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Abstract

We consider a two-sorted algebra over de Bruijn terms and de
Bruijn substitutions equipped with the constants and operations
from Abadi et al.’s o-calculus. We consider expressions with term
variables and substitution variables and show that the semantic
equivalence obtained with the algebra coincides with the axiomatic
equivalence obtained with finitely many axioms based on the o-
calculus. We prove this result with an informative decision algo-
rithm for axiomatic equivalence, which in the negative case returns
a variable assignment separating the given expressions in the alge-
bra. The entire development is formalized in Coq.

Categories and Subject Descriptors F.4.1 [MATHEMATICAL
LOGIC AND FORMAL LANGUAGES]: Mathematical Logic—
Lambda calculus and related systems

Keywords De Bruijn Terms, Explicit Substitutions, Finite Axiom-
atization, Decision Procedures, Algebra, Completeness, Coq

1. Introduction

We consider de Bruijn terms and substitution [S[. De Bruijn terms
are syntactic trees M == n | MM | AM built over numbers
n. The numbers serve as argument references for arguments intro-
duced by the constructor A. Substitutions are total functions map-
ping numbers to terms. The instantiation operation M f] instanti-
ates the free (i.e., dangling) argument references of a term M with
the terms provided by a substitution f such that substitution in the
A-calculus is modeled. See Abadi et al. 1] for a detailed explana-
tion.

Two important operations on substitutions identified by Abadi
etal. [1] are cons M - f and composition fog. These operations are
characterized by the identities O[M - f] = M, (n+1)[M - f] =
n[f].and M[f o g] = M[f][g].

Two distinguished substitutions are the identity substitution I =
An.n and the shift substitution S = An.n 4+ 1. The identity
substitution / can be expressedas [ =0 - S.

We are interested in the two-sorted first-order algebra obtained
with de Bruijn terms and de Bruijn substitutions and the operations
0, MN, AM, M[f], S, M - f, and f o g. We call the algebra de
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Bruijn algebra. We show in this paper that equality in the de Bruijn
algebra is decidable and finitely axiomatizable.

The de Bruijn algebra constitutes a canonical semantical model
for the different variants of the o-calculus [1, |3} 14} 6]. A o-calculus
provides a first-order rewriting system for the expressions of the de
Bruijn algebra. Typically, the extension of a o-calculus with a rule
(AM)N — M]|N - I] for B-reduction is of main interest, and the
design goal is a ground confluent system. So far, o-calculi have
been considered as purely syntactic systems. This is surprising,
given that the de Bruijn algebra is such an obvious semantic model.

Abadi et al’s [1] original o-calculus is a ground confluent
and terminating rewriting system, which is sound but not com-
plete for the de Bruijn algebra. For instance, the ground equation
0[S] - (S 0 .S) = S cannot be shown since both sides are normal.

Curien et al’s [3] osp-calculus is a terminating [4] and confluent
rewriting system extending the original a-calculusﬂThe equational
theory of the osp-calculus is deductively equivalent to our axiom-
atization of the de Bruijn algebra. Thus the rewriting system of the
osp-calculus provides a sound and complete decision procedure
for equality in the de Bruijn algebra.

The motivation for the research presented in this paper came
from a formal development of A-calculus in Coq where the de Bruijn
algebra appears at the lowest level of the formalization. Substitu-
tion lemmas needed for this development state identities for the
de Bruijn algebra. For instance, the substitution lemma needed for
proving that S-reduction is stable under substitution takes the form
MI[N -I][f] = M0 (f o S)][N[f] - I]. After proving a few of
these lemmas by hand the question for a systematic proof method
came up. It turned out that we could prove all substitution lemmas
by rewriting with the basic substitution lemmas forming the rewrit-
ing rules of the osp-calculus. The completeness result of this paper
together with the confluence and termination of the ogp-calculus
establish the completeness of this proof method.

We do not use rewriting methods to obtain our completeness
result. We obtain the completeness result with an informative deci-
sion algorithm that given two expressions decides whether they are
axiomatically equivalent. In case the expressions are not axiomat-
ically equivalent, the algorithm constructs a separating assignment
for the expressions. Completeness of axiomatic equivalence for the
de Bruijn algebra then follows from the correctness of the algo-
rithm. The separating assignments constructed by the algorithm
employ only substitutions denotable with ground expressions.

The decision algorithm is based on a carefully designed class
of normal expressions. Every expression can be translated to an
equivalent normal expression. Semantic equivalence of normal ex-
pressions can be characterized as equality modulo cons expansion
of expressions describing substitutions.

! The ogp-calculus appears under different names in the literature: as ogp-
calculus in [3]], as o’-calculus in [4]], and simply as o-calculus in [6].



It now suffices to construct an informative decision algorithm
for normal expressions. The challenge here is the construction of
the separating assignment in the negative case. We approach the
problem with a proof system for apartness (the complement of
equivalence). The basic decision algorithm now constructs a deriva-
tion certifying either the equivalence or the apartness of two ex-
pressions. The soundness of the apartness system is obtained with
a separation algorithm that given an apartness derivation constructs
a separating assignment. Since the separating assignment cannot be
constructed in one go, the separation algorithm works with special
environments describing sufficiently large sets of separating assign-
ments.

The entire development of the paper is formalized in Coq with
Ssreflect. In fact, the results have been developed hand in hand
with the Coq formalization. The Coq development does not assume
functional extensionality but employs equivalence of substitutions
and setoid rewriting. Rewriting the development to Coq without Ss-
reflect would not be difficult. The Coq development accompanying
the paper can be found at www.ps.uni-saarland.de/extras/cpp15.

The completeness result presented in this paper is new. So far,
the o-calculus has been studied as a rewriting system and has
not been related to a semantic model. While it is obvious that
the de Bruijn algebra is a canonical model of the o-calculus, the
completeness of the axioms of the o-calculus for this model is not
(keep in mind that there are variables ranging over functions).

The decidability result presented in this paper is not new since
it can be obtained from the decidability result for the o-calculus.
However, our decision method is quite different from the estab-
lished decision method for the o-calculus, which is obtained with a
confluent and terminating rewriting system. While the verification
of our decision method is not difficult (even in Coq), a verification
of the rewriting method is surprisingly complex since the existing
termination proof [4] is far from straightforward. We did not suc-
ceed in simplifying this proof and think that a formalization with a
proof assistant is a substantial enterprise.

2. Terms and Substitutions
We define a type T of ferms inductively:

M,N == n|MN|AM (n€N)

For the mathematical presentation we assume N C T. Terms of
the form n, M N, and AM are called indices, applications, and
abstractions, respectively.

A substitution is a function N — T. A renaming is a substitution
N — N. Note that we do not require that renamings are bijective.
We assume that equality of functions is extensional. The letters f,
g, h will denote substitutions. A substitution can be seen as an
infinite sequence (Mo, M1, Mo, . ..) of terms. This view motivates
the operations head, tail, and cons:

hd f = fO
tf = An.f(n+1)
M - f = An.if n =0then M else f(n —1)

We have f = hd f - tl f for every substitution f.
We introduce notation for the identity and the shift substitution:

I := \n.n
S = An.n+1

Note that [ and S are renamings satisfying [ =0 - S.

Next we define the instantiation operation M[f] € T (read M
under f) that applies a substitution f to a term M. The definition
requires care. We define instantiation together with a composition
operation f o g € N — T for substitutions f and g such that the

following equations are satisfied.

nlf] = fn
(MN)[f] = (M[FD(NIf])
AM)[f] = MM[0-(f o S)])
fog = An. (fn)lg]

Given composition, the first three equations provide for a struc-
turally recursive definition of instantiation. However, the definition
of composition requires instantiation. We avoid mutual recursion
and define composition and instantiation in five consecutive steps.

1. Define composition f o g for renamings f and g. Instantiation
is not needed.

2. Define instantiation M [f] for renamings f by structural recur-
sion on M.

3. Define composition f o g for substitutions f and renamings g.
4. Define instantiation M [f] for substitutions f.

5. Define composition f o g for substitutions f and g.

The use of composition for the definition of instantiation is a matter
of convenience. One can inline composition and define instantiation
first for renamings and then for general substitutions (correspond-
ing to steps (2) and (4)). One then defines composition based on
instantiation (corresponding to step (5)). Such a two-level defini-
tion of instantiation is used by Adams [2].

Notationally, we give instantiation higher precedence than com-
position, and composition higher precedence than cons. Thus M -
f ogstands for M - (f o g).

We have hd f = 0[f] and ¢ f = S o f. Thus head and tail
can be expressed with instantiation and composition.

We define powers f™ of substitutions as one would expect:

=1
fn+1 — fofn
We have hd(S™) = n, tI(S™) = S™!, and hd(S™ o f) = fn.
We define drops "f of substitutions as follows:
" = Ak f(k+n)

In the sequence view, the sequence "f is obtained from the se-
quence f by removing the first n elelements. We have °f = f,
Y=t f, and "f =S" o f.

Fact 1 For every number n and every substitution f, the terms n,
fn, hd f and the substitutions I, tl f, f", "f can be expressed with
Jjust 0, S, cons, instantiation, composition, and f.

Fact2 S"™!' = S" o Sand "S = S"*1.
PROOF By induction on n. ™

A term M is closed if M[f] = M for every substitution f.
A substitution f is regular if there are numbers k,n > 0 and
terms M, ..., M} such that

f =M -...-Mg-S"

This representation of regular substitutions becomes unique if we
require n # M, + 1 in case M}, is an index. One can argue that
regular substitutions suffice for term instantiation.

Fact 3 [ and S are regular substitutions. Moreover, regular substi-
tutions are closed under cons and composition.
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3. [Expressions and Semantic Equivalence
We consider expressions denoting terms and substitutions.
s,t,u = 0] st|As|s[o]|x
o,7,0 := S|s-o|ooT|¢

The expressions for terms (s, ¢, u) are formed with 0, term applica-
tion, term abstraction, instantiation, and variables (z, y, z) ranging
over terms. The expressions for substitutions (o, 7, €) are formed
with S, cons, composition, and variables (§) ranging over substi-
tutions. A ground expression is an expression not containing vari-
ables.

As before, we give instantiation higher precedence than compo-
sition, and composition higher precedence than cons.

Denotation of expressions is defined as one would expect. An
assignment is a function mapping term variables to terms and sub-
stitution variables to substitutions. Every assignment yields two
functions, one mapping term expressions to terms, and one map-
ping substitution expressions to substitutions. We use &s and &o
to denote the term and the substitution obtained from a term ex-
pression s and a substitutions expression ¢ with an assignment a.
An assignment is regular if it maps every substitution variable to a
regular substitution.

Fact 4 (Denotation)

1. Every term and every regular substitution can be denoted with
a ground expression.

2. Every substitution expression denotes a regular substitution
under a regular assignment.

PROOF The first claim holds since we have I = 0 - S and n =
0[S™]. The second claim follows from Fact 3] n

Semantic equivalence of expressions is defined as one would
expect:

s~t = Va.as = at
o~rT = Va. &o = &t

An assignment separates two expressions if the expressions
denote different objects under the assignment. Two expressions
cannot be both separable and semantically equivalent.

Expression can describe I, powers, drops, heads, tails, indices,
and applications of substitutions to numbers. We introduce the
following abbreviations:

I:=0-5 hd o := 0]o]

o’ =1 tlo := Soo
"= oo™ n = 0[S"] ifn>1
"o ;= S"oco on = nlo]

4. Axiomatic Equivalence

We define axiomatic equivalence of expressions by means of the
least congruence relations s = ¢ and o = 7 satisfying the following
axioms.

(st)[o] = (s[a])(t[o]) Too=o

(As)[o] = A(s[0- 00 9]) col=o

O[s-o]=s (coT)of=00(T00)
So(s-o)=o0 (s-o0)or=s[r]-0cor

As stated, there are infinitely many axioms. However, if we replace
the metavariables s, t, o, 7, and 6 with object variables (e.g., x and
&), we have a finite axiom system.

Our axioms are deductively equivalent to the rewrite rules of
Curien et al.’s ogp-calculus [3] (up to the detail that I is primitive

in the ogp-calculus). Given that we do not require a confluent and
terminating rewriting system, there is considerable freedom in the
choice of axioms.

Lemma 5 (Soundness) Axiomatically equivalent expressions are
semantically equivalent.

Fact 6 Here are some derivable axiomatic equivalences.

sl =s c=hdo-tlo
slo][r] = slo o 7] S"=n.8"!
"o =on- "o
PROOF
o s[I|=0[s[I]- IoI]=0[(s-I)oI]=0[s-I]=s
e slo][r] = O[s[o][r]  Tooor] = 0[(s-I)ocorT] =

O[sl[co7] - ITo(ocoT)|=slcoT
ehdo-tlo=0[c]-Sooc=(0-S)oo=Toco=0
en . S"T =0[S"]- 5" =0[S"]- SoS"=(0-5)oS" =
IToS"=8"

e on-"to=nlo]-S" Moo= (n-5"") oo =5"0c0="0
"

We will establish the decidability and the coincidence of se-
mantic and axiomatic equivalence with an informative decision al-
gorithm for axiomatic equivalence, which returns a separating as-
signment in case the expressions are not semantically equivalent.

5. Normal Expressions

We now define a class of normal expressions for which we will
construct an informative decision algorithm. This will yield an in-
formative decision algorithm for all expressions since every expres-
sion can be translated into an equivalent normal expression.

The basic idea behind normal term expressions is that ground
normal expressions are verbatim descriptions of terms and regular
substitutions. Here is the definition of normal expressions:

v o= x| én

s,t u= n|st|As|v]o]

o1 = 8"|s-0c| €oco

Normal expressions are build over the types of numbers (letter
n), term variables (letter x), and substitution variables (letter ).
Instantiation and composition of normal expressions are restricted
in that the left constituent must contain a variable, and variables can
only appear in such positions.

Given the abbreviations stated at the end of Section 3] we may
see normal expressions as ordinary expressions. However, we de-
fine normal expressions as a separate data type so that we obtain
a suitable structural recursion scheme for normal expressions. The
forms n, v[o], S™, and "€ o o are obtained with dedicated construc-
tors.

Since normal expressions employ the same variables as ordinary
expressions, we can evaluate normal expressions under the same
assignments we use for ordinary expressions. The denotation of a
normal expression under an assignment « is defined as one would
expect.

a(ggz :i (:f)n a(S™) s"
a(st) = (as)(ar) @(&"(;; Z; _ iysag(; ao
a(Xs) = M(as)

)



Semantic equivalence of normal expressions is defined as one
would expect.

We define a function + translating normal expressions into se-
mantically equivalent ordinary expressions using the abbreviations
for ordinary expressions stated at the end of Section 3]

Fact 7 as = G(vys) and &o = &(vyo) for all normal expressions
sando.

PROOF By structural induction on s and o. n

We define axiomatic equivalence of normal expressions by
means of the least congruences s = ¢ and o0 = 7 satisfying the
following equivalences.

Sn

n€00'

n - Sn+1

(En)lo] - "Teoo

Left-to-right rewriting with the axioms is called cons expansion,
and right-to-left rewriting is called cons reduction. Note that every
normal substitution expression is either a cons expression or can be
expanded to a cons expression.

Fact 8 (Soundness) Ifnormal expressions are axiomatically equiv-
alent, then they are semantically equivalent.

Fact9 If s and t are normal expressions such that s = t, then
vs = vt
PROOF By induction on the derivation of s = ¢ and Fact[g] n

Since every normal substitution expression is equivalent to a
normal cons expression, we can define functions from normal ex-
pressions to normal expressions that act as head, tail, drop, and
apply operations:

H(S") :==n T(S") = st
H(s o) == s T(s o) :=0
H("¢o0) := &nlo] T("€oo0) := e o
DOo = o c@n := H(Dno)

D(n+1)o := T(Dno)

Fact10 v(Ho) = hd(vyo), vy(To) = ti(yo), ~v(Dno) =
"(yo), and ~(c@n) = (yo)n for all normal expressions o and
all numbers n.

Fact 11 (Cons Expansion) ¢ = Ho -To for every normal expres-
sion o.

Note that S™ = n - S" and "¢ 0 0 = £nfo] - "T'€ 0 o are
instances of the equivalence 0 = Ho - To (take 0 = S™ and
o = "€ oo). Thus we could have taken o = Ho - T'o as the single
axiom defining equivalence of normal expressions.

Fact12 &(Ho) = hd(ao), &(To) = tl(ao), &(Dno) =
"ao), and &(c@n) = (&o)n for all assignments o, normal
expressions o, and numbers n.

6. Reduction to Normal Expressions

We now define a function 7 translating ordinary expressions into
normal expressions. The correctness requirement for 7 is stated by
Fact [[3] We define n by structural recursion on ordinary expres-

sions.
n0 =0 nS = S'
n(st) == (ns)(nt) n(s-o) = ns-no
n(As) = A(ns) n(oor) = C(no)(nr)
n(slo]) = J(ns)(no) né == o5’

ne = x[S°]

The definition assumes two functions J and C' taking normal ex-
pressions to normal expressions and satisfying the equivalences
stated by Fact[T4]

Fact 13 ~v(ns) = s and v(no) = o for all ordinary expressions
sand o.

PROOF Follows by induction on s and o with Fact[T4] n

We now come to the definitions of the functions J and C.
Given two normal expressions, these functions compute normal
expressions representing the instantiation and the composition of
the two expression as made precise by Fact [T4] The definition
follows the stratified definition of instantiation and composition for
terms and substitutions in Section2] We obtain functions J and C'
satisfying the following equations.

Jno = ocQn C(S™r = Dnr
J(st)o = (Jso)(Jto) C(s-o)t = Jst-Cot
J(As)o = A(Js(0-CoS")) C("€oo)r = "€oCor

J(v[t]))oe = v[CTo]

The stratified definition of J and C requires a type of renaming
expressions and proceeds as follows.

1. Define renaming expressions as o ::= S™ | n - 0.

2. Define composition of renaming expressions by structural re-
cursion.

3. Define instantiation with renaming expressions and composi-
tion of substitution expressions with renaming expressions by
mutual structural recursion.

4. Define instantiation with substitution expressions and composi-
tion of substitution expressions by mutual structural recursion.

Fact 14 v(Jso) = (ys)[yo] and ~(CoT) = o oy7 for all
normal expressions s, o, and T.

7. Deciding Equivalence and Apartness

We are aiming at an informative decision algorithm for equivalence
of normal expressions returning a separating assignment for non-
equivalent expressions. We factor the complexity of the algorithm
by introducing apartness derivations. An apartness derivation for
two expressions is a data structure from which one can construct
a separating assignment for the expressions. We will have two
algorithms, one that decides equivalence and yields an apartness
derivation in the negative case, and one that translates apartness
derivations into separating assignments.

To argue the termination of the decision algorithm, we need the
size of normal expressions:

In] =1 19" =1
|st] = 1+ 1s|+[t| ls-o| = 1+|s|+ o]
[As| = 1+ s |"€oa| = 140
vlo]l = 1+ o]
Fact15 |Ho| < |o|, |To| < |o|, |Dno| < |o|, and |c@n| < |o]|.

, and

, |To| < o

If o is a cons expression, then |Ho| < |o
le@n| < |o|.



The algorithm considers two normal expressions axiomatically
equivalent if they are equal up to cons expansion at positions where
the other side is already a cons expression. This idea can be made
precise with a proof system for axiomatic equivalence of normal
expressions:

S1 = S2 t1 = to s=t oC=T
n=n s1t1 = sato As = At v[o] = v[7]
C=T Ho=Hrt To=TTt
st =8" oo="€or oc=T

The last rule is restricted to the case where o or T is a cons expression.

Fact 16 (Soundness) The proof system for axiomatic equivalence
of normal expressions is sound.

PROOF Follows with Fact[T1] n

As it will turn out, the proof system is complete for axiomatic
equivalence of normal expressions (see Corollary 3T).

The proof system for axiomatic equivalence is algorithmic in
that for every rule the premises are smaller than the conclusion,
where the size of s = tis |s| + |t| and of o = 7 is |o| + |7
Fact 17 (Inversion) Let o and T be normal expressions such that

neither o nor T is a cons expressions. Then one can obtain a
derivation of ¢ = T from a derivation of Ho = H.

PROOF By case analysis. Note that o and 7 must have the form S™
or "¢ o o’. We have H(S™) = nand H("¢ o 0’) = ¢n[o’]. Since
Ho = Hr, we have either Ho = n = Hrt or Ho = &nfo’],

Hr = ¢n|7], and ¢’ = 7'. The claim 0 = 7 now follows with
either the first or the second rule for the equivalence of normal
substitution expressions. n

We define the variant number of a normal term expression as
follows:

on == 34n 4o(st) :=0 dAs) :=1 6d(v[o]) := 2

We define a proof system for apartness of normal expressions
as follows.

ds # ot 81 # 82 or t1 #to s#Ht
S#t Sltl #Sgtz /\8#)\25
v1 # V2 oc@Qn # TQn ocQn # TQn
v1[o] # v2[7] vlo] # v[7] oH#T

The apartness rules are complementary to the proof rules for ax-
iomatic equivalence. At this point neither soundness nor complete-
ness of the apartness rules are obvious. Eventually both proper-
ties will be shown (Corollary B0). The apartness rules are designed
such that they facilitate the construction of separating assignments.
In contrast to the equivalence system, there is no mutual recursion
between term expressions and substitution expressions in the apart-
ness system.

Theorem 18 (Decision Algorithm) There is an algorithm that for
two normal expressions constructs either an equivalence derivation
or an apartness derivation.

PROOF We define the rank of two expressions as follows: pst =
|s| + |t| and poT = 1 + |o| + |7|. The algorithm recurses on the
rank of the expressions and the correctness proof is by induction on
this rank. The recursions and the uses of the inductive hypothesis
can be validated with Fact[T3]

1. Consider s and t. If §s # &t, the claim follows with the
respective apartness rule. Otherwise, let s = 6t. If s and

t are applications or abstractions, the claim follows with the

inductive hypothesis. If s is an index, then s = ¢ and the claim

follows. If s = vi[o] and t = wva[7] and v1 # wva, the claim
follows with the respective apartness rule. This leaves us with
the case s = v[o] and ¢ = v[r]. The claim follows with the

inductive hypothesis for o and 7.

2. Consider o and 7. By the inductive hypothesis we have a deriva-
tion for either Ho = HT or Ho # H . In the second case, we
have o # 7 since Ho = 0@0 and HT = 7@0. Otherwise we
have a derivation for Ho = H 7. Case analysis.

(a) Either o or 7 is a cons expression. Then we have a derivation
for either T'c = T'T or T'o # T'7 by the inductive hypothe-
sis. The claim follows with Fact[T1l

(b) Neither o nor 7 is a cons expression. Then Fact[T7] gives us
a derivation for o = 7. =

8. Separation

In this section, a variable is either a term variable x or a pair {n of
a substitution variable and a number. This view is anticipated in the
definition of normal expressions. If we assign terms to all variables
x and &n, we obtain an assignment as defined in Section 3] Given
a substitution variable &, the terms for the variables £n define the
substitution for £ pointwise. The letter v will always range over
variables.

Our goal is an algorithm that, given an apartness derivation for
two normal expressions, by recursion on the apartness derivation
constructs an assignment separating the expressions. For every
apartness rule but

ocQn # TQn
v[o] # vl]

it is clear how a separating assignment for the conclusion can be
obtained. For the above rule the situation is as follows. By recursion
we obtain an assignment « and a number n sucht that &on # &n.
If n is free in Gw, then « separates v[o] and v[7] and we are done.
However, if n is not free in &v # n, it is not clear how to get a
separating assignment for v[o] and v[7]. We cannot simply change
« on v since this may destroy the inequality Gon # &Tn.

It turns out that there is a technique making it possible to change
« on v without losing the inequality &con # é&7n. For this we work
with lists of terms and define a mapping that represents term lists
as terms:

H::)\O
M:A:=MA

For instance, we have [M1; Ma; Ms] = M;(M2(Ms(X0))). The
letters A and B will always range over term lists.

Fact 19 (Injectivity) A and B are different terms if A and B are
different term lists.

An environment is a function from variables to term lists that
maps all but a finite number of variables to the empty list. We use
the letters ¢ and v to denote environments. Every environment ¢
represents an assignment @ as follows:

P = P
BE = An. if p(én) = [] then n else p(En)

Fact 20 If o is an environment, then @ is a regular assignment.
Concatenation of environments is defined pointwise:

4P = Av. v 4 Yv



‘We now come to the central definition of this section. An envi-
ronment @ separates two expressions

—

e sand ¢ if ¢ 4 ¥(s) # ¢ 4 1 (t) for every environment .

e ¢ and 7 if there is a number n such that ¢ separates c@n and
T@Qn.

We say that two expressions are environment separable if there is
an environment separating them. The important point about a sepa-
rating environment is that it remains separating under extension by
concatenation.

Fact 21 (Extensibility) If two expressions are separated by an en-
vironment p, they are separated by all concatenation environments
@ .

Fact 22 [ftwo expressions are separated by an environment p, they
are separated by the regular assignment @.

We now come to the construction of separating environments
for apartness derivations. The construction is by structural recur-
sion on the apartness derivation. Here is an example.

o#1 0

d0-N#em" " a1
2[e[0 11 5] # alol] - 5] o= [1;0)}

The apartness derivation appears on the left and the accompanying
separating environments appear on the right. The following facts
and lemmas prepare the proof of the Separation Theorem 29]

Fact 23 3(v) = 20 if pv # ||
Fact 24 If M is closed and v = [M], then m(v[a]) =
M (v [p 4 (o).

Lemma 25 v [o] and v2[T] are environment separable if vi # va.

PROOF Let v1 # w2 and choose pv1 = [A0] and @uvs =
[(A0)(X0)]. Let ¢ be an environment. With Fact|24|we have:

o Do) = (A0) (@o)p + $(0))
£ (\0)(A0)) (@2) [ F (o))
= ¢4 P(va2fo]) n

Lemma 26 v[o] and s are environment separable if s is not an
instantiation.

PROOF Let s be a term that is not an instantiation. We choose an
environment ¢ as follows:

e If s is an index or an abstraction, choose pv = [A0].

e If s = s152 and s;1 is an index or an application, choose
pv = [A0].
e If s = s152 and s; is an abstraction, choose v = [(A0)(A0)].
e If s = s182 and s1 = v’[7], choose v = v’ = [A0].
The claim follows with Fact[24] n

Fact27 A+ [n] 4+ B [f] # A+ [n]+ Blg] if fn # gn.

Lemma 28 v[c] and v[7] are environment separable if o and T are
environment separable.

PROOF Let ¢ be an environment and n be a number such that
—_—

o4 P(o)n # ¢4 P (7)n for every environment ). Let ¢’ be
the environment agreeing with ¢ everywhere except for ¢'v =

v 4 [n]. We show that ¢’ separates v[o] and v[7]. Let ¢ be an
environment.

— —

¢ 49 (v[o]) = (¢ + ) [¢ 4 ¥(o

J

—_  —

= @ F OO [ 9(0) Fact 23
= Qv+ [n] 4+ v W/@p(a)]

£ oot M+ 0v @ + $()] ﬁ?ﬁﬁﬁ%ﬁgﬁ
= P bl "

Theorem 29 (Separation) There is an algorithm that given an
apartness derivation constructs a separating environment.

PROOF Consider an apartness derivation for s # ¢. The algorithm
recurses on the apartness derivation and constructs an environment
separating s and ¢. Case analysis.

1. If 6s = dt and neither s nor ¢ is an instantiation, the apartness
derivation for s # t is obtained with the rule for applications or
abstractions. The claim follows with the inductive hypothesis.

2. If s # 4t and neither s nor ¢ is an instantiation, every environ-
ment separates s and ¢.

3. If §s # Jt and either s or ¢ is an instantiation, the claim follows
by Lemma[26]

4. If s = vi|o] and t = v2[7] and v1 # w2, the claim follows by
Lemmal[23]

5.If s = v[o] and t = v[r], the apartness derivation for s # ¢
is obtained with an apartness derivation for c@n # 7@n. The
inductive hypothesis gives us an environment separating ¢ and
7. The claim follows by Lemma 28]

Consider an apartness derivation for o # 7. It is obtained from an
apartness derivation for c@n # 7@n for some n. By the previous
argument we obtain a separating environment for c@n and 7@Qn.
This environment also separates o and 7. n

Corollary 30 The proof system for apartness of normal expres-
sions is sound and complete for the complement of semantic equiv-
alence.

PROOF Soundness follows with Theorem[29]and Fact22] For com-
pleteness consider two normal expressions that are not semantically
equivalent. By Theorem [I8]and the soundness of the proof system
for axiomatic equivalence (Fact[T6) we obtain an apartness deriva-
tion for the expressions. n

Corollary 31 The proof system for axiomatic equivalence of nor-
mal expressions is sound and complete for semantic equivalence.

PROOF Soundness is asserted by Fact [T For completeness con-
sider two normal expressions that are semantically equivalent. By
the soundness of the apartness system (Corollary 30) and Theo-
rem [T8] we know that there is an equivalence derivation for the ex-
pressions. n

9. Informative Decision Algorithm

Theorem 32 (Informative Decision Algorithm) There is an al-
gorithm that decides axiomatic equivalence of expressions. If two
expressions are not axiomatically equivalent, the algorithm yields
a separating regular assignment.

PROOF Given two term expressions s and ¢, the informative deci-
sion algorithm proceeds as follows.

1. Call the algorithm from Theorem [T8]on 1s and 7.



2. If (1) yields a derivation of ns = nt, we know s = ¢ by Facts[J]
and [[31

3. If (1) yields a derivation of s # nt, we obtain a separating en-
vironment ¢ for ns and n¢ by the algorithm from Theorem [29]

4. Hence © is a separating regular assignment for ns and nt by
Fact

5. Hence @ is a separating regular assignment for s and ¢ by
Lemma [Sland Facts[I3]and 7]

6. Hence s and ¢ are not axiomatically equivalent by Lemmal5]

For substitution expressions the algorithm proceeds analogously. m

Corollary 33 Semantic and axiomatic equivalence coincide.

10. Conclusion

In this paper, we take a fresh look at de Bruijn terms and substitu-
tion. Our starting point is the de Bruijn algebra, a two-sorted first-
order algebra whose objects are de Bruijn terms (i.e., trees) and
de Bruijn substitutions (i.e., functions), and whose operations are
the operations of Abadi et al.’s o-calculus [1]. The de Bruijn al-
gebra may serve as a semantic model for the different variants of
the o-calculus. Our main result is the completeness of an axiom-
atization of the de Bruijn algebra that is deductively equivalent to
the rewrite rules of the osp-calculus [3]]. Thus the terminating and
confluent rewriting system of the osp-calculus decides equality in
the de Bruijn algebra.

Our interest in the de Bruijn algebra stems from the fact that it
can serve as the basic building block for a formal metatheory of the
A-calculus. From this perspective, a decision procedure for the de
Bruijn algebra is a decision procedure for equational substitution
lemmas. As is, there are two decision procedures: The rewriting-
based procedure provided by the ogp-calculus and the translation-
based decision procedure developed in this paper.

The Coq library Autosubst [7]] provides automation for many-
sorted de Bruijn syntax and substitution (many-sorted as for in-
stance in System F). The completeness result of this paper com-
bined with the confluence and termination results for the o-calculus
suggest that in principle every equational substitution lemma
for the untyped A-calculus can be established with Autosubst’s
rewriting-based automation tactics.

Motivated by the application of Autosubst to rich syntactic sys-
tems, we plan to work on de Bruijn algebra with multiple and mu-
tually recursive types of terms. We hope that an elegant formulation
of such a system can be found and that the results of this paper carry
over to the generalized system.
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