
Embedding Higher-Order Abstract Syntax in Type Theory
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Higher-order abstract syntax (HOAS) [10] offers a direct representation of higher-order
languages, where capture-avoiding substitution is function application, substitution lemmas hold
by definition and all derived constructions respect substitution. However, embedding HOAS
directly into type theory (and thus profiting from its perks) is difficult, since HOAS relies on an
intensional host language function space, while type theoretic function spaces are extensional [6].
We thus propose an indirect approach via embeddings.

An embedding of a HOAS signature into type theory is a term model of the signature. A
model gives an interpretation of terms, well-behaved substitutions, and (substitution respecting)
recursive definitions on terms. Previous approaches have focused on term representations and
renaming - essentially modelling weak HOAS [4, 11, 3].

For full models, we extend Hofmann’s presheaf semantics for a second-order signature [6],
to a construction for arbitrary HOAS signatures (Figure 1). A model consists of a category of
contexts D whose morphisms are substitutions and presheaves for every term sort. The action of
a substitution on a term gives the notion of instantiation s[σ].

The main obstacle to constructing a term model as an inductive type are negative occurrences
(tm in lam). Hofmann’s insight is that this problem disappears when Tm is representable,
i.e., Tm = Hom( , T ) and D has finite products. In this case, the natural transformation
Lam : TmTm → Tm can equivalently be given by a natural transformation with components
LamX : Tm(T ×X)→ Tm(X). For every signature, we have to construct a category D.

As a first step, we create the corresponding weak HOAS signature (Figure 1 (b)), in which all
non-strictly positive occurrences of a sort (tm) are replaced by a new type v of variables together
with a variable constructor (var). We build a presheaf model for a weak HOAS signature by
constructing a category C with enough distinct non-terminal objects to represent each sort of
variables. In the case of the lambda calculus, any cartesian category with a non-terminal object
T will work and we define V = Hom( , T ). The canonical choice for C is the free cartesian
category on one object. We model the term sorts by the corresponding inductive types.

We have previously considered presheaf models for weak HOAS signatures [8]. In the present
context, the results of [8] show that this construction gives a model for a weak HOAS signature
and moreover that such models always extend to models of the corresponding HOAS signature.
For terms, this shows that Tm : Ĉ is a monad relative to V . The construction then extends Tm

tm : ∗ Tm : D̂
app : tm→ tm→ tm App : Tm2 → Tm

lam : (tm→ tm)→ tm Lam : TmTm → Tm

(a) HOAS

tm, v : ∗ Tm,V : Ĉ
var : v→ tm Var : V→ Tm

app : tm→ tm→ tm App : Tm2 → Tm

lam : (v→ tm)→ tm Lam : TmV → Tm

(b) Weak HOAS

Figure 1: (Weak-) HOAS signatures and presheaf models for the lambda calculus.
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to a (representable) presheaf over the Kleisli category of Tm (our chosen D). Additionaly, we
obtain a recursion principle with respect to other models of the signature.

The construction of [8] applies to simply typed second-order signatures. We extend this
construction to essentially arbitrary HOAS signatures. In the general case, the reduction to
a weak HOAS signature can be recursive, the construction has to be stratified in the case of
several sorts of terms, and the final relative monad contains more than a single sort of terms.
This construction yields several interesting cases, when we consider certain concrete HOAS
signatures.

• Well-typed Terms. For well-typed terms, the resulting contexts contain a type for each
variable. In this case, our construction yields the relative monad of well-typed terms
described in [2].

• Stratified and Mutual Inductive Types. Applying the construction to signatures
with several sorts with binders, such as the types and terms of System F, yields vector
parallel substitutions [7, 8]. The category of contexts is the finite product of the respective
contexts for all occuring subsorts. In the case of System F we find that the product of the
presheaf of types and terms together form a relative monad on the category of contexts.

• Third-order signatures. While most practical work has focused on second-order signa-
tures, some applications require higher-order signatures. Consider the λµ-calculus [9, 1],
which extends the lambda calculus with an additional constructor.

µ : ((tm→ cont)→ cont)→ tm

Our construction yields a weak version with additional variable sort w and variable
constructor var : w → tm → cont. The final result of our translation corresponds to
Parigot’s original first-order definition of λµ-terms [9], with a novel notion of instantiation
which generalizes the structural substitution of λµ.

• Type Systems. Since presheaves can model dependent types we can extend our con-
struction to HOAS predicates, i.e., type systems. The result of the translation is a form of
relational typing as in [8], with general “hypothetical” judgments in the context.

Our translation comes with a suitable notion of substitution on the type system, e.g.:

Γ ` s : A ∀(t : B) ∈ Γ. ∆ ` t[σ] : B

∆ ` s[σ] : A

This corresponds to the notion of context morphism lemmas – which in [5] are defined
as “parallel substitutions with additonal typing and well-formedness information”. Our
approach pins down exactly what additional information is necessary and identifies context
morphism lemmas as the correct notion of substitution on typing judgments.

• Induction Principles. Applying the translation to the trivial predicate on terms which
states that a term is built from constructors yields a useful induction principle for terms.
For the lambda calculus, the induction principle states that given a substitutive predicate
P : tm → Prop for which P s → P t → P (app s t) and (∀tσ. P t → P s[t · σ]) → P (lam s)
we have P s[σ] for all terms s and substitutions σ which satisfy P (σ i) for all i.

Future Work. Ultimately, we are not interested in an arbitrary presheaf model, but in a
“free” model. What this should mean is currently an open question. On the practical side we are
currently implementing our construction as part of a tool to embed HOAS signatures into Coq.
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