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1. INTRODUCTION

Translating programs is an important operation in computer science. There are
three main tasks where translations play an important role: (1) Translation is the
standard task of a compiler, where this is usually a conversion from a high-level
language into an intermediate or low-level one, like an assembly language; (2) trans-
lations are also required in programming languages for explaining the meaning of
surface language constructs by decomposing them into a number of more primitive
operations in the core part of the programming language; (3) translations are used
to obtain expressivity results between different languages or programming models.
Correctness of these translations is an indispensable prerequisite for their use.

There are different approaches to the foundations of program and translation cor-
rectness, based on logical methods, operational semantics, and denotational seman-
tics. For languages of restricted expressiveness, these methods are well-developed,
and, more essentially, there is usually little disagreement about the notion of cor-
rectness that one tries to capture. Proving the correctness of program translations
(for instance, on the basis of operational semantics as in the recent [Matthews
and Findler 2007; Sanjabi and Ong 2007]) is an ongoing research topic that is,
however, still poorly understood when it comes to concurrency and mutable state.
Nevertheless these features have to be accommodated when reasoning about the
implementations of language extensions in terms of a core language (which are of-
ten packaged into the language’s library). Typical examples are implementations of
channels, buffers, or semaphores using mutable reference cells and futures in Alice
ML [Alice 2007; Niehren et al. 2006; Schwinghammer et al. 2009], or using MVars
in Concurrent Haskell [Peyton Jones et al. 1996].

To study translations, in this paper we adopt an observational semantics based
on convergence and a set of contexts. (More precisely, as a more comprehensive
term, we will often use “observer” instead of “context” in the following.) Two
programs p, p′ are considered equivalent if they exhibit the same convergence be-
havior in all contexts O, denoted as p ∼ p′. For non-deterministic and concurrent
programming languages a single (may-) convergence predicate p↓ is insufficient (in
the sense that the induced program equivalence does not distinguish programs that
exhibit intuitively distinct behaviours). Instead, for non-deterministic and con-
current languages, a suitable equivalence arises from a combination of may- and
must-convergence (see e.g. [De Nicola and Hennessy 1984; de’Liguoro and Piperno
1992; Carayol et al. 2005; Sabel and Schmidt-Schauß 2008; Niehren et al. 2007;
Schmidt-Schauß and Sabel 2010]). Accordingly, we will consider an observational
semantics which may be based on multiple convergence predicates.

In this setting, we consider translations T : LS → LT between source and target
languages LS and LT that are both equipped with an observational semantics. We
view convergence equivalence as a basic requirement for correct translations, stating
that convergence is not changed by the translation: p↓ ⇐⇒ T (p)↓. However, this
requirement is not sufficient since it does not tell us to which extent interactions
with program contexts are preserved. The fundamental semantical requirement for
a correct translation is therefore observational correctness. This condition means
that T is convergence equivalent and compositional up to observations, where the
latter says that O(p)↓ ⇐⇒ T (O)(T (p))↓ holds, i.e., observations are preserved by
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the translation.
Of course, often the language LT is larger and provides more contexts than LS;

consequently, for a convergence equivalent translation T there may be programs
with p1 ∼LS

p2 but T (p1) 6∼LT
T (p2). There are other important correctness

properties of translations: A translation T : LS → LT is adequate if T (s) ∼LT
T (t)

implies s ∼LS
t for all programs s and t of LS. Adequacy is implied by observational

correctness, and it ensures that program transformations of the target language LT

can be soundly applied with respect to observations made in the source language
LS. More precisely, suppose a translated program T (s) is optimized (by a program
transformation) to an equivalent program s′ ∼LT

T (s) and that s′ is the translation
of some LS-program t, i.e. T (t) = s′, then s ∼LS

t is guaranteed by adequacy of T .
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Full abstraction extends adequacy by the inverse property, i.e., that program equiv-
alence is reflected and preserved by the translation. If T is fully abstract, then LS

and T (LS) ⊆ LT have the same equivalences, and LT conservatively extends T (LS).
Thus the contexts in LT cannot make more distinctions in T (LS) than the ones that
are provided by the contexts of T (LS) already. However, LT may be strictly greater
than T (LS). The property of full abstraction is often too strong as a requirement;
for instance, compilation of high-level languages to abstract machine languages are
typically far from being fully abstract, but nevertheless intuitively correct. In the
case of language extensions full abstraction exactly means conservativeness. If the
translation is a bijection on the equivalence classes, then we can even say that the
translation is an isomorphism.

Besides convergence predicates and contexts, a further ingredient in the frame-
work that we propose is a notion of closedness of programs. This concept is nec-
essary in order to have a common framework for higher-order languages with call-
by-value and call-by-need reduction strategies. For instance, the exact condition
for the observational equivalence in call-by-value languages is often the following:
p ∼LS

p′ holds if for all contexts O where O[p] and O[p′] are closed (in the sense
of having no free variables), O[p]↓ iff O[p′]↓. In general, this relation differs from
the relation defined without the closedness condition. We also consider types for
programs and contexts in the framework, and allow only type correct application
of contexts to programs. Correspondingly, observational equivalence (and a corre-
sponding preorder) are only considered on programs with equal types.

In order to illustrate our framework and demonstrate its applicability, we point
to rather diverse examples. First, we look at the pure and untyped call-by-name
and call-by-value lambda-calculus, and then use PCF as a well-known example of a
typed lambda-calculus both in its call-by-value and call-by-name variants (as well
as some other variations). We also demonstrate how the non-structural and non-
compositional translation of lambda-terms into deBruijn-indexed terms matches our
framework, and show that this is a fully abstract translation. We also refer to several
published papers on contextual equivalences and translations and explain how these
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make use of the framework. As a more fully worked out example we consider the
standard Church encoding of pairs in a call-by-value lambda calculus; this example
shows that our basic requirement for correctness, convergence equivalence, fails
without an appropriate notion of typing.

While all these examples are rather small, we believe that they illustrate well
the key properties of our framework. For instance, the typing issues raised by the
encoding of pairs is an instance of the general situation where an abstract data type
is implemented in terms of some operations on a representation type. A real world
example – the correctness of encoding buffers in the concurrent core of Alice ML –
has been worked out by the authors in [Schwinghammer et al. 2009].

Related work. Various proof methods have been developed for establishing con-
textual equivalences. These include context lemmas (e.g., [Milner 1977]), bisimula-
tion methods (for instance, [Gordon 1999]), diagram-based methods (e.g., [Kutzner
and Schmidt-Schauß 1998; Niehren et al. 2007]), and characterizations of contextual
equivalence in terms of logical relations (e.g. [Pitts 2000]).

In most cases, translations and language extensions, and their effect on equiva-
lences, are not discussed. There are some notable exceptions: a translation from
the core of Standard ML into a typed lambda calculus is given in [Ritter and Pitts
1995], and full abstraction is shown by exhibiting an inverse mapping, up to con-
textual equivalence. Adequate translations (with certain additional constraints)
between call-by-name and call-by-value versions of PCF are considered in [Riecke
1991], via fully abstract models (necessitating the addition of parallel constructs
to the languages) and domain-theoretic techniques. Milner [1990] shows that the
call-by-name as well as the call-by-value lambda calculus can be encoded into the
π-calculus and shows adequacy of these encodings. A similar result is obtained
for the call-by-name lambda calculus with McCarthy’s amb-operator in [Carayol
et al. 2005]. The fact that adequate (and fully abstract) translations compose is
exploited in [McCusker 1996], where a syntactic translation is used to lift semantic
models for FPC to ones for the lazy lambda calculus. In a similar vein, Sanjabi and
Ong [2007] develop a translation from an aspect-oriented language to an ML-like
language, to obtain a model of the former. Their adequacy proof follows a similar
pattern to ours, but does not abstract away from the particularities of the concrete
languages. In [Johann and Voigtländer 2006; Voigtländer and Johann 2007], the
effect of adding a strictness operator to lambda calculus with parametric polymor-
phism is exhibited.

Shapiro [1991] categorizes implementations and embeddings in concurrent scenar-
ios, but does not provide concrete proof methods based on contextual equivalence.
For deterministic languages (where may- and must-convergence agree), frameworks
similar to our proposal were considered by Felleisen [1991] and Mitchell [1993].
Their focus is on comparing languages with respect to their expressive power; the
non-deterministic case is only briefly mentioned by Mitchell. Mitchell’s work is
concerned with (the impossibility of) translations that additionally preserve rep-
resentation independence of ADTs, and consequently assumes, for the most part,
source languages with expressive type systems. Felleisen’s work is set in the context
of a Scheme-like untyped language. Although the paper discusses the possibility of
adding types to get stronger expressiveness statements, the theory of expressive-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



Correctness of Program Translations for Observational Semantics · 5

ness is developed by abandoning principles similar to observational correctness and
adequacy.

For parallel and concurrent languages, approaches to prove compiler correctness
can be found in [Wand 1995; Gladstein and Wand 1996]. While these results make
use of a denotational semantics (and its domain is a common “intermediate lan-
guage” for both the source and the target language), the recent [Hu and Hutton
2009] does not use a denotation, but shows correctness more directly. Nevertheless,
the approach taken in [Hu and Hutton 2009] requires that the values of the source
and the target language are comparable by a bisimulation equivalence. The work
on certified compilers of C [Leroy 2009] uses also behavioral criteria for correct-
ness, however, the correctness notion differs from ours, since mainly convergence
equivalence of the translations is shown where erroneous source programs are not
considered. In [Sabel 2008] observational correctness and also full-abstraction of a
translation from a non-deterministic call-by-need lambda calculus with McCarthy’s
amb [McCarthy 1963] into a concurrent abstract machine was shown w.r.t. fair may-
and must-convergence.

Using the techniques from this paper, Schmidt-Schauß et al. [2010] prove some
isomorphisms between different deterministic extended lambda calculi with cyclic
let and Abramsky’s lazy lambda calculus [Abramsky 1990], based on contextual
equivalence.

Outline. In Section 2 we introduce our framework for program calculi with ob-
servational semantics. In Section 3 we define the notion of a translation, introduce
the fundamental properties of translations, discuss which is the right correctness
notion and finally show some relations between these properties. In Section 4 we
consider the specific case of language extensions and analyze the conditions under
which full abstraction can be deduced. In Section 5 we provide two larger exam-
ples for translations: Church’s encoding of pairs and the de Bruijn encoding of
the lambda calculus. For both examples we show observational correctness of the
corresponding translations.

2. CALCULI WITH OBSERVATIONAL SEMANTICS

In this section we present a general framework within which notions of correctness of
language translations can be analyzed and discussed. The ingredients of the frame-
work are types, programs (or expressions, processes,. . . ), a closedness test, contexts
(as well as a subset of closing contexts), and convergence observations, which then
allow us to explain program equivalence and a notion of correctness for translations.
We will motivate and illustrate these ingredients by classic, standard examples of
programming language abstractions: these consist usually of calculi equipped with
a contextually defined program equivalence that is based on convergence behav-
ior. After introducing our definitions, we illustrate that this framework captures
a wide range of situations: call-by-value, call-by-name and call-by-need, small-step
and big-step operational semantics, deterministic and non-deterministic reduction,
contextual and test-function based equivalence, and simple forms of typing.
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2.1 Examples for Abstract Calculi with Observational Semantics

We illustrate the ideas behind the framework by varying standard examples of
idealized programming languages, like lambda calculi and PCF. As a first example
we consider the lazy lambda calculus:

Example 2.1 The call-by-name lambda calculus. The call-by-name (or lazy)
lambda calculus [Plotkin 1975; Abramsky 1990] is an untyped pure λ-calculus. The
expressions of this calculus, given by the grammar t ::= x | (t1 t2) | λx.t, consist of
variables x from some infinite set, applications (t1 t2), and functional abstractions
λx.t. Contexts C of the call-by-name lambda calculus are like expressions where
a single subexpression is replaced by the context hole [·]. C[s] is the expression
obtained by filling the hole of C by the expression s. We define convergence of a
term t to an abstraction v (denoted with t ↓ v) by a big-step semantics, i.e. it is
defined inductively as follows:

• λx.s ↓ λx.s •
s ↓ λx.s′ s′[t/x] ↓ v

(s t)↓v

The observation t↓ (“t converges”) holds iff there exists an abstraction v such that
t ↓ v holds. An equivalent definition of the operational semantics and convergence
can be given by a small-step semantics, where the reduction relation → is defined
by beta reduction steps applicable in reductions contexts that satisfy the grammar
R ::= [·] | (R t), i.e., R[((λx.t1) t2)]→ R[t1[t2/x]]. Convergence t↓ holds iff t→∗ v
for some abstraction v by a sequence of call-by-name beta-reductions. Contextual
equivalence t ∼ t′ holds iff for all contexts C: C[t]↓ ⇔ C[t′]↓. It is easy to verify
that the relation ∼ is a congruence.

We also summarize easy observations for the pure call-by-value calculus:

Example 2.2 The call-by-value lambda calculus. The call-by-value (cbv) lambda
calculus [Plotkin 1975] is an untyped pure λ-calculus. The expressions and contexts
are the same as for the lazy lambda calculus. The operational semantics and conver-
gence can be given by a small-step semantics (and also alternatively by a big-step se-
mantics), where the reduction relation→cbv is defined by value-beta reduction steps
applicable in reductions contexts that satisfy the grammar R ::= [·] | (R t) | (v R),
where v is a variable or an abstraction, i.e., R[((λx.t) v)]→ R[t[v/x]] where v is an
abstraction or a variable. Convergence w.r.t call-by-value t↓cbv holds iff t→∗cbv v for
some variable or abstraction v by a sequence→∗cbv of call-by-value beta-reductions.

Contextual equivalence t ∼cbv t
′ holds iff for all contexts C: C[t]↓cbv ⇔ C[t′]↓cbv .

Another often used variant of contextual equivalence is to restrict the contexts in
the definition to closing contexts: t ∼ t′ iff for all contexts C such that C[t] and C[t′]
are closed, C[t]↓ ⇔ C[t′]↓. It is folklore that the observational equivalence of the
call-by-name λ-calculus is not changed by this restriction. The proof technique is
to “close” contexts C by transferring them into (λx1, . . . xn.C) Ω . . .Ω, where Ω :=
(λx.(x x)) (λx.(x x)). The same result holds for the (pure) call-by-value λ-calculus,
where closing C is done by transferring it into (λx1, . . . xn.C) (λx.Ω) . . . (λx.Ω).

However, if Boolean constants and conditionals like if-then-else are added to
a call-by-value calculus, then observational equivalence including all contexts may
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differ from the observational equivalence restricted to closing contexts. E.g., in
the typed call-by-value lambda calculus with Boolean values and if-then-else the
equivalence C[if x then true else true]↓ ⇐⇒ C[true]↓ holds for all (type-
correct) closing contexts C, but does not hold for arbitrary contexts: for the empty
context, (if x then true else true) cannot converge, while true↓. The usual ap-
proach for call-by-value languages is to consider closing contexts only (e.g. [Plotkin
1975; Mason et al. 1996; Pitts and Stark 1998]).

The example calculi considered so far indicate that the equivalence using closing
contexts is more general than the equivalence defined for all contexts. Experience
shows that this holds for most calculi, hence the framework will support this form
of definition.

The prototypical example of an idealized (functional) programming language is
pcf with contextual equivalence, where we will use variations of PCF, like call-by-
value and call-by-name reduction strategy, and also other variations of reductions
of constants. We briefly recall call-by-value pcf.

Example 2.3 Call-by-value PCF. The language pcf (in its call-by-value variant)
[Plotkin 1977; Pierce 2002] is the simply-typed lambda calculus over two base types
B and N (Booleans and numbers), with constants for Boolean values and non-
negative numbers, arithmetic operations pred, succ, and zero?, and fixed point
combinators at all function types. Contexts are defined like PCF terms C, but with
a “hole” which can be filled with appropriately typed terms t (possibly capturing
free variables of t) to obtain another term C[t]. The language is usually presented
with a big-step operational semantics. We will use here the equivalent small-step
operational semantics t → t′, which is generated by call-by-value beta reduction
(λx.t) v → t[v/x], and reduction axioms for the constants, such as fix λx.t →
t[λy.(fix λx.t) y/x]. The reduction must take place in reduction contexts R defined
as R ::= [.] | (R s) | (v R) | if R then t1 else t2 | pred R | succ R | zero? R.
Closed values are defined as boolean values, integer values, function constants, or
closed abstractions. Variables are seen as non-closed values. Due to the fixpoint
reduction axiom, programs may diverge, and we write t↓ if there is some value v such
that t→∗ v. Contextual equivalence on equally-typed terms is defined by observing
termination in all closing contexts: t ∼ t′ if for all appropriately typed contexts C
and if C[t], C[t′] are closed, C[t]↓ ⇔ C[t′]↓. This captures the intuition that t and
t′ may be freely exchanged in any larger program without affecting its observable
behavior. Technically, ∼ forms a congruence on terms (see Proposition 2.10), which
follows from the fact that contexts can be “composed” by plugging one context C
into the hole of a second context C ′ to yield a context C ′[C]. As already remarked,
the contextual equivalence defined w.r.t. all contexts is not the same as ∼: the two
expressions if x then true else true and true are witnesses for this difference.

Example 2.4 Call-by-name PCF. The call-by-name variant of PCF has the fol-
lowing differences compared with call-by-value PCF: beta-reduction is applicable
for any argument s: (λx.t) s → t[s/x], the reduction contexts are different, since
they do not force evaluation of arguments in expressions like (λx.t) s, and there is a
modified fixpoint reduction: fix λx.t→ t[(fix λx.t)/x]. The reduction contexts are
R ::= [.] | (R s) | if R then t1 else t2 | pred R | succ R | zero? R. Analyzing
the observational equivalence shows that contextual equivalence w.r.t. all contexts
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is the same as for closed contexts.

Remark 2.5 (eta)-conversion. The conversion (eta) is usually not correct under
observational equivalence, since Ω 6∼ λx.Ω. Depending on the calculus, some in-
stances of (eta) may hold: The equivalence v ∼cbv λy.v y usually holds, where v
is a value. It holds in the call-by-name calculus of Example 2.1 for abstractions v,
and in the call-by-value calculus of Example 2.2 if v is an abstraction or a variable.

It is useful to allow for more than a single observation, in particular for calculi
that model non-determinism or concurrency, as the following two examples show.

Example 2.6 Non-deterministic call-by-value PCF. Suppose that call-by-value
PCF (with a small-step reduction semantics, see Example 2.3) is extended by a
choice construct t ⊕ t′, with reductions v1 ⊕ v2 → vi. For this non-deterministic
language it makes sense to observe not only whether a program may terminate,
but also if its termination is inevitable: for instance, a form of must-convergence,
written t⇓, is defined if the possibility of convergence is retained by reduction. For-
mally, t⇓ if t→∗ t′ implies t′↓. Then, contextual equivalence is defined with respect
to both may- and must-convergence behavior, i.e., t ≤may t

′ if for all appropriately
typed contexts C such that C[s], C[t] are closed: C[t]↓ =⇒ C[t′]↓ and, similarly,
t ≤must t

′ if C[t]⇓ =⇒ C[t′]⇓ for these contexts. Then t ∼may t
′ iff t ≤may t

′

and t′ ≤may t, t ∼must t
′ iff t ≤must t

′ and t′ ≤must t, and t ∼ t′ iff t ∼may t
′ and

t ∼must t
′. As in Example 2.3, contextual equivalence is a congruence relation.

There is at least one other form of must-convergence used in the literature for
non-deterministic calculi: t⇓′ if there is no infinite reduction sequence starting from
t. Here, we just want to make the point that neither ↓ nor ⇓ alone suffice to capture
the intuitive notion of equivalence. For example, λx.x ⊕ λx.Ω ∼may λx.x holds,
whereas, if must-convergence is considered, we can distinguish these expressions:
λx.x⊕ λx.Ω 6∼must λx.x, for each of the must-convergence notions.

Example 2.7 Terminating PCF. Let the language pcf−µ,0 be call-by-value PCF
(see Example 2.3) modified as follows: the fixed point operators are dropped and
(pred 0) is defined as resulting in 0 (instead of being an error). Then all closed
programs terminate with a value, and therefore the observation of termination
does no longer make sense. Instead, a sensible notion of program equivalence may
be obtained by observing if a program results in a particular (integer) constant:
writing t↓n if t →∗ v implies v = n, contextual equivalence t ∼n t′ holds if for all
appropriately typed contexts C such that C[t], C[t′] are closed: C[t]↓n ⇔ C[t′]↓n,
and t ∼ t′ if for all n : t ∼n t′.

Observe that in Example 2.7 t ∼n t′ is equivalent to t ∼1 t
′. Hence, in contrast to

the Example 2.6, here a single convergence predicate would be sufficient to define
∼. In other words, while it can be natural to consider sets of observations and the
equivalences they induce, this generality is not always essential.

2.2 Program Calculi with Observational Semantics

Abstracting from these examples, a calculus in our framework consists of a collection
of types, typed programs, typed contexts, a notion of observation and a notion of
closedness. In the following we use a slightly more neutral terminology and, instead
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of contexts, speak of tests or observers. This makes it easier to fit formalisms
without an obvious notion of context into the framework, like abstract machines.

Definition 2.8 (OSP calculus). A program calculus with observational semantics
(OSP-calculus) is a tuple (T ,P,O,OBS,G, CO) where

—T is a set of types, ranged over by τ .

—P is a family of sets Pτ for every type τ ∈ T , where Pτ is the set of programs of
type τ , ranged over by p. In abuse of notation we write P for

⋃
τ∈T Pτ .

—O is a family of sets of functions Oτ1,τ2 for every pair τ1, τ2 ∈ T of types, called
observers, with O : Pτ1 → Pτ2 for O ∈ Oτ1,τ2 , such that
—the identity function Idτ is included in Oτ,τ for every type τ .
—O is closed wrt. function composition, i.e. for all τ1, τ2, τ3 ∈ T and all O1 ∈
Oτ1,τ2 , O2 ∈ Oτ2,τ3 : O2 ◦O1 ∈ Oτ1,τ3 .

For notational convenience we write O for
⋃
τ1,τ2∈T Oτ1,τ2 .

—OBS = {⇓1,⇓2, . . .} is a set of observations (or convergence predicates) where
each ⇓i is a predicate2 on P written in postfix notation. For an observation ⇓i
we write ⇑i for its negation, i.e. p ⇑i iff p⇓i does not hold.

—G is a predicate on P, where we write G(p) if G holds for p. Intuitively, we think
of G(p) as meaning that p is a closed program.

—CO (closing observers) is a family of sets of functions COτ for every type τ ∈ T ,
such that ∅ 6= COτ ⊆ Oτ,τ and such that CO is closed w.r.t. function composition,
i.e. for all τ1, τ2, τ3 ∈ T and all D1 ∈ COτ1,τ2 , D2 ∈ COτ2,τ3 : D2 ◦D1 ∈ COτ1,τ3 .

The following conditions relating CO and G must hold:

(OSP-C1) For all types τ and all p ∈ Pτ , there is some D ∈ COτ , such that G(D(p))
holds.

(OSP-C2) For all programs p ∈ Pτ , all D ∈ COτ : G(p) =⇒ G(D(p)).

(OSP-C3) For all programs p ∈ Pτ , all D ∈ COτ and for all i:
G(p) =⇒ (D(p)⇓i ⇐⇒ p⇓i).

The above examples match this definition by taking Pτ to be the set of (all or
only the closed) expressions of type τ , Oτ1,τ2 the set of τ2-valued contexts with
hole of type τ1, and where C(t) is C[t]. In Examples 2.1, 2.2, 2.3 and 2.4, the
observations are {⇓1,⇓2, . . .} = {↓}, in Example 2.6 we have {⇓1,⇓2, . . .} = {↓,⇓},
and in Example 2.7 the observations are {⇓1,⇓2, . . .} = {↓n | n ∈ Z}.

The motivation for including G and CO (test for closedness and a set of closing
observers, respectively) is to provide a common framework for call-by-name and
call-by-value calculi and their contextual equivalence relation (see Example 2.3).
The closing observers from CO may be used to close expressions before applying the
tests. However, CO should be chosen as a particular small subset of the observers
that behave similar to substitutions that replace free variables by closed expressions.
For example, in lambda calculi, an appropriate choice of CO would be the closed
(substitutive) contexts (λx1, . . . xn.[·]) s1 . . . sn and their compositional closure. It
is also possible to permit the substitutions {x1 7→ a1, . . . , xn 7→ an} where ai are

2A predicate is understood like a function from programs to Boolean values
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closed values (or other closed programs), provided the substitutions are observers.
On the other hand, if CO would be chosen as all closed contexts, then the last
property of Definition 2.8 is in general false, since for example in call-by-value
lambda calculi: true↓, and for D := (Ω [·]), we have D[true]↑. The abstract
properties of OSP-calculi are sufficient to ensure that observational equivalence is
a congruence (proved in Proposition 2.10).

In our example calculi (Example 2.1,2.2, 2.3, 2.4, 2.6, and 2.7) so far, the condi-
tions on G and CO hold using the substitutive contexts and their compositions, or
the substitutions: Every expression can be closed with some observer from CO and
for closed expressions e, the expression D[e] for D ∈ CO has the same convergence
behavior as e.

In Example 2.1, the lazy lambda calculus, the most appropriate modeling is to
use the definition of contextual equivalence via closing contexts. However, it is also
possible to choose G to be true for all programs and use the singleton containing
the empty context (i.e. the identity observer) as the set CO, which results in the
same contextual equivalence.

Definition 2.8 allows for untyped calculi by considering a single, ‘universal’ type.
Note that in this case the conditions simply state that O is a monoid with unit Id .

The definition of contextual equivalence generalizes in the evident way from the
above examples. In fact, we will also consider a preorder that allows more flexibility
and is an analogue of the domain-theoretic information preorder.

Definition 2.9 Observational preorder and observational equivalence. For a
fixed OSP calculus, and for each τ ∈ T , we define the following relations on Pτ :

—p1 ≤⇓i,τ p2 iff for all τ ′ ∈ T and all O ∈ Oτ,τ ′ , if G(O(p1)) and G(O(p2)), then
O(p1)⇓i implies O(p2)⇓i.

—p1 ≤τ p2 iff ∀i : p1 ≤⇓i,τ p2.

—p1 ∼⇓i,τ p2 iff p1 ≤⇓i,τ p2 and p2 ≤⇓i,τ p1.

—p1 ∼τ p2 iff p1 ≤τ p2 and p2 ≤τ p1.

The relations ≤⇓i,τ and ≤τ are precongruences, and the relations ∼⇓i,τ and ∼τ
are congruences, in the following sense:

Proposition 2.10 (Pre-) congruence.

(1 ) The relations ≤⇓i,τ and ≤τ are precongruences, i.e. they are preorders, and
p1 ≤⇓i,τ p2 implies O(p1) ≤⇓i,τ ′ O(p2) for all O ∈ Oτ,τ ′ (similarly for ≤τ ).

(2 ) The relations ∼⇓i,τ and ∼τ are congruences, i.e. they are precongruences and
equivalence relations.

Proof. It is easy to see that ≤⇓i,τ is reflexive. In order to check that each ≤⇓i,τ
is transitive, let p1 ≤⇓i,τ p2 ≤⇓i,τ p3 and O be an observer in Oτ,τ ′ , such that
G(O(p1)) and G(O(p3)), and such that O(p1)⇓i. We have to show that O(p3)⇓i.
If G(O(p2)), then O(p1)⇓i implies O(p2)⇓i, which in turn implies O(p3)⇓i. In the
other case, there is some observer D ∈ COτ ′ , such that G(D(O(p2))). By the
conditions on G, D(O(p1))⇓i ⇐⇒ O(p1)⇓i and D(O(p3))⇓i ⇐⇒ O(p3)⇓i, hence
D(O(p1))⇓i. Since D ◦ O is also an observer, we obtain D(O(p2))⇓i, and also
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D(O(p3))⇓i, since G(D(O(p3))), and thus O(p3)⇓i. It remains to show that ≤⇓i,τ
is compatible with observers: Let p1 ≤⇓i,τ p2 and O ∈ Oτ,τ ′ . For any observer O′ ∈
Oτ ′,τ ′′ with G(O′(O(p1))) and G(O′(O(p2))) the inequation p1 ≤⇓i,τ p2 obviously
implies O′(O(p1))⇓i =⇒ O′(O(p2))⇓i, since O′ ◦O is also an observer.

Part (2) of the proposition follows immediately from the first part and the defi-
nition of ∼τ in terms of ≤τ .

Lemma 2.11. Let p1, p2 be programs of the same type τ with G(p1),G(p2). If p1⇓i
and one of the following holds: p1 ∼τ p2, p1 ∼⇓i,τ p2, p1 ≤τ p2, or p1 ≤⇓i,τ p2,
then also p2⇓i.

In the following, types are sometimes omitted in the notation, and we implicitly
assume that type information follows from the context.

2.3 Further Examples

The framework may be instantiated by lambda calculi with a small-step operational
semantics, like the lazy lambda calculus, call-by-name and call-by-value PCF as in
our previous examples, etc. Also abstract machines fit into the framework where
machine environments, stacks, heaps etc. may be modelled as observers. We also
do not rely only on small-step semantics, also calculi with big-step operational
semantics fit into our framework. We sketch some further examples to illustrate
the range of situations that fit the definition of an abstract OSP calculus. In
particular, Definition 2.8 captures not only variants of the lambda calculus, but
can also be applied to process calculi:

Example 2.12 CCS. CCS [Milner 1989] may be viewed as an (untyped) OSP
calculus: for a fixed action set Σ, both programs and observers are given by the
set of CCS processes P,Q, . . ., and P ◦Q as well as P (Q) are given by the parallel
composition P |Q. More precisely, observers are given by the functions fP with
fP (Q) = P |Q. By considering observation predicates ↓σ for every σ ∈ Σω such
that P↓σ holds if σ is a trace of P , we obtain a trace-based testing equivalence ∼
on processes. Variations are possible, for instance by restricting the observations
to finite traces σ ∈ Σ∗ (see [Nain and Vardi 2007]).

The term “calculus” in Definition 2.8 is to be understood in a loose sense. For
instance, also semantic models fit in:

Example 2.13 Cpos. A semantic counterpart to PCF, as described in Exam-
ple 2.3, is given by ω-complete pointed partial orders (cppos) and continuous maps.
More precisely, if DB and DN are the flat cppos with underlying sets {0, 1} and Z
respectively, we let Dτ1→τ2 = Dτ1 → (Dτ2)⊥ be the set of strict continuous functions
from Dτ1 to Dτ2 extended with a new least element, and order Dτ1→τ2 pointwise.
We can then take Pτ to be the underlying set of Dτ . The observers are continuous
maps, i.e., Oτ1→τ2 = Dτ1 → Dτ2 , and for a ∈ Pτ the observation a↓ holds if a 6= ⊥.
In this example, a ∼τ a′ if and only if a = a′.

3. TRANSLATIONS

In this section we discuss mappings between OSP calculi. Such mappings often
arise very concretely when relating two calculi; examples are compilations of one
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programming language into another, which may induce a mapping between possibly
rather different calculi, or the removal of syntax sugar, which may be expressed as
a mapping from an extended calculus into a core calculus, or the embedding of a
calculus in its extended version. Also expressivity results between different calculi
are usually obtained by mapping one calculus into another one.

A simple concrete example of the removal of syntax sugar is an extension of PCF
with n-ary functions (see also the extended Example 4.7), which can be viewed as a
syntactic convenience and expressed as curried function abstraction and application:

(τ1, . . . , τn)→ τ ; τ1 → (. . .→ (τn → τ))

λ(x1, . . . , xn).t ; λx1. . . . λxn.t

t(t1, . . . , tn) ; ((t t1) . . .) tn

By extending this scheme homomorphically to all other language constructs, we
obtain a mapping between n-ary PCF and the basic PCF language.

Call-by-value PCF extended with data constructors like pairs and lists permits
well-behaved translations into PCF under certain typing restrictions, as shown
in Section 5.1. The de Bruijn-encoding of lambda-calculi can also be seen as a
translation (see Section 5.2).

A question that arises is in which sense such translations between OSP calculi
are correct, i.e., how does the semantics in source and target calculus relate with
respect to the translation, and what are the minimal correctness requirements?

3.1 Definition of Translations

In the following we mainly consider translations between OSP calculi that have the
same number of observation predicates {⇓1,⇓2, . . .}, in a fixed ordering. However,
we generalize this by permitting different kinds and numbers of such predicates in
order to facilitate comparisons. We define some characterizing notions of trans-
lations. In the remainder of this section we exhibit their dependencies and prove
some consequences.

Definition 3.1 Translation. A translation T : C → C′ between two OSP-calculi
C = (T ,P,O,OBS,G, CO) and C′ = (T ′,P ′,O′,OBS ′,G′, CO′) is a mapping from
types to types T : T → T ′, programs to programs T : Pτ → P ′T (τ), observers to
observers T : Oτ,τ ′ → O′T (τ),T (τ ′), observation predicates to observation predicates
T : OBS → OBS ′, and closing observers to closing observers T : COτ → CO′T (τ),
such that T (Idτ ) = IdT (τ).

3.2 Correctness of Translations

The following definition captures the fundamental requirements for correct trans-
lations:

Definition 3.2 Observational correctness of translations. A translation T : C →
C′ is observationally correct (oc, for short) if it is convergence equivalent and com-
positional up to observations, where a translation T is:

convergence equivalent (ce) if for all p: G(p) ⇐⇒ G′(T (p)) (also called closed-
ness equivalent cle), and if for all i and all p: G(p) implies

(
p⇓i ⇐⇒ T (p)⇓′T (i)

)
,

and
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compositional up to observations (cuo) if the following two conditions hold:
(i) for all types τ, τ ′, all observers O ∈ Oτ,τ ′ , and all programs p ∈ Pτ :
G(O(p)) ⇔ G′(T (O)(T (p))); and (ii) for all i, all types τ, τ ′, all observers
O ∈ Oτ,τ ′ , and all programs p ∈ Pτ : G(O(p)) implies T (O(p))⇓′T (i) ⇐⇒
T (O)(T (p))⇓′T (i).

A trivial example of a translation that satisfies all the properties above is the
identity translation C → C.
Since there is an identity observer for every type, we have:

Lemma 3.3. If a translation T is ( cuo), then for all p: G(p) ⇐⇒ G′(T (p))
holds.

Observational correctness has a more explicit description by a homomorphism-
like condition: The translation retains the results of applying observers and then
applying a convergence test.

Lemma 3.4 Alternative characterization of (oc). Suppose T : C → C′ is
a translation. Then the following are equivalent:

(1 ) T is observationally correct.

(2 ) ( acooc): For all τ ∈ T , all p ∈ Pτ , O ∈ Oτ,τ ′ :
G(O(p)) ⇐⇒ G′(T (O)(T (p))),
and if G(O(p)), then for all i: O(p)⇓i ⇐⇒ T (O)(T (p))⇓′T (i).

Proof. (1) =⇒ (2): Let T be (oc), i.e., convergence equivalent and compo-
sitional up to observations; let O be an observer and p be a program such that
G(O(p)). Then

O(p)⇓i
ce⇐⇒ T (O(p))⇓′T (i)

cuo⇐⇒ T (O)(T (p))⇓′T (i)

and thus the claim holds.
(2) =⇒ (1): Instantiating O with the unit Idτ we first obtain that G(p) ⇐⇒
G′(T (p)) holds. Furthermore, the condition G(p) implies

p⇓i ⇐⇒ Idτ (p)⇓i
acooc⇐==⇒ T (Idτ )(T (p))⇓′T (i) ⇐⇒ T (p)⇓′T (i) (1)

since T (Idτ ) = IdT (τ). Hence T is (ce).
It remains to show that T is (cuo): Let G(O(p)) hold, then:

T (O(p))⇓′T (i)
ce⇐⇒ O(p)⇓i

acooc⇐==⇒ T (O)(T (p))⇓′T (i).

Compositionality up to observations is a generalization of compositionality and
its variants, with easy proofs:

Lemma 3.5. Let T : C → C′ be a translation that is cle. Then each of the
following conditions implies that T is ( cuo):

(1 ) T is compositional, meaning that for all O and p: G(O(p)) implies T (O(p)) =
T (O)(T (p)).

(2 ) T is compositional modulo ∼, meaning that for all (appropriately typed) O
and p: G′(T (O(p))) ⇐⇒ G′(T (O)(T (p))) and G(O(p)) =⇒ T (O(p)) ∼′
T (O)(T (p)).
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Proof. Let T be compositional. Then G(O(p))⇔ G′(T (O(p))) holds, since T is
closedness equivalent. Compositionality shows G′(T (O(p)))⇔ G′(T (O)(T (p))) and
thus G(O(p))⇔ G′(T (O)(T (p))). The remaining part of (cuo) holds obviously.

Now let T be compositional modulo ∼. Then G(O(p))⇔ G′(T (O(p))) by closed-
ness equivalence. The compositionality modulo ∼-conditions imply G(O(p)) ⇔
G′(T (O)(T (p))). For the other part of (cuo) let G(O(p)) hold. From closed-
ness equivalence we have G′(T (O(p))) and also G′(T (O)(T (p))) by composition-
ality modulo ∼. Now Lemma 2.11 is applicable and shows T (O(p))⇓′T (i) ⇐⇒
T (O)(T (p))⇓′T (i).

This lemma cannot be improved (see Proposition 3.16.(3)).
We define properties of translations w.r.t. the observational preorder.

Definition 3.6 Adequacy and full abstraction of translations. The following
properties w.r.t. observational preorder ≤τ are defined for a translation T : C → C′:
We say that T is

adequate if for all τ , and all p1, p2 ∈ Pτ : T (p1) ≤′T (τ) T (p2) =⇒ p1 ≤τ p2, i.e.,
if T is ≤-reflecting;

fully abstract if for all τ , and all p1, p2 ∈ Pτ : p1 ≤τ p2 ⇐⇒ T (p1) ≤′T (τ) T (p2),
i.e., if T is ≤-preserving and ≤-reflecting;

an isomorphism if T is a bijection on the types, T is a bijection between P/∼
and P ′/∼′, and if T is fully abstract.

A trivial example that satisfies all the properties above is again given by the
identity translation C → C.

As motivated in the introduction, we consider observational correctness as the
fundamental requirement for correct translations. As explained below in Subsec-
tion 3.4, observational correctness captures the intuition that compiled tests applied
to compiled programs have the same result as in the source language. However,
the target language may have more testing capabilities, and usually has access to
details of the compilation which are inaccessible from the source language. Fully
abstract translations and isomorphisms are of course superior and important no-
tions when expressivity of calculi is considered, but in general compilation from
high-level typed languages into low-level (untyped, or less typed) languages is often
not fully abstract. An interesting discussion about the difficulties and challenges of
security in connection with compilation and the implications of adequacy and full
abstraction is in [Ahmed and Blume 2008], which may open a third perspective on
the properties of translations.

Theorems 3.13 and 3.14 exhibit invariant properties for observational correct-
ness. Observational correctness is a sufficient criterion for adequacy (see Proposi-
tion 3.8). Full abstraction is not necessary for the adequacy of translations. But
when full abstraction holds in addition to observational correctness then, for sur-
jective translations that moreover preserve the type structure, it means that both
program calculi are identical with respect to the observational preorder, i.e. they
are isomorphic.

By straightforward arguments it can be shown that translations compose:
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Proposition 3.7 Closure under composition. Let C, C′, C′′ be program cal-
culi, and T : C → C′, T ′ : C′ → C′′ be translations. Then T ′ ◦ T : C → C′′ is also
a translation, and for every property P from Definitions 3.2 and 3.6, if T and T ′

have property P , then so has their composition T ′ ◦ T .

Proposition 3.8. If a translation T : C → C′ is observationally correct, then T
is also adequate.

Proof. To show adequacy, let us assume that T (p1) ≤T (τ) T (p2). We must
prove that p1 ≤τ p2. Thus let O be such that G(O(p1)), G(O(p2)) and O(p1)⇓i.
By the characterization of observational correctness in Lemma 3.4, this implies
T (O)(T (p1))⇓′T (i), where G′(T (O)(T (p1))) and G′(T (O)(T (p2))) hold by the con-

ditions of (oc). From T (p1) ≤T (τ) T (p2), we obtain T (O)(T (p2))⇓′T (i), and obser-
vational correctness, using the other direction of the equivalence, implies O(p2)⇓i.
This proves p1 ≤τ p2.

To conclude this section, let us emphasize that Definitions 3.1, 3.2 and 3.6 are
stated only in terms of abstract OSP calculi, and hence they can be used for all
calculi with such a description. In the case of two calculi with observations defined in
terms of a small-step semantics, the definition of translation also allows for reduction
sequences in the target that may lead outside of the image of the translation, i.e.,
the reduction sequences as such may not be retranslatable.

3.3 Examples

The following examples show some easy uses of translations:

Example 3.9. Let pcf−µ be call-by-value PCF as in Example 2.3 with the follow-
ing modification: fixed point operators are dropped, and let pcfcbv be call-by-value
PCF. The difference between pcf−µ and pcf−µ,0 from Example 2.7 is that (pred 0)
results in an error as in PCF. The embedding ι : pcf−µ → pcfcbv is defined as
the identity on types and expressions, and hence ι is compositional and (ce), hence
adequate by Proposition 3.8. Below in Example 4.10 we show that it is also fully
abstract.

In call-by-name or call-by-need calculi changing the closedness predicate from
trivial closedness to proper closedness is in general an isomorphism. We illustrate
this for call-by-name PCF:

Example 3.10. In order to illustrate the possibility of varying the closedness
predicate, let pcfcbn,1 be call-by-name PCF where G is always true, and where the
closing observers are only the empty contexts of different types, and let pcfcbn,2 be
call-by-name PCF where G is the test for closed expressions and closing contexts are
composed of contexts of the form λx1 . . . xn.[·] v1 . . . vn where vi are closed values.
Let T : pcfcbn,1 → pcfcbn,2 be the identity on all types, programs, and observers.
Unfortunately, while T is compositional and G(p) =⇒

(
p⇓i ⇐⇒ T (p)⇓i

)
holds,

T violates the condition cle, i.e., G(p) ⇐⇒ G′(T (p)) might be wrong; this means
that our tools cannot be used. Still, it can be shown (using methods specific to
PCF) that the translation is fully abstract, and since T is a bijection on programs
and types it is also an isomorphism.
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Example 3.11. We give an example of an adequate, but not fully abstract, em-
bedding: Let pcf−µ,0 be PCF as in Example 2.7 (see also Example 2.3) where fixed
point operators are dropped and (pred 0) = 0 and let pcf0 be call-by-value PCF
with the modification that (pred 0) = 0. The embedding ι : pcf−µ,0 → pcf0 is
the identity on types and expressions, and hence the embedding is compositional
and (ce), hence adequate. However, the embedding is not fully abstract: The
expressions p1, p2 with p1 = λx.0 and p2 = λx.if (zero? (x 0)) then 0 else 0
are observationally equivalent w.r.t pcf−µ,0, but are not observationally equiva-
lent w.r.t. pcf0: They can be distinguished by applying both to λy.⊥, where ⊥
is a non-converging PCF0-expression. Another explanation for the failure of full
abstraction is that η-equivalence (with respect to ∼) holds in pcf−µ,0, but not in
pcf0.

Finally, we compare call-by-name PCF and call-by-value PCF.

Example 3.12. Let pcfcbn be call-by-name PCF and pcfcbv be call-by-value
PCF, where the closing observers are generated by contexts of the form
λx1 . . . xn.[·] v1 . . . vn where vi are closed values. Let T : pcfcbn → pcfcbv be given
by the identity on types, programs, and observers. Then T is compositional, but
it is not (ce) since, for example, the expression (λx.0) ⊥ has different convergence
behaviors in call-by-name and call-by-value PCF. Since (λx.0) ⊥ ∼ 0 in pcfcbn but
not in pcfcbv, the translation is not fully abstract. In the converse direction, the
expressions λx.0 and λx.

(
if x then 0 else 0

)
are equivalent in pcfcbv, but not in

pcfcbn, hence the translation is also not adequate.

3.4 Minimal Correctness Requirement

The minimal sensible correctness requirement for a translation (seen as a compi-
lation) is that convergence of programs and testing results are unchanged by a
translation. This is exactly the observational correctness property. Proposition 3.8
shows that such a translation is adequate. A compilation of a high-level program
into a rather low level programming language is usually not fully abstract, since
it is possible to test the implemented program or function for implementation de-
tails, which is impossible in the high-level language. However, the observers that
are images of high-level observers should make the same observations. Thus, only
taking into account the observers that are image observers under the translation
may help to establish a restricted form of full abstractness. In the next theorem we
show that observing the translated programs using translated observers under type
restrictions makes the same distinctions between the original and the translated
programs if observational correctness holds.

Theorem 3.13. Let C, C′ be OSP-calculi and T : C → C′ be an observationally
correct translation. Let C′′ := T (C) be the subcalculus of C′ consisting of the object-,
observer- and observation-images under T , and let ≤T be the preorder defined on
the T -image C′′ where the type restrictions of C remain in effect:
Let p′1 ≤T p′2 hold if for all types τ , all p1, p2 of type τ and all observers O ∈ Oτ,τ ′ :
If p′1 = T (p1), p′2 = T (p2), G′(T (O)(p′1)), G′(T (O)(p′2)), and T (O)(p′1)⇓′T (i), then

also T (O)(p′2)⇓′T (i). Then for all types τ and programs p1, p2: p1 ≤τ p2 ⇐⇒
T (p1) ≤T T (p2).
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Proof. In the proof we omit reasoning about G-conditions, since these are ob-
vious. Let p′1 ≤T p′2 hold, let τ be a type, p1, p2 be programs of type τ with
T (p1) = p′1, T (p2) = p′2, and let O ∈ Oτ,τ ′ be an observer such that G′(T (O)(p′1)),
G′(T (O)(p′2)), and O(p1)⇓i. Observational correctness implies T (O)(p′1)⇓′T (i). The

definition of ≤T shows that T (O)(p′2)⇓′T (i) also holds. Again by observational cor-
rectness, we obtain O(p2)⇓i. Thus p1 ≤τ p2.

Let p1 ≤τ p2 and let O′ be a C′′ observer such that O′ = T (O) for some
O ∈ Oτ,τ ′ : and let G′(O′(T (p1))), G′(O′(T (p2))), and O′(T (p1))⇓′T (i). We show

that O′(T (p2))⇓′T (i). Observational correctness implies G(O(p1)) and G(O(p2)).
Observational correctness and the characterization in Lemma 3.4 now shows
O′(T (p1))⇓′T (i) ⇔ T (O)(T (p1))⇓′T (i) =⇒ O(p1)⇓i =⇒ O(p2)⇓i. This in turn

implies T (O)(T (p2))⇓′T (i) which is equivalent to O′(T (p2))⇓′T (i). Since this holds
for all observers O′, we have shown T (p1) ≤′′T (τ) T (p2).

As an improvement of the previous theorem we show that observational correct-
ness of a translation provides an isomorphism as translation T : C → T (C), if the
translation on the types is injective. If T is surjective on programs and observers
then T is an isomorphism, provided T is an isomorphism on the type structure.

Theorem 3.14. Let C, C′ be OSP-calculi and T : C → C′ be an observationally
correct translation such that T is injective on the types. Let C′′ := T (C) be the
subcalculus of C′ consisting of the program-, observer- and observation-images under
T , and let ≤′′ be the preorder defined on the T -image C′′.
Then for all types τ and programs p1, p2: p1 ≤τ p2 ⇐⇒ T (p1) ≤′′T (τ) T (p2), i.e.

the translation is fully abstract as translation T : C → C′′. Moreover, the translation
T is also an isomorphism.

Proof. We denote the observational preorder of C′′ with ≤′′. Adequacy follows
from Proposition 3.8 by applying it to the restricted translation T : C → C′′.

Let p1 ≤τ p2 and let O′ be a C′′-observer such that G′(O′(T (p1))), G′(O′(T (p2))),
and O′(T (p1))⇓′T (i). We show that O′(T (p2))⇓′T (i). Since T is surjective on Oτ,τ ′ ,
there is an observer O with input type τ , such that T (O) = O′. Observational cor-
rectness implies G(O(p1)) and G(O(p2)). Observational correctness and the char-
acterization in Lemma 3.4 now shows O′(T (p1))⇓′T (i) ⇔ T (O)(T (p1))⇓′T (i) =⇒
O(p1)⇓i =⇒ O(p2)⇓i. This in turn implies T (O)(T (p2))⇓′T (i) which is equiv-

alent to O′(T (p2))⇓′T (i). Since this holds for all observers O′, we have shown
T (p1) ≤′′T (τ) T (p2).

For many translations, being injective on types is too strict a requirement, and
thus the previous theorem is not applicable. Nevertheless, if the translation is
observationally correct then Theorem 3.13 is applicable. An example is:

Example 3.15. The classical Church-encoding of the untyped lambda-calculus
with pairs and selectors into the pure untyped lambda calculus is neither conver-
gence equivalent nor adequate. An observationally correct (and thus also adequate)
encoding can be established if the lambda calculus with pairs is simply typed and
the lambda calculus without pairs is untyped. In Section 5.1 we explain why the
usual encoding fails without typing, and prove observational correctness and thus
adequacy of the same encoding under typing restrictions.
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3.5 Independence of Properties of Translations

As the following proposition shows, (ce) is in general not sufficient for adequacy,
and full abstraction is not implied by observational correctness. Similarly, (ce) is
not even implied by full abstraction (and thus neither by adequacy).

Proposition 3.16. The following holds:

(1 ) Convergence equivalence does not imply adequacy.

(2 ) Observational correctness does not imply full abstraction.

(3 ) Convergence equivalence is not implied by the conjunction of compositionality
up to observations and preservation and reflection of ≤.

(4 ) Convergence equivalence and preservation and reflection of ≤ do not imply
observational correctness.

Proof. (1) Let the OSP-calculus C have three programs: a, b, c with a ⇑,
b⇓ and c⇓. Assume there are two observers O1, O2 with O1 = Id and O2(a) =
a,O2(b) = a,O2(c) = c. Then b 6∼C c. The language C′ has three programs
A,B,C with A ⇑, B⇓ and C⇓. There is only the identity observer Id ′ in C′. Then
B ∼C′ C. Let the translation be defined as T : C → C′ with T (a) = A, T (b) =
B, T (c) = C, and T (O1) = T (O2) = Id ′. Then convergence equivalence holds, but
neither adequacy nor observational correctness. The translation T is not (cuo),
since T (O2(b)) = A and thus ¬T (O2(b))⇓ while T (O2)(T (b)) = Id(B) = B and
thus T (O2)(T (b))⇓.

(2) Example 3.11 is a witness for this. Another simple example taken from
[Mitchell 1993] is the identity encoding into (call-by-name) PCF with product types
from PCF but without the projections fst and snd. Then, in the restricted calculus,
all pairs are indistinguishable but the presence of the observers fst [·] and snd [·] in
PCF with products permits more distinctions to be made.

(3) A trivial example is given by two calculi C with p⇓ for all p, and C′ with
the same programs and ¬p⇓′ for all p. For the identity translation T (p) = p for
all p it is clear that ∀p1, p2 : p1 ≤ p2 ⇐⇒ T (p1) ≤′ T (p2) holds, and also that
the translation is compositional up to observations, but clearly T does not preserve
convergence.

(4) Let C have two programs a, b, the identity observer, and one observer O with
O(a) = b and a⇓, b ⇑. Let C′ consists of A,B with A⇓, and B ⇑, and the identity
observer. Let T : C → C′ be the translation defined by T (a) = A, T (b) = B, and
T (O) = Id ′. Then the translation is ≤-preserving and reflecting, since there are no
relevant equalities. It is also convergence equivalent. But it is not observationally
correct, since T (O(a)) = T (b) = B, i.e. T (O(a)) ⇑, and T (O)(T (a)) = A, i.e.
T (O)(T (A))⇓.

4. LANGUAGE EXTENSIONS

We now consider extensions of languages or, taking a slightly more general point of
view, embeddings of one language into another. A typical case is that new language
primitives are added to a calculus, together with their (operational) semantics,
which are then encoded by the translation. There are two issues: One is whether
the extension is conservative, i.e. whether the embedding of the non-extended
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language into the extended one is fully abstract. The second issue is whether the
extension is ‘syntactic sugar’, i.e. whether the extended language can be translated
into the base language in a fully abstract way.

Definition 4.1 Extension and embedding. An OSP-calculus C is an extension of
the OSP-calculus C′ iff there is a translation ι : C′ → C which is observationally
correct, i.e. (ce) and (cuo), and which is injective on the types. In this case the
translation ι is called an embedding.

Note that an embedding ι is adequate by Proposition 3.8, i.e. injective modulo
∼, but not necessarily fully abstract.

Informally, the embedding situation can be described (after identifying C′-
programs with their image under ι and modulo ∼) as follows: every C′-type is
also a C-type, P ′τ ⊆ Pτ , and O′τ,τ ′ can be seen as a subset of Oτ,τ ′ , more precisely:
O′τ,τ ′ is the same as {O�ι(P′) | O ∈ Oτ,τ ′}, (where f�A is the function f restricted
to the set A) and the observation predicates coincide on C′-programs.

i

Τ

C’

C

i(C’)

If C is an extension of C′, then an observationally correct translation T : C → C′
(plus some conditions) has the nice consequence of T and ι being fully abstract (see
Proposition 4.3 and Corollary 4.4).

An example for an embedding is the trivial embedding inc : Λ → Λp of the
untyped lambda calculus Λ into the lambda calculus Λp extended with pairing and
projections. The embedding allows us to reason about contextual equivalence in Λp
and transfer this result to Λ, i.e. a proof of t1 ∼Λp t2 where t1, t2 are expressions
that do not contain pairing or projections directly shows that t1 ∼Λ t2. Disproving
an equivalence in the lambda calculus with pairing and projections, however, does
not imply that this equivalence is false in Λ (see subsection 5.1).

Definition 4.2. For an OSP-calculus (T ,P,O,OBS,G, CO) and two observers
OA, OB ∈ Oτ1,τ2 and a set M ⊆ Pτ1 of programs of type τ1, we write OA ≈M OB
iff for all p ∈M and all i: G(OA(p))⇔ G(OB(p)) holds and G(OA(p)) implies that
OA(p)⇓i ⇔ OB(p)⇓i holds.

Proposition 4.3 Full Abstraction for Extensions. Let C be an exten-
sion of C′, i.e. an embedding (an ( oc)-translation) ι : C′ → C and let T : C → C′
be an observationally correct translation such that T ◦ ι is the identity on OBS and
on C′-types, and (T ◦ ι)(p) ∼ p for all C′-programs p. Then ι is fully abstract and
T is adequate.
If the following “surjectivity” condition holds:

(†) For all C-types τ1, τ2 and O′ ∈ O′T (τ1),T (τ2), and every set M ⊆ T (Pτ1) of

programs with |M | ≤ 2, there is an observer O ∈ Oτ1,τ2 with T (O) ≈M O′

then T is also fully abstract.

Proof. Note that the conditions imply that ι is injective on the types and on
observations, and that T is surjective on types and on observations.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



20 · Manfred Schmidt-Schauß et al.

Adequacy of ι and T follows from Proposition 3.8.
First we show full abstraction of ι. Let p1, p2 be C′ programs of type τ , let p1 ≤τ p2

and let O be a C-observer of the right type such that G(O(ι(p1))), G(O(ι(p2)))
and O(ι(p1))⇓i. We must show that O(ι(p2))⇓i. We can apply T and obtain, by
observational correctness, that G′(T (O)(T (ι(p1)))) and T (O)(T (ι(p1)))⇓′T (i). We

want to use T (ι(p1)) ∼ p1, but G′(T (O)(p1)) may be wrong. So let D1 ∈ CO′
be an (existing) observer, such that G′(D1(T (O)(p1))). For the same D1 we
obtain also that G′(D1(T (O)(T (ι(p1))))) and (D1(T (O)(T (ι(p1)))))⇓′T (i), which

implies D1(T (O)(p1))⇓′T (i) by Lemma 2.11. From p1 ≤ p2 we again obtain a

D2 ∈ CO′ such that G′((D2 ◦D1 ◦ T (O))(p2)) and from (D2 ◦D1 ◦ T (O))(p1)⇓′T (i)

we derive (D2 ◦ D1 ◦ T (O))(p2)⇓′T (i). The assumptions on translations and
G(O(ι(p2))) imply that G′(T (O)(T (ι(p2)))). The equation T (ι(p2)) ∼ p2 implies
(D2 ◦ D1 ◦ T (O))(T (ι(p2)))⇓′T (i) and by the assumptions on Di this also implies

T (O)(T (ι(p2)))⇓′T (i). By observational correctness, we obtain O(ι(p2))⇓i.
It remains to show that T is fully abstract under the condition (†) above. Let

p1, p2 be C-programs of type τ , and assume p1 ≤⇓i,τ p2. We have to prove
that T (p1) ≤′⇓′

T (i)
,T (τ) T (p2). Let O′ be a C′-observer such that G′(O′(T (p1))),

G′(O′(T (p2))) and O′(T (p1))⇓′T (i). Let O be the existing C-observer for the set
M := {T (p1), T (p2)} due to the condition (†) with T (O) ≈M O′ and such that
O(p1) is defined. The condition O′ ≈M T (O) implies G′(T (O)(T (p1))). Observa-
tional correctness of T using (†) and T (O)(T (p1))⇓′T (i) implies O(p1)⇓i. More-
over G(O(p1)) holds since T is an observationally correct translation. Using
G′(O′(T (p2))) and O′ ≈M T (O) we see that G′(T (O)(T (p2))). Since T is (cuo), this
implies G(O(p2)). From p1 ≤⇓i,τ p2 we now derive O(p2)⇓i. Again, observational
correctness of T can be applied and shows that T (O)(T (p2))⇓′T (i). This is equiv-

alent to O′(T (p2))⇓′T (i), again using O′ ≈M T (O). Since the observer O′ ∈ O′τ,τ ′

was chosen arbitrarily, we have T (p1) ≤′⇓i,T (τ) T (p2).

Injectivity of T on types is a special case of the condition in Proposition 4.3:

Corollary 4.4 Full Abstraction for Extensions; injectivity. If in
Proposition 4.3 the condition (†) is replaced by: T is injective (i.e. bijective) on
types, then all claims of Proposition 4.3 hold.

Proof. Assume injectivity of T on types. Given τ1, τ2 and O′ ∈ OT (τ1),T (τ2),
we define O := ι(O′) and have to show that O′ ≈T (Pτ1 ) T (ι(O′)). The precondition
(T ◦ ι)(p1) ∼ p1 for all type-correct C′-programs p1 and observational correctness
of T and ι show that for all p ∈ T (Pτ1): G(O′(p)) ⇔ G(T (ι(O′))(p)) and that for
all p ∈ T (Pτ1): G(O′(p)) implies O′(p)⇓i ⇔ T (ι(O′))(p)⇓i.
The condition O′ ∼ T (ι(O′)) holds by the precondition that (T ◦ ι)(p) ∼ p for
all C′-programs p. If G(p) holds, then by convergence equivalence of T ◦ ι, this is
equivalent to G((T ◦ ι)(p)), hence the condition holds.

Example 4.5. In general, Proposition 4.3 and Corollary 4.4 will not hold without
assumption (†) or the assumption that T is injective on types, respectively. To see
this, let C′ be the OSP-calculus with one type A, four programs a1, a2, a3, a4 of
type A, the identity as well as an observer f ∈ OA,A with f(a1) = f(a3) = a3,
f(a2) = f(a4) = a4, and a1⇓, a2⇓, a3⇓, but ¬a4⇓. Thus, a1 6∼ a2.
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Let C be an extension with additional type B and programs b1, b2 of type B, with
only the identity observer, and such that b1⇓, b2⇓. Hence b1 ∼ b2. Let T : C → C′
be defined by:

T (A) = T (B) = A
T (f) = f
T (ai) = ai
T (b1) = a1

T (b2) = a2

Note that T is not injective on the types, since T (A) = T (B) = A.
Then T is compositional and convergence equivalent, hence also observationally

correct. Moreover the embedding ι : C′ → C satisfies that T ◦ ι is the identity on
C′. But T is not fully abstract, since b1 ∼ b2, but T (b1) = a1 and T (b2) = a2, and
a1 6∼ a2. Thus, we cannot omit the injectivity assumption in Corollary 4.4.
Our example also does not satisfy the condition (†) of Proposition 4.3, since for the
type B, elements a1, a2 and observer f ∈ OA,A, there is no observer O ∈ OB,B ,
such that T (O) ≈a2 f , since T (O) can only be Id , and a2⇓, but ¬f(a2)⇓. Hence,
we cannot omit the condition (†).

Example 4.6. Let C′ be call-by-value PCF (see Example 2.3) and let C be call-
by-value PCF extended by strict let-expressions of the form (let x = e1 in e2).
The reduction of C extends C′-reduction by reducing first inside the binding of
let-expressions and then applying the rule (let x = v in e2) → e2[v/x] if v is a
value. A translation T : C → C′ which removes the let-expressions can be defined
as follows: T (let x = e1 in e2) := (λx.T (e2)) T (e1) and for all other cases T
translates the expressions homomorphically with respect to the term structure. T
is the identity on types (and hence also injective on types) and can be extended
to contexts in the obvious way. The embedding ι : C′ → C is the identity on
types, expressions and contexts. Obviously, T ◦ ι is the identity on C′-expressions.
Both translations T, ι are compositional and also convergence equivalent, since let-
reductions exactly correspond to call-by-value beta-reductions and reductions inside
let-bindings exactly correspond to reductions inside arguments of applications.
Since the first conditions of Proposition 4.3 hold and since T is injective on types,
we can apply Corollary 4.4 and conclude that T and ι are fully abstract.

Example 4.7. We give an example of an application of Proposition 4.3 using
a slightly unusual contextual semantics for PCF. Let C′ be call-by-name PCF
where the observations are only convergence of Boolean expressions, i.e., s ≤ t
iff for all contexts C of Boolean type: if C[s], C[t] are closed, then C[s]⇓ im-
plies C[t]⇓. Let C be an extension of C′ with n-ary functions, i.e., there are
also n-ary function types (τ1, . . . , τn) → τ , n-ary lambda-expressions, written as
λ(x1, . . . , xn).t, and n-ary applications t (t1, . . . , tn). Lambda-reduction in C is per-
mitted as (λ(x1, . . . , xn).t) (t1, . . . , tn)→ t[t1/x1, . . . tn/xn]. We assume that there
are no explicit tuples and no variables of a tuple type. Similar as above, we only
observe convergence of Boolean expressions.

It is not hard to see that the η-axiom holds for all expressions of function type.
That is, for t : τ1 → τ2 and x not free in t, we have t ∼ λx.(t x). Correspondingly,
in the case t : (τ1, . . . , τn) → τ , the equivalence t ∼ λ(x1, . . . , xn).(t (x1, . . . , xn))
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holds for fresh x1, . . . , xn.
The embedding ι : C′ → C is defined as the identity on types, expressions and ob-
servers, and the translation T translates types (τ1, . . . , τn)→ τ to τ1 → . . . τn → τ ,
T (λ(x1, . . . , xn).t) = λx1. . . . λxn.T (t), T (t(t1, . . . , tn)) = (((T (t)T (t1)) . . .)T (tn)),
and all other constructs homomorphically with respect to the term structure. The
following properties hold: T ◦ ι is the identity, the embedding ι is compositional
and also (ce). The translation T is also compositional, since there are no special

syntactic conditions. The translation is also (ce), since reductions s1
∗−→ s2 for

closed s1 can be translated as T (s1)
∗−→ T (s2). We argue that the condition (†) of

Proposition 4.3 holds. The main argument is that η holds, so that for given C-types
τ1, τ2, finite set M of programs, and an observer O′ ∈ O′T (τ1),T (τ2), an observer

O ∈ Pτ1,τ2 with T (O) ≈M O′ can be found: for this (inductive) construction of O,
eta-long normal forms are used. Since the cardinality of the set M that has to be
covered is at most two, it is always possible to find fresh variable names when the
eta-rule has to be applied to a context where the hole is in the scope of the fresh
variable.

Remark 4.8. In contrast to the previous example, Proposition 4.3 cannot be
applied to call-by-value PCF since the condition (†) does not hold. It is suf-
ficient to show that T is not surjective on the programs of a fixed type: Let
τ := ((N → N → N), N,N) → N and consider the “partial application”
p1 := λx1.λx2.(x1 x2) of type T (τ) = ((N → N → N) → N → N → N . Then
there is no p of type ((N → N → N), N,N) → N such that T (p) ∼ p1. For
assume otherwise, then obviously T (p) cannot be ⊥. Hence p converges and we
can assume that p is a lambda-expression in the extension: λ(y1, y2, y3).s. Then
T (λ(y1, y2, y3).s) t1 t2 = (λy1.λy2.λy3.T (s)) t1 t2 always converges. However,
p1 (λx.⊥) 0 diverges, hence p1 is not an image of an expression of type τ under T .
Note that the key to this counterexample is the failure of (η) in call-by-value PCF
with respect to observational equivalence.

Now we provide a criterion for full abstractness of the embedding in the case
where the extended calculus cannot be translated into the base calculus. The main
idea is to use a family of translations as an approximation of a translation that
cannot be represented. For example, if the translation has to deal with recursive
programs (or types), then it may be possible to consider (all) the finitary approxi-
mations instead.

Proposition 4.9 Families of Translations. Let C be an extension of C′,
i.e. with an observationally correct translation ι : C′ → C. Let J be an partially
ordered index set, such that for j1, j2, there is some j3 ∈ J with j1 ≤ j3 and
j2 ≤ j3. Let {Tj}j be a J-indexed family of translations Tj : C → C′, j ∈ J such
that the following conditions hold:

—For all j ∈ J : Tj ◦ ι is the identity on OBS and on C′-types, and

—for all j ∈ J : (Tj ◦ ι)(p) ∼ p for all C′-programs p;

—for every observer O ∈ Oτ,τ ′ and every program p ∈ Pτ with G(O(p)), there is
some k ∈ J , such that for all j ∈ J with j ≥ k: G′(Tj(O)(Tj(p))) and in addition
for all i: O(p)⇓i ⇔ Tj(O)(Tj((p)))⇓′Tj(i).
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Then ι is fully abstract.

Proof. It is obvious that ι is adequate.
In order to show full abstraction of ι, let p′1, p

′
2 be programs of type τ such that

p′1 ≤′⇓′i,τ p
′
2 and let O be an arbitrary C-observer such that G(O(ι(p′1))), G(O(ι(p′2))),

and O(ι(p′1))⇓ι(i), but O(ι(p′2)) ⇑ι(i). Then there is some k1 such that for all j1 ≥ k1:

G′(Tj1(O)(Tj1(ι(p′1)))) and Tj1(O)(Tj1(ι(p′1)))⇓′i. There is also some k2 such that
for all j2 ≥ k2: G′(Tj2(O)(Tj2(ι(p′2)))) and but Tj2(O)(Tj2(ι(p′2))) ⇑′i. Due to the
condition on the order, there is some common j3 ∈ J with j1 ≤ j3, j2 ≤ j3 such that
for all j ≥ j3: G′(Tj(O)(Tj(ι(p

′
1)))), G′(Tj(O)(Tj(ι(p

′
2)))), and Tj(O)(Tj(ι(p

′
1)))⇓′i,

but Tj(O)(Tj(ι(p
′
2))) ⇑′i. We use the conditions above and Lemma 2.11. In a

similar way as in the proof of Proposition 4.3 we can show that G′(D ◦ Tj(O)(p′1))
and G′(D ◦ Tj(O)(p′2)) for some appropriate D, and that D ◦ Tj(O)(p′1)⇓′i and
D ◦ Tj(O)(p′2) ⇑′i, which contradicts the assumption.

Example 4.10. Using call-by-value PCF we illustrate Proposition 4.9 to show
full abstractness of embeddings of restricted PCF into call-by-value PCF: As in
Example 3.9 let ι : pcf−µ → pcf be the identity on types and expressions in the
two PCF-variants. The embedding ι is compositional and (ce), and hence adequate.
While there appears to be no (recursion-eliminating) translation T : pcf→ pcf−µ
as required for Proposition 4.3, it is possible to find a family of translations Tj
as in Proposition 4.9: Let Tj be the translation that unfolds every occurrence
of a fixed point operator j times and then replaces all further occurrences by ⊥.
Using induction on the length of reductions it can be shown that the condition of
Proposition 4.9 holds, hence ι is fully abstract.

The following example shows that Proposition 4.3 may be violated if T does not
satisfy the precondition for full abstraction. (The translation T in the example is not
injective on types.) This counter example is somewhat unfortunate: it highlights
the fact that the corollary cannot be applied to show full abstraction when the
translation is given by an encoding of an abstract data type (such as products or
lists in the lambda calculus) in terms of an implementation type in a subcalculus.

Example 4.11. Assume, we have extended call-by-value PCF with the data
types List and Set (over numbers N), called PCFList,Set, and the construc-
tors Cons and Nil for lists. We use the notation [a1, . . . , am] for a list with
the n elements ai, i = 1, . . . , n, and the selectors head and tail. In or-
der to generate sets we assume a function listToSet, as well as functions
elem, union, intersection, and setEqual operating on sets. For example
setEqual(listToSet[1, 2]), (listToSet[2, 1])) should result in True. Now we as-
sume that there is an implementation of sets as lists, written as a translation
T : PCFList,Set → PCFList,Set. We can assume that T is observationally cor-
rect, and hence adequate.
Now we focus on the question whether T is fully abstract. The data type
Set and the implementation T should make sense, i.e. we expect that
listToSet[1, 2] ∼Set listToSet[2, 1] holds. This enforces that T (listToSet[1, 2])
and T (listToSet[2, 1]) result in the same list, for otherwise there is a context that
can distinguish the expressions listToSet[1, 2] and listToSet[2, 1]. In order to
obtain full abstractness, we could try to apply Corollary 4.4 or Proposition 4.3.
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x, y ∈ Var

r, s, t ∈ Exppair ::= w | t1 t2
v, w ∈ Valpair ::= x | λx.t | unit | fix | (w1,w2) | fst | snd

Fig. 1. Syntax of λpair

Corollary 4.4 can not be applied, since T is not injective on the types. The pre-
condition of Proposition 4.3 may be valid, since only programs in the T -image are
required as set of comparing list-observers and set-observers. We conjecture that
full abstractness of T holds, but this proof may be not obvious.

Further examples for the application, successes and problems can be found in
[Schwinghammer et al. 2009], where two synchronization primitives, buffers and
so-called handled futures, are compared in a concurrent higher-order language: by
extending a simply typed concurrent call-by-value calculus L to languages Lb, Lh,
and Lbh (where Lbh is the language containing both primitives), the translations
are analyzed by describing the embeddings and the encodings of one primitive by
the other one. Our technique helps to show almost all the translation to be fully
abstract. The translation that encodes buffers by handles could be shown adequate,
and is conjectured to be fully abstract. However, as in the above Example 4.11, the
buffer type was encoded into another type so that the translation was not injective
on types, and this prevented us from applying the extension theorem.

5. DISCUSSION OF EXTENDED EXAMPLES

In this section we discuss two extended examples. First we analyze the Church
encoding of pairs and selectors in the call-by-value lambda calculus. We show that
the encoding becomes observationally correct if the calculus with pairs is restricted
to simple typing while the target calculus is untyped. In the second example we
inspect the de Bruijn encoding of lambda expressions and show that also for this
encoding observational correctness holds.

5.1 Church’s Encoding of Pairs in the Call-by-Value Lambda Calculus

As a larger example in this section, we recall the call-by-value lambda calculus
with a fixed point operator and present its observational semantics on the basis
of convergence. We illustrate that Church’s encoding of pairs is observationally
correct under typing restrictions and show why Church’s encoding of pairs fails to
be observationally correct in the untyped case.

5.1.1 Languages. The calculus λpair is the usual call-by-value lambda calculus
extended by a call-by-value fixed point operator fix for recursion, pairs (w1,w2)
and selectors fst and snd as data structure, and a constant unit. Fixing a set
of variables Var, the syntax of expressions Exppair and values Valpair is shown in
Fig. 1. Note that only values are syntactically permitted as components of a pair.
The subcalculus λcbv is the calculus without pairs and selectors and will be used
as target language. We use Expcbv (Valcbv, resp.) for the set of λcbv-expressions
(λcbv-values, resp.).

For both calculi we require call-by-value evaluation contexts E which are intro-
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E ::= [ ] | E t | w E

Fig. 2. Evaluation Contexts E

(β-cbv) E[(λx.t) w]→ E[t[w/x]]

(fix) E[fix λx.t]→ E[t[(λy.(fix λx.t)y)/x]]

(sel-f) E[fst (w1,w2)]→ E[w1]

(sel-s) E[snd (w1,w2)]→ E[w2]

Fig. 3. Small-Step Reduction

enc(x) = x enc(fix) = fix

enc(unit) = unit enc((w1,w2)) = λs. (s enc(w1) enc(w2))

enc(λx.t) = λx.enc(t) enc(fst) = λp. (p λx.λy.x)

enc(t1 t2) = enc(t1) enc(t2) enc(snd) = λp. (p λx.λy.y)

Fig. 4. Translation of λpair into λcbv

duced in Fig. 2. With s1[s2/x] we denote the capture-free replacement of variable
x with s2 for all free occurrences of x in s1. To ease reasoning we assume that the
distinct variable convention holds for all expressions, i.e. that the bound variables
of an expression are all distinct and free variables are distinct from bound variables.

The reduction rules for both calculi are defined in Fig. 3. Small step reduction
→pair of λpair is the union of all four rules, and small step reduction →cbv of λcbv
is the union of the first two rules. We assume that reduction preserves the distinct
variable convention by implicitly performing α-renaming if necessary.

Convergence ↓pair in λpair is defined as e↓pair iff ∃v ∈ Valpair : e
∗−→pair v, and

for λcbv convergence ↓cbv is defined accordingly as e↓cbv iff ∃v ∈ Valcbv : e
∗−→cbv v.

Observers O are all contexts of the respective calculus. For the predicate G we
use the closedness of expressions, and the closing observers CO are the contexts
of the form (λx1, . . . xn.[·]) v1 . . . vn, where vi are closed values and their composi-
tions. Obviously, λpair and λcbv are OSP-calculi. For the contextual preorders and
equivalences for both calculi we index the relations with pair or cbv .

As a notation we use ↑pair and ↑cbv for the divergence predicates, i.e. for e ∈ Λi:
e↑i ⇐⇒ ¬(e↓i) for i ∈ {pair , cbv}.

5.1.2 Removing Pairs. We will mainly investigate the translation enc of λpair
into λcbv as defined in Fig. 4 under different restrictions. The translation performs
the classical removal of pairs as given by Church.

Note that conversely, it is trivial to encode λcbv into λpair via the identity trans-
lation inc(s) = s.

Since abstractions are translated into abstractions and pairs and selectors are
translated into abstractions, obviously the following holds:

Lemma 5.1. For all s ∈ λpair : s is a λpair -value iff enc(s) is a λcbv-value.

We are able to show that convergence is preserved by the translation, i.e.

Lemma 5.2. Let t ∈ λpair with t↓pair , then enc(t)↓cbv .

Proof. Let t0 ∈ λpair with t↓pair , so t0 →pair t1 →pair · · · →pair tn where tn is
a value. We show by induction on n that enc(t0)↓cbv . If n = 0 then t0 is a value and
enc(t0) must be a value, too, by Lemma 5.1. For the induction step we assume the
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(.,.) :: ∀α, β.α→ β → (α, β)

fst :: ∀α, β.(α, β)→ α
snd :: ∀α, β.(α, β)→ β

unit :: unit
fix :: ∀α, β.((α→ β)→ (α→ β))→ (α→ β)

Fig. 5. Types schemes for constants in λTpair

induction hypothesis enc(t1)↓cbv . Hence, it suffices to show enc(t0)
∗−→cbv enc(t1).

If t0 →pair t1 is a (β-cbv) or (fix) reduction, then the same reduction can be used
in λcbv, and enc(t0) →cbv enc(t1). If t0 →pair t1 by (sel-f) or (sel-s), then three

(β-cbv) steps are necessary in λcbv, i.e., enc(t0)
3−→cbv enc(t1).

Nevertheless, we cannot prove reflection of convergence, since the following
counter example shows that the implementation of pairs is not correct in the un-
typed setting.

Example 5.3. Let t := fst(λz.z). Then t↑pair , since t is irreducible and
not a value. However, the translation enc(t) results in the expression t′ :=
(λp.p (λx.λy.x)) (λz.z), which reduces by some (β-cbv)-reductions to λx.λy.x,
hence enc(t)↓cbv . This is clearly not a correct translation, since it removes an
error. Therefore, the observations are not preserved by this translation. This
example also shows that enc is not adequate, since it invalidates the implica-
tion T (p1) ≤cbv T (p2) =⇒ p1 ≤pair p2, since enc(t′) = t′, and hence
enc(t′) = t′ ≤cbv t

′ = enc(t), but t′ 6≤pair t by the arguments above.

One potential remedy to the failure of the untyped approach to correctness of
translations is to distinguish divergence from typing errors. From a different point
of view, this simply means that only correctly typed programs should be considered
by a translation.

One solution to prevent the counter example 5.3 is to consider a simply typed
variant λTpair of λpair as follows. The types are given by τ ::= unit | τ → τ | (τ, τ),

and only typed expressions and typed contexts are in the language λTpair , where we
assume a hole [·]τ for every type τ . For typing, we treat pairs, projections, the unit
value, and the operator fix as a family of constants with the type schemes given
in Fig. 5. Type safety can be stated by a preservation theorem for all expressions
and a progress theorem for closed expressions. The condition of OSP-calculi in
Definition 2.8 can easily be satisfied by defining CO to be the composition closure
of the contexts of the form (λx1, . . . xn, [·]) v1 . . . vn, where v are closed values. Note
that for every type there is a closed value. Now it is easy to prove adequacy via
observational correctness of the translations.

Proposition 5.4. For λTpair , the (correspondingly restricted) translation enc :

λTpair → λcbv is compositional and convergence equivalent, and hence observationally
correct and adequate.

Proof. Compositionality follows from the definition of enc (see Fig. 4).
Lemma 5.1 also holds if enc is restricted to λTpair . We show convergence equiv-
alence:

(1) t↓pair =⇒ enc(t)↓cbv : Follows from Lemma 5.2.
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(2) enc(t)↓cbv =⇒ t↓pair : An inspection of the reductions shows that if the

λTpair -expression t1 is reducible, then for every reduction Red of enc(t1) to a

value, there is some t2 with t1 −→pair t2 and enc(t1)
+−→cbv enc(t2) is a prefix of

Red . We use induction on the length of a reduction Red of enc(t) to a value
to show that a corresponding reduction can be constructed. The base case is
proved in Lemma 5.1. If t is an irreducible non-value, then due to typing it
is an open expression of one of the forms E[(x r)],E[fix x],E[fst x],E[snd x],
where x is a free variable. But these cases are not possible, since enc(t) is
either an irreducible non-value, or enc(t) reduces in one step to an irreducible
non-value.

Note that Proposition 4.3 cannot be applied since λTpair is not an extension
of untyped λcbv. As expected, full abstraction does not hold. For instance,
let s = λp.((λy.λz.(y,z)) (fst p) (snd p)), and t = λp.p. Then the equation
s ∼pair ,(unit,unit)→(unit,unit) t holds in λTpair by standard reasoning, but after transla-
tion to λcbv, we have enc(s) 6∼cbv enc(t). The latter can be seen with the context
C = ([·] unit), since C[enc(s)] is divergent while C[enc(t)] converges.

The extension situation could perhaps be regained by a System F-like type sys-
tem, which we leave for future research. Here we just observe that the use of a
simple type system for λcbv is insufficient since the encoding of pairs with compo-
nents of different types cannot be simply typed. (The same holds for Hindley-Milner
polymorphic typing.)

In [Schmidt-Schauß et al. 2008] we have shown that an adequacy result also holds
if nondeterminism is added to both calculi, and if arbitrary expressions (instead of
just values) are allowed as components of pairs.

5.2 The Encoding of de Bruijn

We demonstrate that our framework also encompasses encodings like the de Bruijn
index encoding of variables (see [de Bruijn 1972]) in a (call-by-name, lazy) lambda
calculus. This encoding translates variables as numbers, where the number indi-
cates the distance of a variable to its binding position, measured in the number
of crossings of lambda-expressions. For example (λx.x (λy.y x)) is translated as
(λ.1 (λ.1 2)). This encoding is sometimes used during the compilation of functional
and functional-logic programming languages.

In the following we argue that our methods are powerful enough to show that for
closed lambda-expressions the encoding is fully abstract and also an isomorphism.
For open expressions and contexts the encoding has to be defined with some care
in order to obtain full abstraction and the isomorphism property.

Let L be the closed expressions of the untyped pure lambda calculus (see Exam-
ple 2.1) and let B be the closed expressions of the untyped pure lambda calculus
using de Bruijn indices, i.e. the syntax of B is E ::= n | (E E) | λ.E, where n
represents positive integers 1,2,. . . .

Let S range over (finite) sequences of variables, index(x, S) be the position of the
leftmost x in S, [] be the empty sequence and x : S be the sequence S extended by
the head element x. The translation T maps closed lambda expressions to its de
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Bruijn encoding. T is defined as T (t) = T ′(t, []) where T ′ is defined as:

T ′(λx.s, S) = T ′(s, x : S)
T ′(s t, S) = (T ′(s, S) T ′(t, S))
T ′(x, S) = index(x, S)

For example, T (λx.x) = λ.1 and T (λx.(λy.x (y x)) = λ.(λ.2 (1 2)). We also
assume that the de Bruijn beta-reduction is a one step-reduction such that for
closed lambda-expressions s1, s2 the following diagram holds:

s1

β

��

T // T (s1)

dBβ

��
s2

T // T (s2)

For example λ.(λ.λ.λ.3) (λ.2)
dBβ−−−→ λ.(λ.λ.λ.4). Let the observers of L and B be

the corresponding closed contexts, where T treats contexts like expressions. The
convergence is defined w.r.t. an outermost call-by-name reduction to an abstraction,
i.e. the lazy lambda calculus [Abramsky 1990]. Using the standard definitions, we
see that the translation T is (ce): i.e. t ⇓ iff T (t) ⇓ for closed t. Since only
closed contexts are applied to closed lambda expressions, the translation T satisfies
compositionality: T (C[s]) = T (C)[T (s)], and hence the translation is (cuo). Hence
we can conclude that the translation T is observationally correct. T is not injective,
since for example T (λx.x) = T (λy.y) = λ.1. However, if the closed expressions
s, t are α-equivalent, then T (s) = T (t). The following holds: Closed contexts
and lambda expressions in a de Bruijn-encoding can be retranslated into lambda
expressions (up to α-renaming). Since T is a bijection (modulo α-renaming) on
contexts and expressions, the translation T is also fully abstract, and even an
isomorphism, since the calculi are untyped and the translation is a bijection between
the quotients L/∼ and B/∼.

Also the translation of open expressions into a de Bruijn-encoding turns out
to be an isomorphism if some precautions are taken into account. The extra
precautions are: A fixed enumeration x1, x2, . . . of all variables, and a modified
translation of contexts C, where the scope of variables in the hole has to be
adapted to the enumeration of variables by translating CDk instead of C where
Dk = ((λxk.λxk−1. . . . λx1.[·]) xk . . . x1).

6. CONCLUSIONS AND OUTLOOK

Motivated by translation problems between concurrent programming languages,
this paper clarified the notions and the methods, and provided some tools for prov-
ing the correctness of translations. The presented framework can be applied directly
to the operational semantics and the derived observational equivalences of program-
ming calculi and thus does not rely on denotational models which are usually hard
to find.

In future research the framework can be used to prove the correctness of various
impementations, especially in concurrent settings where correctness of synchroniza-
tion abstractions is often far from obvious.
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