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1 IntroductionOz [9, 2, 3, 7, 1] is an attempt to create a high-level concurrent programming lan-guage providing the problem solving capabilities of logic programming (i.e., con-straints and search). Its computation model can be seen as a rather radical exten-sion of the concurrent constraint model [6] providing for higher-order programming,deep guards, state, and encapsulated search. This paper focuses on the most recentextension, a higher-order combinator providing for encapsulated search. The searchcombinator spawns a local computation space and resolves remaining choices byreturning the alternatives as �rst-class citizens. The search combinator allows toprogram di�erent search strategies, including depth-�rst, indeterministic one solu-tion, demand-driven multiple solution, all solutions, and best solution (branch andbound) search. The paper also discusses the semantics of integer and �nite do-main constraints in a deep guard computation model, which is an interesting issuesince these constraints cannot be realized with their declarative semantics (due tointractability and even undecidability of satis�ability and entailment).The idea behind our search combinator is simple and new. It exploits the fact thatOz is a higher-order language. The search combinator is given an expression E anda variable x (i.e., a predicate x=E) with the idea that E (which declaratively readsas a logic formula) is to be solved for x. The combinator spawns a local computationspace for E, which evolves until it fails or becomes stable (a property known fromAKL). If the local computation space evolves to a stable expression (A _ B) ^ C,the two alternatives are returned as predicates:x=(A _B) ^ C ! x=A ^ C; x=B ^ C :If the local computation space evolves to a stable expression C not containing adistributable disjunction, it is considered solved and the predicate x=C is returned.We now relate Oz to AKL and cc(FD), two �rst-order concurrent constraint pro-gramming languages having important aspects in common with Oz.AKL [4] is a deep guard language aiming like Oz at the integration of concurrentand logic programming. AKL can encapsulate search. AKL admits distributionof a nondeterminate choice in a local computation space spawned by the guard ofa clause when the space has become stable (a crucial control condition we havealso adopted in Oz). In AKL, search alternatives are not available as �rst-classcitizens. All solutions search is provided through an extra primitive. Best solutionand demand-driven multiple solution search are not expressible.cc(FD) [10] is a constraint programming language specialized for �nite domain con-straints. It employs a Prolog-style search strategy and three concurrent constraintcombinators called cardinality, constructive disjunction, and blocking implication.It is a compromise between a 
at and a deep guard language in that combinators canbe nested into combinators, but procedure calls (and hence nondeterminate choice)3



cannot. Encapsulated best solution search is provided as a primitive, but its control(e.g., stability) is left unspeci�ed.The paper is organized as follows. Section 2 gives an informal presentation of Oz'scomputation model, and Sect. 3 relates Oz to logic programming by means of exam-ples. Section 4 shows how encapsulated and demand-driven search can be integratedinto a reactive language. Section 5 presents the search combinator, and Sect. 6 showshow the search strategies mentioned above can be programmed with it. Section 7discusses how integer and �nite domain constraints are accommodated in Oz. Sec-tion 8 puts everything together by showing how the N-Queens problem can be solvedin Oz.2 Computation Spaces, Actors, and BlackboardsThe computation model underlying Oz generalizes the concurrent constraint mod-el (CC) [6] by providing for higher-order programming, deep guard combinators,and state. Deep guard combinators introduce local computation spaces, as in theconcurrent constraint language AKL [4]. Recall that there is only one computationspace in CC.In [8] we give a formal model of computation in Oz, consisting of a calculus rewritingexpressions modulo a structural congruence relation, similar to the setup of the�-calculus [5]. For the purposes of this paper, an informal presentation of Oz'scomputation model, ignoring state, will su�ce.A computation space consists of a number of actors1 connected to a blackboard.BlackboardActor : : : Actor��� @@IThe actors read the blackboard and reduce once the blackboard contains su�cientinformation. The information on the blackboard increases monotonically. When anactor reduces, it may put new information on the blackboard and create new actors.As long as an actor does not reduce, it does not have an outside e�ect. The actorsof a computation space are short-lived: once they reduce they disappear. Actorsmay spawn local computation spaces.The blackboard stores a constraint (constraints are closed under conjunction, henceone constraint su�ces) and a number of named abstractions (to be explained later).Constraints are formulas of �rst-order predicate logic with equality that are inter-preted in a �xed �rst-order structure called the Oz Universe. For the purposes of1Oz's actors are di�erent from Hewitt's actors. We reserve the term agent for longer-livedcomputational activities enjoying persistent and �rst-class identity.4



this paper it su�ces to know that the Oz Universe provides rational trees (as in Pro-log II) and integers. The constraint on the blackboard is always satis�able in the OzUniverse. We say that a blackboard entails a constraint  if the implication �!  is valid in the Oz Universe, where � is the constraint stored on the blackboard. Wesay that a blackboard is consistent with a constraint  if the conjunction � ^  issatis�able in the Oz Universe, where � is the constraint stored on the blackboard.Since the constraint on the blackboard can only be observed through entailmentand consistency testing, it su�ces to represent it modulo logical equivalence.There are several kinds of actors. This section will introduce elaborators, condition-als, and disjunctions.An elaborator is an actor executing an expression. The expressions we will considerin this section are de�ned as follows:E ::= � j E1 E2 j local x in E endj proc fx y1 : : : yng E end j fx y1 : : : yngj if C1 [] : : : [] Cn else E � j or C1 [] : : : [] Cn roC ::= E1 then E2 j x1 : : : xn in E1 then E2Elaboration of a constraint � checks whether � is consistent with the blackboard.If this is the case, � is conjoined to the constraint on the blackboard; otherwise, thecomputation space is marked failed and all its actors are cancelled. Elaboration ofa constraint corresponds to the eventual tell operation of CC.Elaboration of a concurrent composition E1 E2 creates two separate elaborators forE1 and E2.Elaboration of a variable declaration local x in E end creates a new variable (local tothe computation space) and an elaborator for the expression E. Within the expres-sion E the new variable is referred to by x. Every computation space maintains a�nite set of local variables.Elaboration of a procedure de�nition proc fx y1 : : :yng E end chooses a fresh namea, writes the named abstraction a: y1 : : : yn=E on the blackboard, and creates anelaborator for the constraint x = a. Names are constants denoting pairwise distinctelements of the Oz Universe; there are in�nitely many. Since abstractions are asso-ciated with fresh names when they are written on the blackboard, a name cannotrefer to more than one abstraction.Elaboration of a procedure application fx y1 : : : yng waits until the blackboardentails x = a and contains a named abstraction a: x1 : : : xn=E, for some name a.When this is the case, an elaborator for the expression E[y1=x1 : : : yn=xn] is created(E[y1=x1 : : : yn=xn] is obtained from E by replacing the formal arguments x1; : : : ; xnwith the actual arguments y1; : : : ; yn).This simple treatment of procedures provides for all higher-order programming tech-5



niques. By making variables denote names rather than higher-order values, we ob-tain a smooth combination of �rst-order constraints with higher-order programming.The elaboration of conditional expressions is more involved. We �rst consider thespecial case of a one clause conditional with 
at guard.Elaboration of if � then E1 else E2 � creates a conditional actor, which waits untilthe blackboard entails either � or :�. If the blackboard entails � [:�], the con-ditional actor reduces to an elaborator for E1 [E2]. In CC, such a conditional canbe expressed as a parallel composition (ask� ! E1) jj (ask:� ! E2) of two askclauses.Elaboration of a conditional expression if C1 : : : Cn else E � creates a conditionalactor spawning a local computation space for each clause Ci. A clause takes theform x1 : : : xk in E then Dwhere the local variables x1; : : : ; xk range over both the guard E and the body D ofthe clause. We speak of a deep guard if E is not a constraint. In Oz, any expressioncan be used as a guard. This is similar to AKL and in contrast to CC, where guardsare restricted to constraints. The local computation space for a clausex in E then D(clauses with no or several local variables are dealt with similarly) is created withan empty blackboard and an elaborator for the expression local x in E end.Constraints from the global blackboard (the blackboard of the computation spacethe conditional actor belongs to) are automatically propagated to local spaces byelaborating them in the local spaces (propagation of global constraints can fail localspaces). Moreover, named abstractions from global blackboards are copied to localblackboards (con
icts cannot occur).We say that a clause of a conditional actor is entailed if its associated computationspace S is not failed, S has no actors left, and the global board entails 9y �, wherey are the local variables of S and � is the constraint of the blackboard of S. Entail-ment of a local space is a stable property, (i.e., remains to hold when computationproceeds).A conditional actor must wait until either one of its clauses is entailed or all itsclauses (i.e., their associated local spaces) are failed.If all clauses of a conditional actor if C1 : : : Cn else E � are failed, the conditionalactor reduces to an elaborator for the expression E (the else constituent of theconditional).If a clause xi in Ei then Di of a conditional actor is entailed, the other clauses andtheir associated spaces are discarded, the space associated with the entailed clauseis merged with the global space (con
icts cannot occur), and the conditional actorreduces to an elaborator for Di (the body of the clause).6



Elaboration of a disjunctive expression or C1 : : : Cn ro creates a disjunctive actorspawning a local computation space for every clause C1; : : : ; Cn. The local spaces arecreated in the same way as for conditionals. As with conditional clauses, constraintsand named abstractions from the global blackboard are automatically propagatedto local blackboards.A disjunctive actor must wait until all but possibly one of its clauses are failed, oruntil a clause whose body is the trivial constraint true is entailed. In the latter case,the disjunctive actor just disappears (justi�ed by the equivalence A^ (A_B) � A).If all clauses of a disjunctive actor are failed, the space of the disjunctive actor isfailed (i.e., all its actors are cancelled). If all but one clause of a disjunctive actorare failed, it reduces with the unfailed clause. This is done in two steps. First, thespace associated with the unfailed clause is merged with the global space, and thenan elaborator for the body of the clause is created. The merge of the local withthe global space may fail because the local constraint may be inconsistent with theglobal constraint. In this case the global space will be failed.3 Example: Length of ListsThis section clari�es how Oz relates to logic programming and Prolog.The Horn clauseslength(nil,0)length(XjXr, s(M) )  length(Xr,M)de�ne a predicate length(Xs,N) that holds if Xs is a list of length N. Numbersare represented as trees 0; s(0); s(s(0)); : : :, and lists as trees t1jt2j : : : jtnjnil. Theintended semantics of the clauses is captured by the equivalencelength(Xs;N) $ Xs = nil ^ N = 0_ 9X;Xr;M (Xs = XjXr ^ N = s(M) ^ length(Xr;M)) ;which is obtained from the Horn clauses by Clark's completion. The equivalenceexhibits the relevant primitives and combinators of logic programming: constraints(i.e., Xs=nil), conjunction, existential quanti�cation, disjunction, and de�nition byequivalence. Given the equivalence, it is easy to de�ne the length predicate in Oz:proc fLength Xs Ngor Xs=nil N=0 then trueX Xr M in Xs=XjXr N=s(M) then fLength Xr Mgroend 7



There are two things that need explanation. First, the predicate is now referredto by a variable Length, as to be expected in a higher-order language. Second, thetwo disjunctive clauses have been divided into guards and bodies. The procedureapplication fLength Xr Mg is put into the body to obtain a terminating operationalsemantics.To illustrate the operational semantics of Length, assume that the procedure de�ni-tion has been elaborated. Now we enter the expressiondeclare Xs N in fLength Xs Ngwhose elaboration declares two new variables Xs and N and reduces the procedureapplication fLength Xs Ng to a disjunctive actor. The declare expression is a variantof the local expression whose scope extends to expressions the programmer enterslater. The disjunctive actor cannot reduce since there is no information about thevariables Xs and N on the global blackboard. It now becomes clear why we did notwrite the recursive procedure application fLength Xr Mg into the guard: this wouldhave caused divergence.Now we enter the constraint (' ' is a variable occurring only once)N = s(s( ) )Since N = s(s( ) ) is inconsistent with the constraint N=0 on the local blackboard,the �rst clause of the suspended disjunctive actor can now be failed and the dis-junctive actor can reduce with its second clause. This will elaborate the recursiveapplication fLength Xr Mg and create a new disjunctive actor whose �rst clause failsimmediately. This will create once more a new disjunctive actor, which this timecannot reduce. The global blackboard now entails Xs = j j and N = s(s( ) ).Next we enter the constraintXs = 1j2jnilwhose elaboration fails the second clause of the suspended disjunctive actor (sincex = nil is inconsistent with x = yjz). Hence the suspended actor reduces with its�rst clause, no new disjunctive actor is created, and the blackboard �nally entailsXs = 1j2jnil and N = s(s(0) ).The example illustrates important di�erences between Oz and Prolog: if there arealternatives (speci�ed by the clauses of disjunctions or conditionals), Oz exploresthe guards of the alternatives concurrently. Only once it is safe to commit to analternative (e.g., because all other alternatives are failed or because the guard of aconditional clause is entailed), Oz will commit to it. In contrast, Prolog will eagerlycommit to the �rst alternative if a choice is to be made, and backtrack if necessary.8



A sublanguage of Oz enjoys a declarative semantics such that computation amountsto equivalence transformation [8]. The declarative semantics of a conditionalif x in E1 then E2 else E3 �with only one clause is 9x(E1^E2) _ (:9xE1^E3). Hence Oz can express negation:E as if E then false else true �.The length predicate can also be de�ned in a functional manner using a conditional:proc fLength Xs Ngif Xs=nil then N=0X Xr M in Xs=XjXr then N=s(M) fLength Xr Mgelse false �endWhile the functional version has the same declarative reading as the disjunctive for-mulation, its operational semantics is di�erent in that it will wait until informationabout its �rst argument is available. Thusdeclare Xs N in N=s(s(0) ) fLength Xs Ngwill create a suspending conditional actor and not write anything on the globalblackboard. On the other hand,declare Xs N in Xs= j jnil fLength Xs Ngwill write N=s(s(0) ) on the global blackboard (although there is only partial in-formation about Xs).Oz supports functional syntax: the functional version of the length predicate canequivalently be written as:fun fLength Xsgcase Xs of nil then 0 XjXr then s(fLength Xrg) endend4 Encapsulated and Demand-driven SearchGiven the length predicate of the previous section, Prolog allows to enumerate allpairs Xs, N such that length(Xs,N) is satis�ed. This service can be obtained in Ozin a more 
exible form. Oz provides search agents that can be given queries andbe prompted for answers. These search agents take the form of objects, the basicconcurrency abstraction of Oz. 9



An object is a procedure O taking a message M as argument. It encapsulatesa reference to a data structure acting as the state of the object. A procedureapplication fO Mg (the object is applied to the message) �rst competes for exclusiveaccess to the object's state (necessary in a concurrent setting) and then applies themethod requested by the message:method: state �message ! state :This yields a new state which is released. The message indicates the method tobe applied by a name that is mapped to the actual method by the object itself(so-called late binding).Objects can be expressed in the computation model outlined in Sect. 2 if one furtherprimitive, called cells, is added. Oz's higher-order programming facilities make itstraightforward to obtain multiple inheritance of methods. For more informationabout objects in Oz we refer the reader to [2, 3, 1].Now suppose Search is a search object as outlined above (any number of searchobjects can be created by inheritance from a prede�ned search object). First, wepresent it a query using the method query:local Q inproc fQ Ag local Xs N in A=Xs#N fLength Xs Ng end endfSearch query(Q)gendThe query is speci�ed by a unary predicate, so that solutions can be computeduniformly for one variable. Since we have existential quanti�cation and pairing, thisis no loss of generality. Using functional notation, we can write the above expressionmore conveniently asfSearch query(proc fAg local Xs N in A=Xs#N fLength Xs Ng end end)gNow we can request computation of the �rst solution by sending the messagefSearch nextgwhich will produce the pair nil#0. Sending next (i.e., elaborating fSearch nextg)once more will produce ( jnil)#s(0), and so on. What happens when an solutionis found can be speci�ed by sending Search the message action(P) , where P is aunary procedure to be applied to every solution found. The procedure P may, forinstance, display solutions in a window or send them to other objects.We remark that Prolog provides demand-driven search at the user interface, butnot at the programming level. Aggregation in Prolog (i.e., bagof) is eager and willdiverge if there are in�nitely many solutions. In Oz, we can have any number ofsearch objects at the same time and request solutions as required.10



5 SolversWe now introduce solvers, which are higher-order actors providing for encapsulatedsearch. Many di�erent search strategies can be programmed with solvers, rangingfrom demand-driven depth-�rst (as exempli�ed by the search object in the previoussection) to best solution (branch and bound) strategies. In contrast to this ratherinformal introduction, in [7] one may �nd a calculus de�ning the presented ideasformally.The key idea behind search in Oz is to exploit the distributivity law and proceedfrom (A _ B) ^ C to A ^ C and B ^ C. While Prolog commits to A ^ C �rst andconsiders B ^ C only upon backtracking, Oz makes both alternatives available as�rst-class citizens. To do this, the variable being solved for must be made explicitand abstracted from in the alternatives. For instance, if or x = 1 x = 2 ro is beingsolved for x, distribution will produce the abstractions proc fxg x = 1 end andproc fxg x = 2 end.Solvers are created by elaboration of solve expressionssolve[x:E; u]where x (the variable being solved for) is a local variable taking the expression Eas scope. The variable u provides for output. The solver created by elaboration ofthe above expression spawns a local computation space for the expressionlocal x in E endAs with other local computation spaces, constraints and named abstractions arepropagated from global blackboards to the local blackboards of solvers.A solver can reduce if its local computation space is either failed or stable. Alocal computation space is called stable if it is blocked and remains blocked forevery consistent extension of the global blackboard. A computation space is calledblocked if it is not failed and none of its actors can reduce. Stability is known fromAKL [4], where it is used to control nondeterministic promotion. Note that a localcomputation space is entailed if and only if it is stable and has no actor left.If the local computation space of a solver has failed, the solver reduces to an elabo-rator for the constraint (u is the output variable)u = failed :If the local computation space of a solver is stable and does not contain a disjunctiveactor, the solver reduces to an elaborator foru = solved(proc fxg F end)11



where F is an expression representing the stable local computation space (the nestedprocedure de�nition has been explained in the previous section).2 Abstracting thesolution with respect to x is advantageous in case F does not fully determine x;for instance, if F is local z in x = f(z) end, di�erent applications will enjoy di�erentlocal variables z. A less general way to return the solution would be to reduce toan elaborator for u = solved(x) F .If the local computation space of a solver is stable and contains a disjunctive actoror C1 : : : Cn ro;the solver reduces to an elaborator foru = distributed(proc fxg or C1 ro F end proc fxg or C2 : : : Cn ro F end)where F is an expression representing the stable local computation space after dele-tion of the disjunctive actor. Requiring stability ensures that distribution is post-poned until no other reductions are possible. This is important since repeateddistribution may result in combinatorial explosion.For combinatorial search problems it is often important to distribute the right dis-junction and try the right clause �rst. Oz makes the following commitments aboutorder: clauses are distributed according to their static order; solvers distribute themost recently created disjunctive actor; and elaboration proceeds from left to right,where suspended actors that become reducible are given priority (similar to Prologswith freeze). Taking the most recently created disjunctive actor for distributionseems to be more expressive than taking the least recently created one (see the �rstfailure labeling procedure in Sect. 8).Solvers cannot express breadth-�rst search if disjunctions with more than two clausesare used. This can be remedied by also returning the number of remaining clauseswhen a disjunctive actor is distributed.Solve expressions are made available through a prede�ned procedureproc fSolve P Ug solve[X: fP Xg; U] end6 Search StrategiesWe start with a function taking a query (i.e., a unary procedure) as argument andtrying to solve it following a depth-�rst strategy:2The reader might be surprised by the fact that local computation spaces can be represented asexpressions. This is however an obvious consequence of the fact that Oz's formal model [8] modelscomputation states as expressions. 12



fun fOne Qglocal S = fSolve Qg incase S of distributed(L R) thenif T in fOne Lg=solved( )=T then TT in fOne Rg=solved( )=T then Telse failed �else S endendend Figure 1: Parallel one solution search.fun fDepth Qglocal S = fSolve Qg incase S of distributed(L R) thencase fDepth Lg of solved( )=T then T else fDepth Rg endelse S endendendIf no solution is found (but search terminates), failed is returned. If a solutionis found, solved(A) is returned, where A is the abstracted solution. A proceduresolving a query with Depth and displaying the result can be written as follows:proc fSolveAndBrowse Qgcase fDepth Qg of failed then fBrowse �no solution found�gsolved(A) then fBrowse fAggendendThe search performed by Depth is sequential. Figure 1 shows an indeterministicsearch function One that explores alternatives in parallel guards.3 The use of deepparallel guards provides a high potential for parallel execution.Combinatorial optimization problems (e.g., scheduling) often require best solutionsearch. Following a branch and bound strategy, this can be done as follows: oncea solution is found, only solutions that are better with respect to a total order aresearched for. With every better solution found, the constraints on further solutionscan be strengthened, thus pruning the search space.Figure 2 shows a function Best searching the best solution of a query Q with respectto a total order R (a binary procedure). The local function BAB takes two stacks3This search function was suggested to us by Sverker Janson.13



fun fBest Q Rglocalfun fBAB Fs Bs Sgcase Fs of nil thencase Bs of nil then SBjBr then fBAB (proc fXg fR fSg Xg fB Xg end) jnil Br SgendFjFr thencase fSolve Fg of failed then fBAB Fr Bs Sgsolved(T) then fBAB nil fAppend Fr Bsg Tgdistributed(L R) then fBAB LjRjFr Bs Sgendendendin fBAB Qjnil nil failedg endend Figure 2: Best solution search.Fs and Bs of alternatives and the best solution found so far as arguments (if nosolution has been found so far, failed is taken as last argument) and returns the bestsolution. Alternatives which are already constrained to produce a better solutionthan S reside on the foreground stack Fs, and the remaining alternatives reside onthe background stack Bs. If the foreground stack is empty, an alternative B from thebackground stack is taken. The query A obtained from constraining B to solutionsbetter than S (the best solution so far) is expressed as follows:A = proc fXg fR fSg Xg fB Xg endIf a new and better solution is obtained, all nodes from the foreground stack aremoved to the background stack so that they will be correctly constrained beforethey are explored.The program in Fig. 3 de�nes an object Search realizing the functionality describedin Sect. 4. The object must be initialized with messages query(Q) and action(A)�xing the query to be solved and the action to be taken when a solution is found,respectively. The attribute stack stores the unexplored alternatives. If a solution isrequested with the method next, the alternatives on the stack are explored followinga depth-�rst strategy. If no alternatives are left on the stack, the speci�ed action isapplied to the atom failed.The search object illustrates object-oriented constraint programming in Oz. Moresophisticated search strategies, for instance iterated depth-�rst search, can be ob-tained by re�ning Search using inheritance.14



create Search from UrObjectmeth action(A) action A endmeth query(Q) stack Qjnil endmeth nextcase @stack of nil then f@action failedgNjNr thencase fSolve Ng of failed then stack Nr hhnextiisolved(S) then stack Nr f@action solved(S)gdistributed(L R) then stack LjRjNr hhnextiiendendendend Figure 3: Demand driven depth-�rst search.7 Integers and Finite DomainsAn implementation of the presented computation model must come with e�cientand incremental algorithms for deciding satis�ability and entailment of constraints.This means that a programming language must drastically restrict the constraints aprogrammer can actually use. For instance, addition and multiplication of integerscannot be made available as purely declarative constraints since satis�ability ofconjunctions of such constraints is undecidable (Hilbert's tenth problem).The usual way to deal with this problem is to base the implementation on incom-plete algorithms for satis�ability and entailment (e.g., delay nonlinear arithmeticconstraints until they are linear). Consequently, constraints are not anymore fullycharacterized by their declarative semantics, and the programmer must understandtheir operational semantics.In Oz, we make a distinction between basic and virtual constraints. Basic con-straints are what has been called constraints so far. Their semantics is given purelydeclaratively by the Oz Universe. Oz is designed such that the programmer canonly write basic constraints whose declarative semantics can be faithfully realizedby the implementation (i.e., sound and complete algorithms for satis�ability and en-tailment). Virtual constraints are procedures whose operational semantics is soundbut incomplete with respect to the declarative semantics of the corresponding logicconstraint. A typical example of a virtual constraint is the length predicate for listsde�ned in Sect. 3.Most constraints expressible over the Oz Universe are only available through pre-de�ned virtual constraints (i.e., with incomplete operational semantics). A typical15



example is addition of integers, whose de�nition is as follows:proc f�+� X Y Zgif int(X) int(Y) isdet [X ] isdet [Y ] then plus(X,Y,Z) else false �endHere plus(X,Y,Z) is the basic constraint expressing integer addition (partial func-tions are avoided by using relations), int(X) is the basic constraint expressing thatX is an integer, and isdet [X ] creates an actor that disappears as soon as there isa constant a in the signature of the Oz Universe such that X=a is entailed by theblackboard. Clearly, there is no di�culty in implementing the virtual constraintf�+� X Y Zg. Moreover, its semantics is fully de�ned in terms of the computationmodel outlined in Sect. 2 (extended with the isdet [X ] actor, of course).The virtual constraintproc fIsInt Xgif int(X) isdet [X ] then true else false �endwill fail if the blackboard entails that X is no integer, and disappear (important fordeep guards) if there is an integer n such that the blackboard entails X=n.A further example is the prede�ned virtual constraintproc f��� X Ygif fIsInt Xg fIsInt Yg then le(X,Y) else false �endwhere and le(X,Y) is the basic constraint expressing the canonical order on integers.The prede�ned virtual constraintproc fFdIn X L Ugif fIsInt Lg fIsInt Ug then le(L,X) le(X,U) le( Inf,L) le(U,Sup) else false �endmakes it possible to constrain a variable X to a �nite domain L..U (i.e., the value ofX must be an integer between L and U). There variables Inf and Sup are prede�nedby the implementation and �x the maximal size of �nite domains (i.e., there areonly �nitely many �nite domains).Another important prede�ned virtual constraint is16



proc f���� X Ygif fFdIn X Inf Supg fFdIn Y Inf Supg thenlocalproc fLE Xl Xu Yl Yugif X=Y then trueXu�Yl then truefFdIn X Xl+1 Supg then fFdIn Y Xl+1 Supg fLE Xl+1 Xu Yl YugfFdIn X Inf Xu�1g then fLE Xl Xu�1 Yl YugfFdIn Y Yl+1 Supg then fLE Xl Xu Yl+1 YugfFdIn Y Inf Yu�1g then fFdIn X Inf Yu�1g fLE Xl Xu Yl Yu�1g�endin fLE Inf Sup Inf Supg endelse false �end Figure 4: The virtual constraint X�0 Y.proc fFdNec X Cgif fFdIn X Inf Supg fIsInt Cg then X 6= C else false �endwhose declarative reading says that X is a �nite domain variable di�erent from C(X 6= C is a basic constraint).Figure 4 shows the de�nition of a virtual constraint X�0 Y enforcing domain con-sistency for �nite domain variables (the in�x operators � , + , and � expand toapplications of the corresponding virtual constraints). For instance, elaboration ofthe expressionlocal X Y infFdIn X 3 7g fFdIn Y 7 24gif X�0 Y then fBrowse yesg else fBrowse nog �endwill reduce the conditional actor to fBrowse yesg, and elaboration offFdIn X 3 7g fFdIn Y 7 24g Y�0 Xwill constrain X and Y to 7.With the outlined techniques we can formally de�ne all �nite domain constraints asvirtual constraints such that a faithful and e�cient implementation is possible. To17



our knowledge, this is the �rst formal semantics for �nite domain constraints in adeep guard computation model.To de�ne heuristics such as �rst failure labeling (see next section), we need a re
ec-tive primitive. The actor re
ect[x; y]can reduce as soon as the blackboard constrains the variable x to a �nite domain.It will then reduce to an elaborator for the constraint y = n1j : : : jnkjnil, wheren1j : : : jnk jnil is the shortest list in ascending order such that the blackboard entailsthe constraint x = n1 _ : : :_ x = nk. Note that the re
ection actor is di�erent fromall other actors in that its reduction may have di�erent e�ect if it is postponed.8 Example: N-queensFigure 5 shows an Oz program solving the n-queens problem (place n queens onan n � n chessboard such that no queen is attacked by another queen). The pred-icate fQueens N Xsg is satis�ed i� the list Xs represents a solution to the n-queensproblem. The list Xs has length N, where every element is an integer between 1and N. The ith element of Xs speci�es in which row the queen in the ith column isplaced. The solutions to the 100-queens problem, say, can be obtained by providingthe search object of Sect. 6 with the queryfSearch query(proc fXsg fQueens 100 Xsg end)gThe procedure fConsistent Xs Ysg iterates through the columns of the board, whereYs are the columns already constrained and Xs are the columns still to be con-strained. Since a queen only imposes its constraints once it is determined (i.e.,fIsInt Xg can reduce), there are at most N actors spawned before a distribution.The procedure fLabel Xsg labels the elements of Xs. Di�erent labeling strategiesare possible. Figure 6 shows a labeling procedure realizing the �rst-fail heuristic(label variables with fewest remaining values �rst). The procedure FdSize yields thenumber of values still possible for a �nite domain variable, and FdMin yields theminimal value still possible. Both procedures can be expressed with the re
ectionactor of Sect. 7.After all determined elements of Xs have been dropped with the higher-order proce-dure Filter, the remaining elements are sorted according to the current size of theirdomain. If X is the variable with the smallest domain, the disjunction18



localproc fNoAttack Xs Y Igcase Xs of nil then trueXjXr thenfFdNec X Yg fFdNec X Y+ Ig fFdNec X Y� Ig fNoAttack Xr Y I+ 1gendendproc fConsistent Xs Ysgcase Xs of nil then trueXjXr thenif fIsInt Xg then fNoAttack Xr X 1g fNoAttack Ys X 1g �fConsistent Xr XjYsgendendproc fBoard I N Xsgif I=0 then Xs=nilelse local X Xr in Xs=XjXr fFdIn X 1 Ng fBoard I� 1 N Xrg end �endin proc fQueens N Xsg fBoard N N Xsg fConsistent Xs nilg fLabel Xsg endend Figure 5: The n-queens problem.proc fLabel Xsgcase fSort fFilter Xs proc fXg fFdSize Xg> 1 endgproc fX Yg fFdSize Xg< fFdSize Yg endg of nil then trueXjXr then local M=fFdMin Xg inor X=M then fLabel Xrg fFdNec X Mg then fLabel XjXrg roendendend Figure 6: First-failure labeling.19



or X=M then fLabel Xrg fFdNec X Mg then fLabel XjXrg rois created, where M is the minimal possible value for X, and Xr are the remainingvariables to be labeled.Because of the use of the re
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