
1 Object-OrientedConcurrent Constraint Programming in Oz�Martin Henz, Gert Smolka, and J�org W�urtz1.1 AbstractOz is a higher-order concurrent constraint programming system underdevelopment at DFKI. It combines ideas from logic and concurrent pro-gramming in a simple yet expressive language. From logic programmingOz inherits logic variables and logic data structures, which provide fora programming style where partial information about the values of vari-ables is imposed concurrently and incrementally. A novel feature ofOz is the support of higher-order programming without sacri�cing thatdenotation and equality of variables are captured by �rst-order logic.Another new feature of Oz are cells, a concurrent construct providing aminimal form of state fully compatible with logic data structures. Thesetwo features allow to express objects as procedures with state, avoidingthe problems of stream communication, the conventional communicationmechanism employed in concurrent logic programming.Based on cells and higher-order programming, Oz readily supportsconcurrent object-oriented programming including object identity, latemethod binding, multiple inheritance, \self", \super", batches, syn-chronous and asynchronous communication.1.2 IntroductionOz [6, 21, 20, 17, 16, 7] is an attempt to create a high-level concurrentprogramming language bringing together the merits of logic and object-oriented programming.Our starting point was concurrent constraint programming [14], whichbrings together ideas from constraint and concurrent logic programming.Constraint logic programming [8, 1], on the one hand, originated withProlog II [4] and was prompted by the need to integrate numbers and�appeared in:P. van Hentenryck and V. Saraswat (eds.), Principles and Practice of ConstraintProgramming, Chapter 2, pp. 29{48, The MIT Press, Cambridge, Mass.Previous versions appeared as DFKI Research Report RR-93-16, April 1993, in the1993 Conference on Programaci�onDeclarativa, in the 1993 Fachtagung f�ur K�unstlicheIntelligenz, and as "Oz - A Programming Language for Multi-Agent Systems" in the1993 International Joint Conference on Arti�cial Intelligence.

2 Chapter 1data structures in an operationally e�cient, yet logically sound man-ner. Concurrent logic programming [18], on the other hand, originatedwith the Relational Language [3] and was promoted by the JapaneseFifth Generation Project, where logic programming was conceived asthe basic system programming language and thus had to account forconcurrency, synchronization and indeterminism. For this purpose, theconventional SLD-resolution scheme had to be replaced with a new com-putation model based on the notion of committed choice. At �rst, thenew model was an ad hoc construction, but �nally Maher [11] realizedthat commitment of agents can be captured logically as constraint en-tailment. A major landmark in the new �eld of concurrent constraintprogramming is AKL [9], the �rst implemented concurrent constraintlanguage combining encapsulated search with committed choice.The concurrent constraint model [14] can accommodate object-oriented programming along the lines of Shapiro and Takeuchi's stream-based model for Concurrent Prolog [19, 10]. Unfortunately, this model isintolerably low-level, which becomes fully apparent when one considersinheritance [5]. Vulcan, Polka, and A'UM are attempts to create high-level object-oriented languages on top of concurrent logic languages (see[10] for references). Due to the wide gap these languages have to bridge,they however lose the simplicity and exibility of the underlying baselanguages.Oz avoids these di�culties by extending the concurrent constraintmodel with the features needed for a high-level object model: a higher-order programming facility and a primitive to express concurrent state.With these extensions the need for a separate object-oriented languagedisappears, since the base language itself can express objects and inher-itance in a concise and elegant way.The way Oz provides for higher-order programming is unique in thatdenotation and equality of variables are nevertheless captured by �rst-order logic only. In fact, denotation of variables and the facility forhigher-order programming are completely orthogonal concepts in Oz.This is in contrast to existing approaches to higher-order logic program-ming [13, 2].Cells are a concurrent construct providing a minimal form of state fullycompatible with constraints. They simply model a mutable binding of aname to a value, which can be changed by an atomic operation combiningreading and writing.

Object-Oriented Concurrent Constraint Programming in Oz� 3Oz is based on a formal computation model accommodating concur-rent computation as rewriting of a class of expressions modulo a struc-tural congruence. This setup is known from a recent version of Milner's�-calculus [12]. It proves particularly useful for concurrent constraintcomputation since the structural congruence can elegantly model prop-agation and simpli�cation of constraints.Oz is fully implemented including garbage collection, incremen-tal compilation and a window system based on Tcl/Tk. Interms of e�ciency, it is competitive with emulated Sicstus Pro-log. The Oz System and its documentation can be obtainedvia ftp from ps-ftp.dfki.uni-sb.de or through WWW fromhttp://ps-www.dfki.uni-sb.de/.A novel feature of Oz not treated in this paper is a higher-order combi-nator providing for encapsulated search [16, 17]. The search combinatorallows to program di�erent search strategies, including depth �rst andbest solution (branch and bound) search.The paper is organized as follows. Section 1.3 shows how the con-straint system of Oz accommodates records. Section 1.4 gives an in-formal account of the computation model underlying Oz. Section 1.5introduces the concrete language. Section 1.6 shows how objects can bemodeled in Oz.1.3 The Oz UniverseThis section describes a fragment of the Oz Universe that su�ces forthe purpose of this paper.The Oz Universe is a mathematical model of the data structuresOz computes with. It is de�ned as a structure of �rst-order predicatelogic with equality. All variables in Oz range over the elements of theOz Universe, called values. First-order formulas over its signature arecalled constraints. The value we consider are records and integers.We describe the semantics of records informally; the mathematicaldetails of the underlying construction are given in [22].Records are composed using literals, denoted by l. A literal is eitheran atom or a name. An atom is a string (e.g., val, get). Names do nothave a concrete syntax in Oz. It su�ces to know that there are in�nitelymany names.

4 Chapter 1A record is either a literal or a proper record. A proper record isan unordered treel�� @@v1 vnl1 ln� � �where l is a literal, l1; : : : ; ln are pairwise distinct literals, v1; : : : ; vn arevalues, and n > 0.Records are written as l(l1: v1 : : : ln: vn), n � 0, where l() stands forl. Two proper records are equal if and only if they have the same linearnotation up to permutation of named �elds li: vi.Given a record t of the form l(l1: v1 : : : ln: vn), we call the literal l thelabel, the values v1; : : : ; vn the �elds, the integer n the width, and theliterals l1; : : : ; ln the features of t. Moreover, we call vi the �eld orsubtree of t at li.An important operation on records is adjunction. The adjunction oftwo records s and t is the record s� t de�ned as follows: the label of s� tis the label of t; the features of s � t are the features of s together withthe features of t; and v is the subtree of s � t at l if and only if either vis the subtree of t at l, or if l is not a feature of t and v is the subtree ofs at l. Thus record adjunction amounts to record concatenation, wherefor shared features the right argument takes priority. For instance, theadjunction l(a: 1 b: 2 c: 3) � k(b: 77 d: 4) results in k(a: 1 b: 77 c: 3 d: 4).The signature of the Oz Universe consists of literals and integers(constants denoting themselves) and some predicates called constraintpredicates. The constraint predicates for records are de�ned as follows:� label(x; y) holds if and only if x is a record whose label is y.� width(x; y) holds if and only if x is a record whose width is y.� subtree(x; y; z) holds if and only if x is a tuple or record, y is a featureof x, and z is the subtree of x at y.� adjoin(x; y; z) is the predicate corresponding to record adjunction.� adjoinAt(x; y; z; u) holds if and only if x and u are records such thatx � l(y: z) = u, where l is the label of x.Constraint predicates for integers are intPlus(x; y; z), intMinus(x; y; z)and intMult(x; y; z) corresponding to the addition, subtraction and mul-tiplication functions on integers.

Object-Oriented Concurrent Constraint Programming in Oz� 51.4 An Informal Computation ModelThis section gives an informal presentation of the basic computationmodel underlying a sublanguage of Oz that su�ces for the purpose ofthis paper1 (see [20] for a formal presentation). A full description ofKernel Oz, a semantically complete sublanguage of Oz is given in [6].1.4.1 The Computation SpaceOz generalizes the model of concurrent constraint programming [15] byproviding for higher-order programming and cells. Central to the com-putation model of Oz is the notion of a computation space. A compu-tation space consists of a number of elaborators connected to a black-board. BlackboardElaborator : : : Elaborator�� @@The elaborators read the blackboard and reduce once the blackboardcontains su�cient information. The elaborators may reduce in parallel,however the e�ect must always be achievable by a sequence of singleelaborator reductions (interleaving semantics).The blackboard stores a constraint (constraints are closed under con-junction, hence one constraint su�ces) and name bindings. Name bind-ings map names to abstractions or variables as explained later in thissection.The constraint on the blackboard is always satis�able in the universeand becomes monotonically stronger over time. We say that a black-board entails a constraint if the implication � ! is valid in theuniverse, where � is the constraint stored on the blackboard. We saythat the blackboard is consistent with a constraint if the conjunction� ^ is satis�able in the universe, where � is the constraint stored onthe blackboard.1We omit deep guard computation, disjunction, encapsulated search, and �nitedomains.

6 Chapter 11.4.2 Elaboration of ExpressionsElaborators reduce expressions. When an elaborator reduces, it mayput new information on the blackboard and create new elaborators. Theelaborators of the computation space are short-lived: once they reducethey disappear.The abstract syntax of expressions is de�ned as follows:E ::= � constraintj x: y=E abstractionj x: y cellj E F compositionj local x in E end declarationj x y1 : : : yn applicationj exch[x; y; z] exchangej if x in � then E else F fi conditionalx; y; z ::= hvariableix; y ::= hpossibly empty sequence of variablesiBy elaboration of an expression E we mean the reduction of anelaborator for E. Elaboration of� a constraint � checks whether � is consistent with the blackboard.If this is the case, � is conjoined to the constraint on the blackboard;otherwise, an error is reported. Elaboration of a constraint correspondsto the eventual tell operation in concurrent constraint programming [15].� an abstraction x: y=E chooses a fresh name a, binds a to the abstrac-tion y=E (name binding) and creates an elaborator for the constraintx :=a. Since fresh names are chosen whenever a name binding is writtenon the blackboard, a name cannot be bound to more than one abstrac-tion. Thus elaboration of an abstraction provides it with a unique iden-tity. Since the variable x refers to a name rather than to the abstraction,we can test for equality between x and other variables.� a cell x: y chooses a fresh name a, binds a to y (name binding), andcreates an elaborator for the constraint x :=a.� a composition E F creates two separate elaborators for E and F .

Object-Oriented Concurrent Constraint Programming in Oz� 7� a variable declaration local x in E end chooses a fresh variable yand an elaborator for the expression E[y=x]. The notation E[y=x] standsfor the expression that is obtained from E by replacing all free occur-rences of x with y. A multiple variable declaration local x x in E endis treated as a nested declaration local x in local x in E end end.� an application x y1 : : : yn waits until there is a name a such that theblackboard entails x :=a. If a is bound to an abstraction y1 : : : yn=E, anelaborator for E[y=z] (a copy of the body of the abstraction, where theactual arguments replace the formal arguments) is created. Otherwise,the application cannot reduce.� an exchange exch[x; y1; y2] waits until there is a name a such that theblackboard entails x :=a. If a is bound to a variable z, an elaborator forthe constraint y1 = z is created and the name binding for a is changedsuch that a is now bound to the variable y2. Otherwise, the exchangecannot reduce.� a conditional if x in � then E else F fi waits until the black-board either entails 9x �, in which case an elaborator for the expressionlocal x in � E end is created, or disentails 9x �, in which case anelaborator for F is created.The treatment of abstractions and applications provides for all higher-order programming techniques [21]. By making variables denote namesrather than higher-order values, we obtain a smooth combination of�rst-order constraints with higher-order programming.While the constraint on the blackboard becomes monotonicallystronger over time and bindings of names to abstractions do not change,an exchange may change the binding of a name to a variable. Thus, cellsprovide a primitive to express state.1.5 The Programming LanguageHaving introduced an informal computation model for Oz using the ab-stract syntax of expressions, we can now present the concrete program-ming language. In the concrete syntax of Oz, abstractions, applications,cells, exchanges and constraints may not be used directly. Instead theconcrete syntax given in Section 1.5.1 must be used for abstraction andapplication, the concrete syntax given in Section 1.5.2 for cells and ex-

8 Chapter 1changes and the concrete syntax given in 1.5.3 for constraints. Theexecution of a program E amounts to the creation of an elaborator forthe expansion of E according to the following sections.1.5.1 ProceduresIn the concrete syntax, variables start with a capital letter to distinguishthem from atoms. A procedure P taking n arguments can be de�ned withthe concrete syntaxproc {P X1 : : : Xn} E endstanding for the expressionlocal A inA:X1 : : : Xn=EP=procedure(�NAME�:A �ARITY�:n)endThus, a procedure is represented by a record (the concrete syntax forrecord construction will be explained in Section 1.5.3). This record hasthe name to which the abstraction is bound as subtree at feature �NAME�.The variables �NAME� and �ARITY� are constrained to names and maynot be used in programs.An application of a procedure P to the arguments X1; : : : ;Xn can bewritten with the concrete syntax{P X1 : : : Xn}standing for the expressionif A inlabel(P,procedure)subtree(P,�NAME�,A)subtree(P,�ARITY�,n)then A X1 : : :Xnelse false fiIntroducing abstractions and applications indirectly in this way en-hances programming security in that no application x y1 : : : yn may be-come elaborated unless there exists a name a such that the blackboardentails x = a and a is bound to an n-ary abstraction. If x is constrainedto something else but a name, or if the name is not bound to an ab-straction or if the arity does not match the arity of the application, theconstraint false is elaborated, resulting in a run-time error. The e�ect

Object-Oriented Concurrent Constraint Programming in Oz� 9is a form of dynamic type checking. The representation of proceduresby records has additional bene�ts for objects (see Section 1.6).1.5.2 CellsThe same form of dynamic type checking as for procedures applies tocells in the concrete syntax of Oz. A cell is created by applying theprocedure NewCell, de�ned byproc {NewCell Init C}local A inA:InitC = cell(�NAME�:A)endendand an exchange is performed using the procedure Exchange de�ned asproc {Exchange C X Y}if A inlabel(C,cell)subtree(C,�NAME�,A)then exch[A;X;Y]fiendNote that the default for the missing else part of the conditional iselse false.1.5.3 ConstraintsBecause the Oz Universe provides for integers with constraint predicatesfor addition and multiplication, satis�ability of constraints is undecid-able even for conjunctions of atomic integer constraints (Hilbert's TenthProblem). Therefore, the concrete syntax restricts the use of constraintssuch that satis�ability and entailment of the occurring constraints is ef-�ciently decidable.The procedure Det plays a key role in the rest of this section. Informal-ly {Det X} is entailed whenever X becomes determined, i.e. constrainedto a record or an integer. The procedure Det is de�ned byproc {Det X}if X=1 then true else true fiend

10 Chapter 1The concrete syntax allows to enter arithmetic constraints likeintPlus(X;Y;Z) only by expressions of the form Z=X+Y which expands tothe expressionif {Det X} {Det Y} then intPlus(X;Y;Z) fiThis treatment of arithmetic constraints avoids the undecidability prob-lem because the elaboration of a constraint intPlus(X;Y;Z) either failsor is equivalent to Z = n where n is the sum of the integers X and Y.We ask the reader to accept a technical inaccuracy here: Accordingto Section 1.4, the guard must consist of a constraint and not containapplications like {Det X} (at guards). Due to space limitations, wewill not describe the more complex deep-guard computation here (see[20] for a complete description).A similar technique as for arithmetic constraints is used to weaken thesemantics of record constraints. Instead of using the constraint predi-cates label, adjoin and adjoinAt, we use the procedures Label, Adjoinand AdjoinAt:proc {Label X Y}if {Det X} then label(X;Y) fiendproc {Adjoin X Y Z}if {Det X} {Det Y} then adjoin(X;Y;Z) fiendproc {AdjoinAt X Y Z U}if {Det X} {Det Y} then adjoinAt(X;Y;Z;U) fiendThe expression X.Y=Z stands forif {Det X} {Det Y} then subtree(X;Y;Z) fiFor record construction, we use the syntaxX=Y(Y1:Z1 : : :Yn:Zn)which stands forif {Det Y} {Det Y1} � � � {Det Yn}thenlabel(X;Y) width(X; n) subtree(X;Y1;Z1) : : : subtree(X;Yn;Zn)fiWe write Y(Z1 : : :Zn) as a short hand for Y(010:Z1 : : :0n0:Zn). Thuswe obtain Prolog's �nite trees as a special case of records. The out-

Object-Oriented Concurrent Constraint Programming in Oz� 11lined constraint system is in fact a conservative extension of Prolog II'srational tree system.1.5.4 ExamplesCells are used to express objects as procedures with state. A simpleprocedure with state is shown in Program 1.5.1.Program 1.5.1 A Procedure With Statelocal Cellin {NewCell 0 Cell}proc {Num X}local Y in {Exchange Cell X Y} Y = X + 1 endendendElaboration of this expression creates a local variable Cell and anelaborator for the composition. Elaboration of the composition con-strains the varaibles Cell and Num to records and writes two name bind-ings on the blackboard.Suppose the computation space contains the applications{Num X} {Num Y} {Num Z}The abstraction realizing the procedure Num will be applied concur-rently to the variables X, Y, and Z. They will be equated to di�erentnumbers and the internal counter of Num will be incremented three times.One possible outcome is X=0 Y=2 Z=1. The procedure Num builds a statesequenceX1; X2; X3; : : : ; Xkwhose members are linked by constraints Xk+1 = Xk + 1, and whoserespective last member is held in Cell. Concurrent applications of Numcreate concurrent exchange requests for Cell, which are performed in in-determinate order. Reduction of an application {Exchange Cell X Y}will equate X to the current end of the sequence and make Y the newend of the sequence.

12 Chapter 1Object-oriented programming in Oz makes use of records to representstates, messages, and method tables. An example for the state of anobject isCounterState=state(val:0)The procedure Incproc {Inc State Message Self NewState}if Message=inc then {AdjoinAt State val State.val+1NewState} fiendincrements the value in �eld val of the argument State, resulting inNewState. We use functional notation in the then part which stands forlocal X Y Z inX = valY = State.XZ = Y + 1{AdjoinAt State X Z NewState}endTheapplication {Inc CounterState inc _ NewCounterState}, where thesymbol _ denotes an anonymous variable occurring only once, constrainsNewCounterState to state(val:1). The third formal parameter Selfof the procedure Inc is not used in its body, but will serve to capturethe notion of \self" in Section 1.6.2 in similar procedures.Similarly, the procedure Getproc {Get State Message Self NewState}if X in Message=get(X) then NewState=StateX=State.val fiendserves toaccess the value in �eld val and leaves the State unchanged. The appli-cation {Get NewCounterState get(X) _ NewCounterState2} equatesNewCounterState2 to NewCounterState and the variable X to 1.The variable CounterMethodTable inCounterMethodTable=methods(inc: Inc get: Get)is constrained to a record that contains the procedures Inc and Get.The application of Inc above can now be written as

Object-Oriented Concurrent Constraint Programming in Oz� 13{CounterMethodTable.inc CounterState inc _NewCounterState}1.6 ObjectsOur goal are objects with the following properties:� Identity and state. While enjoying persistent indentity, an objectchanges its behavior over time depending on its state. The manipulationof this state happens in a controlled manner.� Structured programming. The behavior of objects is described in away that allows code reuse (multiple inheritance, \self").� Concurrency. Objects may be dynamically created and interact witheach other in a concurrent setting.The �rst goal, we achieve by representing an object by a procedurewith state similar to the procedure Num in Program 1.5.1. In Sec-tion 1.6.1, we re�ne this scheme by incorporating late method bindingand a generic mechanism to create objects.The second goal is achieved by encoding the behavior of an object bya method table, a record containing methods. Methods are proceduresmethod: state � message � object ! stateWhen the object is applied to a message (represented as a record), theappropriate method is retrieved from the object's method table andapplied to the current state, the message, and the object itself, resultingin a new state. We represent method tables by records. In Section 1.6.3,we will show how we can express multiple inheritance by adjunction ofmethod tables, and how the notion of \self" can be captured.Objects are concurrent due to the inherent concurrency of Oz. InSection 1.6.3, we show how we can nonetheless preserve the order ofmessages and how objects are synchronized.1.6.1 Objects Are Procedures With StateObjects are procedures with state whose behavior is determined by amethod table. Procedures with state were already discussed in Sec-tion 1.5.4.

14 Chapter 1Program 1.6.1 de�nes an object Counter, employing late method bind-ing. The variable CounterMethodTable refers to the record given inSection 1.5.4 on page 12. In the following, we discuss Program 1.6.1top-down.Program 1.6.1 A Counter Objectlocal Cell in{NewCell state(val:0) Cell}proc {Counter Message}local State NewState in{Exchange Cell State NewState}if {Det State}then {CounterMethodTable.{Label Message}State Message Counter NewState}fiendendendThe state of the object is represented by a record and stored in Cell.The initial content of the cell is the record state(val:0).When the object Counter is applied to a message like {Counter inc},the current State is obtained from Cell and exchanged with the freshvariable NewState. If State is determined, the appropriate methodInc is retrieved from CounterMethodTable using the label inc of themessage. The method is then applied to State, the message inc,Counter and NewState. Thus, if {Counter inc} is the �rst applica-tion of Counter, Cell will hold the new state state(val:1).Since objects are represented as procedures, they enjoy persistentidentity (recall the translation of proc � � � end given in Section 1.5.1).Thus one can test for identity of two objects Counter;Counter2 using aconditional if Counter = Counter2 then � � � fi.Note that many agents may know the object Counter and thus mayconcurrently attempt to apply Counter. Representing the state by acell ensures mutual exclusion: the respective method applications areimplicitly and indeterministically sequentialized.

Object-Oriented Concurrent Constraint Programming in Oz� 15Generic Object CreationSince procedures are �rst-class citizens, we can write a generic procedureshown in Program 1.6.2 that creates a new object O from an initial stateIState and a MethodTable.Program 1.6.2 Generic Object Creationproc {Create IState MethodTable O}local Cell in{NewCell IState Cell}proc {O Message}: : :endendendWhen Create is applied as in{Create state(val:7) CounterMethodTable Counter2}a new counter Counter2 is created with initial value 7.1.6.2 InheritanceThe behavior of an object is determined by its method table. Inheritancethus means that the method table of a new object is obtained by combin-ing and extending method tables of existing objects. Since method tablesare represented by records, combining and extending them is straight-forward (e.g., by record adjunction). To make the methods of an objectaccessible, we will now enrich the representation of objects with informa-tion used for inheritance. Since objects are procedures and proceduresare represented by records on the blackboard, we can construct an en-riched object OInh by adjoining inheritance information to an object O.Program 1.6.3 modi�es Program 1.6.2 to incorporate inheritance.The procedure Create now has an additional argument FromObjects,a list of objects from which the new object OInh inherits. The argumentNewMethodTable refers to the new methods of the new object. TheMethodTable is constructed by the procedure Inherit by adjoining allmethod tables of inherited objects and the NewMethodTable (we assumethe procedure FoldL to be known from functional programming).

16 Chapter 1Program 1.6.3 Incorporating Inheritanceproc {Create FromObjects IState NewMethodTable OInh}local Cell MethodTable in{NewCell IState Cell}{Inherit FromObjects NewMethodTable MethodTable}proc {O Message} � � � end{AdjoinAt O methods MethodTable OInh}endendproc {Inherit From NMT MT}{Adjoin {FoldLFrom proc {I E O} {Adjoin I E.methods O}end methods}NMT MT}endRecord adjunction (see Section 1.3) takes care of the usual methodoverriding in object-oriented languages.MethodTable is adjoined to the created procedure O to provide theobject OInh with information that can be used when another objectinherits from OInh. For example, in Program 1.6.4 a DecCounter is cre-ated that inherits from Counter and additionally understands a messagedec.Syntactic ExtensionOz supports a syntactic extension for object creation and method def-inition, which allows writing the expression in Program 1.6.4 includingCounterMethodTable in Section 1.5.4 as shown in Program 1.6.5.The �rst and the last argument of methods are the incoming Stateand the outgoing NewState of the object (see Program 1.6.1). In thebody of methods, NewState is computed from State. During this com-putation, it may be necessary to introduce several auxiliary state vari-ables. Thus one can say, that the state of the object is threaded throughthe body of methods. In the syntactic extension, this threading is doneby the compiler. The two expressions that implicitly refer to the stateare attribute access (@) and assignment (<-). Syntactic limitations guar-

Object-Oriented Concurrent Constraint Programming in Oz� 17Program 1.6.4 Example for Inheritance{Create nil state(val:7) CounterMethodTable Counter3}local DecMethodTable inDecMethodTable=methods(dec: proc {State Message Self NewState}if Message=decthen {AdjoinAtState val State.val-1NewState} fiend)DecCounter={Create Counter3|nil state(val:10)DecMethodTable}endProgram 1.6.5 Objects in Sugared Syntaxcreate Counter3from UrObjectattr val:7meth inc val <- @val + 1 endmeth get(X) X = @val endendcreate DecCounterfrom Counterattr val:10meth dec val <- @val - 1 endend

18 Chapter 1antee that there is always only one reference to the state of an objectat run-time. Therefore, we can implement assignment such that theconstruction of a new record as in AdjoinAt is avoided (compile-timegarbage collection).Observe that our model alleviates the distinction between classes andtheir instances by combining object creation and inheritance into onesingle operation.SelfThe third formal parameter of the methods is the variable Self. Sincemethods are called with the receiving object as third actual parameter,the variable Self used in the body of methods has the semantics familiarfrom object-oriented languages. In the syntactic extension, the keywordself represents that variable. For example, the object Counter4 inProgram 1.6.6 sends the message inc twice to itself when it receives themessage inc2.Program 1.6.6 Example for selfcreate Counter4from Counterattr val:0meth inc2 {self inc} {self inc} endendMethod ApplicationIn Section 1.6.2, we saw that attribute access and assignment implicitlyrefer to the state. In this section, we describe a third such expression,called method application.Assume that the object Counter4 in Program 1.6.6 has received themessage inc2. Due to concurrent execution, a message, say get(X), maybe received by self after the �rst and before the second inc message.To avoid such situations, Oz provides for method application, a way toapply a method locally to the available state. For example, considercreate Counter5from Counterattr val:0

Object-Oriented Concurrent Constraint Programming in Oz� 19meth inc2 <<self inc>> <<self inc>> endendThe state is threaded through the two consecutive method applicationsintroducing an intermediate statelocal TmpState in State<<self inc>>TmpStateTmpState<<self inc>>NewState endand a threaded method applicationInState<<O Message>>OutStateexpands to{O.methods.{Label Message} InState Message SelfOutState}The notation for method application exploits the fact that in our mod-el every method m of every object O can be referred to by O.methods.m.Incidentally, our notation for method application also serves the purposeof Smalltalk's \super" notation. For example, the method inc increate Counter6from Counterattr val:0meth inc(X) <<Counter inc>> <<self get(X)>> endendis de�ned in terms of Counter's method inc and Counter6's own methodget.1.6.3 Concurrency IssuesWe saw in the previous section that the execution order of applica-tions may not coincide with the textual order of the applications. Usingmethod application, we can de�ne batch methods as a way to enforcean order on messages like increate BatchObjectmeth M|Mr <<self M>> <<self Mr>> endmeth nil true endendThe object Counter4 in Program 1.6.6 can be reformulated using thebatch methods.

20 Chapter 1create Counter7from Counter BatchObjectattr val:0meth inc2 <<self inc|inc|nil>> endendObserve the use of multiple inheritance. Sending the message{Counter7 inc|get(X)|inc|nil} guarantees that no other application{Counter7 get(Y)} can be sent such that X=Y.So far, the application of an object to messages was done in an asyn-chronous fashion. We can synchronize objects by using messages thatare constrained by the object. For example, in{Counter7 inc|get(X)|nil}if {Det X} then E fithe expression E is only elaborated after Counter7 is incremented.1.7 SummaryOz is an attempt to create a high-level concurrent programming languagebringing together the merits of logic and object-oriented programming.For this purpose, we extend the concurrent constraint model with a facil-ity for higher-order programming and the notion of cells. We presentedaspects of the underlying constraint system and an informal model ofcomputation of a sublanguage of Oz, based on elaboration of expressions.We have shown how concurrent objects can be expressed conciselyand naturally in Oz. Being represented by named procedures, objectsenjoy persistent identity. An object can refer to an encapsulated state,stored in a cell that can only be accessed by calling the object.Structured programming is supported by late method binding, whichis achieved by method lookup in a method table represented by a record.We gave a straightforward implementation of \self" and presented howmethods can be applied directly within methods, generalizing the con-cept of \super". We showed how method tables of several objects maybe combined providing for multiple inheritance.Objects in Oz are concurrent due to the inherent concurrency of Oz.We showed programming techniques that nonetheless enforce an orderon messages and allow for synchronization of objects.

Object-Oriented Concurrent Constraint Programming in Oz� 21AcknowledgementsWe thank all members of the Programming Systems Lab at DFKI forinspiring discussions on all kinds of subjects and objects. The researchreported in this paper has been supported by the Bundesminister f�urForschung und Technologie, contract ITW 9105 (Hydra), and by theESPRIT basic research project 7195 (ACCLAIM).

Bibliography[1] F. Benhamou and A. Comerauer, editors. Constraint Logic Programming.ISBN0-262-02353-9 III. Series. MIT Press, 1993. Selected Research.[2] W. Chen, M. Kifer, and D. S. Warren. HiLog: A foundation for higher-orderlogic programming. Journal of Logic Programming, 15:187{230, 1993.[3] K. Clark and S. Gregory. A relational language for parallel programming. InProc. of the ACM Conference on Functional Programming Lan-guages and Computer Architecture, pages 171{178, 1981.[4] A. Colmerauer, H. Kanoui, and M. V. Caneghem. Prolog, theoretical principlesand current trends. Technology and Science of Informatics, 2(4):255{292,1983.[5] Y. Goldberg, W. Silverman, and E. Shapiro. Logic programs with inheritance.In Proceedings of the International Conference on Fifth GenerationComputer Systems, pages 951{960, Tokyo, Japan, 1992. ICOT.[6] M. Henz, M. Mehl, M. M�uller, T. M�uller, J. Niehren, R. Scheidhauer,C. Schulte, G. Smolka, R. Treinen, and J. W�urtz. The Oz Hand-book. Research Report RR-94-09, dfki, dfkiaddr, 1994. Availablethrough anonymous ftp from ps-ftp.dfki.uni-sb.de or through www fromhttp://ps-www.dfki.uni-sb.de.[7] M. Henz, G. Smolka, and J. W�urtz. Oz|a programming language for multi-agent systems. In 13th International Joint Conference on Arti�cialIntelligence, volume 1, pages 404{409, Chamb�ery, France, 1993.Morgan Kauf-mann Publishers.[8] J. Ja�ar and M. Maher. Constraint logic programming - a survey. The Jour-nal of Logic Programming, 1994. Special issue on 10 years of logic pro-gramming.[9] S. Janson and S. Haridi. Programming paradigms of the Andorra kernel lan-guage. In V. Saraswat and K. Ueda, editors,Logic Programming, Proceed-ings of the 1991 International Symposium, pages 167{186, San Diego,USA, 1991. The MIT Press.[10] K. Kahn. Objects: A fresh look. In Proceedings of the Third Euro-pean Conference on Object Oriented Programming, pages 207{223.Cambridge University Press, Cambridge, MA, 1989.[11] M. J. Maher. Logic semantics for a class of committed-choice programs. InJ.-L. Lassez, editor, Logic Programming, Proceedings of the FourthInternational Conference, pages 858{876, Cambridge, MA, 1987. The MITPress.[12] R. Milner. Functions as Processes. Mathematical Structures in Comput-er Science, 2(2):119{141, 1992.[13] G. Nadathur and D. Miller. An overview of �Prolog. In R. A. Kowalski andK. A. Bowen, editors, Proceedings of the Fifth International Confer-ence and Symposium on Logic Programming, pages 810{827, Seattle,Wash., 1988. The MIT Press.[14] V. Saraswat and M. Rinard. Concurrent constraint programming. In Pro-ceedings of the 7th Annual ACM Symposium on Principles of Pro-gramming Languages, pages 232{245, San Francisco, CA, January 1990.[15] V. A. Saraswat. Concurrent Constraint Programming. The MIT Press,Cambridge, Mass., 1993.

24 Bibliography[16] C. Schulte and G. Smolka. Encapsulated search in higher-order concurrentconstraint programming. In M. Bruynooghe, editor, Logic Programming:Proceedings of the 1994 International Symposium, Ithaca, New York,USA, Nov. 1994. The MIT Press.[17] C. Schulte, G. Smolka, and J. W�urtz. Encapsulated search and constraintprogramming in Oz. In Second Workshop on Principles and Practiceof Constraint Programming, Orcas Island, Washington, USA, May 1994.Springer-Verlag, LNCS. to appear.[18] E. Shapiro. The family of concurrent logic programming languages. ACMComputing Surveys, 21(3):413{511, September 1989.[19] E. Shapiro and A. Takeuchi. Object oriented programming in Concurrent Pro-log. New Generation Computing, 1:24{48, 1983.[20] G. Smolka. A calculus for higher-order concurrent constraintprogrammingwithdeep guards. Research Report RR-94-03, DFKI, Feb. 1994. Available throughanonymous ftp from ps-ftp.dfki.uni-sb.de.[21] G. Smolka. A foundation for higher-order concurrent constraint programming.In J.-P. Jouannaud, editor, 1st International Conference on Constraintsin Computational Logics, Lecture Notes in Computer Science, M�unchen,Germany, 7{9 Sept. 1994. Springer-Verlag. Invited Lecture. To appear.[22] G. Smolka and R. Treinen. Records for logic programming. The Journal ofLogic Programming, 18(3):229{258, Apr. 1994.

