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Abstract
Based on constructive type theory, we study two idealized imperative
languages GC and IC and verify the correctness of a compiler from
GC to IC. GC is a guarded command language with underspecified
execution order defined with an axiomatic semantics. IC is a
deterministic low-level language with linear sequential composition
and lexically scoped gotos defined with a small-step semantics. We
characterize IC with an axiomatic semantics and prove that the
compiler from GC to IC preserves specifications. The axiomatic
semantics we consider model total correctness and map programs
to continuous predicate transformers. We define the axiomatic
semantics of GC and IC with elementary inductive predicates and
show that the predicate transformer described by a program can be
obtained compositionally by recursion on the syntax of the program
using a fixed point operator for loops and continuations. We also
show that two IC programs are contextually equivalent if and only
if their predicate transformers are equivalent.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Pre- and post-conditions; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Operational
Semantics; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Mechanical Theorem Proving

Keywords Weakest preconditions, compiler correctness, formal
verification

1. Introduction
In this paper we study a new form of axiomatic semantics for
imperative languages designed for compiler verification. Based on
constructive type theory, the semantics of a language is formulated
as an inductive predicate providing total correctness judgements
〈σ〉 s 〈Q〉. A judgement 〈σ〉 s 〈Q〉 says that every execution of the
program s on the initial state σ terminates with a state satisfying
the postcondition Q. Given the basic judgements, Hoare-style total
correctness statements

〈P 〉 s 〈Q〉 := ∀σ. Pσ → 〈σ〉 s 〈Q〉
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relating a program with a specification consisting of a pre- and a
postcondition can be defined. We can also define a function

wp sQσ := 〈σ〉 s 〈Q〉

mapping a program s to a predicate transformer mapping a postcon-
dition Q to the weakest precondition P such that 〈P 〉 s 〈Q〉. For the
languages we consider, we show that programs are mapped to con-
tinuous predicate transformers. We also show that the wp function
can be computed by structural recursion on programs using a fixed
point operator for predicate transformers. We refer to the resulting
denotational semantics as WP semantics.

The first language we study is a Dijkstra-style guarded command
language [4] we call GC. GC is operationally underspecified in that
it leaves open which guarded command is executed in case several
guards are satisfied. This form of underspecification is easily dealt
with by an axiomatic semantics, which speaks about predicates
on states rather than single states. The rules of our axiomatic
semantics for GC are reminiscent of the rules of a conventional
big-step semantics 〈σ〉 s 〈τ〉, with the essential difference that we
use postconditions rather than final states. This way the relevant
behavior of an underspecified program can be described with a
single judgement, which is not possible with a big-step semantics.
The rules of our axiomatic semantics do not involve invariants or
termination functions.

The second language we study is a low-level language with linear
sequential composition and lexically scoped gotos we call IC. We
see the declaration of a target for a goto as the definition of an argu-
mentless, possibly recursive procedure to be used as a continuation.
We define the semantics of IC with an operational small-step seman-
tics realizing continuations with program substitution. In addition,
we give an axiomatic semantics for IC and show that it agrees with
the small-step semantics. The WP semantics complementing the
axiomatic semantics turns out to be useful for proofs establishing
properties of IC.

We give a compiler from GC to IC and verify its correctness.
The compiler linearizes sequential compositions and realizes loops
with continuations. Based on the axiomatic semantics of GC and
IC, we express the correctness of the compiler as preservation of
specifications. That is, given a GC program s, the compiler must
yield an IC program t such that 〈σ〉 t 〈Q〉 whenever 〈σ〉 s 〈Q〉 (or,
equivalently, 〈P 〉 t 〈Q〉 whenever 〈P 〉 s 〈Q〉).

For IC, we study program equivalence. As one would expect,
program equivalence can be expressed with both the small-step and
the axiomatic semantics. We show that program equivalence is the
coarsest termination-preserving congruence on programs.

For the languages we consider, we show that the predicate
transformers described by programs are monotonic. This provides
for fixed points and enables a form of denotational semantics we call
WP semantics. We show that the predicate transformers described
by programs are continuous, which makes it possible to obtain the
fixed points for loops and continuations with ω-iteration instead
of intersection of all prefixed points. The WP semantics of IC



facilitates the verification of the compiler and the study of program
equivalence.

We see the main contribution of the paper in the study of a
new style of axiomatic semantics for imperative programming lan-
guages based on constructive type theory. The semantics is presented
as an inductive predicate providing total correctness judgements
〈σ〉 s 〈Q〉. Loops and continuations are accommodated with un-
folding. In a second step, the axiomatic semantics is refined to a
denotational semantics mapping programs to continuous predicate
transformers (referred to as WP semantics). As one would expect,
the denotation of a program can be obtained with structural recursion
and ω-iterative fixed points.

Axiomatic semantics adapts well to languages with underspeci-
fied execution order (e.g., C or OCaml). Treating compiler correct-
ness for such languages with a nondeterministic small-step seman-
tics seems complex and tedious. At the example of GC we see that
compiler correctness can be expressed elegantly and without over-
specification using axiomatic semantics. The correctness statement
for the compiler leaves the compiler unconstrained for states on
which a program may diverge.

Another contribution of the paper is the definition and study of
the low-level language IC. IC is an idealized version of an intermedi-
ate language IL used in previous work on compiler verification [15].

The entire development presented in this paper is formalized in
Coq with Ssreflect. We assume functional extensionality so that we
can realize program substitution for IC using the library Autosubst.
The Coq development can be found online at the following URL:
http://www.ps.uni-saarland.de/extras/ascv.

The paper is organized as follows. First we present GC and
its axiomatic semantics. We then develop the WP semantics of
GC. Next we present IC with its small-step semantics, axiomatic
semantics, and WP semantics. We then verify a compiler from GC
to IC. Following this, we study program equivalence in IC and
show the WP semantics of GC and IC yield continuous predicate
transformers. Finally, we discuss the Coq development and related
work.

2. GC (Guarded Commands)
Dijkstra’s language of guarded commands [4] is an imperative
language with underspecified execution order. We introduce an
abstract guarded command language GC whose states are taken from
an abstract type Σ. Assignments are replaced with actions, which
are abstract functions from states to states. Guards are modeled as
boolean predicates on states. The syntax of GC is as follows:

σ, τ : Σ states
a : Σ→ Σ actions
b : Σ→ B guards

s, t ::= skip | a | s; t | if G | do G programs
G ::= b1 ⇒ s1 || . . . || bn ⇒ sn (n ≥ 0)

Conditionals if G and loops do G work on a guarded command
set G, which is realized as a non-empty list of guarded commands
b ⇒ s. The term set is justified since the order of the guarded
commands does not matter semantically. We write ∅ for the empty
guarded command set.

We describe the execution of conditionals and loops informally.
The execution of a conditional if G selects a guarded command inG
whose guard is satisfied and executes the program of the command.
If no guard in G is satisfied, execution is aborted. The execution of
a loop do G repeatedly executes guarded commands from G whose
guard is satisfied. Execution of the loop terminates once all guards
are dissatisfied. In case the guards of several commands are satisfied,

Qσ

〈σ〉 skip 〈Q〉
Q(aσ)

〈σ〉 a 〈Q〉
〈σ〉 s 〈P 〉 〈P 〉 t 〈Q〉

〈σ〉 s; t 〈Q〉

Ĝσ ∀(b⇒ s) ∈ G. bσ → 〈σ〉 s 〈Q〉
〈σ〉 if G 〈Q〉

〈σ〉 if G 〈P 〉 〈P 〉 do G 〈Q〉
〈σ〉 do G 〈Q〉

¬(Ĝσ) Qσ

〈σ〉 do G 〈Q〉

〈P 〉 s 〈Q〉 := ∀σ. Pσ → 〈σ〉 s 〈Q〉

Ĝ := λσ. ∃(b⇒ s) ∈ G. bσ

Figure 1. Axiomatic semantics of GC

any of the commands may be chosen for execution. We say that the
execution order of GC is underspecified.

Example 1 (Greatest Common Divisor). The following program
computes the gcd of two positive integers x and y.

do x > y ⇒ x := x− y || y > x⇒ y := y − x

We specify the axiomatic semantics of GC with an inductive
predicate providing total correctness judgments 〈σ〉 s 〈Q〉. Infor-
mally, a judgement 〈σ〉 s 〈Q〉 says that every execution of the pro-
gram s on the initial state σ terminates with a state satisfying the
postcondition Q. Postconditions are unary predicates on states.

The definition of the inductive predicate 〈σ〉 s 〈Q〉 is shown in
Figure 1. Figure 1 also defines judgements of the form 〈P 〉 s 〈Q〉,
which assert that every execution of the program s on a state
satisfying the precondition P terminates with a state satisfying
the postcondition Q.

The rule for sequential compositions s; t uses a predicate P that
serves as postcondition for s and as precondition for t. We refer
to P as interpolant. The rule for loops also uses an interpolant. The
structure of the rules for the axiomatic semantics is similar to the
structure of the rules for a big-step semantics, where interpolants
and postconditions appear as states.

The rule for a conditional if G is applicable only if the initial
state σ satisfies at least one guard in G. Moreover, every command
in G whose guard is satisfied by σ must satisfy the postcondition.

The axiomatic semantics is monotone in the postcondition.

Fact 2 (Monotonicity). If 〈σ〉 s 〈P 〉 and P ⊆ Q, then 〈σ〉 s 〈Q〉.

As expected, the absurd post-condition cannot be derived:

Lemma 3. If 〈σ〉 s 〈(λσ.⊥)〉 ≡ λσ.⊥.

3. WP Semantics of GC
We define a function wp:

wp sQσ := 〈σ〉 s 〈Q〉
Given a program s, wp s is a function that maps postconditions
to weakest preconditions. We call functions of this type predicate
transformers.

Fact 4. wp s is a monotonic predicate transformer.

Proof. Follows with Fact 2.

Since the type Σ → P of predicates is a complete lattice, we
know by the Knaster-Tarski theorem (see, e.g., Winskel [18]) that
every monotonic predicate transformer has a least fixed point. This
provides for a denotational semantics for GC where the predicate
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transformer for a program is obtained by structural recursion on the
program and the weakest precondition of a loop is obtained as a
fixed point. We will refer to this form of denotational semantics as
WP semantics.

For the following definition and facts we assume some arbitrary
type X .

Definition 5. We define a function fix : ((X → P)→ X → P)→
X → P as follows:

fix F x := ∀P. FP ⊆ P → Px

We refer to fix as fixed point operator. Note that fix F is defined
as the intersection of all prefixed points of F .

Fact 6 (Fixed Point Induction). If FP ⊆ P , then fix F ⊆ P .

Fact 7 (Least Fixed Point). Let F be monotonic. Then fix F is a
least fixed point of F .

We state a theorem providing the equivalences for the structurally
recursive definition of the WP semantics for IC. The WP semantics
is similar to Dijkstra’s original semantics of GC [4].

Theorem 8. The following equivalences hold for GC.

wp skipQ ≡ Q

wp aQ ≡ λσ.Q(aσ)

wp (s; t)Q ≡ wp s (wp tQ)

wp (if G)Q ≡ λσ. Ĝσ ∧ ∀(b⇒ s) ∈ G. bσ → wp sQσ

wp (do G)Q ≡ fix (λPσ. if Ĝσ then wp (if G)P σ else Qσ)

Proof. Define a recursive function WP based on the claimed equiv-
alences and show that it is monotonic in the postcondition. For the
claim it suffices to show that 〈σ〉 s 〈Q〉 and WP sQσ are equiv-
alent. One direction follows by induction on 〈σ〉 s 〈Q〉. The other
direction follows by induction on s and in the case of a loop by fixed
point induction.

Realizing the WP semantics with Coq’s structural recursion is
not difficult. See the accompanying Coq development for details.

4. IC (Imperative Continuations)
The second language we study is a low-level language with linear
sequential composition and lexically scoped gotos we call IC.
We see the declaration of a target for a goto as the definition
of an argumentless, possibly recursive procedure to be used as a
continuation. IC is an idealized version of an intermediate language
IL used in previous work on compiler verification [15]. We define
the syntax of IC as follows:

f, g : L labels
s, t ::= a; s | if b then s else t | def f = s in t | f programs

Actions a and guards b are as in GC. Figure 2 defines an operational
small-step semantics for IC. The semantics is formulated as an
inductive predicate providing judgements (s, σ) B (t, τ) describing
single execution steps.

Things are arranged such that terminal configurations are pairs
(f, σ) consisting of a label and a state. We see such configurations
as calls to external continuations.

Local continuations are introduced with programs of the form
def f = s in t. The label f acts as a local variable in s and t.
Informally, execution of a program def f = s in t binds the label f
to the program s and proceeds with the execution of the program t.
The small-step semantics realizes this idea by reducing the program
def f = s in t to its unfolding tfdef f=s in s. The unfolding provides
for recursive and lexically scoped continuations.

(a; s, σ) B (s, aσ) (def f = s in t, σ) B (tfdef f=s in s, σ)

bσ

(if b then s else t, σ) B (s, σ)

¬bσ
(if b then s else t, σ) B (t, σ)

tfu is obtained from t by capture-free substitution of f with u

Figure 2. Small-step semantics of IC

〈aσ〉 s 〈Q〉
〈σ〉 a; s 〈Q〉

Qfσ
〈σ〉 f 〈Q〉

bσ 〈σ〉 s 〈Q〉
〈σ〉 if b then s else t 〈Q〉

¬bσ 〈σ〉 t 〈Q〉
〈σ〉 if b then s else t 〈Q〉

〈σ〉 t 〈Q[f 7→ P ]〉 〈P 〉 def f = s in s 〈Q〉
〈σ〉 def f = s in t 〈Q〉

〈P 〉 s 〈Q〉 := ∀σ. Pσ → 〈σ〉 s 〈Q〉
Q[f 7→ P ] := λg. if g = f then P elseQg

Figure 3. Axiomatic semantics of IC

We write (s, σ) B∗ (t, τ) for multiple steps of execution. For-
mally, the predicate B∗ is obtained as the reflexive transitive closure
of B.

Example 9 (Greatest Common Divisor in IC). The following pro-
gram computes the greatest common divisor of x and y and termi-
nates with a call to the external continuation ret.

def f = if x > y then x := x− y; f
else if y > x then y := y − x; f else ret

in f

4.1 Axiomatic Semantics of IC
We specify the axiomatic semantics of IC with an inductive predicate
providing total correctness judgments 〈σ〉 s 〈Q〉. The judgements
employ generalized postconditions Q, which are predicates L →
Σ → P on labels and states. We see Qf as a precondition for
the external continuation f that must be satisfied if f is called.
Informally, a judgment 〈σ〉 s 〈Q〉 says that the execution of the
program s on the initial state σ terminates with a call to an external
continuation f such thatQf holds for the final state.

The definition of the inductive predicate 〈σ〉 s 〈Q〉 is shown in
Figure 3. The most interesting rule is the rule for the definition
of local continuations, which employs an interpolant serving as
precondition for the defined continuation.

We will write [f 7→ P ] or just f 7→ P for the generalized post-
condition (λgσ.⊥)[f 7→ P ]. Note that this postcondition requires
a program to terminate with a call to the external continuation f .

Fact 10 (Monotonicity). If 〈σ〉 s 〈P〉 and P ⊆ Q, then 〈σ〉 s 〈Q〉.

4.2 WP Semantics of IC
We define weakest preconditions for IC as follows:

wp sQσ := 〈σ〉 s 〈Q〉



By Fact 10 we know that the function wp maps programs to
monotonic predicate transformers. We state a theorem providing
the equivalences for the structurally recursive definition of the WP
semantics for IC.

Theorem 11. The following equivalences hold for IC.

wp f Q ≡ Qf
wp (a; s)Q ≡ λσ. wp sQ (aσ)

wp (if b then s else t)Q ≡ λσ. if bσ then wp sQσ else wp tQσ
wp (def f = s in t)Q ≡ wp tQ[f 7→ fixF ]

where FP := wp sQ[f 7→ P ]

Proof. Similar to the proof of Theorem 8.

5. Agreement of Operational and Axiomatic
Semantics of IC

In this section, we show that the axiomatic semantics of IC charac-
terizes the small-step operational semantics (see Theorem 18):

〈σ〉 s 〈Q〉 ↔ ∃τf. (s, σ) B∗ (f, τ) ∧Qfτ
The small-step semantics for IC uses syntactic substitutions.

In the axiomatic semantics we can express substitution using the
post-condition.

Lemma 12. wp tfs Q ≡ wp tQ[f 7→ wp(s,Q)]

Proof. By induction on s using the WP semantics of IC.

Lemma 13. wp(def f = s in t)Q ≡ wp tQ[f 7→ wp(s,Q)] if
f not free in s.

Proof. We have wp sQ[f 7→ P ] ≡ wp sQ since f is not free in s.
The result follows by monotonicity of wp.

The axiomatic semantics of IC is compatible with small-step
reduction.

Lemma 14. If (s, σ) B (t, τ), then 〈σ〉 s 〈Q〉 ↔ 〈τ〉 t 〈Q〉.

Proof. By case analysis on the step relation using the WP semantics
of IC. For local definitions we use Lemma 12. All other cases are
immediate.

Lemma 15. If (s, σ) B∗ (f, τ), then 〈σ〉 s 〈Q〉 ↔ Qfτ .

We define termination as follows:

(s, σ)⇓ := ∃τf. (s, σ) B∗ (f, τ)

In order to show that 〈σ〉 s 〈Q〉 implies termination of s, we gen-
eralize in a way reminiscent of logical relations. According to
Lemma 12, a post-condition can be read as a semantic substitu-
tion. Conversely, if 〈σ〉 s 〈Q〉 holds, then s terminates under all
substitutions which are compatible withQ.

A substitution is a function θ mapping continuations to programs.
We write θs for the program s with all free variables substituted
according to θ.

Lemma 16. Let θ be a function mapping continuations to programs.
If 〈σ〉 s 〈Q〉 and ∀fτ.Qfτ → (θf, σ)⇓ then (θs, σ)⇓.

Proof. By induction on the derivation of 〈σ〉 s 〈Q〉.

Lemma 17. 〈σ〉 s 〈Q〉 → (s, σ)⇓

We can now show that the axiomatic semantics of IC coincides
with the small-step semantics.

Theorem 18. 〈σ〉 s 〈Q〉 ↔ ∃τf. (s, σ) B∗ (f, τ) ∧Qfτ

C s := T ret s

T u skip := u

T u a := a;u

T u (s; t) := T (T u t) s
T u (if ∅) := ret

T u (if b⇒ s || G) := F (T u) (T u s)G
T u (do G) := def f = F (T f)uG in f

(where f is fresh)

F C v∅ := v

F C v (b⇒ s || G) := if b then C s else F C vG

Figure 4. Compiler from GC to IC

Proof. In the direction “→”, we use Lemma 17 to obtain (f, τ) such
that (s, σ)B∗ (f, τ) from 〈σ〉 s 〈Q〉. By Lemma 15 we obtainQfτ .
The direction “←” is a special case of Lemma 15.

Corollary 19. 〈σ〉 s 〈f 7→ (= τ)〉 ↔ (s, σ) B∗ (f, τ)

Corollary 20. (s, σ)⇓ ↔ 〈σ〉 s 〈λf.>〉

We obtain that IC is deterministic in the following sense.

Theorem 21. 〈σ〉 s 〈Q〉 ↔ ∃τf. 〈σ〉 s 〈f 7→ (= τ)〉 ∧ Qfτ

Proof. By Theorem 18 and Corollary 19.

Theorem 22 (Distributivity). wp s (P ∩Q) ≡ wp sP ∩ wp sQ

Proof. The direction “⊆” follows from Fact 10. The direction “⊇”
follows from Theorem 18 and Lemma 15.

6. Compiling GC to IC
In this section, we verify a compiler C from GC to IC. We distinguish
an external label ret. The compiler arranges the target program such
that a call to ret indicates successful termination. The compiler
correctness statement we prove is preservation of specifications:

〈σ〉 s 〈Q〉 → 〈σ〉 Cs 〈ret 7→ Q〉
Together with Theorem 18, this yields the following correctness
statement, which connects the axiomatic semantics of GC to the
small-step semantics of IC:

〈σ〉 s 〈Q〉 → ∃τ. (Cs, σ) B∗ (ret, τ) ∧Qτ
The compiler is defined in Figure 4. The main transformations

are the sequentialization of guarded command sets and the transla-
tion of loops to recursive functions. The compiler exploits under-
specification of GC and the fact that the compiled program only
needs to be correct for states σ under which, intuitively speaking, s
always terminates.

6.1 Sequencing Guarded Command Sets
The compiler realizes guarded command sets with nested IC condi-
tionals.

Example 23 (Translation of Conditionals). The program

(if b1 ⇒ s1 || b2 ⇒ s2 || b3 ⇒ s3);u

is translated to

if b2 then s2;u else if b3 then s3;u else s1;u



Underspecification in GC allows to test the guards b2, b3 in any
order. The guard b1 does not need to be tested, because if the GC
programs terminates, then one of the guards b1, b2, b3 is satisfied.

The function F maps a guarded command set to nested IC
conditionals. F takes three arguments: A function C mapping
GC programs to IC programs, an IC program v, and the guarded
command set to be translated. F translates each guarded command
to the corresponding conditional, and places the program u in the
final else case. The program F C v (b1 ⇒ s1 || . . . || bn ⇒ sn)
tests the guards bi in order, and continues execution with the first
program si for which bi is satisfied. If no guard bi is satisfied,
execution continues with v.

Lemma 24. Let G be a guarded command set, C a function map-
ping GC into IC, and v an IC program. The following inference
rules are admissible for the semantics of IC.

Ĝσ ∀(b⇒ s) ∈ G. bσ → 〈σ〉Cs 〈Q〉
〈σ〉 F C vG 〈Q〉

¬Ĝσ 〈σ〉 v 〈Q〉
〈σ〉 F C vG 〈Q〉

Proof. By induction on G.

The compiler uses F to translate conditionals if b ⇒ s || G to
nested conditionals in IC by placing s in the final else case. The
compiler is allowed to translate the empty conditional if ∅ to any
program, because, intuitively speaking, the empty conditional is
stuck.

6.2 Linearizing GC
In addition to sequencing guarded command sets, the compiler trans-
lates loops to tail-recursive continuations. We call this translation
linearization, because full sequentialization s; t as it occurs in GC is
translated to the linear sequenzialization a; s as it is available in IC.

Example 25 (Translation of Loops). The program

(do b1 ⇒ s1 || b2 ⇒ s2);u

is translated to

def f = if b1 then s1; f else if b2 then s2; f else u in f

Underspecification in GC allows the guards b1, b2 to be tested in
any order. The final else case is reached if none of the guards b1, b2
is satisfied. In this case, the loop terminates and execution continues
with u.

Linearization is implemented by a function T u s, which takes
a GC program s and an IC program u to be used as a continuation.
Intuitively, the program T u s is the sequentialization of s and
u: First s is executed, and then execution continues with u. The
correctness statement for T reflects the sequentialization aspect:
Given a specification 〈σ〉 s 〈P 〉 for the source program, and a
specification 〈P 〉u 〈Q〉 for the continuation, the target satisfies
the specification 〈σ〉 T u s 〈Q〉. P acts as interpolant, similarly as
in the rules for sequentialization in the axiomatic semantics of GC.

Theorem 26. Let 〈σ〉 s 〈P 〉 and 〈P 〉u 〈Q〉, then 〈σ〉 T u s 〈Q〉.

Proof. By induction on the derivation of 〈σ〉 s 〈P 〉. We use WP
semantics of IC and consider the cases for guarded commands and
loops.

• In the case of a conditional, note that the semantics of GC
ensures that the guarded command set cannot be empty. For
the compilation of T u (if b ⇒ s || G) we have to show

〈σ〉 F (T u) (T u s)G 〈P 〉. We distinguish two cases. If Ĝσ
holds, we apply the corresponding rule from Lemma 24. The
second premise of the rule follows from the inductive hypothesis.
If Ĝσ does not hold, then no guard in G is satisfied. The seman-
tics of GC ensures that bσ holds. We apply the corresponding
rule from Lemma 24, and discharge its second premise with the
inductive hypothesis for s.

• In the case of T u (do G), we have

〈σ〉 T u (do G) 〈Q〉 = 〈σ〉 F (T f)uG 〈Q′〉
whereQ′ := Q[f 7→ wp(T u (do G))Q]

Depending on Ĝ(σ), we apply the corresponding rule from
Lemma 24. If Ĝ(σ) holds, we can conclude with the induction
hypothesis. If ¬Ĝ(σ) holds, we use the monotonicity property
of the WP semantics to show 〈σ〉u 〈Q〉 ⊆ 〈σ〉u 〈Q′〉.

From Theorem 26 we obtain the correctness of the complete
compiler.

Corollary 27. 〈σ〉 s 〈Q〉 → 〈σ〉 C s 〈ret 7→ Q〉

6.3 Avoiding Exponential Blowup
We now have a formally verified compiler. However, the translation
of guarded command sets may cause exponential blowup. Consider
the duplication of the continuation u in Example 23.

We avoid duplicating u with an abstraction in the compilation of
conditionals.

T u (if b⇒ s || G) =

def f = u in F (T f) (T f s)G (f fresh)

The proof of Theorem 26 now requires Lemma 13 to be applied in
the case for conditionals, but remains otherwise unchanged.
T now avoids exponential blowup, but may introduce more

continuations than necessary. In particular, we do not want a new
definition if u is already a call to a continuation. We define an
auxiliary function let, which introduces definitions only if necessary.

let f = s in t =

{
def g = s in tfg , (g fresh) if |s| > 1

tfs otherwise

Semantically, let behaves like a non-recursive definition.

Lemma 28. wp(let f = s in t)Q = wp tQ[f 7→ wp(s,Q)]

Proof. By Lemma 12 and Lemma 13.

We modify the compiler to handle conditionals according to the fol-
lowing equation. The modification still avoids exponential blowup
and only introduces new labels if necessary.

T u (if b⇒ s || G) =

let f = u in F (T f) (T f s)G (f fresh)

The proof of Theorem 26 now relies on Lemma 28, instead of
Lemma 13, but remains otherwise unchanged.

7. IC Program Equivalence
We consider program equivalence on IC. As usual, program equiva-
lence is obtained from program preorder:

s ∼= t↔ s � t ∧ t � s

The different semantic characterizations of IC suggest different
notions of program preorder. From an operational semantics we can
define contextual approximation [11] as the most-permissive notion
of program preorder. A context C is a program with a hole, and



contextual approximation s � t demands that no context in which s
terminates can distinguish s from t.

s � t := ∀Cσ. (C[s], σ)⇓ → (C[t], σ)⇓
Preservation of specifications provides an alternative preorder.

s . t := ∀Q. wp sQ ⊆ wp tQ
We show that contextual approximation and specification preserva-
tion coincide under the assumption that certain guards are available.

Formally, contexts are given by grammar

C ::= a;C | if b then C else t | if b then s else C |
def f = C in s | def f = s in C | [·]

Instantiation of contexts is written as C[s] and denotes the program
consisting of the context C with the hole replaced by s.

For a relation R on IC programs we define:

R compatible := ∀stC. R s t→ RC[s]C[t]

R consistent := ∀stσ. R s t→ (s, σ)⇓ → (t, σ)⇓
An approximation is a compatible and consistent relation.

Fact 29. Contextual approximation is the coarsest approximation.

We show that specification preservation is an approximation.

Lemma 30. Specification preservation is consistent.

Proof. By Corollary 20 termination is a specification.

Lemma 31. Specification preservation is compatible.

Proof. We show s . t → C[s] . C[t] by induction on C. The
only case which does not follow immediately from the definition is
the case for contexts of the form def f = C in t. By the inductive
hypothesis we may assume that s . s′ and it remains to show that
def f = s in t . def f = s′ in t. Unfolding the definition of
wp we obtain

wp(def f = s in t)Q ≡ wp tQ[f 7→ fix(Fs)]

where FuP = wpuQ[f 7→ P ]

By monotonicity of wp it suffices to show that fix(Fs) ⊆ fix(Fs′).
This follows by induction:

Fs (fix(Fs′)) = wp sQ[f 7→ fix(Fs′)]

⊆ wp s ′Q[f 7→ fix(Fs′)]

≡ fix(Fs′)

Lemma 32. s . t→ s � t

Proof. Follows with Fact 29 from Lemma 30 and 31.

The proof of the converse direction requires enough guards to
distinguish individual states. Guards are boolean predicates on state.
There are boolean predicates that distinguish states if the type of
states Σ has decidable equality. This is a rather mild assumption,
since states are typically finite maps from locations to values.

Lemma 33. If Σ has decidable equality, then s � t→ s . t.

Proof. By Theorem 21 it suffices to show that singleton specifica-
tions are preserved. Assume that the judgement 〈σ〉 s 〈f 7→ (= τ)〉
holds. Since specifications are total, s terminates under σ. By con-
sistence, we can assume that t terminates and in particular that the
judgement 〈σ〉 t 〈f ′ 7→ (= τ ′)〉 holds for some f ′, τ ′. It suffices to
show that t terminates with the same continuation and state as s, i.e.,
that f = f ′ and τ = τ ′. We can show both equalities at the same
time by crafting a context in which t diverges. Consider the context

C = def f ′ =
(
if (= τ ′) then f ′ else ret

)
in [·]

For an arbitrary program u in context C we use Lemma 15 to show

〈σ〉C[u] 〈Q〉 → 〈σ〉u 〈Q[f ′ 7→ ( 6= τ ′)]〉
→ ((u, σ) B∗ (f ′′, τ ′′)→ f ′ 6= f ′′ ∨ τ ′ 6= τ ′′)

We decide whether f ′ = f and τ ′ = τ . If this is not the case, then
s terminates in C, and by contextual approximation the same is true
for t. From the reasoning above, we obtain f ′ 6= f ′ ∨ τ ′ 6= τ ′, a
contradiction.

Given the equivalence between the operational and axiomatic
semantics we obtain several equivalent presentations of contextual
approximations for IC.

Theorem 34. If Σ has decidable equality the following statements
are equivalent for all IC programs s, t:

(1) s � t
(2) s . t
(3) ∀PQ. 〈P 〉 s 〈Q〉 → 〈P 〉 t 〈Q〉
(4) ∀σfτ. (s, σ) B∗ (f, τ)→ (t, σ) B∗ (f, τ)

Proof. The equivalence of (1) and (2) follows from Lemma 32 and
Lemma 33. By definition 〈P 〉 s 〈Q〉 = P ⊆ wp sQ and thus (2) is
equivalent to (3). By Corollary 19, proposition (4) is equivalent to
preservation of singleton specifications, which, by Theorem 21, is
equivalent to (2).

8. Continuity
The WP semantics of GC and IC resembles a denotational semantics.
In denotational semantics, fixed points are computed as least upper
bounds over finite approximations. In this section, we show that
the WP semantics assigns continuous predicate transformers to GC
and IC programs. The result allows us to compute fixed points
by ω-iteration. Formally, we obtain this result as a special case of
a fixed point theorem [18]. In particular, we show that syntactic
fixed points are least upper bounds with respect to preservation of
specifications. This yields a complete syntactic proof method for
showing inequalities involving recursive definitions.

A predicate transformer F is continuous if it distributes over
suprema of ω-chains.

Definition 35 (Chain). A family (Dn)n∈N is a chain if Dn ≤
Dn+1 for all n ∈ N.

Definition 36 (Continuous). A predicate transformer F is conti-
nous, if for all chains (Dn)n∈N we have

F (
⋃
n∈N

Dn) ≡
⋃
n∈N

F Dn

Fact 37. Continuity implies monotonicity.

8.1 Continuity for IC
We show that the WP semantics for IC yields continuous predicate
transformers. The proof follows from the fact that the language is
deterministic and does not need the assumption that the family Dn

forms a chain. In this sense, continuity is weaker than determinism.

Lemma 38. Let D be a class of environments and s be an IC pro-
gram. Then wp s is continuous:

wp s (
⋃
Q∈D

Q) ≡
⋃
Q∈D

wp sQ

Proof. By Theorem 21.

The restriction to chains is necessary in non-deterministic lan-
guages. For GC, wp does not distribute over binary unions, i.e.,



wp s (Q1 ∪Q2) 6⊆ wp sQ1 ∪ wp sQ2, since the post-condition
must include all final states of s.

In Section 3 we defined a fixed-point operator in terms of
an intersection over all prefixed points. A general fixed-point
theorem [18] allows us to characterize fixed points of continuous
predicates in terms of ω-iteration.

Fact 39. Let F : (X → P)→ X → P be continuous. Then

fixF ≡
⋃
n∈N

Fn⊥

where Fn denotes the n-fold application of F .

We use a chain of approximations to wp(def f = s in s,Q) to
give semantics to recursive definitions in IC via iteration.

Lemma 40. For fixed f , s, andQ define

P0 := ⊥
Pn+1 := wp(s,Q[f 7→ Pn])

We have

wp(def f = s in t)Q = wp tQ[f 7→
⋃
n∈N

Pn]

Proof. By Fact 39 and Lemma 38.

The chain of approximations to wp(def f = s in s)Q can be
built by iteration of syntactic substitution, and consequently the WP
semantics of recursive definitions can be characterized syntactically.

Lemma 41. For fixed f , s, andQ define

s0 = def f = f in f

sn+1 = sfsn

Define Pn as in Lemma 40. We have

wp snQ ≡ Pn

Proof. By induction on n with Lemma 12.

Theorem 42. wp(def f = s in t)Q ≡
⋃

n∈N wp tfsn Q

Proof. By Lemma 40, 38, 41, and 12:

wp(def f = s in t)Q ≡ wp tQ[f 7→
⋃
n∈N

Pn]

≡
⋃
n∈N

wp tQ[f 7→ Pn]

≡
⋃
n∈N

wp tQ[f 7→ wp snQ]

≡
⋃
n∈N

wp tfsn Q

As a corollary of Theorem 42, we obtain a proof rule for approxima-
tion in the case of local definitions.

Corollary 43. (∀n. tfsn . u)↔ (def f = s in t . u)

8.2 Continuity for GC
Our proof of continuity for the WP semantics of GC uses a general
fact about least fixed points of continuous functions.

Lemma 44. Let F : (X → P) → (X → P) → X → P be
a binary predicate transformer and let F be continuous in both
arguments. Then the predicate transformer fix ◦F is continuous.

Proof. Let (Dn)n∈N be a chain of predicates. We have to show that

fix(F (
⋃
n∈N

Dn)) ≡
⋃
n∈N

fix(F Dn)

The ⊆-inclusion follows by induction using the fact that (Dn)n is a
chain.

F (
⋃
n∈N

Dn) (
⋃
n∈N

fix(F Dn)) ⊆
⋃
n∈N

F Dn (fix(F Dn))

≡
⋃
n∈N

fix(F Dn)

The ⊇-inclusion follows by another induction.

Lemma 45. The predicate transformer wp s is continuous for all
GC programs s.

Proof. The direction “⊇” is equivalent to monotonicity. In the
reverse direction we proceed by induction on s.

For conditional statements if G, we have a Qi ∈ D for each
guard in G which is satisfied in the current state. Since (Dn) is a
chain and G is finite, there is an index n such that Qi ⊆ Dn. The
result follows by monotonicity of wp.

The case for loops is an instance of Lemma 44.

Dijkstra defines the semantics of loops with the help of a
recursive function H .

H GQk := if k = 0 then Q ∩ ¬Ĝ
else wp (if G) (H GQ (k − 1)) ∪H GQ 0

We formulate a predicate transformer F

F GQ := wp (if G)Q ∪ (Q ∩ ¬Ĝ)

and show that H can be expressed by iteration of F .

Lemma 46. H GQk ≡ F k+1⊥

Proof. By induction on k using Lemma 3 and Fact 2.

Finally, we show that our semantics admits Dijkstra’s definition [4]
of the weakest precondition for loops.

Theorem 47. wp (do G)Q ≡ ∃k. H GQk

Proof. By Lemma 46 and Fact 39.

9. Formal Development
All results in the paper have been formalized in the proof assistant
Coq. The development is available online at the following URL:
http://www.ps.uni-saarland.de/extras/ascv. In this sec-
tion we discuss the technical differences between the paper presen-
tation and its Coq formalization.

Binders We use the de Bruijn [3] representation of binders and par-
allel substitutions in the formalization, instead of named terms mod-
ulo α-equivalence. The Autosubst library [13] is used to generate
the capture avoiding substitution operation for IC and to automate
proofs of substitution lemmas.

Recall that in de Bruijn representation we replace named vari-
ables by references to their binders. These references are imple-
mented with indices: natural numbers where the number n refers to
the n-th enclosing binder, counting from 0.

Substitutions are functions from indices to terms. Instantiation
of a term s under a substitution θ, written s[θ], replaces all free
variables in s according to θ.

We generalize all lemmas about single variable substitutions to
parallel substitutions. For example, Lemma 12 takes the form

wp t[θ]Q ≡ wp t (wp θQ)

where wp θQ f := wp(θf)Q
Formally, the proof is by induction on the structure of the instan-
tiation operation. This means that we first show the lemma for

http://www.ps.uni-saarland.de/extras/ascv


renamings ξ : N→ N and then use this to show the statement for
all substitutions.

Freshness assumptions are encoded differently in de Bruijn repre-
sentation. A binder always introduces a fresh variable by definition,
but changes the indices corresponding to all other variables in its
scope. For instance, in the compilation of loop statements we have a
freshness assumption for the continuation f .

T u (do G) = def f = F (T f)uG in f
(where f is fresh)

In the de Bruijn version, the freshness assumption is encoded by
adjusting the indices in u.

T u (do G) = def F (T 0)u[+1]G in 0

Where (+1) is the substitution which skips an additional binder, i.e.,
increases all free variables by 1.

Fixed-point Operator The definition of fix depends on the im-
predicativity of the universe of propositions. Alternatively, we could
have used Fact 39 to define fixed-points only for continuous predi-
cate transformers. This definition may be preferable in predicative
type theories, but complicates the proof of Theorem 8 and 11. Given
the usefulness of the WP semantics to results such as Lemma 12,
we prefer to work with a more flexible fixed point operator.

WP Semantics The WP semantics for GC and IC is a denotional
semantics formulated by recursion on syntax. In the paper, the WP
semantics is presented as a number of equivalences, which we show
admissible in Theorem 8 and 11. In the Coq development, we realize
a type-theoretic function wp according to these equivalences and
exploit convertibility in the proofs.

Technical Characteristics The formalization uses Ssreflect [7]
(version 1.5) for its compact and consistent tactic language and
extensive library. We assume the axiom of functional extensionality,
since it is used in Autosubst.

The development is parameterized over the types of states,
actions, and guards. We do not assume that all functions on states
are available as actions, or that all boolean functions are available
as guards.

The complete development consists of around 300 lines of
specification and 600 lines of proofs.

10. Related Work
Contextual Equivalence Contextual equivalence for the untyped
λ-calculus was introduced as “extensional equivalence” by Mor-
ris [11]. Morris shows that his extensional equivalence is the coarsest
congruence that preserves termination.

Showing that two programs coterminate in all contexts directly
is not convenient. Alternative characterizations of contextual equiva-
lence that provide viable proof methods have hence received consid-
erable attention; see, for example, the book by Harper [8] and the
work by Pitts [12].

Axiomatic Semantics Axiomatic semantics describe the meaning
of programs in terms of a program logic. The axiomatic style of
semantics is attributed to Floyd [6] and Hoare [9]. Verification-
oriented axiomatic semantics support reasoning about total and
partial correctness. The axiomatic semantics we consider in this
paper account for total correctness only.

Dijkstra gives an axiomatic semantics to GC in terms of predicate
transformers for weakest preconditions [4], which are formulated
with ω-iteration in the case of loops, and shows continuity of the
transformers [5].

Winskel [18] gives axiomatic semantics for IMP, and shows that
the big-step semantics is sound for the axiomatic semantics. The

other direction does not hold, since Winskel’s axiomatic semantics
accounts for partial correctness.

The way we connect operational and axiomatic semantics bears
a close resemblance to Charguéraud’s [2] work on characteristic for-
mulas for program verification. Schirmer [14] develops a library for
program verification based on axiomatic semantics in Isabelle/HOL.

Fixed-points The facts about fixed-point theorems we state in this
paper can be found, for example, in Winskel [18].

Simulation-based Compiler Correctness CompCert [10] is a re-
alistic, verified compiler. The languages in CompCert are first-order.
The correctness statement in CompCert is formulated in terms of
a coinductive simulation, which distinguishes diverging behaviors
according to the sequence of occurring system calls. The axiomatic
methods in this paper only treat the terminating case, and do not
consider system calls.

Leroy [10] relies on the coincidence of forward and backward
simulation for the correctness proofs in CompCert. Sevcík [16]
reports in the context of CompCertTSO that a particular optimization
could not be verified with standard forward simulations because of
unobservable non-determinism. The axiomatic methods in this paper
deal with unobservable non-determinism in GC.

Axiomatic Methods for Compiler Correctness Wang [17] uses
Hoare logic to verify cross-language linking for a compiler. The
semantics is an operational big-step semantics relating input and
output states. The function application rule requires a certain speci-
fication, which is expressed as a Hoare triple, to hold. Specifications
in Hoare logic are then used to interface between modules from dif-
ferent languages. The correctness statement of the compiler ensures
that valid Hoare triples are preserved by compilation.

Imperative Continuations The language IC is an idealization of
the intermediate language IL/I [15]. IC treats state abstractly. Like
IL/I, IC does not permit arbitrary jumps but uses lexically scoped
gotos. Since IC lacks mutual recursion, control flow in IC programs
is reducible [1]. In contrast to IL/I, IC does not contain a return
construct to terminate execution, but treats return uniformly as just
another continuation.

11. Conclusion and Future Work
We present an axiomatic semantics for Dijkstra’s GC language [4]
with correctness judgments 〈σ〉 s 〈Q〉. In contrast to big-step se-
mantics, the post-condition Q accounts for all—possibly non-
deterministic—behaviors of s and σ. Unlike verification-oriented
axiomatic semantics, we formulate the rule for loops with an inter-
polant instead of an invariant. Hoare logic, which uses an invariant
for loops, supports partial and total correctness. Our formulation
with an interpolant has total correctness built in. As a direction for
future work, we would like to investigate whether the coinductive
interpretation of the rules defining the axiomatic semantics provides
judgments for partial correctness.

Dijkstra’s original semantic specification of GC [4] is a recursive
function computing weakest preconditions. We define weakest
preconditions directly in terms of the axiomatic semantics. Similar
to Dijkstra, we give a characterization of the weakest preconditions
by recursion on the syntax of GC. In the case of loops, we use a
fixed-point operator, while Dijkstra uses ω-iteration. We show that
the predicate transformers computing weakest preconditions for GC
and IC programs are continuous. This ensures that the fixed-points
that occur in our definitions can be characterized in terms of ω-
iteration. Building on this result, we formally show our axiomatic
semantics admits Dijkstra’s formulation of the loop semantics.

We consider a low-level language IC with a substitution-based
small-step semantics. We give an axiomatic semantics for IC and



show that it coincides with the small-step semantics. In future work,
we want to give an environment-based small-step semantics with
closures to IC. An interesting question is whether the axiomatic
semantic facilitates proving that the closure semantics coincides with
the substitution semantics. We are also interested in extending IC
with mutual recursion. Mutual recursion closes the gap to imperative
languages that are formulated with an external table of mutually
recursive definitions. Examples of such languages can be found, for
example, in Winskel [18].

We verified a compiler from GC to IC. We formulate compiler
correctness in terms of the axiomatic semantics as preservation of
specifications. The axiomatic semantics makes it easy to account
for the semantic underspecification of GC. The correctness proof
is a straight-forward induction on the derivation of the axiomatic
GC semantics. The WP semantics is useful for the proof that the
axiomatic semantics coincides with the small-step semantics, and
for the proof that two IC programs are contextually equivalent if
and only if their weakest preconditions are equivalent. It is an open
question whether an axiomatic semantics can be used to account for
different diverging behaviors, which are distinguished by I/O, for
example.
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