6.4.5, 6.4.6, 6.4.7, 6.4.8,
and 6.4.9, respectively. O

6.4.3 Tableau Rules in 7p,; that are not Respected by Vg

In [4] Benzmiiller et al. defined a non-extensional model class Mg. They prove soundness of an
ND calculus 9183 in Theorem 7.3. It is easy to check that our ND calculus is also sound with
respect to M.

Lemma 6.4.11. IM € Mg: M E Ug(Fzy.3°f~(x —y— fz— fy))

Proof. The model MAf constructed in Example 5.4 of [4] is in M and it is not difficult to verify
that it satisfies Ug(3°z y.3°f ~(x -y — fz — fy)). O

Lemma 6.4.12. {Ug(F°zxy.3°f~(z -y — foz— fy)} ¥, Ly

Proof. Assume {Ug(F°zy.3°f~(z —y—fz— fy)}k, Ly
Our ND calculus N is sound with respect to M.
Therefore, VM € Mg : ME Ug(Fxy.3°f~(z -y — fz— fy)).
This contradicts Lemma 6.4.11. O

Theorem 6.4.13. The branch transformation ¥¢ does not respect the BoolExt rule.

Proof. Let T be a tableau calculus containing exactly the following rules:
Exists, Neglmp, Mating, BoolExt, Closed

A tableau refutation of the branch {3°z y.3°°f.~(x — y — f x — f y)} that uses only the rules
in 7 is given in Figure 6.4. Therefore, this formula is 7-refutable. We know by Lemma 6.4.12
that {Ug(F°zx y.3°f~(e -y — fz— fy}¥,L,. Since Ixy3If-(r -y— faz— fy)is
a ground formula, therefore using Corollary 5.2.2 it follows that the logical transformation Wg
does not respect 7. We know that W§ respects the rules Exists, Neglmp, Mating, and Closed
using Theorem 6.4.10. Therefore, ¥ does not respect the BoolExt rule. O

Lemma 6.4.14. IM € Mg: ME VUg(F°f g.-((—-Fz.fzF#gx) — (f=9)))

Proof. The model MP constructed in Example 5.6 of [4] is in M and it is not difficult to
verify that it satisfies Ug(3°f g.~((—-F°z.f x £ gx) — (f = g))). O

Lemma 6.4.15. {Ug(3°f g~((-Fz.fx#gx)— (f=9)} ¥ Ly

Proof. Assume {Ug(F°f g.~((-F°z.fz#gz)—= (f=9))}FvL,.
Our ND calculus NV is sound with respect to Mg.
Thus, VM € Mg : METg3°fg-((-3z.fa#gz)— (f =9g)))
This contradicts Lemma 6.4.14. (|

6.4. THE TABLEAU CALCULUS TryrLL 25

Jry3f-(z—y— fa—fy)
Jy3f-(r—y— foz—fy)
Az —y— fao— fy)
~(z—y—faz—fy)

X
“(y—fxr—fy)

y
“(fz—fy)
fx
~fy
T#yY
x y
ﬁy -

Figure 6.4: Tableau Refutation of 3z y.3f.~(z —y — fz — fy)

Theorem 6.4.16. The branch transformation W does not respect the FuncExt rule.

Proof. Let T be a tableau calculus containing exactly the following rules:
Exists, Neglmp, DeMorgan3, FuncExt, Forall, Closed

A tableau refutation of the branch {3*°fg.=((=3%.fz # gx) — (f = ¢))} that uses only the rules
in 7 is given in Figure 6.5. Therefore, this formula is 7-refutable. We know by Lemma6.4.15 that
{g(F°fg.~((—Fx.fx#gx)— (f=g)))} ¥ L. Since I°fg.~((-F°z.fz # gz) — (f = g))
is a ground formula, therefore using Corollary 5.2.2 it follows that the logical transformation ¥g
does not respect 7. We know that W¢ respects the rules Exists, NegImp, DeMorgan3, FuncExt,
and Closed using Theorem 6.4.10. Therefore, ¥¢ does not respect the FuncExt rule. O

Afg~((~Fzfz#g fv) —(f= 9))

Jg.~((—3z.frx#gz) — (f=9))
~((=F%z.fr#gzx)— (f=9)

-Fz.fr#gx

f#g
Ve o(fz #gw)
fr#gx
~(fr#gz)

Figure 6.5: Tableau Refutation of 3°f g.~((—=3°z.fz £ gx) — (f =g))

Theorem 6.4.17. The branch transformation g does not respect the following rules:
DeMorganV, BoolExt, FuncExt,
Proof. Follows directly from Theorems 6.3.15, 6.4.13, and 6.4.16. O

It may be a bit surprising that the only tableau rule which makes use of classical logic is the
DeMorganV rule. Thus, this rule is not respected by the straightforward transformation Wg.

26 CHAPTER 6. THE GIRARD TRANSFORMATION

On the other hand, it is not at all surprising that Wg does not respect the BoolExt rule
and the FuncExt rule. This is because they explicitly make use of the concepts of Boolean and
functional extensionality respectively. Note that Wy transforms equality as Leibniz equality and
thus doesn’t introduce any concept of extensionality. Moreover, the extensionality axioms cannot
be proven using Leibniz equality.

Chapter 7

The Girard-Kuroda Transformation

The Girard-Kuroda transformation Wgx is a classical non-extensional logical transformation
which slightly modifies the Girard transformation ¥g. We call this transformation Girard-
Kuroda because it turns out to be the same as Kuroda’s negative translation that translates from
classical first-order logic to intuitionistic first-order logic [24, 29]. Our aim using this transfor-
mation is to translate from classical higher-order logic to intuitionistic higher-order logic. Other
than the BoolExt and FuncExt rules which introduce the principles of Boolean extensionality and
functional extensionality respectively, the only rule that is not respected by the intuitionistic
transformation Wg is the DeMorganV rule. This is because the DeMorganV rule makes use of
classical principles and does not hold intuitionistically [32].

This year a paper has been published showing that Glivenko’s theorem also holds for second-
order propositional logic without the V quantifier [32]. We have seen this paper on October 29,
2009 and its result is similar to one of our results. Namely, we show that the DeMorganV rule is
not provable intuitionistically and that all the other rules are. This is similar to the result in [32]
stating that Glivenko’s theorem does not hold for the full fragment of second-order propositional
logic that includes the V however holds for the fragment that excludes the V quantifier. One
difference is that we show this result for elementary type theory, i.e., classical non-extensional
higher-order logic (see [1]), rather than second-order propositional logic.

In the coming two sections we give a logical transformation that we call Girard-Kuroda and
prove that it transforms classical elementary type theory to intuitionistic elementary type theory.

7.1 Properties of the Girard-Kuroda Transformation

The logical transformation ¥gx modifies the Girard transformation of the logical constant V
such that the DeMorganV rule is respected.
The Girard-Kuroda transformation gy is exactly like Wg except for it transforms the logical
constant V as follows:
Vo (V) = AfVe.—~;—, fx

We write V,, as shorthand for ¥gx (V).
Proposition 7.1.1. The Girard-Kuroda transformation Wgx is a logical transformation.

Proof. By Proposition 6.1.1 we know that the Girard transformation is a logical transformation.
It is easy to see that the Girard-Kuroda transformation is classically equivalent to the Girard
transformation. Hence, the Girard-Kuroda transformation is also a logical transformation. [

27

28 CHAPTER 7. THE GIRARD-KURODA TRANSFORMATION

Proposition 7.1.2. The Girard-Kuroda transformation Wgx respects beta.
Proof. Follows from Proposition 5.1.4 since Wgx is compositional. O

Let UE, be the branch transformation that trivially extends Wgx.

7.2 The Tableau Calculus 7.,

Let Rejem be the following set of rules:
{Closed L, Closed—T, Closed, DNeg, And, NegAnd, Or, NegOr,

Imp, Neglmp, DeMorgand, DeMorganV, Forall, Exists, Cut,
Closed #, ClosedSym, Bool =, Leibniz, Func =, Mat, Dec, Con}

The tableau calculus Z¢jen, is the pair (Ter, Reiem). This tableau calculus corresponds to ele-
mentary type theory. Elementary type theory is a classical non-extensional higher-order logic

(see [1]).

Note that the Ugi transforms all logical constants the same way as the Girard transformation
except for the forall logical constant V. Therefore, for each of the tableau rules that do not contain
the logical constant V whenever we know that the Girard transformation respects this rule we also
know that the Girard-Kuroda transformation respects it. The only tableau rules that contain
the V logical constant are Forall, the DeMorgand, DeMorganV, and Leibniz. Thus, we show that
the Girard-Kuroda transformation respects those four rules.

The Coq proofs of the following four lemmas are provided in Appendix B.

Lemma 7.2.1 (Forall). =, V7°fV7¢t.(ft — L) — (VI f) — Ly
Lemma 7.2.2 (DeMorgan3). =, V77 f.((V] (Av.—~g f 2)) — L) — (=5 (32 f)) — Ly
Lemma 7.2.3 (DeMorganV). I, V7= f.((37(A\z.~g f 7)) — L) — (=g (VI f)) — Ly
Lemma 7.2.4 (Leibniz). b, Vo y. (VoA f.fz— fy)— L) — (2=, 9) — L

Lemma 7.2.5. The branch transformation W§ respects all of the rules in Z¢jep, -

Proof. This follows directly from Theorem 6.4.10 and Lemmas 7.2.1, 7.2.2, and 7.2.3. O
Theorem 7.2.6. The Girard-Kuroda transformation Wgi respects Zciem, -

Proof. This follows directly from Lemma 7.2.5. O
Corollary 7.2.7. Let s be a ground formula. If {s} is T¢jem-refutable, then {Tgic(s)} F, L, -
Proof. The proof follows directly from Corollary 5.2.2 and from Theorem 7.2.6 O

Using Lemma 7.2.5 we know that Wgi respects all the rules in 7p,; except for the Bool #
and Func # rules. Moreover, using similar proofs to those of Theorems 6.4.13 and 6.4.16 provided
in Chapter 6 we know that Wgx does not respect the Bool # and Func # rules .

Chapter 8

The Girard-Kuroda-Per
Transformation

The Girard-Kuroda-Per transformation WUgxp is a classical extensional logical transformation
which modifies the Girard-Kuroda transformation Wgx. It introduces the principles of Boolean
and functional extensionality and therefore makes it possible to respect the rules BoolExt and
FuncExt. In Section 8.3, we state why we call this transformation Per.

In 1956 Gandy introduced a transformation from extensional to non-extensional simple type
theory [14]. His aim was to show that if simple type theory excluding the axioms of extensionality
is consistent, then so is simple type theory including extensionality. The Ugip transformation
is similar in that it also transforms extensional to non-extensional simple type theory but ad-
ditionally it transforms classical to intuitionistic logic. The two transformations are apparently
different. Gandy’s transformation uses a binary relation and a predicate defined by mutual recur-
sion. Meanwhile, Wgxp uses a single binary relation that defined inductively on types, and which
turns out to be a partial equivalence relation. The question of whether Gandy’s transformation
and Wgip are the same up to double negations is still open for future work.

8.1 The Girard-Kuroda-Per Transformation Ugip

Definition 8.1.1. For every type o we define inductively a term R as follows:

R°=Xxy.(x—y) A, (y—)
R' =Xz yVqqx —qy
RO™T = \fgNey.R xy — —,—, (R (f)(g9y))

This term R corresponds to a binary relation on type o. To give the reader a good intuition
we sometimes speak R? as a relation rather than as a term. Note that at function types R is
defined as a logical relation up to double negations.

The Girard-Kuroda-Per transformation Wgxp agrees with the Girard transformation ¥¢g on
all logical constants except for V, 3 and =, which it transformes as follows:

Ygrp(=7) = R”
Voip(V7) = AfVa.(ROx x) = —~,—, f x
Uoip(39) = AfVp.(Ve.(R°zx) — foz —p)—p

29

30 CHAPTER 8. THE GIRARD-KURODA-PER TRANSFORMATION

We write V., and 3,,, as shorthand for Wgxp (V) and Ygxp(3), respectively.

GKP P

8.2 Wgkp is a Logical Transformation
Lemma 8.2.1. Vo € T : VZ € Interp : Va,b € Z(0) : (Z(R°)ab=1) <= a=b

Proof. We prove this lemma by induction on types. Let 7 be an arbitrary interpretation. Let a
and b be arbitrary elements in Z(o). We show (Z(R°)ab=1) <= a=bh.

o Case 0 =o: R
We want to show Z(R?)ab=1 <= a = b. By expanding the definition of R° this reduces
to showing Z(Az y.(x — y) A, (y = x)) ab=1 <= a =b. This is equivalent to showing

I ((x —y) A, (y — x)) =1 <= a =b, which is obviously true.

e Case o =
We want to show Z(R‘)ab=1 <= a =b. We know that R* is Leibniz equality and by
Proposition 6.1.1 that the Girard transformation is a logical transformation that maps =
to Leibniz equality. Therefore, the interpretation of Leibniz equality is ordinary equality.

e Case 0 = 0y09: R
We want to show Z(R'72)ab=1 < a =b.

— We show Z(R71%*)ab=1 => a =b.
Assume Z(R7172) a b = 1. We need to show a = b. Let ¢ € Z(o1) be given. Now we
need to show a(c) = b(c).
Z(R'*2) ab=1
— I(\fgNVry.R* zy — g (R (fx)(gy))ab=1

= T (Vxy.R" 2y — g (R (f2)(gy)) =1

e TRy — g (R (f) (g 1)) = 1

= IRy — (R (f 2)(gy))) = 1

= (TR wy) =1 = TR (fo)(9y)) = 1)

— (Z(R°) ce=1 = Z(R°*)(a(c))(b(c)) = 1)

— (c=c = alc) =b(c)) by TH
<~ a(c) =b(c)

— We show a =b = Z(R™%*)ab=1

8.3. PROPERTIES OF R 31

Assume a = b. We need to show Z(R°'%2) ab=1.
Z(R'72)ab=1
= I\fgVry R xy — -, (R (fx)(gy))ab=1
= Ty R 0y = ~gmg (R 2)(g) = 1

— Ve, deT(or) : THY(R 2y — —y—y (R (f 2)(gy)) = 1
= Ve, deT(o)) : TR 2y — (R(f2)(gy))) =1

s (Yo, d € T(on) : THVR™ wy) =1 — TV (R (f 2)(g) = 1)

= (Yo, d € I(on) : Z(R™) cd =1 = Z(R™)(a(c))(b(d)) = 1)

<~ (Ve,d€Z(01) :c=d = alc) = b(d)) by IH
< a=25b

Lemma 8.2.2. For every interpretation Z and every a in Z(o) we have Z(R%) aa = 1.
Proof. Follows directly from Lemma 8.2.1. O
Theorem 8.2.3. Girard-Kuroda-Per is a logical transformation.

Proof. Follows directly from the fact that the Girard transformation is a logical transformation
and from Lemmas 8.2.1 and 8.2.2. O

8.3 Properties of R

In order to make progress, we first have to consider which properties of the relation R are provable
in the ND calculus V.

Definition 8.3.1 (Reflexive Type). A type o is reflezive if F,, V7 z. R zx.

Definition 8.3.2 (Symmetric). We will say an N-term G : oo is symmetric if the following
holds:
FVozy.(Gay) — (Gyx)

Definition 8.3.3 (Transitive). We will say an N-term G : ooo is transitive if the following
holds:
FoVzyz(Gey) = (Gyz)— (G z)

Definition 8.3.4 (Negatively Transitive). We will say an N-term G : ooo is negatively transitive
if the following holds:

F Wy 2(Cry) = (G) — (G y)

We show that for all types o the relation R that our transformation transforms equality
into is both symmetic and transitive. Moreover, we show that not all types are reflexive. Hence,
we can conclude that R? is a partial equivalence relation. This is the reason why we call this
transformation Girard-Kuroda-Per.

32 CHAPTER 8. THE GIRARD-KURODA-PER TRANSFORMATION

Lemma 8.3.5. For each type o the relation R is symmetric.

Proof. A Coq proof of this lemma is included in Appendix C. O
Lemma 8.3.6. For each type o the relation R is transitive.

Proof. A Coq proof of this lemma is included in Appendix C. O
Lemma 8.3.7. For each type o the relation R? is negatively transitive.

Proof. A Coq proof of this lemma is included in Appendix C. O

First we show that the two basic types o and ¢ are reflexive. Then we show some non-reflexive
types, namely the types oo and oc. This shows that not all types are reflexive.

Note that in Lemma 8.2.1 we were able to show for all types o that R is equivalent to =7 using
the classical extensional semantics. The N D calculus N is intuitionistic and non-extensional.
This is why it does not follow that all types o are reflexive.

Lemma 8.3.8. The basic type ¢ is reflexive.

Proof. A Coq proof of this lemma can be found in Appendix C. O
Lemma 8.3.9. The basic type o is reflexive.

Proof. A Coq proof of this lemma can be found in Appendix C. O
Lemma 8.3.10. The types oo and ov are not reflexive.

Proof. The model MA/ constructed in Example 5.4 of [4] is in Mz and it is not difficult to verify
that it satisfies the negation of both V°° f.R°° f f and V°* f.R°* f f. Since N is sound with respect
to Mg, therefore the types oo and oc cannot be reflexive. O

Now we show a very interesting theorem, namely Theorem 8.3.21, stating that if for all the free
variables = of a term ¢ we know I' -, R z = then we know I' -, =, (R (Ygrp(t)) (Ygrp(t))).
At first sight this theorem might seem obvious but in fact it is not very direct to prove. In fact,
a more general form of this theorem stating that this property is true for all N-terms does not
hold. This theorem is necessary to prove that Girard-Kuroda-Per respects the tableau calculus
TFull,., which will be introduced in the next section.

Before proving this theorem we will first show that for all transformations of the logical
constants ¢’ we know . R ¢’ ¢/. The most interesting case is the 3,,, case, for which we
provide a step-by-step explanation of the proof. For each of the other logical constants we
provide Coq proofs in Appendix C.

Lemma 8.3.11. - R —,—,

Proof. A Coq proof of this lemma is included in Appendix C. O
Lemma 8.3.12. -, R — —,
Proof. A Coq proof of this lemma is included in Appendix C. O
Lemma 8.3.13. F,, R A, A,

Proof. A Coq proof of this lemma is included in Appendix C. O

Lemma 8.3.14. -, R V, V,

8.3. PROPERTIES OF R 33

Proof. A Coq proof of this lemma is included in Appendix C. O

Lemma 8.3.15. -, R 37 39 for any type o

GKP~GKP

Proof. A Coq proof of this lemma is included in Appendix C. We also provide an explanation of
the proof here.
We show that |-, R(°?°32 37 _ (for any o).

gKP gKP

1. After unfolding the definition of R(°?)? we need to show =, =, (R°(35.cp 91) (3grpg2)) under

the assumption V7 z1 25.(R% 21 22) — =57, (R°(g1 21) (92 22)).
2. So suppose (RO(Hgfcpgl) (HQICPgQ))‘

3. We need to show R°(3;,,91) (3;p92), of which we present only the implication from left
to right here. (The other part is symmetric.)

4. So suppose 3,91, i.e., Vop. (V2. R7x & —, g1 & —, D) =4 D
5. We need to show 3,92, i.e., Vop. (V2. Rz & —, g2 & —, p) —, P

6. It suffices to show p. Note that we will not need to use the assumption V°2z.R°z © —,
g2 & —g P-

7. Using (4) this reduces to showing V7z.R°2z © —, g1 © — p.
8. So suppose R%x x and ¢; x.
9. We need to show p.
10. Instantiating the assumption in (1) yields =, =, (R°(g1 z) (g2 x)).
11. Tt thus suffices to show - (R°(g1z) (92 «)) (since from L, we can conclude p).
12. So suppose R° (g1 x) (g2).
13. We need to show L.
14. From g; x and g1 * —, g2 = we get g2 .

15. By (2) it suffices to show R°(3;,,91) (355 92) (which is the original goal, but now we can
use the accumulated assumptions).

16. The implication from right to left follows easily from (4).
17. For the other direction we need to show 3, g2, i.e., V°p. (V7 2.R7x & —, go & —, D) — D-
18. So suppose V°z. R7x x —, g2 T — q.

19. We need to show ¢, which follows from (18), (8), and (14).

O
Lemma 8.3.16. -, RV? _V? _ for any type o
Proof. A Coq proof of this lemma is included in Appendix C. O

Lemma 8.3.17. +,, R R° R’ for any type o

34 CHAPTER 8. THE GIRARD-KURODA-PER TRANSFORMATION

Proof. A Coq proof of this lemma is included in Appendix C. Note that the Coq proof term in
Appendix C proves this property for any relation which is symmetric and transitive. Since we
know R? is symmetric and transitive on all types thus using the Coq lemma we can obtain this
lemma. o

In some of the lemmas we prove later on that involve showing a property for R, we provide
Coq proofs for the lemma generalized to any relation which is symmetric and transitive. Since
we know R? is symmetric and transitive on all types o thus using the Coq proofs we can obtain
proofs for the corresponding lemma.

Lemma 8.3.18. . R (Ugicp(c))(¥gkp(c)) where cis a logical constant.

Proof. We prove this lemma for each logical constant c.

o Caset=T,ort=_1,
We need to show that -, R°L 1 and t-,, R°T T. They both follow directly using Lemma
8.3.9.
o Caset =g, t=—g, t=Ng, t=V,, t=37 1=V ,ort=R’
Those cases are proven by Lemmas 8.3.11, 8.3.12, 8.3.13, 8.3.14, 8.3.15, 8.3.16, and 8.3.17
respectively.
O
Lemma 8.3.19. I—N.th tg.(ﬁg ﬁgRUTtl tl) — (ﬁgﬁgR‘TtQ tg) — (ﬁgﬁgRT(tl tg)(tl tg))
Proof. A Coq proof of this lemma is included in Appendix C. O

Lemma 8.3.20. For all terms ¢, for all substitutions 61, 0> and, for all contexts I":
if Vo € FV(1) : Tk R (61(2))(62(2) then Tk =, = (R (01 (Warcp (1) (02(Warr (1))
Proof. We prove this lemma by structural induction on Wgicp(t).

e Case t is a variable x
We know Ugip(t) = 2 and FV(t) = {z}. Hence, this case is trivial due to the assumption
and Lemma 4.2.1.

e Case t is a logical constant
Proof follows by Lemma 4.2.1 and by weakening of Lemma 8.3.18.

e Caset =1t1 to
We know Wgrp(t) = (Vorp(t1)) (Ygrp(ta))-
Assume that the following holds:
Ve e FV(t): T F, R (61(z)) (f2(x))
We want to show that
I'E g6 (R (01(Ygrep(ta t2)) (02(Ygrep(tr t2))))-
Since F'V (t1) C FV (t), therefore we know:

Vo € FV(t) : Tk, R (61(z)) (6a2(2))

8.3. PROPERTIES OF R 35

Similarly since F'V (t2) C FV(t), therefore we also know:
Vo € FV(tz) : 't R (61(x)) (62(2))
Thus, by applying the induction hypothesis with 1, 5, I' we know the following two facts:
Iy 26 (R (01(Wgrep (1)) (02(Ygrp(t1))))

and I' b =g =6 (R (61(Vgrep(t2))) (02(Ygrp (£2))))
By Lemma using 8.3.19 we directly get I' -, =, =, (R (01 (Tgrep(ts t2)))(02(Tgrep(ts t2)))).

e Caset = \z.t/
We know Ugicp(t) = Ax.(Ugrep(t')).
Assume that the following holds:

Vy e FV(t) : Tk R (01(y)) (62(y))

We want to show

I'Fy =76 (R (01(Tgrep(Az-t))) (02(Ygrp(Ax.t')))).
By the definition of substitution and ¥gxp we need to show

[y 2 (R (Az.01 (Ygrep(t'))) (Az.02(Ygrp(t'))))
for which it suffices to show

Iy R (Ax.01(Tgrep(t'))) (Ax.O2(Tgrep(t'))).
After unfolding the definition of R, we need to show
L (R a1 m2) by g6 (R (A2.01(Tgiep () 1) (Az.02(Ygrp(t))) 2)).

where x; and x5 are two distinct fresh variables.
By B-reduction it remains to show

L' (R 21 22) by g6 (R (01(Ygrep () [x = 21] (02(Tgiep(t)))[2 = z2]).

Defining IV =T', (R 1 x2) as well as 6] = 01, [z := 1] and 05 = 0o, [x := 23], it is easy to
see that we have
Vy e FV(H') : T" kR (61(y)) (62(y)),

because of the assumption about F'V(t) and the fact that
FV({') CFV(t)uU{x}.
We therefore can apply the induction hypothesis to get
I F =76 (R 01 (Tgrep(t)) 05(Yarp(t))),

which is what we needed to show.

36 CHAPTER 8. THE GIRARD-KURODA-PER TRANSFORMATION

A [st]P . L
Forall,.., Vs € A, tis admissible for A
A, L

A, ’751 t =r S2 ﬂﬁ FTJ_

Func =, 81 =or 82 € A, tis admissible for A
A, L
A,sV-osk, L

Cutyes s is admissible for A

A, L

Figure 8.1: Restricted Forall, Func=, and Cut Rules

Theorem 8.3.21. For all terms ¢, and for all contexts I':
ifvee FV(t): T, Rxx then ', —,~,R (Ygxp(t)(Yoxr(t)))
Proof. Follows directly from Lemma 8.3.20 by using the identity substitutions. O
Corollary 8.3.22. For all terms ¢, and for all contexts I':
if Ve € FV(t): (Rx xz € T) or x has a reflexive type, then
Tk =g R (Pgiep () (Porp(t)))

Proof. Follows directly from Theorem 8.3.21 because if x has a reflexive type we know by the
wk rule that I' -, Rz x, and if R x = € I' by hy rule we know I' -, R = z. O

8.4 The Tableau Calculus 7z,

Definition 8.4.1 (Admissible for a Branch). A term t is admissible for a branch A if for each
variable x € FV (t), either z € FV*(A) or z has a reflexive type.

Tes

The tableau calculus gy, contains the full fragment of terms and all the tableau rules that
are in Tpyy except for Forall, Func=, and Cut, for which it contains restricted forms as shown in
Figure 8.1. Recall that 7z, contains all tableau rules except for the Leibniz rule.

Proposition 8.4.2. The tableau calculus 7z,;;... is complete.

res

Proof. Let A be a branch. We show that for every term ¢ that is not admissible for A there is
a corresponding term ' that could be used instead and is admissible for A. We can construct
the term ¢ by replacing each free variable z : o1 ...0na in ¢ that does not occur free in A and
does not have a reflexive type by Ay; ...y,.z where z : a. Assume w.l.o.g. that z is not used as
a fresh variable somewhere in the refutation being considered. By Lemmas 8.3.8 and 8.3.9 we
can infer that z has a reflexive type. Thus, ¢’ is admissible for A. We know by Proposition 6.4.1
that Ty is complete. Whenever we apply the Forall, Func=, or the Cut rule with a term ¢ we
can apply the Forall,cs, Func=,.s, or the Cut,.s rule respectively with a corresponding term &
that is admissible for the branch. Hence, we can conclude that 7z, . is complete. O

res

Note that not all types are reflexive. For instance by Lemma 8.3.10 the type oo and the type
ot are not reflexive. Thus, the restricted full tableau calculus 7p,;, . is strictly less general than
the full tableau calculus Tgy;.

res

8.5. Wgip RESPECTS TruLLms 37

8.5 Wgip respects Ty

res
Lemma 8.5.1. ¥, -, —, Rz x

Proof. The model M?/ constructed in Example 5.4 of [4] is in Mz and it is not difficult to verify
that it satisfies =, R°°z . Thus, it does not satisfy —,—, R°°z . Since N is sound with respect
to Mg we know ¥, -, =, Rz x. O

Proposition 8.5.2. The trivial branch transformation W§,, = that extends Wgxp does not
respect Tryu

res "

Proof. This is because V& p,, does not respect some of the rules in Tpq,.,, -

Assume Vg, respects the tableau step ({x # x}). Then we know -, R’z z &, L. Thus
we can infer -, —;—;R°°x x. This contradicts Lemma 8.5.1. Hence W§,p, ~cannot respect
({z # x}). Since ({x # x}) € Closed #, W§,p, does not respect the Closed# rule. O

The objective of the following examples is to illustrate that given a branch A, if its branch
transformation includes R x x for any free variable x in A, then it will respect the Closed=# rule.
Of course, those added formulas have to be discharged at some point in the process of proving
that this branch transformation respects 7y, We also illustrate how this works. Later on,
we will introduce a branch transformation doing exactly this and indeed prove that it respects
Trull

res*

Example 8.5.3. Consider the formula 3z.z # z. A tableau refutation of this formula using the
Exists and Closed# rules looks as follows:

dz.z #£ 2

y#y

To show that the Closed# step in this refutation is respected we need to show that the following
holds:

{~sRyy, Ryy}r,Ly

This is obvious.
In oder to show that the Exists step in this refutation is respected we assume

{FoxpzgRz2z, ";Ryy, Ryy}t, L,

and want to show
{Fopz Rz 2} L.

This follows if we know
FvByy—gRyy— L) = (FoepzgRz2) — Ly,
which is obtained by instantiating Lemma 8.5.13.

Example 8.5.4. Consider the formula Vz.z # z where z has a reflexive type. A tableau refuta-
tion of this formula using the Forall,..s and Closed# rules looks as follows:

Vz.z # z
y#y

38 CHAPTER 8. THE GIRARD-KURODA-PER TRANSFORMATION

As shown in the last example, proving that the Closed# step in this refutation is respected is
obvious. In oder to show that the Forall,.s step in this refutation is respected we assume

VerpzmgRz 2z, 7gRyy, Ryytk, L,
and want to show
{VoxpzgRz 2} L.

This follows if we know
{(VorpzmgRz2) = (ngRyy) = (Ryy) = Ly), (Voepzg Rz 2)} Fi Ly
From the restriction on the Forall,.s rule we can infer -,, R y y. Therefore it suffices to show
{Ryy,((VoxpzmgR22) = (g Ryy) = (Ryy) = L), (Voepz Rz 2) Ly

We know VY, ,2z.7,R z 2 = V2.R 2 2 — —;-,-,R 2z z. By instantiating this with y we get
Ryy — —,7,7,R yy and by using the assumption R y y we know —,—,—-,R y y. Using
Lemma 4.2.1 with the assumption R y y we know —~,—~,Ry y. By ~,~,~,Ryyand ~,~,Ryy

we can infer L ;.

Definition 8.5.5 (The Branch Transformation W§,). The branch transformation W§-p ex-
tends Wgrp and is defined as follows:

For any branch A : W& p(A) = {¥gxp(s)|s € AJU{Rz 2 |z :0 and x € FV*(A)}
Lemma 8.5.6. The branch transformation W5 respects the following rules:
Closed L, Closed—T, Closed, Cut,.s, DNeg, And, NegAnd, Or, NegOr, Imp, Neglmp

Proof. Follows by Lemmas 6.2.3, 6.3.6, 6.2.4, 6.2.7, 6.2.5, 6.3.7, 6.3.9, 6.3.8, 6.3.10, 6.2.6, and
6.2.1, respectively. Note that the proof that W5, respects the Cut,., rule (using Lemma 6.2.7)
relies on the restriction imposed by Cut,.s: any term s that it adds to a branch is admissible
and therefore we know . R = x for each z that is free in s but not in the branch. O

Lemma 8.5.7 (ClosedSym). . V72 y.(R7z y) — —,(R°y) — L
Lemma 8.5.8 (DeMorganV). I, V"7 f.((37 (M.~ f @) — L) — (g (VI) — Ly

gKP

Lemma 8.5.9 (DeMorgand). -, Vo7 f.((V (A~ f @) — L) — (g (37, f) = Ly

GKP
Lemma 8.5.10 (Bool=). -, Vpq.(p = q— L) = ((—mgp) = (—;q) — L) — (R°pq) — L

Lemma 8.5.11 (BoolExt). F,.V°p q.(p — (—5q) — L) = (¢ = (—gp) — L) — 2, (R°p q) —

Ly

Lemma 8.5.12 (Con). F,, Vs t u v.(—;(R's u) — —;(R't u) — L) — (—4(R's v) —
—,(Rtv) — L) — (R'st) =~ (Ruv) — L
Lemma 8.5.13 (Exists). -, V°°f.(V'z.(R°z z) — (fz) — L) — (37 _f)— L,

gKP

We provide a proof that W, respects the Exists rule using Lemma 8.5.13 because it is not
straightforward.

Lemma 8.5.14. The branch transformation Vg respects the Exists rule.

85 \I]glcp RESPECTS TFULLRES

Proof. Let s be a term, A be a branch containing ds, and y be a fresh variable.
Assume that

Uorep(AU{[sy1°}) Fy Ly
We want to show that
Voxp(A) Fu Lo
Note that if y occurs free in [s y]” then
Vorp(AU{Ts y17}) = Woep(A) U{Parp([s y1%)} U{R Y y},

otherwise

Uorep(AU{[s y17}) = Tgiep(A) U{Taicp([s y17)}.
By applying the VE rule with ¥gicp(s) to Lemma 8.5.13 we get

Fa (V. (R72) — (Ygrp(s)) — Ly) = (3gen (Worr(s)) = Ly
By using the wk rule we can get
Ugp(A) by (VVz.(R7z) — (Yorp(s)) = Ly) = (Fgep (Worr(s))) — Ly

By the — F rule we know that given a proof of

Uorp(A) by (Vo (R72) — (Yorp(s)) — L)

we obtain a proof of
‘I’_EICP(A) Fa GZW (Ygp(s))) — Ly

Wgip is compositional, so
37 (Torp(s)) = Ygrep(3s).

39

Since 3s € A, we know Wgrp(Is) € Uixp(A) and thus Vi (A) F, Ygep(Is) by the hy rule.

By applying the — E rule we obtain
Voxp(A) by Ly
It remains to show that
Vorp(A) by (V. (R72) — (Ygrp(s))) — Ly).
By assumption and possibly the wk rule we know
Uorep(A) U{¥oxp([s y]17)} U{Ry y} Fy Ly
By applying the — I rule twice and then the VI rule, we obtain

Uorep(A) by (Vo (B72 x) — (Yorp(s)) — L)

Note that in the last step we implicitly make use of the fact that Ugip is compositional, that it

respects beta, and that y ¢ FV*(Vgep(A)).

Lemma 8.5.15 (Forall,cs). -, V70 f.Vt.m; =, (ROt t) — ((ft) — L) — (VI . f) — Ly

O

40 CHAPTER 8. THE GIRARD-KURODA-PER TRANSFORMATION

Proving that Vg, respects the Forall,.s rule using Lemma 8.5.15 is not straightforward and
therefore we provide the proof. It is similar to the proof that W, respects the Func—,.., rule
using Lemma 8.5.18, which is therefore omitted. Moreover, the proof that W5, respects the
rule Closed# using Lemma 8.5.19 is also similar but simpler, since the Closed## rule does not
introduce new terms, and therefore is also omitted.

Lemma 8.5.16. The branch transformation W, respects the Forall,.s rule.

Proof. Let s be a term, A be a branch containing Vs, and ¢ be a term admissible for A.
Assume that

Ygrp(AU{[s t1°}) Far L

We want to show that
Uorp(A) by Ly

Note that
Uep(AU{[s1]7}) C Ugxp(A) U{Tgxp([s t]1°)} U{Rz x|z € FV (1)},

By applying the VE rule twice to Lemma 8.5.15 with Wgxp(s) and Ugrp(t) respectively and then
using the wk rule we get Wgep(A) By g g (R7Vgkp(t) Yorp(t)) — (Yorp(s) Ygrp(t)) —
Lx) = (V8 Yarp(s)) — Ly

By the — F rule we know that given proofs of

Vorp(A) by g (R Ygrep(t) Yorp(t))

and
Vrep(A) by (Yo (s) Yorep(t) — Ly
we obtain a proof of
‘IIEICP(A) Fy (VZW Ugrp(s)) — Ly
Since WUgip is compositional,

(Ve p Yarp(s)) = Ygrp(Vs).

Since Vs € A, we know Wgip(Vs) € Vip(A) thusVgep(A) F Ygiep(Vs) by the hy rule.
Hence, by applying the — E rule we obtain

Ugrp(A) by Ly
It remains to show two things, namely
Verp(A) by mg76 (R Yarep(t) Ygp(t))

and

Ugip(A) Py (Tgrep(s) Yorp(t) — Ly
Applying Corollary 8.3.22 with I' = W§,-(A) and making use of the restriction on the Forall,.,
rule we obtain

Uorep(A) by 2676 (R7 Ugrep(t) Yorp(t)).

By assumption and possibly the wk rule we know

Uoiep(A) U{Torp([s 1)} UfR e x |x € FV()} , L,

8.5. Wgip RESPECTS TruLLms 41

We know that Wgip is compositional and respects beta, therefore by applying the — I rule we
obtain
Uoep(A) U{Rz x|z € FV ()} Fy (Ygrp(s) Ygrp(t)) — Ly

By the restriction on the Forall,.s rule we know Vz € FV(t): U§xp(A) F, R 2 . By repetitive
applications of the — I rule and the — FE rule we obtain

Uorep(A) Py (Ygrep(s) Ugrep(t) — Ly
O

Lemma 8.5.17 (FuncExt). -, V"kh.—;—,(R°"h h) — (V7z.(R°z) — —,(R"(k z)(h z)) —
L) = 26 (R7Tkh) — L

The proof that Vg, respects the FuncExt rule using Lemma 8.5.17 uses arguments similar
to the the ones given in the proofs of Lemmas 8.5.14 and 8.5.16. Therefore, we leave the proof
for the reader.

Lemma 8.5.18 (Func=,.,). F, Vk hVot.—,—~, (Rt t) — (R7(k t) (ht) — L) —
(Rk h) — L,

Lemma 8.5.19 (Closed#). +, V7z.~,—~, (R7x) — —~,(R°x x) — L,

Lemma 8.5.20 (Mat). FN Valag...anop.valsl tl.V"252 to.Va"Sn tn-_‘g_‘g (Ra'lag...anop p) —
(ﬁg(Rglsl t1) — J_N) — (_‘Q(RUZSQ ta) — J_N) — .. — (ﬂg(Ra"sn t,) — J_N) —
PS1S2...8n = g(ptita.. . ty) = L

Lemma 8.5.21 (Dec). F, V71727 RN 51 £1.¥7289 to. ... V778 tn.mg g (R71O29n]l B) —
(ﬁg(Ralsl t1) — Ly) — (T;(RUZSQ t2) = Ly) — ... — (ﬁg(RUnsn th) — Ly) —
(R (h sy s2...sn)(htita.. . ty)) = L

For simplicity the Coq proofs provided in Appendix C for the Mat and Dec rules are for the
unary and the binary cases.

Theorem 8.5.22. The branch transformation W5, respects all of the rules in Tryy

res”

Proof. This follows from Lemmas 8.5.6, 8.5.8, 8.5.9, 8.5.10, 8.5.11, 8.5.12, 8.5.13, 8.5.17, 8.5.15,
8.5.18, 8.5.20, 8.5.21, 8.5.19, and 8.5.7. O

Theorem 8.5.23. The Girard-Kuroda-Per transformation Wgiep respects Ty

res*

Proof. This follows directly from Theorem 8.5.22. O
Corollary 8.5.24. Let s be a ground formula. If {s} is Truy,.,-refutable, then {¥gxp(s)}
1.

Proof. The proof follows directly from Corollary 5.2.2 and from Theorem 8.5.23 O

42

CHAPTER 8. THE GIRARD-KURODA-PER TRANSFORMATION

Chapter 9

Conclusion and Future Work

Given a higher-order formula s and a classical extensional tableau proof of s, our aim was to find
a formula s’ that is semantically equivalent to s and construct an intuitionistic non-extensional
ND proof of s’. In order to achieve this goal we introduced the notions of logical transformation
and branch transformation. Furthermore, we defined what it means for a branch transformation
to respect a tableau rule and for a logical transformation to respect a tableau calculus.

We argued in the introduction of Chapter 5 stating that it is sufficient to consider only closed
formulas. Corollary 5.2.2 states that if a logical transformation ¥ respects a tableau calculus 7°
then ¥ maps any closed 7-refutable formula s to an ND-refutable formula ¥(s). Hence, there
is a formula s’ that is semantically equivalent to s, namely s’ := (¥(s) — L) — L, for which
there is an intuitionistic non-extensional ND proof. This corollary reduced our problem to giving
a logical transformation that respects a complete higher-order tableau calculus.

On the way to finding this logical transformation we obtained a few other interesting results
by considering certain fragments of higher-order logic. We introduced the logical transformations
Vg, Ugi, and Ygicp and corresponding branch transformations. We then showed which tableau
rules are respected by each of the branch transformations and which are not.

If 7 is a tableau calculus containing only rules that are respected by a branch transformation
U* that extends a logical transformation W, then W respects 7. We showed that ¥g respects
the tableau calculus 7_, ;. Moreover, that the branch transformation trivially extending Vg
respects all the tableau rules except for DeMorganV, BoolExt, and FuncExt. Thus, ¥g respects all
tableau calculi that do not include those three rules. In addition we showed that Wgx respects
the tableau calculus for elementary type theory 7¢ie,,. Finally, we showed that Wgip respects a
complete tableau calculus for higher-order logic 7ry,... From here we fulfilled our goal.

Several issues are still open for future work. First, we would like to determine the precise
relationship between our Girard-Kuroda-Per transformation and the transformation given by
Gandy [14]. We want to find out whether they are equivalent up to double negations.

We are also keen to know whether the Girard-Kuroda-Per transformation respects 7. For
this we have to find a different branch transformation and may have to change some definitions
or add more definitions.

On the more practical side, we would like to implement a mapping from tableau proofs to
narural deduction proof terms. This would enable proof checking the tableau proofs that Jitpro
outputs using the proof checker that Coq provides. This implementation could be done using
the Coq lemmas that we provide in the appendix which handle the mapping of each of the rules
in the tableau calculus.

43

44

CHAPTER 9. CONCLUSION AND FUTURE WORK

Bibliography

[1] P. B. Andrews. Resolution in type theory. J. Symb. Log., 36:414-432, 1971.

[2] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through
Proof, volume 27 of Applied Logic Series. Kluwer Academic Publishers, second edition, 2002.

[3] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages 117-309. Oxford
University Press, 1992.

[4] C. Benzmiiller, C. E. Brown, and M. Kohlhase. Higher-order semantics and extensionality.
Journal of Symbolic Logic, 69:1027-1088, 2004.

[5] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer Verlag, 2004.

[6] C. E. Brown and G. Smolka. Complete cut-free tableaux for equational simple type theory.
Technical report, Programming Systems Lab, Saarland University, April 2009.

[7] C. E. Brown and G. Smolka. Extended first-order logic. In T. Nipkow and C. Urban, editors,
TPHOLs 2009, volume 5674 of LNCS. Springer, August 2009.

[8] C. E. Brown and G. Smolka. Terminating tableaux for the basic fragment of simple type
theory. In M. Giese and A. Waaler, editors, TABLEAUX 2009, volume 5607 of LNCS
(LNAI), pages 138-151. Springer, 2009.

[9] F. Cardone and D. C. Oppen. History of lambda-calculus and combinatory logic. Hand-
book of the History of Logic, Volume 5, 2006. http://www-maths.swan.ac.uk/staff/jrh/
papers/jrhhislamweb.pdf.

[10] A. Church. A formulation of the simple theory of types. J. Symb. Log., 5(1):56-68, 1940.
[11] L. Chwistek. Antynomje logiki formalnej. Prezeglad Filozoficzny, 24:164-171, 1921.

[12] P. Engracia and F. Ferreria. The bounded functional interpretation of the double negation
shift. To be Published in the Journal of Symbolic Logic.

[13] W. M. Farmer. The seven virtues of simple type theory. Technical report, McMaster
University, Dec. 2003.

[14] R. O. Gandy. On the axiom of extensionality—part i. J. Symb. Log., 21(1):36-48, 1956.

45

46 BIBLIOGRAPHY

[15] G. Gentzen. Untersuchungen iiber das natiirliche SchlieRen I, II. Mathematische Zeitschrift,
39:176-210, 405-431, 1935.

[16] P. Gerhardy. Functional interpretation and modified realizability interpretation of the
double-negation shift. In Logical Approaches to Computational Barriers, pages 109-118.
Second Conference on Computability in Europe, 2006.

[17] J. H. Geuvers. The calculus of constructions and higher order logic. In P. de Groote, editor,
The Curry-Howard Isomorphism, pages 139-191. Academia, Louvain-la-Neuve (Belgium),
1995.

[18] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and types. Cambridge University Press, 1989.

[19] V. Glivenko. Sur quelques points de la logique de M. Brouwer. Bulletins de la classe des
sciences, 15:183-188, 1929.

[20] J. Harrison. HOL Light tutorial (for version 2.20). http://www.cl.cam.ac.uk/~jrh13/
hol-1light/tutorial_220.pdf, 2006.

[21] L. Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15(2):81-91,
June 1950.

[22] J. R. Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1997.

[23] W. A. Howard. The formula-as-types notion of construction. In J. P. Seldin and J. R.
Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 480-490. Academic Press, 1980.

[24] S. Kuroda. Intuitionistische Untersuchgen der formalistischen Logik. Nagoya Mathematical
Journal, 2:35-47, 1951.

[25] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer, 2002.

[26] F. Ramsey. The foundations of mathematics. Proc. of the London Math. Society, 2nd series,
25:338-384, 1925.

[27] B. Russell. Mathematical logic as based on the theory of types. American Journal of
Mathematics, 30:222-262, 1908.

[28] G.Smolka and C. E. Brown. Introduction to computational logic. http://www.ps.uni-sb.
de/courses/cl-ss09/script/icl.pdf, 2009.

[29] A. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University Press,
second edition, 2000.

[30] A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press,
Cambridge, England, 1913. 3 volumes; first edition 1913, second edition 1927.

[31] Intuitionistic logic. http://plato.stanford.edu/entries/logic-intuitionistic/.

[32] K. Zdanowski. On second order intuitionistic propositional logic without a universal quan-
tifier. Journal of Symbolic Logic, 74:157-167, 2009.

[33] Jitpro: A JavaScript Interactive higher-order Tableau Prover. http://www.ps.uni-sb.de/
jitpro/.

Appendix A

(GGirard Transformation

A.1 Defining basic types i, o

Parameter i : Type.
Definition o := Prop.

A.2 Girard Transformation

Definition Bot :=V p : o, p.
Definition Neg := fun p : 0 = p — Bot.
Definition Top :=V p: o, p — p.
Definition Imp :(=funpq: 0o = p — ¢
Definition Forall (sigma : Type) := fun f : (sigma — 0) = (V z : sigma, [).
Definition And (M :0) (N :0):=(Vp: o (M - N — p) — p).
Definition Or (M :0) (N :0):=(Vp: o0, (M — p) - (N — p) — p).
Definition Equal (sigma : Type) (M : sigma) (N : sigma)

=V f: (sigma — o), (f M) — f N.
Definition FErists (sigma : Type) (M : (sigma — 0))

=Vp:o (Vz: sigma, (M z) — p) — p.

A.2.1 Short Hand

Definition ForallNeg (sigma : Type)

:= fun f : (sigma->0) = Forall sigma (fun z : sigma = (Neg(f z))).
Definition FEristsNeg (sigma : Type) (M : (sigma — 0))

:= Exists sigma (fun z : sigma = (Neg(M z))).

A.3 Symmetry of equality
Definition Sym (sigma : Type)

:V zy: sigma, (Equal sigma z y) — (Equal sigma y)
=funzyufuv=>u(funz=fz—fz) (fun w = w) v

47

48 APPENDIX A. GIRARD TRANSFORMATION

A.4 Transitivity of equality

Definition Tra (sigma : Type)
:Vzyz: sigma, (Equal sigma x y) — (Equal sigma y z) — (Equal sigma z 2)
—funzyzuvpw=0vp(upw).

A.5 Negative transitivity
Definition TraNeg (sigma : Type)

:Vzyz: sigma, (Equal sigma x y) — Neg(Equal sigma x z) — Neg(Equal sigma y z)
=funzyzuvw=v(Tra sigma z y z u w).

A.6 Lemmas

A.6.1 Closed False Rule

Definition closedfalserule : Bot — Bot := fun u = u.

A.6.2 Closed Not True Rule

Definition closednottruerule : (Neg Top) — Bot := fun u = u (fun p v = v).

A.6.3 Closed Rule

Definition closedrule : ¥V p : o, p — (Neg p) — Bot
=funpu v = (v u).

A.6.4 Closed Neg Equal Rule

Definition closednegequalrule (sigma : Type)
: V (s : sigma), Neg(Equal sigma s s) — Bot
=funpu=u (funf v = v).

A.6.5 Closed Symmetric Rule

Definition closedsymrule (sigma : Type)
1V (s t: sigma), (Equal sigma s t) — Neg(Equal sigma t s) — Bot
=fun st uv= v (Sym sigma st u).

A.6.6 Double Negation Rule

Definition dnegrule
:Vp: o, (p— Bot) — Neg(Neg p) — Bot
—funpuv=0vu

A.6. LEMMAS

A.6.7 Cut Rule

Definition cutrule
:Vp:o, (p— Bot) — (Neg p) — Bot) — Bot
= funpuv=0vu

A.6.8 Implication Rule

Definition imprule
:Vpgq: o, (Neg p) — Bot) — (g — Bot) — (Imp p q) — Bot
=funpquovw=u(funul : p= v (w ul)).

A.6.9 Negative Implication Rule

Definition negimprule
:Vpyq: o (p— (Negq) — Bot) — (Neg (Imp p q)) — Bot
=funpquv=v(funwl:p=>uwl (funz: ¢= v (fun w2 : p = 2)) q).

A.6.10 And Rule

Definition andrule
:Vpq:o, (p— q— Bot) — (And p q) — Bot
:= fun p ¢ u v = v Bot u.

A.6.11 Or Rule

Definition orrule
:Vpgq:o, (p— Bot)— (¢ — Bot) — (Or p q) — Bot
:=funp q u v w= w Bot u v

A.6.12 Neg And Rule

Definition negandrule
:Vpaq: o, (Neg p) — Bot) — ((Neg q) — Bot) — Neg(And p q) — Bot
=funpquow=u (fun ul = v (fun u2 = w (fun p vl = ud ul u2))).

A.6.13 Neg Or Rule

Definition negorrule
:Vpaq: o, (Neg p) — (Neg q) — Bot) — Neg(Or p q) — Bot
=funpgquv=
u (fun w = v (fun r ! w2 = ul w))(fun w = v (fun r ul w2 = w2 w)).

A.6.14 Forall Rule

Definition forallrule (sigma : Type)
2V (f : sigma — o) (t : sigma), ((f t) — Bot) — (Forall sigma f) — Bot
=funftuv=u(vi).

49

50 APPENDIX A. GIRARD TRANSFORMATION

A.6.15 Exists Rule

Definition existsrule (sigma : Type)
2V f: (sigma — o), (VY z : sigma, (f) — Bot) — (Exists sigma f) — Bot
:=fun f v v = v Bot u.

A.6.16 DeMorgan Exists Rule

Definition demorganexistsrule (sigma : Type)
2V (f : sigma — o), ((ForallNeg sigma f) — Bot) — (Neg (Ezists sigma f)) — Bot
=funfuov=u(funy wl = v (fun r w2 = w2 y wl)).

A.6.17 Boolean Equality Rule

Definition booleqrule
1V (pq: o) (p— q¢— Bot) — ((Neg p) — (Neg q) — Bot) — (Equal o p q) — Bot
= fun p q ul u2 ul =
42 (fun v = ul v (u8 (fun w = w) v))
(u8 (fun w = Neg w) (fun v = ul v (u8 (fun w = w) v))).

A.6.18 Leibniz Rule - not used in the Thesis

Definition leibnizrule (sigma : Type)

2V (z y : sigma), ((Forall (sigma — o) (fun f = f z — [y)) — Bot) — (Equal sigma z y)
— Bot

—funzyuv=uo

A.6.19 Functional Equality Rule

Definition funceqrule (sigma tau : Type)
:V (k h: (sigma — tau)) (¢ : sigma),
((Equal tauw (k t) (h t)) — Bot) — (Equal (sigma — tau) k h) — Bot
=funk htul u2 =
ul (u2 (fun r = Equal tauw (k t) (r t)) (fun f v = v)).

A.6.20 Mating Rule - 2 arguments

Definition matingrule-2 (sigma tau : Type)
2V (f : (sigma ->tau — o)) (s1 t1 : sigma) (s2 t2 : tau),
(Neg(Equal sigma s1 t1) — Bot) — (Neg(Equal tau s2 t2) — Bot) —
(f st s2) — Neg(f t1 t2) — Bot
= fun f s1 t1 s2 t2 ul u2 u3 uf =
ul (fun vl =
u2 (fun v2 = wf (v2 (fun z = f t1 z) (vl (fun z = f z 52) u3)))).

A.6.21 Decomposition Rule - 2 arguments

Definition decompositionrule_2 (sigma tau : Type)
2V (h: (sigma — tau — 1)) (sl t1 : sigma) (s2 t2 : tau),
(Neg(Equal sigma sl t1) — Bot) — (Neg(Equal tau s2 t2) — Bot) —

A.6. LEMMAS 51

Neg(Equal i (h s1 s2) (h t1 t2)) — Bot
= fun h s1 t1 s2 t2 ul u2 u3 =
ul (fun vl =
42 (fun v2 =
u3 (fun p v8 =

(v2 (fun z = p (h t1 z)) (vI (fun z = p (h = 52)) v3))))).

A.6.22 Confrontation Rule

Definition confrontationrule
1V (s1 t1 s2 t2 : 1), (Neg(Equal i s1 s2) — Neg(Equal i t1 s2) — Bot) —
(Neg(Equal i s1 t2) — Neg(FEqual i t1 t2)— Bot) —
(Equal i s1 t1) — Neg(Equal i s2 t2) — Bot
= fun s1 t1 s2 t2 ul u2 u3 uj =
ul (fun vl =
u2 (TraNeg i s2 s1 t2 (Sym i s1 s2 vl) uf)
(TraNeg i s1 t1 t2 u8 (TraNeg i s2 sl t2 (Sym i sl s2 vl) uf)))
(TraNeg i s t1 s2 u8 (fun vl =
u2 (TraNeg i s2 s1 t2 (Sym i sl s2 vl) u4)
(TraNeg i sI t1 t2 u3
(TraNeg i s2 sl t2
(Sym i s1 s2 vl) uf)))).

52

APPENDIX A. GIRARD TRANSFORMATION

Appendix B

Girard-Kuroda Transformation

B.1 Defining basic types i, o

Parameter i : Type.
Definition o := Prop.

B.2 Girard-Kuroda Transformation

Definition Bot :=V p : o, p.
Definition Neg := fun p : 0 = p — DBot.
Definition Top :=V p: o, p — p.
Definition Imp :=funp q: o= p — q.
Definition Forall (sigma : Type)

= fun f : (sigma — o) = (V¥ z : sigma, Neg(Neg (f z))).
Definition And (M :0) (N :0):=(p: o (M — N — p) — p).
Definition Or (M :0) (N :0):=(Vp: o, (M — p) = (N — p) — p).
Definition Fqual (sigma : Type) (M : sigma) (N : sigma)

=V f: (sigma — o), (f M) — f N.
Definition FEzists (sigma : Type) (M : (sigma — o))

=Vp:o (Vz: sigma, (M z) — p) — p.

B.2.1 Short Hand

Definition ForallNeg (sigma : Type)

:= fun f : (sigma — o) = Forall sigma (fun z : sigma = (Neg(f z))).
Definition EzistsNeg (sigma : Type) (M : (sigma — o))

:= Exists sigma (fun z : sigma = (Neg(M z))).

B.3 Symmetry of equality
Definition Sym (sigma : Type)

:V zy: sigma, (Equal sigma z y) — (Equal sigma y)
=funzyufuv=>u(funz=fz—fz) (fun w = w) v

53

54 APPENDIX B. GIRARD-KURODA TRANSFORMATION

B.4 Transitivity of equality

Definition Tra (sigma : Type)
:Vxy z: sigma, (Equal sigma x y) — (Equal sigma y z) — (Equal sigma z z)
—funzyzuvpw=0vp(upw).

B.5 Negative transitivity

Definition TraNeg (sigma : Type)
YV xy z: sigma, (Equal sigma x y) — Neg(Equal sigma z z) — Neg(Equal sigma y z)
=funzyzuvw=v(Tra sigma z y z u w).

B.6 Lemmas

B.6.1 Closed False Rule

Definition closedfalserule : Bot — Bot := fun u = u.

B.6.2 Closed Not True Rule

Definition closednottruerule : (Neg Top) — Bot := fun u = u (fun p v = v).

B.6.3 Closed Rule

Definition closedrule :
Vp:o,p— (Neg p) — Bot
=funpuv=(vu).

B.6.4 Closed Neg Equal Rule

Definition closednegequalrule (sigma : Type)
: V (s : sigma), Neg(Equal sigma s s) — Bot
=funpu=u (funf v = v).

B.6.5 Closed Symmetric Rule

Definition closedsymrule (sigma : Type)
1V (s t: sigma), (Equal sigma s t) — Neg(Equal sigma t s) — Bot
=fun st uw v = v (Sym sigma s t u).

B.6.6 Double Negation Rule

Definition dnegrule
:Vp: o, (p— Bot) — Neg(Neg p) — Bot
—funpuv=0vu

B.6. LEMMAS

B.6.7 Cut Rule

Definition cutrule
:V¥p:o, (p— Bot) — (Neg p) — Bot) — Bot
= funpuv=0vu

B.6.8 Implication Rule

Definition imprule
1V pq: o, ((Neg p) — Bot) — (¢ — Bot) — (Imp p q) — Bot
=funpquovw=u(funul : p= v (w ul)).

B.6.9 Negative Implication Rule

Definition negimprule
:Vpq:o (p— (Neg q) — Bot) — (Neg (Imp p q)) — Bot
=funpquv=v(funwl:p=>uwl (funz: ¢= v (fun w2 : p = 2)) q).

B.6.10 And Rule

Definition andrule
:Vpq:o, (p— q— Bot) — (And p q) — Bot
:= fun p ¢ u v = v Bot u.

B.6.11 Or Rule

Definition orrule
:Vpgq:o, (p— Bot) — (¢ — Bot) — (Or p q) — Bot
= funp qu v w= w Bot u v

B.6.12 Neg And Rule

Definition negandrule
:Vpq: o, ((Neg p) — Bot) — ((Neg q) — Bot) — Neg(And p q) — Bot
=funpquvw=u(fun ul = v (fun u2 = w (fun p u3 = ud ul u2))).

B.6.13 Neg Or Rule

Definition negorrule
:Vpaq: o, (Neg p) — (Neg q) — Bot) — Neg(Or p q) — Bot
=funpgquv=
u (fun w = v (fun r ! w2 = ul w))(fun w = v (fun r ul w2 = w2 w)).

B.6.14 Forall Rule

Definition forallrule (sigma : Type)
2V (f : sigma — o) (t : sigma), ((f t) — Bot) — (Forall sigma f) — Bot
=funftuwv=0vtu

95

56 APPENDIX B. GIRARD-KURODA TRANSFORMATION

B.6.15 DeMorgan Forall Rule

Definition demorganforallrule (sigma : Type)
2V (f : sigma — o), ((EzistsNeg sigma f) — Bot) — (Neg (Forall sigma f)) — Bot
=funfuv=v(funzw=u(funrz=z2z w)).

B.6.16 Exists Rule

Definition existsrule (sigma : Type)
2V f: (sigma — o), (VY z : sigma, (f) — Bot) — (Exists sigma f) — Bot
:=fun f v v = v Bot u.

B.6.17 DeMorgan Exists Rule

Definition demorganexistsrule (sigma : Type)
2V (f : sigma — o), ((ForallNeg sigma f) — Bot) — (Neg (Ezists sigma f)) — Bot
=funfuv=u(funy w! = wl (fun w2 = v (fun r w3 = w3 y w2))).

B.6.18 Boolean Equality Rule

Definition boolegrule
VY (pq: o), (p = q— Bot)— ((Neg p) — (Neg q) — Bot) — (Equal o p q) — Bot
=fun p q ul u2 u3 =
u2 (fun v = ul v (u8 (fun w = w) v))
(u3 (fun w = Neg w) (fun v = ul v (u8 (fun w = w) v))).

B.6.19 Leibniz Rule

Definition leibnizrule (sigma : Type)

2V (z y : sigma), ((Forall (sigma — o) (fun f = f z — [y)) — Bot) — (Equal sigma z y)
— Bot

=funz yuv=u(funf ul = ul (vf)).

B.6.20 Functional Equality Rule

Definition funceqrule (sigma tau : Type)
2V (k h: (sigma — tau)) (¢ : sigma), ((Equal tauw (k t) (b t)) — Bot) —
(Equal (sigma — tau) k h) — Bot
=funk htul w2 = ul (u2 (fun r = Equal tau (k t) (r t)) (fun f v = v)).

B.6.21 Mating Rule - 2 arguments

Definition matingrule_2 (sigma tau : Type)
2V (f & (sigma — tau — 0)) (sl t1 : sigma) (s2 t2 : tau),
(Neg(Equal sigma s1 t1) — Bot) — (Neg(Equal tau s2 t2) — Bot) —
(f s1 s2) — Neg(f t1 t2) — Bot
= fun f s1 t1 s2 t2 ul w2 ud uj =
ul (fun vl =
w2 (fun v2 = w4 (v2 (funz = f ¢t1 z) (v (fun z = f z $2) u3)))).

B.6. LEMMAS 57

B.6.22 Decomposition Rule - 2 arguments

Definition decompositionrule_2 (sigma tau : Type)

2V (h: (sigma — tau — i) (s1 t1 : sigma) (s2 t2 : tau),

(Neg(Equal sigma s1 t1) — Bot) — (Neg(Equal tau s2 t2) — Bot) —

Neg(Equal i (h s1 s2) (h t1 t2)) — Bot
= fun h s1 t1 s2 t2 ul u2 ul =

ul (fun vl =
42 (fun v2 =
u8 (fun p v8 =
v2 (fun z = p (h t1 z)) (vI (fun z = p (h z s2)) v3)))).

B.6.23 Confrontation Rule

Definition confrontationrule
1V (s1 t1 s2 t2 : 1), (Neg(Equal i s1 s2) — Neg(Equal i t1 s2) — Bot) —
(Neg(Equal i s1 t2) — Neg(FEqual i t1 t2)— Bot) — (FEqual i s1 t1) —
Neg(Equal i s2 t2) — Bot
= fun s1 t1 s2 t2 ul u2 u3 uj =
ul (fun vl = u2 (TraNeg i s2 s1 t2 (Sym i sl s2 vl) u4)
(TraNeg i s1 t1 t2 u8 (TraNeg i s2 s1 t2
(Sym i s1 s2 vl) uf)))
(TraNeg i s t1 s2 u8 (fun vl =
u2 (TraNeg i s2 s1 t2 (Sym i sl s2 vl) u4)
(TraNeg i sI t1 t2 u3
(TraNeg i s2 sl t2
(Sym i s1 s2 vl) uf)))).

o8

APPENDIX B. GIRARD-KURODA TRANSFORMATION

Appendix C

Girard-Kuroda-Per Transformation

C.1 Defining basic types ¢, o

Parameter i : Type.
Definition o :— Prop.

C.2 Girard-Kuroda-Per Transformation

Definition Bot :=V p : o, p.
Definition Neg := fun p : 0 = p — Bot.
Definition Top :=V p: o, p — p.
Definition Imp :=funp q: o= p — q.
Definition And (M :0) (N :0):=(p: o (M — N — p) — p).
Definition Or (M :0) (N :0):=(Vp: o0, (M — p) - (N — p) — p).
Definition R_o (M : 0) (N : 0) := (And (Imp M N) (Imp N M)).
Definition R (M :4) (N:49):=(NVp:i— o0, (p M) — (p N)).
Definition R_ar (sigma tau : Type) (R_sigma : sigma — sigma — 0)
(R_tau : tau — tau — o) (M : sigma — tau) (N : sigma — tau)
=V x y: sigma, R_sigma © y — Neg(Neg(R-tau (M z) (N y))).
Definition Forall (sigma : Type) (R-sigma : sigma — sigma — 0)
= fun f : (sigma — o) = VY t : sigma, Imp (R_sigma t t) (Neg(Neg(f t))).
Definition FErists (sigma : Type) (R_sigma : sigma — sigma — 0)
;= fun f : (sigma — 0) =V p: o, (V z : sigma, (R_sigma z z) — (f) — p) — p.

C.2.1 Short Hand

Definition ForallNeg (sigma : Type) (R_sigma : sigma — sigma — 0)
:= fun f:(sigma — 0) = Forall sigma R_sigma (fun z:sigma = (Neg(f 2))).
(

Definition EzistsNeg (sigma : Type) (R_sigma : sigma — sigma — o) (M : (sigma — o))
:= Eumists sigma R_sigma (fun z:sigma = (Neg(M z))).

59

60 APPENDIX C. GIRARD-KURODA-PER TRANSFORMATION

C.3 Some Definitions

C.3.1 Definition of SymNeg

Definition SymNeg (sigma : Type) (R_sigma : sigma — sigma — 0)
: (VY zy: sigma, (R_sigma z y) — (R_sigma y z)) —
(V z y : sigma, Neg(R_sigma z y) — Neg(R_sigma y z))
=funwzyvw=0v(uvyzw).

C.3.2 Recursive definition of Sym

Definition Sym_o
Vzy:o (Roozy) — (R-oyux)
=funzyurv=ur (funul u2 = v u2 ul).
Definition Sym_i
:Vzy:i (Riizy)— (Roiyx)
=funzyupov=u(funz=pz—pz) (funw = w) v
Definition Sym-_ar (sigma tau : Type) (R-sigma : sigma — sigma — o)
(R_tau : tau — tau — o)
(Sym_sigma : ¥V (z y : sigma), (R_sigma z y) — (R_sigma y 1))
(Sym_tau : V (z y : tau), (R_tau z y) — (R_tau y x))
YV (f g (sigma — tau)),
(R-ar sigma tau R_sigma R_tau f g) — (R-ar sigma tauw R_sigma R_tau g f)
=funfguzxyvw=
uy z (Sym_sigma z y v) (SymNeg tau R_tau Sym_tau (g z) (f y) w).

C.3.3 Recursive definition of Tra

Definition Tra_o

Vzyz:o (Rooxy) — (Rooyz) — (R-ox 2)

—funzyyuovrw=

uw r (fun ul ul =
v r (fun vl v2 =
w (fun w! = vl (ul wl)) (fun w2 = 42 (vV2 w2)))).

Definition Tra_:

Vzyz:i (Riizy) — (Roiyz) — (Roix 2)

—funzyzuvpw=0vp(upw).

Definition Tra_ar (sigma tau : Type) (R_sigma : sigma — sigma — 0)
(R-taw : tau — tau — o)
(Sym_sigma : ¥V (z y : sigma), (R_sigma z y) — (R_sigma y x))
(Tra-sigma : ¥ x y z : sigma, (R_sigma = y) — (R_sigma y z) — (R-sigma x z))
(Tra-tav : ¥V z y z : tau, (R-tav z y) — (R-tau y z) — (R_tau = 2))
2V (f g h: (sigma — tauw)), (R_ar sigma taw R_sigma R_tau f g) —
(R-ar sigma tau R_sigma R_tau g h) — (R_ar sigma tau R_sigma R_tau f h)
=funfghuvzyw wl=
wzywl (fun ul = vy y (Tra_sigma y x y (Sym_sigma = y wl) wl)
(fun v1 = w2 (Tra_teu (f z) (g y) (h y) ul vl))).

C.4. LEMMAS 61

C.3.4 Definition of TraNeg relative to Tra

Definition TraNeg (sigma : Type) (R-sigma : sigma — sigma — 0)
(Tra-sigma : ¥ z y z : sigma, (R-sigma z y) — (R_sigma y z) — (R_sigma x z))
:Vxyz: sigma, (R_sigma z y) — Neg(R_sigma z z) — Neg(R_sigma y z)
=funzyzuvw=v (Tra_sigma z y z v w).

C.4 Lemmas

C.4.1 Closed False Rule

Definition closedfalserule : Bot — Bot := fun u = u.

C.4.2 Closed Not True Rule

Definition closednottruerule : (Neg Top) — Bot := fun u = u (fun p v = v).

C.4.3 Closed Rule

Definition closedrule : ¥V p : o, p — (Neg p) — Bot := fun p u v = (v u).

C.4.4 Closed Neg Equal Rule

Definition closednegequalrule (sigma : Type) (R_sigma : sigma — sigma — 0)
: ¥V (s : sigma), Neg(Neg(R_sigma s s)) — Neg(R_sigma s s) — Bot
= funsuv=uo

C.4.5 Closed Symmetric Rule

Definition closedsymrule (sigma : Type) (R_sigma : sigma — sigma — 0)
(Sym_sigma : ¥V (z y : sigma), (R_sigma z y) — (R_sigma y 1))
1V (s t: sigma), (R-sigma s t) — Neg(R_sigma t s) — Bot
=fun st uv= v (Sym_sigma st u).

C.4.6 Double Negation Rule

Definition dnegrule
:V (p: o), (p — Bot) — Neg(Neg p) — Bot
=funpuv=vu

C.4.7 Restricted Cut Rule

Definition cutrule
2V (p: o), (p — Bot) — ((Neg p) — Bot) — Bot
= funpuv=0vu

62 APPENDIX C. GIRARD-KURODA-PER TRANSFORMATION

C.4.8 Implication Rule

Definition imprule
¥V (p q: o), (Neg p) — Bot) — (¢ — Bot) — (Imp p q) — Bot
=funpquovw=u(funul : p= v (w ul)).

C.4.9 Negative Implication Rule

Definition negimprule
1V (pg: o), (p— (Neg q) — Bot) — (Neg (Imp p q)) — Bot
=funpquov=v (funwl:p=uwl (funz: ¢= v (fun w2 : p = 2)) q).

C.4.10 And Rule

Definition andrule
:V(pg:o),(p— q— Bot) — (And p q) — Bot
:=fun p q u v = v Bot u.

C.4.11 Or Rule

Definition orrule
:V(pq: o), (p— Bot) — (¢ — Bot) — (Or p q) — Bot
:=funp qu v w = w Bot u v.

C.4.12 Neg And Rule

Definition negandrule
:V (p q: 0), (Neg p) — Bot) — ((Neg q) — Bot) — Neg(And p q) — Bot
=funpquow= u (fun ul = v (fun 42 = w (fun p vl = ud ul u2))).

C.4.13 Neg Or Rule

Definition negorrule
1V (p q: o), (Neg p) — (Neg q) — Bot) — Neg(Or p q) — Bot
—funpquov=
uw (fun w = v (fun 7 vl w2 = ul w)) (fun w = v (fun r wl u2 = u2 w)).

C.4.14 Restricted Forall Rule

Definition forallrule (sigma : Type) (R-sigma : sigma — sigma — 0)
2V (f : sigma — o) (¢t : sigma), Neg(Neg(R_sigma t t)) — ((f t) — Bot) —
(Forall sigma R_sigma f) — Bot
=funftuvw=u(funul = wiul v).

C.4.15 DeMorgan Forall Rule

Definition demorganforallrule (sigma : Type) (R_sigma : sigma — sigma — 0)
2V (f : sigma — o), ((EzxistsNeg sigma R_sigma f) — Bot) —
(Neg (Forall sigma R_sigma f)) — Bot
=funfuv=v (funz vl v2 = u (fun p ul = ul z vl v2)).

C.4. LEMMAS

63
C.4.16 Exists Rule

Definition existsrule (sigma : Type) (R_sigma : sigma — sigma — 0)
2V (f : sigma — o), (V z:

. sigma, (R-sigma x z) — (f z) — Bot) —
(Exists sigma R_sigma f) — Bot

:=fun f v v = v Bot u.

C.4.17 DeMorgan Exists Rule

Definition demorganezistsrule (sigma : Type) (R_sigma : sigma — sigma — 0)
2V (f : sigma — o), ((ForallNeg sigma R_sigma f) — Bot) —
(Neg (Exists sigma R_sigma f)) — Bot

=funf uv=u(funz ul u2 = u2 (fun u3 = v (fun p vl = vl = ul ul))).

C.4.18 Boolean Equality Rule

Definition booleqrule

:V(pq:o),(p— q— Bot) — ((Neg p) — (Neg q) — Bot) — (R-o p q) — Bot
—=funpquovw=

w Bot (fun ul 42 = v (fun vl = u vl (ul vl)) (fun v2 = u (u2 v2) v2)).

C.4.19 Boolean Extensionality Rule

Definition boolextrule

:V(pgq: o) (p— (Neg q) — Bot) — (¢ — (Neg p) — Bot) — Neg(R-o p q) — Bot
=funpgquvw=
w (fun r wi =
w! (fun 21 =
(u 21 (fun 22 =

w (fun r1 w2 = w2 (fun 28 = 22) (fun 24 = 21)))) q)
(fun z1 =
(v 21 (fun 22 =

w (fun r1 w2 = w2 (fun 28 = z1) (fun 24 = 22)))) p)).

C.4.20 Restricted Functional Equality Rule

Definition funcegrule (sigma tau

(R-tau :

: Type) (R_sigma :
: tau — tau — 0)

: sigma — sigma — 0)
: ¥V (k h: (sigma — tau)) (¢ : sigma), Neg(Neg(R_sigma t t)) —

((R-taw (k t) (h t)) — Bot) — (R_ar sigma tau R_sigma R_tau k h) — Bot
=funkhtuvovw=u(funul = wittul v).

C.4.21 Functional Extensionality Rule

Definition funcextrule (sigma tau : Type) (R_sigma : sigma — sigma — 0)
(R_tau : tau — tau — o)
(Sym_sigma : ¥V (z y : sigma),(R_sigma z y) — (R_sigma y 1))

(Tra-sigma : ¥ z y z : sigma, (R-sigma z y) — (R_sigma y z) — (R_sigma x z))
(Tra_taw : ¥ z y z : tau, (R-taw = y) — (R-tau y 2z) — (R-tau z 2))
: ¥V (k h: (sigma — tau)), Neg(Neg(R-ar sigma tau R_sigma R_tau h h)) —

64 APPENDIX C. GIRARD-KURODA-PER TRANSFORMATION

(V x : sigma, (R-sigma z) — Neg(R_tau (k z) (h z)) — Bot) —
Neg(R_ar sigma taw R_sigma R_tau k h) — Bot
=funkhuvw=
w (fun z y wl w2 =
vz (Tra_sigma z y x wl (Sym_sigma z y wl))
(fun vl =
u (fun ul =
ul x y wl (TraNeg taw R_tau Tra_tav (k z) (h z) (h y) v w2)))).

C.4.22 Mating Rule - 1 argument

Definition matingrule_1 (sigma : Type) (R_sigma : sigma — sigma — 0)
: YV (f : (sigma — o)) (s t : sigma), Neg(Neg(R_ar sigma o R_sigma R_o f f)) —
(Neg(R-sigma s t) — Bot) — (f s) — Neg(f t) — Bot
:=fun f s ¢t u0 ul u2 ul =
ul (fun vl =
u0 (fun w00 = w00 s t vl (fun v2 = v2 Bot (fun wl w2 = ul (wl u2))))).

C.4.23 Mating Rule - 2 arguments

Definition matingrule_2 (sigma tau : Type) (R_sigma : sigma — sigma — 0)

(R_tau : tau — tau — o)
2V (p : (sigma ->tau — o)) (s t1 : sigma) (s2 t2 : tau),

Neg(Neg(R-ar sigma (tau — o) R_sigma (R_ar tau o R_tau R_o0) p p)) —

(Neg(R-sigma sl t1) — Bot) — (Neg(R-tau s2 t2) — Bot) — (p sl s2) —

Neg(p t1 t2) — Bot
= fun p sI t1 s2 t2 w0 ul u2 uld uj =

ul (fun vl =
u2 (fun v2 =
u0 (fun w00 =
u00 s1 t1 vl (fun w =
w s2 t2 v2 (fun z =
z Bot (fun z1 22 =

ug (21 u3)))))))-

C.4.24 Decomposition Rule - 1 argument

Definition decompositionrule_1 (sigma : Type) (R_sigma : sigma — sigma — 0)
2V (h: (sigma — i) (s t: sigma), Neg(Neg(R_ar sigma i R_sigma R_i h h)) —
(Neg(R_sigma s t) — Bot) — Neg(R_i (h s) (h t)) — Bot
=funhstuvw=u (fun ul = v (fun vl = (ul st vl) w)).

C.4.25 Decomposition Rule - 2 arguments

Definition decompositionrule_2 (sigma tau : Type) (R_sigma : sigma — sigma — 0)
(R_tau : tau — tau — o)
2V (h: (sigma — tau — i) (s t1 : sigma) (s2 t2 : tau),
Neg(Neg(R_ar sigma (tau — i) R_sigma (R_ar tau i R_taw R_i) h h)) —
(Neg(R_sigma s1 t1) — Bot) — (Neg(R-tau s2 t2) — Bot) —
Neg(R-i (h sl s2) (h t1 t2)) — Bot

C.5. OTHER LEMMAS

:=fun h s1 t1 s2 t2 v vl V2 w =
u (fun ul =
vl (fun vil =
v2 (fun v21 = (ul s1 t1 vil) (fun z1 = (21 s2 t2 v21) w)))).

C.4.26 Confrontation Rule

Definition confrontationrule
:V(stuwv:i), (Neg(R-i s u) — Neg(R_i t u) — Bot) —
(Neg(R-i s v) — Neg(R-i t v) — Bot) — (R-i s t) — Neg(R-i u v) — Bot
=fun st v v ul u2 vl uj =
ul (fun vl =
u2 (TraNeg i R_i Tra_i uw s v (Sym_i s u vl) u4)
(TraNeg i R_i Tra_i s t v u3
(TraNeg i R-i Tra-i u s v (Sym-i s u vl) uf)))
(TraNeg i R_i Tra_i s t u w3 (fun vl =
u2 (TraNeg i R_i Tra_i u s v
(Sym_i s u vl) uf)
(TraNeg i R_i Tra_i s t v u3
(TraNeg i R_i Tra_i u s v

(Sym-i s u vl) u4)))).

C.5 Other Lemmas

C.5.1 Lemma 8.3.9

Definition Rorefl
:V(z:0),Rozzx
=funz p u= u (fun v = v) (fun v = v).

C.5.2 Lemma 8.3.8

Definition Rirefl
YV (zx:i), Rz
= funzpu= u

C.5.3 Lemma 8.3.11

Definition negrefl
: R_ar o 0 R_o R_o Neg Neg
=funz y v vl =
vl (fun p v =
v (fun w! w2 = u Bot (fun w3 w{ = wl (wf w2)))
(fun w! w2 = u Bot (fun w3 wi = wl (w3 w2)))).

C.5.4 Lemma 8.3.12

Definition imprefl
: Roar o (0 — o) R_o (R-ar 0 0 R_o R_0) Imp Imp

66 APPENDIX C. GIRARD-KURODA-PER TRANSFORMATION

= fun z1 22 ul vl =
vl (fun yl y2 u2 v2 =
v2 (fun p ud =
ul p (fun w! w2 =
u2 p (fun w8 wi =
48 (fun wd w6 = ws (wh (w2 we)))
(fun w5 w6 = wf (wd (wl wb))))))).

C.5.5 Lemma 8.3.13

Definition andrefl
: R_ar o (0 — 0) R_o (R_ar 0 0 R_o R_0) And And
= fun z1 22 ul vl =
vl (fun yl y2 u2 v2 =
v2 (fun p ul =
ul p (fun wl w2 =
w2 p (fun w8 wi =
48 (fun wb q w6 =
wh q (fun w7 w8 =
w6 (w1l w?) (w3 ws)))
(fun w5 q w6 =
wb q (fun w7 w8 =
w6 (w2 w7) (w4 ws)))))))-

C.5.6 Lemma 8.3.14

Definition orrefl
: Roar o (0 — 0) R_o (R_ar 0 0 R_o R_0) Or Or
= fun z1 22 ul vl =
vl (fun yl y2 u2 v2 =
v2 (fun p ud =
ul p (fun w! w2 =
w2 p (fun w8 wi =
u8 (fun wb q w6 w7 =
wh ¢ (fun w8 = w6 (wl ws))
(fun w8 = w7 (w3 ws)))
(fun wh q w6 w7 =
w5 ¢ (fun w8 = w6 (w2 ws))
(fun w8 = w7 (w4 ws8)))))))-

C.5.7 Lemma 8.3.17

Definition Rrefl (sigma tau : Type) (R-sigma : sigma — sigma — 0)
(Sym-sigma : ¥V (z y : sigma),(R-sigma z y) — (R-sigma y x))
(Tra-sigma : ¥ x y z : sigma, (R_sigma = y) — (R_sigma y z) — (R_sigma x z))
: R_ar sigma (sigma — o) R_sigma (R_ar sigma o R_sigma R_o0) R_sigma R_sigma
= fun z1 22 ul vl =
vl (fun y1 y2 u2 v2 =
v2 (fun p ul =

C.5. OTHER LEMMAS 67

u3 (fun wl =
Tra_sigma z2 y1 y2
(Tra-sigma z2 z1 y1 (Sym_sigma x1 22 ul) wl) u2)
(fun w1 =
Tra_sigma z1 y2 yl
(Tra-sigma x1 z2 y2 ul wl) (Sym_sigma y1 y2 u2)))).

C.5.8 Lemma 8.3.15

Definition emistsrefl (sigma : Type) (R-sigma : sigma — sigma — 0)
: R_ar (sigma — o) o (R—_ar sigma o R_sigma R_o) R_o
(Exists sigma R_sigma) (Exists sigma R_sigma)
= fun g1 ¢2 ul u2 =
u2 (fun p u8 =
u8 (fun vl ¢q v2 =
vl q (fun z v3 vi =
ul z z v3 (fun v5 =
v5 Bot (fun v6 v7 =
u2 (fun r v8 =
v8 (fun v9 r1 vi0 =
v10 z v3 (v6 v4))
(fun v9 = v1))))

9))
(fun v1 q v2 =
vl q (fun z v3 vi =
ul z z v8 (fun v6 =
v5 Bot (fun v6 v7 =
u2 (fun r v8 =
v8 (fun v9 = vl)
(fun v9 r1 v10 =
v10 z v8 (v7 v4)))))

C.5.9 Lemma 8.3.16

Definition forallrefl (sigma : Type) (R_sigma : sigma — sigma — 0)
: R_ar (sigma — o) o (R—_ar sigma o R_sigma R_o) R_o
(Forall sigma R_sigma) (Forall sigma R_sigma)
= fun g1 ¢2 ul u2 =
u2 (fun p u3 =
u8 (fun vl z v2 v8 =
vl z v2 (fun vf =
ul z z v2 (fun v6 =
v5 Bot (fun v6 v7 = v8 (v6 v4)))))
(fun v1 z v2 v3 =
vl z v2 (fun vf =
ul z z v2 (fun v5 =
v5 Bot (fun v6 v7 = v8 (v7 v4)))))).

68 APPENDIX C. GIRARD-KURODA-PER TRANSFORMATION

C.5.10 Lemma 8.3.19

Definition apptra (sigma tau : Type) (R-sigma : sigma — sigma — 0)
(R_tau : tau — tau — o)
2V (f g (sigma — tau)) (z y : sigma),
Neg(Neg(R-ar sigma tau R_sigma R_tau f g)) — Neg(Neg(R_sigma z y)) —

Neg(Neg(R-tau (f z) (9 y)))
=funfgzyuvw=v(funvl = u (fun ul = ul z y vl w)).

