
Verified Spilling and
Translation Validation with Repair

Julian Rosemann,B Sigurd Schneider,(orcid.org/0000-0003-1948-0596) Sebastian Hack

Saarland University, Saarland Informatics Campus
B rosemann@stud.uni-saarland.de

Abstract. Spilling is a mandatory translation phase in every compiler
back-end. It decides whether and where a value is stored in a register
or in memory and has therefore a significant impact on performance. In
this paper, we study spilling in the setting of a verified compiler with
a term-based intermediate representation that provides an alternative
way to realize SSA. We devise a permissive correctness criterion to ac-
commodate many SSA-based spilling algorithms and prove the criterion
sound. As case study, we verify two basic spilling algorithms. Finally, we
show that our criterion is decidable by deriving a translation validator
that repairs spilling information if necessary. We show that the validator
always produces a valid spilling, and that the validator does not alter
valid spilling information. Our results are formalized in Coq as part of
the LVC compiler project.

1 Introduction

Spilling is an important translation phase mandatory in every compiler back-
end. It deals with the problem that there is an unbounded number of variables
in the source program, but only finitely many registers in any processor. After
successful spilling, the set of live variables at every program point is covered by
the union of an unbounded set (the memory) and a set bounded by an integer k
(the registers). We call k the register bound. Spilling must ensure the value of a
variable resides in a register whenever an instruction uses it. For this purpose,
spilling inserts store instructions (spills), which copy the values of variables from
the registers to the memory, and load instructions (loads), which copy the values
of variables from the memory to the registers. For performance, it is crucial that
few load and spill instructions are executed, because register access is at least
an order of magnitude faster than memory access. Introducing spills and loads
also increases the code size, which is not desirable for performance.

As an example, consider the source program given in Listing 1. The program
on the left needs at least three registers. The middle and right programs are
different spilled forms of the left program, and each requires only two registers.
Note that the decision whether x or y is spilled in the first line determines how
many spills and loads are necessary in the continuation of the program.

Spilling determines whether a variable resides in a register at a program
point, but does not determine the register. Register assignment assigns variables

let␣z␣:=␣x␣+␣y␣in

if␣z␣≥␣y
then

x␣+␣z
else

z

let␣X␣:=␣x␣in
let␣z␣:=␣x␣+␣y␣in

if␣z␣≥␣y
then

let␣x␣:=␣X␣in
x␣+␣z

else
z

let␣Y␣:=␣y␣in
let␣z␣:=␣x␣+␣y␣in
let␣X␣:=␣x␣in
let␣y␣:=␣Y␣in
if␣z␣≥␣y

then
let␣x␣:=␣X␣in
x␣+␣z

else
z

Listing 1. A program (left) and two spilled forms of the same program. Lowercase
variables denote registers, uppercase variables denote spill slots.

to specific registers. Spilling and register assignment together form the register
allocation phase. In the literature, register allocation is often treated as a single
problem, without phase separation between spilling and register assignment. In
this work, we leverage that the number of simultaneously live variables equals the
register pressure to decouple spilling from register assignment. This is possible for
static single assignment (SSA) programs [7], and programs in the intermediate
language IL [11] used in the verified compiler LVC1. IL realizes SSA in a term-
based setting by interpreting variable definition as binding with scope.

We develop a small framework for verification of spilling based on an in-
ductively defined correctness criterion. The criterion is formulated relative to
spilling information (i.e. which variable is spilled/loaded where) and liveness in-
formation. If spilling information satisfies the criterion, it can be used to obtain
a program that meets the register bound, and in which variables are in the reg-
isters whenever they are used, and which is equivalent to the original program.
To verify a spilling algorithm, it suffices to prove that every produced spilling
information satisfies the criterion.

It is difficult to formally state what optimal spilling is. Minimizing loads and
spills is not necessarily the most effective approach, because reducing the loads
and spills at frequently passed program points is more important than anywhere
else. Properties of different processor architectures further complicate the prob-
lem. Our correctness criterion is independent of assumptions about optimality.
We restrict the spilling choices as little as possible. Our criterion in particular
supports arbitrary live range splitting, i.e., the choice whether a variable should
reside in memory or registers is made per program point. This is mandatory to
produce spillings with acceptable performance [4]. A value may also reside in a
register and in memory simultaneously.

As a case study, we use the predicate to verify three spilling algorithms. The
first is a trivial one which loads before instructions and spills afterwards. The
second tries to minimize the number of loads and spills by loading as late and

1 https://www.ps.uni-saarland.de/~sdschn/LVC

2

https://www.ps.uni-saarland.de/~sdschn/LVC
https://www.ps.uni-saarland.de/~sdschn/LVC

as little as possible, and only spilling variables that are overwritten and live in
the program continuation.

The third spilling algorithm is similar to a translation validator that takes
spilling information from an untrusted source as input. Instead of only validating
the spilling information, our algorithm corrects mistakes in the untrusted spilling.
We formally show that our algorithm transforms any spilling information (cor-
rect or not) to an ultimately correct spilling, and that spilling information that
already satisfies our criterion remains unchanged. Interestingly, the algorithm is
not much more complicated than a translation validator. To our knowledge, this
is the first algorithm of its kind. This approach unites the flexibility of translation
validation with the guarantees of full verification.

Our results are formalized in Coq and part of the Linear Verified Compiler
(LVC). The development is available online2. In summary, this paper makes the
following contributions:

– A modular framework for correctness of spilling for term-based SSA
– Verification of two simple spilling algorithms for term-based SSA
– A translation validator for spilling that not only accepts valid spillings, but

also repairs incorrect spilling from an external untrusted source.

Outline. The paper is organized as follows. Section 3 contains the semantics of
the language IL, and Section 4 discusses liveness information. Section 5 discusses
the representation of spilling information and the generation of the spilled pro-
gram. In Section 6, we define the correctness criterion for spilling and in Section 7
we prove its soundness. Section 8 contains two case studies. Section 9 describes
our translation validator with repair. Section 10 concludes.

2 Related Work

Global register allocation was pioneered by Chaitin [5]. Since Chaitin’s
initial work, there have been several improvements to graph coloring that mostly
concentrated on coalescing, i.e. the removal of copy instructions. Most graph
coloring approaches decide for every variable globally whether it resides in a
register (and if so, in which) or a spill slot. Especially, graph coloring allocators do
not attempt to split live ranges sophistically but rather transfer spilled variables
from/to memory upon each access. This gives a simple spilling scheme that is
also amenable to formal verification (see below). However, in practice the spilling
quality of these algorithms is not sufficient to achieve acceptable performance [4].
Linear Scan by Poletto and Sarkar [9] is the basis for many practically popular
approaches to register allocation. Linear scan splits live ranges, i.e. it allows a
variable to be in a register at one program point and in memory at another. For
performance reasons, linear scan over-approximates the live ranges of variables
by linearizing control flow, hence the name. Linear scan intertwines spilling and
register assignment.
2 https://www.ps.uni-saarland.de/~rosemann/lvc-spill

3

https://www.ps.uni-saarland.de/~rosemann/lvc-spill
https://www.ps.uni-saarland.de/~rosemann/lvc-spill

Static Single Assignment (SSA) allows to decouple spilling and register as-
signment. In SSA the number of simultaneously live variables equals the register
pressure [7]. SSA-based spilling algorithms can hence effectively determine how
many variables must be spilled at each program point without knowing the reg-
ister assignment. Braun and Hack [4] provide an SSA-based spilling algorithm
that is very sensitive to the underlying program structure.
Computational Complexity Chaitin proves NP-completeness of global reg-
ister allocation [5]. Bouchez et al. show that minimizing spills and loads is NP-
complete in SSA [3]. Bouchez also shows NP-completeness of different coalesc-
ing problems, i.e. minimizing the number of copies/swaps required to implement
SSA’s φ-functions after the register allocation phase.
CompCert Register allocation in the first version of CompCert used a trans-
lation validated graph coloring algorithm implemented in OCaml [8]. Spilling is
verified and very simple: Variables not in a register are loaded before use and
spilled after redefinition. Later Blazy et al. [2] fully verified Appel’s [6] iter-
ated register coalescing (IRC) approach, which includes spilling. Being a graph
coloring technique, this algorithm suffers from the same drawbacks concerning
spilling that we discussed above. Hence, especially for machines with few regis-
ters (such as IA32), the code quality is hardly acceptable. Instead of changing
the fully verified spiller, which would have been a tremendous effort, Rideau
et al. [10] developed a new translation validated algorithm for register alloca-
tion and spilling. The new spilling algorithm tracks recently spilled and loaded
variables and thus avoids loading if the variable is still in a temporary register.

In contrast to the verified register allocation by Blazy et al., the second
spilling algorithm we verify as case study splits live ranges. The algorithm fol-
lows a strategy similar to the translation validated algorithm of Rideau et al,
is verified, but does not support overlapping registers yet. There is a project
that aims to bring SSA to CompCert [1], but SSA-based register allocation for
CompCert has not been explored yet.
CakeML The compiler for CakeML [13] is verified in HOL4. The compiler
represents loops as recursive functions and forces all variables a function uses
to be parameters through closure conversion. This breaks all live ranges at loop
headers. The CakeML compiler assumes all function parameters are live, hence
register pressure may increase if closure conversion introduces dead parameters.
CakeML does not use SSA with φ-functions and delegates register allocation to
a non-SSA-based, verified IRC algorithm [6] that performs spilling and register
assignment together. In contrast to the CakeML approach, our approach is SSA-
based, separates spilling from register assignment, and allows fine-grained control
over live range splitting. Our approach does not require closure conversion, but
allows functions to refer to variables that are not parameters.

3 Syntax and Semantics of IL

The formal development in LVC uses the intermediate language IL with mu-
tually recursive function definitions and external events (system calls) [12]. For

4

the presentation of spilling in this paper, we omit mutually recursive function
definitions and system calls for the sake of simplicity. IL as used in LVC has
a functional and an imperative semantic interpretation [11]. We verify spilling
with respect to the imperative semantics, as it simplifies the treatment of the
new definitions introduced by spills and loads.

3.1 Expressions

Let V be the type of values and exp be the type of expressions. By convention, v
ranges over values and e over expressions. The type of variables V is isomorphic
to the natural numbers N. An environment has the type V → V⊥ where V⊥
includes V and ⊥ in case there is no assignment available. Expression evaluation
is a function [[·]] : exp → (V → V⊥) → V⊥ that takes an expression and an
environment and returns a value or ⊥ if the evaluation fails. For lists, we use
the notation x and we lift [[·]] accordingly: [[e]] yields ⊥ if at least one of the
expressions in e failed to evaluate and the list of the evaluated values otherwise.
We use the usual function fv : exp → setV that yields the free variables of an
expression. If V and V ′ agree on fv e, then [[e]]V = [[e]]V ′. There is a function
β : V→ {t, f} that simplifies the definition of the semantics of the conditional.

3.2 Syntax

IL is a first-order language with a tail-call restriction, which ensures that every
IL program corresponds can be implemented without a call stack. The syntax
of IL is given in Table 1. We use a separate alphabet F for function names to
enforce a first-order discipline. By convention, f ranges over F .

stmt 3 s,t ::= let x := e in s let statement
| if e then s else t conditional
| e return statement
| fun f x := s in t recursive function definition
| f e application

Table 1. Syntax of IL

3.3 Semantics

A context is a list of named definitions. By convention, L ranges over contexts. A
definition in a context may refer to previous definitions and itself. Notationally,
we use contexts like functions and write Lf to access the first element with
name f . We have Lf = ⊥ if no such element exists. We write L−f for the
context obtained from L by dropping all definitions before the first definition
of f . We write ; for context concatenation and ∅ for the empty context.

5

Figure 1 shows the small-step transition relation −→ of IL. The relation
is defined on configurations (L, V, s) where L is a context containing tuples of
type V ∗ stmt, V is an environment and s is an IL term. Often we write the
configuration tuple L |V |S to have the comma available as another separator.
Since only tail recursion is syntactically allowed in IL, no call stack is required.
Function application in IL is hence similar to a “goto” with a parallel copy on the
variables resulting from parameter passing, and very different from a function
call in a language with a call stack.

[[e]]V = v

L |V | let x := e in s −→ L |V [x 7→ v] | s SemLet

[[e]]V = v β(v) = b

L |V | if e then st else sf −→ L |V | sb
SemIf

L |V | fun f x := s in t −→ f : (x, s) ;L |V | t SemFun

[[e]]V = v Lf = (x, s)

L |V | f e −→ L−f |V [x 7→ v] | s
SemApp

Fig. 1. Semantics of IL

3.4 Renaming Apart

Many results in this paper require the input programs to be renamed apart,
that is, every variable must be assigned at most once and defined before used. In
general, renaming apart an imperative program requires SSA with φ-functions.
As presented in our previous work [11], IL realizes SSA by interpreting variables
as binders and emulates φ-functions through function applications. We previ-
ously established that renamed-apart IL programs are coherent, i.e. they behave
equivalently under a semantic interpretation with binders and a semantics with
imperative assignables. For this reason, our theorems require programs to be
renamed apart, and at the same time rely on the imperative interpretation.

4 Liveness

Liveness over-approximates the semantic (and hence undecidable) notion that a
variable is still used later on. The notion of liveness used in a register allocation
approach greatly impacts the algorithm and its effectiveness. Consider, for exam-
ple, the different notions of liveness used by graph-coloring register allocation [5]
and linear scan [9].

We inductively define a soundness predicate Z |Λ ` live s : X that associates
a set of variables X called live set with a program s. The parameter context

6

Z maps every defined function to its parameters. The live-in context Λ maps
every function to a set of variables that contains the variables live in the function
body and the parameters, which we call the live-in set of the function. We
embed the live-in sets in the IL syntax of function definitions, which from now
on take the syntactic form fun f x := s1 {X1} in s2, in which the function
body s1 is syntactically annotated with its live-in set X1. We call these sets
embedded in the syntax at function bodies live-in annotations. In contrast to
these annotations, the live set X that appears in the judgment Z |Λ ` live s : X
is not part of the syntax of IL. The inductive definition of liveness is given in
Figure 2 and similar to our previous definition [11]. The liveness predicate allows
X to over-approximate the live set, that is, X may contain variables that are
not used later on.

LiveLet
fv e ⊆ X

Xs \ {x} ⊆ X x ∈ Xs Z |Λ ` live s : Xs

Z |Λ ` live (let x := e in s) : X

LiveApp
fv e ⊆ X Λf \ Zf ⊆ X

Z |Λ ` live f e : X

LiveReturn
fv e ⊆ X

Z |Λ ` live e : X

LiveIf
fv e ∪X1 ∪X2 ⊆ X

Z |Λ ` live s1 : X1 Z |Λ ` live s2 : X2

Z |Λ ` live (if e then s1 else s2) : X

LiveFun
X2 ⊆ X

x ⊆ X1 f : x, Z | f : X1, Λ ` live s1 : X1 f : x, Z | f : X1, Λ ` live s2 : X2

Z |Λ ` live (fun f x := s1 {X1} in s2) : X

Fig. 2. Inductive definition of liveness

4.1 Description of the Rules of the Inductive Predicate

LiveLet requires the live set X of the let statement to contain the free variables
of the expression e, and the variables live in the continuation s, except the newly
defined variable x. We also require x to be in the live set Xs of the continuation.
This reflects that x must be considered live during the let-statement even if x is
not used afterwards, because x is overwritten and hence cannot hold a value that
is still used later on. LiveReturn requires the free variables of the expression
to be live. LiveApp requires the live-ins of the function that are not parameters
to be live. LiveIf requires the live variables of the consequence, the alternative,
and the free variables of the condition to be live. LiveFun requires that variables
live in continuation s2 are live. The parameters are recorded in the context Z,
and the live-ins X1 are recorded in the context Λ. The live-ins X1 contain all

7

variables live in the function body and all parameters, regardless of whether a
parameter is used: x ⊆ X1. This reflects that unused parameters are overwritten
during function application, and hence occupy a register or a spill slot.

4.2 Minimal Live Sets and Live Set Annotations

Live-in annotations uniquely determine the minimal live set for every program
point; those live sets can be computed by a bottom-up traversal. Since liveness
annotations are part of the syntax, every algorithm or judgment formulated
on the syntax can easily refer to and compute with the live-ins at function
definitions. This allows us to concisely describe how the live sets change during
spilling, we can explain changes to live sets by explaining them just for the live-
ins at function definitions. The effect on the other live sets in the program is
then uniquely determined. We write Z |Λ ` live s for ∃X.Z |Λ ` live s : X and
use this notation whenever we want to hide the precise form of the live set.

5 Spilling

Spilling transforms a program into an equivalent program by inserting spills
and loads such that the number of registers in the maximal live set is after-
wards bounded by a given integer k. In our framework, spilling consists of two
steps: First, a spilling algorithm inserts spilling annotations into the program
that describe where spills and loads should be placed. Second, the spills and
loads are inserted into the program as prescribed by these spilling annotations,
which yields the spilled program. The spilled program also contains live set
annotations at function definitions, and we describe in Section 7.2 how those are
recomputed according to the spilling annotations.

Spilling annotations are tree-tuples embedded in the syntax at every subterm.
A statement with spilling annotation has the form s ... (S,L,_), where S is the
set of variables to be spilled (spill set) and L is the set of variables to be loaded
(load set). The third component is only required if s is a function applications
or a function definition, and we discuss its purpose below. We call a statement
that contains such annotations a spill statement.

A spill statement can be turned into a spilled program via the recursive func-
tion doSpill, which we now informally describe. We assume that the variables are
partitioned into two countably-infinite sets V = VR ·∪ VM , and require that the
spill statement only contains variables from VR. We further assume an injection
slot : VR → VM which we use to generate names for spill slots (cf. CompCert [8]).

doSpillLocal(s ... ({x1, ..., xn}︸ ︷︷ ︸
spills

, {y1, ..., ym}︸ ︷︷ ︸
loads

,_)) =

let slot x1 = x1 in ...
let slot xn = xn in
let y1 = slot y1 in ...
let yn = slot yn in s

Listing 2. Definition of doSpillLocal

8

1 fun␣f␣x␣y␣z␣:=␣ Rf ={y, z},Mf ={c, x, z}
2 if␣y␣>␣0␣then
3 let␣a␣:=␣y+z␣in
4 f␣x␣a␣z␣ Rapp = {a, z},Mapp = {x, z}
5 else␣if␣y␣=␣0␣then
6

7

8 x␣+␣c␣ L = {c, x}
9 else

10 let␣w␣:=␣y*y␣in
11 let␣a␣:=␣y+w␣in
12 f␣x␣a␣z␣ Rapp = {a},Mapp = {x, z}

fun␣f␣X␣y␣z␣Z␣:=
if␣y␣>␣0␣then
let␣a␣:=␣y+z␣in
f␣X␣a␣z␣Z

else␣if␣y␣=␣0␣then
let␣x␣:=␣X␣in
let␣c␣:=␣C␣in
x␣+␣c

else
let␣w␣:=␣y*y␣in
let␣a␣:=␣y+w␣in
f␣X␣a␣Z␣Z

Listing 3. A spill statement on the left (non-empty sets in spilling annotations are
indicated by equations) and the resulting spilled program on the right. The live-ins
of f are {x, y, z, c}. The variable c is free in f . Lowercase variables denote registers,
uppercase variables denote spill slots. In line 4, z is passed in register and memory to
avoid loading z in line 3. The application in line 12 implicitly stores x (1st parameter)
and loads z (3rd parameter).

To generate the spilled program for s ... (S,L,_), doSpill first prepends the
statement s with spills for each variable in S, followed by the loads for each
variable in L as depicted in Listing 2. For let statements, conditionals, and
return statements this is all that needs to be done. Function definitions and
applications require some additional work, which we describe next.

Function definitions take a pair of sets (Rf ,Mf) as third component of the
spilling annotation: fun f x1, . . . , xn := s1 in s2 ... (S,L, (Rf ,Mf)). We call
the pair (Rf ,Mf) the live-in cover and require it to cover the live-ins Xf of f ,
i.e. Rf ∪Mf = Xf . The set Rf specifies the variables the function expects to
reside in registers, and the set Mf specifies the variables the function expects to
reside in memory. The sets Rf andMf are not necessarily disjoint, as a function
may want a variable to reside both in register and in memory when it is applied
(see Listing 3). Besides inserting spills and loads according to S and L as already
described, the function parameters must be modified to account for parameters
that are passed in spill slots. For this purpose, every parameter xi ∈Mf \Rf is
replaced by the name slotxi in x. Furthermore, for any parameter xi ∈Mf ∩Rf

an additional parameter with name slotxi is inserted directly after xi.
Function applications have a pair of sets (Rapp,Mapp) as third component of

spilling information and take the form f y1, . . . , yn ... (S,L, (Rapp,Mapp)). We
require all function arguments yi to be variables, and that Rapp ∪ Mapp =
{y1, . . . , yn}. The sets Rapp and Mapp indicate the availability of argument vari-
ables at the function application. If an argument variable yi is available in a
register, then the spilling algorithm sets yi ∈ Rapp, if it is in memory, then
yi ∈ Mapp. Besides inserting spills and loads according to S and L as already
described, doSpill modifies the argument vector y1, . . . , yn. For every parameter
xi ∈ Rf such that the corresponding argument variable yi is not in Rapp (i.e.

9

not available in a register), the variable yi is replaced by the name slot yi in the
argument vector. For every parameter xi ∈ Mf \ Rf such that the correspond-
ing argument variable yi is in Mapp (i.e. available in memory), the variable yi
is replaced by the name slot yi in the argument vector. Furthermore, for every
parameter xi ∈ Mf ∩ Rf an additional argument is inserted directly after the
corresponding argument variable (yi or slot yi) in y1, . . . , yn, and the name of
the additional argument is slot yi if yi ∈ Mapp and yi otherwise. In this way,
Rf and Mf are used to avoid implicit loads and stores at function application
if availability, as indicated in Rapp and Mapp, permits. Since spill slots are just
a partition of the variables, parameter passing can copy between spill slots and
registers if the argument variable yi for a register parameter xi is only avail-
able in memory, or vice versa. This fits nicely in our setting, as we handle the
generation of these implicit spills and loads later on, when parameter passing is
lowered to parallel moves. In line 12 of Listing 3, for example, the application
implicitly loads z. In contrast, availability of z in both register and memory at
the application in line 4 allows avoiding any implicit loads and stores. Assuming
y > 0 holds for most executions, this is beneficial for performance.

6 A Correctness Criterion for Spilling

We define a correctness predicate for spilling on spill statements of the form
Z |Σ |R |M ` spillk s ... (S,L,_). Note that as described in Section 5, the
spilling annotation (S,L,_) is embedded in the syntax. The correctness predi-
cate is defined relative to sets R and M , which contain the variables currently
in registers, and in memory, respectively. Additionally, the parameter context Z
maps function names to their parameter list, and the live-in cover context Σ
maps functions to their live-in cover. The parameter k is the register bound.
The rules defining the predicate are given in Figure 3.

6.1 Description of the Rules of the Inductive Predicate

The predicate consists of two generic rules that handle spilling and loading,
and one rule for each statement. Rules for statements only apply once spills
and loads have been handled. This is achieved by requiring empty spill and
load sets in statement rules, and requiring an empty spill set in the load rule.
SpillSpill requires S ⊆ R to ensure only variables currently in registers are
spilled. The new memory state is M ∪ S. SpillLoad requires the spill set to
be empty. Its second premise ensures there are enough free registers to load all
values. The kill set K represents the variables that may be overwritten because
they are not used anymore or are already spilled. R \K ∪ L is the new register
state after loading. Clearly, K is most useful if K ⊆ R, but our proofs do not
require this restriction. We also do not include K in the spilling annotation, as
the spilling algorithm would have to compute liveness information to provide it.
Simple spilling algorithms, such as the one we verify in Section 8.1, never need
to compute liveness information.

10

SpillSpill
S ⊆ R

Z |Σ |R |M ∪ S ` spillk s ... (∅, L,_)

Z |Σ |R |M ` spillk s ... (S,L,_)

SpillLoad
L ⊆M |R \K ∪ L| ≤ k

Z |Σ |R \K ∪ L |M ` spillk s ... (∅, ∅,_)

Z |Σ |R |M ` spillk s ... (∅, L,_)

SpillReturn
fv e ⊆ R

Z |Σ |R |M ` spillk e ... (∅, ∅)

SpillApp
Σf = (Rf ,Mf) Rf \ Zf ⊆ R

Mf \ Zf ⊆M y = Rapp ∪Mapp

Mapp ⊆M Rapp ⊆ R
Z |Σ |R |M ` spillk (f y) ... (∅, ∅, (Rapp,Mapp))

SpillIf
fv e ⊆ R Z |Σ |R |M ` spillk s1 Z |Σ |R |M ` spillk s2

Z |Σ |R |M ` spillk (if e then s1 else s2) ... (∅, ∅)

SpillLet
fv e ⊆ R |R \K ∪ {x}| ≤ k Z |Σ |R \K ∪ {x} |M ` spillk s

Z |Σ |R |M ` spillk (let x := e in s) ... (∅, ∅)

SpillFun
|Rf | ≤ k f : x;Z | f : (Rf ,Mf);Σ |Rf |Mf ` spillk s1

Rf ∪Mf = Xf f : x;Z | f : (Rf ,Mf);Σ |R |M ` spillk s2

Z |Σ |R |M ` spillk (fun f x := s1 {Xf} in s2) ... (∅, ∅, (Rf ,Mf))

Fig. 3. Inductive correctness predicate spillk

SpillReturn requires that the free variables are in the registers. SpillIf
requires the consequence and the alternative to fulfill the predicate on the same
configuration, and that the variables used in the condition are in registers. Spill-
Let deals with the new variable x, which needs a register. The resulting register
state is R \K ∪{x}, the size of which must be bounded by the register bound k.
This imposes a lower bound on k. The kill set K reflects that there might be a
variable y holding the value of a variable required to evaluate the expression e,
that is then overwritten to store the value of x. In this case K = {y}.

SpillApp uses the sets Rf and Mf from the corresponding function defini-
tion. The premises Rf \Zf ⊆ R and Mf \Zf ⊆M require that all live-ins of the
function except parameters are available in registers and memory at the appli-
cation. The remaining premises require that all argument variables are available
either in the registers (Rapp) or in the memory (Mapp), as discussed in Sec-
tion 5. Note that the argument vector y is variables only, i.e. applications can
only have variables as arguments. SpillFun refers to the live-in set Xf embed-
ded in the syntax to require that the live-in cover (Rf ,Mf) covers the live-ins Xf

of the program: Rf ∪Mf = Xf . The rule also requires the function to expect
at most k variables in registers: |Rf | ≤ k. The parameters and the live-in cover
are recorded in the context. The condition for the function body s1 uses Rf and
Mf as register and memory sets, respectively.

11

6.2 Formalization of the Spill Predicate in Coq

The predicate spillk is realized with five rules in the Coq development instead
of the seven rules presented here. Each of the five rules corresponds to a consec-
utive application of SpillSpill, SpillLoad and one of the statement-specific
rules. The five-rule system behaves better under inversion and induction in Coq,
but we think the formulation with seven rules provides more insight. The Coq
development contains a formal proof of the equivalence of the two systems.

7 Soundness of the Correctness Predicate

In this section we show that our spilling predicate is sound. We show that if s
is renamed apart and all variables in s are in VR, and the spilling and live-in
annotations in s are sound, the following holds for the spilled program s′:

(Section 7.1) all variables in s′ are in a register when used
(Section 7.2) at most k registers are used in s′

(Section 7.3) s and s′ have the same behavior

7.1 Variables in Registers

Figure 4 defines a predicate that ensures every variable is in a register when
used. The inference rules are straightforward. The predicate also ensures that
let-statements that assign to memory have a single register on the right-hand
side. We define merge (R,M) = R ∪M and slotMerge (R,M) = R ∪ slot M and
analogously their pointwise liftings.

ViRLoad
x ∈ VR y ∈ VM vir s

vir let x := y in s

ViRLet
fv e ⊆ VR vir s

vir let x := e in s

ViRReturn
fv e ⊆ VR
vir e

ViRIf
fv e ⊆ VR vir s vir t

vir if e then s else t

ViRApp

vir f y

ViRFun
vir s vir t

vir fun f x := s in t

Fig. 4. Predicate vir

Lemma 1. Let Z |Σ |R |M ` spillk s and Z |Λ ` live s and let s be re-
named apart and let all variables in s be in VR. If R ∪ M ∪

⋃
Z ⊆ VR then

vir (doSpill Z Λs).

Proof. The conditions follow directly by induction on spillk s.

12

https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.SpillSoundSeven.html
https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.VarInRegister.html#var_in_register

7.2 Register Bound

After the spilling phase, the liveness information in the program changed tremen-
dously. Spills and loads introduce new live ranges, and shorten live ranges of
already defined variables. To prove correctness of the spilling predicate, we must
show that after spilling the register pressure is lowered to k. To formally estab-
lish the bound, we show that the number of variables from VR in each live set
in the spilled program is bounded by k. The following observation is key to this
proof: The live-ins of a function after spilling can be obtained from the live-ins
of the function before spilling by keeping the variables passed in registers, and
adding the slots of the variables passed in memory. This property can be seen
in the rule SpillFun, where we require Rf ∪Mf = Xf .

In the Coq development, the statements of the following lemmas involve
the algorithm that reconstructs minimal liveness information we informally de-
scribed in Section 4.2, but omitted in this presentation for the sake of simplicity.

Lemma 2. Let Z |Σ |R |M ` spillk s and Z |mergeΣ ` live s and let s be
renamed apart and let all variables in s be in VR. If R ∪M ∪

⋃
Z ⊆ VR then

Z | slotMergeΣ ` live doSpill Z Σ s.

Proof. By induction on spillk s; mostly simple but tedious set constraints.

Lemma 3. Let Z |Σ |R |M ` spillk s and let s be renamed apart and let all
variables in s be in VR. If |R| ≤ k and R∪M ∪

⋃
Z ⊆ VR then for live set X in

the minimal liveness derivation Z | slotMergeΣ ` live doSpill Z Σ s the bound
|VR ∩X| ≤ k holds.

Proof. By induction on s. The proof uses a technical lemma about the way the
liveness reconstruction deals with forward-propagation that was difficult to find.

7.3 Semantic Equivalence

In this section we show that the spilled program is semantically equivalent to the
original program. Semantic equivalence means trace-equivalence à la CompCert.
As proof tool we use a co-inductively defined simulation relation. See our previous
work [11, 12] for details on simulation and proof technique. The verification is
done with respect to the imperative semantics of IL. This allows for a simple
treatment of the new variables that each spill and each load introduces. A typical
spill and load looks as follows:

let␣x␣=␣5␣in
fun␣f␣()␣=␣x␣in

...

f()

let␣x␣=␣5␣in
fun␣f␣()␣=␣x␣in
let␣X␣=␣x␣in␣ //␣spill
...
let␣x␣=␣X␣in␣ //␣load
f()

13

https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.ReconstrLiveSound.html#reconstr_live_sound
https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.RegisterBound.html#register_bounded

Note that in a semantics with binding, serious effort would be required to in-
troduce additional function parameters after spilling and loading. In the above
example, f would need to take x as a parameter. We postpone the introduction of
additional parameters to a phase after spilling, where we switch to the functional
semantics again to do register allocation. Changing the semantics from impera-
tive to functional corresponds to SSA construction and is in line with practical
implementations of SSA-based register allocation [4] that break the SSA invari-
ant during spilling, and then perform some form of SSA (re-)construction.

Lemma 4. Let s be a spill statement where all variables are renamed apart and
in VR. Let Z |Σ |R |M ` spillk s and Z |mergeΣ ` live s : X and V =R V ′

and V =M (λx.V ′(slot x)). If V ′ is defined on R ∪ slot M and R ∪M ⊆ VR
and L and L′ are suitably related then (L, V, s) and (L′, V ′, doSpillZ Σ s) are in
simulation.

8 Case Study: Verified Spilling Algorithms

A spilling algorithm translates a statement with live-in annotations to a spill
statement, that is, it inserts spilling annotations. The following algorithms are
implemented in Coq and verified using the correctness predicate.

8.1 SimpleSpill

The naive spilling algorithm simpleSpill loads the required values before each
statement, without considering that some values might still be available in a
register. After a variable is assigned, the algorithm immediatelly spills the vari-
able. This is a very simple algorithm, and it corresponds to the spilling strategy
used in the very first version of CompCert [8].

Theorem 1. Let Z |mergeΣ ` live s and let s be renamed apart and let all
variables in s be in VR and let every expression in s contain at most k different
variables. If every live set X in s is bounded by R ∪M and the first component
in Σf is empty for every f then Z |Σ |R |M ` spillk simpleSpill s.

Proof. By induction on s in less than 100 lines.

8.2 SplitSpill

The spilling algorithm splitSpill follows three key ideas: Variables are loaded as
late as possible, but in contrast to simpleSpill, only values not already available
in registers. If a register must be freed for a load, the algorithm lets an oracle
choose the variable to be spilled from the list of variables live and currently in a
register. The correctness requirement for the oracle is trivial. The oracle enables
live range splitting based on an external heuristic, similar to the approach of
Braun [4]. In contrast to Braun’s algorithm, splitSpill cannot hoist loads from
their uses.

14

https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.SpillSim.html#sim_I
https://www.ps.uni-saarland.de/~rosemann/lvc-spill//Lvc.Spilling.SimpleSpill.html#simpleSpill
https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.SimpleSpill.html#simpleSpill_sat_spillSound
https://www.ps.uni-saarland.de/~rosemann/lvc-spill//Lvc.Spilling.SimpleSpill.html#simpleSpill
https://www.ps.uni-saarland.de/~rosemann/lvc-spill//Lvc.Spilling.SplitSpill.html#splitSpillKO
https://www.ps.uni-saarland.de/~rosemann/lvc-spill//Lvc.Spilling.SimpleSpill.html#simpleSpill
https://www.ps.uni-saarland.de/~rosemann/lvc-spill//Lvc.Spilling.SplitSpill.html#splitSpillKO

Theorem 2. Let Z |mergeΣ ` live s and let s be renamed apart and let all
variables in s be in VR and let every expression in s contain at most k different
variables. If every live set X in s is bounded by R∪M and and for every f such
that (Rf ,Mf) = Σf we have |Rf | ≤ k then Σ |Z |R |M ` spillk splitSpill s.

Proof. By induction on s in less than 500 lines.

9 Translation Validation with Repair

We devise a translation validator repairSpill for our correctness predicate. The
translation validator repairSpill operates on a statement with liveness and spilling
annotations, and assumes the liveness to be sound. Besides deciding whether
the spilling annotation is sound, repairSpill also repairs the spilling annotation if
necessary. The output of repairSpill always contains sound spilling annotations.
Furthermore, we show that repairSpill leaves the spilling annotations unchanged
if they are already sound with respect to the provided live-in annotation and our
correctness predicate.

To explain the principle behind repairSpill, it is instructive to understand how
the algorithm recomputes a live-in cover (Rf ,Mf) from the (possibly unsound)
spilling annotation using the corresponding live-ins Xf from the sound live-in
annotation. Let take kX be a function that yields a k-sized subset from X or X
if |X| ≤ k. The new live-in cover (R′f ,M

′
f) is obtained as follows:

R′f = take k (Rf ∩Xf)

M ′f = (Xf \R′f) ∪ (Mf ∩Xf)

These equations have two important properties: First, it holds R′f ∪M ′f = Xf ,
so the equations produce a correct live-in cover independent of the input sets
Rf and Mf . Second, if Rf ∪Mf = Xf and |Rf | ≤ k then R′f = Rf and hence
M ′f = Mf , i.e. the original live-in cover is retained, if it is valid. repairSpill
transforms every spill and load set in the spilling annotation in a similar way
such that these two properties hold.

The kill sets K appearing in the derivation of spillk are not recorded in the
spilling annotation, because we did not want to require the spilling algorithm to
compute them. To check whether a spilling annotation is correct, repairSpill must
reconstruct kill sets. Maximal kill sets can be reconstructed in a backwards fash-
ion from spilling annotation similar to how minimal liveness information can be
reconstructed (Section 4.2). A maximal kill set upper-bounds the variables that
can be soundly killed. The correctness of the kill sets repairSpill reconstructs de-
pends on the correctness of the spilling annotation. For this reason, we designed
repairSpill in such a way that that the correctness of its output does not depend
on the correctness of the kill sets. This is similar to the fact that the correctness
of R′f and M ′f in the equations above does not depend on the correctness of Rf

and Mf . If the spilling annoation is correct, however, the kill sets are correct
and ensure that the algorithm does not change the spilling annotation.

15

https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.SplitSpill.html#splitSpillKO_sat_spillSound
https://www.ps.uni-saarland.de/~rosemann/lvc-spill//Lvc.Spilling.SplitSpill.html#splitSpillKO

Consider, for example, a conditional if e then s else t : (S,L,_) where
S and L are the potentially unsound spill and load sets. From the memory state
(R,M) and the assumption fv e ⊆ R ∪M the algorithm produces sound spill
and load sets S′ and L′ that agree with S and L if those are already sound. For
correctness, we only require fv e ⊆ R. We use the following definitions:

pick k s t = s ∪ take (k − |s|) (t \ s)

pickload k RM S Le = (fv e ∩R ∩Q) ∪ P
where Q = L ∩ ((S ∩R) ∪M)

and where P = pick (k − | fv e ∩R|) (fv e \R) (Q \ (fv e ∩R))

We can now pick the new load set L′ = pickload k RM S Le. Lemma 5 and
Lemma 6 establish that L′ satisfies the register bound and loads the variables
necessary to evaluate e. Lemma 7 shows that L′ = L if L was already correct.

Lemma 5. If | fv e| ≤ k then | pickload k RM S Le| ≤ k−| fv e∩R\(L∩(S∪M))|.

Lemma 6. (fv e ∩R \ (L ∩ (S ∪M))) ∪ (fv e \R) ⊆ pickload k RM S Le.

Lemma 7. Let S ⊆ R and L ⊆ S ∪M and fv e \R ⊆ L and | fv e ∪L| ≤ k then
pickload k RM S Le = L.

We developed definitions similar to pickload that allow repairSpill to transform
every spill and load set in the spilling annotation. Correct sets are retained, and
incorrect sets are repaired. NP-completeness of the spilling problem makes it
unlikely that quality guarantees hold for a polynomial-time repair algorithm.

Theorem 3. (Correctness) Let Z |mergeΣ ` live s : X and let R,M be sets
of variables such that X ⊆ R∪M and let every expression in s contain at most k
different variables. If for every f such that (Rf ,Mf) = Σf we have |Rf | ≤ k
then Z |Σ |R |M ` spillk (repairSpill k Z Σ RM s).

Theorem 4. (Idempotence) Let s be renamed apart and let Z |mergeΣ `
live s : X and let Z |Σ |R |M ` spillk s. If for every f such that (Rf ,Mf) = Σf

we have |Rf | ≤ k then repairSpill k Z Σ RM s = s.

10 Conclusion

We presented a correctness predicate for spilling algorithms that permits ar-
bitrary live range splitting. To our knowledge, it is the first formally proven
correctness predicate for spilling on term-based SSA and the first to support
arbitrary live range splitting. The conditions of our correctness predicate are
mainly set constraints, and our case studies show that the predicate simplifies
correctness proofs of spilling algorithms.

Based on the correctness predicate, we defined a translation validator for
spilling algorithms with repair. The algorithm takes any spilling annotation and

16

https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.PickLK.html#pick_load_card
https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.PickLK.html#incl_pick_load
https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.PickLK.html#pick_load_eq
https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.RepairSpillSound.html#repair_spill_sound
https://www.ps.uni-saarland.de/~rosemann/lvc-spill/Lvc.Spilling.RepairSpillIdem.html#repair_spill_idem

repairs it if necessary. Our algorithm combines the flexibility of translation val-
idation with the correctness guarantees of verification.

This work is part of the verified compiler LVC. LVC has about 50k LoC and
extracts to an executable verified compiler. The spilling framework presented in
this paper is about 8k LoC. A considerable difference between the paper and the
formal proofs is the presentation of liveness information: In the formal devel-
opment, liveness reconstruction must, of course, be handled by a Coq function,
and we must prove that is function is correct and yields minimal live sets.

References

[1] Gilles Barthe, Delphine Demange, and David Pichardie. “A Formally Veri-
fied SSA-Based Middle-End - Static Single Assignment Meets CompCert”.
In: ESOP. Vol. 7211. LNCS. Tallinn, Estonia, Mar. 24–Apr. 1, 2012.

[2] Sandrine Blazy, Benoît Robillard, and Andrew W. Appel. “Formal Ver-
ification of Coalescing Graph-Coloring Register Allocation”. In: ESOP.
Vol. 6012. LNCS. Paphos, Cyprus, Mar. 20–28, 2010.

[3] Florent Bouchez, Alain Darte, and Fabrice Rastello. “On the complexity
of spill everywhere under SSA form”. In: LCTES. San Diego, California,
USA, June 13–15, 2007.

[4] Matthias Braun and Sebastian Hack. “Register Spilling and Live-Range
Splitting for SSA-Form Programs”. In: CC. Vol. 5501. LNCS. York, UK,
Mar. 22–29, 2009.

[5] Gregory J. Chaitin. “Register Allocation & Spilling via Graph Coloring”.
In: PLDI. Boston, Massachusetts, USA, June 23–25, 1982.

[6] Lal George and AndrewW. Appel. “Iterated Register Coalescing”. In: ACM
Trans. Program. Lang. Syst. 18.3 (1996).

[7] Sebastian Hack, Daniel Grund, and Gerhard Goos. “Register Allocation
for Programs in SSA-Form”. In: CC. Vol. 3923. LNCS. Vienna, Austria,
Mar. 30–31, 2006.

[8] Xavier Leroy. “A Formally Verified Compiler Back-end”. In: JAR 43.4
(2009).

[9] Massimiliano Poletto and Vivek Sarkar. “Linear scan register allocation”.
In: TOPLAS 21.5 (1999).

[10] Silvain Rideau and Xavier Leroy. “Validating Register Allocation and Spilling”.
In: CC. Vol. 6011. LNCS. Paphos, Cyprus, Mar. 20–28, 2010.

[11] Sigurd Schneider, Gert Smolka, and Sebastian Hack. “A Linear First-
Order Functional Intermediate Language for Verified Compilers”. In: ITP.
Vol. 9236. LNCS. Nanjing, China, Aug. 24–27, 2015.

[12] Sigurd Schneider, Gert Smolka, and Sebastian Hack. “An Inductive Proof
Method for Simulation-based Compiler Correctness”. In: CoRR abs/1611.09606
(2016).

[13] Yong Kiam Tan et al. “A new verified compiler backend for CakeML”. In:
ICFP. Nara, Japan, Sept. 18–22, 2016.

17

	Verified Spilling andTranslation Validation with Repair

