Off-Line Scheduling of a Real-Time System

Klaus Schild Jorg Wirtz
Daimler-Benz AG Programming Systems Lab, DFKI
Research & Technology Stuhlsatzenhausweg 3, D-66123 Saarbriicken
Alt-Moabit 96a, D-10559 Berlin, Germany Germany
e-mail: schild@DBresearch-berlin.de e-mail: wuertz@dfki.de
Keywords Introduction

Constraint Programming, Time-triggered real-time sys-
tems, Scheduling.
There is a growing number of distributed real-time applica-
tions whose processing must obey a strictly regular pattern
ABSTRACT and so must. theT communipation involved. Exgctly for this
type of application, a particular class of architectures ha
This paper shows how a recently introduced class of ap-peen devised, the so-calléthe-triggered architecturgl 2].
plications can be solved by constraint programming. This The termtime triggeredrefers to the fact that the overall be-
new type of application is due to the emergence of special havior of the system is controlled by a recurring clock tick,
real-time systems, enjoying increasing popularity in such the only event which may invoke any action. Time-triggered
diverse areas as automotive electronics and aerospace ingrchitectures fit especially the needs of safety-critipalia
dustry. These real-time systems are time triggered in thecations. This special type of architecture proved to be suc-

sense that their overall behavior is globally controlleceby  cessful in such diverse areas as automotive electronics and
recurring clock tick. For this off-line scheduling problem  aerospace industry.

potentially indefinite, periodic processing has to be mdppe . bl . : hed
onto a single time window of a fixed length. We make this Being able to compute an appropriate pre-runtime sched-

new class of applications amenable to constraint program-Ul€ automatically is the major challenge for a time-triggger
ming. We describe which traditional scheduling and real- &rchitecture. What makes this specific off-line scheduling
time computing techniques led to success and which failegProPlém somewhat untypical is that a potentially indefinite

when confronted with a large-scale application of this type periodic processing has to be mapped onto a single time

Global constraints were used to reduce memory consump-W'ndOW' This time window determines the overall behavior

tion and to speed up computation. An elaborate heuristic, Of the system. Take a thermostat procggs transmitting at

borrowed from Operations Research, was employed to solve? fréquency of 10Hz the particular temperature chosen to a

the problem. Furthermore, we show that mere serialization CONtrollerC,. Let this controller respond with exactly the
i sufficient to find a valid schedule. The actual implemen- S&Me frequency, reporting potential malfunctioning. This

tation was done in the concurrent constraint programming "duces a cyclic dependency which is explicitly allowed. If
language Oz. two application processes are allocated to different groce

sors, then the only way for them to communicate with each
other is a common data bus. All inter-processor messages
must therefore be broadcasted through this data bus. A fur-
ther restriction is that this bus is not able to transmit more
than one message at a time.

Let us furthermore assume that there is a second controller,
call it Csq, which gets at a frequency of 20Hz fresh data
from a certain sensaots;. In this case, however, the com-
munication is one-way only. We assume tla$ and Csq

are hosted by different processors. In particularSlgtre-

side on the same processor7as, while C'so shares its host
with C',. The off-line scheduling problem then consists in



mapping these quite different communication patterns ontocations and Operations Research are tested. Only a recent
a single time window, with no preemption being allowed. strategy from Operations Research proves to be successful
When repeated indefinitely, this time window should pro- in solving the actual application. We show that it is suffi-
duce the intended overall behavior. Fig. 1 depicts a propercient to find a total ordering of the processes and messages
time window which does achieve this. to construct a valid schedule. We furthermore show that
the usual criterion of utilization (or load) is insufficiefior
processor 1 a bottleneck analysis for the application at hand. To solve
problems of that size, it is important that redundant con-
IS A A ) straints are garbage collected as soon as possible.

- data bus

bmm e 5 The paper is organized as follows. The following section
gives the details of the specific off-line scheduling prob-

processor 2 lem to be tackled. The third section then briefly intro-
duces the basics of constraint programming. The fourth sec-

< latency tion shows how the scheduling problem can be captured by
. fixed time window 0.1s . finite-domain constraints. An elaborate search heuristic i
| X included as well. The fifth section demonstrates that this
T heuristic enables us to solve even large-scale induspial a
plications. The paper closes with a brief discussion of the
Figure 1: A sample repetition window results obtained.

There may also be relative timing constraints between pro- :
cesses allocated to different resources. Constraints®f th The Schedullng Problem

sort are calledatencies Fig. 1 includes such a latency be-

tween S, and Cao. This latency is an admissible upper This section gives a description of the scheduling problem
time bound on the time which may pass between the startthat we solved. Due to space limitations we completely ig-
of S5, and the termination af',,, with the actual message nore the possibility of asynchronous communication. Asyn-
passing in between. This is to guarantee that the relevanchronousness refers to all those cases where the sender’s
information processing is completed within the time bound frequency is different from that of the receiver. An in-dept
specified. treatment of this topic can be found in the full version of

this paper, which will be published as a technical report.
These uncommon characteristics make this off-line schedul pap P P

ing problem a challenging new application domain. Only The whole problem is about off-line scheduling of a special
a few approaches exist to tackle similar problems. For anclass of multi-processor systems with only a single data bus
overview, especially on applications in the automotive in- For the present purpose, it suffices to treatuti-processor
dustry, see [6]. The real-time applications tackled by con- systemust as a finite number of processors—the data bus
straint techniques are usually small on-line scheduliogpr ~ Will be considered later on. Allocated to each processor
lems rather than off-line problems; see e.g. [19]. there is a finite number of differemtpplication processes
(orprocessesor short). Each process is allocated to exactly
one processor, called tHeost of the process. A process
can be executed on its host only. It may, of course, be exe-
cuted more than once. A particular execution of a process,
P, is denoted byP;, for an index; > 1. Every such pro-

To the authors’ knowledge, however, it is the first time that
constraint techniques are applied to a time-triggeredi-arch
tecture. We modeled the relevant off-line scheduling prob-
lem with the help of the constraint programming language

Oz, developed at the DFKI [18]. The actual problem that .. < avecution has a non-negasitarting time start(P;).

we solved was part of a large-scale industrial application. The duration of different executions of a particular praces

involves a finite domain of 6 million different starting tisme jE always the same. Thus each particular prodegs al-

over 2,000 Processes and messages, af‘d more than one MGcated to it a specific non-negative number-( P), its ex-
lion constraints created during the solution search. ecution time The execution times of two processes may, of
The contributions of this paper are as follows. We compare course, differ. The&eompletion timeof an executionp;, is
different techniques to solve traditional scheduling prob then uniquely determined by a simple calculation:

lems and real-time applications and show for the present

case which techniques lead to success and which fail. We compl(P;) = start(P;) + dur(P). 1)
make use of global constraints in form of a single computa- L .
. . . We thereby implicitly assume that no execution of a process
tional agent that constrain up to more than a thousand vari-

ables simultaneously. These global constraints significan may ever be preempted.
reduce the number of constraints that are active at a time A specific processpP, can either beeriodicor aperiodic
Search strategies coming from traditional real-time appli [fitis periodic, it must be invoked with a certain frequency



The reciprocal value of this frequency is called period If two processes share a common host, none of their exe-
of P, or simply period(P). A frequency of 10Hz, for in-  cutions may overlap in time. This means that two process
stance, results in a period of exactly 0.1 seconds. The dis-executions may work in parallel only if they are hosted by
tance in time between the starting points of two consecutive different processors. A single processor, however, does al
executions of a particular process must always agree withlow only sequential executions, all executions runnington i
the period of that process. Therefore, we have the following must therefore be serialized in the following way:
isochronousness condition:

compl(P;) < start(Q;) or compl(Q;) < start(P;) (5)

start(Py) = start(Piv) + period(P), fori > 2. (2) wheneverP andQ (P # Q) have the same hast

This condition, however, does make sense only when . o
Note that for a single process serialization is alreadyauar

teed by the isochronousness condition (2). The disjunctive
constraint above, therefore, does not include the caseawher
P and(@ are identical.

period(P) > dur(P). )

In practice, the period of a process is not only expected to be
always greater than its execution time, but it is even much Perhaps it is worthwhile noting that this type of serialiaat

more greater. constraint is not as harmless as one might think. This is be-
cause the number of constraints (5) increases quadrgticall

We assume that the overall control of a multi-processor sys- o
in the number of application processes.

tem is organized priori as a fixed time window. It is ex-
actly this time window which, when invoked indefinitely,
will deterministically control the behavior of the overajls-
tem. This time window is called threpetition window The Inter-Processor Communication
length of the repetition window is called tlegcle time”' 7.

This length should, of course, be chosen such that every peyt g processes have different hosts, the only way for them
riodic process fits into the repetition window without run- 14 communicate with each other is to broadcastessage
ning out of phase. Not only the isochronousness conditioniroygh a common data bus. There is only one such data
(2) has to be mewithin the repetition window itself, but 5 available and all processors are connected to it. Two

the unraveled version of the repetition window must obey a processes sharing the same host are able to communicate
similar condition as well (see Fig. 2). There is a simple way directly with each other.

to accomplish this: just identify the cycle time with thedea .
common multiple of all periods used. This is not an unusual Any message has exactly osenderbut may have multiple
approach to off-line scheduling of periodic processes, seefeceivers In each particular case, the sender is a process,

e.g. [5]. The approach works as follows. A periodic pro- justlike all the receivers. If at least one of the receiveas h

cess, P, has to be executed exactly — per%(m times another host than the sender, then the relevant message is an

within the repetition window. Let the relevant executioes b INter-processor messagetherwise it is arintra-processor

Py, ..., P,. If all these executions meet the isochronousnessMessage

condition (2), then the distance in time betweeart(P1)  Associated with each messagé, there is a non-negative

andstart(P,) is exactly(n — 1) - period(P). Butthen, the  numberdur (M), thetransfer timeof M. If M is an intra-

distance in time betweeﬁart( Pn) within the current repe- processor message, thémn(]\/[) is a|Ways 0.

tition window andstart(Py) within the subsequent cycle is . . . )

CT — (n—1)- period(P). This yields exactlyperiod( P) if Thgre is a special type of mte.r-processo.r message which has
W%(P) . This proves that also the unraveled version neither any sen_der nor a particular receiver. Itis a bragtdca

of the repetition window satisfies the isochronousness con-Message to 'T"dJ“.St the local clocks of the processors, called

dition if only, within the repetition window itself, (2) hdk aresynchronization messageor convenience, we assume

and there is a number pf CC(P) executions of . a dummy sender and a dummy receiver for_ this special kind

eriod of message. Both the sender and the receiver can be hosted

An aperiodic processP?, is treated as if it had a period of by any processor if only they are not hosted by the same

period(P) = C'T. This means that during every invoca- processor. Their relevant execution times are set to 0. The

tion of the repetition window an aperiodic process gets the transfer time of this special broadcast message is very,shor

opportunity to work exactly once. while its frequency—that is, the frequency of its dummy

sender—is very high, typically some 1.000Hz.

n —

We require all executions of a process, whether periodic
or aperiodic, to be scheduled within the repetition window. An actual transmission of a single messagg, is denoted
This is what we have implicitly assumed so far. We thus by M;, for an indexi > 1. Each such transmission has
impose the following general upper time bound: a particular starting time and a completion timgyrt ( A1;)
andcompl (M;) for short. Similar as for process executions,
compl(P;) < CT. 4) the completion time of a message transmission depends on



| period(P) | period(P) |
I L 1T LI | 1

cT cT

Figure 2: The wrapping over the repetition window

its starting time and the relevant transfer time: processor 1

compl(M;) = start(M;) + dur(M). (6)
data bus
If S isthe sender of/, then there must be a sequence of
transmissiond/, ..., M,, with n = #5, no matter whether

it is an inter-processor or an intra-processor messaga, Thi
of course, applies to the synchronous case only. In this case | cr |
a message is always transferred with exactly the same fre-

guency as its sender is executed. For asynchronous com-

munications, this is not necessarily the case. In the syn- Figure 3: Postponing the receiver of a message
chronous case, however, the frequency of the message does

always coincide with that of its sender:

processor 2

a message transmission and potential receivers. They may
start(M;) = start(M;_1) + period(S), fori > 2. (7) even overlap in time, in which case thetualreceivers are
again postponed until the subsequent repetition cycle.
Any message transmission, of course, must obey the gener

. i 6\|I\lhatis required is that a transmission of a message must be
upper time bound, too:

scheduled before the next execution of its sender (if theere i

compl(M;) < CT. (8) any):

compl(M;) < start(Siyq1).

It is not necessary for a message to be transfemededi-
ately after the sender terminated; rather, a single messagdiowever, there is no need to impose this condition explic-
can be buffered as long as no fresh version of this mes-itly. This is because it already follows from (7)—(9), tolget
sage arives. However, whiatnecessary is that a message is Wwith the fact that there are always as many transmissions of
never transferred before the relevant execution of theesend A as there are executions 8f

terminated: The data bus can always transfer only one message at a time.

Thus all transmissions through the data bus have to be seri-

compl(S;) < start(M;). 9 alized:

There is no similar precedence constraint between the mes-ompl (M;) < start(N;) of compl(N;) < start(M;) (10)
sage transmission and its actual receiver. That is to say, if (M andN (M # N)
R; is one of the actual receivers 8f;, then no constraint

of the form compl(M;) < start(R;) is imposed. Thisis  For intra-process messages, it is not necessary to exyplicit
because?; may be postponed until the subsequent invoca- rule out any mutual overlapping in time. This is because
tion of the repetition window, in which cade; would typ- their transfer time is always 0.

ically occur at the beginning of the repetition window. In

a cyclic communication pattern this is even necessarily so.

Take the particular cyclic communication pattern depicted L atencies

in Fig. 3. Here,P sends a message €, which in turn

sends a second message backPtoIf the two processes  For a real-time system it is important that critical informa
have the same frequency, then the actual receiver of the section is guaranteed to be processed within certain time $imit
ond messageannotbe scheduled after the message trans- If a process sends a message to a second process, then it may
mission, at least within the current cycle of the repetition be important to guarantee that the overall information pro-
window. In this caseP would occur twice withinthe repeti-  cessing never exceeds a certain period of time. In particula
tion window and, therefore, would have twice the frequency it is convenient to specify an upper bound for the admissi-

of @. This is why the second message will be received only ble period of time which may pass between the generation
within the subsequent cycle of the repetition window. As of the information by the sender and its full processing by

a matter of fact, there is no precedence relation betweenthe receiver, with the actual exchange of the information in

are inter-processor messages



processor 1 scheduling problenthen consists in finding for each sin-

gle process execution and message transmission a particula

starting time such that the constraints introduced abawe ar

simultaneously satisfied. In a time-triggered architestur

the time scale is a discrete one, dictated by the recurring

processor 2 global clock tick. The frequency of the global clock coin-
cides with that of the common data bus.

data bus

< latency (M, Q)

compl(Py) T — slart(Qq)

Constraint Programming

Figure 4. Latencies The problem under investigation was solved with the help of

finite-domain constraints. The specific constraint languag

between. We call an upper bound on exactly this period of We used is Oz [18].

time alatency The specific value of a latency depends not A finite-domain constraints a first-order formula over a
only on the message itself, but also on the particularreceiv number of variables, each of which may take a specific
of that message. This is because the receivers might diffefyalue out of a finite set of non-negative integers, called a
in their criticality as well. The particular value of suchaa |  finite domain In Oz, a distinction is made between con-
tency is henceforth denoted bytency (M, R), whereR is straints which aréasicand those which are not. Only basic
one of the receivers off . If S is the sender of that message, constraints may reside in the glolminstraint store This

we have the following relative timing constraint: is to guarantee that the satisfiability of the entire comstra
store can always be decided efficiently, just like the ques-
compl(R;) — start(S;) < latency(M, R). tion whether an arbitrary basic constraint is entailed key th

] o __current store or not [16]. The simplest form of a basic con-
Fig. 4 shows a sample latency, constraining the admissiblegiraint s, ¢ 1), where can be an arbitrary finite domain.

distance in time betweestart () andcompl (Q1). A basic constraint of this type is also referred to adoa

Notice that this type of latency condition presupposes thatmain constraint In this paper, we consider only two other
theith transmission oM/ is actually received by thi¢h exe-  types of basic constraints. These are of the ferm y and
cution of R. This can only be guaranteed for a synchronous = = n, wheren can be an arbitrary non-negative integer.
communication, for which the frequency of the sender does ag js well-known, deciding the satisfiability of nonbasic
not differ from that of the receiver. constraints such as+ y = z is computationally intractable
The latency condition above, however, does not cover all (because graph-coloring problems can be encoded, for ex-
relevant situations, even with only the synchronous caseample). This is why in Oz such nonbasic constraints do
taken into consideration. To see this, consider again Fig. 4 not reside in the global constraint store. Instead, a non-
Not only doesP send the messag¥ to (), but@ sends  pasic constraint is imposed by what is callegrrapaga-
also N back toP. The actual receiver of/; is Q1. Here, o1 This propagator implements the effects of the rele-
the latency constraint form above works perfectly well. The | o+ constraint. It is a computational agent that tries to

actual receiver ofV, is Py. P, does not occur aftel; be- oo down the domains of variables by adding appro-
cause the actual receiver of is postponed until the sub- . : . .
riate basic constraints to the constraint stSre Take a

sequent repetition cycle, a case which is not covered by th . . .

latency condition above. In this case, a proper latency con-Propagator for a nonbasic constraint, This propagator
dition should be that'T — start(Q1) + compl(P;) must may impose a.basm constraint not yet t_entalledSbysay

not exceedatency(N, Q) (see also Fig. 4). In the general #, if 3 is entailed byS U {«}. In addition, of course,
case, a proper latency condition has to take into accountS U {5} has to be satisfiable. If, for exampl§, consists
both cases. This looks as follows. L&tbe the sender of  of the basic constraints € {1,...,10},y € {1,...,10} and

a messagé//. For every receiverfz, of this message, we > ¢ {1, ..., 10}, then a propagator for + y = » might add

have: re{l, .., 9% ye {1, ..., 9 aswellas € {2,...,10} to
r start(R:) > compl(M;) the current constraint store. The teownstraint propaga-
then compl(R:) — start(S:) < latency(M, R) @y ton refers to advancing the constraint store in this manner.
else T — start(S:) + compl(R:) < latency(M, R). A propagator for a constraingy, signals inconsistency as

soon as it is realized that is inconsistent with the con-
Such a latency constraint is, of course, only imposed if the straint store.

transferred information s critical. A finite-domain problens a finite set of finite-domain con-

These are all the constraints we are considering. Now, sup-straints such that for each variable occurring in a constrai
pose we are given a particular multi-processor system. Thethere exists at least one domain constraintsofutionto a



finite-domain problem is a specific mapping which assigns fraction of a second, the initial domains should be chosen
a single non-negative integer to each variable such that allcarefully. The smallest relevant time unit is the reciptoca
constraints are satisfied simultaneously. of the frequencyp of the global clock. This is exactly the
general time unit that we use. The starting times are then

Constraint propagation alone is often not sufficient for de- 2~ .~
initialized as follows:

termining a solution. A solution for a finite-domain prob-

It()emZG)), can tbe.oi:)tained, anywa%, ifa Iis;( oft(nc()jt nfecelsgarily start(P) € {0,...,CT — dur(P)},
asic) constraints;, . . ., o, is chosen. Instead of solving

the original problem, it is then tried to solve at least one start(My) € {0,...,CT — dur(M)}.

of the stronger problem® U {a1},...,© U {a,}. Inthis

case, we say thate branch withy,; in ©. Examples for The completion times are not introduced explicitly; rather

; might bez = 1 andz > 1. Such a modification of ~ terms of the formstart(F;) + dur(P) or start(M;) +

the original problem is perfectly admissible, in that a solu dur(M) are used to replace them. This is to reduce the

tion for ® U {n;} is always a solution fo® as well. The  overall number of finite-domain variables.

sequence of problem® U {a;} can simply be examined  the specific domains that we associated withrt(P)
one after the other, so th@tU {«;} is touched only if all 54 start(M;) clearly guarantee that neithepmpl(P;)
preceding alternatives lead to an inconsistency. In génera o, compl(M;) may ever exceed'T', thus satisfying con-
the choice of the constraints to branch with, including the giraints (4) and (8). The remaining constraints of the sécon
specific ordering in which they are examined, is called a section then form ordinary finite-domain constraints. The

branching strategy To maximize the available information 4}y exceptions are latency and serialization constraints
for any strategy, branching does not take place before con-

straint propagation has reached a fixed point. Solving a con-
straint problem thus consists in a sequence of interleavingSerialization Constraints
propagation and branching steps.

In Oz, a propagator for a constrainteases to exist as soon "€ constraint (5), pairwise serializing all process execu
as itis realized that is entailed by the constraint store. The 1ONS on a specific host, is disjunctive constraint It in-
propagator is then automatically garbage collected by theyolves two_po_s_S|bIe aIternatlve§. Qf exactly the same eatur
system itself. This will turn out to be an important feature S (10), serializing the communication through the data bus
for being able to cope with the present problem. Con_stralnts of this sort can be handled, anyway, if the con-
straint language allows to reflect the truth value of a con-
straint into a 0/1 variable, see e.g. [15, 11, 10]. In Oz this
kind of reflection is calledeification Take (5). A proper
reification is as follows. First define two 0/1 variables,
never taking the value 1 at the same time; ¢ {0,1},
This section explains how constraint programming can be B, € {0,1}, and B; + B, = 1. Then state the following
used to solve the scheduling problem at hand. Such a solunested constraint.

tion always has two parts to it. The starting pointis to recas

the relevant problem in terms of formal constraints. Thisis (B1 =1) - (start(P;) + dur(P)
not too difficult in the present case, but we have to con- (B, = 1) <« (start(Q;) + dur(Q)
sider efficiency and memory consumption. The next step is

to choose a particular branching strategy, whiHifficult This reification captures exactly the meaning of (5). To see
in the present case. We shall not only describe the branchthis, assume that one of the alternatives, sa&yyt(7;) +

ing strategy which ultimately led to success, but also men- dur(P) < start(Q;) becomes inconsistent with the current
tion some of those that failed. It is difficult to say whether constraint stores; is then set to 0 and, thereforg; to 1.
these results are specific to the actual constraint languagéut then, the second alternative is immediately invoked.

that we used. Anyway, we hope that the results will give |, o, hjs reification can also be phrased somewhat more
other programmers some helpful hints how to tackle similar

A Solution to the Problem

< start(Q;)),
<

succinctly:
problems.
(.9tart(P7;) + dur(P) < start(Qj)) +
start(Q;) + du < start(P)) = 1
The Congtraints (start(@Q;) + dur(Q) < start(P))

But even with this succinct form used, we need altogether
The starting time of a process executidn, can well be % reified constraints to serializeprocess executions,
captured by a finite-domain variable and so can the startingand similar for message transmissions. Such a naive ap-
time of a message transmissidi;. For convenience, these proach works well as long asis comparatively small. With
variables are also denoted ky:rt( P;) and start(M;) re- a number of about 1,800 message transmissions, a number

spectively. Because the cycle timé&r is typically only a we were faced with, this is no longer feasible. Itis true that



in the course of the computation, many of these reified con-dow and those which are not. These two possibilities might
straints can eventually be garbage collected; a large numbebe captured with the help of a reified constraint, too; how-
of them will nevertheless exist for quite a long time. ever, this would lead to weak constraint propagation. An

Such an excessive memory consumption can be avoided b)z éﬁ/(aerltrﬁsntrzzgmedrghbi??r? ::eaggrO;C:o(::ejtggégli?r\geto
a special type of constraint, reasoning on a large set of vari P P y P '

ables simultaneously. A constraint of this kind is called Propagation, however, can be improved by a specific pre-

. processing phase. If, for examplg, sends a message to
global. In some cases, global constraints do not only save . . .
. . 7 Q);, it can be determined before wheth@¥ is to be post-
memory, but improve also the overall run-time. This might *: X . : .
, . eponed until the subsequent repetition window or not. This
even happen when a global constraint does nothing mor N .
N . works as follows. If the relevant communication is not in-
than mimicking the propagation of a host of non-global con- . L .
. o . volved in a cycle, then it is assumed th@} is not post-
straints like the reified ones from above. Instead of main- : T
L 5 . poned. In this casestart(Q;) > compl(P;) is imposed.
taining O(n*) propagators only a single (global) propaga- 17 = . .
RO : . As a consequence, the following version of a latency condi-
tor needs to be maintained by the underlying runtime sys-tion is sufficient
tem. We dealt with the constraints (5) and (10) in exactly '
this way. Given an arbitrary number of items, the relevant
global propagator mimics the pairwise serialization othe
items, without the full computational burden of the orig-
inal pairwise serialization. The global propagator essen-
tially considers successively each pair of items and checks
whether any clause of the corresponding disjunction is dis-
entailed. In this case it imposes the right basic conssaint
implied by the remaining clause. The propagator was cre-
ated with the help of a special interface, the so-called con-
straint propagator interface of Oz [}4]. and is avallablg as vy start(Py) + start(Q;) + dur(Q) < latency(M, Q).
FD.schedule.serializedDisj. This interface makes it : -
possible to create new propagators efficiently.

start(Q;) + dur(Q) — start(P;) < latency(M, Q).

If, on the other hand, the communication betwegenand
Q); is part of a cycle, then an ordering betweRnand () ;
can be chosen arbitrarily. #art(Q;) > compl(P;) is cho-
sen, then again the latency condition just given is sufftcien
If, otherwise,start(P;) > compl(Q;) is chosen, then the
following condition must be met:

In this way, we can dispense with the disjunction of (11),
This serialization propagator does not employ any domain-at least for all those processes which are not involved in
specific information other than that of a linear time scale. @ cyclic communication pattern. This guarantees adequate
Global constraints, however, may also employ more elab- propagation. In principle, it might happen that this prepro
orate propagation techniques for domain-specific purposescessing phase cuts off the only admissible solution to the
App|egate and Cook []_] proposed such a technique, ca||edpl'0b|em. This, however, seems to be very unlikely. At least
edge finding see also [3]. Variants of this technique en- it never happened in any of our experiments.

joy a run-time which essentially grows quadratically in the

number of items to be serialized. In computational terms,

even these more efficient variants are yet more expensiveA Branching Strategy from Real-Time Appli-
than the global constraint described above. For certain-pro cations

lems, however, edge finding may lead to a drastic reduction

of the search space, outweighing the additional computa-Branching strategies off the shelf (like first-fail) turnedt
tional costs. No such effect can be observed for the presentg pe too simple for the present problem. Branching strate-
problem. This is due to the fact that the domains of the gjes can be divided into two categories. The first class of
starting time variables are rather huge in comparison to thestrategies branches with basic constraints such as c.
item’s duration. But one premise of edge finding to enable The second type of strategies branches with non-basic con-
Strong reasoning are narrow domains. While the data bus i%traints suchas+«¢ < y. In this case, new propagators are

the real bottleneck of the current scheduling problem (seecreated during run time. We experimented with strategies
also below), this is not mirrored in the domains of the vari- from either category.

ables immediately. Compared with the global constraints i . ) , )
that we employed, edge finding does not shorten the searcHl N€ first branching strategy that we investigated was moti-
for a solution at all. Edge finding even increased the overall Vat€d by Liu and Layland's [13] work on scheduling algo-
run-time by a factor of five. rithms for hard real-time applications. This strategy veork

as follows. The finite domain which models the starting
time of a process execution or a message transmission de-
) notes the set of possible integer values for the starting.tim
Latency Constraints Let lct(P;) andlet(M;) be the latest possible completion
time of P, and M;, respectively. The valukt(P;), for ex-
The latency condition (11) distinguishes between communi- ample, is thus the maximal value of the domainfpfplus
cation patterns which are wrapped over the repetition win- the execution time of;. Exactly this pair( P;, M;) is then



selected for which{lct(F;), let(M;)) is minimal with re- starting time variables to make branching decisions. But be
spect to lexicographic order. In addition, a pair may be se- cause these domains are rather wide compared to the item’s
lected only if eitherstart(P;) or start(M;) is not already  duration (especially in the beginning of the search), this
fixed to a single value. I&tart(P;) stays unfixed, it is  heuristic might guide the search in a wrong direction. Due
branched with basic constraints of the fostart(P;) = ¢, to the size of the considered problems these wrong decisions
beginning the enumeration of possible candidates faith cannot be recovered by simple backtracking.

the smallest possible starting time Bf. As soon as a con-
sistent value fostart(P;) is found, the starting time of/;

is fixed by a similar procedure. As a result, the process with
minimal latest possible completion time (usually a process
with a high frequency) determines which starting time is
fixed first. While this strategy works well if no latency con-
straints are considered, no solution is obtained in one flay o
computation time with latencies included.

Instead of ordering only a single pair of items at a time,
many pairs can be ordered in a single branching step. The
number of branching steps can thus be significantly reduced
by considering a whole number of propagators at a time.
This proceeds as follows. First, select an item S. Then

it is branched with a number of constraints, altogether stat
ing thats precedes each item iy except fors itself:

start(s) + dur(s) < start(s'),

Branching Strategies from Operations Re- for all s € S such thats’ # s. If this leads to an incon-
search sistency, then the entire procedure is retried with another
s € S; otherwises is deleted front. As soon as the subse-

As an alternative, we investigated several strategiesef th quent constraint propagation has reached a fixed point, the
second category. These strategies were motivated by similaoverall procgdure Is '”VOk_E'd_ again, a process which contin-
strategies from Operations Research, which have recently€s until all items are serialized. In the best case, no more
been used also in the field of constraint programming [2, 4]. than|:5| — 1 branching steps are needed to seriatizeom-
Let us first explain what the key idea of this strategy is. Con- Pletely. Of course, we still have a quadratic number of pair-
sider a setS, of items. The task is to schedule all elements Wise ordering decisions, butthe depth of the search tree may
of S in a mutually non-overlapping manner. The branch- be reduced.

ing strategy is divided into two phases, the determinatfon 0 The question remains which of the potential candidates for
an appropriate serialization and the assignment of concret ; ¢ 5 should be considered first. For this purpose, informa-
Starting times.Serializationin this case means that for all tion on the possib|e Starting times can be exp|oited_ In par-
s,5' € S such thats # ', it has to be determined whether ticular, it is possible to extract those items amchghich

s Is scheduled beforg or vice versa. An appropriate total may precede all others, see e.g. [3, 2, 20]. This subsst of
ordering of5' can be obtained by branching with one of the can be computed in tim@(|:5|). Let F be this set of items

following propagators at run-time: which may precede all others ifi. If F' is empty, there
clearly exists no serialization at all. |If'| = 1, no branch-
start(s) + dur(s) < start(s’) ing step is necessary becauss single element is the only
or candidate fo. If otherwise|F| > 1, those elements df
start(s') + dur(s') < start(s). are tried first whose earliest possible starting time is mini

mal. This guarantees that for the remaining items there is
In the best case, a number M branching steps is  as much free space on the time scale left as possible. This
needed to serializ8 completely. This number may be re- strategy is available in Oz @®. schedule.firstsDist.
duced if some ordering decisions can be decided determin-
istically. For example, the strategy proposed in [4] avoids
some branching steps by detecting orderings which mustOrder of Branchings
necessarily hold. The assignment of concrete startingstime
could then be done with a branching strategy of the first cat- Now we have to decide which resource should be serialized
egory. But a number of branching steps which can grow first. It is common practice to schedule the resource first
guadratically inS might be, of course, not feasible for a which can be seen as the bottleneck of the problem. As an
large-scale problem. Nevertheless, we have tried theestrat obvious criterion we have chosen first the utilization (pad
gies suggested in [4] and [17]. These strategies employ onevalues. Because the utilization of the processors is up to
pairwise ordering decision at each branching step and haved2%, whereas the utilization of the data bus is only about
been shown to yield good results in the area of job-shop11%, we have tried to serialize the processes first. Surpris-
scheduling [7]. Unfortunately, both strategies failedreve ingly, we could only solve a few problems (only two out
after several hours of computation time for a small test prob of seven). Analyzing the problem more carefully, we found
lem. This means that the strategies using local pairwise or-out that the primary source of complexity are the different
dering decisions are too weak for the considered problem.periods at which processes may be executed. What makes
Both strategies [4, 17] consider the size of the domains of the scheduling of the data bus so hard is the fact that it is the



only resource commonly used by all inter-processor com- ning the program on a Pentium Pro 200 MHz will bring
munications. Through the common data bus processes orabout a first solution within 10 minutes with 7.5 MB ac-
different processors with different periods interactiroan  tive data on the heap. In the course of the computation,
trivial way. Thus, the kind of branching described before is more than 1.6 million propagators are created, thereoftabou
first applied to the messages sent through the data bus. Th&3,000 before the first branching step takes place. The num-
serialization of the messages automatically narrows downber of backtracking steps ranges from 0 to 40. The overall
the possible starting times of the sending processes. Thenumber of branching steps is about 2,200 in the best case.
process executions are then serialized by the same strategyhe number of propagators created is conformable to the
Currently it is not necessary to impose a certain order which reported memory consumption. Many of those propagators
processor to serialize first. which are imposed during the branching are entailed very

early and, thus, are garbage collected. It is important that

the entailment detection is not delayed until the consgicin
Assignment of Concrete Starting Times variables are determined. This would be insufficient be-

cause of the branching strategy used (only after all process
The second phase is the assignment of concrete startingxecutions and the messages are serialized the startieg tim
times. It turns out that a valid schedule can be obtainedare fixed).

just by simply assigning the starting times to thénimal  Recomputation was used to keep the memory consumption
value of those still remaining. This means that no further 55 |ow as possible. This means that whenever an inconsis-
search is needed. This observation can be gathered from gency occurs, previous computation states are reconsttuct
similar theorem of Van Hentenryck [8]. This theorem es- by recomputation. Copying (trailing in other systems) of

sentially states that mere constraint propagation is thdee gayjier computation states is thereby avoided [9].
sufficient for detecting any inconsistency if there are only

constraints of the form + ¢ < y andx + ¢ = y such that

c is an arbitrary integer. The theorem moreover states that
a solution can be obtained in a way very similar to the one
described in this section. Van Hentenryck’s theorem, how-
ever, does not include disjunctive constraints of the shapeWe presented a new potential application domain for con-
r+c < yVy+es < 2z Onthe other hand, the kind  straint programming with industrial strength. The veryrhea
of serialization that we described above leaves only one ofof this class of problems was described in full detail. We did
the two disjuncts of each disjunctive constraint, so that Va so in order to make this new class of applications amenable
Hentenryck’s theorem still applies. to constraint programming.

Conclusions

With the help of the concurrent constraint language Oz, we

were able to solve several large-scale problems from this
Empirical Results class. The specific problems that we solved involved finite

domains ranging from 0 to 6 million and more than 1,800

The constraint program described has been applied to seyinessage transmissions to be scheduled in a mutually non-

eral large-scale problems of the Daimler-Benz holding. overlapping manner. Up to 3'9. miIIion.propagators were
Currently, we have the data of seven such problems avail—Created in the course of computing a valid schedule.

able. A typical problem of this particular class looks as fol We also described which techniques ultimately led to suc-
lows. The frequency of the global clock leads to possible cess and which failed. Global constraints and an elabo-
starting times ranging from 0 to 6 million. There are 20 rate search heuristic, borrowed from Operations Research,
processors, hosting altogether about 170 processes.grakinturned out to be a pre-requisite for any successful so-
the executions of periodic processes into account, there ar lution. More sophisticated global constraints like edge-
about 350 process executions to be scheduled. The procedinding were not able to improve the scheduling. This might
executions transfer a number of about 1,200 inter-processobe due to a quite small load of the data bus, leaving the rel-
messages. With additional 600 resynchronization messagesevant finite domains rather unconstrained.

there are about 1,800 messages to be transferred through th'Iehe data bus yet turned out to be the bottleneck of the prob-
common data bus. This is also the largest number of argu-\om This is certainlynot what one would expect of a typ-

ments with which the global serialization constraint is in- .

voked. Among these 1,800 message transmissions there ar?aIIy 11% load of the data bus and a processor load of up
' ’ . . %. li f th h
1,200 that are transferred with a frequency higher than that.0 92%. What makes the scheduling of the data bus so hard

of the repetition window. The overall utilization of the dat Is the fact that it is the only resource commonly used by

bus is about 11%, the maximal utilization of a processor is all inter-processor communications. None of the common
about 92% o P branching strategies was capable of cracking this bottle-

neck. We experimented with one well-known strategy from
An appropriate program is implemented in Oz [14]. Run- real-time applications and several others from constraint



based scheduling. One strategy was the serialization of a [6] ERiksson, C. A framework for the design of distributed

number of items by considering one pair after the other.
What ultimately led to success was a new strategy, mini-

mizing the overall number of branching steps. This special [7]

branching strategy was implemented with the help of the
constraint propagator interface of Oz, exactly as the dloba

constraint for serializing an arbitrary number of items. 8]

Another important observation was that after a complete se-
rialization, no further search is needed in order to assign
concrete starting times. It actually suffices to take in each

case just the smallest value among those still remaining. [©]

This is due to a special characteristic of the problem un-
der consideration. Another observation was that excessive
memory consumption can be avoided by garbage collecting

redundant propagators as early as possible, a charaicterist [10

that Oz enjoys.

Currently we are validating our approach by tackling even
more complicated problems with up to 3,000 message trans-

missions and about 500 process executions. These problemg)

can also be solved in the presented framework.

[12]

Acknowledgements

The authors would like to thank Denys Duchier and the [13]

anonymous referees for their invaluable comments on a
draft version of this paper. The second author was

partly supported by the Bundesminister fur Bildung, Wis- [14]

senschaft, Forschung und Technologie (FKZ ITW 9601),
and the Esprit Working Group CCL-II (EP 22457).

[15]

References

[1] APPLEGATE D., AND CoOOK, W. A computational study
of the job-shop scheduling problenOperations Research
Society of America, Journal on Computing231991), 149—
156.

[2] BAPTISTE, P., RPE, C. L., AND NUIJTEN, W. Constraint-
based optimization and approximation for job-shop schedul
ing. In Proceedings of the AAAI-SIGMAN Workshop on In-
telligent Manufacturing Systen(5995).

[3] CARLIER, J.,AND PINSON, E. An algorithm for solving
the job-shop problem.Management Science 33 (1989),
164-176.

[4] CAsEAu, Y., AND LABURTHE, F. Disjunctive scheduling
with task intervals. LIENS Technical Report 95-25, Labo-
ratoire d’'Informatique de I'Ecole Normale Superieure,i®ar
France, 1995.

[5] CHENG, S.,AND AGRAWALA, A. Allocation and schedul-
ing of real-time periodic tasks with realative timing con-
straints. InProceedings of the Second International Work-
shop on Real-Time Computing Systems and Applications
(1995).

] HENZ, M., AND WURTZ, J.

[16]

[17]

(18]

[19]

[20]

real-time systemsSRN KTH/MMK/R-97/2-SE, Royal In-
stitute of Technology, KTH, Stockholm, Sweden, 1997.

GAREY, M., AND JOHNSON, D. Computers and
Intractability—A Guide to the Theory of NP-Completeness
Freeman, 1979.

HENTENRYCK, P. V., AND DEVILLE, Y. Operational se-
mantics of constraint logic programming over finite domains
In Proceedings of the AAAI Spring Symposium S€tigg1),
pp. 128-146.

HENZ, M., MULLER, M., SCHULTE, C., AND WURTZ, J.
The Oz standard modules. DFKI Oz documentation series,
German Research Center for Atrtificial Intelligence (DFKI),
Saarbrucken, Germany, 1997.

Using Oz for college
timetabling. InProceedings of the First International Con-
ference on Practice and Theory of Automated Timetabling
(1996), vol. 1153 ofLecture Notes in Computer Science
Springer-Verlag, Berlin, Germany, pp. 162—178.

ILOG. ILoG SOLVER 3.2, User Manual URL:

http://www.ilog.com, 1996.

KoPETZ H. Event-triggered versus time-triggered real-time
systems. IrProceedings of International Workshop on Op-
erating Systems of the 90s and Beyoral. 563 ofLecture
Notes in Computer Scienc8pringer-Verlag, Berlin, Ger-
many, 1991, pp. 87-101.

Liu, C.,AND LAYLAND , J. Scheduling algorithms for mul-
tiprogramming in a hard real-time environmegdburnal of
the ACM 201 (1973), 46-61.

MULLER, T., AND WURTZ, J. The constraint propaga-
tor interface of DFKI Oz. DFKI Oz documentation series,
German Research Center for Atrtificial Intelligence (DFKI),
Saarbrucken, Germany, 1997.

OLDER, W., AND BENHAMOU, F. Programming in
CLP(BNR). InPosition Papers for the First Workshop on
Principles and Practice of Constraint Programmi(ip93),
pp. 239-249.

SCHULTE, C., SMOLKA, G.,AND WURTZ, J. Encapsulated
search and constraint programming in OzPhoceedings of
Principles and Practice of Constraint Programmi(i94),
vol. 874 of Lecture Notes in Computer Sciencpringer-
Verlag, pp. 134-150.

SMITH, S.,AND CHENG, C.-C. Slack-based heuristics for
constraint satisfaction scheduling.Pnoceedings of the 11th
National Conference of the American Association for Artifi-
cial Intelligence(1993), pp. 139-144.

SMOLKA, G. The Oz programming model. ®omputer Sci-
ence TodaylLecture Notes in Computer Science, vol. 1000.
Springer-Verlag, 1995, pp. 324-343.

WALLACE, M. Practical applications of constraint program-
ming. Constraints 11&2 (1996), 139-168.

WURTZ, J. Oz Scheduler: A workbench for scheduling
problems. InProceedings of the Eighth International Con-
ference on Tools with Artificial Intelligen¢&996), pp. 149—
156.



