Encapsulated Search for
Higher-order Concurrent
Constraint Programming:

Christian Schulte and Gert Smolka

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany
{schulte,smolka}@dfki.uni-sb.de

Abstract

The paper presents an extension of the concurrent constraint model provid-
ing for higher-order programming, deep guards, and encapsulated search.
The paper focuses on a higher-order combinator providing for encapsulat-
ed search. The search combinator spawns a local computation space and
resolves remaining choices by returning the alternatives as first-class citi-
zens. The search combinator allows to program different search strategies,
including depth-first, indeterministic one solution, demand-driven multiple
solution, all solutions, and best solution (branch and bound) search. The
described computation model is realized in Oz, a programming language and
system under development at DFKI.

Keywords Concurrent constraint programming, higher-order programming,
encapsulated search, search strategies, Oz.

1 Introduction

0Oz [2,3,9,8,7, 1] is an attempt to create a high-level concurrent program-
ming language providing the problem solving capabilities of logic program-
ming (i.e., constraints and search). Its computation model can be seen as
a rather radical extension of the concurrent constraint model [6] providing
for higher-order programming, deep guards, state, and encapsulated search.
This paper focuses on the most recent extension, a higher-order combinator
providing for encapsulated search. The search combinator spawns a local
computation space and resolves remaining choices by returning the alterna-
tives as first-class citizens. The search combinator allows to program dif-
ferent search strategies, including depth-first, indeterministic one solution,
demand-driven multiple solution, all solutions, and best solution (branch
and bound) search.

The idea behind our search combinator is simple and new. It exploits

! Appears in: Logic Programming: Proceedings of the 1994 International Symposium,
pages 505-520, edited by Maurice Bruynooghe, 13-17 November, 1994, Ithaca, New York,
USA. The MIT-Press.

the fact that Oz is a higher-order language. The search combinator is given
an expression F and a variable z (i.e., a predicate x/F) with the idea that
FE (which declaratively reads as a logic formula) is to be solved for z. The
combinator spawns a local computation space for F, which evolves until it
fails or becomes stable (a property known from AKL). If the local computa-
tion space evolves to a stable expression (A V B) A C, the two alternatives
are returned as predicates:

z/(AVB)ANC — z/ANC, z/BAC.

If the local computation space evolves to a stable expression C' not containing
a distributable disjunction, it is considered solved and the predicate x/C is
returned.

We now relate Oz to AKL and cc(FD), two first-order concurrent con-
straint programming languages having important aspects in common with
Oz.

AKL [4] is a deep guard language aiming like Oz at the integration of
concurrent and logic programming. AKL can encapsulate search. AKL ad-
mits distribution of a nondeterminate choice in a local computation space
spawned by the guard of a clause when the space has become stable (a
crucial control condition we have also adopted in Oz). In AKL, search al-
ternatives are not available as first-class citizens. All solutions search is
provided through an extra primitive. Best solution and demand-driven mul-
tiple solution search are not expressible.

cc(FD) [11] is a constraint programming language specialized for finite
domain constraints. It employs a Prolog-style search strategy and three
concurrent constraint combinators called cardinality, constructive disjunc-
tion, and blocking implication. It is a compromise between a flat and a deep
guard language in that combinators can be nested into combinators, but pro-
cedure calls (and hence nondeterminate choice) cannot. Encapsulated best
solution search is provided as a primitive, but its control (e.g., stability) is
left unspecified.

The paper is organized as follows. Section 2 gives an informal presen-
tation of Oz’s basic computation model (excluding search and state), and
Section 3 relates it to logic programming by means of examples. Section 4
presents the search combinator informally, and Section 5 shows how the
search strategies mentioned above can be programmed with it. Section 6 ex-
plains how to program heuristic labeling strategies, whereas Section 7 gives
a formal operational semantics of the search combinator.

2 Computation Spaces, Actors, and Blackboards

This section gives an informal presentation of the basic computation model
underlying Oz (see [8] for a formal presentation). It generalizes the concur-
rent constraint model (CC) [6] by providing for higher-order programming

and deep guard combinators. Deep guard combinators introduce local com-
putation spaces, as in the concurrent constraint language AKL [4]. Recall
that there is only one computation space in CC.

A computation space consists of a number of actors? connected to a

blackboard.
Blackboard

Actor -+ Actor

The actors read the blackboard and reduce once the blackboard contains suf-
ficient information. The information on the blackboard increases monotoni-
cally. When an actor reduces, it may put new information on the blackboard
and create new actors. As long as an actor does not reduce, it does not have
an outside effect. The actors of a computation space are short-lived: once
they reduce they disappear. Actors may spawn local computation spaces.

The blackboard stores a constraint (constraints are closed under conjunc-
tion, hence one constraint suffices) and a number of named abstractions (to
be explained later). Constraints are formulas of first-order predicate logic
with equality that are interpreted in a fixed first-order structure called the
universe. For the purposes of this paper it suffices to know that the universe
provides rational trees as in Prolog II. The constraint on the blackboard is
always satisfiable in the universe. We say that a blackboard entails a con-
straint 4 if the implication ¢ — 4 is valid in the universe, where ¢ is the
constraint stored on the blackboard. We say that a blackboard is consistent
with a constraint 4 if the conjunction ¢ A 1 is satisfiable in the universe,
where ¢ is the constraint stored on the blackboard. Since the constraint
on the blackboard can only be observed through entailment and consistency
testing, it suffices to represent it modulo logical equivalence.

There are several kinds of actors. This section will introduce elaborators,
conditionals, and disjunctions.

An elaborator is an actor executing an expression. The expressions we
will consider in this section are defined as follows:

E == ¢ | FyFy | localzin F end

| proc{zy...y,} Fend | {2y ...u,}

| ifCy ... 0C,else Efi | ooC 0...0C, 10
C == Fjythen By | xy...x,in E} then Fy

Elaboration of a constraint ¢ checks whether ¢ is consistent with
the blackboard. If this is the case, ¢ is conjoined to the constraint on the
blackboard; otherwise, the computation space is marked failed and all its
actors are cancelled. Elaboration of a constraint corresponds to the eventual
tell operation of CC.

20¢z’s actors are different from Hewitt’s actors. We reserve the term agent for longer-
lived computational activities enjoying persistent and first-class identity.

Elaboration of a concurrent composition vy F, creates two sepa-
rate elaborators for F; and Ej5.

Elaboration of a variable declaration local # in F end creates a
new variable (local to the computation space) and an elaborator for the
expression F. Within the expression F the new variable is referred to by z.
Every computation space maintains a finite set of local variables.

Elaboration of a procedure definition proc {z y; ...y,} E end choos-
es a fresh name a, writes the named abstraction a:y; ...y, /F on the black-
board, and creates an elaborator for the constraint x = ¢. Names are con-
stants denoting pairwise distinct elements of the universe; there are infinitely
many. Since abstractions are associated with fresh names when they are writ-
ten on the blackboard, a name cannot refer to more than one abstraction.

Elaboration of a procedure application {z y; ... y,} waits until the
blackboard entails © = @ and contains a named abstraction a:zy...2,/F,
for some name a. When this is the case, an elaborator for the expres-
sion Ely1/x1...yn/2,]) is created (Elyi/z1 ...y, /x,] is obtained from F
by replacing the formal arguments z;,...,2, with the actual arguments
Yis e Yn)-

This simple treatment of procedures provides for all higher-order pro-
gramming techniques. By making variables denote names rather than higher-
order values, we obtain a smooth combination of first-order constraints with
higher-order programming.

The elaboration of conditional expressions is more involved. We first
consider the special case of a one clause conditional with flat guard.

Elaboration of a conditional expression if ¢ then I/; else 5 fi creates
a conditional actor, which waits until the blackboard entails either ¢ or
—¢. If the blackboard entails ¢ [—¢], the conditional actor reduces to an
elaborator for Fy [Fs3]. In CC, such a conditional can be expressed as a
parallel composition (ask ¢ — Ey) || (ask—¢ — E3) of two ask clauses.

Elaboration of a conditional expression if C; [...0 C), else F fi
creates a conditional actor spawning a local computation space for each
clause ;. A clause takes the form

z1...%p in E then D

where the local variables zq,..., 2} range over both the guard I and the
body D of the clause. We speak of a deep guard if E is not a constraint.
In Oz, any expression can be used as a guard. This is similar to AKL and
in contrast to CC, where guards are restricted to constraints. The local
computation space for a clause

2z in F then D

(clauses with no or several local variables are dealt with similarly) is created
with an empty blackboard and an elaborator for the expression local x in E end.

Constraints from the global blackboard (the blackboard of the computa-
tion space the conditional actor belongs to) are automatically propagated to

local spaces by elaborating them in the local spaces (propagation of global
constraints can fail local spaces). Moreover, named abstractions from global
blackboards are copied to local blackboards (conflicts cannot occur).

We say that a clause of a conditional actor is entailed if its associated
computation space S is not failed, S has no actors left, and the global board
entails 37 ¢, where 7 are the local variables of S and ¢ is the constraint of
the blackboard of S. Entailment of a local space is a stable property, (i.e.,
remains to hold when computation proceeds).

A conditional actor must wait until either one of its clauses is entailed
or all its clauses (i.e., their associated local spaces) are failed.

If all clauses of a conditional actor if Cy 0 ... 0 C, else F fi are failed,
the conditional actor reduces to an elaborator for the expression F (the else
constituent of the conditional).

If a clause z; in F; then D; of a conditional actor is entailed, the other
clauses and their associated spaces are discarded, the space associated with
the entailed clause is merged with the global space (conflicts cannot occur),
and the conditional actor reduces to an elaborator for D; (the body of the
clause).

Elaboration of a disjunctive expression or C; [... 1 C, ro creates
a disjunctive actor spawning a local computation space for every clause
Cq,...,C,. The local spaces are created in the same way as for condition-
als. As with conditional clauses, constraints and named abstractions from
the global blackboard are automatically propagated to local blackboards.

A disjunctive actor must wait until all but possibly one of its clauses are
failed, or until a clause whose body is the trivial constraint true is entailed.
In the latter case, the disjunctive actor just disappears (justified by the
equivalence AA (AV B) = A). If all clauses of a disjunctive actor are failed,
the space of the disjunctive actor is failed (i.e., all its actors are cancelled).
If all but one clause of a disjunctive actor are failed, it reduces with the
unfailed clause. This is done in two steps. First, the space associated with
the unfailed clause is merged with the global space, and then an elaborator
for the body of the clause is created. The merge of the local with the global
space may fail because the local constraint may be inconsistent with the
global constraint. In this case the global space will be failed.

3 Example: Length of Lists

This section clarifies how Oz relates to logic programming and Prolog.

The Horn clauses

length (nil,0)

length (X|Xr, s(M)) « length(Xr.M)
define a predicate length (Xs,N) that holds if Xs is a list of length N. Numbers
are represented as trees 0, s(0), s(s(0)), ..., and lists as trees ¢1|t3] ... |t |nil.

The intended semantics of the clauses is captured by the equivalence

length(Xs,N) 4 Xs=nil A N=0
Vo 3X, XM (Xs = X|Xr AN = s(M) A length(Xr, M)) ,

which is obtained from the Horn clauses by Clark’s completion. The equiv-
alence exhibits the basic primitives and combinators of logic programming;:
constraints (i.e., Xs=nil), conjunction, existential quantification, disjunction,
and definition by equivalence. Given the equivalence, it is easy to define the
length predicate in Oz:
proc {Length Xs N}
or Xs=nil N=0 then true
0 X Xr M in Xs=X|Xr N=s(M) then {Length Xr M}
ro
end

There are two things that need explanation. First, the predicate is now
referred to by a variable Length, as to be expected in a higher-order language.
Second, the two disjunctive clauses have been divided into guards and bodies.
The procedure application {Length Xr M} is put into the body to obtain a
terminating operational semantics.

To illustrate the operational semantics of Length, assume that the proce-
dure definition has been elaborated. Now we enter the expression

declare Xs N in {Length Xs N}

whose elaboration declares two new variables Xs and N and reduces the proce-
dure application {Length Xs N} to a disjunctive actor. The declare expression
is a variant of the local expression whose scope extends to expressions the
programmer enters later. The disjunctive actor cannot reduce since there is
no information about the variables Xs and N on the global blackboard. It
now becomes clear why we did not write the recursive procedure application
{Length Xr M} into the guard: this would have caused divergence.

Now we enter the constraint (*_’ is a variable occurring only once)

N = s(s(-))
Since N = s(s(_)) is inconsistent with the constraint N=0 on the local black-
board, the first clause of the suspended disjunctive actor can now be failed
and the disjunctive actor can reduce with its second clause. This will elab-
orate the recursive application {Length Xr M} and create a new disjunctive
actor whose first clause fails immediately. This will create once more a new
disjunctive actor, which this time cannot reduce. The global blackboard now
entails

Xs= | N=s(s(1))

Next we enter the constraint

Xs = 1|2]nil
whose elaboration fails the second clause of the suspended disjunctive actor
(since = nil is inconsistent with & = y|z). Hence the suspended actor
reduces with its first clause, no new disjunctive actor is created, and the
blackboard finally entails

Xs = 112|nil N =s(s(0))

The example illustrates important differences between Oz and Prolog:
if there are alternatives (specified by the clauses of disjunctions or condi-
tionals), Oz explores the guards of the alternatives concurrently. Only once
it is safe to commit to one alternative (e.g., because all other alternatives
are failed or because the guard of a conditional clause is entailed), Oz will
commit to it. In contrast, Prolog will eagerly commit to the first alternative
if a choice is to be made, and backtrack if necessary.

A sublanguage of Oz enjoys a declarative semantics such that computa-
tion amounts to equivalence transformation [8]. For instance, the declarative
semantics of a conditional if z in F then Fy else F3 fi with only one clause
is Jz(Ly A Ey) vV (—3zE; A Es). Hence Oz can express negation —F as
if IV then false else true fi.

The length predicate can also be defined in a functional manner using a
conditional:

proc {Length Xs N}

if Xs=nil then N=0
0 X Xr M in Xs=X|Xr then N=s(M) {Length Xr M}

else false fi
end

While the functional version has the same declarative reading as the dis-
junctive formulation, its operational semantics is different in that it will
wait until information about its first argument is available. Thus

declare Xs N in N=s(s(0)) {Length Xs N}
will create a suspending conditional actor and not write anything on the
global blackboard. On the other hand,

declare Xs N in Xs=_|_|nil {Length Xs N}
will write N=s(s(0)) on the global blackboard (although there is only partial
information about Xs).

Oz supports functional syntax; for instance, the functional version of the
length predicate can equivalently be written as:

fun {Length Xs}
case Xs of nil then 0 [I X|Xr then s({Length Xr}) end
end

4 Solvers

We now introduce solvers, which are higher-order actors providing for en-
capsulated search.

The key idea behind solvers is to exploit the distributivity law and pro-
ceed from (AV B) AC to AANC and BAC. While Prolog commits to AAC
first and considers B A C' only upon backtracking, Oz makes both alterna-
tives available as first-class citizens. To do this, the variable being solved for
must be made explicit and abstracted from in the alternatives, yielding the
transition

z/(AVB)ANC — z/ANC, z/BAC.

For instance, if orz = 102 = 2ro is being solved for z, distribution will
produce the abstractions /2 = 1 and z /2 = 2.

There is no loss in generality in solving for one variable. For instance, if
we want to solve F for z and y, we can solve local z y in z = pair(z y) F end
for z instead.

Solvers are created by elaboration of solve expressions

solve[z: F; u]

where 2 (the variable being solved for) is a local variable taking the expres-
sion F as scope. The variable u provides for output. The solver created by
elaboration of the above expression spawns a local computation space for
the expression

local 2 in I end

As with other local computation spaces, constraints and named abstractions
are propagated from global blackboards to the local blackboards of solvers.

A solver can reduce if its local computation space is either failed or stable.
A local computation space is called stable if it is blocked and remains blocked
for every consistent extension of the global blackboard. A computation
space is called blocked if it is not failed and none of its actors can reduce.
Stability is known from AKL [4], where it is used to control nondeterministic
promotion. Note that a local computation space is entailed if and only if it
is stable and has no actor left.

If the local computation space of a solver has failed, the solver reduces
to an elaborator for the constraint (u is the output variable)

u = failed.

If the local computation space of a solver is stable and does not con-
tain a disjunctive actor, the solver reduces to an elaborator for (the nested
procedure definition has been explained in the previous section)

u = solved(proc {z} I end)

where F is an expression representing the stable local computation space.?

Abstracting the solution with respect to z is advantageous in case F' does

?The reader might be surprised by the fact that local computation spaces can be repre-
sented as expressions. This is however an obvious consequence of the fact that Oz’s formal
model models computation states as expressions (see Section 7).

not fully determine x; for instance, if I’ is local z in 2 = f(z) end, different
applications of the abstracted solution will enjoy different local variables z.
A less general way to return the solution would be to reduce to an elaborator
for local z in u = solved(z) F end.

If the local computation space of a solver is stable and contains a dis-
junctive actor or Cy .. .0C,, ro, the solver reduces to an elaborator for

u = distributed (proc {z} or C'y ro F'end proc {z} or C5 0..0C,r0F end)

where F’ is an expression representing the stable local computation space af-
ter deletion of the disjunctive actor. Requiring stability ensures that distri-
bution is postponed until no other reductions are possible. This is important
since repeated distribution may result in combinatorial explosion.

For combinatorial search problems it is often important to distribute the
right disjunction and try the right clause first. Oz makes the following com-
mitments about order: clauses are distributed according to their static order;
solvers distribute the most recently created disjunctive actor; and reduction
proceeds from left to right, where not yet reducible actors are moved to new-
ly created threads [9]. Taking the most recently created disjunctive actor
for distribution seems to be more expressive than taking the least recently
created one.

Solvers cannot express breadth-first search if disjunctions with more than
two clauses are used. This can be remedied by also returning the number of
remaining clauses when a disjunctive actor is distributed.

Solvers are made available through a predefined procedure

proc {Solve Q U} solve[X: {Q X}; U] end

taking the query to be solved (i.e., the pair z/F) as a unary procedure Q.

5 Search Strategies

Figure 1 shows a function taking a query as argument and trying to solve
it following a depth-first strategy. If no solution is found (but search termi-
nates), failed is returned. If a solution is found, solved (A) is returned, where
A is the abstracted solution. A procedure solving a query with Depth and
displaying the result can be written as follows:
proc {SolveAndBrowse Q}
case {Depth Q} of failed then {Browse “no solution found "}
[solved (A) then {Browse {A}}

end
end

The search performed by Depth is sequential. Figure 2 shows an indeter-
ministic search function One that explores alternatives in parallel guards.?

*This search function was suggested to us by Sverker Janson.

fun {Depth Q}
local S = {Solve Q} in
case S of distributed (L R) then
case {Depth L} of solved (_) =T then T else {Depth R} end
else S end
end
end

Figure 1: Depth-first search.

fun {One Q}
local S = {Solve Q} in
case S of distributed (L R) then
if T in {One L}=solved(_)=T then T
0 T in {One R}=solved (_)=T then T
else failed fi
else S end
end
end

Figure 2: Parallel one solution search.

The use of deep parallel guards provides a high potential for parallel execu-
tion.

Combinatorial optimization problems (e.g., scheduling) often require best
solution search. Following a branch and bound strategy, this can be done as
follows: once a solution is found, only solutions that are better with respect
to a given total order are searched for. With every better solution found, the
constraints on further solutions are strengthened, thus pruning the search
space.

Figure 3 shows a function Best searching the best solution of a query Q
with respect to a total order R (a binary procedure). The local function BAB
takes two stacks Fs and Bs of alternatives and the best solution found so
far as arguments (if no solution has been found so far, failed is taken as last
argument) and returns the best solution. Alternatives which are already
constrained to produce better solutions than S reside on the foreground
stack Fs, and the other alternatives reside on the background stack Bs. If
the foreground stack is empty, an alternative B from the background stack
is taken. The query A obtained from constraining B to solutions better than
S (the best solution so far) is expressed as follows:

A = proc {X} {R {S} X} {B X} end

If a new and better solution is obtained, all nodes from the foreground stack
are moved to the background stack so that they will be correctly constrained
before they are explored.

Figure 4 shows a procedure Demand realizing demand-driven depth-first
search. The application {Demand Xs Q} installs an agent computing solutions

10

fun {Best Q R}
local
fun {BAB Fs Bs S}

case Fs of nil then
case Bs of nil then S
(0 B|Br then {BAB (proc {X} {R {S} X} {B X} end)|nil Br S}
end

[F|Fr then
case {Solve F} of failed then {BAB Fr Bs S}
[solved (T) then {BAB nil {Append Fr Bs} T}
[distributed (L R) then {BAB L|R|Fr Bs S}

end
end
end
in {BAB Q|nil nil failed} end
end
Figure 3: Best solution search.
local

proc {Next Xs Qs}
case Xs of nil then true
0 X|Xr then
case Qs of nil then X=failed Xr=nil
1 Q|Qr then
case {Solve Q} of failed then {Next Xs Qr}
[solved (S) then X=solved (S) {Next Xr Qr}
[distributed (L R) then {Next Xs L|R|Qr}
end
end
end
end
in proc {Demand Xs Q} {Next Xs Q|nil} end end

Figure 4: Demand-driven depth-first search.

of the query Q as requested by the stream Xs. Constraining Xs to X|Xr
requests the first solution. If a solution is found, Xis constrained to solved (S),
where S is the abstracted solution, and further solutions can be requested
by constraining Xr. If no solution is found, X is constrained to failed and Xr
to nil. If no further solutions are desired, the search agent can be terminated
by closing its stream (i.e., constraining it to nil).

We remark that Prolog provides demand-driven search at the user inter-
face, but not at the programming level. Aggregation in Prolog (i.e., bagof)
is eager and will diverge if there are infinitely many solutions. In Oz, we
can have any number of concurrent search agents and request solutions as
required.

11

6 Heuristic Labeling Strategies

Finite domain problems are typically solved with heuristic labeling strategies
(e.g., first failure) [10]. Such strategies first propagate all constraints and
then create a choice point for a variable, which is selected by a heuristic
taking the current domains of some finite domain variables as input. It is
crucial that the domains of variables are inspected only after all constraints
have been propagated.

This control is straightforward to achieve in a sequential language like
Prolog (by eager waking). Surprisingly, it is also easily expressed in our
concurrent setting. The idea is to wrap the labeling into a disjunction

or true then inspect domains

select a variable
create a choice point

[true then false
ro

The disjunction is only distributed once the local computation space of the
solver is stable, which means that all global information (possibly computed
by concurrent agents) has arrived and that all local constraint propagation
is done.

7 Formal Semantics

This section gives a formal operational semantics of the solve combinator.
This is done by extending the Calculus B defined in [8]. We assume famil-
iarity with Calculus B.

The computation model is defined as a calculus consisting of an ab-
stract syntax defining a class of expressions, a congruence relation on ex-
pressions, called structural congruence, and a reduction relation defined on
the expressions modulo structural congruence. This setup is known from
the m-calculus [5]. The calculus generalizes the informal computation model
presented in the previous sections in that it leaves unspecified the order in
which actors are reduced and disjunctions are distributed, and in that it is
parameterized with respect to a general notion of constraint system.

Ignoring the order of reduction steps buys significant simplifications: the
difference between expressions (static) and actors (dynamic) as well as the
notion of elaboration can be dropped, and blackboards need not be repre-
sented explicitly.

7.1 Constraint Systems

Our notion of constraint system is based on first-order predicate logic with
equality. A constraint system consists of a signature ¥ (a set of constant,
function and predicate symbols), a consistent theory A (a set of sentences
over ¥ having a model), and an infinite set of constants in ¥ called names

12

T, Y,z variable

a,b,c : name

w,v,w n= x| a reference

¢ : constraint

E = ¢ constraint
| FEyAFE; composition
| JuFE declaration
| a:T/F abstraction (T linear)
| T application
| if Delse I/ conditional
| or(D) disjunction
| solve(z: E;uvw) solver

C nm= Fjthen Fy | Ju C clause

D n= C|L|DyVv Dy collection

Figure 5: Abstract syntax.

satisfying two conditions: (1) for every two distinct names a,b: A = —(a =
b); (2) for every two sentences ¢, 1 over X such that 1) can be obtained from
¢ by permutation of names: A |= ¢ < 9.

Given a constraint system, we will call every formula over its signature
a constraint. We use L for the constraint that is always false, and T for the
constraint that is always true. We will use the following equivalence relation
for constraints: ¢ Ha 1 <= V(¢ <> 9) is valid in every model of A.

7.2 Syntax

The abstract syntax of our calculus appears in Figure 5. It supposes that
some constraint system is given, fixing infinite sets of variables, names and
constraints. Variables and names are jointly referred to as references.

We use 7 to denote a possibly empty sequence of references. A sequence
w is called linear if its elements are pairwise distinct.

Composition F1 AF5 and variable declaration 3z F correspond to parallel
composition and hiding in the m-calculus [5] and in CC [6], respectively.

An expression a:T/FE represents a binding of the name a to the ab-
straction T/F. For convenience, we call the entire expression a:Z/F an
“abstraction”.

The syntactic category D represents multisets of clauses, where | stands
for the empty multiset and V for multiset union.

We identify a conjunction ¢; A ¢ of two constraints with the corre-
sponding composition of constraints, and an existential quantification Jz ¢
of a constraint ¢ with the corresponding declaration.

13

A solver solve(z: F;uvw) carries references u, v, w to three continua-
tions (i.e., abstractions), which are applied when the local computation space
F is failed, distributed, or solved. This formulation of the solve combina-
tor avoids any further assumptions about the underlying constraint system.
It can express the solve combinator of Section 4 if the constraint system
provides for constructor trees.

Our calculus has the following constructs for binding references: A dec-
laration Ju E binds u (a variable or a name) with scope F; an abstraction
a:T/FE binds its formal arguments T with scope E; a clausal declaration
Ju C binds u (a variable or a name) with scope C'; a solver solve(z: E; uvw)
binds z with scope F; and quantification in constraints binds variables as
in predicate logic. The free variables and free names of an expression are
defined accordingly.

A procedure definition proc {zy1...y,} F end (concrete syntax) trans-
latesinto da (z = aAa:y;...y,/F), and a procedure application {z y1 ...y, }
translates into zy; ...y,. Note that declaration of names Jda ¥ models cre-
ation of fresh names (see [8] for a discussion of this issue).

7.3 Structural Congruence

The structural congruence “E; = F5” of our calculus is a congruence on
the set of expressions satisfying the following congruence laws (there are
additional laws for disjunctions and conditionals not given here for lack of
space; see [8]):

1. Fy = F; if By and F3 are equal up to renaming of bound references
2. A is associative, commutative and satisfies FAT = F

3. Judv F = Jvdu F

4. Ju Fy AN Fy = Ju (E1 A E2) if w does not occur free in £

5. 901 = ¢ if ¢1 Ha é2

6. e=uNE = z=uAFE[u/x] ifuisfreeforazin £ (E[u/x]is obtained
from E by replacing every free occurrence of & with u)

7. mAsolve(z: Ejuvw) = mAsolve(z: n AE;uvw) if 7 is a constraint
or an abstraction such that z does not occur free in 7.

Law (7) realizes propagation of constraints and abstractions from global to

local blackboards.

7.4 Reduction

The reduction relation of our calculus is defined as a binary relation Fy — Fs
on the set of expressions satisfying the following reduction laws (there are

14

additional laws for disjunctions and conditionals not given here for lack of
space; see [8]):

1. if By = Fy, Fy — E), and E} = F3, then 'y — F3

2. if By — EY, then Ey A Ey — F A E,

3. if E — FE’', then Ju K — Ju F’

4. if E'— ', then solve(z: E; uvw) — solve(z: E'; uvw)

5. auha:T/E — Fu/T] N axT/E if T and 7 are of equal length and
7 is free for T in F

6. solve(z: L A Fyuvw) — u

7. solve(z: Eyuvw) — Jadb(vabAa:x/Ey ANb:a/Es) if Jo I stable,
E=3u () ANor (CV D)), Ey=3u (I Aor (C')), and
E3 = dJu (El A or (D))

8. solve(z: Eyuwvw) — da(wa Aa:z/FE) if Jz I stable and not dis-
tributable.

An expression E is failed if there exists E’ such that ¥ = L A E’. An
expression F is stable if, for every abstraction or satisfiable constraint 7, the

expression m A F is neither reducible nor failed. An expression F is called
distributable if there exist w, £’ and D such that F' = 3Ju (E' Aor (D)).

Acknowledgements

We thank Michael Mehl, Tobias Miiller, Konstantin Popov, and Ralf Schei-
dhauer for discussions and implementing Oz. We also thank Sverker Janson
for discussions of search issues.

The research reported in this paper has been supported by the Bundesmi-
nister fiir Forschung und Technologie (FTZ-1TW-9105), the Esprit Project
ACCLAIM (PE 7195), and the Esprit Working Group CCL (EP 6028).

Remark

The Oz System and its documentation are available through anonymous ftp
ps-ftp.dfki.uni-sb.de or www http://ps-www.dfki.uni-sb.de/.

References

[1] M. Henz, M. Mehl, M. Miiller, T. Miiller, J. Niehren, R. Scheidhauer,
C. Schulte, G. Smolka, R. Treinen, and J. Wiirtz. The Oz Handbook.
Research Report RR-94-09, DFKI, 1994.

15

[2]

[10]

[11]

M. Henz, G. Smolka, and J. Wiirtz. Oz—a programming language for
multi-agent systems. In 13th International Joint Conference on Artificial
Intelligence, volume 1, pages 404-409, Chambéry, France, 1993. Morgan
Kaufmann Publishers. Revised version will appear as [3].

M. Henz, G. Smolka, and J. Wiirtz. Object-oriented concurrent con-
straint programming in Oz. In P. van Hentenryck and V. Saraswat,
editors, Principles and Practice of Constraint Programming. The MIT
Press, 1994. To appear.

S. Janson and S. Haridi. Programming paradigms of the Andorra kernel
language. In Logic Programming, Proceedings of the 1991 International
Symposium, pages 167-186. The MIT Press, 1991.

R. Milner. Functions as processes. Journal of Mathematical Structures
in Computer Science, 2(2):119-141, 1992.

V. A. Saraswat and M. Rinard. Concurrent constraint programming.
In Proceedings of the 7th Annual ACM Symposium on Principles of
Programming Languages, pages 232-245, Jan. 1990.

C. Schulte, G. Smolka, and J. Wiirtz. Encapsulated search and con-
straint programming in Oz. In Second Workshop on Principles and
Practice of Constraint Programming, Orcas Island, Washington, USA,
May 1994. Springer-Verlag. To appear.

G. Smolka. A calculus for higher-order concurrent constraint program-
ming with deep guards. Research Report RR-94-03, DFKI, Feb. 1994.

G. Smolka. A foundation for higher-order concurrent constraint pro-
gramming. In J.-P. Jouannaud, editor, Ist International Conference
on Constraints in Computational Logics, Lecture Notes in Computer
Science, Miinchen, Germany, 7-9 Sept. 1994. Springer-Verlag. Invited
Lecture. To appear.

P. Van Hentenryck. Constraint Satisfaction in Logic Programming.
Programming Logic Series. The MIT Press, Cambridge, MA, 1989.

P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementa-
tion and evaluation of the constraint language cc(FD). Report CS-93-02,
Brown University, Jan. 1993.

16

