
Encapsulated Search forHigher-order ConcurrentConstraint Programming1Christian Schulte and Gert SmolkaGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, D{66123 Saarbr�ucken, Germanyfschulte,smolkag@dfki.uni-sb.deAbstractThe paper presents an extension of the concurrent constraint model provid-ing for higher-order programming, deep guards, and encapsulated search.The paper focuses on a higher-order combinator providing for encapsulat-ed search. The search combinator spawns a local computation space andresolves remaining choices by returning the alternatives as �rst-class citi-zens. The search combinator allows to program di�erent search strategies,including depth-�rst, indeterministic one solution, demand-driven multiplesolution, all solutions, and best solution (branch and bound) search. Thedescribed computation model is realized in Oz, a programming language andsystem under development at DFKI.Keywords Concurrent constraint programming, higher-order programming,encapsulated search, search strategies, Oz.1 IntroductionOz [2, 3, 9, 8, 7, 1] is an attempt to create a high-level concurrent program-ming language providing the problem solving capabilities of logic program-ming (i.e., constraints and search). Its computation model can be seen asa rather radical extension of the concurrent constraint model [6] providingfor higher-order programming, deep guards, state, and encapsulated search.This paper focuses on the most recent extension, a higher-order combinatorproviding for encapsulated search. The search combinator spawns a localcomputation space and resolves remaining choices by returning the alterna-tives as �rst-class citizens. The search combinator allows to program dif-ferent search strategies, including depth-�rst, indeterministic one solution,demand-driven multiple solution, all solutions, and best solution (branchand bound) search.The idea behind our search combinator is simple and new. It exploits1Appears in: Logic Programming: Proceedings of the 1994 International Symposium,pages 505{520, edited by Maurice Bruynooghe, 13{17 November, 1994, Ithaca, New York,USA. The MIT-Press. 1

the fact that Oz is a higher-order language. The search combinator is givenan expression E and a variable x (i.e., a predicate x=E) with the idea thatE (which declaratively reads as a logic formula) is to be solved for x. Thecombinator spawns a local computation space for E, which evolves until itfails or becomes stable (a property known from AKL). If the local computa-tion space evolves to a stable expression (A _ B) ^ C, the two alternativesare returned as predicates:x=(A_ B) ^ C ! x=A ^ C; x=B ^ C:If the local computation space evolves to a stable expression C not containinga distributable disjunction, it is considered solved and the predicate x=C isreturned.We now relate Oz to AKL and cc(FD), two �rst-order concurrent con-straint programming languages having important aspects in common withOz.AKL [4] is a deep guard language aiming like Oz at the integration ofconcurrent and logic programming. AKL can encapsulate search. AKL ad-mits distribution of a nondeterminate choice in a local computation spacespawned by the guard of a clause when the space has become stable (acrucial control condition we have also adopted in Oz). In AKL, search al-ternatives are not available as �rst-class citizens. All solutions search isprovided through an extra primitive. Best solution and demand-driven mul-tiple solution search are not expressible.cc(FD) [11] is a constraint programming language specialized for �nitedomain constraints. It employs a Prolog-style search strategy and threeconcurrent constraint combinators called cardinality, constructive disjunc-tion, and blocking implication. It is a compromise between a at and a deepguard language in that combinators can be nested into combinators, but pro-cedure calls (and hence nondeterminate choice) cannot. Encapsulated bestsolution search is provided as a primitive, but its control (e.g., stability) isleft unspeci�ed.The paper is organized as follows. Section 2 gives an informal presen-tation of Oz's basic computation model (excluding search and state), andSection 3 relates it to logic programming by means of examples. Section 4presents the search combinator informally, and Section 5 shows how thesearch strategies mentioned above can be programmed with it. Section 6 ex-plains how to program heuristic labeling strategies, whereas Section 7 givesa formal operational semantics of the search combinator.2 Computation Spaces, Actors, and BlackboardsThis section gives an informal presentation of the basic computation modelunderlying Oz (see [8] for a formal presentation). It generalizes the concur-rent constraint model (CC) [6] by providing for higher-order programming2

and deep guard combinators. Deep guard combinators introduce local com-putation spaces, as in the concurrent constraint language AKL [4]. Recallthat there is only one computation space in CC.A computation space consists of a number of actors2 connected to ablackboard. BlackboardActor : : : Actor�� @@The actors read the blackboard and reduce once the blackboard contains suf-�cient information. The information on the blackboard increases monotoni-cally. When an actor reduces, it may put new information on the blackboardand create new actors. As long as an actor does not reduce, it does not havean outside e�ect. The actors of a computation space are short-lived: oncethey reduce they disappear. Actors may spawn local computation spaces.The blackboard stores a constraint (constraints are closed under conjunc-tion, hence one constraint su�ces) and a number of named abstractions (tobe explained later). Constraints are formulas of �rst-order predicate logicwith equality that are interpreted in a �xed �rst-order structure called theuniverse. For the purposes of this paper it su�ces to know that the universeprovides rational trees as in Prolog II. The constraint on the blackboard isalways satis�able in the universe. We say that a blackboard entails a con-straint if the implication � ! is valid in the universe, where � is theconstraint stored on the blackboard. We say that a blackboard is consistentwith a constraint if the conjunction � ^ is satis�able in the universe,where � is the constraint stored on the blackboard. Since the constrainton the blackboard can only be observed through entailment and consistencytesting, it su�ces to represent it modulo logical equivalence.There are several kinds of actors. This section will introduce elaborators,conditionals, and disjunctions.An elaborator is an actor executing an expression. The expressions wewill consider in this section are de�ned as follows:E ::= � j E1 E2 j local x in E endj proc fx y1 : : :yng E end j fx y1 : : :yngj if C1 : : : Cn else E � j or C1 : : : Cn roC ::= E1 then E2 j x1 : : :xn in E1 then E2Elaboration of a constraint � checks whether � is consistent withthe blackboard. If this is the case, � is conjoined to the constraint on theblackboard; otherwise, the computation space is marked failed and all itsactors are cancelled. Elaboration of a constraint corresponds to the eventualtell operation of CC.2Oz's actors are di�erent from Hewitt's actors. We reserve the term agent for longer-lived computational activities enjoying persistent and �rst-class identity.3

Elaboration of a concurrent composition E1 E2 creates two sepa-rate elaborators for E1 and E2.Elaboration of a variable declaration local x in E end creates anew variable (local to the computation space) and an elaborator for theexpression E. Within the expression E the new variable is referred to by x.Every computation space maintains a �nite set of local variables.Elaboration of a procedure de�nition proc fx y1 : : : yng E end choos-es a fresh name a, writes the named abstraction a: y1 : : : yn=E on the black-board, and creates an elaborator for the constraint x = a. Names are con-stants denoting pairwise distinct elements of the universe; there are in�nitelymany. Since abstractions are associated with fresh names when they are writ-ten on the blackboard, a name cannot refer to more than one abstraction.Elaboration of a procedure application fx y1 : : : yng waits until theblackboard entails x = a and contains a named abstraction a: x1 : : :xn=E,for some name a. When this is the case, an elaborator for the expres-sion E[y1=x1 : : : yn=xn] is created (E[y1=x1 : : : yn=xn] is obtained from Eby replacing the formal arguments x1; : : : ; xn with the actual argumentsy1; : : : ; yn).This simple treatment of procedures provides for all higher-order pro-gramming techniques. By making variables denote names rather than higher-order values, we obtain a smooth combination of �rst-order constraints withhigher-order programming.The elaboration of conditional expressions is more involved. We �rstconsider the special case of a one clause conditional with at guard.Elaboration of a conditional expression if � then E1 else E2 � createsa conditional actor, which waits until the blackboard entails either � or:�. If the blackboard entails � [:�], the conditional actor reduces to anelaborator for E1 [E2]. In CC, such a conditional can be expressed as aparallel composition (ask�! E1) jj (ask:�! E2) of two ask clauses.Elaboration of a conditional expression if C1 : : : Cn else E �creates a conditional actor spawning a local computation space for eachclause Ci. A clause takes the formx1 : : : xk in E then Dwhere the local variables x1; : : : ; xk range over both the guard E and thebody D of the clause. We speak of a deep guard if E is not a constraint.In Oz, any expression can be used as a guard. This is similar to AKL andin contrast to CC, where guards are restricted to constraints. The localcomputation space for a clause x in E then D(clauses with no or several local variables are dealt with similarly) is createdwith an empty blackboard and an elaborator for the expression local x in E end.Constraints from the global blackboard (the blackboard of the computa-tion space the conditional actor belongs to) are automatically propagated to4

local spaces by elaborating them in the local spaces (propagation of globalconstraints can fail local spaces). Moreover, named abstractions from globalblackboards are copied to local blackboards (conicts cannot occur).We say that a clause of a conditional actor is entailed if its associatedcomputation space S is not failed, S has no actors left, and the global boardentails 9y �, where y are the local variables of S and � is the constraint ofthe blackboard of S. Entailment of a local space is a stable property, (i.e.,remains to hold when computation proceeds).A conditional actor must wait until either one of its clauses is entailedor all its clauses (i.e., their associated local spaces) are failed.If all clauses of a conditional actor if C1 : : : Cn else E � are failed,the conditional actor reduces to an elaborator for the expression E (the elseconstituent of the conditional).If a clause xi in Ei then Di of a conditional actor is entailed, the otherclauses and their associated spaces are discarded, the space associated withthe entailed clause is merged with the global space (conicts cannot occur),and the conditional actor reduces to an elaborator for Di (the body of theclause).Elaboration of a disjunctive expression or C1 : : : Cn ro createsa disjunctive actor spawning a local computation space for every clauseC1; : : : ; Cn. The local spaces are created in the same way as for condition-als. As with conditional clauses, constraints and named abstractions fromthe global blackboard are automatically propagated to local blackboards.A disjunctive actor must wait until all but possibly one of its clauses arefailed, or until a clause whose body is the trivial constraint true is entailed.In the latter case, the disjunctive actor just disappears (justi�ed by theequivalence A^ (A_B) � A). If all clauses of a disjunctive actor are failed,the space of the disjunctive actor is failed (i.e., all its actors are cancelled).If all but one clause of a disjunctive actor are failed, it reduces with theunfailed clause. This is done in two steps. First, the space associated withthe unfailed clause is merged with the global space, and then an elaboratorfor the body of the clause is created. The merge of the local with the globalspace may fail because the local constraint may be inconsistent with theglobal constraint. In this case the global space will be failed.3 Example: Length of ListsThis section clari�es how Oz relates to logic programming and Prolog.The Horn clauseslength(nil,0)length(XjXr, s(M)) length(Xr,M)de�ne a predicate length(Xs,N) that holds if Xs is a list of length N. Numbersare represented as trees 0; s(0); s(s(0)); : : :, and lists as trees t1jt2j : : : jtnjnil.5

The intended semantics of the clauses is captured by the equivalencelength(Xs;N) $ Xs = nil ^ N = 0_ 9X;Xr;M (Xs = XjXr^ N = s(M) ^ length(Xr;M)) ;which is obtained from the Horn clauses by Clark's completion. The equiv-alence exhibits the basic primitives and combinators of logic programming:constraints (i.e., Xs=nil), conjunction, existential quanti�cation, disjunction,and de�nition by equivalence. Given the equivalence, it is easy to de�ne thelength predicate in Oz:proc fLength Xs Ngor Xs=nil N=0 then trueX Xr M in Xs=XjXr N=s(M) then fLength Xr MgroendThere are two things that need explanation. First, the predicate is nowreferred to by a variable Length, as to be expected in a higher-order language.Second, the two disjunctive clauses have been divided into guards and bodies.The procedure application fLength Xr Mg is put into the body to obtain aterminating operational semantics.To illustrate the operational semantics of Length, assume that the proce-dure de�nition has been elaborated. Now we enter the expressiondeclare Xs N in fLength Xs Ngwhose elaboration declares two new variables Xs and N and reduces the proce-dure application fLength Xs Ng to a disjunctive actor. The declare expressionis a variant of the local expression whose scope extends to expressions theprogrammer enters later. The disjunctive actor cannot reduce since there isno information about the variables Xs and N on the global blackboard. Itnow becomes clear why we did not write the recursive procedure applicationfLength Xr Mg into the guard: this would have caused divergence.Now we enter the constraint (' ' is a variable occurring only once)N = s(s())Since N = s(s()) is inconsistent with the constraint N=0 on the local black-board, the �rst clause of the suspended disjunctive actor can now be failedand the disjunctive actor can reduce with its second clause. This will elab-orate the recursive application fLength Xr Mg and create a new disjunctiveactor whose �rst clause fails immediately. This will create once more a newdisjunctive actor, which this time cannot reduce. The global blackboard nowentailsXs = j j N = s(s())Next we enter the constraint 6

Xs = 1j2jnilwhose elaboration fails the second clause of the suspended disjunctive actor(since x = nil is inconsistent with x = yjz). Hence the suspended actorreduces with its �rst clause, no new disjunctive actor is created, and theblackboard �nally entailsXs = 1j2jnil N = s(s(0))The example illustrates important di�erences between Oz and Prolog:if there are alternatives (speci�ed by the clauses of disjunctions or condi-tionals), Oz explores the guards of the alternatives concurrently. Only onceit is safe to commit to one alternative (e.g., because all other alternativesare failed or because the guard of a conditional clause is entailed), Oz willcommit to it. In contrast, Prolog will eagerly commit to the �rst alternativeif a choice is to be made, and backtrack if necessary.A sublanguage of Oz enjoys a declarative semantics such that computa-tion amounts to equivalence transformation [8]. For instance, the declarativesemantics of a conditional if x in E1 then E2 else E3 � with only one clauseis 9x(E1 ^ E2) _ (:9xE1 ^ E3). Hence Oz can express negation :E asif E then false else true �.The length predicate can also be de�ned in a functional manner using aconditional:proc fLength Xs Ngif Xs=nil then N=0X Xr M in Xs=XjXr then N=s(M) fLength Xr Mgelse false �endWhile the functional version has the same declarative reading as the dis-junctive formulation, its operational semantics is di�erent in that it willwait until information about its �rst argument is available. Thusdeclare Xs N in N=s(s(0)) fLength Xs Ngwill create a suspending conditional actor and not write anything on theglobal blackboard. On the other hand,declare Xs N in Xs= j jnil fLength Xs Ngwill write N=s(s(0)) on the global blackboard (although there is only partialinformation about Xs).Oz supports functional syntax; for instance, the functional version of thelength predicate can equivalently be written as:fun fLength Xsgcase Xs of nil then 0 XjXr then s(fLength Xrg) endend4 SolversWe now introduce solvers, which are higher-order actors providing for en-capsulated search. 7

The key idea behind solvers is to exploit the distributivity law and pro-ceed from (A_B)^C to A^C and B ^C. While Prolog commits to A^C�rst and considers B ^ C only upon backtracking, Oz makes both alterna-tives available as �rst-class citizens. To do this, the variable being solved formust be made explicit and abstracted from in the alternatives, yielding thetransition x=(A_ B) ^ C ! x=A ^ C; x=B ^ C:For instance, if or x = 1 x = 2 ro is being solved for x, distribution willproduce the abstractions x=x = 1 and x=x = 2.There is no loss in generality in solving for one variable. For instance, ifwe want to solve E for x and y, we can solve local x y in z = pair(x y) E endfor z instead.Solvers are created by elaboration of solve expressionssolve[x:E; u]where x (the variable being solved for) is a local variable taking the expres-sion E as scope. The variable u provides for output. The solver created byelaboration of the above expression spawns a local computation space forthe expression local x in E endAs with other local computation spaces, constraints and named abstractionsare propagated from global blackboards to the local blackboards of solvers.A solver can reduce if its local computation space is either failed or stable.A local computation space is called stable if it is blocked and remains blockedfor every consistent extension of the global blackboard. A computationspace is called blocked if it is not failed and none of its actors can reduce.Stability is known from AKL [4], where it is used to control nondeterministicpromotion. Note that a local computation space is entailed if and only if itis stable and has no actor left.If the local computation space of a solver has failed, the solver reducesto an elaborator for the constraint (u is the output variable)u = failed:If the local computation space of a solver is stable and does not con-tain a disjunctive actor, the solver reduces to an elaborator for (the nestedprocedure de�nition has been explained in the previous section)u = solved(proc fxg F end)where F is an expression representing the stable local computation space.3Abstracting the solution with respect to x is advantageous in case F does3The reader might be surprised by the fact that local computation spaces can be repre-sented as expressions. This is however an obvious consequence of the fact that Oz's formalmodel models computation states as expressions (see Section 7).8

not fully determine x; for instance, if F is local z in x = f(z) end, di�erentapplications of the abstracted solution will enjoy di�erent local variables z.A less general way to return the solution would be to reduce to an elaboratorfor local x in u = solved(x) F end.If the local computation space of a solver is stable and contains a dis-junctive actor or C1 : : : Cn ro, the solver reduces to an elaborator foru = distributed(proc fxg or C1 ro F end proc fxg or C2 : : : Cn ro F end)where F is an expression representing the stable local computation space af-ter deletion of the disjunctive actor. Requiring stability ensures that distri-bution is postponed until no other reductions are possible. This is importantsince repeated distribution may result in combinatorial explosion.For combinatorial search problems it is often important to distribute theright disjunction and try the right clause �rst. Oz makes the following com-mitments about order: clauses are distributed according to their static order;solvers distribute the most recently created disjunctive actor; and reductionproceeds from left to right, where not yet reducible actors are moved to new-ly created threads [9]. Taking the most recently created disjunctive actorfor distribution seems to be more expressive than taking the least recentlycreated one.Solvers cannot express breadth-�rst search if disjunctions with more thantwo clauses are used. This can be remedied by also returning the number ofremaining clauses when a disjunctive actor is distributed.Solvers are made available through a prede�ned procedureproc fSolve Q Ug solve[X: fQ Xg; U] endtaking the query to be solved (i.e., the pair x=E) as a unary procedure Q.5 Search StrategiesFigure 1 shows a function taking a query as argument and trying to solveit following a depth-�rst strategy. If no solution is found (but search termi-nates), failed is returned. If a solution is found, solved(A) is returned, whereA is the abstracted solution. A procedure solving a query with Depth anddisplaying the result can be written as follows:proc fSolveAndBrowse Qgcase fDepth Qg of failed then fBrowse �no solution found�gsolved(A) then fBrowse fAggendendThe search performed by Depth is sequential. Figure 2 shows an indeter-ministic search function One that explores alternatives in parallel guards.44This search function was suggested to us by Sverker Janson.9

fun fDepth Qglocal S = fSolve Qg incase S of distributed(L R) thencase fDepth Lg of solved()=T then T else fDepth Rg endelse S endendend Figure 1: Depth-�rst search.fun fOne Qglocal S = fSolve Qg incase S of distributed(L R) thenif T in fOne Lg=solved()=T then TT in fOne Rg=solved()=T then Telse failed �else S endendend Figure 2: Parallel one solution search.The use of deep parallel guards provides a high potential for parallel execu-tion.Combinatorial optimization problems (e.g., scheduling) often require bestsolution search. Following a branch and bound strategy, this can be done asfollows: once a solution is found, only solutions that are better with respectto a given total order are searched for. With every better solution found, theconstraints on further solutions are strengthened, thus pruning the searchspace.Figure 3 shows a function Best searching the best solution of a query Qwith respect to a total order R (a binary procedure). The local function BABtakes two stacks Fs and Bs of alternatives and the best solution found sofar as arguments (if no solution has been found so far, failed is taken as lastargument) and returns the best solution. Alternatives which are alreadyconstrained to produce better solutions than S reside on the foregroundstack Fs, and the other alternatives reside on the background stack Bs. Ifthe foreground stack is empty, an alternative B from the background stackis taken. The query A obtained from constraining B to solutions better thanS (the best solution so far) is expressed as follows:A = proc fXg fR fSg Xg fB Xg endIf a new and better solution is obtained, all nodes from the foreground stackare moved to the background stack so that they will be correctly constrainedbefore they are explored.Figure 4 shows a procedure Demand realizing demand-driven depth-�rstsearch. The application fDemand Xs Qg installs an agent computing solutions10

fun fBest Q Rglocalfun fBAB Fs Bs Sgcase Fs of nil thencase Bs of nil then SBjBr then fBAB (proc fXg fR fSg Xg fB Xg end) jnil Br SgendFjFr thencase fSolve Fg of failed then fBAB Fr Bs Sgsolved(T) then fBAB nil fAppend Fr Bsg Tgdistributed(L R) then fBAB LjRjFr Bs Sgendendendin fBAB Qjnil nil failedg endend Figure 3: Best solution search.localproc fNext Xs Qsgcase Xs of nil then trueXjXr thencase Qs of nil then X=failed Xr=nilQjQr thencase fSolve Qg of failed then fNext Xs Qrgsolved(S) then X=solved(S) fNext Xr Qrgdistributed(L R) then fNext Xs LjRjQrgendendendendin proc fDemand Xs Qg fNext Xs Qjnilg end endFigure 4: Demand-driven depth-�rst search.of the query Q as requested by the stream Xs. Constraining Xs to XjXrrequests the �rst solution. If a solution is found, X is constrained to solved(S) ,where S is the abstracted solution, and further solutions can be requestedby constraining Xr. If no solution is found, X is constrained to failed and Xrto nil. If no further solutions are desired, the search agent can be terminatedby closing its stream (i.e., constraining it to nil).We remark that Prolog provides demand-driven search at the user inter-face, but not at the programming level. Aggregation in Prolog (i.e., bagof)is eager and will diverge if there are in�nitely many solutions. In Oz, wecan have any number of concurrent search agents and request solutions asrequired. 11

6 Heuristic Labeling StrategiesFinite domain problems are typically solved with heuristic labeling strategies(e.g., �rst failure) [10]. Such strategies �rst propagate all constraints andthen create a choice point for a variable, which is selected by a heuristictaking the current domains of some �nite domain variables as input. It iscrucial that the domains of variables are inspected only after all constraintshave been propagated.This control is straightforward to achieve in a sequential language likeProlog (by eager waking). Surprisingly, it is also easily expressed in ourconcurrent setting. The idea is to wrap the labeling into a disjunctionor true then inspect domainsselect a variablecreate a choice pointtrue then falseroThe disjunction is only distributed once the local computation space of thesolver is stable, which means that all global information (possibly computedby concurrent agents) has arrived and that all local constraint propagationis done.7 Formal SemanticsThis section gives a formal operational semantics of the solve combinator.This is done by extending the Calculus B de�ned in [8]. We assume famil-iarity with Calculus B.The computation model is de�ned as a calculus consisting of an ab-stract syntax de�ning a class of expressions, a congruence relation on ex-pressions, called structural congruence, and a reduction relation de�ned onthe expressions modulo structural congruence. This setup is known fromthe �-calculus [5]. The calculus generalizes the informal computation modelpresented in the previous sections in that it leaves unspeci�ed the order inwhich actors are reduced and disjunctions are distributed, and in that it isparameterized with respect to a general notion of constraint system.Ignoring the order of reduction steps buys signi�cant simpli�cations: thedi�erence between expressions (static) and actors (dynamic) as well as thenotion of elaboration can be dropped, and blackboards need not be repre-sented explicitly.7.1 Constraint SystemsOur notion of constraint system is based on �rst-order predicate logic withequality. A constraint system consists of a signature � (a set of constant,function and predicate symbols), a consistent theory � (a set of sentencesover � having a model), and an in�nite set of constants in � called names12

x; y; z : variablea; b; c : nameu; v; w ::= x j a reference� : constraintE ::= � constraintj E1 ^E2 compositionj 9u E declarationj a: x=E abstraction (x linear)j uv applicationj if D else E conditionalj or (D) disjunctionj solve(x: E; uvw) solverC ::= E1 then E2 j 9u C clauseD ::= C j ? j D1 _D2 collectionFigure 5: Abstract syntax.satisfying two conditions: (1) for every two distinct names a; b: � j= :(a :=b); (2) for every two sentences �, over � such that can be obtained from� by permutation of names: � j= �$.Given a constraint system, we will call every formula over its signaturea constraint. We use ? for the constraint that is always false, and > for theconstraint that is always true. We will use the following equivalence relationfor constraints: � j=j� :() 8 (�$) is valid in every model of �.7.2 SyntaxThe abstract syntax of our calculus appears in Figure 5. It supposes thatsome constraint system is given, �xing in�nite sets of variables, names andconstraints. Variables and names are jointly referred to as references.We use u to denote a possibly empty sequence of references. A sequenceu is called linear if its elements are pairwise distinct.Composition E1^E2 and variable declaration 9xE correspond to parallelcomposition and hiding in the �-calculus [5] and in CC [6], respectively.An expression a: x=E represents a binding of the name a to the ab-straction x=E. For convenience, we call the entire expression a: x=E an\abstraction".The syntactic categoryD represents multisets of clauses, where ? standsfor the empty multiset and _ for multiset union.We identify a conjunction �1 ^ �2 of two constraints with the corre-sponding composition of constraints, and an existential quanti�cation 9x �of a constraint � with the corresponding declaration.13

A solver solve(x: E; uvw) carries references u, v, w to three continua-tions (i.e., abstractions), which are applied when the local computation spaceE is failed, distributed, or solved. This formulation of the solve combina-tor avoids any further assumptions about the underlying constraint system.It can express the solve combinator of Section 4 if the constraint systemprovides for constructor trees.Our calculus has the following constructs for binding references: A dec-laration 9uE binds u (a variable or a name) with scope E; an abstractiona: x=E binds its formal arguments x with scope E; a clausal declaration9uC binds u (a variable or a name) with scope C; a solver solve(x: E; uvw)binds x with scope E; and quanti�cation in constraints binds variables asin predicate logic. The free variables and free names of an expression arede�ned accordingly.A procedure de�nition proc fx y1 : : : yng E end (concrete syntax) trans-lates into 9a (x = a^ a: y1 : : : yn=E), and a procedure application fx y1 : : :yngtranslates into xy1 : : : yn. Note that declaration of names 9aE models cre-ation of fresh names (see [8] for a discussion of this issue).7.3 Structural CongruenceThe structural congruence \E1 � E2" of our calculus is a congruence onthe set of expressions satisfying the following congruence laws (there areadditional laws for disjunctions and conditionals not given here for lack ofspace; see [8]):1. E1 � E2 if E1 and E2 are equal up to renaming of bound references2. ^ is associative, commutative and satis�es E ^ > � E3. 9u 9v E � 9v 9u E4. 9u E1 ^E2 � 9u (E1 ^E2) if u does not occur free in E25. �1 � �2 if �1 j=j� �26. x :=u^E � x :=u^E[u=x] if u is free for x in E (E[u=x] is obtainedfrom E by replacing every free occurrence of x with u)7. �^solve(x: E; uvw) � �^solve(x: �^E; uvw) if � is a constraintor an abstraction such that x does not occur free in �.Law (7) realizes propagation of constraints and abstractions from global tolocal blackboards.7.4 ReductionThe reduction relation of our calculus is de�ned as a binary relation E1 ! E2on the set of expressions satisfying the following reduction laws (there are14

additional laws for disjunctions and conditionals not given here for lack ofspace; see [8]):1. if E1 � E2, E2 ! E 02, and E 02 � E3, then E1 ! E32. if E1 ! E 01, then E1 ^ E2 ! E 01 ^ E23. if E ! E 0, then 9uE ! 9uE 04. if E ! E 0, then solve(x: E; uvw)! solve(x: E 0; uvw)5. au^a: x=E ! E[u=x] ^ a: x=E if x and u are of equal length andu is free for x in E6. solve(x: ? ^E; uvw) ! u7. solve(x: E; uvw) ! 9a 9b (vab^ a: x=E2 ^ b: x=E3) if 9xE stable,E = 9u (E1 ^ or (C _D)), E2 = 9u (E1 ^ or (C)), andE3 = 9u (E1 ^ or (D))8. solve(x: E; uvw) ! 9a (wa ^ a: x=E) if 9xE stable and not dis-tributable.An expression E is failed if there exists E 0 such that E � ? ^ E 0. Anexpression E is stable if, for every abstraction or satis�able constraint �, theexpression � ^ E is neither reducible nor failed. An expression E is calleddistributable if there exist u, E 0 and D such that E � 9u (E 0 ^ or (D)).AcknowledgementsWe thank Michael Mehl, Tobias M�uller, Konstantin Popov, and Ralf Schei-dhauer for discussions and implementing Oz. We also thank Sverker Jansonfor discussions of search issues.The research reported in this paper has been supported by the Bundesmi-nister f�ur Forschung und Technologie (FTZ-ITW-9105), the Esprit ProjectACCLAIM (PE 7195), and the Esprit Working Group CCL (EP 6028).RemarkThe Oz System and its documentation are available through anonymous ftpps-ftp.dfki.uni-sb.de or www http://ps-www.dfki.uni-sb.de/.References[1] M. Henz, M. Mehl, M. M�uller, T. M�uller, J. Niehren, R. Scheidhauer,C. Schulte, G. Smolka, R. Treinen, and J. W�urtz. The Oz Handbook.Research Report RR-94-09, DFKI, 1994.15

[2] M. Henz, G. Smolka, and J. W�urtz. Oz|a programming language formulti-agent systems. In 13th International Joint Conference on Arti�cialIntelligence, volume 1, pages 404{409, Chamb�ery, France, 1993. MorganKaufmann Publishers. Revised version will appear as [3].[3] M. Henz, G. Smolka, and J. W�urtz. Object-oriented concurrent con-straint programming in Oz. In P. van Hentenryck and V. Saraswat,editors, Principles and Practice of Constraint Programming. The MITPress, 1994. To appear.[4] S. Janson and S. Haridi. Programming paradigms of the Andorra kernellanguage. In Logic Programming, Proceedings of the 1991 InternationalSymposium, pages 167{186. The MIT Press, 1991.[5] R. Milner. Functions as processes. Journal of Mathematical Structuresin Computer Science, 2(2):119{141, 1992.[6] V. A. Saraswat and M. Rinard. Concurrent constraint programming.In Proceedings of the 7th Annual ACM Symposium on Principles ofProgramming Languages, pages 232{245, Jan. 1990.[7] C. Schulte, G. Smolka, and J. W�urtz. Encapsulated search and con-straint programming in Oz. In Second Workshop on Principles andPractice of Constraint Programming, Orcas Island, Washington, USA,May 1994. Springer-Verlag. To appear.[8] G. Smolka. A calculus for higher-order concurrent constraint program-ming with deep guards. Research Report RR-94-03, DFKI, Feb. 1994.[9] G. Smolka. A foundation for higher-order concurrent constraint pro-gramming. In J.-P. Jouannaud, editor, 1st International Conferenceon Constraints in Computational Logics, Lecture Notes in ComputerScience, M�unchen, Germany, 7{9 Sept. 1994. Springer-Verlag. InvitedLecture. To appear.[10] P. Van Hentenryck. Constraint Satisfaction in Logic Programming.Programming Logic Series. The MIT Press, Cambridge, MA, 1989.[11] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementa-tion and evaluation of the constraint language cc(FD). Report CS-93-02,Brown University, Jan. 1993.
16

