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Abstract

This thesis describes the design of the veri�ed compiler LVC. LVC’s main novelty
is the way its �rst-order, term-based intermediate language IL realizes the advan-
tages of static single assignment (SSA) for veri�ed compilation. IL is a term-based
language not based on a control-�ow graph (CFG) but de�ned in terms of an induc-
tively de�ned syntax with lexically scoped mutually recursive function de�nitions.
IL replaces the usual dominance-based SSA de�nition found in unveri�ed and veri-
�ed compilers with the novel notion of coherence. The main research question this
thesis studies is whether IL with coherence o�ers a faithful implementation of SSA,
and how the design in�uences the correctness invariants and the proofs in the veri-
�ed compiler LVC. To study this question, we verify dead code elimination, several
SSA-based value optimizations including sparse conditional constant propagation
and SSA-based register allocation approach including spilling. In these case studies,
IL with coherence provides the usual advantages of SSA and improves modularity of
proofs. Furthermore, we propose a novel SSA construction algorithm based on co-
herence, and leverage the term structure of IL to obtain an inductive proof method
for simulation proofs. LVC is implemented and veri�ed with over 50,000 lines of code
using the proof assistant Coq. To underline practicability of our approach, we inte-
grate LVC with CompCert to obtain an executable compiler that generates PowerPC
assembly code.





Kurzzusammenfassung

Diese Arbeit beschreibt das Design des veri�zierten Compilers LVC. Die Haupt-
neuerung von LVC ist seine term-basierte Zwischensprache IL, die die Vorteile von
static single assignment (SSA) für Veri�kation nutzbar macht. IL ist eine term-
basierte Sprache, die nicht auf einem Kontroll�ussgraphen basiert, sondern auf einer
induktiv de�nierten Syntax mit lexikalischen Variablen und verschränkt rekursiven
Funktionen. IL ersetzt die übliche, dominanz-basierte SSA-De�nition, die man in
veri�zierten und unveri�zierten Compilern gleichermaßen �ndet, durch das neuar-
tige Konzept der Kohärenz (coherence). Die Hauptforschungsfragen dieser Arbeit
sind, ob IL zusammen mit Kohärenz als Implementierung von SSA geeignet ist, und
wie ein IL-basiertes Design Korrektheitsinvarianten und Beweise am Beispiel von
LVC beein�usst. Um diese Fragen zu klären veri�zieren wir verschiedene SSA-
basierte Wertoptimierungen, wie beispielsweise sparse conditional constant prop-
agation, und einen SSA-basierten Registerallokationsansatz mit spilling. In diesen
Fallbeispielen bietet IL mit Kohärenz die üblichen Vorteile von SSA und verbessert
die Modularität der Beweise. Darüberhinaus schlagen wir einen neuen, kohärenz-
basierten SSA Aufbaualgorithmus vor und nutzen die Struktur von IL aus, um ein
induktives Beweisverfahren für Simulationsbeweise zu entwickeln. LVC ist mit über
50.000 Zeilen mithilfe des Beweisassistenten Coq implementiert und veri�ziert. Um
die praktische Anwendbarkeit unseres Ansatzes zu zeigen, integrieren wir LVC mit
dem veri�zierten Compiler CompCert, wodurch wir einen ausführbaren Compiler
erhalten, der PowerPC assembly code generiert.
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1 Introduction

This thesis describes the design of the veri�ed compiler LVC. LVC’s main novelty is
the way its �rst-order, term-based intermediate language IL realizes the advantages
of static single assignment (SSA) for veri�ed compilation. IL is a term-based lan-
guage not based on a control-�ow graph (CFG) but de�ned in terms of an inductively
de�ned syntax with lexically scoped mutually recursive function de�nitions. IL re-
places the usual dominance-based SSA de�nition found in unveri�ed compilers as
well as in veri�ed compilers such as CompCertSSA [BDP12] and VeLLVM [Zha+12]
with the novel notion of coherence. The main research question this thesis studies
is whether IL with coherence o�ers a faithful implementation of SSA, and how it
in�uences the design and the correctness invariants in the veri�ed compiler LVC.
To evaluate faithfulness, we focus on the following SSA-speci�c advantages:

‚ the reduced asymptotic complexity for SSA-based value analyses

‚ referential transparency of SSA variables

‚ the phase separation of spilling and register assignment.

In the LVC project we evaluate whether IL provides these SSA-speci�c advantages.
We show that IL provides reduced asymptotic complexity by implementing and veri-
fying sparse conditional constant propagation [WZ91a] and the associated program
analysis in Coq. We develop a program logic that abstracts correctness proofs of
value optimizations by leveraging referential transparency. We show that IL allows
phase separation of spilling and register assignment by implementing and verifying
a SSA-based register allocation approach [HGG06] including spilling. Furthermore,
we verify dead code elimination and propose a novel, IL-speci�c SSA construction
algorithm. To show practicability of our approach we realized the entire veri�ed
compiler LVC in the proof assistant Coq, which was a major e�ort with more than
50,000 lines of code. Furthermore, we integrated LVC with CompCert [Ler09b] to
obtain an executable compiler that generates PowerPC assembly code.
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1 ‚ Introduction

Static Single Assignment and Coherence

SSA [Cyt+89; Zad09] is an important invariant used in almost every modern com-
piler at some point during compilation. Essentially, SSA allows to rename apart an
imperative program: In SSA, every variable name is assigned at most once and every
variable must be de�ned before use. Formally, “de�ned before use” is ensured by re-
quiring that every use of a variable is dominated by its de�nition, which is su�cient
to guarantee that the use is only executed if the de�nition of the variable has been
executed before.
Semantically, the SSA invariant entails that imperative variables behave like scoped
binders [Kel95; App98] even though the program semantics is still imperative. This
phenomenon is often referred to as referential transparency of SSA variables in the
compiler literature. IL accounts for referential transparency by providing two se-
mantic interpretations: The imperative interpretation IL/I treats variables as imper-
ative locations, and can represent non-SSA programs. The functional1 interpretation
IL/F treats variables as lexically scoped binders, which provides referential trans-
parency in the strong sense that variables can be substituted with their de�ning
expressions. Instead of working with a traditional SSA invariant together with an
imperative semantics, LVC uses the functional IL/F without additional invariants to
realize SSA. This is a conceptual advantage, because in contrast to other approaches,
we do not have to maintain the SSA invariant explicitly, but just work with a func-
tional semantics. In particular, IL/F programs satisfy the “de�ned before use” in-
variant, even if they are not renamed apart, because with lexically scoped variables,
“use before de�nition” is impossible: such a use would refer to a di�erent variable of
the same name. We think that this approach provides a better semantic foundation
compared to the state of the art, which uses an imperative semantics together with
a dominance-based global invariant. The property that SSA programs are renamed
apart is also available in our approach, because α-conversion respects IL/F equiva-
lence and hence ensures that a program can be renamed apart if a transformation
needs unique variable names.
The two interpretations of IL are semantically related through our novel notion of
coherence. Coherence is a syntactic criterion that identi�es a large, decidable frag-
ment of IL programs that have the same meaning in both interpretations. Coherence
enables LVC to switch between the two semantic interpretations IL/I and IL/F. Every
renamed apart program is coherent.

Renaming Apart Imperative Programs: SSA Construction

Historically, SSA has been introduced as an invariant over languages based on a
control-�ow graph (CFG). All related work on SSA-based compiler veri�cation uses

1Functional here only means variables are lexically scoped binders; IL/F programs can have side-e�ects.
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such CFG-based languages. However, such imperative programs cannot simply be
renamed apart, but require a special operator, called φ-functions, to realize a control-
�ow dependent copy operation at control-�ow join points. The original impera-
tive semantics of the CFG must be extended with the φ-function’s special seman-
tics. An algorithm of great importance is the SSA construction algorithm [Cyt+91],
which places enough φ-functions to ensure the SSA-invariant holds. SSA construc-
tion algorithms that place φ-functions have been veri�ed in the context of Com-
pCertSSA [BDP12] and VeLLVM [ZZ12].
Our coherence-based approach results in a novel SSA construction algorithm. Our
approach does not require additional syntactic constructs such as φ-functions, but
SSA construction on IL can simply add additional function parameters. SSA con-
struction realizes a semantics-preserving transformation from an IL/F program to a
coherent IL/F program. We verify a SSA construction algorithm that uses liveness
information to determine a set of additional parameters for each function which
is large enough to ensure the resulting program is coherent. The set of additional
parameters is small in the sense that it only contains live variables, hence our con-
struction algorithm produces guarantees similar to pruned SSA form [CCF91]. In
contrast to all other SSA construction algorithms, our algorithm only needs to es-
tablish coherence and does not have to rename apart the program. This is a con-
ceptional simpli�cation witnessed by the fact that liveness information remains the
same after applying our SSA construction algorithm.

Value Optimizations and Referential Transparency

SSA simpli�es optimizations both conceptually and in practice. Many of these ad-
vantages stem from the fact that every de�nition can be uniquely identi�ed by the
corresponding variable name. In particular, static analyses can represent the re-
sult of a program analysis as one global mapping from variable names to analysis
information instead of maintaining such a mapping per program point. This de-
creases the asymptotic size of program analysis information by a factor proportional
to the program size, and was one of the original motivations for the development
of SSA [RWZ88; AWZ88]. LVC realizes several SSA-based value optimizations in
the middle end on renamed apart IL/F programs and obtains the same reduction in
asymptotic analysis information size as SSA with our design based on coherence.
We reformulate and prove correct copy propagation and sparse conditional constant
propagation (SCCP) [WZ91a] on renamed-apart IL/F programs. The veri�cation of
the optimizations is done on a renamed apart, and hence coherent, IL/F program, and
the SCCP analysis relies on uniqueness of variable names. The correctness proofs
exploit referential transparency of SSA variables and can be argued correct locally:
We must argue that replacing a simple expression e with a concrete value is jus-
ti�ed given certain information about the context, which amounts to a substitu-
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1 ‚ Introduction

tion property. This is a reasoning principle that occurs in the correctness proofs for
value optimizations in general, and we develop a program logic that encapsulates
it and can be used whenever the correctness of an optimization essentially follows
from referential transparency. The program logic isolates the correctness proof of
a transformation from the semantics of the intermediate language and the notion
of simulation-based semantic equivalence. When using the program logic, only the
transformations of expressions must be justi�ed, and a general soundness lemma for
the logic lifts this argument to the correctness of recursive IL functions. In this way,
the logic provides a form of modularization for the correctness proofs.

Register Allocation

Register allocation transforms a program in such a way that it only uses a �xed num-
ber of registers. While non-SSA-based register allocation has been veri�ed in the
context of two di�erent compiler veri�cation projects [Tan+16; BRA10], we know
of no other veri�ed SSA-based register allocator. A property unique to SSA is that
register allocation can be organized in two separate phases [HGG06]. The �rst phase
is spilling, which lowers the number of maximal simultaneously live variables to the
register bound by transferring values to memory. The second phase is the register
assignment phase, which then only requires polynomial time to rename the pro-
gram in such a way that it only uses a �xed number of registers that is bounded by
the number of maximal simultaneously live variables. LVC realizes this SSA-speci�c
advantage with its intermediate language IL and coherence, which is another indi-
cation that our coherence-based approach can serve as a faithful implementation
of SSA. In the correctness proof of register allocation, all advantages of coherence
come together. We switch to IL/I for the veri�cation of spilling, and back to IL/F for
register assignment. The correctness of register assignment follows from the fact
that α-conversion respects IL/F semantics and the observation that the register as-
signment realizes an α-renaming. A interesting �nding in our work is that while the
original SSA-based register allocation algorithm [HGG06] requires traversal of the
CFG in dominance order, it su�ces to traverse the IL program recursively. Clearly,
this traversal order is compatible with the dominance ordering, but possibly coarser.
Although the quality of the register allocation may improve by using the dominance
ordering, its correctness only depends on the fact that the traversal order is compat-
ible with the dominance ordering.

Liveness, Reachability, and Dead Code Elimination

The notion of liveness and reachability are central in LVC. Coherence is de�ned
relative to liveness information. Register allocation relies on liveness information
and yields better results if no dead variables are present. Furthermore, we show that
register assignment realizes an α-renaming on programs without dead code.
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LVC realizes dead code elimination (DCE) with two separate transformations. The
�rst transformation removes unreachable code based on a veri�ed reachability anal-
ysis. We show that this transformation is complete relative to a de�nition of reach-
ability that evaluates constant conditions. The second transformation eliminates
unused variables and uses information from a liveness analysis.
The soundness criterion for liveness information di�ers between IL/I and IL/F. The
register allocation phase needs to switch between the semantic interpretations IL/I
and IL/F. This is only possible because we show that on coherent programs without
unreachable code, liveness information that is sound for IL/I is also sound for IL/F.

Translation to Assembly and Integration with CompCert

IL’s two semantic interpretations also enable compilation to be realized as “trans-
formation to a fragment” as proposed by Kelsey [KH89]. His observation is that
compilation can be seen as transformation into successively more restricted subsets
of the same language, such that the �nal subset is very easy to translate to assem-
bly. This idea is in contrast to the approaches taken by CompCert [Ler09b], which
uses 9, and CakeML [Tan+16], which uses 12 very di�erent intermediate languages.
We think this strategy is a good �t for veri�ed compilation in general, but especially
so for LVC, which is centered around IL/I and IL/F: We need to specify drastically
fewer semantics than related approaches (only 2: IL/I and IL/F), and can reuse proof
methods for IL/I and IL/F in every transformation.
An additional feature that makes Kelsey’s idea work so well for LVC is that IL/I is a
rather low-level language: IL/I without function parameters already behaves like a
register transfer language, in particular, function application corresponds to gotos.
We hence view the compilation task as an endo-translation on IL, thereby leveraging
coherence to switch between IL/F and IL/I when useful, and ultimately ending in the
argument-less fragment of IL/I. We then translate the argument-less fragment to
CompCert’s intermediate language “Linear”, that is, to machine code where only
the layout of the stack frame is missing.

Semantic Equivalence and System Calls

All transformation steps are veri�ed in a bisimulation-based framework for seman-
tic equivalence we developed. The main challenge for semantic equivalence is the
formalization of coinductive proofs in Coq. IL/F and IL/I both feature external calls
which behave non-deterministically and serve as a benchmark for our semantic tech-
niques. For the correctness proofs of the optimizations, the treatment of external
calls is largely orthogonal to the techniques we develop for coherence. We develop
an inductive proof method for simulation that supports stutter-steps and proof mod-
ularization better than the methods applied in CompCert and better than parametric
coinduction alone [Hur+13].
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Translation Validation

Translation validation [PSS98] is a technique that avoids proving correctness prop-
erties of a function, and instead uses a validated decider to test whether the result
of the function has the required properties after each application of the function.
Translation validation was successfully applied in CompCert [Ler09b], because de-
signing and proving correct a decider for a certain property is often much simpler
than showing that a complex algorithm establishes the property.
LVC explicates the speci�cation of many kinds of analysis information as inductive
predicates. Examples are the correctness of liveness and reachability information,
coherence of a program, the correctness of spilling decisions and register assign-
ments. We give constructive proofs that all these speci�cations are e�ciently decid-
able, which realizes extractable translation validators for these components. In joint
work with Julian Rosemann [RSH17], we developed an novel approach that we call
“translation-validation with repair” and which extends translation validation.
All transformations currently in LVC are veri�ed and do not rely on translation val-
idated input; however, spilling and spill slot coalescing (i.e. the problem which spill
slots can share the same stack slot) accept unveri�ed suggestions that are then vali-
dated and repaired if necessary by LVC. LVC could be changed with minor e�ort to
allow external procedures also for register allocation itself, but this is not included in
the thesis. For analysis information, such as liveness and reachability information,
translation validation does not make sense, because our veri�ed analysis algorithm is
already precise. A major advantage of this approach is the following implementation
strategy: First prototype an unveri�ed algorithm and integrate it using translation
validation (with repair), and once satis�ed with the design, prove it correct once and
for all.

Realization in Coq

LVC is realized in the proof assistant Coq, which is based on constructive type theory,
but remains compatible with classical assumptions (such as excluded middle). The
entire LVC compiler has been realized and veri�ed in Coq. We obtain an executable
compiler from the Coq development via extraction to OCaml code. In the Coq de-
velopment, we avoid additional assumptions via axioms (such as excluded middle)
whenever possible. We only use excluded middle and informed excluded middle for
two proofs in the meta-theory of program equivalence. Two libraries we use re-
quire Uniqueness of Identity Proofs (UIP) and functional extensionality. Realizing
the project in Coq turned out to be a major e�ort, the LVC development is approx-
imately 50k LoC. More information about the Coq implementation can be found in
§17. The Coq development is available online on GitHub2 under MIT license.

2https://github.com/sigurdschneider/lvc
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Related Work ‚ 1.1

1.1 Related Work

We give a brief overview over the most important di�erences to related work here,
and postpone an in-depth discussion to §18.

1.1.1 Term-based SSA instead of CFG with φ-functions

LVC uses the term-based language IL instead of a control-�ow graph (CFG) with
φ-functions and an explicit SSA-invariant, which is the basis for all other veri�ed
SSA approaches [BDP12; Zha+12]. LVC uses the functional IL/F to represent SSA
programs, which makes φ-functions and an explicit SSA invariant unnecessary. The
notion of coherence supports translating in and out of SSA, for correctness it suf-
�ces to maintain program equivalence, but not necessarily coherence. To rename a
program apart, the functional semantics can be chosen, and the program can be α-
converted if a renamed apart program is required. In contrast to related work, which
must maintain the SSA invariant at all times, transformations in LVC leverage that
neither coherence nor renamed apartness have to be maintained: For example, our
spilling phase requires the input program to be coherent and renamed part, and
breaks both invariants, thereby greatly simplifying the introduction of spill slots.
Without breaking coherence, the spilling phase would have to perform an SSA con-
struction algorithm; we re-use the SSA construction algorithm LVC contains anyway
to obtain a coherent program after spilling. We think that coherence here helps to
better factor concerns. Another example is register assignment, requires the input
program to be renamed apart, but produces an imperative program that is, in general,
not renamed apart program, but coherent, which accommodates the facts that one
the one hand registers are imperative variables, but on the other hand correctness
of register assignment follows from soundness of α-conversion (which only holds
in the functional interpretation).

1.1.2 IL Replaces Many Intermediate Languages

LVC uses the intermediate language IL with its two semantic interpretations IL/I and
IL/F, instead of related approaches [Ler09b; Owe+16] which use up to 12 di�erent
intermediate languages, essentially one per translation pass. We think having fewer
languages is an advantage, because the correctness methods we develop for IL can
be reused in the correctness proofs of the optimizations. Furthermore, we only have
to specify the semantics for IL/I and IL/F, instead of dealing with a multitude of
intermediate languages.
IL is very �exible: IL/F can represent SSA-programs, IL/I can express low-level pro-
grams and its parameter-less fragment is close to assembly. IL/I supports the idea of
“transformation to a fragment” by Kelsey [KH89], and allows us to stay in IL/I until
we translate to a list of machine instructions.
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1 ‚ Introduction

1.1.3 Invariance as Semantic Foundation for SSA

We developed coherence as a su�cient criterion for invariance, i.e. such that co-
herence su�ces for a program to have the same meaning in IL/I and IL/F. Finding
a su�cient criterion for invariance is a well-posed problem with a semantic foun-
dation that does not depend on dominance or other complicated notions. This is in
stark contrast to other SSA formalizations, which take the de�nition of SSA from
literature [Cyt+91] as ground truth and make no attempt to characterize SSA se-
mantically. As a result, LVC’s coherence-based framework is more �exible than SSA,
requires fewer invariants, and makes explicit which translation passes require the
program to be renamed apart, and which just require a functional semantics.

1.1.4 SSA-based Register Allocation

Register allocation has been veri�ed in the context of CompCert [Ler09a; BRA10],
LambdaTamer [Chl10] and CakeML [Tan+16]. To our knowledge, LVC features the
�rst veri�ed SSA-based register allocator. CompCertSSA [BDP12] uses CompCert’s
non-SSA allocator after doing a generic out-of-SSA translation. The approach fol-
lowed in LambdaTamer is e�ectively block-local (see also §18.11.4). The approaches
veri�ed in the context of CompCert [BRA10] and CakeML [Tan+16] consider the it-
erated register coalescing algorithm [GA96]. Register allocation in CompCert is not
veri�ed, but translation validated to obtain higher code quality [RL10]. We think that
our SSA-based approach [HGG06] has the potential to produce register allocations
of high quality, just as the non-veri�ed implementations of the approach.

1.1.5 Inductive Correctness Methods

We propose an inductive proof method for simulation-based compiler correctness.
This method is based on compatibility lemmas to modularize the proof. Our method
has better modularity properties than the simulation proofs used in CompCert and
derivatives [Ler09b; Sev+13] and the parametric bisimulation approach [Hur+13].

1.1.6 Leveraging Referential Transparency of SSA Variables

LVC supports a program logic that leverages referential transparency for the veri�-
cation of value optimizations. We think that using a program logic as abstraction for
correctness proofs of SSA-based value optimization is an e�ective way to modular-
ize correctness proofs for the classical SSA-based optmizations, of which we verify
SCCP as example.
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Motivation ‚ 1.2

1.2 Motivation

The main motiviation for this work was to study the design of a compiler with a
term-based intermediate language with binding to realize SSA, and the impact of the
design on optimizations and their correctness proofs on functional SSA. A second
goal was to create an extensible research compiler that is realistic in the sense that
extraction of a compiler with at least polynomial runtime is possible.
During this research, we discovered the notion of coherence and that it connects
standard notions from compiler construction with standard notions from program-
ming language theory. Of particular interest for us are the interaction of coherence
with the notion of liveness and its application for the veri�cation of register alloca-
tion. We think that this work is a step towards bridging the gap between practical
compiler construction, where the imperative view with CFGs and φ-functions pre-
vails, and compiler and programming languages research, where we understand SSA
as form the functional perspective as binding. Bringing these two worlds together
provides interesting insights. For example, coherence allows formally justify the
correctness of register assignment by showing that it is, in fact, an α-renaming. Co-
herence also provides a better factoring for spilling: We do not need to perform SSA
construction in the spilling phase, because in LVC, coherence is only established
when it is useful, but not always maintained as an invariant.

1.3 Outline

We start with some preliminary de�nitions in §3, which presents standard con-
cepts and explains how we formalized them given the constraints of extractability
to OCaml. We introduce the intermediate language IL in §4 together with its two
semantic interpretations. In §5 we explore semantic equivalence and the implemen-
tation relation we use in LVC. We give di�erent trace based and several bisimulation-
based characterizations, and explain the tools required to show some basic proper-
ties of bisimilarity. In §8, we discuss compatibility results for bisimilarity, including
a general compatibility result for function de�nitions which enables an inductive
proof method for correctness proofs on IL.
§2 provides provides an overview with examples over LVC and outlines §9 to §16,
which discuss each phases of LVC in detail.
In §17 we discuss technical details of the Coq development, such as our custom plu-
gins and tactics, as well as the number of lines of code and the module structure. In
§18 provide an in-depth discussion of related work. We conclude in §19.
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1.4 Contributions

‚ We are the �rst to explore term-based SSA for veri�ed compilation on our inter-
mediate language IL.

‚ We propose the notion of coherence, which generalizes the notion of SSA and
helps formally connect notions from compiler construction with notions from pro-
gramming language theory.

‚ We verify SSA-based register allocation on IL with the help of coherence. For this
purpose, we developed a framework for the veri�cation of spilling algorithms, and
a framework for the veri�cation of register assignment algorithms.

‚ We propose a novel, coherence-based SSA construction algorithm for IL that is
conceptually simpler than the standard SSA construction algorithm [Cyt+91] be-
cause establishing coherence does not require to rename apart the program and
does not require dominance information.

‚ We develop a framework for the veri�cation of value optimizations, and apply it
to copy propagation and sparse conditional constant propagation. The framework
includes a program logic especially tailored to decouple the veri�cation process
from the simulation equivalence.

‚ We develop a framework for program analyses on IL and use it to verify correct-
ness of liveness analysis, reachability analysis, and sparse conditional constant
propagation analysis.

‚ We explore several formulations of bisimulative equivalences in Coq and evalu-
ate them based on their support for proof modularization, in particular whether
they easily accommodate stutter steps, and whether transitivity of the simulation
relation can be leveraged directly in coinductive proofs.

‚ We integrate out approach in a rudimentary way with CompCert, and in this way
show that IL can indeed be used as intermediate language in the back-end of a
realistic compiler.

1.4.1 Published Results

During his time as a PhD student at Saarland University, the author of this thesis
submitted 6 papers, of which three were accepted. This thesis builds on the following
peer-reviewed papers:

‚ Sigurd Schneider, Gert Smolka, Sebastian Hack:
“A Linear First-Order Functional Intermediate Language for Veri�ed Compilers.”
Iteractive Theorem Proving (2015).
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‚ Steven Schäfer, Sigurd Schneider, Gert Smolka:
“Axiomatic semantics for compiler veri�cation.”
Certi�ed Programs and Proofs (2016).

‚ Julian Rosemann, Sigurd Schneider, Sebastian Hack:
“Veri�ed Spilling and Translation Validation with Repair.”
Iteractive Theorem Proving (2017).

Additionally, a technical report is available:

‚ Sigurd Schneider, Gert Smolka, Sebastian Hack:
“An Inductive Proof Method for Simulation-based Compiler Correctness.”
CoRR abs/1611.09606 (2016).
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2 Compiler Overview

In this section, we informally introduce the language IL, and give an overview over
the three main parts of the compiler: the front-end, the middle-end, and the back-
end. Each of the three parts contains multiple compilation phases.

2.1 The Intermediate Language IL see §4

This section gives a quick and informal introduction to the intermediate language IL
and its two semantic interpretations IL/I and IL/F, and how they are connected via
coherence. We also discuss the semantic impact of system calls.

2.1.1 IL/F and IL/I see §4

Consider the program in Figure 2.1, which behaves exactly like one would expect
from a function program: In line 2, a closure is created that saves the value of x such
that the program ultimately yields 7.

1 let x = 7 in
2 fun f () = x in
3 let x = 5 in f ()

Figure 2.1: An IL/F program that yields 7.

The other semantic interpretation IL/I interprets the program in Figure 2.1 as is in-
dicated by the di�erent notation in listing Figure 2.2. IL/I treats x as a location,
and under IL/I interpretation the program yields 5 as result. Note that we used the
stylized notation := to emphasize that the variables in IL/I behave like imperative
locations, but use the let-syntax for both interpretations throughout the thesis: In
fact, Figure 2.2 and Figure 2.1 are the same program (i.e. identical abstract syntax
tree), and IL/F and IL/I provide two di�erent semantic interpretations.
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1 x := 7;
2 fun f () = x in
3 x := 5; f ()

Figure 2.2: The program from Figure 2.1 stylized to hint at its IL/I interpretation,
which yields 5.

2.1.2 Coherence see §10

The main observation behind coherence is that some IL programs have the same
meaning in both interpretations. For example, each program in Figure 2.3 has the
same meaning in both IL/I and IL/F: The program on the left yields 5 in both IL/F
and IL/I, and the program on the right yields 7 in both IL/F and IL/I.

1 let x = 7 in
2 fun f (x) = x in
3 let x = 5 in f (x)

1 let x = 7 in
2 fun f () = x in
3 let y = 5 in f ()

Figure 2.3: Two coherent programs: Both programs have the same meaning in both
IL/F and IL/I.

The program on the left has the same meaning as the IL/I interpretation of Figure 2.1,
and can be obtained from it by adding the parameter x to f . Similarly, the program
on the right has the same meaning as the IL/F interpretation of Figure 2.1, and can
be obtained by renaming apart Figure 2.1.
Coherence is a syntactic criterion su�cient to ensure that IL/I and IL/F agree on
the meaning of a program. Both programs in Figure 2.3 are coherent. The simplest
way to establish coherence while preserving IL/I semantics is to add all variables
occurring in the program as parameters to every function. We discuss a more clever
approach in detail in §12. The simplest way to establish coherence while preserving
IL/F semantics is to simply rename apart the program. A more clever approach is
performing register assignment, which we discuss in detail in §13.4.

2.1.3 System Calls

IL features external events, which are an abstract concept that subsumes system calls
and interactions with memory. System calls in IL take the form

let x = α e in . . .
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where α is a event identi�er from a countably in�nite alphabet. In the system call
metaphor, α is the name of the system call. The expressions e are evaluated, and
their values are made visible externally. The system call may then return a value,
which may or may not depend on its arguments. For this purpose, we allow non-
determinism in the semantics, that is, an external event may produce any value.
The treatment of external events is orthogonal to the correctness arguments for the
approach developed in this thesis. Their presence, however, witnesses that our tech-
niques scale to extensions of IL with memory and proper system calls. In this way,
the presence of external events in IL serves as a benchmark for our semantic tech-
niques.

2.2 The Front-End

The front-end starts with an IL program from the parser, which is interpreted as an
IL/I program. The parser is not veri�ed. This IL/I program still uses explicit names
for functions instead of De-Bruijn indices. The front-end consists of the following
three phases, which are veri�ed and ultimately translate to a coherent program.

1 convert function names to De-Bruijn indices

2 dead code elimination

3 establish coherence (i.e. SSA)

Converting a program with explicit names to De-Bruijn can be done by a simple
recursive traversal while maintaining a mapping from function names to De-Bruijn
indices. The correctness proof is in the formal development, but we will not mention
it any further.

2.2.1 Dead Code Elimination

Dead code elimination (DCE) consists of unreachable code elimination (UCE) and
dead variable elimination (DVE), which are run in this order.
The unreachable code elimination phase relies on a reachability analysis. Unreach-
able code arises from constant expressions in conditionals and function de�nitions
that are never called. Figure 2.4 shows a program where UCE removes unused func-
tion de�nitions.
Dead variable elimination (DVE) relies on a liveness analysis to determine which
let-bindings and parameters are unused, and removes them.
Intuitively, a variable is live if it contributes to the behavior of the rest of the pro-
gram. For example in Figure 2.5, liveness analysis �nds out that the parameter y
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1 fun f (x,y) =
2 if (9 > 3) then 1
3 else g (x+1, y)
4 and fun g (x,y) =
5 f(x+1,y/10)
6 in f (3,2)

1 fun f (x,y) = 1
2

3

4

5

6 in f (3,2)

Figure 2.4: An example program before (left) and after (right) unreachable code elim-
ination.

1 fun f (x,y) = {}
2 if (x > 9) then 1 {x}
3 else f (x+1, y) {x}
4 in let a = 5 + b {}
5 in f (3,a) {}

1 fun f (x) =
2 if (x > 9) then 1
3 else f (x+1)
4

5 in f (3)

Figure 2.5: An example program before (left) and after (right) dead variable elim-
ination. Each line in the left-hand side program is annotated with the set of live
variables before the respective statement.

in Figure 2.5 does not contribute to the behavior of the program, and can hence be
removed. In turn, the values of a, b also do not contribute to the behavior of the
program, and are removed as well.

2.2.2 SSA Construction see §12

It is easy to update liveness information to take the e�ect of DVE into account and
obtain valid liveness information for the resulting program. This liveness informa-
tion is then used in the SSA construction algorithm. The SSA construction algorithm
adds just enough parameters to function de�nitions for the program to become co-
herent. This means that in our setting, SSA construction does not rename apart
the program, but instead ensures that in the resulting program variable de�nitions
behave live lexically scoped binders.
SSA construction introduces parameters to make data�ow explicit that is already
implicitly present in the program. In Figure 2.6, the function f reads a variable x,
and x might have changed since between the de�nition of f and an application of
f , so x is added as a parameter to f . SSA construction inserts a parameter with
the same name to the function. This process, however, does not change liveness
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1 let x = 7 in
2 let a = 4 in
3 fun f () = x+y in
4 let x = a+5 in f ()

1 let x = 7 in
2 let a = 4 in
3 fun f (x) = x+y in
4 let x = a+5 in f (x)

Figure 2.6: An example program before (left) and after (right) SSA construction.
Note that the program on the right is coherent, but not renamed apart. Note no
argument needs to be introduced for the parameter y, because it does not change
between the de�nition of f and the application of f .

information. Liveness information before SSA construction is also valid after SSA
construction.

2.3 The Middle-End

The middle end only features two optimizations: copy propagation and sparse condi-
tional constant propagation. Both optimizations require the program to be renamed
apart. The middle end performs the following translation phases:

1 rename apart the program

2 copy propagation

3 sparse conditional constant propagation

2.3.1 Copy Propagation see §14

After renaming apart, which we discussed earlier, copy propagation is performed.
Our version of copy propagation is realized by a simple recursive traversal, and does
not require a �xed-point analysis.

2.3.2 Sparse Conditional Constant Propagation see §14

Afterwards, the sparse conditional constant propagation SCCP is performed. SCCP
evaluates constant expressions and replaces them by values. SCCP relies on a �xed-
point analysis to �nd constant function parameters.
Note that in LVC neither copy propagation nor SCCP remove variable bindings. In-
stead, both optimizations rely on a DCE pass to be performed later. In the examples
above, we have already included the e�ect of the DCE pass for the sake of better
illustration.
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1 fun f (x,y) =
2 if (x+y > 10) then
3 let b = y in
4 1
5 else f (x, y+2)
6 in let x = a
7 in f (x,0)

1 fun f (x,y) =
2 if (x+y > 10) then
3

4 1
5 else f (x, y+2)
6

7 in f (a,0)

Figure 2.7: An example program before (left) and after (right) copy propagation.
Note that the parameter x is also just a copy of a, but our version of copy propaga-
tion cannot not detect this.

1 let a = 7 in
2 fun f (x,y) =
3 if (x+y > 10) then
4 y+1
5 else if (y < 4) then
6 f(y,x)
7 else f (x+1+2, y)
8 in f (3+a+z,5)

1

2 fun f (x) =
3 if (x+5 > 10) then
4 6
5

6

7 else f (x+1+2)
8 in f (10+z)

Figure 2.8: An example program before (left) and after (right) SCCP. Note that SCCP
parameter x is also just a copy of a, but our version of copy propagation cannot not
detect this. Note simpli�cation of x + 1 + 2 is prevented by left-associativity of +
and we currently do not re-associate expressions.

2.4 The Back-End

Figure 2.9 shows an overview over the transformation in the LVC back-end. On a
high-level, LVC’s back-end consists the following transformations, in order:

1 elimination of argument expressions

2 renaming apart to register partition

3 dead code elimination

4 register allocation

a spilling
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eliminate argument expressions

rename apart
to register partition

IL/F to IL/I

unreachable code elimination

reachability analysis

dead variable elimination

true liveness analysis

generate spill code

spilling analysis

renam
ed

apart

coherent

SSA construction

IL/I to IL/F

rename apart
preserving partitions

register assignment

assignment analysis

renam
ed

apart

IL/F to IL/I

eliminate arguments
by lowering to parallel moves

coherent

dead
code

elim
ination

registerallocation

functional program
imperative program
liveness information
analysis information

Figure 2.9: Overview over the back-end compilation phases. The spilling analysis
supports translation validation with repair.
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b SSA construction
c renaming apart
d register assignment

5 eliminating parameters via parallel moves

6 lowering to assembly

Each of these steps consists of several sub-phases, which we now explain high-level
with the program in Figure 2.10 as example.

1 fun f (x, y, z) =
2 if x > 0 then
3 f (x-1, y, z+z)
4 else
5 if x = 0 then
6 let v = z + y in
7 v + w
8 else
9 f (y-x, -y, z)

10 in f (-4, 2, 1)

Figure 2.10: The example program for the back-end: We describe how this program
is transformed into machine code. For the sake of the example, we assume that only
two registers are available.

2.4.1 Elimination of Argument Expressions

The �rst transformation before the back-end is the elimination of argument expres-
sions. For this purpose, for each argument that is not already a variable, a let expres-
sion is introduced. Note that this transformation is done on IL/F, so �nding names
for these new variables is easy, as their scope is very limited.
The elimination pass involves a scheduling problem, because the order of the let-
expressions determines the evaluation order and the register demand of the resulting
program. Note that in Figure 2.11, d and x can be assigned to the same register, and
c and y can also share the same register. Had argument elimination in line 10 and 11
in Figure 2.11 produced the following order, this would not be possible:
1 let d = -x in
2 let c = y - x in
3 f (c, z, d)
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1 fun f (x, y, z) = {w}
2 if x > 0 then {x, y, z, w}
3 let a = x - 1 in {x, y, z, w}
4 let b = z + z in {a, y, z, w}
5 f (a, y, b) {a, b, y, w}
6 else
7 if x = 0 then {x, y, z, w}
8 let v = z + y in {y, z, w}
9 v + w {v, w}

10 else
11 let c = y - x in {x, y, z, w}
12 let d = -x in {c, x, z, w}
13 f (d, z, c) {c, d, z, w}
14 in
15 let i = -4 in {w}
16 let j = 2 in {i, w}
17 let k = 1 in {i, j, w}
18 f (i, j, k) {i, j, k, w}

Figure 2.11: Figure 2.10 after elimination of argument expressions. Each line is
annotated with the set of live variables before the respective statement.

For the code above, LVC would need to spill x to ensure its value is available to
compute c. Another solution would be to rematerialize x by changing y−x to y+d,
but LVC does not currently attempt to rematerialize values. We do not consider this
optimization problem and introduce lets in the order of the argument vector. In a
more realistic compiler, a scheduling phase would have attempted to take care of this
problem. However, it is perfectly reasonable to assume that argument expressions
are eliminated once the back-end is entered. The main purpose of the pass as we
implemented it is to ensure that every argument to a function call is a variable, which
is required for our register allocation phase to work.

2.4.2 Renaming Apart to the Register Partition

We partition the variables into two in�nite partitions: The registers and the spill
slots. The back-end renames the program apart, and uses only names from the reg-
ister partition. This also ensures that the program is coherent. We use the convention
that lower-case variables are registers, and upper-case variables are spill slots. For
the sake of the example, we arranged things such that Figure 2.11 is already renamed
apart to the register partition, so we can assume the program does not change. Fig-
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ure 2.11 is coherent, because it is renamed apart.

2.4.3 Dead Code Elimination in the Back-End

The DCE phase exploits that the program is coherent and uses imperative liveness
analysis. This enables LVC to re-use the liveness information computed during DCE
in the register allocation phase, which needs imperative liveness information. The
re-use of liveness information all the way down to the register assignment phase is
indicated by the dotted arrows in Figure 2.9.
The DCE proceeds in the same way as described in §2.2.1 for the front-end. The live-
sets are annotated in Figure 2.11. Note that in general, a program is still renamed
apart after DCE, and hence still coherent (cf. §2.2.2).
The liveness information after DVE makes every variable live at least at the program
point directly following its de�nition. This property follows from properties of DVE
for all variables except those bound to the result of an external function call, for we
enforce it in the algorithm that updates liveness information to re�ect the changes
due to DVE. After DVE, the program is coherent and the register demand is less or
equal to the size of the largest live set.
We arranged things such that Figure 2.11 had no dead code, and can hence assume
that the program does not change. LVC might α-rename the program, because our
procedure for renaming apart is not stable for performance reasons.

2.4.4 Register Allocation see §13

Register allocation consists of two separate, consecutive phases: spilling and register
assignment.

Spilling see §13.2

Register allocation begins with the spilling phase, the goal of which is to lower the
size of the largest live-set, which is called register pressure, to a certain number k.
This is done by storing values to variables from the second partition, the spill slots,
which we do not count towards register pressure. Spill slots will later be mapped to
locations in memory. The spilling phase inserts spills and reloads into the program
to lower the register pressure su�ciently, while ensuring that all variables are in
registers when used in a computation such as addition, subtraction, etc. The input
program for spilling is Figure 2.11, and we can see that the size of the maximal live
set is 4.
The spilling phase is veri�ed with respect to the imperative semantics, as this sim-
pli�es the handling of spills and loads: A spill slot is simply a global variable which
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can be written to and read from anywhere. Furthermore, we can easily map register
variables to their corresponding spill slots.
The program after spilling is shown in Figure 2.12. As mentioned before, we follow
the convention that lower-case variables denote registers, and upper-case variables
denote spill slots. We assume k = 2, i.e. that there are only two machine registers,
to ensure that spilling is necessary.

1 fun f (x, Y, z) = {W}
2 if x > 0 then {x, Y, z,W}
3 let a = x - 1 in {x, Y, z,W}
4 let b = z + z in {a, Y, z,W}
5 f (a, Y, b) {a, b, Y,W}
6 else
7 if x = 0 then {x, Y, z,W}
8 let y = Y in {Y, z,W}
9 let v = z + y in {y, z,W}

10 let w = W in {v,W}
11 v + w {v, w}
12 else
13 let Z = z in {x, Y, z,W}
14 let y = Y in {x, Y, Z,W}
15 let c = y - x in {x, y, Z,W}
16 let d = -x in {c, x, Z,W}
17 f (c, d, Z) {c, d, Z,W}
18 in
19 let W = w in {w}
20 let i = -4 in {W}
21 let j = 2 in {i,W}
22 let J = j in {i, j,W}
23 let k = 1 in {i, J,W}
24 f (i, J, k) {i, J, k,W}

Figure 2.12: Figure 2.11 after spilling. Each line is annotated with the set of live
variables before the respective statement. Note that the maximal number of simul-
taneously live registers (denoted by lower-case variables) is 2.

LVC supports translation validation with repair for spilling. In particular, it cur-
rently asks an outside program to choose the variable to be spilled at every program
point. This external information cannot introduce unsoundness, as LVC repairs it if
necessary. Since LVC will repair any input (including none), LVC does not depend
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on external information for compilation. We use the possibility to provide spilling
information to obtain the optimal spilling displayed in Figure 2.12. In particular, we
ensure thatw gets spilled early in line 19, at a program point where register pressure
does not yet warrant spilling and that the parameter y is always passed in a spill slot
instead of a register.

SSA Construction see §12

After spilling, the program is neither renamed apart nor coherent, that is, only IL/I
captures its intended semantics. For example, the program in Figure 2.12 does not
have the same semantics in IL/I and IL/F, becauseW is updated after f is de�ned. We
perform a SSA construction pass to obtain a coherent program again. As discussed
in §2.2.2, SSA construction just adds additional parameters, does not change liveness
information, and produces a coherent, but not necessarily renamed apart program.
To obtain a coherent program again, SSA construction adds W as a parameter to f .
Figure 2.13 shows the program after SSA construction and renaming apart.

Register Assignment see §13.4

On a renamed apart program, the register assignment can be represented as one
global mapping from variable names to registers. A register assignment is computed
in a SSA fashion [HGG06], and the program is subsequently renamed accordingly.
Together with the fact that the program contains no dead code because of the DCE
(§2.4.3), register assignment results in an α-equivalent program that is still coherent,
but not necessarily renamed apart anymore. We exploit that α-equivalent programs
are semantically equivalent to justify correctness.
The register allocation phase also performs spill slot coalescing, i.e. renaming sev-
eral slot variables to the same spill slot to save stack space and avoid the need for
moving values between spill slots as part of parameter passing. LVC currently sup-
ports translation validation with repair for spill slot coalescing, and we provide the
mapping A → W ; J → Z;Y → Z; to LVC to obtain reasonable sharing and avoid
spill slot to spill slot copies.

2.4.5 Eliminating Parameters via Parallel Moves see §13.5.2

The program on the right-hand side of Figure 2.14 was obtained by lowering the
parameter passing to parallel moves and then to a series of assignments. We use
the algorithm from CompCert [RSL08] to lower the parallel moves to a sequence of
assignments.

24



The Back-End ‚ 2.4

1 fun f (x, Y, z, W) = {W}
2 if x > 0 then {x, Y, z,W}
3 let a = x - 1 in {x, Y, z,W}
4 let b = z + z in {a, Y, z,W}
5 f (a, Y, b, W) {a, b, Y,W}
6 else
7 if x = 0 then {x, Y, z,W}
8 let u = Y in {Y, z,W}
9 let v = z + u in {u, z,W}

10 let w = W in {v,W}
11 v + w {v, w}
12 else
13 let Z = z in {x, Y, z,W}
14 let r = Y in {x, Y, Z,W}
15 let c = r - x in {x, r, Z,W}
16 let d = -x in {c, x, Z,W}
17 f (c, d, Z, W) {c, d, Z,W}
18 in
19 let A = w in {w}
20 let i = -4 in {A}
21 let j = 2 in {i, A}
22 let J = j in {i, j, A}
23 let k = 1 in {i, J, A}
24 f (i, J, k, A) {i, J, k, A}

Figure 2.13: Figure 2.12 after SSA construction and renaming apart.

2.4.6 Translation to PowerPC Assembly see §16

The translation to PowerPC assembly proceeds in two steps. LVC translates the IL
program to CompCert’s Linear language, and afterwards we use two transforma-
tions from CompCert’s pipeline to lay out the stack and translate to assembly code.
CompCert does not support printing Linear code, so we can only show the machine
code and assembly �le code produced by CompCert. Figure 2.15 shows the machine
code (including stack layout) produced by CompCert for the program on the right-
hand side of Figure 2.14. Figure 2.16 shows the assembly code produced for the
program on the right-hand side of Figure 2.14. Note that code generation is almost
1:1, with the notable exception of reordering of the “in”-clause to appear before the
function de�nition in the code. The left-hand side of Figure 2.16 shows the listing
Figure 2.14 where this inversion has been depicted by a stylized “where” notations.
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1 fun f (r3, Z, r4, W) =
2 if r3 > 0 then
3 let r3 = r3 - 1 in
4 let r4 = r4 + r4 in
5 f (r3, Z, r4, W)
6 else
7 if r3 = 0 then
8 let r3 = Z in
9 let r3 = r4 + r3 in

10 let r4 = W in
11 r3 + r4
12 else
13 let Y = r4 in
14 let r4 = Z in
15 let r3 = r4 - r3 in
16 let r4 = - r4 in
17

18

19 f (r3, r4, Y, W)
20 in
21 let W = r3 in
22 let r3 = -4 in
23 let r4 = 2 in
24 let Z = r4 in
25 let r4 = 1 in
26 f (r3, Z, r4, W)

1 fun f () =
2 if r3 > 0 then
3 let r3 = r3 - 1 in
4 let r4 = r4 + r4 in
5 f ()
6 else
7 if r3 = 0 then
8 let r3 = Z in
9 let r3 = r4 + r3 in

10 let r4 = W in
11 r3 + r4
12 else
13 let Y = r4 in
14 let r4 = Z in
15 let r3 = r4 - r3 in
16 let r4 = - r4 in
17 let Z = r4 in
18 let r4 = Y in
19 f ()
20 in
21 let W = r3 in
22 let r3 = -4 in
23 let r4 = 2 in
24 let Z = r4 in
25 let r4 = 1 in
26 f ()

Figure 2.14: Left:Figure 2.13 after register assignment to registers r3 and r4. Note
that we assumed the only free variable of the program w maps to the register r3.
Right: The program on the left after parameters have been eliminated.

Note how in Figure 2.16 each IL instruction directly corresponds to the instruction
in the assembly listing on the same line.

2.4.7 Reproduciblity

The results from this section can be reproduced using the source code accompa-
nying this thesis, which is distributed under MIT license and available online on
GitHub at https://github.com/sigurdschneider/lvc. The commit hash corresponding to
the development we describe is be41194f16495d283fe7bbc982c3393ac554dd5b. To re-
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1

2 let W = r3 in
3 let r3 = -4 in
4 let r4 = 2 in
5 let Z = r4 in
6 let r4 = 1 in
7 f ()
8 where f () =
9 if r3 > 0 then

10 let r3 = r3 - 1 in
11 let r4 = r4 + r4 in
12 f ()
13 else
14 if r3 = 0 then
15 let r3 = Z in
16 let r3 = r4 + r3 in
17 let r4 = W in
18 r3 + r4
19

20 else
21 let Y = r4 in
22 let r4 = Z in
23 let r3 = r4 - r3 in
24 let r4 = - r4 in
25 let Z = r4 in
26 let r4 = Y in
27 f ()
28

1 LVC() {
2 stack(100, int) = R3
3 R3 = -4
4 R4 = 2
5 stack(112, int) = R4
6 R4 = 1
7 goto 2
8 2:
9 if (R3 <=s 0) goto 3

10 R3 = R3 + -1
11 R4 = R4 + R4
12 goto 2
13 3:
14 if (R3 !=s 0) goto 4
15 R3 = stack(112, int)
16 R3 = R4 + R3
17 R4 = stack(100, int)
18 R3 = R3 + R4
19 return
20 4:
21 stack(108, int) = R4
22 R4 = stack(112, int)
23 R4 = R4 - R3
24 R4 = 0 - R4
25 stack(112, int) = R4
26 R4 = stack(108, int)
27 goto 2
28 }

Figure 2.15: Left: Figure 2.14 in stylized where notation instead of let/in func-
tion de�nition. Right: Corresponding CompCert Mach language code, in which slot
variables have been layed out into the stack by CompCert. Listings are aligned to
highlight line-by-line correspondence. Note that we are over-provisioning the size
of the stack frame at the moment.
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1
2
3
4
5
6
7
8 let W = r3 in
9 let r3 = -4 in

10 let r4 = 2 in
11 let K = r4 in
12 let r4 = 1 in
13 f ()
14 where f () =
15 if r3 > 0 then
16
17 let r3 = r3 - 1 in
18 let r4 = r4 + r4 in
19 f ()
20 else
21 if r3 = 0 then
22
23 let r3 = Z in
24 let r3 = r4 + r3 in
25 let r4 = W in
26 r3 + r4
27
28
29 else
30 let Y = r4 in
31 let r4 = Z in
32 let r3 = r4 - r3 in
33 let r4 = - r4 in
34 let Z = r4 in
35 let r4 = Y in
36 f ()
37
38
39
40

1 .text
2 .balign 4
3 .globl .LVC
4 .LVC:
5 stwu 1, -128(1)
6 mflr 0
7 stw 0, 116(1)
8 stw 3, 100(1)
9 addi 3, 0, -4

10 addi 4, 0, 2
11 stw 4, 112(1)
12 addi 4, 0, 1
13 b .L102
14 .L102:
15 cmpwi 0, 3, 0
16 bf 1, .L103
17 addi 3, 3, -1
18 add 4, 4, 4
19 b .L102
20 .L103:
21 cmpwi 0, 3, 0
22 bf 2, .L104
23 lwz 3, 112(1)
24 add 3, 4, 3
25 lwz 3, 100(1)
26 add 3, 3, 4
27 addi 1, 1, 128
28 blr
29 .L104:
30 stw 4, 108(1)
31 lwz 4, 112(1)
32 subfc 3, 3, 4
33 subfic 4, 4, 0
34 stw 4, 112(1)
35 lwz 4, 108(1)
36 b .L102
37 .L101:
38 .type .LVC, @function
39 .size .LVC, . - .LVC
40 .text

Figure 2.16: Left: Figure 2.14 in stylized where notation instead of let/in function
de�nition. Right: Assembly produced by CompCert for the program on the left (de-
bug information has been ommitted). Listings are aligned to highlight line-by-line
correspondence.
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produce the register allocation example from this section, �rst download and build
LVC as instructed in the accompanying README.md �le. Then build the LVC com-
mand line client with make extraction, change to the compiler directory with
cd compiler, and run the compiler on the example with by issuing the com-
mand./lvcc.byte examples/overview-alloc.il -v. Compilation re-
sults are stored in �les named overview-alloc.il.phasewhere phase hints
at the compilation phase to which they correspond. The example �le contains anno-
tations that specify spill slot coalescing information for the register allocation phase,
which are translation validated by LVC. Additionally, we have included a spilling al-
gorithm in LVC that produces an optimal spilling for the example. LVC translation
validates the results of this spilling algorithm.
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3 Preliminaries

In this section we give de�nitions of basic structures and notions we use in this
thesis. We recommend this section even to experienced readers, as our de�nitions
are non-standard in subtle ways to better accommodate Coq’s extraction feature.

3.1 Type Theory

We work in Coq’s type theory, which is based on the calculus of inductive construc-
tions [CH88]. We use P to denote the type of propositions, and T to denote the type
of types, leaving universe levels implicit as usual.
Most of our work is constructive, and does not use axioms. Via the Curry-Howard
isomorphis, that is, propositions as types, every proof corresponds to a program.
Coq’s extraction feature [Let08] provides a mechanism which allows to obtain ex-
ecutable OCaml code from proofs and de�nitions in the type theory. LVC’s main
components are extracted from Coq de�nitions.
Occasionally, we may use axioms such as functional extensionality, proof irrele-
vance, and uniqueness of identity proofs. All uses of axioms are explicitly marked.

3.2 Decidability

We extract decision procedures from many decidability results to OCaml. Our notion
of decidability is based on a type-level disjunction +, not on the proposition-level
disjunction ∨, because extraction removes all propositions. Computable

De�nition 3.1 ‚ Deciability

Let X,Y be types. A predicate P : X → P is decidable if ∀x, Px + ¬Px is
provable. Similarly, a relation R : X → Y → P is decidable if ∀xy, Rxy + ¬Rxy
is provable.

If a decidability result is constructive, its proof can be turned into an executable
OCaml procedure via Coq’s extraction feature.
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3.3 Option Types and Lists

We use several option types, and a type of lists.

De�nition 3.2 If T is a type, then T⊥ is the option type for T , that is a type that
has all elements from T and an additional, distinct element⊥. We also use the anal-
ogously de�ned option type T>. Naturally, the two option types can be combined
to obtain a type with two additional elements: T>⊥ .

De�nition 3.3 If T is a type, then T or listT is the type of lists of elements of
type T . We use the notation x to denote a list over elements denoted by x1, . . . , xn
where n is the length of the list |x|.

3.4 Equivalence Relation

De�nition 3.4 Let X be a type. A relation ≡: X → X → P is an equivalence
relation if the following holds:
1 x ≡ x re�exivity

2 x ≡ y → y ≡ x symmetry

3 x ≡ y → y ≡ x→ x ≡ y transitivity

3.5 Strict Order

De�nition 3.5 Let X be a type. A relation @: X → X → P is a total strict order if
it is transitive and the following holds:
1 x 6@ x irre�exivity

2 x @ y → y 6@ x asymmetry
Note that asymmetry follows from irre�exivity and transitivity.

3.6 Ordered Types

De�nition 3.6 An ordered type is a tuple (X,@,≡) where X is a type and @ is a
decidable strict order and ≡ is a decidable equivalence relation and @ is total:
1 x @ y ∨ x ≡ y ∨ y @ x totality

Note that the trichotomy required by totality is computational, because all involved
relations are decidable.
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3.7 Finite Sets

We use the type class based �nite set library developed by Lescuyer [Les11]. The
library speci�es a interface for implementations of �nite sets based on type-classes.
Given an ordered typeA, an implementation of �nite sets overA is a type setA such
that the following operations are de�ned and behave as usual:

‚ ∈: A→ setA→ P is a decidable relation

‚ ⊆,≡: setA→ setA→ P are a decidable relations

‚ ∅ : setA is the empty set

‚ {·; ·} : A→ setA→ setA is adjunction

‚ {·} : A→ setA→ setA is singleton formation

‚ − : setA→ A→ setA removes a single element

‚ ∪,∩, \ : setA→ setA→ setA are union, intersection, and di�erence

‚ fold : ∀B : T, (A→ B → B)→ setA→ B → B is a recursor for sets

‚ ∀,∃ : (A→ B)→ setA→ B are quanti�ers for sets

‚ filter : (A → B) → setA → setA computes the subset satisfying a boolean
predicate

‚ partition : (A → B) → setA → setA ∗ setA partitions according to a boolean
predicate

‚ | · | : setA→ N yields the cardinality of a set

‚ elements : setA→ listA yields the list of elements without duplicates

‚ choose : setA→ A⊥ yields an element of the set if possible

‚ min : setA→ A⊥ yields the minimal element if possible

‚ max : setA→ A⊥ yields the maximal element if possible

‚ (setA,⊂,≡) is an ordered type

We omit the formal speci�cation for the operations; the interested reader can �nd
them in the Coq source online.
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3.8 Agreement of Functions

De�nition 3.7 For functions f, g : A → B We write f =X g if f and g agree on
all variables in X .

3.9 Preorders

In LVC, must use preorders instead of partial orders, because often≡ is not equality,
but a coarser equivalence relation. This situation arises, for example, because we use
a set library in Coq that uses an e�cient implementation at the cost of not providing
extensional sets.

De�nition 3.8 ‚ Preorder

A preorder is a tuple (X,v,≡) where X is a type and v,≡ are decidable relations
of type X → X → P such that the following holds:

1 ≡ is an equivalence relation

2 x ≡ y → x v y re�exivity

3 x v y → y v x→ x ≡ y antisymmetry

Our de�nition of a preorder allows the relation≡ to be explicitly provided, although
such a relation could be de�ned from v. This allows the equality check to provide
its own decision procedure, which may make the extracted decision procedure for
equivalence more e�cient than checking whether v holds twice.

Lemma 3.9 Let (X,v,≡) be a preorder. Then x ≡ y ↔ x v y ∧ y v x.

De�nition 3.10 Let (X,v) be a preorder. We de�ne strict order @ on elements
x, y : X of a preorder as

x @ y :↔ x v y ∧ y 6v x

Lemma 3.11 Let (X,v,≡) be a preorder. Then @ is a decidable strict order.

Lemma 3.12 (X,v,≡) is a preorder if (X,@,≡) is an ordered type.

The reverse direction of Lemma 3.12 does not hold, because v cannot in general be
turned into a strict order.
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Lattices ‚ 3.10

3.9.1 Canonical preorders

In this section, we will establish canonical preorders on several types. Whenever
we use a preorder on a type without explicitly specifying the relation v, we mean
the canonical preorder on that type. In particular, when we say X is a preordered
type and subsequently use v, then we are referring to the canonical preorder on
X . We show formation lemmas that provide canonical instances of preorders for
structures such as pairs, lists, etc.

Lemma 3.13 LetX,Y be preordered types. Then the canonical preorder onX×Y
can be obtained by component-wise lifting of v.

Lemma 3.14 Let X be a preordered type. The canonical preorder on listX is ob-
tained by component-wise relating lists of the same length.

Lemma 3.15 The canonical preorder on B is obtained by de�ningv to satisfy b v b
for all booleans b and false v true.

Lemma 3.16 Let X be a preordered type. Then there are canonical preorders for
the option types X⊥ and X>. The relation v then additionally satis�es ⊥ v x, or
x v >, respectively.

Lemma 3.17 Let Y be a preordered type. Then there is a canonical preorders for
the every function typeX → Y with �nite domain, and the relationv is de�ned by
point-wise lifting.

De�nition 3.18 ‚ Monotonicity

Let X,Y be preordered types and f : X → Y be a function. We say f is monotone
if x v x′ → fx v fx′.

3.10 La�ices

For many components of LVC, a full lattice is not required, but weaker structures
su�ce. We de�ne several structures to allow a more �ne-grained management of
requirements. Our main tool will be a join semi-lattice.

De�nition 3.19 A join semi-lattice is a tuple (X,t) where X is a preordered type
and t : X → X → X is a join operation such that

1 x t y ≡ y t x symmetric

2 x t (y t z) ≡ (x t y) t z associative

3 x v x t y expansive
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4 x v y → x t y v y idempotent

Condition (3) lower-bounds the join of two values, while condition (4) upper-bounds
the join.

Lattices can be de�ned algebraically or order-theoretically; we mix both ways in
De�nition 3.19. The reason is that we need e�cient extraction for the join operation
and the order relation. This requirement precludes that we de�ne one from the other,
as usual. However, from the requirements in De�nition 3.19 it follows that the usual
correspondence between join and order holds:

Lemma 3.20 Let X be a join semi-lattice. Then x v y ↔ x t y ≡ y.

Proof. From conditions (3) and (4) with antisymmetry. �

Lemma 3.20 veri�es that our de�nition behaves as usual.

De�nition 3.21 A preorder X is lower bounded if there is an element ⊥ : X such
that ⊥ v x for all x : X , and upper bounded if there is an element > : X such that
x v > for all x : X .

3.11 Internally Deterministic Reduction Systems

We de�ne a notion of reduction on a restricted form of LTS which we use to abstract
from concrete reduction behavior of the languages we introduce later. We focus
on the way the program interacts with its environment via external calls, termina-
tion behavior, and possibly by returning a result value. We abstract this behavior
with internally deterministic reduction systems (IDRS), that we previously intro-
duced [SSH15].
IDRS a labeled transition systems (LTS) with additional requirements.

De�nition 3.22 ‚ Event Type

A type E is an event type, if it contains at least one distinct element τ , which desig-
nates the silent event and has decidable equality. We call the elements of E events. By
convention, the meta variable φ ranges over all events, and ψ ranges over all events
except the silent event τ .

De�nition 3.23 A labeled transition system (LTS) is a tuple (Σ, E ,−→) where Σ is
a type of states, E is an event type, and −→ is a labeled transition relation of type
Σ→ E → Σ→ P. We use the notation σ φ−→ σ′ for transitions.

We omit writing τ -action from the reduction relation and write τ−→ just as −→.
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ReflTrans1

σ
nil−→
∗
σ

ReflTrans2
σ

φ−→ σ′ σ′
l−→
∗
σ′′

σ
nosilentφ l−→

∗
σ′′

Trans
σ

φ−→ σ′ σ′
l−→
∗
σ′′

σ
nosilentφ l−→

+
σ′′

nosilent τ l = l

nosilentψ l = ψ, l

Figure 3.1: Transitive and re�exive-transitive closure of −→.

De�nition 3.24 ‚ Transitive Closure, Re�exive-Transitive Closure of−→
We de�ne the transitive closure −→+ and the re�exive-transitive closure −→∗ of
the step relation according to the rules in Figure 3.1.

We omit the empty event list nil when we write −→+ and −→∗.

De�nition 3.25 ‚ Termination

We write σ 6−→ if σ has no −→-successor.

De�nition 3.26 A (E , τ)-reduction system (RS) is a tuple (Σ,−→, res) such that

1 (Σ, E ,−→) is a LTS

2 res : Σ→ V⊥

3 resσ = v ⇒ σ 6−→

4 τ ∈ E

An internally deterministic reduction system (IDRS) additionally satis�es

5 σ
φ−→ σ1 ∧ σ

φ−→ σ2 ⇒ σ1 = σ2 action-deterministic

6 σ
φ−→ σ1 ∧ σ

τ−→ σ2 ⇒ φ = τ τ -deterministic

De�nition 3.27 ‚ Stuck and Final Con�gurations

We say σ is stuck if σ 6−→ and resσ = ⊥. We say σ is �nal if σ 6−→ and resσ 6= ⊥.
We write σ ⇓ w if there is σ′ such that σ −→∗ σ′ and σ′ 6−→ and resσ′ = w for
w : V⊥.
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Div
σ

τ−→ σ′ σ′⇑

σ⇑
===============

Figure 3.2: Rule de�ning silent divergence of an IDRS state.

Note that we use meta variable in a subtle way: σ ⇓ w just means that σ reduces
to a terminal con�guration, but σ ⇓ v also means that the terminal con�guration is
�nal, because v only ranges over V and does not include ⊥.

3.11.1 Silent Divergence

Silent divergence of a state in an IDRS can be formally de�ned using the coinductive
de�nition in Figure 3.2.

Lemma 3.28 σ ⇑ if there is no σ′ such that σ −→∗ σ′ and either σ′ 6−→ or σ′ is
ready.

Proof. By coinduction. The premises ensure that σ silently reduces, and are them-
selves stable under silent reduction. �

Theorem 3.29 For every con�guration σ ∈ Σ it is propositionally the case that
either σ⇑ or σ ⇓ w with w ∈ V⊥ or there is σ′ such that σ −→∗ σ′ and σ′ is ready.

Proof. Using excluded middle and Lemma 3.28. �

Theorem 3.30 For every con�guration σ ∈ Σ it is informatively the case that either
σ⇑ or σ ⇓ w with w ∈ V⊥ or there is σ′ such that σ −→∗ σ′ and σ′ is ready.

Proof. Using informed excluded middle, inde�nite description, and Lemma 3.28. �

38

https://sigurdschneider.github.io/lvc/Lvc.Equiv.CoTraces.html#three_possibilities
https://sigurdschneider.github.io/lvc/Lvc.Equiv.CoTraces.html#three_possibilities_strong


4 The Intermediate Language IL

In this section, we describe the language IL and its two semantic interpretations IL/F
and IL/I.

4.1 Values, Variables, and Expressions

We use V to denote the type of integer values from CompCert [Ler09b], which we
use as type of values for IL. We de�ne a function β : V → B = {true, false}
to simplify the semantic rule for the conditional. By convention, v ranges over V.
We use a countably-in�nite alphabet V for names x, y, z of values, which we call
variables.
We de�ne a type Exp of expressions with unary and binary expressions.

o1 ::= ? conversion to bool
| ! negation

o2 ::= + | − | · | : | = | ≤
e ::= c | x | o1 e | e o2 e

By convention, e ranges over Exp. Expressions are pure, their evaluation is deter-
ministic and may fail. Expression evaluation is a recursively de�ned function

J·K : Exp→ (V → V⊥)→ V⊥

that relies on CompCert’s de�nition of the unary and binary operators. Environ-
ments are of type V → V⊥ to track uninitialized variables, and are preordered byv,
which is the pointwise lifting of the relation de�ned by the two equations ⊥ v w
and w v w, where w ∈ V⊥.

Lemma 4.1 Expression evaluation is monotone: V v V ′ → JeK V v JeK V ′.

We de�ne a function fv : Exp → setV that determines the free variable of an
expression as usual.

Lemma 4.2 If environments V, V ′ agree on fv (e) then JeKV = JeKV ′.
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4 ‚ The Intermediate Language IL

η ::= e | α(e) extended expression
Term 3 s, t ::= letx = η in s variable binding

| if e then s else t conditional
| e expression
| fun f x = s in t function de�nition
| f e application

Figure 4.1: Syntax of IL. We use both term and program for the syntactic category
Term. We use statement to reference to the top-level constructor of a program.

We lift J·K pointwise to lists of expressions in a strict fashion: JeK yields a list of
values if none of the expressions in e failed to evaluate, and ⊥ otherwise.
We sometimes omit the side condition JeKV 6= ⊥ in the presentation if JeKV is used
in a place where type V is required. For example, we write β(JeKV ) = true instead
of ∃v : V, JeKV = v ∧ βv = true.

4.2 Syntax

IL is a �rst-order language with a tail-call restriction, mutual recursion, and external
events. IL syntactically enforces a �rst-order discipline by using a separate alphabet
F for function names f, g, h. Variables are lexically scoped binders, and a function
de�nition creates a closure that captures variables.
IL uses a third alphabet A for names α which we call actions. The term letx =
α(e)in . . . behaves like a system call α with argument list e that non-determinis-
tically returns a value.
IL allows mutually recursive function de�nitions. The syntax of IL is given in Fig-
ure 4.1.

4.3 Semantics

The semantics of IL/F is given as small-step reduction relation −→F in Figure 4.2.
Note that the tail-call restriction ensures that no call stack is required. The reduc-
tion relation −→F operates on con�gurations of the form (L, V, s)F where s is the
IL/F term to be evaluated. When clear from context, we may omit the subscript on
con�gurations. We occasionally write a con�guration using the notation L | V | s
to have the comma separator available for other notations. The semantics does not
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Imperative Interpretation of IL: IL/I ‚ 4.4

rely on substitution, but uses an environment V : V → V⊥ for variable de�nitions
and a context L of function de�nitions. Transitions in −→F are labeled with events
φ. By convention, ψ ranges over events di�erent from τ .

E 3 φ ::= τ | v = α(v)

The silent event is denoted by τ , and by convention, we omit it from the small-step
relation and just write −→F for τ−→F by convention.
A context is a list of lists of named de�nitions. For example, the context K =
[f1 : a1, f2 : a2]; [g1 : b1] consists of three de�nitions in two lists. f1 and f2 are
de�ned mutually recursively. We de�ne a function dom that yields the domain of
a context as a list, e.g. domK = [f1, f2]; [g1]. A de�nition in a context may refer
to previous de�nitions and de�nitions in its list, i.e. in the example context K , the
function f2 may refer to f1, but g1 cannot refer to any fi. Notationally, we use
contexts like functions, and abstract from the nests list-of-lists structure: To access
the �rst element with name f , we write Lf and we have Lf = ⊥ if no such element
exists. We write L−f for the context obtained from L by dropping all lists before the
�rst list that contains f . We write ; for context concatenation and ∅ for the empty
context.
A closure is a tuple (V, x, s) ∈ C consisting of an environment V , a parameter list
x, and a function body s. Since a function f in a context can only refer to previ-
ously de�ned functions and functions in its own group, the �rst-order restriction
allows the closures to be non-recursive: function closures do not need to close un-
der functions. An application fe causes the function context L to rewind to L−f ,
i.e. up to the group with the de�nition of f (rule App). In contrast to higher-order
formulations, we do not de�ne closures mutually recursively with the values of the
language.
A system call let x = α e in s invokes a function α of the system, which is
not assumed to be deterministic. This re�ects in the rule Extern, which does not
restrict the result value of the system call other than requiring that it is a value. The
transition records the system call nameα, the argument values v and the result value
v′ in the event v′ = α(v).

4.4 Imperative Interpretation of IL: IL/I

We are interested in a translation to IL from an imperative language that does not
require function closures at run-time. To investigate this translation, we introduce
a second semantic interpretation for IL which we call IL/I. IL/I is an imperative lan-
guage, where variables are interpreted as assignables [Har13]. Function application
becomes a goto, and parameter passing is a parallel assignment of arguments to the
parameters, which possibly overwrites variables. Closures are replaced by blocks
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4 ‚ The Intermediate Language IL

IL-Let-Op
JeKV = v

L | V | letx = ein s −→ L | V [x 7→ v] | s

IL-Let-Call
JeKV = v β(v) = b

L | V | if ethen strue else sfalse −→ L | V | si

IL-Cond
v′ ∈ V JeKV = v

L | V | let x = α(e) in s −→v′=α(v) L | V [x 7→ v′] | s

ILF-Fun

L | V | fun f x = s in t −→F Lf x = sMVF ;L | V | t

ILF-App
JeKV = v Lf = (V ′, x, s)

L | V | f e −→F L−f | V ′[x 7→ v] | s

Lf x = sMVF = [f : (V, x, s)]

Figure 4.2: De�nition of IL/F reduction relation −→F. The relation has no subscript
in the rules IL-Let-Op and IL-Let-Call and IL-Cond because those rules are also
part of IL/I semantics.

(x, s) ∈ B and blocks do not contain variable environments. Consequently, a called
function can see all previous updates to variables. For example, the following two
programs each return 5 in IL/I, but evaluate to 7 in IL:

1 let x = 7 in
2 fun f () = x in
3 let x = 5 in f ()

1 let x = 7 in
2 fun f () = x in
3 fun g x = f() in
4 let y = 5 in g y

4.4.1 Small-Step Semantics of IL/I

To obtain the IL/I small-step relation −→I, we de�ne

L(x, s)MI = (x1, s1, 1), . . . , (xn, sn, n)
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α-Eqivalence ‚ 4.5

ILI-Fun

L | V | fun f x = s in t −→I Lf x = sMI;L | V | t

ILI-App
JeKV = v Lf = (x, s)

L | V | f e −→I L−f | V [x 7→ v] | s

Figure 4.3: Semantics of IL/I. The relation −→I is de�ned by the rules IL-Let-Op
and IL-Let-Call and IL-Cond from Figure 4.2 and the rules ILI-Fun and ILI-App.

The reduction relation −→I is de�ned by the rules IL-Let-Op and IL-Let-Call and
IL-Cond from Figure 4.2 and the rules ILI-Fun and ILI-App from Figure 4.3.

4.5 α-Equivalence

The semantics of IL/F respects α-equivalence, i.e. consistent renaming of variables
does not change the semantics. We say an IL program is renamed apart if every
variable name has at most one de�ning occurrence. De�ning occurrences are oc-
currences on the left-hand side of a let, or occurrences as function parameter. Due
to α-equivalence, every IL program can be renamed apart without changing it’s
IL/F semantics. The same does not hold for IL/I programs in general: they cannot be
renamed apart without further ado. In §10 we will see how to rename apart an IL/I
program.
In the Coq development, we formally de�ne α-equivalence, together with functions
that e�ciently rename apart an IL program. We specify formally what it means for
a program to be renamed apart, and formally show that α-equivalence respects IL/F
semantics.

Theorem 4.3 α-equivalence is sound with respect to IL/F semantics.

Example 4.4 The program below shows that it is not easily possible to rename apart
a program and preserve IL/I semantics: Since g reads x, both neither de�nition of x
can be renamed without changing IL/I semantics. In particular, renaming apart the
program program below changes IL/I semantics, although the resulting program is
still α-equivalent.

1 fun g() = x in
2 if e then let x = 1 in g()
3 else let x = 2 in g()
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4 ‚ The Intermediate Language IL

For space reasons, however, we not report in detail on the α-equivalence part of the
development in this thesis.

4.6 IL as IDRS

The semantics of IL/I and IL/F each forms an IDRS: We de�ne res such that resσ = v
if σ is of the form (L, V, e) and JeKV = v. Otherwise, resσ = ⊥.

4.7 Notational Conventions

We adopt several notational conventions to ease notational burden. One notational
convention arises from the fact that information in algorithms needs to be reorga-
nized frequently. A particularily prominent example is reorganizing a value of type
list (A×B) into a value of type listA× listB, and vice versa, if the two lists are of
the same length. This reorganization is accomplished by a function zip.
Since reorganizations of this kind arise frequently, and we do not want to clutter our
de�nitions with unending applications of zip, its friends, and their inverses, we do
not write applications of zip but leave them implicit.
Similarly, we often lift functions in a point-wise manner to operate on lists: Given
a function A → B it is easy to obtain a function listA → listB via map, and
similar liftings exist for functions of di�erent arity. The Coq proofs have to deal
excessively with such transformations, and particularily the associated inversions.
On the mathematical level, we do not distinguish between a function and its point-
wise lifting, or put another way, we do not explicitly insert applications of map, but
omit them.
We are aware that these notational conventions require some form of elaboration on
the reader’s part. However, all de�nitions and proofs are backed up by a formal Coq
development, which has all the details. The formal development is available online,
and we hyperlink each de�nition to its Coq formalization, and makes it easy to go
back and forth between the mathematical de�nitions in this thesis to the formal
Coq de�nitions in the development. Because of this, we think that our notational
conventions improve the presentation by removing unnecessary detail.

4.8 Program Points and Annotations

As one concern of this thesis is the veri�cation of compiler optimizations, the need to
represent program analysis information arises frequently. Mathematically, program
analysis information for a program is a structure isomorphic to the abstract syntax
tree of the program with labels conveying program analysis information. In this
metaphor, we use program point to refer to a node in the abstract syntax tree. Clearly,
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d ∈ D
AnnD 3 a, b ::= d for applications and expressions

| d · a for lets
| d · a, b for conditionals
| d · a, b for function de�nitions

Figure 4.4: Syntax of IL annotation trees.

the set of program points of an IL program is isomorphic to its set of subterms.
Program analysis information associates information with each program point. We
now discuss how we realize this association in the Coq development, and how we
handle the mathematical presentation of this association in this thesis.

4.8.1 Annotations

In the implementation in the Coq development, we associate program analysis in-
formation of some type D with an IL program s by using an annotation tree that is
isomorphic to the AST of s and is labeled with values of type D at each node in the
tree. Annotation trees have type AnnD for a type of analysis information D, and
are inductively de�ned according to the grammar given in Figure 4.4.
The most important operation on IL annotation trees a : AnnD is the projection of
the top-level annotation: [a]. Sometimes, we need to set the top-level annotation of
an annotation tree: setTopAnn a d. There is also a function that produces an anno-
tation tree isomorphic to a given program s, and uses a value d : D as annotation at
every node: initAnn s d.

4.8.2 Notational Conventions for Annotations

Notationally, however, making the annotations trees explicit introduces clutter into
the de�nitions of transformations. Suppose we wanted to de�ne a transformation t
that depends on the program and annotation of type B. The de�ning equation for
let-bindings might look as follows:

t (letx = ein s) (d · a) = if d ∧ [a] then letx = ein (t s a) else t s a

Note that the sans-serif font if represents a meta-level conditional, while the font
if represents an element of IL syntax. The �ctive translation in the equation above
depends on the annotation of the let-binding d and annotation [s], which belongs
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4 ‚ The Intermediate Language IL

to s. It is easy to see that matching on the annotations and passing the right sub-
annotations to recursive calls quickly clutters the de�nition, while providing little
insight. Fortunately, many transformations operate locally, that is, they only depend
on the analysis information of the term they operate on. In such a setting, we no-
tationally pretend that analysis information is organized as additional labels in the
AST and display it inline. For example, we write the equation from above as:

t (letx = ein (s : d1) : d2) = if d1 ∧ d2 then letx = ein (t s) else t s

In this equation we use a notation involving : to indicate that s is annotated with
the boolean value d1, and the whole argument term is annotated with d2.
There is a technical foundation for this notational trick, namely the isomorphism
between two trees of the same shape of types treeA and treeB, and one tree of type
tree(A × B). We sometimes pretend that the analysis information is organized in
one tree, in particular, that the analysis information is available as an additional la-
bel at each node of the AST. We might choose notations di�erent from : to associate
annotations with subterms, for example, we write s {a} to indicate that the infor-
mation associated with s is a. In other places we will have to match on annotation
trees explicitly, or we have to produce them when we transform program annota-
tions. Since both representations are isomorphic, take the freedom to freely switch
between the two representations.
In the Coq development, analysis information is always kept in a second tree. In our
opinion, this has the following advantages over an approach where annotations are
embedded in the syntax of the program:

‚ We do not have to show that program semantics is oblivious to annotations.

‚ We can work with several annotations of typesD1, D2, . . . without having to en-
code them in tupels of typeD1×D2× . . . , but instead just use several annotation
trees.
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5 Trace-based Semantic
Equivalence

At the heart of every veri�cation project, there is a formal de�nition of what correct-
ness means. There are two important aspects of the de�nition of correctness. First, it
must match the high-level, intuitive meaning of correctness. Second, it must be easy
to work with in correctness proofs. This often means that di�erent characterizations
of correctness are useful. In this chapter we focus on a trace-based notion of equiv-
alence. Trace-based characterizations are not only intuitive, but also explicate that
properties de�ned with respect to the set of traces a system produces are invariant
under a semantic relation.
In compiler veri�cation, correctness must specify under which conditions one pro-
gram is a valid implementation of another. For this purpose, a semantic relation
called implementation relation is speci�ed. The question of semantic equivalence is
of lower priority, but often simpler to specify. Usually, the implementation relation
is asymmetric and contains the semantic equivalence relation. We de�ne the follow-
ing trace-based semantic relations between states of (possibly di�erent) IDRS (see
§3.11):

Tr= ⊆
Tr⇒ ⊆

Tr⇒
1

The relation Tr= is simply trace equivalence. The relations
Tr⇒ and

Tr⇒
1 are implementa-

tion relations.
Tr⇒ allows no change in the implementation of the system calls, while

Tr⇒
1 allows non-determinism in the system calls to be resolved, but requires that at

least one valid behavior for each system call remains. We de�ne the relations in this
section, but postpone the proof of the inclusion chain to Theorem 6.24.
We do not de�ne the relations on the semantics of IL, but use the IDRS abstraction
we introduced in §3.11, of which IL’s semantics are instances (§4.6).

5.1 Trace Equivalence

A reasonable notion of equivalence for two con�gurations in two possibly di�erent
(E , τ)-IDRS is to abstact from internal behavior and require that the two con�gura-
tions can interact in the same way with their environment. For IDRS, all relevant
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5 ‚ Trace-based Semantic Eqivalence

τ

α β

ττ

αβ

Figure 5.1: Two processes with the same traces that are not bisimilar: The process
on the right must decide before doing the τ -step whether to do α or β, while the
process on the left can delay the decision until after the τ -step.

interactions are recorded in event traces, hence trace equivalence presents itself als
a natural notion of equivalence. Such a trace equivalence is the established and
accepted notion of equivalence in veri�ed compilers [Ler09b] for deterministic lan-
guages. Trace equivalence famously breaks down if the two processes depicted in
Figure 5.1 must be distunguished. The right process is, however, ruled out by the
IDRS requirements for determinism.
In this section, we de�ne two characterizations of trace equivalence and show them
equivalent. The �rst is based on partial traces, which are �nite objects. The second
is based on maximal, possibly in�nite traces.

5.1.1 Partial Trace Equivalence

A partial trace π adheres to the following grammar:

Π 3 π ::= ε | v | ⊥ | ψπ

We inductively de�ne the relation . ⊆ Σ×Π such that σ . π whenever σ produces
the partial trace π. By de�nition, . erases τ transitions from the partial trace. This
re�ects the intention that we do not want to distinguish con�gurations on the basis
of internal computation steps.
The partial traces a con�guration produces are given by Pσ = {π | σ . π}.

De�nition 5.1 ‚ Partial Trace Equivalence

Let (Σ,−→, res ) and (Σ′,−→′, res ′) be (E , τ)-IDRS and let σ ∈ Σ and σ′ ∈ Σ′.
Then σ Tr= σ′ :↔ Pσ = Pσ′

Note that we set up IDRS such that the relation Tr= easily relates con�gurations from
di�erent IDRS because they agree on events and the meaning of τ .

Theorem 5.2
Tr= is an equivalence relation.

We prove the following important stability properties.
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Trace Eqivalence ‚ 5.1

Pr-Tau
σ

τ−→ σ′ σ′ . π

σ . π

Pr-End

σ . ε

Pr-Trm
σ −→-terminal
σ . res σ

Pr-Evt
σ

ψ−→ σ′ σ′ . π φ 6= τ

σ . ψ, π

Figure 5.2: Rules assigning partial traces to con�gurations.

Lemma 5.3 If σ −→∗ σ′ then σ Tr= σ′.

Proof. From the fact that IDRS are τ -deterministic. �

Lemma 5.4 If σ1
Tr= σ2 and σ1

φ−→ σ′1 and σ2
φ−→ σ′2 then σ′1

Tr= σ′2.

Proof. From the fact that IDRS are τ - and action-deterministic (De�nition 3.26). In-
tuitively, σ′1 is the only state that σ1 can reach with φ, and similarly for σ2. �

Lemma 5.5 If Pσ ⊆ Pσ′ and σ ⇓ w then σ′ ⇓ w. If σ ⇓ w and σ′ ⇓ w then σ Tr= σ′.

Proof. From the fact that IDRS are τ - and action-deterministic and partial traces
contain the result value. �

Partial Traces and Silent Divergence

The partial traces are expressive enough to characterize silent divergence.

Theorem 5.6 σ⇑ if and only if Pσ = {ε}.

Proof. The forward direction is by induction on . and uses Lemma 5.3. The back-
wards direction is by coinduction and case distinction on whether and which re-
duction is possible. Pσ = {ε} ensures that only silent computation steps are non-
contradictory. �

Corollary 5.7 If Pσ′ ⊆ Pσ and σ⇑ then σ′⇑. If σ⇑ and σ′⇑ then σ Tr= σ′.
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5 ‚ Trace-based Semantic Eqivalence

5.1.2 Infinite Trace Equivalence

Partial traces characterize equivalence based on �nite objects. The relation I as-
signes a possibly in�nite trace to a con�guration. This involves a coinductive de�ni-
tion of traces, which is analogous to the de�nition of the partial traces

∏
. We hence

leave the de�nition implicit and use the symbols from
∏

for in�nitary traces also.
The rules co-inductively de�ning I are given in Figure 5.3.

Tr-Div
σ⇑

σ I ε
=====

Tr-Trm
σ ⇓ w

σ I w
=====

Tr-Evt
σ −→∗ σ′ σ

ψ−→ σ′ σ′ I π

σ I ψ, π
================================

Figure 5.3: Rules assigning possibly in�nite traces to con�gurations.

Rule Tr-Div is de�ned in terms of the coinductively de�ned notion of silent diver-
gence⇑. We do this, because a rule similar to Pr-Tau would introduce more traces
than we want. To see this, consider a con�guration δ such that δ⇑, and hence satis-
�es δ τ−→ δ. With a rule similar to Pr-Tau in the de�nition of I, one can show that
δ I π holds for any trace π.
The traces a con�guration can produce are given as T σ = {π | σ I π}.
We prove the following important properties.

Lemma 5.8 I is left-total, i.e. for every σ there is a trace π such that σ I π.

Proof. This proof requires informed excluded middle and inde�nite description. Us-
ing these axioms, we coinductively de�ne a function tr : Σ → Π that constructs a
trace given a con�guration. We then show by coinduction that σ I tr σ. �

Lemma 5.9 If σ −→∗ σ′ then T σ = T σ′.

Proof. From the fact that IDRS are τ -deterministic. �

Lemma 5.10 If T σ1 ⊆ T σ2 and σ1
φ−→ σ′1 and σ2

φ−→ σ′2 then T σ′1 ⊆ T σ′2.

Proof. From the fact that IDRS are τ - and action-deterministic (De�nition 3.26): In-
tuitively, σ′1 is the only state that σ1 can reach with φ, and similarly for σ2. �

Lemma 5.11 If T σ ⊆ T σ′ and σ ⇓ w then σ′ ⇓ w. If σ ⇓ w and σ′ ⇓ w then
T σ = T σ′.

50

https://sigurdschneider.github.io/lvc/Lvc.Equiv.CoTraces.html#coproduces
https://sigurdschneider.github.io/lvc/Lvc.Equiv.CoTraces.html#coproduces_total
https://sigurdschneider.github.io/lvc/Lvc.Equiv.CoTraces.html#silent_closed
https://sigurdschneider.github.io/lvc/Lvc.Equiv.CoTraces.html#coproduces_prefix
https://sigurdschneider.github.io/lvc/Lvc.Equiv.CoTraces.html#coproduces_prefix


Implementation Relations ‚ 5.2

Proof. From the fact that IDRS are τ - and action-deterministic and traces contain the
result value. �

Lemma 5.12 If σ Tr= σ′ then T σ ⊆ T σ′.

Proof. By coinduction on the derivation of the trace π ∈ T σ with the stability prop-
erties of Tr= proven in Lemma 5.3 and Lemma 5.4 and Corollary 5.7. �

Lemma 5.13 If T σ1 ⊆ T σ2 then Pσ1 ⊆ Pσ2.

Proof. By induction on the derivation of the partial trace π ∈ Pσ1.
‚ The case for Pr-End is trivial.
‚ The case for Pr-Tau follows by induction with Lemma 5.9.
‚ The case for Pr-Trm follows from Lemma 5.11.
‚ In the case for Pr-Evt, we have that σ1

ψ−→ σ′1 and σ′1.π, and must show σ2.ψ, π.
We show that there is a trace π′ such that σ1 I ψ, π′ using Tr-Evt and Lemma 5.8.
From the �rst premise we know that also σ2 I ψ, π′, and by inversion that there is
σ′2 such that σ2

ψ−→ σ′2 and σ′2 I π′. The claim σ2.ψ, π now follows from Tr-Evt
and the inductive hypothesis, the premise of the latter follows from Lemma 5.10.
�

Theorem 5.14 σ
Tr= σ′ if and only if T σ = T σ′.

Proof. The forward direction is Lemma 5.12 and the backwards direction follows
from Lemma 5.13. �

Theorem 5.14 establishes that the �nite partial traces su�ce to characterize the in-
�nite traces.

5.2 Implementation Relations

A relaxation of trace equivalence that is even more important in compiler veri�-
cation is the implementation relation. The implementation relation speci�es under
which conditions a state is a correct implementation of another. The implementa-
tion relation is more permissive than trace equivalence, as it allows the target to
re�ne the behavior of the source by determining underspeci�cation.
Underspeci�cation is present in many programming languages. One prominent rea-
son is performance, for example by avoiding run-time checks. An example is division
by zero in C [Ler09b]. The behavior of a division by zero is unde�ned to avoid the
run-time cost of checking the divisor for zero and handle the error. A compiler can
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5 ‚ Trace-based Semantic Eqivalence

thus safely assume that division by zero does not occur. Since division by zero is
unde�ned, any havoc that occurs is well within the bounds of the speci�cation. This
is in stark contrast to languages like ML, where division by zero must throw an ex-
ception. Consequently, an ML compiler must insert code to check for a zero divisor
at every division, except if the compiler cang prove that a zero divisor cannot occur.

We de�ne two �avors of implementation relation:
Tr⇒ which rules out changes to the

external behavior, and
Tr⇒

1 , which allows non-determinism of external behavior to
be resolved down to preserving at least one behavior. Both implementation relations
allow to resolve underspeci�cation arising from stuck states. The implementation
relation

Tr⇒
1 also allows resolving underspeci�cation in the behavior of external calls.

Our external calls are non-deterministic to allow an IDRS to specify an upper bound
on the behavior of external calls. The implementation relation

Tr⇒
1 allows a trans-

formation to further restrict the behavior of an external call. This is useful, if late in
the compiler an external call is actually instantiated with a concrete implementation.
Such an implementation might be deterministic, and hence

Tr⇒ would not allow the
instantiation. At the same time,

Tr⇒
1 requires that each system call retains at least

one behavior, i.e. implementing a system call with a crash is ruled out.

5.2.1 Implementation Relation Preserving Non-Determinism

In this section we de�ne the implementation relation
Tr⇒ , which requires that the

target realizes exactly the as much non-determinism as the source. This relation
hence preserves external behavior. Most transformations we consider in this thesis
satisfy this relation, because they do not alter the behavior of external calls. The
relation is useful to show that a transformation does not alter the speci�cation of
external behavior.
We start by de�ning lower bounds on the behavior of the implementation of a con-
�guration σ, that is, a set of traces any valid implementation of the state σ must pro-
duce. Similarly, we de�ne an upper bound on the behavior of the implementation of
a con�guration σ, that is, a set of traces any trace produced by any implementation
of σ must stay within.

De�nition 5.15 We de�ne the relations . and . inductively using di�erent subsets
of the rules given in Figure 5.4. The relation . is de�ned as least �xed point of the
rules Req-Tau, Req-Evt and Req-Final. The relation . is de�ned as the least �xed
point of the rules Req-Tau, Req-Evt, Req-Final and Sp-Stuck. The lower bound
on traces of the implementation of a state σ is de�ned as

Rσ = {π | σ . π}
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and the upper bound on traces of the implementation of a state σ is de�ned as

Sσ = {π | σ . π}

Req-Tau
σ −→ σ′ σ′ . π

σ . π

Req-Evt
σ

ψ−→ σ′ σ′ . π

σ . ψ, π

Req-Final
σ ⇓ v
σ . v

Req-End

σ . ε

Sp-Stuck
σ ⇓ ⊥
σ . π

Figure 5.4: Rules assigning request and spec pre�xes to con�gurations.

Theorem 5.16 Rσ ⊆ Pσ ⊆ Sσ.

The lower bound Rσ of traces an implementation of σ may produce is included in
the traces Pσ that σ itself produces; the only di�erence being that Rσ does not
contain the traces from Pσ that end in ⊥, but only the strict pre�xes of those. The
upper bound Sσ on the traces an implementation of σ includes the traces Pσ the
con�guration itself produces. Additionally, Sσ contains any continuation of a trace
ending in error, i.e. any trace ππ′ where π⊥ ∈ Pσ and π′ is any trace.
The setsRσ and Sσ formally deal with underspeci�cation encoded in the language
semantics as “getting stuck”. Whenever the semantics of the source gets stuck, we
want to impose no restrictions on the implementation. At the same time, however,
we require an implementation to include the pre�xes of each trace that leads up to
a stuck state in the source semantics.

De�nition 5.17 σ′
Tr⇒ σ ifRσ ⊆ Pσ′ ⊆ Sσ.

Our de�nition of implementation relation is stronger than the implementation rela-
tion of CompCert and VeLLVM. Their implementation relations exclude traces which
end in an error, and just require that all non-error traces of the original program are
included in the non-error traces of the implementation. Note that if a program has
no errors, then Sp-Stk, which distinguishes R from S , is never applicable, and for
such programs,

Tr⇒ is equivalent to trace equivalence Tr=.
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TrU-Div
σ⇑

σ I ε
=====

TrU-Evt
σ −→∗ σ′ σ

ψ−→ σ′ σ′ I π

σ I ψ, π
================================

TrU-Trm
σ ⇓ v

σ I v
=====

TrU-Trm
σ ⇓ ⊥

σ I π
=====

Figure 5.5: Rules assigning possibly in�nite upper traces to con�gurations.

5.2.2 Implementation Relation Allowing Determination

In this section, we de�ne the implementation relation
Tr⇒

1 that allows non-determin-
ism present in the source to be determined: The relation requires preservation of
only one external behavior at each external call, but accepts all non-deterministic
behaviors allowed by the source. The relation is useful if a transformation tightens
the speci�cation of external calls and thereby removes behavior from system calls.
We de�ne a relation I such that U σ = {π | σ I π} is an upper bound on the
traces any implementation of σmay produce. The relationI is coinductively de�ned
according to the rules in Figure 5.5.

We de�ne the external implementation relation
Tr⇒

1 as follows:

De�nition 5.18 σ′
Tr⇒

1 σ if T σ′ ⊆ Uσ.

Tr⇒
1 simply requires that all (possibly in�nite) traces of the target σ′ are admitted by

the source σ. We cannot require that the source produces all traces of the target,
because the target program might have resolved underspeci�cation, i.e. replaced a
stuck state with a state that has behavior. Lemma 5.8 ensures that at least one trace
is preserved because it guarantees that T σ′ cannot be empty.

The main reason why for including
Tr⇒

1 in this development will become clear in §6.
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6 Simulation-based Semantic
Equivalence

In this section, we give bisimulation-based characterizations of the semantic equiv-
alence relation from the previous section that are more amenable in proofs. We
discuss properties of the bisimulation de�nition, weaknesses of the resulting proof
methods, and challenges arising from their formalization in Coq. We discuss a bisim-
ulation with a measure index in a style similar to CompCert [Ler09b] and show it
equivalent to the non-indexed version.
In §6.3, we discuss the approach of Hur et al. [Hur+13] to formalizing co-inductive
proofs in Coq, and use his method to characterize our bisimulation relation. This
de�nition is the basis for most coinductive proofs in LVC. In §6.4, we discuss the
approach of Schäfer and Smolka [SS17] to formalizing coinductive proofs in Coq.
In §6.5, we discuss the challenges with obtaining transitivity lemmas. We show that a
famous counter-example from the literature can be adapted to show that one general
form of transitivity is even unsound. We then use Schäfer and Smolka’s approach to
obtain a weaker transitivity result involving a lock-step simulation that is useful to
modularize proofs.

6.1 Simulation-based Semantic Equivalence

Trace-based equivalences do not provide a straight-forward proof strategy. Both
equivalence and re�nement involve two trace inclusions, which must be shown sep-
arately. This is inconvenient for two reasons. First, the backwards direction is usu-
ally tedious, because it involves inverting the result of a transformation to gain in-
formation about its source program. Second, and more importantly, the proof of the
backwards direction repeats most of the arguments of the forward direction and only
di�ers in small details. Leroy [Ler09a] and Sevcík et al. [Sev+13] avoid backwards
proofs altogether by exploiting that forward and backward simulation coincide in
their setting. In this section, we develop similarity and bisimilarity as a proof tool
for correctness proofs that does not rely on the coincidence of forward and backward
simulation, as on IDRS, forward and backward direction do not coincide as shown
in Example 18.1. Nevertheless, our de�nition of similarity allows to show forward
and backward direction with one proof, because our proof rules for bisimilarity al-
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Bisim-Silent
σ1 −→+ σ′1 σ2 −→+ σ′2 σ′1 ∼ σ′2

σ1 ∼ σ2

Bisim-Term
σ1 ⇓ w σ2 ⇓ w

σ1 ∼ σ2

Bisim-Extern
σ1 −→∗ σ′1 σ2 −→∗ σ′2 σ′1, σ

′
2 ready σ′1

∼
 σ′2 σ′2

∼
 σ′1

σ1 ∼ σ2

Sim-Extern
σ1 −→∗ σ′1 σ2 −→∗ σ′2 σ′1, σ

′
2 ready σ′1

∼
 σ′2

σ1 ∼ σ2

Sim-Error
σ1 −→∗ σ′1 σ′1 6−→ res σ′1 = ⊥

σ1
>∼ σ2

Figure 6.1: De�ning rules of similarity and bisimilarity.

low to argue the backwards direction, or more precisely, its contra-position, in-place
together with the forward direction.

6.1.1 Bisimilarity

Bisimilarity is obtained as the greatest �xed-point of the proof rules given in Fig-
ure 6.1. Several de�nitions are required. We call a con�guration ready if its next
reduction produces an external event, that is, an event di�erent from τ . We write
σ1

R
 σ2 for a one-step forward-simulation property of a relation R: Every tran-

sition σ1 takes can also be taken by σ2, and the two successor con�gurations are
related by R.

σ ready := ∃σ′, σ φ−→ σ′ ∧ φ 6= τ

σ1
R
 σ2 := ∀σ′1, σ1

φ−→ σ′1 → ∃σ′2, σ2
φ−→ σ′2 ∧Rσ′1σ′2

De�nition 6.1 ‚ Bisimilarity

Let (S,−→, res ) and (S′,−→′, res ′) be (E , τ)-IDRS. We de�ne bisimilarity as rela-
tion of type S → S′ → P, where P is the universe of propositions. Bisimilarity ∼ is
coinductively de�ned as the greatest relation closed under the rules Bisim-Silent,
Bisim-Extern, Bisim-Term from Figure 6.1.
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Simulation-based Semantic Eqivalence ‚ 6.1

Description of the Rules Bisim-Silent allows to match �nitely many steps on
both sides, as long as all transitions are silent. This is sound because of the determin-
ism requirements in IDRS, but would not yield a meaningful de�nition in a setting
with internal non-determinism. Bisim-Extern ensures that every external transi-
tion of σ′1 is matched by the same external transition of σ′2, and vice versa. This
ensures that if two states are in relation, they react to every possible result value of
the external call in a bisimilar way. σ′1, σ′2 are required to be ready to simplify case
distinctions by ensuring that the next event cannot be τ .

6.1.2 Reduction, Expansion and Divergence

It is easy to prove the following properties, which we built into the de�nition.

Lemma 6.2 ‚ Closedness under Expansion

If σ′1 ∼ σ′2 and σ1 −→∗ σ′1 and also σ2 −→∗ σ′2 then σ1 ∼ σ2.

Proof. By inversion with τ - and action-determinism of IDRS. �

Lemma 6.3 ‚ Closedness under Reduction

If σ1 ∼ σ2 and σ1 −→∗ σ′1 and also σ2 −→∗ σ′2 then σ′1 ∼ σ′2.

Proof. By induction on the length of the reduction sequences with Lemma 6.2. �

Closedness under silent expansion and reduction are important in proofs: With these
properties we can show programs equivalent that di�er in the number of silent steps
they take. This is frequently required, for example, if a statement is removed, or
implemented with more than one statement.

Lemma 6.4 If σ⇑ and σ′⇑ then σ ∼ σ′.

6.1.3 Relation to Trace Equivalence

We show that bisimilarity characterizes trace equivalence, and similarity character-
izes the implementation relation.

Lemma 6.5 If σ1 ∼ σ2 then σ1
Tr= σ2.

Proof. We show trace inclusion by induction on the derivation of σ1 . π. The proof
uses Lemma 6.3, inversion properties of ∼, and determinism of IDRS. �

Lemma 6.6 If σ1
Tr= σ2 then σ1 ∼ σ2.
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6 ‚ Simulation-based Semantic Eqivalence

Proof. By coinduction followed by a case distinction on the behavior of σ1 according
to Theorem 3.29. Both termination and divergence transport along Tr= via Lemma 5.11
and Corollary 5.7, and bisimilarity can be proven using Bisim-Term and Lemma 6.4,
respectively. Otherwise, there are σ′1, σ′′1 such that σ1 −→∗ σ′1 and σ′1

ψ−→ σ′′1 ready.
We derive that σ1 . ψ, ε and use the premise to obtain σ2 . ψ, ε. Inversion on the
latter yields that there are σ′2, σ′′2 such that σ2 −→∗ σ′2 and σ′2

ψ−→ σ′′2 . We apply
Bisim-Extern, apply the cohypothesis and use Lemma 5.4 to discharge its premise.�

Theorem 6.7 ‚ Soundness and Completeness

σ1
Tr= σ2 ↔ σ1 ∼ σ2.

Proof. The forward direction is Lemma 6.6. The backwards direction is Lemma 6.5.�

6.2 Two Notions of Similarity

De�nition 6.8 Let (S,−→, res ) and (S′,−→′, res ′) be (E , τ)-IDRS. Similarity >∼
is de�ned as the greatest relation of type S → S′ → P closed under the rules
Bisim-Silent, Bisim-Extern, Bisim-Term and Sim-Error in Figure 6.1.

Sim-Error can be used to justify similarity for any con�guration on the right side,
if the left side can be shown to reduce to a stuck con�guration.

Theorem 6.9 ‚ Soundness and Completeness

σ >∼ σ′ ↔ σ′
Tr⇒ σ.

Proof. Similar to the proof of Theorem 6.7; we do not state the necessary lemmas
here. �

De�nition 6.10 Let (S,−→, res ) and (S′,−→′, res ′) be (E , τ)-IDRS. Similarity >∼1
is de�ned as the greatest relation of type S → S′ → P closed under the rules
Bisim-Silent, Sim-Extern, Bisim-Term and Sim-Error in Figure 6.1.

Again, Sim-Error can be used to justify similarity for any con�guration on the right
side, if the left side can be shown to reduce to a stuck con�guration. Additionally,
for external calls only the backwards direction has to be shown via Sim-Extern.

Theorem 6.11 ‚ Soundness and Completeness

σ >∼1 σ
′ ↔ σ′

Tr⇒
1 σ.
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Proof. Similar to the proof of Theorem 6.7; we do not state the necessary lemmas
here. �

6.2.1 Bisimilarity as Symmetrization of Similarity

Our de�nition of similarity and bisimilarity is not standard. In particular, bisimi-
larity is not obtained as symmetrization of similarity. De�nition by symmetrization
is useful if the properties one wants to show are symmetric properties: A proof of
bisimilarity can then be obtained from a proof of similarity and symmetry. To show
a property that is not symmetric, the proofs for the forward and the backward di-
rection are, in general, di�erent and do not follow by symmetry.
In our setting, we make bisimilarity the basic de�nition, and obtain simulation by
adding the “escape” rule Sim-Error that justi�es similarity if the left con�guration is
stuck. Sim-Error realizes the intuition that if the source is stuck, we do not impose
any restriction on behavior of the target.
In our proofs, we show forward and backward direction in one proof. A similarity
proof usually works by assuming that the simulee is assumed to take a step, and the
proof obligation is to show that the simulant can do a similar step such that the two
resulting states are in relation again. In constrast, to show that two states are in
bisimulation, the idea is to start with a case distinction on whether the simulee can
take a step, and if it cannot, to show that the simulant is stuck as well. If the proof is
done in this way, it is not required that forward and backward simulation coincide,
and the approach scales naturally to a non-deterministic setting.

6.2.2 Divergence as Underspecification

Note the rule Bisim-Silent in Figure 6.1 requires at least one silent step on both
sides. This is necessary for (bi) similarity to preserve silent divergence.
Clearly, if Bisim-Silent was formulated in terms of the re�exive-transitive closure
instead of the transitive closure, it would always apply—with catastrophic conse-
quences: simulation would derail to the full relation.
If, however, instead of Bisim-Silent we had the following rule, which admits the
right-hand side con�guration to not take a step the situation becomes more inter-
esting.

Sim-Silent’
σ1 −→+ σ′1 σ2 −→∗ σ′2 σ′1 ∼ σ′2

σ1 ∼ σ2

In this setting, a silently diverging con�guration δ could be shown equivalent to any
other con�guration σ by a simple coinductive argument: δ ∼ σ can be shown for
any con�guration σ by coinduction and application of Sim-Silent’, where δ does

59



6 ‚ Simulation-based Semantic Eqivalence

a silent step and σ doesn’t do a step. Clearly, the relation would be asymmetric
then, as this reasoning only works if δ is on the left hand side. Moreover, it seems
wrong to consider diverging states equivalent to any other state. For implementation
relations, however, a de�nition that relates divering states on the left side to any
state on the right side is interesting. Such a de�nition would essentially mean silent
divergence becomes an instance of underspeci�cation.
The question whether to treat silent divergence as underspeci�cation is a normative
one, and there are arguments for and against it. Two reasons why silent divergence
should be treated as underspeci�cation are: First, and most importantly, writing a
silently divering program is most probably nonsensical. Second, a compiler could
soundly assume that every loop that causes no external e�ects terminates, without
proving termination of that loop. Interestingly, the C11 standard [ISO11] does pre-
cisely that, when it states in section §6.8.5p6 that a compiler may consider a loop
terminating if its condition is not constant and the loop does not have external ef-
fects. See the following C working group at ISO/IEC note [Boe] for further discussion
of this issue.
There are also three reasons why silent divergence should be preserved: First, it is
standard in compiler veri�cation to preserve silent divergence. CompCert [Ler09b]
preserves silent divergence since the beginning, and other veri�ed compilers such
as VeLLVM [Zha+12] follow the approach. Second, preserving termination seems
to better match current programmer intuition. And third, many optimizations, and
in particular all optimizations in this thesis, simply preserve silent divergence. For
this reason, we chose to setup our implementation relation in such a way that silent
divergence is preserved. This yields slightly stronger results, as we also show that
silent divergence is preserved. In general, we think that considering silent diver-
gence underspeci�cation is the more promising approach to follow, but this requires
changing the intuitive expectation of correctness, which is a social issue that needs
to be resolved �rst.

6.2.3 Constructing Bisimulations in Coq

The mechanical construction of bisimulation relations in plain Coq is inconvenient.
To understand why this is the case, one has to understand the approach that was
taken to implement coinductive types in Coq’s type theory [Coq93]. The main in-
tuition behind the implementation is that the elements of inductive and coinductive
types are trees formed form applications of the constructors of the respective types.
Each element of an inductive type is, in this sense, a tree of �nite depth, while an
element of a coinductive type can be a tree of in�nite depth. Both inductive and
coinductive types contain in�nitely branching trees. For example, the proof that
two silently diverging states are bisimilar is an in�nite (linear) tree that relates the
states and its successors.
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Such a possibly in�nitary tree is represented in plain Coq by a corecursive function
that describes the tree’s construction. The corecursive function serves as coinductive
proof by describing an in�nitary tree in a corecursive fashion, which is very similar
to recursion: The function describes some �nite portion of the in�nitary tree, and
then delegates to corecursion.
As corecursive functions must describe trees of possibly in�nite depth, corecursive
functions cannot be required to terminate. However, some validity requirement is
in order, because a corecursive de�nition must not delegate directly to itself, as that
would introduce absurdity in the same way as a recursively de�ned function with a
de�ning equation à la fx = fx does.
Emphasizing the computational perspective, a corecursive function can be under-
stood as a construction plan for an in�nitary tree that cannot be constructed in
�nite time. Productivity is the requirement that the corecursive function admits
partial construction of the in�nitary tree up to any �nite depth in �nite time. From
this de�nition it follows that every terminating function is also productive [Coq93].
The in�exibility of coinductive proofs in Coq arises not from this general approach,
but from the criterion that Coq uses to ensure productivity of corecursive de�nitions.
This criterion requires corecursion to only occur directly as argument to at least one
constructor of the coinductive type. This is su�cient for productivity, but precludes
many uses of lemmas, as the constructor check does not work well across function
application (i.e. lemmas), especially if the applied functions are themselves de�ned
recursively or corecursively. This severly limits the proof power of direct coinductive
proofs in Coq. We will circumvent this restriction in §6.3, where we encode the
greatest �xed-point in a way that encodes the productivity requirement di�erently
and thus side-steps the syntactic productivity criterion.

6.2.4 Bisimulation with Measure Index

The simulation used in CompCert [Ler09b] is indexed by a well-founded measure to
account for stutter steps. Stutter steps occur in proofs if, for instance, a let binding
was removed by an optimization. In this case, one wants to argue that the left-
hand side con�guration takes one step (executing the let binding) while the right-
hand side does not reduce. As discussed in §6.2.2, we cannot add a stutter rule to
the bisimulation without dire consequences, but also cannot apply the cohypothesis
(i.e. corecursion) directly, because of the productivity requirement. This means that
additional provisions are required in a proof where a stutter step is involved.
We now discuss how CompCert solves the problem of stutter steps with the intro-
duction of a measure index to the simulation. The rules in Figure 6.2 show a modi�ed
de�nition of our bisimilarity that includes a well-founded measure index in the style
of CompCert. A valid simulation proof now also requires that m is an element of
some type M , and the less-than relation < on M is well-founded. A simulation
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BisimIndex-Silent
σ1 −→F

+ σ′1 σ2 −→F
+ σ′2 σ′1 ∼m σ′2

σ1 ∼m σ2

BisimIndex-Term
σ1 ⇓ w σ2 ⇓ w

σ1 ∼m σ2

BisimIndex-Extern
σ1 −→F

∗ σ′1 σ2 −→F
∗ σ′2

σ′1, σ
′
2 ready σ′1

∼
 σ′2 σ′2

∼
 σ′1

σ1 ∼m σ2

BisimIndex-Stutter
σ1 −→F

∗ σ′1 σ2 −→F
∗ σ′2

σ′1 ∼m′ σ′2 m′ < m

σ1 ∼m σ2

Figure 6.2: Rules of a bisimilarity relation indexed with a well-founded measure. The
index m is must be an element of some type M and < is a well-founded relation of
type M →M → P.

proof can now use the rule Bisim-Stutter to accomodate stutter steps by decreas-
ing the measurem. The following theorem shows that introducing the measure may
increase proof power, but does not change the relation.

Theorem 6.12 LetM be a type andm : M and let< be a well-founded relation on
M . Then σ1 ∼m σ2 if and only if σ1 ∼ σ2.

Proof. The backwards direction is by coinduction, as every rule of ∼ is also a rule of
∼m. For the forward direction, we �rst show by well-founded induction on m that

the top-level rule in any derivation of ∼m can be assumed to be BisimIndex-Silent,
BisimIndex-Term, and BisimIndex-Extern, as the silent steps occuring in any pre-
ceeding applications of BisimIndex-Stutter can be merged into the silent steps of
one of the former rules. With this inversion lemma, the forward direction can be
shown by coinduction. �

6.2.5 Invariants in Coinductive Proofs

Coinductive proofs always show that a certain relation (i.e. the simulation) is con-
tained in the coinductively de�ned relation (i.e. bisimilarity). The simulation relation
encodes the proof invariant, and is often formulated in terms of syntactic properties
of the two programs, such as, for example, that the right-hand side program is ob-
tained by applying a speci�c transformation to the left-hand side program.
One important property of such proofs is the interaction of the invariant encoded in
the simulation with function application. Suppose we want to show that two func-
tion applications are in simulation. We must reduce both sides one step to be able
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to apply the cohypothesis. Applying the coinductive hypothesis, however, we must
show that the function bodies are in the syntactically de�ned simulation relation. In
a coinductive proof, the invariant encoded in the simulation relation must be shown
to also hold for function bodies. This means that a plain coinductive proof provides
no function abstraction in the sense that applying related functions with related
arguments is enough to yield related behavior. We show how to regain function
abstraction for simulation proofs in §8.

6.3 Parametrized Coinduction

In the formal Coq development, we de�ne simulation and bisimulation primarily
via parametrized coinduction [Hur+13] to side-step the too restrictive guardedness
check for co-�xed points in Coq and gain more proof power. Parametrized coinduc-
tion allows to account for productivity in a semantic way and supports the use of
lemmas. In this section, we recapitulate the basic setup of parametrized coinduction
following the work of Hur et al. [Hur+13]. In §6.3.2 we outline how parametrized
coinduction works.

De�nition 6.13 ‚ Complete Prelattice

A complete prelattice (X,v,u,t,>,⊥) is a complete lattice that is de�ned with
respect to x ≡ y := x v y ∧ y v x instead of equality, i.e. a lattice which does not
require anti-symmetry of v.

The setup relies on the notion of a complete prelattice. Hur et al. do not require anti-
symmetry, but base the paper presentation on a complete lattice nonetheless. We
apply parametrized coinduction to functions into P, the universe of proprositions.
Function types into P only form a complete lattice if the axioms of propositional
extensionality and functional extensionality are assumed. The function types into P
each form a complete prelattice without axioms, though.

De�nition 6.14 ‚ Greatest Fixed Point

Let X be a complete prelattice. We de�ne a function

co�x : (X → X)→ X

co�x f :=
⊔
{y ∈ X | y v fy}

We use the notations νx.s := co�x(λx.s) and νf := co�xf .

Fact 6.15 Let X be a complete prelattice and f be a monotone function. Then
co�xf v f(co�xf).
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De�nition 6.16 ‚ Hur’s Parametrized Greatest Fixed Point

Let X be a complete prelattice and f : X → X be a monotone function. We de�ne
a function

G : (X mon−−−→ X) mon−−−→ X
mon−−−→ X

G f x := νy.f(x t y)

It is easy to check that G and Gf are monotone.

Lemma 6.17 ‚ Hur’s Initialize

νf ≡ Gf⊥.

Lemma 6.18 ‚ Hur’s Unfold

Gfx ≡ f(x t Gfx).

Lemma 6.19 ‚ Hur’s Accumulate

y v Gfx↔ y v Gf(x t y).

Proof. See [Hur+13]. �

Corollary 6.20 ‚ Hur’s Coinduction

If ∀z, x v z → y v z → y v Gfz then y v Gfx.

The usage of Corollary 6.20 as coinductive proof principle is outlined below in §6.3.2.
The de�nition ofG and together with its lemmas are provided by the Paco library [Hur+13].
The Paco library realizes G for each arity directly as a coinductively de�ned pred-
icate, instead of using the co�xed point operator we de�ned for this presentation
in De�nition 6.14.

6.3.1 Bisimilarity as Parametrized Greatest Fixed Point

We obtain de�nitions equivalent to similarity and bisimilarity with the �xed point
operator G from a single function. The use of a single function allows us to show
many properties which hold for both, similarity and bisimilarity, with one lemma.
This saves a lot of repetition particularly in the proof of transitivity.

De�nition 6.21 We de�ne the function sim that generates similarity and bisimi-
larity in Figure 6.3.
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STy 3 s ::= bisim | sim

sim : (STy→ Σ→ Σ→ P)→ (STy→ Σ→ Σ→ P)
sim r p σ1 σ2 := (∃w. σ1 ⇓ w ∧ σ2 ⇓ w) Bisim-Term
∨ (∃σ′1σ′2. σ1 −→F

+ σ′1 ∧ σ2 −→F
+ σ′2 ∧ r p σ′1 σ′2) Bisim-Step

∨ (∃σ′1σ′2. σ1 −→F
+ σ′1 ∧ σ2 −→F

+ σ′2

∧ σ′1, σ′2 ready ∧ σ′1
r p
 σ′2 ∧ σ′2

r p
 σ′1) Bisim-Extern

∨ (p = sim

∧ ∃σ′1. σ1 −→∗F σ′1 ∧ σ′1 terminal ∧ res σ′1 = ⊥) Sim-Error

Figure 6.3: Generating function for simulation and bisimulation. Each disjunct cor-
responds to a rule from Figure 6.1.

6.3.2 Outline of Parametric Co-Induction

A parametrized coinduction using sim always has the form

Rr ⊆ G sim r p

for relation R (the simulation) and r. Applying Corollary 6.20 sets up the coinduc-
tion: We have to show

R ⊆ G sim r′ p

but can assume r ⊆ r′ and R ⊆ r′. The assumption R ⊆ r′ is the coinductive
hypothesis. The proof typically proceeds by unfolding G according to Lemma 6.18:

R ⊆ sim(r′ ∪ G sim r′) p

Unfolding exposes the generating function sim, each disjunct of which corresponds
to a constructor (cf. Figure 6.1). In places where the constructor uses corecursion, the
function sim applies its parameter, which is r′ ∪G sim r′ in our proof. This ensures
that the co-hypothesis R ⊆ r′ is only applied after one of the constructors has been
“used”. In this way, the parameter in the de�nition of G encodes the productivity
requirement semantically.
The Paco library comes with a set of elaborate tactics that automatically pack arbi-
trary sets of premises into an relation R, and help unpacking R after setting up the
coinductive proof for the user’s convenience. Packing and unpacking relies on the
axiom of unicity of equivalence proofs.
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6.3.3 Equivalence to the Non-Parametric Definition

De�nition 6.22 Let r : STy→ Σ→ Σ→ P. We de�ne:

≈pr := G sim r p

>∼r := ≈sim
r

∼r := ≈bisim
r

The following theorem establishes trust in the non-standard setup. The de�nitions
obtained from parametrized coinduction and the function sim are equivalent to the
more basic de�nitions from §6.1.

Lemma 6.23
>∼ ≡ >∼⊥ and ∼ ≡ ∼⊥ and >∼1 ≡

>∼1⊥.

We can now prove that the three relations are increasingly coarser:

Theorem 6.24 ∼ ⊆ >∼ ⊆ >∼1.

6.3.4 Expansion and Contraction

Similarity has many important properties that we will need in correctness proofs.
The lemmas are formulated with respect to≈pr . This means that one proof establishes
the property for both simulation and bisimulation.
A key properties of similarity is stability under silent reduction.

Lemma 6.25 The following lemmas stated in rule form are sound.
Sim-Expansion-Closed
σ1 −→F

∗ σ′1 σ2 −→F
∗ σ′2 σ′1 ≈pr σ′2

σ1 ≈pr σ2

Sim-Contraction
σ1 −→F σ

′′
1 σ′1 −→F σ

′′
1 σ2 −→F σ

′′
2 σ′2 −→F σ

′′
2 σ1 ≈pr σ2

σ′1 ≈pr σ′2

Sim-Expansion-Closed in particular means that whenever σ −→F
∗ σ′ then for ev-

ery r the two con�gurations are in simulation σ ≈pr σ′. Note that Lemma 6.25 holds
for arbitrary r.

6.4 Greatest Fixed Points via Tower Induction

We now give yet another characterization of the greatest �xed-point introduced by
Schäfer and Smolka [SS17] and based on the work by Pous [Pou16]. We will ulti-
mately use this characterization to prove a useful transitivity result in §6.5.2. We
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quickly recapitulate the setup of Schäfer and Smolka [SS17] here. The construction
is based on an inductive characterization of the companion [Pou16].

De�nition 6.26 ‚ Schäfer’s f -tower

Be X a complete prelattice and f : X → X a monotone function. The f -tower is
the predicate Tf : X → P de�ned inductively by the following rules:

x ∈ Tf
f x ∈ Tf

M ⊆ Tfl
M ∈ Tf

Note that we use the convention to use set notation for predicates and writeM ⊆ Tf
for ∀x,M x→ Tf x. Using the f -tower, the companion of f can be de�ned.

De�nition 6.27 ‚ Schäfer’s companion

Let X be a complete prelattice and let the function f : X → X be monotone. The
companion of f is de�ned as tf (x) :=

d
{y ∈ Tf | x v y}.

Theorem 6.28 ‚ Schäfer’s tower induction

Let X be a complete prelattice and P : X → P be a predicate such that forall M ,
whenever

d
M ∈ P thenM ⊆ P . If P (tf x) implies P (f(tf x)) then P (tf x) holds

for all x.

Lemma 6.29 ‚ Schäfer’s characterization

Let X be a complete prelattice and f : X → X be a monotone function. Then
νf ≡ tf⊥.

For the proofs of Theorem 6.28 and Lemma 6.29, see the work of Schäfer and Smolka
[SS17].

6.5 Transitivity

Simulation and bisimulation are transitive relations. The main work is showing
Lemma 6.30, from which the property follows.

Lemma 6.30 Let p : STy and σ1, σ2, σ3 : Σ. If G sim⊥ p σ1 σ2 and G sim⊥ p σ′2 σ3
and σ2 −→F

∗ σ′2 or σ′2 −→F
∗ σ2 then G sim⊥ p σ1 σ3.

Proof. The proof is by case analysis on G sim⊥ p σ1 σ2 and G sim⊥ p σ′2 σ3. The
cases are not di�cult, but tedious. �

Lemma 6.31
>∼⊥ is a preorder.
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Proof. Re�exivity is trivial; transitivity is an instance of Lemma 6.30. �

Lemma 6.32 ∼⊥ is an equivalence relation.

Proof. Re�exivity and symmetry are trivial; transitivity is an instance of
Lemma 6.30. �

Note that Lemma 6.31 and Lemma 6.32 follow from obvious properties of the cor-
responding trace-based relations they characterize as shown in Theorem 6.7 and
Theorem 6.9. Exploring direct ways to show transitivity of bisimilarity, however, is
important in its own right. The reason is that we need transitivity properties not
only for r = ⊥, but for arbitrary relations for them to be useful in proofs by coin-
duction. Transitivity of≈pr for arbitrary r, however, cannot hold, as it is well-known
that weak bisimilarity is not an up-to technique for weak bisimilarity [SM92].

Example 6.33 We adapt a counter-example of Sangiorgi and Milner [SM92] to show
that ≈pr is not transitive for arbitrary r. Suppose σ and σ′ are con�gurations such
that σ −→Fτ σ

′ and σ′ is not bisimilar to the silently diverging con�guration δ. We
assume that ≈pr is transitive for p and all r, and use it to derive a contradiction, in
particular, we show that σ ≈pr δ by parametric coinduction. We apply Bisim-Silent
and reduce both sides one step and have to show σ′ ≈pr′ δ where r ⊆ r′. From
Lemma 6.30 we know that σ ≈pr′ σ′. Using this together with the hypothetical transi-
tivity lemma, it remains to show that σ(r′∪ ≈pr′)δ, which follows by the coinductive
hypothesis: a contradiction.

6.5.1 Lock-step Bisimilarity

It is, however, possible to obtain useful transitivity lemmas, but they require a di�er-
ent setup. We settle for a version of an approach by Pous [Pou06], which amounts to
require that one of the bisimilarity premises of the transitivity lemma is not weak,
but counts silent steps. We show a form of Pous result for the special case of lock-
step bisimilarity. Technically, Pous approach works also for relations that are coarser
than lock-step bisimilarity, but having the transitivity result for lock-step bisimilar-
ity will su�ce for our application.

De�nition 6.34 We de�ne the function locksim that generates lock-step bisimi-
larity in Figure 6.4, which we write with the symbol 1∼r .

A lock-step simulation does not abstract from internal computation steps, but re-
quires the two computations to proceed in lock-step fashion even on silent steps.
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Transitivity ‚ 6.5

locksim : (Σ→ Σ→ P)→ (Σ→ Σ→ P)
locksim r p σ1 σ2 := (σ1 6−→ ∧σ2 6−→ ∧res σ1 = res σ2) Bisim-Term
∨ (∃σ′1σ′2. σ1 −→F σ

′
1 ∧ σ2 −→F σ

′
2 ∧ r σ′1 σ′2) Bisim-Step

∨ (σ1, σ2 ready ∧ σ1
r
 σ2 ∧ σ2

r
 σ1) Bisim-Extern

Figure 6.4: Generating function for lock-step bisimulation.

6.5.2 Transitivity of Tower Bisimilarity

In joint work with Steven Schäfer, we proved the following version of transitivity.
This lemma shows that lock-step bisimilarity is an up-to relation for bisimilarity.

Lemma 6.35 ‚ Transitivity

If tsim r σ1 σ2 and tlocksim⊥σ2 σ3 then tsim r σ1 σ3.

Proof. By tower induction (Theorem 6.28) and case analysis on the two premises.�

The crucial point of Lemma 6.35 is that Schäfer’s companion allows us to show that
the relation r in the �rst premise is the same relation as in the conclusion. We will
use Lemma 6.35 exemplary in Theorem 10.8 to show how this lemma is useful to
modularize a proof.

6.5.3 Transitivity of Parametric Bisimulation

A result similar to Lemma 6.35 with Hur’s characterization of the greatest �xed point
seems possible using techniques based on up-to functions as detailed in the work of
Hur et al. [Hur+13]. In our setting, however, this would have involved considerably
more work, as we would have to prove the main theorems about up-to techniques,
which are not contained in the Paco library.
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7 While

As a �rst application of our basic program equivalence setup, we translate an im-
perative while language to IL/I. The imperative while language we translate is es-
sentially Winskel’s while [Win93], but with a change in the treatment of sequential-
ization. Our version of while simpli�es continuation management by ensuring that
sequentializations is left-normal, that is to say, all occurring sequentializations have
a simple command on their left-hand side. This change allows for simpler semantic
rules (one for each command) than the usual rules required for a sequentialization if
the left-hand side can be a program. We ensure left-normality in the semantic rules
by using an append procedure to compute the left-normal sequentialization of two
programs. Intuitively, this approach works, because sequentialization in Winskel’s
while is associative.

7.1 Syntax

The di�erence to Winskel’s while and other formulations found in the literature
[Win93; Pie+17] is the formulation of sequentialization. Our version of the sequen-
tialization is left-normal, that is to say, the left-hand side of every sequentialization
is an an atomic statement, and does not allow further sequentialization there. To
achieve this, we take programs to be lists of atomic statements and take precau-
tions in the formulation of the semantics to maintain this invariant by appending
lists if necessary. The syntax of linear while is given in Figure 7.1. We adopt the

p, q ::= s; p | ; program
s ::= statement
| x := e; assignment
| if (e) p else q conditional
| while (e) s iteration

Figure 7.1: Syntax of While.
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7 ‚ While

LWhile-Def
JeKσ = v

〈x := e; p | σ〉 −→ 〈p | σ[x 7→ v]〉

LWhile-Cond
JeKσ = i

〈if (e) ptrue else pfalse, q | σ〉 −→ 〈pi ++ q | σ〉

LWhile-Loop

〈while (e) p, q | σ〉 −→ 〈(if (e) (p ++ while (e) p)), q | σ〉

Figure 7.2: Semantics of While.

notational convention that when writing programs, we omit writing the semicolon
separator after statements that themselves end in a semicolon. For example we write
x := e; y := e′; instead of x := e; ; y := e′;.

7.2 Semantics

The semantics of linear while is de�ned on con�gurations 〈p |E〉where p is a linear
while program and E is a variable environment. The small-step semantics of linear
while is given in Figure 7.2. The semantics uses list concatenation ++ to ensure
linearity of programs. We also use the notation if (e) p for programs of the form
if (e) p else ;. This notation �ts nicely with the semantic rule for conditional
Cond, because for JeKσ = false we have

〈if (e) p else ; , q) | σ〉 −→ 〈q | σ〉

Note how append ++ takes care of the empty list in the alternative of the condition
and allows to reduce the conditional to q in one step.

7.3 Translation to IL/I

In this section we translate linear while programs to IL/I programs. The translation
is given in Figure 7.3. Note that termination of LWtoIL is not obvious to Coq and
requires using a measure function with the program package.
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Translation to IL/I ‚ 7.3

LWtoIL : program→ F → Exp

LWtoIL (x := e; p) f =
letx = ein LWtoIL p f

LWtoIL (if (e) p1 else p0; q) f =
fun g () = LWtoIL q f in
if ethen LWtoIL p1 g

else LWtoIL p0 g g fresh

LWtoIL (while (e) p; q) f =
fun g () =
if ethen LWtoIL p g
else LWtoIL q f

in g () g fresh

Figure 7.3: Translation from While to IL/I.

7.3.1 Correctness

The main issue in the proof is factoring out the part that requires coinduction, which
we do in the following lemma.

Lemma 7.1 If

∀q L f E r, (∃v, JeKE = v ∧ βv = true)
→ (∀E′, 〈q | E′〉 ≈pr (L,E′, f ())I)
→ 〈p ++ q | E〉 ≈pr (L,E, LWtoIL p f)I

and
∀E, 〈p | E〉 ≈pr (f : (ε,if ethen LWtoIL p f else t);L,E, t)I

and there is v such that JeKE = v and βv = true then

〈p ++ while (e) p; q | E〉
≈pr (f : (ε,if ethen LWtoIL p f else t);L,E, LWtoIL p f)I.
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7 ‚ While

Proof. By coinduction. We immediately apply the �rst premise which reduces the
proof obligation to showing for some E′

〈while (e) p; q | E′〉
≈pr (f : (ε,if ethen LWtoIL p f else t);L,E′, f ())I

Case distinction on the evaluation behavior of the condition e.
‚ If there is v such that JeKE = v we apply a constructor of the simulation to

reduce the left-hand side one step, and the right-hand side two steps (the concrete
reduction depends on whether βv = true). If βv = true we arrive at states
related by the cohypothesis. If βv = false we arrive at states related by the
second premise.

‚ If there is no v such that JeKE = v both sides are stuck and we are done. �

The correctness proof is now routine.

Theorem 7.2 If for all environmentsE we have 〈q |E〉 ≈pr (L,E, f ())I, then 〈p ++
q | E〉 ≈pr (L,E, LWtoIL p f)I.

Proof. By size-induction on p with Lemma 7.1. �
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8 Compatibility Rules for
Inductive Simulation Proofs

In §5 we discussed di�erent approaches to the formalization of coinductive proofs.
Per-se, all approaches presented so far su�er from di�erent weaknesses.

‚ With the notable exception of the measure-indexed simulation, stutter steps can-
not be dealt with natively as described in §6.2.4.

‚ Function abstraction as described in §6.2.5 requires additional setup.

‚ Proof modularization with transitivity is di�cult, because it is subject to produc-
tivity constraints which limits its application to lock-step simulations.

In this section, we develop an proof method for showing similarity that works by in-
duction on the program structure. This proof method is the basis for all correctness
proofs in LVC, and a naturally good match for correctness proofs of transformations
that are de�ned by recursion on the program structure. Our inductive proof tech-
nique addresses all three weaknesses of plain simulation proofs: It naturally accom-
modates stutter steps without relying on a measure-indexed simulation. It provides
function abstraction that realizes the slogan known from logical relations:

applying related functions to related arguments produces related results

Under certain circumstances, the inductive method also allows free application of
transitivity lemmas, without constraints to lock-step simulations.
The inductive method works by induction in the program structure. This allows the
inductive hypothesis to be applied to structurally smaller arguments without further
restrictions. To make this work, lemmas showing the constructors of the IL syntax
are compatible with the simulation are required. In the case of function de�nitions,
such a compatibility lemma will be di�cult to get. There two problems that need to
be dealt with. The �rst is that function de�nitions in IL introduce possibly diverging
behaviors, which a simple structural induction does not account for. To account for
behavior of �xed-points in IL, we show by coinduction that function de�nitions are
compatible with the simulation. For this purpose we use parametrized coinduction
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8 ‚ Compatibility Rules for Inductive Simulation Proofs

(§6.3) to stratify the proof, i.e. to make a notion of “productivity” tenable by introduc-
ing the parameter relation r (see §6.3). The strati�cation introduced the parameter
r to the coinductive relation, which necessarily yields statements in the spirit of:

for all r, applying r-related functions to related arguments produces r-
related results

As a top-level correctness statement, this would be satisfactory, as we get the desired
result for the simulation as an instance of the statement when we set r to the empty
relation (§6.3.3). However, there is a problem with the function compatibility state-
ment. Because it also requires strati�cation, the function compatibility statement
roughly reads as follows:

If (for all r, related function bodies produce r-related results when ap-
plied to related arguments in any r-related function context), then (for
all r, the corresponding IL recursive functions are r-related).

Note the use of quanti�es. There is a universal quanti�cation of r in the premise.
This forces us to generalize the whole proof in this way, even if we use the inductive
method. The generalization, however, restricts the applicability of transitivity, which
for good reasons does not hold for arbitrary r (see §6.5). Without the universal
quanti�cation, we would have to satisfy the premise of the compatibility lemma:

for all r, related function bodies produce r-related results when applied
to related arguments in any r-related function context

from only knowing that

for r = ⊥, related function bodies produce r-related results when ap-
plied to related arguments in any r-related function context

This property, which we call r-generalization, does not easily follow; however, we
will show this property for a special case when we show that bisimilarity is contex-
tual in §8.4. The proof of this property is very interesting.
This chapter proceeds as follows. We start by giving simple but useful compatibility
lemmas for let-binding and conditionals. We then try to prove contextuality of bisim-
ilarity, which is the simplest proof that incurs all the problems we discussed so far.
We then formulate a compatibility lemma for function de�nitions in a very general
form, and prove it correct. This lemma is one of the foundations of our inductive
method, and we use it to �nish the proof of contextuality of bisimilarity. We will
discover that the result we obtain is not general enough, because we are missing
r-generalization. We then show that under certain assumptions, r-generalization
holds and use it to prove the usual results about contextual equivalence.
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Compatibility of Variable Binding and Conditional ‚ 8.1

Sim-Let-Op
JeKV = Je′KV ′ ∀v, (L, V [x 7→ v], s) (≈pr ∪ r) (L′, V ′[x′ 7→ v], s′)

(L, V,letx = ein s) ≈pr (L′, V ′,letx′ = e′ in s′)

Sim-Let-Call
JeKV = Je′KV ′ ∀v, (L, V [x 7→ v], s) (≈pr ∪ r) (L′, V ′[x′ 7→ v], s′)

(L, V,let x =f e in s) ≈pr (L′, V ′,let x′ =f e′ in s′)

Sim-Cond
JeKV = Je′KV ′ β(JeKV ) = true→ (L, V, s) (≈pr ∪ r) (L′, V ′, s′)

β(JeKV ) = false→ (L, V, t) (≈pr ∪ r) (L′, V ′, t′)
(L, V,if ethen selse t)≈pr(L′, V ′,if e′ then s′else t′)

Figure 8.1: Sound structural rules for let-binding and conditionals. Recall that β
converts a value to a boolean.

8.1 Compatibility of Variable Binding and Conditional

We show several structural compatibility properties for let-binding and conditionals.
The lemmas are stated in rule form and hold for both IL and IL/I, as they only depend
on semantic rules that both languages share. In the formal development, we use a
type-class based abstraction to only show the rules once. Here, we simply state them
once and use them for either language. The rules are also valid for both simulation
and bisimulation and are hence formulated with respect to ≈pr .

Lemma 8.1 The rules in Figure 8.1 are admissible.

Proof. We only show Sim-Let-Op. After rewriting with Lemma 6.18, we have to
show that (L, V,letx = ein s) and (L′, V ′,letx′ = e′ in s′) are related by
sim (r ∪ ≈pr) p. Case analysis on JeKV .
‚ Case JeKV = v. We unfold sim and show the case Bisim-Silent. The two re-

quired successor states exist:
1 (L, V,letx = ein s) −→F

+ (L, V [x 7→ v], s)
2 (L′, V ′,letx′ = e′ in s′) −→F

+ (L′, V ′[x′ 7→ v], s′)
(L, V [x 7→ v], s) (≈pr∪r) (L′, V ′[x′ 7→ v], s′) holds by assumption, which �nishes
the case.

‚ Case JeKV = ⊥. We unfold sim and show the case Bisim-Term. Both states are
terminal, and the way we de�ned the result function ensures that (L, V,letx =
ein s) ⇓ ⊥ and (L′, V ′,letx′ = e′ in s′) ⇓ ⊥. �
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8 ‚ Compatibility Rules for Inductive Simulation Proofs

We prove in general that conditionals can be eliminated if the value of the condition
is statically known. Recall that β converts a value to a boolean.

Lemma 8.2 If
1 β(JeK∅) = ⊥ → JeKV = JeKV ′

2 ∀v, JeKV = v → βv = true→ β(JeK∅) 6= false→ (L, V, s1) ≈pr (L′, V ′, s′1)
3 ∀v, JeKV = v → βv = false→ β(JeK∅) 6= true→ (L, V, s2) ≈pr (L′, V ′, s′2)
then

(L, V,if ethen s1 else s2) ≈pr (L′, V ′, if JeK∅ = true then s′1
else if JeK∅ = false then s′2
else if ethen s′1 else s′2).

Proof. Case analysis on β(JeK∅).
‚ Case β(JeK∅) = true. By monotonicity of expression evaluation, there is a value
v such that JeKV = v and βv = true. We apply Sim-Expansion-Closed, reduc-
ing only the right side one step and �nish with the second assumption.

‚ Case β(JeK∅) = false. Analogous to the previous case.
‚ Case β(JeK∅) = ⊥. Case analysis on JeKV . If JeKV = ⊥, both sides are stuck by

the �rst assumption. We unfold via Lemma 6.18 and use the case Sim-Term of sim
to show simulation. If JeKV = v, then JeKV ′ = v by the �rst assumption. Case
analysis on βv. If βv = true (βv = false) we apply Sim-Expansion-Closed to
reduce both sides one step and �nish with the second (third) assumption. �

8.2 Bisimilarity and Similarity are Contextual

To motivate the problem with the compatibility rule for function de�nitions, we
embark on a result about bisimilarity. We want to show that a program s cannot
distinguish bisimilar function contexts. This result is an important stepping stone
on the way to show that bisimilarity and similarity are contextual, that is, sound for
contextual equivalence and contextual approximation.
We start with an informal de�nition of program equivalence that we will realize
formally later via De�nition 8.23 when we have a framework for a general compati-
bility lemma for �xed-points in IL available. The de�nition of program equivalence
regards two programs equivalent, if they behave equivalently in bisimilar function
contexts.
De�nition 8.3 ‚ Closure Equivalence

Two closures are equivalent under function contexts L and L′, written as L | L′ `
(V, x, s) 'pr (V ′, x′, s′) if for all argument values v the following states are equiva-
lent: (L, V [x 7→ v], s) ≈pr (L′, V [x′ 7→ v], s′).
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Bisimilarity and Similarity are Contextual ‚ 8.2

De�nition 8.4 ‚ Function Context Equivalence

Two function contexts L,L′ are equivalent L 'pr L′ if they de�ne the same func-
tions, that is, domL = domL′, and for all f ∈ domL the closures are equivalent:
L−f | L′−f ` Lf 'pr L′f .

De�nition 8.5 ‚ Program Equivalence

Two terms s and s′ are equivalent s 'pr s′ if for all equivalent contexts L 'pr L′ we
have (L, V, s) ≈pr (L′, V, s′).

Allowing equivalent contexts, and not requiring syntactically equal contexts is im-
portant to know that IL functions behave extensionally. We now try to show that
program equivalence is re�exive, which ultimately implies that in IL functions are
extensional. The proof here will fail at �rst, but we will discover two important is-
sues: First, we will discover which lemma we are missing and motivate the so called
extension lemma, the proof of which is the main result of this section. Second, we
reiterate the general di�culty of a coinductive proof for such a re�exivity property.
Lemma 8.6 ‚ Re�exivity

s 'pr s.

Proof. (Attempt) By induction on s.
‚ The case for let follows from the inductive hypothesis, and lemmas Sim-Let-Op

and Sim-Let-Call.
‚ The conditional case follows by Sim-Cond and the inductive hypotheses.
‚ In the case of application f e, since domL = domL′, either both Lf and L′f exist

or both don’t. If they exists we are done by L 'pr L′. Otherwise, both sides are
stuck and we �nish with Sim-Term.

‚ The case for operation is by Sim-Term.
‚ In the function de�nition case, we have to show:

(L, V,fun F in t) ≈pr (L′, V,fun F in t)

We reduce both sides one step and have to show

(LF MV ;L, V, t) ≈pr ((LF MV ;L′, V, t)

We apply the inductive hypothesis and have to show its premise:

LF MV ;L 'pr LF MV ;L′

If f is from domL, we are done by assumption. If f is a newly de�ned function
Ff = (x, s), we have to show:

(LF MV ;L, V [x 7→ v], s) ≈pr (LF MV ;L′, V [x 7→ v], s)
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8 ‚ Compatibility Rules for Inductive Simulation Proofs

1 fun f (x,y) =
2 if (x > 9) then 1
3 else f (x+1, y)
4 in f (3,2)

1 fun f (x) =
2 if (x > 9) then 1
3 else f (x+1)
4 in f (3)

Figure 8.2: An example program before (left) and after (right) dead variable elimina-
tion.

The inductive hypothesis applies, but leaves us with its premise:

LF MV ;L 'pr LF MV ;L′

The proof has gone in circle, because we failed to account for the semantic �xed-
point de�nition of the recursive functions. In particular, we have not yet justi�ed
that if two function bodies are equivalent, then the two corresponding functions
are also equivalent.

Note that if we had done this prove by co-induction, we would be stuck at the same
point: We could not discharge the premise of the coinductive hypothesis. �

8.3 A General Lemma for Compatibility of Fixed Points in IL

We now develop a general form of a compatibility lemma for �xed-points in IL,
which we call extension lemma. This compatibility lemma enables an inductive
proof method for (bi)similarity, i.e. for statements with the conclusion (L, V, s) ≈pr
(L′, V ′, s′). In general, such proofs require relating function contextsL,L′ in a more
elaborate way than De�nition 8.4. The reason is we want to support transformations
that change the signature of functions. For example, consider the two equivalent pro-
grams in Figure 8.2, where the parameter y was eliminated. To accommodate this
and similar transformations, we related contexts with the relationL r L′ :P Λ which
we de�ne below. This relation is parameterized by a structureP , which we call proof
relation. P describes which functions in L,L′ are related, and how their arguments
and parameters must be related for the corresponding function applicatons to be
equivalent.

De�nition 8.7 ‚ Proof Relation

A proof relation (A,Param,Arg, Idx) is a tuple such that

1 A : Type

2 Param : A→ V → V → P
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A General Lemma for Compatibility of Fixed Points in IL ‚ 8.3

3 Arg : (V → V⊥)→ (V → V⊥)→ A→ V→ V→ P

4 Idx : A→ F → F → P

The proof relation is indexed by a type A, which is used to associate additional
information with a function. This will often be program analysis information. For
the example in Figure 8.2,A could be instantiated with setV and we could associated
with each function the set of variables a it depends on. A proof relation de�nes
de�nes relative to this additional information of type A the conditions on formal
parameters (Param), arguments at function calls (Arg), and function names (Idx)
that de�ne if two functions are related.
For the veri�cation of the transformation from Figure 8.2, for example, the proof
relation speci�es via Param that the parameters the function in the right-hand side
program (that is the functions in L′) are obtained from the parameters of the corre-
sponding left-hand side function in L by erasing parameters not in the set of type
A = setV associated with the function. The proof relation can specify a similar
erasure for arguments at applications by de�ning Arg accordingly.

8.3.1 Relating Function Contexts

We de�ne the relation L r L′ :P Λ that relates functions from L,L′ according to a
proof relation Pr.

De�nition 8.8 Given a proof relation P and analysis information context Λ, and
function context L,L′ we say Λ and L,L′ are in parameter relation with respect to
P , written Param ΛLL′, if whenever Idx Λf f f ′ and Lf = (V, x, s) and L′f ′ =
(V ′, x′, s′) then Param Λf xx′.

De�nition 8.9 Given a proof relation P , and function context L,L′, and analysis
information context Λ, we de�ne a relation AppP ΛLL′ on con�gurations such that

AppP ΛLL′ (L, V, f e) (L′, V ′, f ′ e′)
:↔ ∃W W ′xx′s s′, Lf = (W,x, s) ∧ L′f ′ = (W ′, x′, s′)
∧ Idx Λf f f ′ ∧ArgW W ′ Λf (JeKV ) (Je′KV ′)
∧ |x| = |e| ∧ |x′| = |e′|

The relation AppP ΛLL′ relates application con�gurations that satisfy the require-
ments imposed by the proof relation.

De�nition 8.10 Two function contextsL,L′ are in r-relation with respect to Λ and
P , written L r L′ :P Λ, if

1 domΛ = domL
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8 ‚ Compatibility Rules for Inductive Simulation Proofs

2 Param ΛLL′

3 Idx Λf f f ′ → (f ∈ domL↔ f ′ ∈ domL′)

4 AppP ΛLL′ ⊆ r

Lemma 8.11 If r ⊆ r′ and L r L′ :P Λ then L r′ L′ :P Λ.

8.3.2 Extending Related Function Contexts

We prove the central lemma that enables the inductive proof method, which we
call the extension lemma. The extension lemma solves the problem in the proof of
Lemma 8.6 in a general way: When descending under function de�nitions, related
L and L′ are extended with new closures. The inductive hypothesis provides that
the bodies of these functions are related, but this does not readily mean that the
corresponding semantic �xed-points are related. The extension lemma (Lemma 8.18
below) accounts for the semantics of the �xed-point operator.

De�nition 8.12 Given a proof relation P , function context L,L′ and K,K ′, and
analysis information Λ, we de�ne a relation BdyPL,L′ ΛKK ′ on con�gurations such
that

BdyPL,L′ ΛKK ′ (K;L, V [x 7→ v], s) (K;L′, V ′[x′ 7→ v′], s′)
:↔ ∃f f ′W W ′,Kf = (W,x, s) ∧K ′f ′ = (W ′, x′, s′)
∧ Idx Λf f f ′ ∧ArgW W ′ Λf v v′

The relation BdyPK,K′ aF F ′ relates con�gurations that are obtained by one reduc-
tion from application con�gurations that satisfy the requirements imposed by the
proof relation. We set up our inductive proofs such that the inductive hypothesis
provides that these con�gurations are equivalent.

De�nition 8.13 A proof relation P separates two function contexts K,K ′ under
Λ; Λ′, written K ‖Λ; Λ′ ‖P K ′ if:

1 domΛ = domK

2 Idx (Λ; Λ′)f f f ′ → (f ∈ domK ↔ f ′ ∈ domK ′)

Lemma 8.14 ‚ Extending Parameter Relations

If K ‖ Λ; Λ′ ‖P K ′ and we also have Param ΛKK ′ and Param Λ′ LL′ then
Param (Λ; Λ′) (K;L) (K ′;L′).

Separation requires that functions in K are only related to functions in K ′, and vice
versa.
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Lemma 8.15 Let P be a proof relation. If

1 K ‖Λ; Λ′ ‖P K ′,

2 Param ΛKK ′,

3 BdyPL,L′ (Λ; Λ′)KK ⊆ (≈pr ∪ r), and

4 L ≈pr L′ :P Λ′

then K;L ≈pr K;L′ :P Λ; Λ′.

Proof. The proof distinguishes whether the function pair is fromK andK ′ or L and
L′. This is possible because P separates K,K ′ under Λ. In the �rst case, the result
follows from (3) after a lock-step simulation step that reduces function applications
on both sides. In the second case, the result follows from (4) and Sim-Retract. �

De�nition 8.16 Given a proof relation P , function context K,K ′ are in r-relation
under L and L′ with respect to P and Λ; Λ′, which we write as L |L′ ` K r K ′ :P
Λ; Λ′, if

1 K ‖Λ; Λ′ ‖P K ′

2 Param ΛKK ′

3 ∀r, (K;L) r (K ′;L′) :P Λ; Λ′ → BdyPL,L′ KK ′ (Λ; Λ′) ⊆ r

Lemma 8.17 ‚ Fix Compatibility

Let P be a proof relation. Then if it holds that L |L′ ` K ≈pr K ′ :P Λ; Λ′ and
L ≈pr L′ :P Λ′ then BdyPL,L′ KK ′ (Λ; Λ′) ⊆≈pr .

Proof. By coinduction via Corollary 6.20. We have to show

BdyPL,L′ F F ′ (Λ; Λ′) ⊆ >∼r′

from r ⊆ r′ and the coinductive hypothesis BdyPL,L′ F F ′ (Λ; Λ′) ⊆ r′. Applying
clause (3) of the �rst premise reduces the proof obligation to

K;L ≈pr′ K;L′ :P Λ; Λ′

We apply Lemma 8.15. The third premise of Lemma 8.15 follows from the coinduc-
tive hypothesis and r′ ⊆ >∼r′∪ r′, the fourth premise follows from monotonicity
(De�nition 6.16 and Lemma 8.11). �

Lemma 8.17 shows that equivalence of function bodies is su�cient to show that the
corresponding recursive functions are equivalent.
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Lemma 8.18 ‚ Extension

Let P be a proof relation. If we have L |L′ ` K ≈pr K ′ :P Λ; Λ′ and L ≈pr L′ :P Λ′
then K;L ≈pr K ′;L′ :P Λ; Λ′.

Proof. We apply Lemma 8.15. The only non-trivial premise is to show

BdyPL,L′ KK ′ (Λ; Λ′) ⊆ ≈pr ∪ r

We make use of the fact ≈pr ⊆ ≈pr ∪ r and �nish the proof with Lemma 8.17. �

Lemma 8.19 ‚ Fun Compatibility

Let P be a proof relation. If L |L′ ` LF MV ≈pr LF ′MV ′ :P Λ; Λ′ and L ≈pr L′ :P Λ′
and

∀r, LF MV ;L ≈pr LF ′MV ′ ;L′ :P Λ; Λ′ →
(LF MV ;L, V, t) ≈pr (LF ′MV ′ ;L′, V ′, t′)

then (L, V,fun F in t) ≈pr (L′, V ′,fun F ′ in t′).

Proof. We reduce both sides one step. We apply the last premise and have to show
LF MV ;L ≈pr LF ′MV ′ ;L′ :P Λ; Λ′. Lemma 8.18 �nishes the proof. �

When using Lemma 8.18 or Lemma 8.19 it su�ces to show that the bodies of new
function de�nitions are related according to De�nition 8.16. Item (3) already pro-
vides that the contexts containing the new functions are related. §9 contains several
proofs that show-case the inductive method in detail.

8.3.3 Using Related Function Contexts to Prove the Application Case

De�nition 8.20 Argument evaluation of L, V, e and L′, V ′, e′ agrees with respect
to p and P if whenever Lf = (W,x, s) and Lf ′ = (W,x′, s′) and Param a xx′ then

1 if JeKV = v and |x| = |v| then there exists v′ such that Je′KV = v′ and |x′| = |v′|
and ArgW W ′ a v v′

2 if p = bisim and JeKV = ⊥ then Je′KV ′ = ⊥

3 if p = bisim and |x| 6= |e| then |x′| 6= |e′|

Lemma 8.21 Let P be a proof relation. If

1 L ≈pr L′ :P Λ

2 Idx Λf f f ′
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Bisimulation and Contexts ‚ 8.4

3 argument evaluation of L, V, e and L′, V ′, e′ agrees with respect to p and P

then (L, V, f e) ≈pr (L′, V ′, f ′ e′).

Proof. From (2) we have that Λf is de�ned, and by de�nition of (1) domΛ = domL,
which means f ∈ domL, hence again by de�nition of (2) f ′ ∈ domL′. We assume
thatLf = (V, x, s) andLf ′ = (V, x′, s′). By de�nition of (1) we know Param aLL′,
hence Param Λf xx′. Case analysis.
‚ Case JeKV = v.
– If |x| = |e| we exploit clause (1) of premise (3) and obtain the fact

AppP ΛLL′ (L, V, f e) (L′, V ′, f ′ e′)

We know AppP ΛLL′ ⊆ r from premise (1) and are done.
– If |x| 6= |e|. If p = sim, we are done using Sim-Error. If p = bisim, we exploit

clause (3) of assumption (3) and obtain that |x′| 6= |e′|. Both sides are stuck
(Sim-Term).

‚ Case JeKV = ⊥. If p = sim, we are done by Sim-Error. If p = bisim, we exploit
clause (2) of assumption (3) and obtain that Je′KV ′ = ⊥. Both sides are stuck. �

8.4 Bisimulation and Contexts

We now �nish the proof of Lemma 8.6 with the inductive method. We �rst de�ne a
simple proof relation.

De�nition 8.22 We de�ne the proof relation Pctx where

A := listV
Param x y y′ := |x| = |y| ∧ |y| = |y′|

Arg V V ′ x v v′ := v′ = v ∧ |x| = |v|
Idx _ f f ′ := f = f ′

We de�ne a projection from a closure to the list of parameter lists: pa (x, s) = x and
lift it to function contexts in a point-wise fashion.

De�nition 8.23 ‚ Program Equivalence with Proof Relation

Two terms s and s′ are bisimilar, written s ·'pr s′, if for all bisimilar contexts L ≈pr
L′ :Pctx paL′ we have (L, V, s) ≈pr (L′, V, s′):

s
·'pr s′ := ∀LL′, L ≈pr L′ :Pctx paL′ → (L, V, s) ≈pr (L′, V, s′)
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8 ‚ Compatibility Rules for Inductive Simulation Proofs

We now informally argue that De�nition 8.23 realizes the program equivalence from
De�nition 8.5.

Lemma 8.24 'pr = ·'pr .

Proof. The proof is informal and amounts to showing that L ≈pr L′ :Pctx paL′ is
equivalent to function context equivalence (De�nition 8.4) of L and L′, i.e L 'pr L′.
This is the case because function application with di�erent parameter and argument
length get stuck. �

Lemma 8.25 ‚ Re�exivity

s
·'pr s.

Lemma 8.26 ‚ Re�exivity

L ≈pr L :P paL.

Proof. By induction just as the proof of Lemma 8.25; we use Lemma 8.18 where we
previously got stuck. �

Lemma 8.27 ‚ Transitivity

s
·'p⊥ s′ → s′

·'p⊥ s′′ → s
·'p⊥ s′′.

Theorem 8.28 s
·'p⊥ s′ → s

·'pr s′.

Proof. Unfolding de�nitions, we have to show that

∀LL′, L ≈p⊥ L
′ :Pctx paL′ → (L, V, s) ≈p⊥ (L′, V, s′)

implies
∀ rLL′, L ≈pr L′ :Pctx paL′ → (L, V, s) ≈pr (L′, V, s′).

The proof is involved. We �rst use external events not occurring in s, s′ to construct
L and L′ in such that L ≈p⊥ L′ :Pctx paL′ and such that a function in L is only
bisimilar to the function of the same name in L′ and only if both functions are called
with the same arguments. Using this context, we instantiate the premise and obtain
a proof of (L, V, s) ≈p⊥ (L′, V, s′). We can then invert this proof to construct a proof
of (L, V, s) ≈pr (L′, V, s′), because by the properties of L and L′, calls to the context
must correspond. �

The proof of Theorem 8.28 is interesting in its own right. The proof relies on the fact
that contexts L,L′ can be constructed. For a di�erent proof relation, we would have
to construct contexts L,L′ such that only functions related by Idx with arguments
values related by Arg are related. This is essentially a matter of whether the param-
eter relation Arg is IL decidable. We think that Theorem 8.28 can be generalized to
proof relations that are IL decidable in this sense, but have no proof.
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Bisimulation and Contexts ‚ 8.4

With Theorem 8.28 we can show a congruence rule for function de�nitions from
Lemma 8.19, which we proved earlier.

Lemma 8.29 If we have ∀i, si
·'p⊥ s′i and t ·'p⊥ t′ then

fun f x = s in t
·'p⊥ fun f x = s′ in t′.

Proof. Directly from Lemma 8.19 with Theorem 8.28 to discharge the premises,
which require all-quanti�ed parameter relations r. �

8.4.1 Contextual Equivalence

We de�ne contextual equivalence for IL terms. For IL it is not su�cient to observe
termination and non-termination, as an IL context cannot observe the result value
of the term that is substituted into the hole.
De�nition 8.30 ‚ Contextual Equivalence/Approximation

Two terms s and s′ are contextually equivalent/contextually approximations, writ-
ten s 'pctx s′, if for all IL contexts C , i.e. IL terms with a hole, we have we have
(∅, ∅, C[s]) ≈p⊥ (∅, ∅, C[s′]), i.e. in states with empty function contexts and empty
variable environments, the two terms are bisimilar in every context.

De�nition De�nition 8.30 is parametric in p, and yields contextual equivalence for
p = bisim and contextual approximation for p = sim.

Theorem 8.31 s
·'p⊥ s′ → s 'pctx s′.

Proof. Induction on C and in the function de�nition case Lemma 8.18, one premise
of which is discharged with Theorem 8.28. �

Theorem 8.32 s 'pctx s′ → s
·'p⊥ s′.

Theorem 8.32 ensures that a syntactic context can encode all information of valid
semantic contexts. It requires a helper lemma that shows that for every function
contextL, we can constructor a contextC that produces a function context bisimilar
to L.
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9 Liveness and
Dead Variable Elimination

This section introduces two basic notions from compiler construction: liveness and
true liveness. Liveness is essential for the de�nition of coherence, and an important
piece of analysis information for the register allocation approach we discuss in §13.
True liveness is the basis for dead variable elimination (DVE), which is very useful
in practice and which we prove correct in this section.
The �rst notion of liveness we introduce in §9.1 is simply called liveness: a variable
is live at a program point if it may be read later on. This means that the value of a
variable that is not live cannot in�uence the behavior of the program. A variable,
however, may be live even if its value cannot in�uence the computation of the pro-
gram. This could be the case if, for instance, the computation the variable is used in
is never used. Liveness is interesting for resource estimation. In particular, liveness
information can be used to determine the minimal number of distinct locations re-
quired to store all variables. This number is usually much lower than the number of
distinct variable names occurring in the program. Both register assignment (§13.4)
and spilling (§13.2) use liveness information to deal with the problem of assigning
variables to storage locations under di�erent constraints.
The second notion of liveness we introduce in §9.2 is a variant of liveness called
true liveness. True liveness over-approximates the undecidable semantic notion that
a variable in�uences the computation of the program; this means that, depending
on the program, less variables are truely live than live. In particular, if a variable
is only used in a computation that itself is never used, then it is not truly live. The
complement of true liveness is interesting for optimization: removing all variables
that are not truly live preserves program behavior. In section §9.3, we verify a dead
variable elimination based on true liveness information.
While we support translation validation for both liveness and true liveness infor-
mation, LVC uses the veri�ed program analysis described in §15 to compute precise
true liveness information. Liveness information is obtained indirectly by the fact
that after DVE has been run, the true liveness information of the resulting program
(almost) passes as liveness information. Recall that liveness information requires, in
general, more variables to be live than true liveness information. After variables that
are not truly live have been removed from a program, the true liveness information
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Line IL program Liveness Annotation
IL/F IL/I

1 let b = 3 in {d} {}
2 let a = 5 in {b, d} {b}
3 let c = 2*b in {a, b, d} {a, b}
4 fun f (x,y) = {b, c, d} {b, c} Globals of f : {b}
5 let z := 2*x in {b, x, y} {b, x, y} Live-ins of f : {b, x, y}
6 x+b in {b, x, z} {b, x, z}
7 fun g () = d in {c, d} {b, c} Globals and live-ins
8 f(c,7) {c} {b, c} of g: {d}

Figure 9.1: A program together with sets of live variables. In each line, the sets
correspond to the live variables before the respective statement.

(almost) satis�es the additional requirements for liveness information. We formally
describe this issue in §9.3.2.

9.1 Liveness for IL/I and IL/F

A variable x is signi�cant to a program s and a context L, if there is an environ-
ment V and a value v such that (L, V, s) 6∼(L, V [x 7→ v], s). Signi�cance is not
decidable, as it is a non-trivial semantic property. As a �rst approximation, we can
think of liveness as an approximation of signi�cance that allows to decide whether
a variable is live at a certain program point.
We use Figure 9.1 to explain the notion of liveness informally. The variable a in
line 2 of Figure 9.1 is considered live in the statement following its de�nition in
line 3, even though a is not used in the program. Similarly, z is live in line 7. Our
version of liveness always requires a variable to be live in the statement following
its de�nition. We do this to ensure that the number of distinct locations required in
a program is always upper-bounded by the size of the largest set of live variables, a
property we will leverage during register allocation in §13.4. In Figure 9.1 a and b
must be stored in di�erent locations, as b would get overwritten in line 2 otherwise.
The presence of the live set {a, b} in line 3 re�ects that two distinct locations are
required to hold the live values at that program point. For a similar reason, the
parameter y is considered live in the function body of f in line 5. When f is applied,
any variable sharing the location with y would get over-written, hence y must have
a distinct location even though it is never read in the function body. We introduce
two important notions related to the live variables for functions:
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Liveness for IL/I and IL/F ‚ 9.1

De�nition 9.1 ‚ Live-ins and Globals

The live-ins of a function are the variables live in the �rst line of the function body.
The globals of a function are the live-ins without the parameters.

For example, the live-ins of f in Figure 9.1 are {b, x, y} and the globals of f are {b}.

9.1.1 Di�erent Notions of Liveness for IL/I and IL/F

Function de�nitions are treated di�erently depending on whether we are interested
in liveness with respect to IL/I or IL/F. In IL/F, the globals are read at the function
de�nition, and stored in the closure, and restored after function application. This
means that the globals are not live between in the function de�nition and the func-
tion application, as shown in Figure 9.1, where {b} is not live in line 8 with respect to
IL/F. In IL/I on the other hand, functions do not have closures, and hence the globals
must be considered live between the function de�nition and the function applica-
tion. In Figure 9.1, b is live in line 8 with respect to IL/I. This means that also the
live-ins (and hence the globals) may di�er between the two notions of liveness. On
the other hand, the global d of the function g, which is never called, is live with re-
spect to IL/F in line 7, but never live with respect to IL/I. This also shows that IL/I
liveness is sensitive to reachability information, which we discuss in §11.

9.1.2 Inductive Definition of the Liveness Judgment

We specify soundness of liveness information with the judgment live, which is in-
ductively de�ned by the rules shown in Figure 9.2 and has the following form:

·Λ ` livep s : X where

·Λ : context (setV) function globals
X : Ann (setV) liveness annotation
s : Exp program
p ∈ {I, F} interpretation

The context ·Λ records the globals of at least the functions names that occur free in s.
The predicate ·Λ ` livep s : X can be read as follows:

X is a liveness annotation that annotates each program point in s with at
least the variables live at that program point with respect to IL interpreta-
tion p and in any context where functions have the globals ·Λ.

De�nition 9.2 ‚ Function Globals Context

Throughout this thesis, ·Λ always denotes function globals context, i.e. a context that
records the globals of the functions in the context.

De�nition 9.3 Throughout this thesis, X always denotes a liveness annotation,
that is, an annotation tree of type Ann setV as de�ned in §4.8.
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Live-Op
fv η ⊆ X X ′ \ {x} ⊆ X x ∈ X ′ ·Λ ` livep s : X ′

·Λ ` livep letx = η in s : X

Live-Exp
fv e ⊆ X

·Λ ` livep e : X

Live-App
fv e ⊆ X I ∈ p→ ·Λf ⊆ X

·Λ ` livep f e : X

Live-Cond
fv e ⊆ X X1 ∪X2 ⊆ X ·Λ ` livep s1 : X1 ·Λ ` livep s2 : X2

·Λ ` livep if ethen s1 else s2 : X

Live-Fun
∀g, f : X \ x; ·Λ ` livep sg : Xg ∀g, xg ⊆ Xg ∧ xg duplicate-free
f : X \ x; ·Λ ` livep t : X1 X1 ⊆ X2 F ∈ p→ ∀g, Xg ⊆ X2

·Λ ` livep fun f x = s : X in t : X2

Figure 9.2: Liveness: An approximation of the signi�cant variables for IL/I.

Recall from the discussion in §4.8 that while analysis information is organized in
annotations trees like X, we want to keep the notational overhead of destructuring
these tree low. For this reason, we use the notation ·Λ ` livep s : X where X is
of type setV and the annotation tree is left implicit. In the de�nition of the rules
of the liveness judgment in Figure 9.2, for example, we annotate live sets X at each
program point, but leave the annotation tree X from which these originate implicit.
More information on annotation trees can be found in §4.8.

Description of the Rules

Live-Op de�nes the derivation rule for ·Λ ` livep letx = η in s : X. Note that for
the sake of simpler notation, we do not mention X in the de�nition of Live-Op, but
letx = η in s : X to indicate that X = [X], i.e. that X is the top-level annotation
in X. Similarily, we write s : X ′ to indicate that X ′ is the top-level annotation of
the annotation tree belonging to s; this tree is the only direct sub-tree of X. The rule
ensures that all variables free in η are live. Every live variable of the continuation s
except x must be live at the assignment. We require x to be live in the continuation,
because x is written to and we are ultimately interested in resource estimation.
Live-Cond ensures that the live variables of a conditional contain at least the free
variables of the condition, and the variables live in the consequence and alternative.
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Live-Exp ensures that for programs consisting of a single expression e at least the
free variables of e are live.
Live-App ensures that the free variables of every argument are live. For the IL/I
liveness judgment (i.e. if I ∈ p) we also require that the globals ·Λf of f are live at
the call site.
Live-Fun handles function de�nitions. First note that the annotations of the function
bodiesX are the live-ins, and those are required to contain the function’s arguments
(top-left premise). We, however, extend the context ·Λ with the functions’ globals
f : X \ x, which we obtain by removing the arguments x from the live-ins X of
each function. For the recursion on the function bodies sg we take the live-ins Xg

of the function g as live set. The live variables X1 of the continuation t must be live
at the function de�nition: X1 ⊆ X2. For the IL/F liveness judgment (i.e. if F ∈ p) we
also requireXg ⊆ X2, i.e. that the globalsXg of f are live at the function de�nition.
This re�ects that in IL/F, at least conceptually, the globals are read at the function
de�nition to construct IL/F closures. For both interpretations, we for every newly
de�ned function g that all parameters are live xg ⊆ Xg and that the parameter list
is duplicate free.

Duplication-Free Parameters

The requirement that parameters are duplication free is important for the lowering
of parallel moves, which we discuss in §13.5. The reason we add this requirement
in the liveness judgment is that during LVC’s compilation process, liveness infor-
mation is obtained from true liveness information after dead variable elimination
(see §9.3.2). Dead variable elimination ensures that all parameters are duplicate free,
and afterwards all phases maintain the property. Having the requirements in the
liveness rules makes it convenient to show that parameters remain duplication free
until parallel moves are lowered, where the property is �nally required.

9.1.3 Decidability and Translation Validation

Theorem 9.4 ‚ Liveness is Decidable

For all global contexts ·Λ, and liveness interpretations p, it is e�ciently decidable for
a given program s and an liveness annotation X whether ·Λ ` livep s : X holds.

The proof of Theorem 9.4 is constructive and yields an e�cient, extractable decision
procedure that can be used to translation-validate the results of a liveness analysis.
The decision procedure recursively descends on the program structure, checking
the conditions of the appropriate rule in every step. Currently, LVC does not em-
ploy translation validation for liveness information, and does not compute liveness
information. Instead, LVC uses a veri�ed program analysis to compute true liveness
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information (which we describe in §9.2), and uses the results from §9.3.2 to obtain
liveness information.

9.1.4 Free Variables, Liveness and Significance on IL/F

The liveness annotation ensures that the free variables of an IL program are always
live with respect to IL/F.

Lemma 9.5 If ·Λ ` liveF s : X then fv s ⊆ X .

Example 9.6 A property similar to Lemma 9.5 does not hold for IL/I. Consider the
program in Figure 9.1, where d is a free variable, but not contained in the live set.

Only the free variables are signi�cant to an IL/F program. Recall that we write V =X

V ′ if V and V ′ agree on X , that is if ∀x ∈ X,V x = V ′x. We de�ne a relation

L
fv= L′

on IL/I contexts L,L′ to hold if for all f we have that either both Lf and L′f are
unde�ned, or Lf = (V, x, s) and L′f = (V ′, x, s) and V =fv s V

′.

Lemma 9.7 If L fv= L′ and V =fv s V
′ then (L, V, s)F

1∼r (L′, V ′, s)F.

Proof. By coinduction. �

Corollary 9.8 ‚ Liveness Approximates Signi�cance for IL/F

If ·Λ ` liveF s : X and V =X V ′ then (L, V, s)F
1∼r (L, V ′, s)F.

Note that we prove that the two states are in lock-step simulation 1∼r .

9.1.5 Liveness and Significance for IL/I

We show that the live variables approximate the signi�cant variables. We write
L |= ·Λ if a context L satis�es the assumptions ·Λ, that is, if for each function f
the globals recorded in ·Λf do not contain the parameters the function recorded in
Lf , and the globals are valid function body in Lf . We formally de�ned this relation
inductively on the context. Recall from §4.3 that a context is a list of groups of named
de�nitions, where each group corresponds to set of mutually recursively de�ned
functions. The following de�nition is de�ned inductively on the group structure of
the contexts, i.e. the recursion in LiveCtx1 occurs on contexts where a whole group
of functions has been removed.

LiveCtx1
L |= ·Λ ∀g, xg || Xg ∀g, f : X; ·Λ ` liveI sg : Xg ∪ xg

f : (x, s);L |= f : X; ·Λ

LiveCtx2

∅ |= ∅
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True Liveness for IL/I and IL/F ‚ 9.2

LiveCtx1 ensures for each function f in f thatXg does not contain parameters and
that Xg ∪ xg is a large enough live set for the function body s under the context
f : X; ·Λ.
We can now formally state the soundness of the live predicate for IL/I. We prove that
if ·Λ ` livep s : X , then X contains at least the signi�cant variables of s in every
context L that satis�es the assumptions ·Λ.

Theorem 9.9 For every program s, if ·Λ ` liveI s : X and L |= ·Λ and V =X V ′,
then for all r we have (L, V, s)I

1∼r (L, V ′, s)I.

Note that we prove that the two states are in lock-step simulation 1∼r .

9.1.6 Minimal Live Sets and Live Set Annotations

When given the liveness annotations at function de�nitions for a program s, minimal
live sets for all other program points can be uniquely determined by a bottom-up
traversal. This means that to provide liveness information, it generally su�ces to
give the liveness annotations at function de�nitions. We will use this fact in §13.2,
when we have to recompute liveness information: We will only describe how to
obtain the new liveness information at function de�nitions, as liveness information
on other program points is then uniquely determined.

9.2 True Liveness for IL/I and IL/F

A variable x is truly signi�cant to a program s and a context L, if there is an envi-
ronment V and values v, v′ such that (L, V [x 7→ v], s) 6∼(L, V [x 7→ v′], s). True
signi�cance is not decidable, as it is a non-trivial semantic property. We will de�ne
the notion of truly live variables that over-approximate the set of truly signi�cant
variables. We revisit the example from Figure 9.1, and give the corresponding true
live sets in Figure 9.3. There are two di�erences to the live-sets from Figure 9.1:
First, the variables a and z are never live in the program, because they are never
used. Second, the parameter y is never live in the program, because it is never used.

9.2.1 Inductive Predicate

We specify soundness of true liveness information with the judgment tlive, which
is inductively de�ned by the rules shown in Figure 9.2 and has the following form:

Λ | ζ ` tlivep s : X where

Λ : context (setV) function liveness
ζ : context (listV) function parameters

X : setV live variables
s : Exp program
p ∈ {I, F} interpretation
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9 ‚ Liveness and Dead Variable Elimination

Line IL program True Liveness Annot.
IL/F IL/I

1 let b = 3 in {d} {}
2 let a = 5 in {b, d} {b}
3 let c = 2*b in {b, d} {b}
4 fun f (x,y) = {b, c, d} {b, c} Globals of f : {b}
5 let z := 2*x in {b, x} {b, x} Live-ins of f : {b, x}
6 x+b in {b, x} {b, x}
7 fun g () = d in {c, d} {b, c}
8 f(c,7) {c} {b, c} of g: {d}

Figure 9.3: A program together with sets of truly live variables. In each line, the sets
corresponds to the truly live variables before the respective statement.

The predicate Λ | ζ ` tlivep s : X can be read as follows:

X is an annotation tree annotating every program point in s with at least
the truely live variables at that program point with respect to IL interpre-
tation p and for any function context satisfying the liveness assumptions
Λ and the parameters ζ .

De�nition 9.10 ‚ Function Live-Ins Context

Throughout this thesis, Λ always denotes a function live-in context, that is, a context
that maps function names to the corresponding live-ins.

De�nition 9.11 ‚ Function Parameter Context

Throughout this thesis, Λ always denotes a function parameter context, that is, a
context that maps function names to the corresponding function’s parameters.

Given Λ and ζ and De�nition 9.1, a function globals context can be reconstructed
according to the following equation (note the point-wise lifting):

·Λ = Λ \ ζ

Recall from the liveness section that the meta-variable X always denotes a set of
variables.

Description of the Rules

TLive-Op ensures that the set of variablesX ′ that are live at s is contained in the set
of variable live before the let-statement, except the variable x the let de�nes. The
free variables of e are only included in the live set X , if x itself is live.
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TLive-Op
X ′ \ {x} ⊆ X x ∈ X ′ → fv (e) ⊆ X ζ | Λ ` tlivep s : X ′

ζ | Λ ` tlivep letx = ein s : X

TLive-Exp
fv (e) ⊆ X

ζ | Λ ` tlivep e : X

TLive-Call
X ′ \ {x} ⊆ X fv (e) ⊆ X ζ | Λ ` tlivep s : X ′

ζ | Λ ` tlivep let x = α e in s : X

TLive-App
|x| = |e| ∀i, xi ∈ Λf → fv (ei) ⊆ X p = I→ Λf \ ζf ⊆ X

ζ | Λ ` tlivep f e : X

TLive-Cond
fv (e) ⊆ X

X1 ∪X2 ⊆ X ζ | Λ ` tlivep s1 : X1 ζ | Λ ` tlivep s2 : X2

ζ | Λ ` tlivep if ethen s1 else s2 : X

TLive-Fun
f : x; ζ | f : Y ; Λ ` tlivep t : X1 ∀g, f : x; ζ | f : Y ; Λ ` tlivep sg : Xg

X1 ⊆ X2 p = F→ ∀g,Xg \ xg ⊆ X2

ζ | Λ ` tlivep fun f x = s : X in t : X2

Figure 9.4: De�nition of the predicate ζ | Λ ` tlivep s : X for true liveness. The
context ζ : context (listV) contains parameters of functions, Λ : context (setV)
contains the true live-ins of the function body, s is a program annotated with live-
in annotations, and X is the set of true live variables.

TLive-Call is similar to TLive-Op, but always requires the free variables of e to be
live, as external events cannot be removed, even if their result is unused.
TLive-Exp requires the free variables of e to be live.
TLive-Cond ensures that the live variables at a conditional contain the live variables
of both the consequence and the alternative.
TLive-App requires that whenever a parameter xi is in the live set of the function
body Xf , then the free variables of the corresponding argument expression ei are
live at the application. We require that the length of the argument vector |e| agrees
with the length of the parameter vector x. For the IL/I liveness judgment (i.e. if
p = I) we also require that the globals Λf \ ζf of f are live at the call site.
TLive-Fun records for each f the live-in annotation Xf in the context Λ. The live
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variables X1 of the continuation t must be live at the function de�nition: X1 ⊆ X2.
For the IL/F liveness judgment (i.e. if p = F) we also require that the globalsXf \xf
of f are live at the function de�nition. This re�ects that that the function de�nition
globals are read to construct IL/F closures.

9.2.2 Decidability and Translation Validation

Theorem 9.12 ‚ True Liveness is Decidable

For all global contexts ·Λ, and liveness interpretations p, it is e�ciently decidable for
a given program s and an liveness annotation X whether ·Λ ` livep s : X holds.

The proof of Theorem 9.12 is constructive and yields an e�cient, extractable decision
procedure. The decision procedure recursively descends on the program structure,
checking the conditions of the appropriate rule in every step. Currently, LVC does
not employ translation validation for true liveness information, but uses a veri�ed
program analysis we describe in §15.

9.3 Dead Variable Elimination

The idea for a dead variable elimination (DVE) according to true liveness information
is simple: The transformation traverses the program, and removes variable bindings
if the variable is not in the true live set of the continuation. Similarily, parameters,
and all corresponding arguments of applications, that are not in the true live-ins of
the respective function body are removed.
We realize dead variable elimination (DVE) with the recursive function dve de�ned
in Figure 9.5. The recursive procedure descends through the program, removes un-
used let-bindings, and �lters parameter and argument lists according to the liveness
information for function bodies.
Note that dve takes four formal parameters. The last parameter is the true liveness
annotation. In the de�nition of dve in Figure 9.5, we do not explicitly take the 4th
parameter to avoid destructuring of the tree, but pretend that the annotations are
inline in the program syntax (cf. §4.8.2).

9.3.1 Correctness for IL/I and IL/F

We show the correctness for dead variable elimination with the inductive correctness
method we developed in §8. The correctness proof we show is for IL/I, but a very
similar result also holds for IL/F. The formal development contains both proofs.
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dve : listV → list (setV)→Exp→ Ann (setV)→ Exp

dve ζ Λ (letx = ein (s : X)) x = let s′ = dve ζ Λ s in
if x ∈ X then letx = ein s′

else s′

dve ζ Λ (let x = α e in s) = let x = α e in (dve ζ Λ s)

dve ζ Λ (if ethen s1 else s2) = if ethen (dve ζ Λ s1)
else (dve ζ Λ s2)

dve ζ Λ (f e) = f (filterby (λx.x ∈ Λf ) ζf e)

dve ζ Λ e = e

dve ζ Λ (fun f x = s : X in t) = let Λ′ := X; Λ in
let ζ ′ := x; ζ in
fun f (filter (λx.x ∈ X)x) = dve ζ ′ Λ′ s
in dve ζ ′ Λ′ t

Figure 9.5: De�nition of Dead Variable Elimination. Note that while we give the 4th
parameter in the type of dve, in the de�ning equations we pretend that the liveness
annotations are available inline in the program syntax (cf. §4.8.2). In this way, the
destructuring of the annotation tree for the recursive call is implicitly handled by
the destructuring of the program syntax. We only give the live sets if they occur on
the right-hand side of the de�ning equation. The let-case relies on the live set X of
the continuation s. The case for function de�nition relies on the live sets X of the
function bodies x.

De�nition 9.13 We de�ne the proof relation Pdve where

A := listV × setV
Param (x,X) y y′ := x = y ∧ y′ = filter (λx.x ∈ X) y

Arg V V ′ (x,X) v v′ := v′ = filterby (λ(x).x ∈ X)x v
∧ |x| = |v|

Idx _ f f ′ := f = f ′

Lemma 9.14 If domF = domΛ = domF ′ then we have F ‖Λ; Λ′ ‖Pdve F
′.

Lemma 9.15 Let F = f x = s : X and let F ′ be such that |F | = |F ′| and for all i

F ′i = (filter (λx.x ∈ Xi)xi, dve (x; ζ) (X; Λ) si)
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9 ‚ Liveness and Dead Variable Elimination

Then Param (f : (x,X))F F ′.

We are now ready to show the correctness theorem. Recall that we write V =X V ′

if V and V ′ agree on the values of the variables in the set X .

Theorem 9.16 Let ζ | Λ ` tliveI s : X and L >∼r L′ :Pdve zip ζ Λ and V =X V ′.
Then:

(L, V, s)I
>∼r (L′, V ′, dve ζ Λ s)I.

Proof. Induction on s and in each case inversion of tlive.
‚ The case for let-call follows from Sim-Let-Call and the inductive hypothesis.
‚ In the case for let op, we do a case analysis in x ∈ X .
– If x ∈ X , the case follows from Sim-Let-Op with the fact that JeKV = JeKV ′

because V and V ′ agree on fv (e).
– If x 6∈ X , case analysis on JeKV .

∗ If JeKV = ⊥, the left side is stuck (Sim-Error).
∗ If JeKV = v, we use Sim-Expansion-Closed to reduce the left side one step

and are done by the inductive hypothesis with the observation that V [x 7→ v]
still agrees with V ′ on the X because x 6∈ X .

‚ The case for the conditional follows by Sim-Cond from Lemma 8.1 and the induc-
tive hypotheses.

‚ The case for application follows fromL ∼r L′ :Pdve zip ζ Λ with Lemma 8.21, after
discharging premises. The relation Idx (x,X) f f holds by de�nition. Argument
evaluation agrees because

Jfilterby (λx.x ∈ Xf )x eKV ′

= filterby (λx.x ∈ Xf )x (JeKV )

since we already know that JeKV 6= ⊥ and V and V ′ agree on the live variables.
‚ The case for a return expression is trivial, since the return expressions are identical

and environments agree on the live variables.
‚ In the function de�nition case, we have F ′ such that |F ′| = |F | and for all i

F ′i = (filter (λx.x ∈ Xi)xi, dve (x; ζ) (X; Λ) si)

We apply Lemma 8.19 and have to discharge premises. The second premise holds
by assumption, the third is the inductive hypothesis. The �rst two requirements
of the �rst premise are Lemma 9.14 and Lemma 9.15. It remains to show from

LF MI;L ∼r LF ′MI;L′ :P ((x,X); Λ) (∗)
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that
BdyPL,L′ F F ′ ((x,X); Λ) ⊆ ∼r

After unfolding Bdy (De�nition 8.12), we get that Idx (x,X) f f ′ and Ff = (x, s)
and F ′f ′ = (x′, s′) and Arg V V ′ (x,X) v v′. And after further unfolding we get
x′ = filter (λx.x ∈ X)x and v′ = filterby (λ(x).x ∈ X)x v. We have to show
that

(LF MI;L, V [x 7→ v], s)
∼r (LF ′MI;L′, V ′[x′ 7→ v′], dve (x; ζ) (X; Λ) s)

Inductive hypothesis provides the latter. Its premises are discharged by (∗) and
the observation that the updated environments still agree on the live variables. �

9.3.2 Liveness a�er Dead Variable Elimination

DVE operates with respect to true liveness information. This true liveness infor-
mation can be adapted with minor changes to the program after DVE. Figure 9.6
shows how the liveness information from the original program is transformed by
the function dve_live. The function dve_live takes as �rst argument a set of vari-
ables, which will always be added to the top-level live set it is generating. For better
readability, we depict the second argument (which really is the program and its live-
ness annotation tree) in type-assignment style. The function returns an annotation
tree with constructors from §4.8.1, which matches in shape the result of the DVE
transformation.
The main property of dve_live is that it preserves the live-sets from the original
liveness information.

Lemma 9.17 If ζ | Λ ` tlivep s : X then G ∪ [X] = [dve_liveGsX].

The following theorem states that the result of dve_live is sound liveness information
for the transformed program with respect to the liveness judgment (not the true
liveness judgment).

Theorem 9.18 If ζ | Λ ` tlivep s : X then

Λ \ ζ ` livep (dve ζ Λ sX) : (dve_liveGsX)

The de�nition of dve_live together with Lemma 9.17 and Theorem 9.18 allow some
observations. First, the live-ins after DVE are exactly the live-ins before DVE, as
G is the empty set in the corresponding recursive call in the de�ning equation of
dve_live for function de�nitions. Since liveness requires all parameters to be live,
this means that DVE is e�ective in the sense that all dead parameters are removed.
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dve_live : setV → Exp→Ann (setV)→ Ann (setV)

dve_liveG (letx = ein (s : X)) = if x ∈ X then G ∪X · dve_live ∅ s
else dve_live (G ∪X) s

dve_liveG (let x = α e in s : X) = G ∪X · dve_live {x} sa

dve_liveG (if ethen s1 else s2 : X) = G ∪X · (dve_live ∅ s1), (dve_live ∅ s2)

dve_liveG (f e : X) = G ∪X

dve_liveG (e : X) = G ∪X

dve_liveG (fun f x = s in t : X) = G ∪X · dve_live ∅ s, dve_live ∅ t

Figure 9.6: De�nition of liveness transformation accompanying DVE. We display
liveness annotation (4th parameter) inline in the program as described in §4.8.2.

Second, G is also empty in the recursive call for variable de�nitions. Together with
the soundness requirements for liveness, we can conclude that DVE is also e�ective
in the sense that all dead variables are removed.
The recursive call for dead variable de�nitions extends the G set with the live vari-
ables X at the dead de�nition. This might seem curious, because if x is dead, the
live set X must also be the live set at the consecutive statement s. However, we
de�ned true liveness to allow all post-�xed points, i.e. we do not know that true
liveness information is minimal. For this reason we must make sure to include X
in the next live set, as it might contain variables that are claimed live because the
true liveness information was not minimal. For minimal true liveness information,
however, adding X does not add variables to the next live set.
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10 Coherence

This section introduces the main tool behind LVC’s approach to SSA: coherence.
Put simply, coherence allows to rename apart an IL/I program. In Example 4.4 we
saw that in general renaming apart does not preserve IL/I semantics. Coherence will
ultimately allows us to rename apart IL/I programs, which is one way to establishes
the static single assignment property for IL/I programs. We will see, however, that
coherence provides for a weaker criterion that does not require a renamed apart
program, but still provides the advantages of SSA.
We start by de�ning semantically what it means that two programs have the same
semantic interpretation. Then, building on liveness information, we give the induc-
tive de�nition of coherence and show that it is su�cient for invariance. Finally, we
discuss what it means to establish coherence.

10.1 Invariance

We call a program invariant if the functional and the imperative interpretation co-
incide.

De�nition 10.1 ‚ Invariance

A closed program s is invariant if

∀V, (∅, V, s)F ∼ (∅, V, s)I.

Invariance is a non-trivial semantic property, and hence undecidable. We develop
a syntactic, e�ciently decidable criterion su�cient for invariance, which we call
coherence. Coherence is a property of a IL program, that is, a property of IL syntax.
If an IL program is coherent, the semantic interpretations of IL/F and IL/I coincide.
Coherence is based on the observation that some IL programs do not really depend
on information from the closure. AssumeLf = (V ′, x, s) and consider the following
IL reduction according to rule ILF-App:

(L, V, f e) −→F (Lf , V ′[x 7→ v], s)
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If V agrees with V ′ on all variablesX that are live in s, then the con�guration could
have equivalently reduced to (Lf , V [x 7→ v], s):

(L, V, f e) −→F (Lf , V [x 7→ v], s)

This reduction does not require the closure V ′ and is similar to the rule ILI-App.
Coherence is a syntactic criterion that ensures that at every at every function appli-
cation, V and V ′ agree on a the live set X of the function body.

Example 10.2 ‚ A Coherent Program

In the following programs, the set of globals of f is {x}. The program on the left is
not invariant, while the program on the right is coherent.

1 let x = 7 in
2 fun f () = x in
3 let x = 5 in f ()

1 let x = 7 in
2 fun f () = x in
3 let y = 5 in f ()

In the program on the left in line 3, the value of x is 5 and disagrees with the value
of x in the closure of f . In the program on the right, xwas not rede�ned, hence both
IL and IL/I will compute 7. We say a function f is available as long as none of f ’s
globals were rede�ned. The inductive de�nition of coherence ensures only available
functions are applied.

10.2 Inductive Predicate

We specify coherence with the judgment coh, which is inductively de�ned by the
rules shown in Figure 10.1 and has the following form:

·Λ ` coh s : X where
·Λ : context (setV) function globals

X : Ann (setV) liveness annotation
s : Exp program

The coherence judgment uses liveness information, in particular the globals of func-
tions. ·Λ is a globals context similar to the one in the liveness judgment. We exploit
that contexts realize a partial mapping, and maintain the invariant that ·Λ maps only
available functions to their globals, and all other functions to ⊥. The inductive def-
inition given in Figure 10.1 ensures that only available functions are applied.

10.2.1 Description of the Rules

Coh-Op deals with binding a variable x. Every function that has x as a global (i.e.
x ∈ ·Λf ) becomes unavailable, and must be removed from ·Λ. We write b ·ΛcX to
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Coh-Op
b ·ΛcX\{x} ` coh s

·Λ ` coh letx = η in (s : X)

Coh-Exp

·Λ ` coh e

Coh-App
·Λf 6= ⊥
·Λ ` coh f y

Coh-Cond
·Λ ` coh s ·Λ ` coh t

·Λ ` coh ifxthen selse t

Coh-Fun
f : X \ x; ·Λ ` coh t ∀g, b ·Λ; f : X \ xcXg\xg

` coh sg

·Λ ` coh fun f x = s : X in t

Figure 10.1: Coherence: A su�cient and decidable criterion for invariance.

b∅cX = ∅
b ·Λ; f : ⊥cX = b ·ΛcX ; f : ⊥
b ·Λ; f : X ′cX = b ·ΛcX ; f : X ′ X ′ ⊆ X
b ·Λ; f : X ′cX = b ·ΛcX ; f : ⊥ X ′ 6⊆ X

Figure 10.2: De�nition of the restr operation on contexts of globals.

remove all de�nitions from ·Λ that require more globals thanX . Trivally, b ·ΛcV = ·Λ.
To remove all de�nitions from ·Λ that use x as global, we use b ·ΛcX\{x}, where X
is the live set of the continuation s. Formally, the de�nition of b ·ΛcX in Figure 10.2
exploits the list structure of contexts.
Coh-App ensures only available functions can be applied, since ·Λ maps functions
that are not available to ⊥.
Coh-Fun deals with function de�nitions. When a function de�nition is encountered,
the live-ins X are obtained from the annotation. We want to record the globals,
hence we remove the function parameters to extend the context ·Λ. In the function
body s, only functions that require at most X \ x as globals are available, so the
context is restricted accordingly.
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10.2.2 Decidability and Translation Validation

We get an e�cient decidability result for the coherence predicate. The result is e�-
cient, because liveness information determines the globals of functions de�ned in a
term s. The proof of Theorem 10.3 is constructive and yields an extractable decision
procedure, which could be used to translation validate external tools that establish
coherence. At the moment, we do not use any external components to establish
coherence.
Theorem 10.3 ‚ Coherence is Decidable

For all ·Λ and s and X, it is decidable whether ·Λ ` coh s : X holds.

10.3 Coherent Programs are Invariant

In this section we show that coherent programs are invariant, that mean, that their
imperative and functional interpretations coincide.

10.3.1 Agreement Invariant

Given a con�guration (L, V, t)F such that Lf = (V ′, x, s), the agreement invariant
describes a correspondence between the values of variables in the function closure
environment V ′ and the environment V . If the closure of f is available, the clo-
sure environment V ′ agrees with the primary environment V on f ’s globals X :
V ′ =X V . We write F, V |= ·Λ if ∀f ∈ domF ∩ dom ·Λ we have that V ′ =X V ,
where ·Λf = X and Ff = (V ′, x, s).

10.3.2 Context Coherence

Function application continues evaluation with the function body from the closure.
Assume Ff = (V ′, x, s) and consider the IL/F reduction:

(F, V, f e) −→F (F f , V ′[x 7→ v]a, s)

If coherence is to be preserved under reduction, s must be coherent under suitable
assumptions. We now de�ne a predicate that to ensure this.

De�nition 10.4 We say a globals context ·Λ approximates ·Λ′ if whenever ·Λf is
de�ned, it agrees with ·Λ′ and de�ne ·Λ � ·Λ′ :↔ ∀f ∈ dom ·Λ, ·Λf = ·Λ′f .

The context coherence predicate ·Λ ` cohF ensures that all function bodies in clo-
sures are coherent. It is de�ned inductively on the context: CohC-Con encodes
two requirements: First, the body sg of each g must be coherent under the context
restricted to the globals Xg of g (cf. Coh-Fun). Second, Xg ∪ xg must su�ce as live
variables for the function body sg under some globals context ·Λ′ such that f : X; ·Λ
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CohC-Emp

∅ ` coh∅

CohC-Con
f : X; ·Λ � ·Λ′ ·Λ ` cohF

∀g,Xg 6= ⊥ → ·Λ′ ` liveI sg : Xg ∪ xg ∧ bf : X, ·ΛcXg ` coh s

f : X; ·Λ ` coh f : (V, x, s);F

Figure 10.3: Coherence for contexts.

approximates ·Λ′. The approximation takes care of the fact that globals from ·Λ may
have been replaced by ⊥ because the corresponding function became unavailable,
but for a liveness derivation to be possible, these globals cannot be ⊥.

Lemma 10.5 Approximation ensures stability under restriction to any set of vari-
ables X , because b ·ΛcX � ·Λ.

·Λ ` cohL → b ·ΛcX ` cohL.

Lemma 10.6 Context coherence is stable under rewinding to any function f :

·Λ ` cohL → ·Λ−f ` cohL−f .

10.3.3 Preservation Theorem

De�nition 10.7 We de�ne strip (V, x, s) = (x, s) and lift strip pointwise to con-
texts.
Theorem 10.8 ‚ Coherence implies Invariance

Let ·Λ ` coh s : X and ·Λ � ·Λ′ and ·Λ ` cohL and L, V |= ·Λ and ·Λ′ ` liveI s : X.
Then:

(L, V, s)F
1∼r (stripL, V, s)I.

Proof. The proof proceeds in a lock step fashion since the variable environments and
the programs are the same. The let-binding case needs Lemma 10.5 to show that con-
text coherence is preserved. The only other interesting case is function application,
where we have to show that

(L, V, g e)F
1∼r (stripL, V, g e)I

We can assume Lg = (V ′, x, t) and JeKE = v, because otherwise both sides are
stuck and we are done. After reducing both sides one step by applying the appro-
priate rule of the simulation, we have to show

(L−g, V ′[x 7→ v], g e)F (r ∪ 1∼r) (stripL−g, V [x 7→ v], g e)I
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10 ‚ Coherence

From coherence of the application we get Xg 6= ⊥, and in turn from context coher-
ence we get coherence and soundness of liveness for the function body t. We use
the transitivity property from Lemma 6.35 with the soundness result about liveness
(Theorem 9.9) which allows us to change variable environments as long as they agree
on the live variables. We use the agreement invariant to obtain that V =Xg\x V

′,
from which we get that V [x 7→ v] agrees with V ′[x 7→ v] on the live-ins Xg of g. It
remains to show

(L−g, V ′[x 7→ v], g e)F (r∪ 1∼r) (stripL−g, V ′[x 7→ v], g e)I

which follows from the cohypothesis with the fact that strip commutes with rewind-
ing and Lemma 10.6. �

Theorem 10.8 reduces the problem of translating between IL/I and IL to the problem
of establishing coherence. For the translation from IL to IL/I, it su�ces to establish
coherence while preserving IL semantics. Theorem 10.8 also explains why we de-
�ned invariance on con�gurations with empty function evironments: Any function
environment must satisfy the agreement invariant, which would have complicated
the de�nition of invariance while not providing more insight.

Corollary 10.9 If ∅ ` coh s : X and ∅ ` liveI s : X then s is invariant.

10.4 Establishing Coherence

In this section, we discuss the simplest way to establish coherence for an IL program,
and foreshadow two important transformations which we will prove correct. Two
methods are of interest, one that preserves the program’s IL/F semantics and one
that preserves the program’s IL/I semantics.

10.4.1 Establishing Coherence and Preserving IL/F Semantics

The simplest method to establish coherence while preserving IL/F semantics is α-
renaming the program apart. A renamed-apart program is coherent, since every
function is always available. The properties of α-conversion ensure semantic equiv-
alence. This approach however, might introduce an excessive amount of variable
names, and we discuss a method that uses substantially less names in §13.4, when
we discuss register assignment.

10.4.2 Establishing Coherence and Preserving IL/I Semantics

The simplest method to establish coherence while preserving IL/I semantics is intro-
ducing all variables occurring in the program as formal parameters and as arguments
to every function and every function application. This ensures that the globals are
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the empty set for each function, and hence every function is always available. This
approach, however, may introduce an excessive amount of parameters to the func-
tions in the program, and we discuss a method that introduces substantially less
parameters in §12 when we discuss SSA construction.
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11 Reachability and
Unreachable Code Elimination

This section introduces the notion of reachability. Reachability approximates an
undecidable, semantic notion that is most easily explained by its complement: If a
program point can be removed from the program without changing the program’s
semantics in any context, that program point is unreachable. This de�nition already
hints at the most prominent use-case for reachability information, namely unreach-
able code elimination (UCE).
Reachability information annotates every program point with a boolean: true to
mark it reachable, and false to mark it unreachable. There are two very useful intu-
itions about what soundness and completeness for reachability information means:

soundness If a program point is marked reachable, then all of its successors must
be marked reachable. The exception to this rule are successors of conditionals if
they are ruled out by a constant condition value.

completeness If a program point is marked reachable, then there must be a prede-
cessor that is marked reachable. The exception to this rule is the initial program
point, which is always marked reachable.

As reachability is a non-trivial semantic property and hence undecidable, we must
settle for an overapproximation of reachability information; and indeed the de�-
nition above may mark branches of conditionals reachable, even if they are not.
However, we can compute reachability information that is sound and complete in
the sense of the de�nition above, but we postpone the veri�cation of the analysis to
§15.4.
We are interested in completeness of a reachability analysis, because we want to
show that certain kinds of unreachable code are completely eliminated by UCE. In
particular, we will show that UCE removes all functions that do not have a reach-
able application. This result about Reachability and UCE bridges an important gap
between the liveness information for IL/I and IL/F. In Figure 9.1 we saw that the
globals of an unreachable function (i.e. a function that is never applied) are live with
respect to IL/I, but not live with respect to IL/I. In general, an unreachable function
never impacts liveness of the surrounding program in IL/I, while it may impact the
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CallChain-Refl

callChainF f f

CallChain-Step
isCalled si fj callChain f x = s fj g

callChain f x = s fi g

IsCalled-Op
isCalled s f

isCalled (letx = η in s) f

IsCalled-App

isCalled f e f

IsCalled-Cond-Left
true v cnd e isCalled s1 f

isCalled (if ethen s1 else s2) f

IsCalled-Cond-Right
false v cnd e isCalled s2 f

isCalled (if ethen s1 else s2) f

IsCalled-Fun
isCalled t g callChain f x = s g f

isCalled (fun f x = s in t) f

isCalledFromF t f := ∃f ′, isCalled t f ′ ∧ callChainF f ′ f

Figure 11.1: Formal de�nition of call chain

liveness of the surrounding program in IL/F. At the end of this section we show that
in a program without unreachable code, liveness information sound for IL/I’s notion
of liveness is also sound with respect to IL/F’s notion of liveness (but not vice versa).
This theorem is critical for switching semantic interpretations during register allo-
cation.

11.1 Static Evaluation of Conditions

We use a static evaluation function cnd : Exp→ B>⊥ to statically evaluate the value
of condition expressions in conditionals. cnd yields the value of the condition, > if
the value of the condition can be either truth value, or⊥ to indicate that neither the
consequence nor the alternative is reachable. The latter is the case if, for example, the
evaluation of the condition gets stuck. The reachability annotations for a program
can achieve both soundness and completeness relative to a static evaluation function
cnd.
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11.2 Call Chains and Completeness

There are di�erent ways to formulate the completeness requirement for reachabil-
ity of functions, that is, a condition that ensures that a function is called (up to a
static evaluation function like cnd). Consider a mutually recursive function de�ni-
tion fun f x = s in t. Intuitively, reachability of some fi can be justi�ed by a call
chain (again, up to a criterion cnd for handling conditionals) from t to fi with an
arbitary but �xed number of calls to other functions from f in between. There are
other possibilities, but this formulation has the advantage that it allows proofs by
induction on the call chain. The formal de�nition of a call chain is realized by the
inductive predicate

callChainF f g

given in Figure 11.1. The �rst rule says that every function reaches itself. The second
rule says that f reaches h if there is a g such that the body of f calls g and there is
a call chain from g to h. The inductive predicate

isCalled s f

given in Figure 11.1 realizes the notation that a program s calls a function f which
appears free in s. Finally, we de�ne

isCalledFromF t f

in Figure 11.1, which formalizes the fact that f is called from t.

11.3 Inductive Reachability Judgment

We de�ne the judgment reach inductively according to the rules given in Figure 11.2
to formalize soundness and completeness of reachability information. The rules are
parametric in an index p, which indicates whether soundness, completeness, or both
are desired.

R ` reachp {r} s where

R : context B reachability for functions
s : Exp program
r : AnnB reachability annotation
p ⊆ {S,C} soundness/completeness

The parameter p of the predicate can be any subset of {S,C} and controls whether
soundness (S), completeness (C), or both are enforced. This �exibility is realized by
the relation p↔ : B→ B→ P that is de�ned as follows:

b
p↔ b′ := (S ∈ p→ b→ b′) ∧ (C ∈ p→ b′ → b)
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11 ‚ Reachability and Unreachable Code Elimination

Reach-Let
b
p↔ b′ R ` reachp {b′} s

R ` reachp {b} letx = η in {b′} s

Live-Exp

R ` reachp {b} e

Reach-App
b→ Rf

R ` reachp {b} f e

Reach-Cond
true v cnd e→ b

p↔ b1
false v cnd e→ b

p↔ b2 R ` reachp {b1} s1 R ` reachp {b2} s2

R ` reachp {b} if ethen {b1} s1 else {b2} s2

Reach-Fun
∀g, f : b;R ` reachp {bg} sg f : b;R ` reachp {c} t

C ∈ p→ ∀f, bf → b C ∈ p→ ∀f, isCalledFrom (f x = s) t f a
p↔ c

R ` reachp {a} fun f x = {b} s in {c} t

Figure 11.2: De�nition of the Reachability Predicate R ` reachp {r} s. The context
R : context B contains reachability information for functions, s is a program, and r
is a reachability information annotation. The rules omit the annotation as described
in §4.8.2. See Figure 11.1 for the de�nition of isCalledFrom.

In this way, {S}↔ enforces forward propagation of reachability, which corresponds to
soundness, and {C}↔ enforces backwards propagation of reachability, which corre-
sponds to completeness. The relation {S,C}↔ enforces both. Note that Reach-App is
not formulated in terms of p↔, but only captures the soundness aspect by require-
ing that if the application is reachable, then the corresponding function is marked
reachable in the context R : context B. The completeness aspect is taken care of by
the predicate isCalledFrom at function de�nitions.

11.3.1 Description of the Rules

Reach-Let propagates reachability information through let-bindings: If the let is
reachable, then so is its successor.
Reach-App ensures that whenever a function application is reachable, then the func-
tion is also reachable.
Reach-Cond evaluates cnd e, i.e. it uses the static evaluation function to evaluate
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the condition. If cnd e is false or unde�ned (⊥) then reachability is not propagated
into the consequence s1. Propagation into the alternative s2 is treated similarily.
Reach-Fun propagates reachability into t. The contextR is extended with the reach-
ability information of the function bodies f : b. The topmost premise ensures that
the reachability information for all function bodies is sound.

11.4 Unreachable Code Elimination

In this section, we verify an optimizations that falls into the category of dead code
elimination (DCE): unreachable code elimination (UCE). The correctness proof uses
the inductive proof method we developed in §8, and cannot easily be veri�ed using
coinduction in Coq because the transformation removes statements (cf. §6.2.4) from
the program. The proofs are intentionally detailed to demonstrate the inductive
proof method from §8.
UCE eliminates function de�nitions and branches of conditionals according to given
reachability information. Note that we never speci�ed what the annotations are sup-
posed to mean. In our setting, analysis information receives its meaning through
the transformations it permits. There is, of course, an intuition about the semantic
meaning of the reachability annotations, but we do not have to make the intuition
formal: The connection between the annotations and the semantics is in the correct-
ness proof of the transformation.

11.4.1 Transformation

In Figure 11.4, we de�ne a function uce that removes all code not marked reachable.
If all functions from a mutually recursive function de�nition are removed, the fun-
statement is removed, too. Conditionals are removed if the value of the condition
can be statically evaluated.

11.4.2 Correctness for IL/I and IL/F

In this section we prove correctness of uce for both IL/I and IL/F. The proofs for both
semantics are so similar, that we can just omit IL interpretation subscripts F and I,
and present a proof that works out for both semantics.

De�nition 11.1 We de�ne the proof relation Puce where

A := B
Param _xx′ := x = x′

Arg V V ′ a v v′ := v = v′

Idx a f f ′ := a = true ∧ f = f ′
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11 ‚ Reachability and Unreachable Code Elimination

filterby : ∀XY, (X → B)→ listX → listY → listY
filterby p (x :: x′) (y :: y′) =

if px then y :: filterby p x′ y′ else filterby p x′ y′

filterby p _, _ = nil

filter : ∀X, (X → B)→ listX → listX
filter p x = filterby p xx

Figure 11.3: De�nition of filterby.

uce : Ann ExpB→ Exp

uce (letx = η in s) = letx = η in (uce s)

uce (if ethen s1 else s2) = if JeK∅ = true then uce s1

else if JeK∅ = false then uce s2

else if ethen (uce s1)else (uce s2)

uce (f e) = f e

uce e = e

uce (fun F in t) = let F ′ = uceFF in
if |F ′| = 0 then uce t
else fun F ′ in (uce t)

uceFF = let K = filter (λ(x, {b} s). b)F in
map (λ(x, s).(x, uce s))K

Figure 11.4: De�nition of Unreachable Code Elimination.
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Unreachable Code Elimination ‚ 11.4

Lemma 11.2 If domR = domF then F ‖R;R′ ‖Puce uceFF .

Lemma 11.3 F = f x = {b} s→ Param b F (uceFF ).

Lemma 11.4 If F ′ = uceFF and (LF MV ;L, V, s) ∼r (LF ′MV ′ ;L′, V ′, uce t) then

(L, V,fun F in s) ∼r (L′, V ′,if |F ′| = 0 then uce t
else fun F ′ in uce t).

Proof. If |F ′| = 0, then F ′ = nil and after reducing only the left side one step
by applying Sim-Expansion-Closed the assumption solves the goal. Otherwise we
reduce both sides one step (Lemma 6.18), and the assumption solves the goal. �

Theorem 11.5 Let R ` reachs {r} s such that [r] = true and L ∼r L′ :Puce R.
Then: (L, V, s) ∼r (L′, V, uce s).

Proof. Induction on s and in each case inversion of reach.
‚ The case for let follows from Sim-Let-Call and the inductive hypothesis.
‚ The case for the conditional follows by Lemma 8.2 and the inductive hypotheses.
‚ The application case follows from L ∼r L′ :Puce R with Lemma 8.21, after dis-

charging premises: Note that Rf = true by inversion on reach, so Idx Rf f f
holds by de�nition. Argument evaluation agrees, since parameters, and argu-
ments and environments are identical.

‚ The case for return expressions is trivial, since the return expressions and envi-
ronments are identical.

‚ In the function de�nition case, let F ′ = uceFF . Lemma 11.4 lets us deal with
both cases uniformly and requires

(LF MV ;L, V, t) ∼r (LF ′ME ;L′, E, uce t).

After applying the inductive hypothesis, we must show

LF ME ;L >∼r LF ′ME ;L′ :P R′;R.

We apply Lemma 8.18 and discharge its premises by using Lemma 11.2 and
Lemma 11.3. The remaining premise requires us to show from

LF ME ;L ∼r LF ′ME ;L′ :P R′;R (∗)

that BdyPL,L′ LF ME LF ′ME (R′;R) ⊆ ∼r . Unfolding Bdy, we obtain
Idx (R′;R) f f ′ such that Ff = (x, s) and F ′f ′ = (x′, s′). Furthermore, we get
Arg E E R′f v v′. Unfolding those, we have to show

(LF ME ;L,E[x 7→ v], s) ∼r (LF ′ME ;L′, E[x 7→ v], uce s)

The inductive hypothesis solves the goal with (∗). �
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NUC-Op
noUCcnd s

noUCcnd (letx = η in s)

NUC-App

noUCcnd e

NUC-Cond
noUCcnd s1 noUCcnd s2

noUCcnd (if ethen s1 else s2)

NUC-Return

noUCcnd e

NUC-Fun
∀i,noUCcnd si ∀i, isCalledFrom (f x = s) t fi

noUCcnd (fun f x = s in t)

Figure 11.5: De�nition of noUC.

11.5 Absence of Unreachable Code

We de�ne a predicate noUC that speci�es that all functions de�ned in a program
are reachable in the sense of isCalledFrom in Figure 11.5.

Theorem 11.6 If R ` reachC,S s and s is marked reachable, then uce s contains no
unreachable code: noUCcnd (uce s).

11.5.1 Properties of Programs without Unreachable Code

If a program is coherent and does not contain unreachable code, then liveness in-
formation sound with respect to imperative liveness is also sound with respect to
functional liveness.

Theorem 11.7 If noUCisCalled s and ·Λ ` coh as and ·Λ v ·Λ′ and ·Λ′ ` liveI s : X
then ·Λ′ ` liveF s : X .

Since every renamed apart program is coherent, we get:

Theorem 11.8 If noUCisCalled s and s is renamed apart and ·Λ and ·Λ ` liveI s : X
then ·Λ ` liveF s : X .
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12 Establishing Coherence for IL/I:
SSA Construction

In this section, we describe how to establish coherence while preserving IL/I seman-
tics. This e�ectively yields an algorithm that translates an IL/I program to an equiv-
alent IL/F program. Since IL/F programs can be easily renamed apart, and renamed
apart IL/F programs are in SSA, the algorithm is a SSA construction algorithm.
The translation from IL/I to IL/F introduces parameters to the functions in an IL/I
program in an equivalence-preserving manner to obtain a coherent program. For
a given IL/I program, there are usually several possible translations depending on
the number of introduced parameters. We motivate the idea behind the translation
using coherence. As we discussed in §10.1, a coherent program may only apply
functions with an available closure. Closures may become unavailable if registers
are reassigned. The program in Listing 12.1, for example, is not coherent because x
is reassigned in line 3, making the closure of f unavailable. Note that both programs
below are to be interpreted imperatively.

Listing 12.1: An IL/I Program (not coherent)
1 let x = 7 in
2 fun f () = x in
3 if y then let x = 3 in f ()
4 else f ()

To make the program coherent, it must be ensured that the closure of f remains
available after the assignment to x in line 3. This is accomplished by by making x a
parameter of f :

Listing 12.2: An IL/I Program (coherent)
1 let x = 7 in
2 fun f x = x in
3 if y then let x = 3 in f x
4 else f x

At all applications, the parameter x itself is used as argument. In general, it is suf-
�cient (but not necessary) to introduce every global of each function as additional
identity argument to make a program coherent. In particular, we could have intro-
duced y as an additional second parameter to f in Listing 12.2. For example, the
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following program in which all free variables have been added as parameters to ev-
ery function is also coherent:

Listing 12.3: An IL/I Program (coherent)
1 let x = 7 in
2 fun f (x,y) = x in
3 if y then let x = 3 in f (x,y)
4 else f (x,y)

Adding parameters corresponds to placingφ-functions [Kel95; App98], and minimiz-
ing the number of φ-functions is desirable for practical purposes [Cyt+91]. Hence
our translation makes an e�ort to require fewer parameters.

12.1 Adding Parameters

We begin by giving a translation that adds parameters according to annotations at
function de�nitions. As usual, we maintain the annotations in a separate tree, but
introduce the following notation to display inline that the additional parameter an-
notation is z:

fun f x = s ⊕ z in t

Given such additional parameter annotations, the function addParams de�ned in
Figure 12.1 adds the additional parameters and arguments to the program. For ex-
ample, the mutually recursive function de�nition above would be translated to

fun f xz = . . . in . . .

Each application f e gets the corresponding additional parameters z as additional
arguments:

f ez

Example 12.1 The following two programs show that adding parameters does nei-
ther respect program equivalence nor the implementation relation.

1 fun f () =
2 if true then 1
3 else x
4 in
5 f ()

1 fun f (x) =
2 if true then 1
3 else x
4 in
5 f (x)

The program on the right has been obtained from the program on the left by adding
parameter x to f . While the two programs are equivalent in variable environments
where x is de�ned, the right-hand side program gets stuck in environments where
x is unde�ned, while the left-hand side program terminates.
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Example 12.1 shows that a correctness property of addParams involves assumptions
about de�nedness of variables. We hence postpone the correctness statement to
Theorem 12.5. The de�nition of addParams is given in Figure 12.1. The context
Π : context (listV) maps each function to the parameters that must be added at
each of its call sites.

addParams : context(listV)→Exp→ Ann (listV)→ Exp
addParams Π (letx = ein s) = letx = ein addParams Π s

addParams Π (ifxthen selse t) = ifxthen addParams Π s

else addParams Π t

addParams Π (f e) = f ez where Πf = z

addParams Πx = x

addParams Π (fun f x = s ⊕ z in t) = fun f xz = addParams (f : z,Π) s
in addParams (f : z,Π) t

Figure 12.1: De�nition of addParams, which adds parameters to a program. In the
presentation, the annotation (4th parameter) is inlined into the third for readability
as described in §4.8.2. For functions in the context, Π : context (listV) contains the
parameters to add.

12.2 Inductive Correctness Predicate

We now give an inductive judgment ap that will ultimately guarantee that the pa-
rameter annotations in s are su�cient for the program translated by addParams to
be coherent. The judgment has the following form:

·Λ ` ap s⊕ a : X

·Λ : L⇀ setV functions’ globals
a : Ann listV additional parameter annotation

X : Ann setV liveness annotation
s : Exp program

The predicate ·Λ ` ap s⊕ a : X can be read as follows:

Under the assumptions ·Λ about the globals of functions occurring free
in s, and the additional parameter annotations a for functions de�ned
in s are su�cient for addParams Π sa to be coherent.
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12 ‚ Establishing Coherence for IL/I: SSA Construction

AP-Op
b ·ΛcX\{x} ` ap s : X
·Λ ` ap letx = η in s

AP-Cond
·Λ ` ap s ·Λ ` ap t

·Λ ` ap ifxthen selse t

AP-Var

·Λ ` ap x

AP-App
·Λf 6= ⊥
·Λ ` ap f y

AP-Fun
f : X \ xz; ·Λ ` ap t

∀g, bf : X \ xz; ·ΛcXg\xgzg
` ap sg ∀g, zg ⊆ Xg ∧ xgzg duplicate-free

·Λ ` ap fun f x = s⊕ z : X in t

Figure 12.2: Correctness predicate for additional parameters. Both annotations are
inlined into the program for readability as described in §4.8.2.

a annotates function de�nitions inside s with additional parameters. ·Λ is a globals
environment used exactly as in the de�nition of coherence. Intuitively, ap is a variant
of the coherence judgment that pretends that the additional parameters from the
annotation have already been added to the program (according to addParams).

12.2.1 Description of the Rules

Each rule in Figure 12.2 corresponds to a rule of coherence (see Figure 10.1), with the
di�erence that ap checks coherence for the program addParams Π sa, i.e. the pro-
gram in which the parameters have already been added. The rules AP-Op, AP-Cond,
AP-Var and AP-App are analogous to Coh-Op, Coh-Cond, Coh-Var and Coh-App
from the de�nition of coherence.
The rule AP-Fun takes care of handling the additional parameters. First note that
for any function g, we have that xgzg are the parameters after the translation. The
globals of a function g after the translation are hence obtained from the live-ins Xg

provided by the liveness annotation asXg \xgzg . For the judgment recursion, these
globals are added to the globals context ·Λ, in the cases for the function bodies with
appropriate restriction (cf. Coh-Fun).
The third premise of Coh-Fun handles liveness requirements for the additional pa-
rameters. First, the additional parameters must be a subset of the live-ins of the
function, and second, the resulting parameter list xgzg must be duplicate free. Note
that duplicate parameters introduce shadowing, and hence cannot be accessed in the
function. That uniqueness of the additional parameters is hence a minimal quality
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requirement for the annotation.

12.3 Decidability and Translation Validation

It is decidable if a given set of parameters su�ces to achieve coherence:

Theorem 12.2 ‚ Correctness of Translation is Decidable

Given ·Λ, s, a and X, it is decidable whether ·Λ ` ap s⊕ a : X holds.

The proof of Theorem 12.2 is constructive and yields a decision procedure. This de-
cision procedure can be used to translation validate algorithms that establish coher-
ence while preserving IL/I semantics, that is, to translation validate SSA construction
algorithms.

12.4 Correctness

To show correctness of the predicate ap, we have to show that it guarantees that the
additional parameter annotations are su�cient for addParams to yield a coherent
program. Furthermore, we must establish a simulation result, which is necessarily
weaker than program equivalence as Example 12.1 shows.

Theorem 12.3 ‚ Translation Establishes Coherence

If ·Λ ` ap s⊕ a : X then ·Λ ` coh (addParams Π sa) : X.

Proof. By induction on the derivation of ap. �

Note that the liveness annotation X in the coherence judgment in the conclusion
of Theorem 12.3 is the same as in the premise, although we get coherence of the
translated program. This result su�ces, because AP-Fun ensures that all additional
parameters are already live-ins of the function. The following lemma makes this
connection precise:

Lemma 12.4 ‚ Translation Preserves Liveness

If ·Λ ` livep s : X and ·Λ ` ap s⊕ a : X then ·Λ ` livep (addParams Π sa) : X.

Proof. By induction on the derivation of live and inversion on ap. �

What remains to be shown is that the translated program is observationally equiv-
alent to the original program. The proof has to argue that introducing parameters
does not change the semantics. We do the proof by coinduction, so we have to ensure
that the invariant is maintained after function applications for the function bodies.
For this purpose, we de�ne the following predicate that relates two function contexts
L,L′ if L′ is a translation of L according to globals ·Λ and additional parameters Π.
The judgment has the following form, and the rules are given in Figure 12.3.
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·Λ | Π ` L / L′
·Λ : L⇀ setV globals mapping
Π : L⇀ setV additional parameters
L,L′ : context label contexts

AP-Ctx-Con ensures that the function bodies in L and L′ are pairwise translations
of each other.

AP-Ctx-Emp

∅ | ∅ ` ∅ / ∅

AP-Ctx-Con
·Λ | Π ` L / L′ ∀g,Xg 6= ⊥ → bf : X; ·Λ, cXg ` ap f : z; Π⊕ sg : zgXg

f : X; ·Λ | f : z; Π ` f : (x, s);L / f : (xz, addParams (f : z; Π) s);L′

Figure 12.3: Context translation relation.

Theorem 12.5 ‚ Translation is Correct

If ·Λ ` ap s ⊕ a : X and ·Λ | Π ` L / L′ and ·Λ v ·Λ′ such that ·Λ′ ` liveI s : X
and V is de�ned on [X] then

(L, V, s)I ≈pr (L′, V, addParams Π s)I.

Theorem 12.5 and Theorem 12.3 together with the main result about coherence (The-
orem 10.8) ensure that we get the following corollary, which shows that we can
change semantic interpretations.

Corollary 12.6 ‚ Translation to IL/F

If ·Λ ` ap s⊕a : X and ·Λ |Π ` L / stripL′ and ·Λ v ·Λ′ such that ·Λ′ ` liveI s : X
and V is de�ned on [X] then

(L, V, s)I ≈pr (L′, V, addParams Π s)F.

12.4.1 Discussion of the Correctness Predicate

The correctness predicate ap requires the additional parameters to be live, which
imposes requirements on the construction algorithms the predicate admits. The
requirement that additional parameters must be live actually forces algorithms to
translate to what corresponds to pruned SSA-form, which we discuss in §18.12.1.
This means, for example, that the predicate cannot be used to justify correctness
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of an algorithm that adds variables occurring in the program to every function as
additional parameters.
In the Coq development, Theorem 12.5 is formulated separately of the assumption
that liveness does not change before and after the translation. We think that, if
desired, construction algorithms that introduce dead parameters could be integrated
with minor e�ort. Since we prove correct a construction algorithm that doesn’t
introduce dead parameters in §12.5, however, the advantages of such an approach
are unclear.
Another remarkable property is the de�nedness requirement in Theorem 12.5, which
arises from the fact that the translation may introduce reads into the program that
were not present in the original, as shown in Example 12.1. It is not possible to de-
cide in general whether variable that occurs in a program is read (Rice), hence every
SSA translation has this problem. The de�nedness requirement in Theorem 12.5 ulti-
mately arises from a design choice in the semantics: Reading an unde�ned variable
gets stuck. This means that because our semantics di�erentiates between de�ned
and unde�ned variables, Theorem 12.5 must account for the fact that the translation
may in general introduce reads that were not present in the original program.

12.5 SSA Construction via Adding Parameters

In this section, we given an algorithm deloc that computes additional parameter such
that the predicate ap holds of the translation, i.e. that after adding these parameters
the resulting program is coherent.
There are two reasons why an additional parameter might be necessary and which
the algorithm accounts for:

1 A parameter x must be added to f , if x is a global of f and x may be rede�ned
between the de�nition of f and the application of f

2 A parameter x must be added to g, if x is a global of g and there is a function f
that may be called from g and x must be added as a parameter to f

Example 12.7 provides an example for each of these two cases.

Example 12.7 Consider Figure 12.4. The parameter x must be added to f , because
x is rede�ned in line 4. This is an instance of case 1 from above. The parameter x
must also be added to g, since g is called from f (which might have altered x), and
x is a global of g. This is an instance of case 2 from above.

These two reasons provide the key to understanding the de�nition of the algorithm
deloc in Figure 12.5, which we now describe in detail.
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1 fun g () =
2 fun f () =
3 if x then
4 let x = x - 1
5 in f ()
6 else g ()
7 in if x then f ()
8 else 5
9 in f ()

1 fun g x =
2 fun f x =
3 if x then
4 let x = x - 1
5 in f ()
6 else g x
7 in if x then f x
8 else 5
9 in g x

Figure 12.4: Example programs for Example 12.7.

12.5.1 The Intuition behind deloc

We describe arguments and return values of deloc. Consider the following invoca-
tion:

deloc ·Λ Π sX = (a, P )

The arguments of deloc are the program s and the corresponding liveness annota-
tion X, and two contexts. ·Λ is a globals context corresponding to the one maintained
in the live judgment. The context Π maintains for each function the subset of its
globals that may have been rede�ned; that means if s were to apply f immediately
then Πf would be the additional parameters that need to be added to f .
The result of the algorithm is a tuple. The �rst component a of the tuple is an
annotation tree that contains the additional parameter annotations for s. The second
component P an additional parameter context that contains for each function the
parameters that must be added because of s and Π. The di�erence between Π and P
is that �rst, P may contain more parameters per function because it also accounts
for rede�nitions that occur in s, and second, P may map the entry for a function f
to ⊥, even if Πf 6= ⊥, provided that the function f is not called in s. The algorithm
is de�ned in Figure 12.5.

12.5.2 Description of deloc

In this section we describe the de�ning equations of deloc given in Figure 12.5 in
detail.
The let-binding case modi�es the context Π by adding x to the list of additional
parameters for every function that has x as a global.
The conditional case computes the results for the two branches, and uses the corre-
sponding �rst components to construct the program annotation for the conditional.
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deloc : context(setV)→ context(listV)→ Exp → Ann (setV)
→ Ann (listV)× context(setV)

deloc ·Λ Π (letx = η in s) =
let (a, P ) = deloc ·Λ (addx ·Λ Π) s in
(∅ · a, P )

deloc ·Λ Π (if ethen selse t) =
let (a, P ) = deloc ·Λ Π s in
let (a′, Q) = deloc ·Λ Π t in
(∅ · a,a′, P ∪Q)

deloc ·Λ Π e = (∅, ∅)
deloc ·Λ Π (f e) = (∅, f : Πf )
deloc ·Λ Π (fun f x = s : X in t) =

let ·Λ′ = f : X \ x; ·Λin
let Π′ = f : ∅; Π in
let (a′, Q) = deloc ·Λ′Π′ t in
let (a, P ) = deloc ·Λ′Π′ s in
let f : y; Π′′ = Q ∪

⋃
P in

let Z =
⋃2 yx in

let f : z; Π′′′ = addZ ·Λ′ (f : y; Π′′) in
(z · a,a′,Π′′′)

add y ·Λ Π = zip (λX z. (y ∩X)) ∪ z) ·Λ Π

Figure 12.5: The Delocation algorithm deloc.

The result context is constructed by point-wise union of the contexts P andQ. This
collects the additional parameters required in both branches into one result context.
The expression case never requires additional variables.
The application case requires that the additional parameters Πf collected so far for
f are recorded in the result context, an ensures that the additional parameters for
all functions di�erent from f are ⊥.
The function de�nition case �rst constructs extended contexts ·Λ′ and Π′, and com-
putes the results for all subterms recursively. Note that P is a list of result contexts
such that Pi corresponds to si. Then we compute the point-wise union of all result
contexts Q ∪

⋃
P , and pattern match on the resulting additional parameter context

to single out the part f : y that holds the additional parameters for functions de�ned
in this function de�nition, and the part Π′′ that holds the additional parameters for
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functions previously de�ned. Note that any two mutually recursively de�ned func-
tions f may call each other; �guring out the call structure would be a dominance
analysis. However, this information is encoded in part in the liveness information:
the globals upper-bound the additional parameters. We now collect all parameters
and additional parameters of any function in f together in Z , and then add the vari-
able x in Z as additional parameter to each function if x is a global of that function.
We pattern match on the resulting additional parameter context and obtain f : z as
additional parameters for newly de�ned functions, and Π′′′ as parameter context for
the previously de�ned functions. From this information it is easy to construct the
result value for the function de�nition case.
The helper function add takes additional parameter candidates y, a globals context
·Λ and an additional parameter context Π, and yields a context where each entry is
obtained by adding y ∩ ·Λf to Πf .

12.5.3 Correctness of deloc

For the correctness proof of deloc it su�ces to derive an appropriate instance of the
ap judgment. The properties we are after then follow from Theorem 12.3, which
provides that adding the parameters yields a coherent program, and Theorem 12.5,
which provides semantic equivalence.

Theorem 12.8 ‚ Correctness of deloc
Let ·Λ ` liveI X : s and deloc ·Λ Π sX = (a, P ) and Π ⊆ ·Λ and noUCisCalled s.
Then: b ·Λ \ P c[X] ` ap s⊕X : a.

The Unreachable Code Requirement

The requirement to have no unreachable code present in Theorem 12.8 deserves
comment.
First note that in the function de�nition case, both the coherence judgment cohand
the derived judgment ap require that the judgment holds recursively for each func-
tion body that is syntactically present. This recursive requirement is, in particular,
independent of reachability considerations. That means that even if a function f is
never applied, its body must be coherent, or satisfy the ap requirement, respectively.

Example 12.9 The algorithm deloc avoids introducing a parameter x to a function
f if f is never called after the rede�nition x. Even though x is rede�ned on the
following program, deloc does not introduce x as parameter for f , because f is never
called after the rede�nition of x.

128

https://sigurdschneider.github.io/lvc/Lvc.Coherence.DelocationAlgoCorrect.html#computeParameters_trs


SSA Construction via Adding Parameters ‚ 12.5

1 fun f () =
2 if x then f ()
3 else let x = 5 in x
4 in f()

Example 12.9 implies that if a function is never called (not even from an unreachable
function), it gets no additional parameters.

Example 12.10 In the following program, deloc adds no parameters to g:

1 fun f () =
2 if x then f ()
3 else let x = 5 in x
4 and g () =
5 if x then
6 let x = x+1 in f ()
7 else x
8 in f()

The consequence is that deloc introduces no parameters at all in the program from
Example 12.10, and hence the translated program is not coherent (although invari-
ant), because f is unavailable after its global x was rede�ned in line 6. The rede�ni-
tion of x in line 6, however, does not have any impact, because g is never called.
For this reason, we have to forbid unreachable code in the correctness statement
Theorem 12.8: Otherwise, the resulting programs would not be coherent (although
invariant). Another approach would be weaken the requirement in the de�nition
of coherence, and require that a function body only needs to be coherent, if it is
called in the sense of isCalled as de�ned in §11. We chose not to incorporate the
reachability requirement in the de�nition of coherence, for two reasons:

1 LVC uses the SSA construction algorithm twice: Once in the front-end to trans-
late into IL/F, and once in the back-end during register allocation. On both oc-
casions DCE recently ran, and by Theorem 11.6 DCE eliminates all unreachable
code. We hence have no problem to satisfy the premises of Theorem 12.8 in the
correctness proofs.

2 It is not clear where to draw the line on what exceptions to incorporate in the
de�nition of coherence. Each of these exceptions, starting with the possible in-
corporation of reachability, ultimately has the goal of reducing the parameter
requirements further. To this end, we could even start evaluating constant con-
ditions, then we could incorporate a constant propagation, and so on. The ulti-
mate de�nition of coherence would be bloated and it would be hard to expose
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which premise serves what purpose. We hence opted for the simplest possible
de�nition of coherence.

12.6 Minimality

The standard SSA-construction algorithm [Cyt+91] minimizes the number of φ-
functions. Minimality is de�ned with respect to the dominance order of the blocks
in the CFG of the program. Our translation predicate supports a minimal construc-
tion with respect to the de�nition of coherence, but we do not formally prove this.
Relating a de�nition of minimality based on coherence to a de�nition of minimality
based on dominance would require a formalization of dominance within the LVC
framework, which we currently do not have.
We can, however, show that the number of additional parameters depends on the
block-nesting structure.

Example 12.11 The four programs below show that the number of additional pa-
rameters required for coherence depends on block-nesting structure of the program.
The bottom row contains coherent versions of the program in the top row which
have been obtained by adding the minimal number of additional parameters re-
quired. The two programs in the top row di�er only in their block nesting structure.
The block nesting in the top right program allows g to take no argument, while x is
required as additional parameter for both f and g in left program.

IL/I programs di�ering only in their block-nesting structure

1 fun g () = x in
2 fun f () = g () in
3 let x = 3 in
4 f()

1 fun f () =
2 fun g () = x in
3 g () in
4 let x = 3 in
5 f ()

TIF translations with minimal number of parameters

1 fun g x = x in
2 fun f x = g x in
3 let x = 3 in
4 f x

1 fun f x =
2 fun g () = x in
3 g () in
4 let x = 3 in
5 f x
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Register Allocation

Register allocation transforms an IL/F program that uses an unbounded number of
pseudo registers into an IL/I program that uses a �xed number of registers k and
an unbounded number of memory locations which we call slots. The number of
available registers k is called register bound.
To distinguish registers from slots, we partition the set of variables into two in�nite
subsets. It is important that both subsets are in�nite, as this guarantees that we can
construct a total function that, given a �nite set of variablesX �nds a variable that is
not in X . We arrange things such that the actual machine registers are the smallest
k variables in the register partition.
We restrict the usage of slots such that they can only be used in variable to vari-
able assignments, as parameters of functions, and as arguments in function appli-
cations. We call this restriction the slot restriction, which we formally de�ned in
§13.1. Lowering operations on slots to the corresponding operations on the stack is
straight-forward as described in §16.
More formally, the register allocation requires the input program to satisfy that
‚ function arguments are variable only
‚ for every let-binding letx = ein . . . appearing in the program the number of

free variables in e is less than or equal to the register bound
The register allocation phase maintains the above invariants, and additionally estab-
lishes the following properties:
1 slots are only used in variable to variable assignments and as function parameters

and arguments
2 at most k di�erent registers are used
3 the semantics of the program is preserved
Following the work by Hack [HGG06], register allocation takes advantage of a key
property only available to SSA-based register allocation schemes.

De�nition 13.1 ‚ Register Demand/Pressure

The number of distinct registers required to implement an IL/I program is called
register demand. The size of the largest live-set occurring in a program is called

131



13 ‚ Establishing Coherence for IL/F: Register Allocation

register pressure.

The important properties is:

In SSA register demand is less or equal to register pressure [HGG06].

This property allows to separate the register allocation phase into two separate sub-
phases:

Spilling If register pressure exceeds the number of available registers, values must
be spilled to memory so that they can later be reloaded when they are needed.
The register allocation phase must hence insert code that copies values between
registers and memory if more variables are live than registers available, and this
task is called spilling. Note that the key advantage of SSA-based spilling is that
register pressure can be used as a proxy for register demand. This allows the spilling
algorithm to determine whether spilling is necessary at a program point without
knowing the register assignment. Spilling then inserts spills and reloads to lower
register pressure su�ciently, i.e. the result of spilling is that register pressure is
less or equal to the register bound.

Register Assignment decides which variable resides in which register at which
program point, and this phase is called register assignment. Register assignment
starts from a program where the register pressure is less than or equal to the register
bound. We then use Hack’s approach to �nd an α-renaming of the program in
which the number of distinct register variables is less than or equal to the register
bound.

The spilling and register allocation phase work together to establish the three invari-
ants above. The spilling phase already establishes invariant 1 and of course ensures
that invariant 3 holds. Spilling does not establish invariant 2 directly, but estab-
lishes that the largest live set in the program is less or equal to the register bound.
The register assignment phase then establishes invariant 2 .
The implementation of register allocation involves the following phases, in order:

1 Spilling on IL/I (§13.2)

2 SSA construction transforming to coherent IL/F (§12)

3 Renaming apart the register partition on coherent IL/F

4 Register assignment on coherent IL/F (§13.4)

5 Argument elimination on IL/I by lowering to parallel moves, and consequent im-
plementation of parallel moves with a sequence of assignments, thereby avoiding
slot-to-slot assignments (§13.5)
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SlotLoad
x ∈ VR y ∈ VM slotRess

slotResletx = y in s

SlotLet
fv e ⊆ VR slotRess

slotRes letx = ein s

SlotReturn
fv e ⊆ VR
slotRes e

SlotIf
fv e ⊆ VR slotRess slotRest

slotResif ethen selse t

SlotApp

slotRes f y

SlotFun
∀i, slotRessi slotRest

slotResfun f x = s in t

Figure 13.1: De�nition of the predicate slotRes enforcing the slot restriction.

13.1 Variable Partitions and Slot Restriction

We partition the variables into two countably-in�nite sets V = VR ·∪ VM , and re-
quire that the input program only contains variables from VR. We further para-
metrize the register allocation phase by an injection slot : VR → VM that generates
the name of the spill slots for a given register variable (cf. CompCert [Ler09a]). We
adopt the convention that in the source code, we use lower-case variablesx, y, . . . for
register variables, and upper-case variables X,Y, . . . for the (corresponding) slots.
For example, we implement spilling of y by a let-binding of the corresponding spill
slot letY = y in . . . and use let y = Y in . . . to reload y later.
It is important that slots are not used by expressions in the program, as machine
architectures require the arguments to most instructions to reside in registers. Some
architectures allows memory operands for certain instructions, but we currently do
not take advantage of this. We call this restriction the slot restriction, and de�ne a
predicate slotRes that guarantees that every variable is in a register whenever it is
used. The predicate is inductively de�ned and the rules are given in Figure 13.1. The
predicate also ensures that let-bindings with a memory slot on the left-hand side
have a register on the right side, i.e. that slot to slot assignments are forbidden.

13.2 Spilling

Spilling transforms a program into an equivalent program by inserting spills and
loads such that the number of registers in the maximal live set is afterwards bounded
by a given integer k. The spilling phase relies on liveness information and involves
three steps:
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1 Spilling information is computed using a veri�ed spilling algorithm, and associ-
ated with the orignal program in a way analogous to liveness annotations.

2 The spilled program is generated, i.e. the spilling information is materialized into
let-bindings that implement the spills and loads

3 The new liveness annotation is computed. Note that it is enough to compute the
liveness information at function de�nitions, as full liveness information can be
reconstructed from it (see §9.1.6).

13.2.1 Spilling Information

Spilling annotations are annotation trees as described in §4.8, and the annotation at
each program point is a tree-tuple. By convention, c ranges over spilling annota-
tions, i.e. over the type of spilling annotation trees. Following the notational con-
vention discussed in §4.8.2, we use the separator ... to indicate the spilling annotation
at a certain program point. Hence, a statement with spilling annotation is written
s ... (S,L, _), where S is the set of variables to be spilled (spill set) and L is the set
of variables to be loaded (load set). The third component is only required if s is a
function applications or a function de�nition, and we discuss its purpose below.

13.2.2 Materializing Spills and Loads

A program s with spilling annotation c can be turned into a spilled program via the
recursive function doSpill Z Λ s c, which we now informally describe.
To generate the spilled program for s ... (S,L, _), doSpill �rst prepends the state-
ment s with spills for each variable in S, followed by the loads for each variable in
L as depicted in Listing 1. For let statements, conditionals, and return statements
this is all that needs to be done. Function de�nitions and applications require some
additional work, which we describe next.
Function de�nitions take a pair of sets (Rf ,Mf ) as third component of the spilling
annotation: fun f x = s1 in s2 ... (S,L, (Rf ,Mf )). We call the pair (Rf ,Mf ) the
live-in cover and require it to cover the live-ins Xf of f , i.e. Rf ∪Mf = Xf . The
set Rf speci�es the variables the function expects to reside in registers, and the set
Mf speci�es the variables the function expects to reside in memory. The sets Rf
andMf are not necessarily disjoint, as a function may want a variable to reside both

doSpillLocal(s ... ({x1, ..., xn}︸ ︷︷ ︸
spills

, {y1, ..., ym}︸ ︷︷ ︸
loads

, _)) =

let slot x1 = x1 in ...
let slot xn = xn in
let y1 = slot y1 in ...
let yn = slot yn in s

Listing 1: De�nition of doSpillLocal
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1 fun f x y z = Rf ={y, z},Mf ={c, x, z}
2 if y > 0 then
3 let a = y+z in
4 f x a z Rapp = {a, z},Mapp = {x, z}
5 else
6 if y = 0 then
7

8

9 x + c L = {c, x}
10 else
11 let w = y*y in
12 let a = y+w in
13 f x a z Rapp = {a},Mapp = {x, z}

fun f X y z Z =
if y > 0 then
let a = y+z in
f X a z Z
else
if y = 0 then
let x = X in
let c = C in
x + c

else
let w = y*y in
let a = y+w in
f X a Z Z

Listing 2: A program with spilling annotations on the left (non-empty sets in spilling
annotations are indicated by equations) and the resulting spilled program on the
right. The live-ins of f are {x, y, z, c}. The variable c is free in f . Lowercase vari-
ables denote registers, uppercase variables denote spill slots. In line 4, z is passed in
register and memory to avoid loading z in line 3. The application in line 12 implicitly
loads z (3rd parameter).

in register and in memory when it is applied (see Listing 2). Besides inserting spills
and loads according to S and L as already described, the function parameters must
be modi�ed to account for parameters that are passed in spill slots. For this purpose,
every parameter xi ∈Mf \Rf is replaced by the name slotxi in x. Furthermore, for
any parameter xi ∈Mf ∩Rf an additional parameter with name slotxi is inserted
directly after xi. The following function performs this task:

exparm (R,M) nil = nil

exparm (R,M) (x1, x) =


x1, slot x1, exparm (R,M)x if z ∈ R ∩M
x1, exparm (R,M)x if z ∈ R
slot x1, exparm (R,M)x otherwise

Function applications have a pair of sets (Rapp,Mapp) as third component of spilling
information and take the form f y1, . . . , yn ... (S,L, (Rapp,Mapp)). We require all
function arguments yi to be variables, and that Rapp ∪Mapp = {y1, . . . , yn}. The
sets Rapp and Mapp indicate the availability of argument variables at the function
application. If an argument variable yi is available in a register, then the spilling al-
gorithm sets yi ∈ Rapp, if it is in memory, then yi ∈Mapp. Besides inserting spills and
loads according to S and L as already described, doSpill modi�es the argument vec-
tor y1, . . . , yn. For every parameter xi ∈ Rf such that the corresponding argument
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variable yi is not in Rapp (i.e. not available in a register), the variable yi is replaced
by the name slot yi in the argument vector. For every parameter xi ∈Mf \Rf such
that the corresponding argument variable yi is in Mapp (i.e. available in memory),
the variable yi is replaced by the name slot yi in the argument vector. Furthermore,
for every parameter xi ∈Mf ∩Rf an additional argument is inserted directly after
the corresponding argument variable (yi or slot yi) in y1, . . . , yn, and the name of
the additional argument is slot yi if yi ∈ Mapp and yi otherwise. In this way, Rf
and Mf are used to avoid implicit loads and stores at function application if avail-
ability, as indicated in Rapp and Mapp, permits. Since spill slots are just a partition
of the variables, parameter passing can copy between spill slots and registers if the
argument variable yi for a register parameter xi is only available in memory, or vice
versa. This �ts nicely in our setting, as we handle the generation of these implicit
spills and loads later on, when parameter passing is lowered to parallel moves. In
line 12 of Listing 2, for example, the application implicitly loads z. In contrast, avail-
ability of z in both register and memory at the application in line 4 allows avoiding
any implicit loads and stores. Assuming y > 0 holds for most executions, this is
bene�cial for performance.

13.3 A Correctness Criterion for Spilling

We de�ne a correctness predicate for spilling on programs with spilling annotation
of the form

Z |Σ |R |M ` spillk s ... c : X

The correctness predicate is de�ned relative to sets R and M , which contain the
variables currently in registers, and in memory, respectively. Additionally, the pa-

rameter context Z maps function names to their parameter list, and the live-in

cover context Σ maps functions to their live-in cover. The parameter k is the regis-
ter bound. The spilling predicate uses the spilling annotation c as well as the liveness
annotation X. The rules de�ning the predicate are given in Figure 13.2 and require
the presence of liveness information for the formulation of the rule SpillFun.

13.3.1 Description of the Rules of the Inductive Predicate

The predicate consists of two generic rules that handle spilling and loading, and one
rule for each statement. Rules for statements only apply once spills and loads have
been handled. This is achieved by requiring empty spill and load sets in statement
rules, and requiring an empty spill set in the load rule. SpillSpill requires S ⊆ R
to ensure only variables currently in registers are spilled. The new memory state is
M∪S. SpillLoad requires the spill set to be empty. Its second premise ensures there
are enough free registers to load all values. The kill set K represents the variables
that may be overwritten because they are not used anymore or are already spilled.
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SpillSpill
S ⊆ R

Z |Σ |R |M ∪ S ` spillk s ... (∅, L, _)
Z |Σ |R |M ` spillk s ... (S,L, _)

SpillLoad
L ⊆M |R \K ∪ L| ≤ k

Z |Σ |R \K ∪ L |M ` spillk s ... (∅, ∅, _)
Z |Σ |R |M ` spillk s ... (∅, L, _)

SpillReturn
fv e ⊆ R

Z |Σ |R |M ` spillk e ... (∅, ∅)

SpillApp
Σf = (Rf ,Mf ) Rf \ Zf ⊆ R
Mf \ Zf ⊆M y = Rapp ∪Mapp

Mapp ⊆M Rapp ⊆ R
Z |Σ |R |M ` spillk (f y) ... (∅, ∅, (Rapp,Mapp))

SpillIf
fv e ⊆ R Z |Σ |R |M ` spillk s1 Z |Σ |R |M ` spillk s2

Z |Σ |R |M ` spillk (if ethen s1 else s2) ... (∅, ∅)

SpillLet
fv e ⊆ R |R \K ∪ {x}| ≤ k Z |Σ |R \K ∪ {x} |M ` spillk s

Z |Σ |R |M ` spillk (letx = ein s) ... (∅, ∅)

SpillFun
|Rf | ≤ k ∀i, f : x;Z | f : (Rf ,Mf ); Σ |Rf |Mf ` spillk si
Rf ∪Mf = Xf f : x;Z | f : (Rf ,Mf ); Σ |R |M ` spillk t

Z |Σ |R |M ` spillk (fun f x = s {X} in t) ... (∅, ∅, (Rf ,Mf ))

Figure 13.2: Inductive correctness predicate spillk. We follow the convention dis-
cussed in §4.8.2

R \K ∪L is the new register state after loading. Clearly, K is most useful ifK ⊆ R
because only then variables are removed from the register set R, but our proofs do
not require this restriction. We also do not include K in the spilling annotation,
as the spilling algorithm would have to compute liveness information to provide
it. Simple spilling algorithms, such as the one we verify in §13.3.4, never need to
compute liveness information.
SpillReturn requires that the free variables are in the registers. SpillIf requires the
consequence and the alternative to ful�ll the predicate on the same con�guration,
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and that the variables used in the condition are in registers. SpillLet deals with the
new variable x, which needs a register. The resulting register state is R \K ∪ {x},
the size of which must be bounded by the register bound k. This imposes a lower
bound on k. The kill setK re�ects that there might be a variable y holding the value
of a variable required to evaluate the expression e, that is then overwritten to store
the value of x. In this case K = {y}.
SpillApp uses the sets Rf and Mf from the corresponding function de�nition. The
premises Rf \ Zf ⊆ R and Mf \ Zf ⊆ M require that all live-ins of the function
except parameters are available in registers and memory at the application. The re-
maining premises require that all argument variables are available either in the reg-
isters (Rapp) or in the memory (Mapp), as discussed in §13.2. Note that the argument
vector y is variables only, i.e. applications can only have variables as arguments.
SpillFun refers to the live-ins Xf to require that the live-in cover (Rf ,Mf ) covers
the live-ins Xf of the program: Rf ∪Mf = Xf . The rule also requires the function
to expect at most k variables in registers: |Rf | ≤ k. The parameters and the live-in
cover are recorded in the context. The condition for the function body s1 uses Rf
and Mf as register and memory sets, respectively.

13.3.2 Formalization of the Spill Predicate in Coq

The predicate spillk is realized with �ve rules in the Coq development instead of
the seven rules presented here. Each of the �ve rules corresponds to a consecutive
application of SpillSpill, SpillLoad and one of the statement-speci�c rules. The
�ve-rule system behaves better under inversion and induction in Coq, but we think
the formulation with seven rules provides more insight. The Coq development con-
tains a formal proof of the equivalence of the two systems.

13.3.3 Soundness of the Correctness Predicate

In this subsection we show that our spilling predicate is sound. We show that if s is
renamed apart and all variables in s are in VR, and the spilling liveness annotations
in s are sound, the following holds for the spilled program s′:

(§13.3.3) every variable in s′ is in a register when used in a computation

(§13.3.3) the maximal live set in s′ is bounded by k

(§13.3.3) s and s′ have the same behavior

Variables in Registers

We de�ne ! (R,M) = R ∪M and analogously its pointwise lifting.
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Lemma 13.2 Let Z |Σ |R |M ` spillk s ... c : X and !Σ \ Z ` liveI s : X and
let the program s be renamed apart and let all variables occurring in s be in VR. If
R ∪M ∪

⋃
Z ⊆ VR then slotRes (doSpill Z Σ s c).

Proof. The conditions follow directly by induction on spillks. �

Register Bound

After the spilling phase, the liveness information in the program changed tremen-
dously. Spills and loads introduce new live ranges, and shorten live ranges of already
de�ned variables. To prove correctness of the spilling predicate, we must show that
after spilling the register pressure is lowered to k. To formally establish the bound,
we show that the number of variables from VR in each liveness annotation in the
spilled program is bounded by k. The following observation is key to this proof: The
live-ins of a function after spilling can be obtained from the live-ins of the function
before spilling by keeping the variables passed in registers, and adding the slots of
the variables passed in memory. This property can be seen in the rule SpillFun,
where we require Rf ∪Mf = Xf .
In the Coq development, the statements of the following lemmas involve the algo-
rithm that reconstructs minimal liveness information from the annotations at func-
tion de�nitions, which we omitted in this presentation for the sake of simplicity.

Lemma 13.3 Let Z |Σ |R |M ` spillk s ... c : X and !Σ \ Z ` liveI s : X and let
s be renamed apart and let all variables in s be in VR. If

⋃
Z ∪ R ∪M ⊆ VR then

there is a liveness annotation X′ such that !Σ \ Z ` liveI (doSpill Z Σ s c) : X′.

Proof. By induction on spillks; mostly simple but tedious set constraints. �

Lemma 13.4 Let Z |Σ |R |M ` spillk s ... c : X and !Σ \ Z ` liveI s : X
and let s be renamed apart and let all variables in s be in VR and |R| ≤ k and⋃
Z ∪ R ∪M ⊆ VR. Let !Σ \ Z ` liveI (doSpill Z Σ s c) : X′ be the liveness

derivation from the conclusion of Lemma 13.3. Then for every live set X in X′ the
bound |VR ∩X| ≤ k holds.

Proof. By induction on s. The proof uses a technical lemma about the way the live-
ness reconstruction deals with forward-propagation that was di�cult to �nd. �

Semantic Equivalence

In this subsection we show that the spilled program is semantically equivalent to
the original program. Semantic equivalence means trace-equivalence à la Comp-
Cert. As proof tool we use a co-inductively de�ned simulation relation. See our
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previous work [SSH15; SSH16] for details on simluation and proof technique. The
veri�cation is done with respect to the imperative semantics of IL. This allows for a
simple treatment of of the new variables that each spill and each load introduces. A
typical spill and reload looks as follows:

1 let x = 5 in
2 fun f () = x in
3

4 ...
5

6 f()

1 let x = 5 in
2 fun f () = x in
3 ...
4 let X = x in ←− spill
5 ...
6 let x = X in ←− load
7 f()

Note that in a semantics with binding, serious e�ort would be requires to introduce
additional function parameters after spilling and loading. In the above example, f
would need to take x as a parameter. We postpone the introduction of additional
parameters to a phase after spilling, where we switch to the functional semantics
again to do register allocation. Changing the semantics from imperative to func-
tional corresponds to SSA construction and is in line with practical implementations
of SSA-based register allocation [BH09] that break the SSA invariant during spilling,
and then perform some form of SSA (re-)construction.
We need the following function to replicate argument values for arguments that are
passed in both register and spill slot positions.

exarg (R,M) nil = nil

exarg (R,M) (v1, v) =
{
v1, v1, exarg (R,M)x if z ∈ R ∩M
v1, exarg (R,M)x otherwise

De�nition 13.5 We de�ne the proof relation Pspill where

A := setV × setV × listV
Param (R,M, x) y y′ := y = x ∧ y′ = exparm (R,M)x

Arg V V ′ (R,M, x) v v′ := V =R\x V
′ ∧ V =M\x (λx.V ′(slot x))

∧ |x| = |v| ∧ V ′ de�ned onR \ x ∪ slot (M \ x)
∧ v′ = exarg v x (R,M)

Idx _ f f ′ := f = f ′

Lemma 13.6 Let s be a program where all variables are renamed apart and in VR,
and c be the corresponding spilling annotation. Let Z |Σ |R |M ` spillk s ... c : X
and !Σ\Z ` liveI s : X and V =R V

′ and V =M (λx.V ′(slot x)). If V ′ is de�ned
on R ∪ slot M and R ∪M ⊆ VR and L >∼r L′ :Pspill zip Σ ζ then (L, V, s)I

>∼r
(L′, V ′, doSpill Z Σ s c)I.
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13.3.4 Case Study: Verified Spilling Algorithms

A spilling algorithm generates a valid spilling annotation from a program with sound
liveness annotation. The following algorithms are implemented in Coq and veri�ed
using the correctness predicate. The compactness of the correctness proofs shows
how e�ectively our spilling framework reduces the correctness proof size for spilling
algorithms.

SimpleSpill

The naive spilling algorithm simpleSpill loads the required values before each state-
ment, without considering that the value might still be available in a register. After
a variable is assigned, the algorithm immediatelly spills the variable. This is a very
simple algorithm, and it corresponds to the spilling strategy used in the very �rst
version of CompCert [Ler09a].

Theorem 13.7 Let !Σ \ Z ` liveI s : X and let s be renamed apart and let all
variables in s be in VR and let every expression in s contain at most k di�erent
variables. If every live set X in s is bounded by R ∪M and the �rst component in
Σf is empty for every f then Z |Σ |R |M ` spillk s ... (simpleSpill RsX) : X.

Proof. By induction on s in less than 100 lines. �

SplitSpill

The spilling algorithm splitSpill follows three key ideas: Variables are loaded as late
as possible, but in contrast to simpleSpill, only values not already available in reg-
isters. If a register must be freed for a reload, the algorithm lets an oracle choose
the variable to be spilled from the list of variables live and currently in a register.
The correctness requirement for the oracle is trivial. The oracle enables live range
splitting based on an external heuristic, similar to the approach of Braun [BH09]. In
contrast to Braun’s algorithm, splitSpill cannot hoist reloads from their uses.

Theorem 13.8 Let !Σ\Z ` liveI s : X and let s be renamed apart and let all vari-
ables in s be in VR and let every expression in s contain at most k di�erent variables.
If every live setX in s is bounded byR∪M and for every f such that (Rf ,Mf ) = Σf

we have |Rf | ≤ k then Σ |Z |R |M ` spillk s ... (splitSpill k Z (!Σ\Z)RM sX) :
X.

Proof. By induction on s in less than 500 lines. �
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Inj-Op
ρ� X ρ ` inj s

ρ ` inj letx = η in s : X

Inj-Cond
ρ� X ρ ` inj s ρ ` inj t

ρ ` inj ifxthen selse t : X

Inj-Val
ρ� X

ρ ` inj e : X

Inj-App
ρ� X

ρ ` inj f y : X

Inj-Fun
ρ� X ρ ` inj s ρ ` inj t

ρ ` inj fun f x = s in t : X

Figure 13.3: Local Injectivity. ρ : V → V is the register assignment, s is a program,
andX is a set of live variables. We use the notational convention described in §4.8.2.

13.4 Register Assignment

We present an algorithm that establishes coherence while preserving IL/F semantics
and improves over the naive approach outlined in §10.4.1 by using no more di�erent
names than the size of the maximal live set in the program. This algorithm cor-
responds to the assignment phase of SSA-based register allocation [HGG06]. The
algorithm requires a renamed-apart program as input to ensure that every consis-
tent renaming can be expressed as a function from V → V . We proceed in two
steps:

1 We de�ne the notion of local injectivity for a function ρ : V → V relative to
the liveness information for an IL program s. We show that renaming s with a
locally injective ρ yields an α-equivalent and coherent program ρ s.

2 We give an algorithm rassign and show that it constructs a locally injective ρ that
uses the minimal number of di�erent names.

13.4.1 Local Injectivity

We use the following notation for injectivity on X :

f � X :↔ ∀x y ∈ X, f x = f y → x = y

We de�ne local injectivity judgment ρ ` inj s : X inductively according to the rules
in Figure 13.3, where ρ : V → V is a register assignment, s is a program, and X
is liveness annotation. The rules of the judgment in Figure 13.3 and require ρ to be
injective on every live set X annotating any subterm.
Let VB(s) be the set of variables that occur in a binding position in s, and fv s be the
set of free variables of s. For our theorems, several properties are required:
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(1) A variable in VB(s) must not occur in a set of globals in ·Λ. We de�ne ·Λ ⊆ U :
↔ ∀f ∈ dom ·Λ, ·Λ f ⊆ U .

(2) A variable in VB(s) must not occur in the annotation [s]. We write s ⊆ U if for
every subterm t of s it holds that every x ∈ [t] is either in U or bound at t in s.

For renamed-apart programs, these conditions ensure that the live set X in Inj-Fun
always contains the globals X1 of f (cf. Live-App).

Theorem 13.9 Let s be a renamed-apart program such that noUCisCalled s and such
that ·Λ ` liveI s : X and ·Λ ⊆ fv s and s ⊆ fv s. Then

ρ ` inj s : X → ρ (b ·Λc[s]) ` coh (ρ s) : (ρX)

Theorem 13.9 states that the renamed program ρ s is coherent under the assumptions
ρ (b ·Λc[s]) and ρX, i.e. the point-wise image under ρ.
Renaming with a locally injective renaming produces an α-equivalent program, and
hence preserves program equivalence:

Theorem 13.10 Let s be a renamed-apart program such that noUCisCalled s and
Λ ` liveI s : X and Λ ⊆ fv s and s ⊆ fv s. Let ρ, d : V → V such that ρ is the
inverse of d on fv s. Then ρ ` inj s : X → ρ, d ` ρ s ∼α s

The formal de�nition of α-equivalence can be found in the Coq development, to-
gether with a soundness proof and a formal treatment of renaming, renaming apart,
and a formal de�nition of being renamed apart.

13.4.2 A Simple SSA-based Register Assignment Algorithm for IL

The algorithm rassign is parametrized by a function fresh : setV → V of which
we require freshX 6∈ X for all �nite sets of variables X . Based on fresh, we de�ne
a function freshlistX n that yields a list of n pairwise-distinct variables such that
(freshlistX n) ∩X = ∅. SSA algorithm must process the program in an order com-
patible with the dominance order to work [HGG06]. In our case it su�ces to simply
recurse on s as follows:

rassign ρ (letx = η in s) = rassign (ρ[x 7→ y]) s
where y = fresh (ρ([s] \ {x}))

rassign ρ (if ethen selse t) = rassign (rassign ρ s) t
rassign ρ (e) = ρ
rassign ρ (f e) = ρ
rassign ρ (fun f x = s in t) = rassign (rassign (ρ[x 7→ y]) s) t

where y = freshlist (ρ([s] \ x)) |x|
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We prove in Theorem 13.11 that the algorithm is correct for any choice of fresh and
freshlist , as long as they satisfy the speci�cations above.

Theorem 13.11 Let s be renamed-apart such that noUCisCalled s and Λ ` liveI s :
X and Λ ⊆ fv s and s ⊆ fv s. Let ρ be injective on [X]. Then: rassign ρ s ` inj s : X.

Our implementation of fresh implements the heuristic of simply choosing the small-
est unused variable. Corollary 13.13 shows that for this choice of fresh, the largest
live set determines the number of required names. We use S(k) to denote the set of
the k smallest variables, and VO(s) to denote the set of variables occurring (free or
in a binding position) in s.

Theorem 13.12 Let freshX always yield a variable less or equal to |X|. Let s be
renamed-apart and Λ ` liveF s : X and Λ ⊆ fv s and s ⊆ fv s and ρ� [X]. Let k be
the size of the largest set of live variables in s, and rassign ρ s = ρ′. If ρ′[X] ⊆ S(k),
then VO(s) ⊆ S(k).

Proof. By induction on s. �

For LVC, we need Theorem 13.12 to hold for imperative liveness information. We
get this as corollary using results about the absence of unreachable code §11.5, and
the fact that unreachable code was eliminated before register allocation.

Corollary 13.13 Let freshX always yield a variable less or equal to |X|. Let s be
renamed-apart such that noUCisCalled s and Λ ` liveI s : X and Λ ⊆ fv s and
s ⊆ fv s and ρ� [X]. Let k be the size of the largest set of live variables in s, and
rassign ρ s = ρ′. If ρ′[X] ⊆ S(k), then VO(s) ⊆ S(k).

Proof. From Theorem 13.12 with Theorem 11.8. �

Theorem 13.12 provides an opportunity for translation validation with repair: The
fresh function has some leeway to choose which variable to use as a register, as long
as the variable is small enough. Hence, an unveri�ed function could be used instead
of fresh to choose a candidate variable, which is accepted if it is small enough and not
currently in use; otherwise the default implementation of fresh currently included
in LVC can be used to obtain a safe choice.

13.5 Argument Elimination and Lowering to Parallel Moves

In this section we informally discuss the elimination of arguments on IL/I to paral-
lel moves, and the lowering of the parallel moves to sequences of assignments. We
implement a transformation that performs both steps at once and relies on Comp-
Cert’s component [RSL08] for lowering parallel moves to sequences of assignments.
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We modify the approach such that slot-to-slot assignments, which register allocation
might introduce, are lowered to loads and stores.

13.5.1 Parameter Passing as Parallel Moves

The �rst important intuition is that argument passing in IL/I e�ectively constitutes a
parallel move. Consider a function f with formal parameters x and the correspond-
ing application fy. Assuming Lf = (x, s), executing the application in IL/I results
in the following reduction step:

(L, V, f e) −→F (Lf , V [x 7→ V y], s)

The environment V [x 7→ V y] could have equivalently been obtained from V by ex-
ecuting the parallel moves x← y. We can hence implement IL/I function application
parallel moves plus a function application without arguments.

13.5.2 Lowering Parallel Moves to Assignments

CompCert’s component [RSL08] for implementing parallel moves requires a tem-
porary register to break cyclic dependencies in the parallel moves. The use of a
temporary can in general not be avoided, if one does not assume the availability an
instruction or an instruction sequence that realizes a swap of two registers.

Example 13.14 To lower the parallel moves X,Y, r ← Y, r,X to a sequence of
assignments, a temporary registert 6∈ {r,X, Y } is required:

t := X; X := Y ; Y := r; r := t

Furthermore, as both sides of the parallel moves may contain slot variables as per
our spilling pass, the resulting sequence of assignments may contain slot to slot as-
signments, as also show in Example 13.14, where the slot-to-slot assignmentX := Y
appears. Target architectures cannot be assumed to have instructions for memory to
memory moves, so slot-to-slot moves must be lowered into two assignments which
use a temporary register. Our current approach is to use another register r and im-
plement a slot-to-slot move X := Y with two assignments r := Y and X := r.

Example 13.15 To lower the parallel moves r,X, Y ← X,Y, r to a sequence of
assignments without slot-to-slot moves, two temporaries u, t 6∈ {r,X, Y } are re-
quired, of which at least one is a register. We assuming t, u are both registers, the
resulting sequence of assignments is

t := X; u := Y ; X := u; Y := r; r := t

Assuming u is a register, and T is a slot, the resulting sequence of assignments is

u := X; T := u; u := Y ; X := u; Y := r; r := T
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We take the following approach to implement the parallel moves x← y:

1 We reserve two unused temporary slots Tpm and Tr such that x, y 6∈ x ∪ y.

2 We obtain a temporary register as follows:

a If there is a register r that is not live before the parallel move, and r 6∈ x,
then we use CompCert’s component with Tpm as temporary to obtain a se-
quence of assignments, from which we eliminate slot-to-slot assignments as
described above using r as temporary.

b If there is a register r that is not live before the parallel move, but r ∈ x, we
run CompCert’s component with Tpm as temporary on the parallel move

x[r 7→ Tr]← y

that is, the parallel move where r has been replaced by the temporary Tr.
Note that since r is not live, r 6∈ y, which means that r is not read. We
implement slot-to-slot assignments in the result using the temporary r, and
append an additional assignment r := Tr at the end.

c If there is no register r that is not live before the parallel move, we run Comp-
Cert’s component with Tpm as temporary on the parallel move

x[r 7→ Tr]← y[r 7→ Tr]

that is, the parallel move where r has been replaced by the temporary Tr.
We implement slot-to-slot assignments in the result using the temporary r,
prepend an additional assignment Tr := r at the beginning, and append an
additional assignment r := Tr at the end.

Note that we must distinguish between case b and c , as the prepended assignment
Tr := r in case c gets stuck if r is not de�ned, which might, in general, be true in
case b .
The informal description we gave here is realized in Coq and veri�ed.

Theorem 13.16 Lowering of parallel moves as described informally here is correct.

Note that the proof of Theorem 13.16 requires function parameters to be duplicate
free. This stems from a slight mismatch in the semantics of parallel moves and IL’s
parameter passing. Parameter passing is speci�ed as a two phase process, where
�rst all arguments are evaluated to values, and then the values are assigned to the
parameters from right to left, i.e. if a variable is appears twice in on the left-hand side,
the value of the earliest occurrence “wins”. In contrast, the speci�cation of parallel
moves from CompCert does not give semantics to a parallel assignment where a
variable appears twice on the right-hand side.
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13.5.3 On Optimality and Possible Improvements

While the solution we chose is not optimal with respect to the number of assign-
ments and the number of temporaries used in some cases, Example 13.15 shows that
there are cases which require two temporaries. CompCert’s component for parallel
moves also does not produce optimal code in all cases. Its authors give an example
in the conclusion of their paper [RSL08]. Optimal approaches are documented in
literature [May89], but are not veri�ed yet.
The particular problem that arises in LVC, in contrast to the problem CompCert
needs to solve, also needs handling of slot-to-slot moves. We would be interested
in an algorithm that lowers parallel moves that may contain slot-to-slot moves in
such a way that the resulting sequence of assignments does not contain slot-to-slot
assignments, and uses as few as possible temporary registers if no registers are avail-
able. Also, we would like to allow the lowering algorithm to deal with constants as
well, i.e. on the right-hand sides of the initial parallel move certain very simple
expressions should be allowed.
As discussed earlier, an algorithm for lowering parallel moves could handle dupli-
cate occurrences of the same variable on the left hand side by, for example, only
considering the �rst assignment to the variable and disregarding the others.
Furthermore, as the implementation of parallel moves is performance critical sim-
ply because copies are very frequent in generated code, a good lowering algorithm
could produce an order that allows the processor to dispatch several assignments to
di�erent functional units of the processor in parallel. This can be achieved by simply
avoiding dependencies between consecutive assignments whenever possible.
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14 Value Optimizations

In this section, we devise a simple program logic for IL especially tailored towards the
veri�cation of value optimizations. We call the logic value optimization logic, or vopt
for short. The statements of the logic express equivalence of two programs. The logic
has syntactic proofs for these statements, which do not rely on the IL’s small step
semantics but only on the evaluation semantics of IL’s expressions. The �rst main
result is the soundness of the logic, which shows that whenever a statement that
relates two programs is provable in the logic, then the two programs are equivalent
with respect to IL semantic equivalence.
The main motivation for the logic is the observation that many SSA optimizations
simply replace an expression e with another expression e′. Sparse conditional con-
stant propagation [WZ91a], for example, replaces variables that are known to be
constant with the respective value. Usual formulations of SSA optimizations are
also concerned with the removal of de�nitions that become unused, but removal
can delegated to DVE/UCE, which we discussed in §9.3 and §11.4. Ignoring the code
removal part, the transformation a typical SSA optimization performs is to replace
expressions by other expressions. We now preset a program logic that abstracts this
principle through a notion of approximation v and ≡ between expressions. In the
logic, it is sound to replace an expressions e with an expressions e′ if e v e′, that is,
if whenever e′ yields a value, then e yields the same value. The main advantage of
using the logic over a direct simulation proof is that the logic deals with the correct-
ness argument for function de�nitions once and for all in the soundness lemma for
the logic.
We implemented the logic with a deep embedding, because our initial goal was to
automate the veri�cation of optimizations with the help of an SMT solver. In joint
work with Heiko Becker, we showed that the notions of approximationv and≡ are
decidable with the help of an SMT solver. Unfortunately, we did not have time to
�nish integration of the two parts, so at the moment LVC does not o�er SMT-based
translation validation.
As case studies, we use the logic to verify two value optimizations, namely copy
propagation and sparse conditional constant propagation [WZ91a]. The veri�cation
of these optimiztions consists of devising a procedure that constructs a proof of the
appropriate equivalence statement in the logic.
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14.1 The Value Optimization Logic

The program logic is based on assertions γ over IL expressions e of the form

γ : Γ ::= e ≡ e | e v e | ⊥ | > | γ ∧ γ

We say a variable environment E models an assertion γ if the judgment E |= γ
holds, which is de�ned as follows:

E |= e ≡ e′ :↔ JEK e = JEK e′ ∧ JEK e 6= ⊥
E |= e v e′ :↔ JEK e v JEK e′

E |= ⊥ :↔ ⊥
E |= > :↔ >

E |= γ ∧ γ′ :↔ E |= γ ∧ E |= γ′

The de�nition of equality on the assertions requires de�nedness: Unde�ned values
are not equal to themselves, and assertion equality is not re�exive. However, this is
an advantage, as we can require an expression e to be de�ned by asserting e ≡ e.
The de�nition of assertion approximation v, however, permits the left assertion to
be unde�ned. This allows value optmizations to resolve underspeci�cation: If the
left side is unde�ned, any expression satis�es the assertion.
Note that the formulas γ we de�ne are essentially sets of assertions, as we only allow
conjunction.
We de�ne the semantic notions of implication and validity for assertions:

γ ⇒ γ′ :↔ ∀E, E |= γ → E |= γ′ implication
|= γ :↔ ∀E, E |= γ validity

14.1.1 Substitutivity

The main ingredient for the soundness proof of the logic are the substitution lemmas
in this section. The following lemmas state that we can replace the variables in an
expression with either a value, or an expression that evaluates to that value.

Lemma 14.1 ‚ Substution for Expressions

Je1K (E[x 7→ Je2KE]) = Je1[x 7→ e2]KE.

Proof. Induction on e1. �

Lemma 14.2 ‚ Substitution for Assertions

E |= γ[x 7→ e] ↔ E[x 7→ JeKE] |= γ.
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The Value Optimization Logic ‚ 14.1

Proof. With Lemma 14.1 by induction on γ. �

We de�ne the free variables fv γ of an assertion γ as the union of the free variables
of the contained expressions.

Lemma 14.3 ‚ Invariance under Agreement

E =fv γ E
′ → E |= γ ↔ E′ |= γ.

14.1.2 Inductive Predicate for ValueOpt

We de�ne a judgment Z |H |Γ ` vopt s / s′, which will serve to assert that s and s′
are equivalent. The judgment does not allow the program s′ to di�er much from s:
Basically, s′ must be obtained from s by replacing any number of expressions e in s
with expression e′ such that whenever e is evaluated to a value during execution, e′
yields the same value. To statically ensure this is the case, the judgment maintains
an assertion γ that records about the variable bindings. Whenever an expression is
replaced, the judgment requires that γ ⇒ e v e′. To simplify the handling of vari-
able names, we will assume all programs s to be renamed apart. The rules de�ning
the judgment are given in Figure 14.1.

Lemma 14.4 ‚ Monotonicity of vopt

Let s be a renamed apart program. If the judgment Z |H | γ ` vopt s / s′ holds and
γ′ ⇒ γ then Z |H | γ′ ` vopt s / s′.

14.1.3 Soundness of the logic

We are now concerned with the soundness proof for the logic. That is, we want to
show that ifZ |H |Γ ` vopt s / s′ holds, then s′ implements s. We use the inductive
method and start by de�ning the proof relation Pvopt.

De�nition 14.5 We de�ne the proof relation Pvopt where

A := listV × Γ
Param (y, γf )xx′ := y = x ∧ x = x′

Arg E E′ (y, γf ) v v′ := |y| = |v| ∧ v = v′∧
∃γ e V, e ≡ e ∧ γ ⇒ γf [y 7→ e]∧
V |= γ ∧ JeKV = v ∧ E =fv γf\y V

Idx a f f ′ := f = f ′

The parameter relation and the index relation encode that function parameters and
names cannot be changed. Recall that the argument relation encodes what must
hold at a call site. Here, a function can be applied in an environment V that satis�es
an assertion γ with argument expressions e if e evaluates, V agrees with the closure
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14 ‚ Value Optimizations

VOpt-Let
γ ⇒ e v e′ Z |H | γ ∧ x ≡ e ` vopt s / s′

Z |H | γ ` vopt letx = ein s /letx = e′ in s′

VOpt-If
γ ⇒ e v e′

Z |H | γ ∧ ?e ≡ true ` vopt s / s′ Z |H | γ ∧ ?e ≡ false ` vopt s / s′

Z |H | γ ` vopt if ethen selse t /if e′ then s′ else t′

VOpt-App
γ ⇒ e v e′ γ ∧ e ≡ e⇒ Hf [Zf 7→ e′]

Z |H | γ ` vopt f e / f e′

VOpt-Return
γ ⇒ e v e′

Z |H | γ ` vopt e / e′

VOpt-Extern
γ ⇒ e v e′ Z |H | γ ∧ x ≡ x ` vopt s / s′

Z |H | γ ` vopt let x = f e in s /let x = f e′ in s′

VOpt-Fun
∀i, fv (γi) in scope

∀i ∈ [1, n], Z | γ;H | γ′ ∧ γi ` vopt si / s
′
i Z |H | γ′ ` vopt t / t′

Z |H | γ′ ` vopt fun f x = s in t /fun f x = s′ in t′

VOpt-Unsat
γ ⇒ ⊥

Z |H | γ ` vopt s / s′

Figure 14.1: De�ning equations of the value optimization logic.

environment on the free variables of the closure assertion γf without the function
parameters. Further the assertion that the argument expressions evaluate together
with the assertion γ must imply that the closure assertion holds with the argument
expressions substituted in.
We need another de�nition to record an invariant about closures. We say the closure
invariant holds for L, V , H and s if for all f we have that fv Hf is disjoint from
variables bound in s, and for all Lf = (E, x, t) we have that E =fv Hf\x V .

Theorem 14.6 ‚ Soundness of VOpt

If V |= γ and Z |H | γ ` vopt s / s′ and s is renamed-apart and and fv (γ) are
disjoint from the bound vars of s, and closure invariant holds for L, V ,H and s then

∀r, L ≈sim
r L′ :Pvopt Z,H → (L, V, s)F ≈sim

r (L′, V, s′)F
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Proof. The proof is by induction on the derivation of Z |H | γ ` vopt s / s′. Note
that γ is still satis�ed in updated environments that arise in the proof, because the
program is renamed apart. It is clear that we can satisfy the argument relation at
application, because of the rule VOpt-App. The closure invariant holds obviously
for new closures. �

In the bigger picture, Theorem 14.6 establishes the value optimization logic as an
abstraction between the correctness proofs of transformations and the technical def-
initions of bisimilarity. We think such an abstraction is desirable given the fragility
and technicality of coinductive proofs in Coq in general, and the likelyhood of the
existence of a di�erent and better semantic foundation with better properties. Once
such a semantic foundation is available, the migration cost is mainly in reproving
an apropriate version of Theorem 14.6, but the correctness proofs of the transforma-
tions building on the value optimization logic remain the same.

14.2 Copy Propagation

In this section we verify a simple optimization with the value optmization logic as
a case study. The optimization is called copy propagation, and its ultimate goal is to
remove let bindings of the form letx = y in s where both x and y are variables.
To achieve this, copy propagation replaces x with y in s, but keeps the let binding.
A DVE post-pass can then take care of eliminating now unused binding.
We de�ne copy propagation with a simple recursive algorithm. Note that this form of
copy propagation cannot detect parameters that are copies of other variables, such
as in the following example, where a more agressive version of copy propagation
would eliminate the parameter x.

1 let y = z
2 fun f x = x
3 in if z then f y
4 else f y

1

2 fun f x = x
3 in if z then f z
4 else f z

The implementation of copy propagation is given in Figure 14.2.

14.2.1 Correctness

We show correctness of copy propagation by constructing a derivation of

Z |H | γ ` vopt s / cp % s

for an appropriate assertion γ. The assertion γ must encode the invariant that if
% x = y and x is de�ned, then y has the same value. This invariant can be encoded

153



14 ‚ Value Optimizations

cp % (letx = y in s) = cp %[x 7→ %y] s
cp % (letx = η in s) = letx = %η in cp %[x 7→ x] s

cp % (if ethen selse t) = if %ethen cp % selse cp % t

cp % (f e) = f %e

cp % (e) = %e

cp % (fun f x = s in t) = fun f x = cp %[x 7→ x] s in cp % t

Figure 14.2: Implementation of Copy Propagation.

as
γ =

∧
{x v %x | x ∈ fv s}

Showing correctness of cp is fairly simple and uses only trivial properties of the
assertion semantics. In the following, % e is the expression e where all variables in e
have been replaced according to %. The main lemma is the following property, which
shows that it is sound to replace variables in an expression.

Lemma 14.7 If fv e ⊆ D then
∧
{x v %x | x ∈ D} ⇒ e v %e.

Proof. Induction on e. �

Let >̂ be an environment that maps every function name to the assertion >.

Theorem 14.8 Let s be a renamed apart program, andD be a set containing at least
the free variables of s and disjoint from any variable bound in s. LetZ be a parameter
environment for s. If %D ⊆ D then Z | >̂ |

∧
{x v %x | x ∈ D} ` vopt s / cp % s.

Proof. By size-induction on swith Lemma 14.7. We only show the two let-cases. For
the �rst we have to show

Z | >̂ |
∧
{x v %x | x ∈ D} ` vopt letx = y in s /letx = y in cp % [x 7→ %y]s

We apply VOpt-Let and have to show its premises:
‚ The �rst premise requires us to show that under the current assumptions y can

be replaced by y on the right-hand side of the assignment:∧
{x v %x | x ∈ D} ⇒ y v y

This trivially holds because v is re�exive.
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‚ The second premise requires us to show

Z | >̂ |
∧
{x v %x | x ∈ D} ∧ x ≡ y ` vopt s / cp % [x 7→ y]s

We apply Lemma 14.4 and the inductive hypothesis with {x;D}. We have to show
– %[x 7→ %y]{x;D} ⊆ {x;D}, which holds because we have %D ⊆ D and y ∈ D

(because y is free) and from this %y ∈ D.
– For the use of monotonicity, we have to show

x ≡ y ∧
∧
{x v %x | x ∈ D} ⇒

∧
{x v %[x 7→ %y]x | x ∈ {x;D}}

We have
∧
{x v %[x 7→ %y]x | x ∈ {x;D}} = x v %y ∧

∧
{x v %x | x ∈ D}.

It su�ces to verify that x ≡ y ∧ y v %y ⇒ x v %y.
The second let-case follows similarly with the use of Lemma 14.7. �

The use of vopt for the veri�cation of copy propagation has the advantage that the
semantics of IL does not appear in the proof, beyond, of course, the semantics of
expression evaluation, which is encapsulated in Lemma 14.7. The proof is factorized
along two independent axes. First, copy propagation leaves in the now unused bind-
ings, and leaves the cleanup to a DVE pass. In particular, the correctness argument
for cp % (letx = y in s) does not need the invariant that x does not appear free
in cp % [x 7→ %y]s, even though this invariant holds. Second, the use of the value
optimization logic allows us to focus on the expression replacement.

14.3 Sparse Conditional Constant Propagation

As a second case study, we verify a more elaborate optimizations using the value
optimization logic. Sparse Conditional Constant Propagation (SCCP) [WZ91a] is a
seminal SSA-based optimization that remains very relevant in modern compilers.
The optimization combines two types of analysis information: information about
constantness of variables and reachability information. The two types of informa-
tion interact with each other at conditionals: information about constant variables
may be used to make reachability information more precise at conditionals by pro-
viding the value of the condition. In turn, information about constants becomes
more precise because assignments in unreachable branches are not factored in.

14.3.1 Static Evaluation of Expressions

A key ingredient of SCCP is a static evaluation function ceval that evaluates expres-
sions with respect to an environment that maps every variable to an element of the
lattice V>⊥ depicted in Figure 14.3. The evaluation function

ceval : (V → V>⊥)→ Exp→ V>⊥
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14 ‚ Value Optimizations

>
c1 c2 . . .

⊥

Figure 14.3: Lattice V>⊥ used as value domain in SCCP.

evaluates expressions as usual, but looks up the values of variables in an environment
κ : V → V>⊥. If evaluation looks up a variable x and obtains>, then the expression
evaluation also returns>. If evaluation looks up a variable x and obtains⊥, then the
expression evaluation also returns⊥. Otherwise, all variables map to constants, and
the value of the expression can be determined accordingly. We say an environment
E : V → V⊥ conforms to an abstract environment κ : V → V>⊥ if forall x, E x v
κx; here we implicitly life the co-domain V⊥ of E to V>⊥. We write E v κ if E
conforms to κ, alluding to the point-wise lifting that is taking place.

Lemma 14.9 If E v κ, then JEK e v cevalκ e.

14.3.2 Analysis

We specifying soundness for the analysis information with the inductive predicate
Z |K ` constκ s.

14.3.3 Transformation

The SCCP transformation does not need reachability information, but relies only
on the environment κ which maps variables to elements of V>⊥. We de�ne a func-
tion cprop that selects the replacement value for an expression. cprop descends re-
cursively through the expression and evaluates its subexpressions. If both subex-
pressions are constant, the result is computed and the corresponding constant is
returned. Otherwise, the same operation with the two resulting subexpressions is
returned.
The program tranformation proceeds as de�ned in Figure 14.5. Note that the trans-
formation in fact eliminates constant parameters, but leaves the parameters in the
program and relies on dead variable elimination to remove them in a later pass. This
simpli�es the correctness proof because we do not need an invariant that tracks the
removed variables. In particular, we do not have to show that none of the variables
that were removed are still needed.
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Sparse Conditional Constant Propagation ‚ 14.3

ConstProp-Let
b1 → cevalc e = cx Z |K ` constκ s

Z |K ` constκ letx = ein s

ConstProp-If
Z |K ` constκ s Z |K ` constκ t

Z |K ` constκ if ethen selse t

ConstProp-App
|Zf | = |e| b→ cevalc e v Cf

Z |K ` constκ f e{b}

VOpt-Return

Z |K ` constκ e

VOpt-Fun
∀i ∈ [1, n], x, Z | c x,K ` constκ si x, Z | c x,K ` constκ t

Z |K ` constκ fun f x = s{b} in t

Figure 14.4: De�ning rules of the soundness predicate for constant propagation.

copκ (letx = ein s) = letx = cpropκ ein copκ s

copκ (let x = f e in s) = let x = f (cpropκ e) in copκ s

copκ (if ethen selse t) = if cpropκ ethen copκ selse copκ t

copκ (f e) = f (cpropκ e)
copκ (e) = cpropκ e

copκ (fun f x = s in t) = fun f x = copκ s in copκ t

Figure 14.5: Implementation of Constant Propagation.
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14.3.4 Correctness

To show the transformation cop sound, we show an appropriate statement in the
value optimization logic. The semantic correctness of SCCP then follows follows
from the soundness of the program logic (Theorem 14.6). In this example, we see
again the advantage of this approach: The proof will not require di�cult invariants,
even though the SCCP also detects constant function arguments.

De�nition 14.10 We de�ne the interpretation

·̂ : (V → V>⊥)→ setV → set Γ

of an abstract environment κ as follows:

κ̂X =
∧
{x ≡ c | x ∈ X ∧ κx = c}

∧
∧
{⊥ | x ∈ X ∧ κx = ⊥}

The following lemma connects abstract evaluation of expressions ceval with state-
ments in the logic, which is useful for proving the conditional case in the correctness
theorem for SCCP.

Lemma 14.11 Let κ̂ (fv e) ⇒ γ. Then v v cevalκ e → Z |H | e ≡ v ∧ γ `
vopt s / s′ implies Z |H | e ≡ v ∧ γ ` vopt s / s′.

Theorem 14.12 Let s be a renamed apart program, and D be a set containing at
least the free variables of s and disjoint from any variable bound in s. Let Z be a
parameter environment for s. Then:

Z |κZ ` constκ s → Z | κ̂ Z | κ̂D ` vopt s / copκ s

Proof. Induction on the derivation of Z |κZ ` constκ s. �
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15 Static Analysis

This section describes the static analysis framework we build for LVC. The frame-
work has several building blocks. The basis is a type-class based library for partial
orders and lattices (§3.9, §3.10) and a solver for �xed-point iteration for monotone
functions on partial orders with �nite height (§15.2). We use these building blocks
to construct a general frameworks for forward data�ow analyses (§15.3), backward
data�ow analyses (§15.5), and a framework specialized to SSA-based data�ow anal-
yses (§15.7). The ideas uses here are not new; data-�ow analyzers have been con-
structed in Coq before [Cac+05; Pic08; Jou+15].

15.1 Termination
De�nition 15.1 ‚ Termination

Let X be a type and R : X → X → P be a relation. We de�ne the predicate
ter inductively:

∀y,R x y → terR y

terR x

De�nition 15.2 Let X be a type and R : X → X → P be a relation. R is termi-
nating if for all x : X it holds terR x. We say R is well-founded if its inverse R−1 is
terminating.

The following lemmas establish termination of @ for structures such as pairs, lists,
etc.

Lemma 15.3 Let X,Y be a preordered types and let the respective relations @ on
X and Y be terminating. Then @ on X × Y is also terminating.

Lemma 15.4 LetX be a preordered type and let the relation@ onX be terminating.
Then @ on listX is also terminating.

Lemma 15.5 The relation @ on B is terminating.
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15 ‚ Static Analysis

15.2 Finite Fixed-point Iteration

In this section we describe a �nite �xed-point iteration scheme based on the Kleene
�xed-point theorem.

De�nition 15.6 A �nite �xed-point iteration problem is a tuple (X, f, i) such that
X is a preordered type, f : X → X , and i : X such that

1 i v fi

2 @ is terminating

3 f is monotone

De�nition 15.7

Theorem 15.8 For every �nite �xed-point iteration problem (X, f, i) there is n ∈
N and x : X such that fni = x and fx = x. Furthermore, there is a monotone
function fix such that x = fix f i for all �nite �xed-point iteration problems.

Proof. It is clear the following de�nition of fix′ computes the limit of the Kleene
iteration of f .

fix′ f y =
{
y if fy v y
fix f (fy) otherwise

However, we must enhance the type of fix′ to make termination obvious. fix′ termi-
nates because every strict upward chain ofX is �nite by condition (3) of the iteration
problem. Formally, we can give fix the type

fix : ∀x : X,x v fx→ ter@ x→ Σ y : X,n : N, y = fni ∧ fy ≡ y

that recurs on the proof ter@ x and extracts to fix′. �

It is crucial to require f only to be monotone, but not expansive in the sense that
x v fx. We will use the �nite �xed-point iteration to compute data�ow analyses,
the transformers of which are monotone, but not expansive.
Although f is not expansive, monotonicity and the fact that the start value i satis�es
i v fi are enough to ensure that each intermediate step of the Kleene �xed-point
iteration lies on an upward chain.

Lemma 15.9 Let (X, f, i) be a �nite �xed-point iteration problem and n : N. Then:
fni v fn+1i.

Lemma 15.9 yields an induction principle for �xed-point iteration:
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A Framework for Forward Data Flow Analyses on IL ‚ 15.3

Lemma 15.10 Let (X, f, i) be a �nite �xed-point iteration problem and n : N and
let P : X → P be a property. To show P (fni) it su�ces to show the following:

‚ P i

‚ for all x such that P x and x v fx, it holds P (fx)

Proof. Induction on n and Lemma 15.9. �

15.3 A Framework for Forward Data Flow Analyses on IL

In general, the result of a data-�ow analysis on an IL program is a annotation of
the program that associates with every program point a value of some analysis do-
mainD. We require the type ofD to be a lower-bounded join-semi-lattice to ensure
we have a bottom element, a join operation, and a notion of less-than. We will ar-
range things such that the result of the data-�ow analysis can be computed by �nite
�xed-point iteration. Our framework provides a function fwd that monotonically
transforms the whole annotation for a program and is suitable for �nite �xed-point
annotation. The function fwd is parametric in the type of the analysis domainD and
local transformers.
The forward analysis function fwd maintains a parameter context ζ that holds the pa-
rameters each de�ned function. Additionally, it takes a program and a corresponding
annotation as arguments, and produces a new annotation and a list of annotations
(corresponding to analysis results for functions occurring free in the program) as
result. The function fwd propagates the value of the analysis domain D in a for-
ward fashion through the program, that is to say, in the direction of execution. In IL,
the direction of execution corresponds to a recursive traversal of the program struc-
ture. We hence implement a forward analysis fwd as a recursive traversal of the
program and its annotation. During traversal, fwd records new analysis information
to produce the new annotation. The information at applications is propagated up-
wards and accumulated (joined) at function de�nitions. This is the purpose of the
second return value of fwd: It is a context of analysis information that associates
an analysis value to every de�ned function, and ⊥ to functions that have not been
called. The only communication between iterations happens at function de�nitions:
All other annotations are overwritten with the new values (not joined). However,
at function de�nitions all information from appliations is accumulated (joined) and
subsequently recorded in the annotation. The next iteration uses this information as
initial abstract value for the recursive analysis of the corresponding function bodies.
The function fwd is designed to be reused for forward analyses in general. For this
porpose, the transformation is handled by a local transformer function t that is a
parameter of fwd. The function t gets a program s and a value of type D and is
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fwd ζ (letx = η in s) (X · a) =
let X ′ = t ζ (letx = η in s)X in
let a′, A = fwd ζ s (setTopAnn aX ′) in
(X · a′, A)

fwd ζ (if ethen s1 else s2) (X · a1, a2) =
let X ′1, X ′2 = t ζ (if ethen s1 else s2)X in
let a′1, A1 = fwd ζ s1 (setTopAnn a1X

′
1) in

let a′2, A2 = fwd ζ s2 (setTopAnn a2X
′
2) in

(X · a′1, a′2, A1 tA2)

fwd ζ (f e)X =
let X′ = t ζ (f e)X in
(X,⊥[f 7→ X ′])

fwd ζ eX = (X,⊥)

fwd ζ (fun f x = s in t) (X · a, b) =
let ζ ′ = x; ζ ′ in
let b′, B = fwd ζ ′ t (setTopAnn bX) in
let a′, A = fwdF ζ ′ s a in
let A′ = B t

⊔
A in

(X · setTopAnn a′A′, b′, drop |f |A′)

fwdF ζ s a = (a′, A′) such that
∀i, (a′i, A′i) = fwd ζ si ai

Figure 15.1: De�nition of the forward analysis framework.
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expected to transform the analysis value according to the top-most construction in
s. Additionally, fwd provides the transformer t with the current parameter con-
text ζ , which holds the parameter names of each de�ned function. For example,
t ζ (letx = η in s) d yields a value of type D which corresponds to the analysis
information before s, but after incorporating the e�ect of the variable de�nition. In
the Coq development we made the retrun type of t depend on the program to allow t
to the e�ect that tmust return a tuple of two analysis values at conditionals, one for
the consequence and one for the alternative. In the presentation of fwd in Figure 15.1
we omit types entirely, and give an essentially untyped version of the analysis func-
tion. The untyped version communicates the computational part clearly, and hides
the book-keeping in the dependent type structure.

15.3.1 Forward Analysis as Finite Iteration Problem

In this section we show that we the forward analysis problem can be cast as a �nite
�xed-point iteration problem. The �rst ingredient is the fact that fwd is monotone.

De�nition 15.11 We say a transformer t is monotone if d v d′ → t ζ s d v t ζ s d′.

Lemma 15.12 If the transformer t is monotone, then fwd is monotone in the sense
that d v d′ → fwd ζ s d v fwd ζ s d′.

The last ingredient we need to cast data-�ow analysis as a �nite �xed-point iteration
problem is the termination of the relation @ on the analysis domain. The analysis
domain must be chosen carefully to ensure this property. For example, in the case
of a liveness analysis the domain is a set of variables and@ is not terminating with-
out further assumptions. Changing the domain to sets of variables bounded by the
variables occuring in the program ensures that @ is terminating. This, however, re-
quires the transformer to stay inside the bound. The dependent type of fwd ensures
that such properties can be easily established: The type of the analysis domain may
depend on the program under analysis. The type for the transformer t is also de-
pendent. The dependent types can be used to encode, for example, the transformer
stays withing the variable bound for liveness analysis.

Theorem 15.13 Let D be a lower-bounded join-semi-lattice, and s be a program
and i : D such that i v fwd nil i, and let t be monotone in the sense of De�ni-
tion 15.11. Then (AnnD,λd.fst (fwdt nil s d), i) is a �nite �xed-point iteration prob-
lem.

15.4 Case Study: Reachability Analysis

An example for a forward analysis is reachability analysis. The domain of the reach-
ability analysis is simply the lattice of booleans, where true signi�es that a program
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point is reachable.
The transformer takes a program s and a boolean b. The transformer trch inspects the
top-level statement and must produce analysis information for the next statement:

trch ζ s b =
{

(β(JeK∅) 6= false ∧ b, β(JeK∅) 6= true ∧ b) if s is a conditional
b otherwise

For conditionals, the transformer evaluates the value of the condition in an empty
variable environment. Recall that the return type of the transformer depends on the
top-level statement, hence it is acceptable that trch returns a pair for conditionals.
The pair expresses that the consequence is potentially reachable if the condition does
not evaluate to false and b is true, which means that, s was reachable. Similarily,
the alternative is potentially reachable if the condition does not evaluate to true
and b is true. In all other cases the next statement is reachable if and only if s was
reachable.

De�nition 15.14 ‚ Reachability Analysis

We de�ne rch ζ s d := fst (fwd trch ζ s d).

Lemma 15.15 Let s be a program. Then

(AnnB, rch∅ s, setTopAnn (initAnn s false) true)

is a �nite �xed-point iteration problem.

Proof. From Theorem 15.13 with monotonicity of trch. �

Remark 15.16 The function trch is a good example for a naturally arising trans-
former that is monotone, but not expansive.

15.4.1 Soundness

We show that soundness of the reachability analysis follows from the �xed-point
property by induction on the program structure.

Theorem 15.17 ‚ Soundness

Let d : AnnB be an annotation for s and let ζ be a parameter context de�ning all
free labels in s. If fst (fwd trch ζ s r) ≡ d and furthermore snd (fwd trch ζ s r) v Λ
then Λ ` reach{S} {r} s.

Proof. By induction on s and inversion on fst (fwd trch ζ s r) ≡ r with properties of
the join operation. �
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Case Study: Reachability Analysis ‚ 15.4

Note that the soundness proof (Theorem 15.17) only needs the information that a
�xed-point is reached, but not that it is the smallest. This is the usual behavior for
a static analysis: All �xed-points are sound, the smallest �xed-point is just the one
with the most precise information. In the case of reachability, the analysis informa-
tion at the smallest �xed-point claims the least number of program points reachable.

15.4.2 Relative Completeness

We prove that the smallest �xed-point of the analysis is complete in the sense of
the correctness predicate for reachability from §11. While soundness of the analysis
required only the �xed-point property, we must establish completeness by showing
that the completeness property is an invariant throughout the �xed-point iteration.
The �rst important observation is that the initial value of the reachablility analysis
is complete:

Lemma 15.18 Let d : AnnB annotate s and let ζ be a parameter context de�ning
all free labels in s. Then Λ ` reach{C} {setTopAnn (initAnn s false) true} s.

Lemma 15.19 below shows that reachability analysis only claims functions live if
they are called in the subterm. This is an essential requirement for completeness.

Lemma 15.19 Let Λ ` reach{C} {r} s and b = snd (fwd trch ζ s (setTopAnn d a)).
If d v a and bi = true then isCalled s fi.

Lemma 15.20 below establishes completeness as an invariant of the program trans-
former fwd.

Lemma 15.20 Let r′ = fst (fwd trch ζ s (setTopAnn r b)) and let b, b′ : B such that
b v b′. If it holds that Λ ` reach{C} {r} s and we have r v setTopAnn r′ b′ then
Λ ` reach{C} {setTopAnn r′ b′} s.

Proof. By induction on Λ ` reach{C} {r} s with Lemma 15.19. The generalization
to setTopAnn r′ b′ in the conclusion is critical to handle the recursion in the function
de�nition case. �

Theorem 15.21 ‚ Relative Completeness

Let d : AnnB annotate s and let ζ be a parameter context de�ning all free labels in
s. Then

Λ ` reach{C} {fix(rch∅ s) (setTopAnn (initAnn s false) true)} s

Proof. By chain induction (Lemma 15.10). The base case is Lemma 15.18. The induc-
tive step is Lemma 15.20. �
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bwd ζ ∆ (letx = η in s) (d · a) =
let a′ = bwd ζ ∆ s a in
let d′ = t ζ ∆ (letx = η in s) [a′] in
(d′ · a′, A)

bwd ζ ∆ (if ethen s1 else s2) (d · a1, a2) =
let a′1 = bwd ζ ∆ s1 a1 in
let a′2 = bwd ζ ∆ s2 a2 in
let d = t ζ ∆ (if ethen s1 else s2) [a′1] [a′2] in
(d · a′1, a′2)

bwd ζ ∆ (f e) d = t ζ ∆ (f e) d

bwd ζ ∆ e d = t ζ ∆ e d

bwd ζ ∆ (fun f x = s in t) (d · a, b) =
let ζ ′ = x; ζ in
let ∆′ = [a]; ∆ in
let a′ = bwdF ζ ′∆′ s in
let ∆′′ = [a′]; ∆ in
let b′ = bwd ζ ′∆′′ t b in
(d′ · a′, b′)

bwdF ζ ∆ s = a′ such that
∀i, a′i = bwd ζ ∆ si ai

Figure 15.2: De�nition of the backward analysis framework.

15.5 A Framework for Backward Data Flow Analyses on IL

As previously in the forward analysis framework, the result of a backwards data�ow
analysis is an annotation of the program that associates with every program point a
value of some analysis domain, which we require to be a lower-bounded join-semi-
lattice. The result is obtained by �nite �xed-point analysis of a program transformer.
The backward analysis function bwd maintains a parameter context ζ that holds the
parameters of each de�ned function, and an analysis domain context ∆ that maps ev-
ery function to a value from the analysis domain. Additionally, bwd takes a program
and a corresponding annotation as arguments, and produces a new annotation as
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result. The function bwd �rst descends recursively through the program, and then
propagates the value of the analysis domain D in a backward fashion upwards in
the opposite direction of execution. In IL, the direction of execution corresponds to
a recursive traversal of the program structure, so bwd can simply return the current
analysis value. We hence implement a backward analysis program transformer as a
recursive traversal of the program and its annotation. During traversal, bwd records
new analysis information to produce the new annotation. The information at ap-
plications is taken from the parameter ∆. At function de�nitions, ∆ is extended
with values for the newly de�ned functions taken out of the annotations for the
corresponding function bodies. As in the forward analysis, the only communication
between program-level iterations happens at function de�nitions: All other annota-
tions are overwritten with the new values (not joined).
The function bwd is designed to be reused for backward analyses in general. For this
porpose, the local transformation is handled by a parameter function t that trans-
forms a value of type D according to the top-most construction in a given IL pro-
gram. The analysis provides the transformer with the current contexts ζ and ∆ that
holds the parameters and the current analysis value, respectively, for each de�ned
function. Additionally, the transformer gets the current term s and the analysis value
that corresponds to the program “after” the top-level statement in s, and must in turn
produce the locally transformed analysis value for the program point before s. For
example, bwd might evaluate t ζ ∆ (letx = η in s) d, where d is the analysis value
at s, to obtain the analysis value for letx = η in s. In the Coq development we
made the type of t depend on the program to allow t to take two arguments in case
of a conditional, that is one for the consequence and one for the alternative, to im-
prove analysis precision. In the presentation of bwd in Figure 15.1 we omit types
entirely, and give an essentially untyped version of the analysis function. The un-
typed version communicates the computational part clearly, and hides the intricate
dependent type structure required for book-keeping purposes.

15.5.1 Backward Analysis as Finite Iteration Problem

A backward data�ow analysis can be cast as a �nite �xed-point iteration problem.
The �rst ingredient is the fact that bwd is monotone.

De�nition 15.22 We say a transformer t is monotone if d v d′ → t ζ,∆ s d v
t ζ ∆ s d′.

Lemma 15.23 If the transformer t is monotone, then bwd is monotone in the sense
that d v d′ → ∆ v ∆′ → bwd ζ∆′ s d v bwd ζ ∆′ s d′.

As already discussed in the context of the forward analysis in §15.3.1, we use depen-
dent types for bwd to be able to use �nite-height lattices.
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Theorem 15.24 Let D be a lower-bounded join-semi-lattice, and s be a program
and i : D such that i v bwd∅∅ i, and let t be monotone in the sense of De�ni-
tion 15.22. Then (AnnD, bwdt∅∅ s, i) is a �nite �xed-point iteration problem.

15.6 Case Study: Liveness Analysis

The domain of a liveness analysis of a closed program s is the type of subsets of
the set of variables occuring in s, written {x : setV | x ⊆ VO s}. It is clear that
v := ⊆ on {x : setV | x ⊆ VO s} is terminating for any s. Liveness analysis relies
on the dependent type structure of fwd to maintain this type. The arising types are
involved and we omit them in this paper presentation.

15.6.1 Local Transformer and Program Transformer

The local transformer for liveness analysis is de�ned as follows:

tlive ζ ∆ (letx = ein s) d = d \ {x} ∪ if x ∈ d then fv (e) else ∅
tlive ζ ∆ (let x = f e in s) d = d \ {x} ∪ fv (e)

tlive ζ ∆ (if ethen s1 else s2) (d1, d2) =


d1 if β(JeK∅) = true
d2 if β(JeK∅) = false
d1 ∪ d2 otherwise

tlive ζ ∆ (f e) d =
⋃
{fv (ei) | (ζf )i ∈ ∆f}

tlive ζ ∆ e d = fv (e)
tlive ζ ∆ (fun f x = s in t) d = d

The local transformer gets the liveness information for the successor statements as
arguments, and has to return the liveness information before the statement. For let-
statements, x is removed from the live set and the free variables of the expression e
are only added if x is live in the continuation. The situation is similar for external
events, with the notable di�erence that free variables of arguments are always con-
sidered live. For conditionals, we check whether the condition evaluates statically
(i.e. is a constant expression), and then return the live information from the branch.
Otherwise, both branches are assumed reachable and the transformer returns the
union of the two live sets. For an application, the transformer puts the free vari-
ables of those argument expressions in the live set, if the corresponding parameter
is live. At return statements, the live set is the set of free variables of the expres-
sion. At function de�nitions, the the transformer just propagates the live set from
the continuation.

Lemma 15.25 tlive is monotone.
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De�nition 15.26 ‚ Liveness Analysis

We de�ne live ζ ∆ s d := bwd tlive ζ ∆ s d.

15.6.2 Liveness Analysis as Finite Fixed-Point Iteration Problem

Lemma 15.27 Let s be a program. Then

(Ann {x : setV | x ⊆ VO s}, live∅∅ s, initAnn s ∅)

is a �nite �xed-point iteration problem.

Proof. From Theorem 15.24 with monotonicity of tlive. �

15.6.3 Soundness

Theorem 15.28 Let s be a program and d : Ann {x : setV | x ⊆ VO s} be an
annotation for s. Let ζ be a parameter s-context and ζ be an analysis domain s-
context. If live ζ ∆ s d ≡ d then ζ |∆ ` tliveI s : d.

Proof. Induction on s. �

15.7 A Framwork for SSA-based Forward Analyses on IL

The third and last framework we developed is a framework supporting SSA-based
forward analyses. The main point of SSA-based program analyses is to keep the
asymptotic size of analysis information linear in the program size n. The key idea
is that the analysis domain should be a mapping from SSA variables to some per-
variable domain. Note that this approach saves a factor of n in analysis size. Liveness
analysis, which we discussed earlier, associates with every program point a element
from the analysis domain, which results in the size of analysis information growing
with n2.
Our framework for SSA-based program analyses requires the analysis domain to be
a mapping V → D, where D can be any lower-bounded join-semi-lattice. Addi-
tionally, the framework always performs a reachability analysis, and provides the
results to the analysis. Reachability information has constant space requirements
per program point (one boolean), and the overall analysis information size remains
linear in the program size.
The SSA-based framework is parameterized by two local transformers. One trans-
forms the variable domain of type V → D, which we call the local value transformer,
and the other transforms reachability information at conditionals and is called the
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fwdSSA ζ (letx = η in s) d (b · a) =
let d′ = d[x 7→ t b d η] in
let d′′, a′, A = fwdSSA ζ s d′ (setTopAnn a b) in
(d′′, b · a′, A)

fwdSSA ζ (if ethen s1 else s2) d (d · a1, a2) =
let b′1, b′2 = r b d e in
let d′, A1 = fwdSSA ζ s1 d (setTopAnn a1 b

′
1) in

let d′′, A2 = fwdSSA ζ s2 d
′ (setTopAnn a2 b

′
2) in

(d′′, b · a′1, a′2, A1 tA2)

fwdSSA ζ (f e) d b =
let d′ = d[ζf 7→ t b d e] in
(if b then d′ else d, b,⊥[f 7→ b])

fwdSSA ζ e d = (d, b,⊥)

fwdSSA ζ (fun f x = s in t) d (b · a, c) =
let ζ ′ = x; ζ ′ in
let d′, c′, B = fwdSSA ζ ′ t d (setTopAnn c b) in
let d′′, a′, A = fwdSSAF ζ ′ d′ s (joinTopAnn aB) in
(d′′, b · setTopAnn a′A, c′, drop |f |A)

fwdSSAF ζ Ad (s1, . . . , sn) (a1, . . . , an) =
let d′, a′1, B = fwdSSA ζ ′ s1 d a1 in
let d′′, (a′2, . . . , a′n), C = fwdSSAF ζ ′Ad′ (s2, . . . , sn) (a2, . . . , an) in
(d′′, (a′1, . . . , a′n), B t C)

fwdSSAF ζ Ad∅∅ = (d,∅, A)

Figure 15.3: De�nition of the SSA-based forward analysis framework.

local reachability transformer. In this way, value information and reachability infor-
mation can be combined to make the analysis more precise. In the next section, we
evaluate the framework with the analysis for sparse conditional constant propaga-
tion.
The key property of fwdSSA is that fwdSSA only changes certain variables in the
analysis mapping. This re�ects the SSA property.
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Lemma 15.29 Let d′, _, _ = fwdSSA ζ s d a. If x is a variable not de�ned in s then
d x v d′ x. If x is not de�ned in s and not in ζ , then also d′ x v d x.

15.7.1 SSA-based Forward Analysis as Finite Iteration Problem

In this section, we want to show that we can cast the forward analysis problem as
a �nite �xed-point iteration problem. The �rst ingredient is the fact that fwdSSA is
monotone.

De�nition 15.30 We say a transformer t is monotone if b v b′ → d v d′ →
t b d η v t b′ d′ η. Likewise, we say the transformer r is monotone if b v b′ → d v
d′ → r b d e v t b′ d′ e.

Lemma 15.31 If the transformers t and r are monotone, then fwdSSA is monotone
in the sense that d v d′ → a v a′ → fwdSSA ζ s d a v fwdSSA ζ s d′ a′.

Theorem 15.32 Let s be a program. LetD be a upper-bounded and lower-bounded
join-semi-lattice with �nite height. Let t be a monotone local value transformer, and
r be a monotone local reachability transfomer. Then

(AnnD,λ(d, a).fst (fwdSSAt,r nil nil s d a),⊥[fv (s) 7→ >])

is a �nite �xed-point iteration problem.

15.8 Case Study: SCCP Analysis

The analysis for sparse conditional constant propagation (SCCP) is de�ned in the
framework for SSA-based forward analyses. The value transformer for constant
propagation t look as follows:

t b d e = cevald e

t b d (α(e)) = >

For expressions e, we use the evaluation operation ceval for abstract values from
SCCP (§14.3.1). If the expression belongs to an external event, the transformer knows
nothing about the result value and returns ⊥.
The reachability transformer takes the constant propagation information into ac-
count. It evaluates the condition e abstractly, and then deems the consequence reach-
able if true v cevald e, and the alternative if false v cevald e.

r b d e = (true v cevald e, false v cevald e)
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15 ‚ Static Analysis

Theorem 15.33 Let s be renamed apart and let ζ be a parameter context for s, and
let ζ be disjoint from the variables de�ned in s, and let each parameter list in ζ be
unique. If fst (fwdSSAt,r ζ s d a) ≡ (d, a) then Z | (κZ) ` constκ s.
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16 Assembly

The translation to assembly is in our case the translation to CompCert’s “Linear”
intermediate language. The translation is straight-forward and we describe it in this
section. The main point is to show that it is indeed realistic to compile with IL, since
after register allocation and parallel move elimination, we are low-level enough to
compile into one of the last translation phases of CompCert. Verifying correctness
of the translation is also straight-forward, as was to be expected because the two
languages closely correspond as can be see in Figure 2.15.
The integration of the correctness proofs of LVC and CompCert, however, poses
di�culties, because CompCert’s equivalence is not compositional, which will be ad-
dressed by an upcoming paper []. In particular, we are missing the integration of our
correctness proof, which relates an IL/I program to the function body of a C func-
tion in CompCert’s linear, into the end-to-end correctness statement from Comp-
Cert. That means we can prove that the C function behaves like the IL program it is
generated from, but we have no statement about the whole translation unit.

16.1 Properties of the Translation

Verifying the correctness of the translation to CompCert poses several di�culties,
and we discuss the key problems here in detail.

16.1.1 System Calls

The �rst problem is that while our system calls are there mainly as a benchmark
for our semantic methods, CompCert implements actual system calls which require
calling conventions. At the moment, our register allocation phase does not support
register constrains which are required to correctly implement the calling convention.
For this reason, we do not verify system calls in the translation, but require that the
IL/I program contains no system calls. While this is a severe restriction in practice,
we do not expect any principal problems in extending our approach to system calls.
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16.1.2 Functions vs Translation Units

Another problem is related to CompCert’s correctness properties. At the moment,
LVC only supports compilation of one C-level function (that is, LVC can only trans-
late what corresponds to a C function body, but not a whole translation unit, as
CompCert does it). Currently, we integrate the result of LVC as one function into
one of CompCert’s C translation units. To even specify what correctness should
mean, we would have to be able to specify the behavior of a CompCert translation
unit where one C-level function is given in terms of LVC’s input program. It is our
understanding that the current setup in CompCert does not easily allow this. If we
had such a speci�cation, we could then show that LVC produces a valid implemen-
tation.
We instead prove a di�erent theorem that shows that the translation step to Linear is
correct in the sense that the body of the generated C function implements the IL pro-
gram, but do not bother with the integration part. We show that the Linear code we
generate is bisimilar to the IL/I program. To be able to show this, we modify Comp-
Cert’s Linear semantics in such a way that function return terminates the program
with the result value corresponding to the value in the return register. We expect
that this result could be easily integrated in a correctness proof once compositional
equivalence methods for CompCert are available.

16.2 Machine Registers and Stack Slots

We de�ne a set VPPC ⊆ VR that contains those registers from the register partition
that are to be mapped to machine registers. An invariant from the register allocation
phase will provide that the register allocated IL/I program only uses registers in
VPPC. Currently, LVC only use the caller-saved PowerPC registers r3, . . . , r12. We
arrange things such that VPPC contains the 10 = |{r3, . . . , r12}| smallest variables
{x0, . . . , x9} in VR, and use xi to stand for machine register ri+3.

16.2.1 Memory Relation

After register allocation, all variables in IL/I are either registers from VPPC or stack
slots from VM , and a con�gurations of the IL/I semantics records the values of both
types of variables in the variable environment V . A con�guration of CompCert’s
Linear language (which we will introduce shortly) has a designated component rs,
which records both the contents of registers and the contents of spill slots. While
IL/I currently only deals with integer variables, rs can store other types of values,
too. Integer variables in rs are tagged with a type, and the tag for integer values
is Vint. Since in both IL/I and CompCert’s Linear registers and stack slots are
handled as di�erent kinds of variables, it is easy to de�ne a function toLinVar such
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Statesffnspcodersmem −→ σ′

Statesffnspcodersmem −→A σ
′

Figure 16.1: Rules that adapt Linear’s small step semantics for use in our IDRS. The
point is that the adapted relation −→A only allows in-function transitions. Any
CallState is stuck, any Returnstate is a �nal state.

that toLinVar x yields the machine register corresponding to x if x ∈ VPPC, and
Linear’s designation for the spill slot corresponding to x if x ∈ VM .

De�nition 16.1 We say an IL/I variable environment V and a register state rs from
CompCert’s Linear are in relation, written mRelV rs if whenever v ∈ V and x ∈
VPPC ∪ VM and V x = v, then rs (toLinVar x) = Vint v.

16.3 Linear’s Semantic as IDRS

To be able to reason about CompCert’s Linear, we de�ne an IDRS based on Linear’s
semantics. Let us �rst examine the Linear’s states. There are three types of states:
Regular states that are used for executions within a C-level function. Call states that
are used to indicate that a function call is about to be executed, and return states that
indicate that a function return is about to be executed. A regular state has the form

Statesffnspcodersmem

wheresf is the list of stack frames, fn is the current function, sp is the stack pointer,
code is the Linear code currently executing, rs maps registers and stack slots to
values, and mem is the memory. A return state has the form

Returnstatesfrsmem

where sf is the list of stack frames, rs maps registers and stack slots to values, and
mem is the memory.
We �rst de�ne an adapter relation that restricts Linear’s semantics to stay within
one function invocation. In particular, the adapter relation ensures any Returnstate
of CompCert’s Linear is a �nal state of the IDRS with the result value corresponding
to the value in r3, the return register for PowerPC.
The IDRS is obtained by using the adapter relation from Figure 16.1 with CompCert’s
step relation for Linear, and de�ning the return function

res (Returnstatesfrsmem) = v

where v is the value of the return register r3 according to rs.
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Assignment Instruction

letx = y in . . . mov y x
letx = Y in . . . getstack Y x
letX = y in . . . setstack X y

Figure 16.2: Translation table for variable-to-variable assignments. The register r
must be unused. Note that these are Linear’s assembly instructions that are later
translated to PowerPC assembly instructions by CompCert.

16.4 Translating Let-Bindings

We require all let-bindings to fall into one of the following two classes, which is
guaranteed by the spilling phase.

1 The right-hand side is a variable, and at least one of the variables involved is a
register variable.

2 The left hand side is a register variable, and the right-hand side is a unary or
binary expression which only involves register variables and for which a corre-
sponding instruction exists.

The function toLinExp handles the translation of let-bindings. The table Figure 16.2
shows let-bindings in category 1 are translated by toLinExp depending on whether
the left and right-hand sides are registers or slots. toLinExp translates let-bindings
from category 2 into the corresponding Linear instruction.

Lemma 16.2 ‚ Correctness of toLinExp
Let mRelV rs and fv e ⊆ VPPC and x ∈ VPPC and

∀V rs,mRelV rs→ (L, V, s)(≈pr ∪ r)(Statesffnspcodersmem)

then

(L, V,letx = ein s) ≈pr (Statesffnsp (toLinExpx e;code)rsmem).

16.5 Translating Conditions of Conditionals

We require conditions to either be a single variable, a less than comparison, or a com-
parison for equality. Translation is handled by toLinCond as de�ned in Figure 16.3.
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Translating IL/I to CompCert’s Linear ‚ 16.6

toLinCond l (y) = beq y 0 l

toLinCond l (x < y) = ble y x l

toLinCond l (x = y) = bne x y l

Figure 16.3: De�nition of the translation function toLinCond for conditions. l de-
notes the label of the alternative branch of the conditional. Note that the translation
negates the condition because we want the code to branch to the alternative if the
condition is false. Note also that these are Linear’s assembly instructions that are
later translated to PowerPC assembly instructions by CompCert.

toLinD (letx = ein s) = toLinExpx e; toLinDs

toLinD (if ethen selse t) = toLinCond l e; toLinDs; l : toLinD t l fresh
toLinD (f ()) = gotoDf

toLinD (e) = toLinExpr3 e;return
toLinD (fun f () = s in t) = let D′ = l;D in

l′ : toLinD t; l : toLinD′ s l, l′ fresh

Figure 16.4: Translation from IL/I without parameters to CompCert’s Linear

Lemma 16.3 ‚ Correctness of toLinCond
Let e be a simple condition, mRelV rs and fv e ⊆ VPPC and

(L, V, s1)(≈pr ∪ r)(Statesffnsp (c1; (l : c2); c3)rsmem)

and
(L, V, s2)(≈pr ∪ r)(Statesffnsp c2; c3 rsmem)

and find_label l (fn_codefn) = c2; c3 then

(L, V,if ethen s1 else s2)
≈pr (Statesffnsp (toLinCond l e; c1; (l : c2); c3)rsmem).

16.6 Translating IL/I to CompCert’s Linear

The translation procedure for IL/I to Linear is given in Figure 16.4. The translation
of let bindings is handled by toLinExp. A conditional is translated by �rst generating
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16 ‚ Assembly

instructions that do the branching, and then generating the code for the consequence
followed by the code for the alternative. We need a new label l at the beginning of
the code for the alternative. The code for function application is a simple goto in-
struction; the label is looked up in the environment D. The IL/I return statement
evaluates the return expression, stores the result in the return register (here r3 be-
cause according to PowerPC ABI for integer values). The code for a function de�-
nition fun f () = s in t is generated by �rst generating code for the continuation
t, followed by the code for the function bodies, in order, and each prepended with a
fresh label. The function labels are then recorded in the environmentD, where they
can be looked up.
We generate labels in toLin in a strictly increasing fashion, and this is important for
the formulation of the invariant for the correctness proof. However, for the sake
of simplicity, we state the correctness result only for programs without free func-
tion variables. In the Coq development, we prove a generalized version for open
programs, which requires more invariants.

Lemma 16.4 ‚ Correctness of toLin
Let mRelV rs and fn_codefn = c and s is linearizable and s has no parameters
and s satis�es the register bound and two technical requirements for the function
return hold then

(L, V,if ethen s1 else s2) >∼r (Statesffnsp (toLin∅ s)rsmem).
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17 Coq Development

This section gives an overview over the components of the LVC development, and
discusses issues of the implementation of LVC in Coq. We provide some numbers
that help quantify the size of the project.

17.1 Lines of Code

The Coq development of LVC consists of 58,344 lines of code (LoC). The Paco libary
(3,591 LoC) and the containers library (19,799 LoC), which LVC uses, are not included
in this total. The extracted OCaml source code of LVC is between 20-30k LoC, but
includes parts extracted from CompCert and the containers library. A detailed break-
down by component is given in Figure 17.1. Note that the basic de�nitions such as
injectivity, agreement of functions, etc. make up a major part (15,156LoC, 26%) of
the development and could, possibly, in the future, be provided by the standard li-
brary. The semantic de�nitions are also rather lengthy (15,211LoC, 26%), which is in
part due to the insu�cient support for coinduction in Coq, and in part because basic
de�nitions such as transitive, re�exive closure and their properties had to be formal-
ized as well. The Coq code of the transformation phases of LVC, which this thesis
focuses on, is then rather compact. For example, the proof for coherence (683LoC,
1) is very small. The proof for the whole register assignment phase (assignment and
spilling) is relatively compact (9,127LoC, 16%).

17.2 E�ort

LVC uses git as source code management system (SCM) since mid 2012. The ini-
tial commits contain material from my Master’s thesis [Sch13]. Over the course of
the development, there were approximately 1500 change sets committed to the git
repository. Figure 17.2 provides a rough estimate about the contributors to the LVC
e�ort by showing the number of change sets per author, and the sum of LoC the
change sets modify.
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Component Lines of Code Number of %

Spec. Proofs Lemmas De�nitions Tactics

Preliminaries Σ 7,549 7,607 1,421 243 254 26
- Sets and Maps 2,958 3,383 634 61 54 11
- Utilities and Tactics 4,591 4,224 787 182 200 15

IL Σ 6,751 8,460 921 337 80 26
- Semantics 3,231 2,571 438 210 45 10
- Equivalence 1,937 3,097 261 94 19 9
- α-conversion 1,252 2,440 176 25 12 6
- Coherence 331 352 46 8 4 1

Register Allocation Σ 3,083 6,044 304 65 4 16
- Assignment 509 1,302 64 13 1 3
- Spilling 2,574 4,742 240 52 3 13

Analyses 2,875 3,442 365 100 42 11

SSA Construction 620 1,087 66 20 3 3

Value Optimizations 1,396 1,632 191 71 6 5

DCE 667 1,226 88 14 2 3

Lowering 1,168 2,104 140 68 10 6

OCaml Integration 1099

Coq Plugin 127

LVC in total Σ 25,077 32,620 3,586 960 401 100

Figure 17.1: Overview over distribution of the 58,344 lines of code (LoC) in LVC.
The table excludes the Paco libary (3,591 LoC) and the containers library (19,799 LoC)
which LVC uses. The table includes framworks for SMT-based translation validation
(1,407 LoC) and translation validation with repair (1,823 LoC) which are part of LVC
but not described in this thesis.

Contributor Commits Lines Changed

Julian Rosemann 120 33,467
Heiko Becker 137 24,045
Maximilian Zöllner 9 1,589
Sigurd Schneider 1,228 642,655

Figure 17.2: Change sets and lines changed per author.
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17.3 De-Bruijn Variables

LVC uses De-Bruijn indices for the function alphabet F . This caused much trouble,
and, in our setting, probably did not have a lot of bene�ts. A De-Bruijn approach
can work with automation, and if extraction is not a concern [STS15]. However, De-
Bruijn’s main advantage is the fact that all terms are in a certainα-normal form. This
is convenient when using a substitution semantics (which LVC does not). Transfor-
mations on De-Bruijn terms, however, always have to re-establish α-normality. We
found that this is mainly a complication. For example, unreachable code elimination
(§11.4) is essentially about renaming De-Bruijn indices, both on the implementation
and on the correctness proof side. In a named setting, UCE would be a very simple
transformation. Another draw-back of De-Bruijn is that the indices cannot be used
as globally unique identi�ers. This makes our implementation of program analyses
slower than an implementation with explicit names. Unfortunately, we were too
far into LVC’s development to move away from the design decision for De-Bruijn
indices.

17.4 Mutual Recursion

At some point during the development of LVC, we wanted to investigate the relation-
ship between block-nesting structure in IL, the dominance-order, and the number of
parameters required to make a program coherent (see also §12.6). We introduced
mutually recursive de�nitions into LVC to be able to express an “unnested” pro-
gram, and consider a procedure that re-nests the function in such a way that the
number of parameters required to make the program coherent is minimal. However,
just adding mutually recursive de�nitions took almost a year to implement, because
it introduced an unexpected amount of complication in every part of LVC. In ret-
rospect, introducing mutually recursive de�nitions was a grave mistake, especially
because of the interaction with De-Bruijn indices. In a named setting, this would
probably have been less painful. We never got to investigate what originally had
motivated us to introduce mutually recursive de�nitions, because there was no time
left.

17.5 Use of Axioms in Coq

The constructive type theory used in Coq allows to assume additional axioms, such
as excluded middle. In the development of LVC we generally tried to avoided using
additional axioms. We require two forms forms of serious classical reasoning in the
program equivalence meta-theory. In particular, we use excluded middle to obtain
Theorem 3.29, which shows that our IDRS either terminate or diverge. Theorem 3.29
is critical to show that pre�x trace equivalence coincides with bisimulation.
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We further use informed excluded middle and inde�nite description to obtain an
Theorem 3.30, which is an informative version of Theorem 3.29. We use need this
theorem to show that every IDRS con�guration produces a co-trace (Lemma 5.8),
which is ultimately used to show that in�nite trace equivalence coincides with bisim-
ulation.
Our end-to-end correctness theorems do not depend on strong classical axioms. The
only assumptions our end-to-end theorems1 depend on are the following:

‚ The library Paco uses uniqueness of identity proofs (UIP) in the form of John
Major’s equality [McB00], on which our results transitively depend.

‚ Schäfer’s and Smolka’s approach to coinduction [SS17] depends on functional ex-
tensionality. We use their approach to show-case that their approach enables the
use of a transitivity property in a simulation proof in Theorem 10.8, and hence
transitively depend on functional extensionality.

17.6 A Wish-list for Coq

During the development of LVC, Coq improved tremendously. LVC was �rst devel-
oped on Coq 8.3 and the current version of the development requires Coq 8.7. It is
di�cult to exaggerate how much Coq improved and matured between these to ver-
sions. The Coq development team has done fantastic work. Nevertheless, there are
still unsatisfactory aspects of Coq. We discuss issues that pertain to the following
general areas:

1 An Interactive Proof Mode for Guardedness

2 Equality vs Equivalence

3 Automation

4 Interfacing with tools and proof general

Many of the problems we describe are exacerbated by the size of the LVC devel-
opment, and probably do not surface in developments that have only a few thou-
sand lines. Before we introduced the smpl plugin described below, a recompile
of LVC took 45 minutes. This made the development painful, and it made it espe-
cially costly to experiment with di�erent de�nitions, as any alteration would result
in hours spend waiting on Coq to recompile. LVC currently takes roughly 25 minutes
to recompile.
1See https://sigurdschneider.github.io/lvc/Lvc.Compiler.html#Compiler.
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17.6.1 An Interactive Proof Mode for Guardedness

Coq should support an interactive mode where guardedness of a de�nition can be
shown by transforming a term with tactics, similar to the usual interactive proofs
for theorems in Coq.
Coq currently features an automated guardedness check, the purpose of which is to
decide whether a given function is total or not. There are two di�erent guardedness
checkers, one for �xpoints and another for co�xpoints. These checkers are trusted
components that essentially return a single boolean to the Coq kernel indicating
whether the (co)�xpoint de�nition under consideration is total or not. Each guard-
edness checkers use a syntactic criterion that is su�cient for totality. In the case of
�xpoints, for example, the function is examined to determine whether the recursive
calls are on a strict subterm of the decreasing argument.
The general design philosophy seems to be that �xpoints that are not accepted by
the guardedness checker should be encoded using induction on an appropriate in-
stance of the general accessibility predicate. Coq Plugins (i.e. the Program pack-
age [Soz07]) exist that help with this task. The drawback of encoding de�nitions
is that conversion is usually much weaker for such de�nitions, which especially is
a problem in inductive proofs. The situation for co�xpoints is even more severe,
because the guardedness checker accepts only few de�nitions and no general acces-
sibility predicate is available.
As a �rst step, the user should be able to interactively proof totality of �xpoints
and co�xpoints. To enable this, the rules by which the guardedness checker op-
erates must be explicated to the Coq user, which is probably valuable in its own
right. The old guardedness checkers could be provided as tactics. As a second step,
the set of guarded (co)�xed-points that can be directly de�ned in Coq should be in-
creased beyond what guardedness today admits. The advantage would be that more
de�nitions could be expressed without encodings, and are hence not cluttered by
additional proof arguments.
This could also be used as an opportunity to improve the guard condition for co�x-
points. We were very unsatis�ed with having to resort to encodings for our simu-
lation de�nitions, as discussed in §5. We think that Coquand [Coq93] explanation
of productivity is more intuitive than encodings, and would like Coq to adopt Co-
quand’s approach in a more explicit way.

17.6.2 Equality and Equivalence

The fact that there is a fundamental issue with equality in Coq has spawned the area
of HoTT [Uni13]. The LVC development has to deal with equivalence relations. A
prime example is the type of �nite sets that may use di�erent trees to represent the
same set. All set operations, however, yield the same results on di�erent represen-
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tations of the same set. The library comes with proofs that (almost) all operations
respect this extensional abstraction boundary, and the ones that do not can be change
to do so. However, Coq does not provide a means to put up an abstraction barrier, and
allow all outside users to identify the extensional equivalence with equality, which
would be justi�ed because the interface to the abstraction provably cannot distin-
guish sets on a more �ne-grained basis. At the moment, the only sharp weapon
against the equivalence problem is setoid rewriting. The importance of this issue is
exacerbated by the fact that almost all libraries and tactics in Coq treat equality spe-
cially. For example, the standard library uses equality is the only equivalence relation
that matters and de�nes order theoretic structures only with respect to equality. This
means that the set library we use has to provide its own order theoretic framework
which allows to provide the equivalence relation on a given type.

17.6.3 Automation

Interoperability of Tactics

The tactics that come with Coq are island solutions, that do not interact well with
each other. Prime example are the tactic Ω, that solves Presburger arithmetic, the
congruence tactic, that reasons up to a syntactic congruence relation, and the
backward chainingeauto proof search. These three tactics, which each for itself are
already powerful, do unfortunately not interact. For example, a goal which requires
to show fx = fy cannot be solved by Ω even if x = y can be shown by Ω, and so
on. Some level of interaction can be obtained by integrating them into an custom
Ltac tactic, but this is brittle and slow.

Caching for eauto

The tactic eauto ignores the relationship between goals during proof search. In
fact, proof search is completely redone for each subgoals and there is no caching.
During interactive proof construction, the changes to the proof goal are usually min-
imal. Hence the set of derivable statements has a considerable overlap between a
goal and a successor goal obtained by applying a tactic. It is also reasonable to as-
sume that the congruence closure (also with respect to user-de�ned equivalences)
does not change drastically by applying a tactic. None of this is used to improve
proof automation. Caching eauto search trees would probably yield great speed im-
provements in many contexts, even if memory usage would increase. A partial eauto
search tree is essentially a lemma, and thus much infrastructure for managing such a
cache likely already exists. A concrete application for caching would be the instances
of compatibility proofs generated during setoid rewriting.
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Be�er Tooling for Setoid Rewriting

In LVC, we observed that certain instances are re-proven in every setoid rewrite,
which slowed down Coq compilation time tremendously. We manually added the
instances that took the longest to discover. This, however, this was a frustrating
task as it involved reading setoid rewrite logs, which could easily grow to over 60k
lines and are hard to read even when short. This issue has been recognized and there
is Coq bug #6141 with discussion.
Additionally, one has to understand the proof search setoid performs, because some-
times adding more instances slows down rewriting, sometimes uni�cation is slowing
things down, and so on. We also discovered that wrapping rewrites in matches on
the term to rewrite and then rewriting with a (partially) instantiated lemma speeds
up the rewrite considerably. Discovering these intricacies takes a lot of time, and
setoid could do a better job reporting about the time it spends, and how it spends
it. For example, if setoid would also associate the time it took to �rst generate an
instance, and report the type of the instances that took the longest to discover on
request, this would save a lot of time and e�ort. Additionally, setoid could cache
instances that took long to discover automatically. Setoid could also cache instances
that it failed to prove, although this cache would have to be invalidated whenever
a new instance becomes available or setoid search parameters are changed. If such
features would have been available, LVC would probably have been a lot faster to
compile in the �rst place.

17.6.4 Interfacing with Tools and Proof General

At the scale of LVC (including the libraries it embedds), the lack of certain features
in the IDE is a huge problem: Simple tasks become a huge time sink; this problem is
especially dire because Coq recompilation times are high (at some point LVC took
45 minutes to compile).
The main interface to Coq is Emacs’ Proof General. There is the company-coq
plugin for emacs, which supports the user with convenience features. While the
emacs plugin is a great help, it does not go far enough. For example, there source
navigation “go-to de�nition” has only been added recently to company-coq. It is
impossible to get a list of uses of a de�nition, one has to resort to grep with all
its limitations. These are probably things that need �xing inside of Coq, not on the
Emacs side.
Especially painful is the fact that there are no refactoring tools. De�nitions cannot be
automatically renamed, it is not possible to easily determine if a lemma is still used,
if one changes the arguments of a constructor many proofs break, etc. Even if all
this refactoring was available, the text-only regime of emacs makes it very di�cult
to display information in a sensible way.
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Name generation in Coq is a problem. Unfortunately, given the number of names
required in the proofs of LVC, manual naming is not an option. Coq could provide
more control over the automatically generated names. For example, a command that
ensures that all names a tactic generates receive a certain pre�x would be useful.

17.7 Custom Tactic Support

To improve tooling for the proofs for LVC, we developed a Coq plugin, several native
tactics (i.e. implemented in Ocaml) and over 500 Ltac tactics.

17.7.1 The smpl Coq Plugin

We developed a Coq plugin that helps cleaning up Coq goals. In our development,
we often have premises that need to be inverted to be useful. Examples include:

‚ Terms related by a partial order. For example, if x v (y, z) we can conclude that
there must be a, b such that x = (a, b) and a v y and b v z.

‚ The development contains a relation that realizes an “at-n” predicate for lists.
Often, the list appearing in the predicate is generated by map or zip. An important
inversion lemma for map is that if the list map f L has an element x at position
n, then the list L has an element y at position n, and x = f y.

‚ Trivial or absurd premises, such as x = x or the list equality L = a, L.

To deal with such premises, we need a tactic that cleans up the goal, i.e. gets rid of
absurd goals and trivial premises, and does a reasonable amount of inversions. For
such a tactic to be practical, it must be fast and extensible in a modular way. We are
not aware of a built-in in Coq that satis�es these requirements, so we built a plugin.
The smpl plugin consists of the following components:

‚ The Coq command Smpl Create name. creates a list of tactics with priori-
ties which can be referred to by name. The tactics in the list are always sorted
according to their priorities.

‚ The Coq command Smpl Add p t:name. inserts the tactic t with priority p
into the list with name name.

‚ When including two modules via Require that add to a list with the same name,
the insertions of both modules are taken into account.

‚ The Coq tactic smpl name a1 . . . an. executes the tactics from the list with
name name in order until one of them succeeds, thereby passing the arguments
a1 to an to each of them.
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The sources of the smpl plugin and its technical documentation is available on
GitHub: https://github.com/sigurdschneider/smpl.

17.7.2 Native Tactics

We developed the following native tactics in OCaml to support the development of
LVC.

‚ A tactic is_param c n that succeeds if c is a (possibly curried) application of a
type constructor, and its n-th argument is a proper parameter for that type con-
structor. This tactic is useful to determine which arguments of an inductive type
constructor need to be generalized for induction.

‚ A tactic is_constructor_app c that determines whether the term c is a ap-
plication of a constructor.

‚ A tactic is_inductive c that determines whether the term c is an inductive
type.

‚ A tactic warntimen s t that executes tactic t and prints s if execution of t ex-
ceeded n milliseconds.

17.7.3 Automating Inductive Generalization

Many proofs in LVC require generalizing inductive hypotheses. This involves the
introduction of equations for indices of inductive predicates. However, generating
such equations for parameters is never required and introduces unnecessary com-
plexity. We de�ne an Ltac tactic called general induction that is similar to
induction, but introduces equations for indices of inductive types and maximally
generalizes the goal before doing induction. We use the tactic

is_param c n

described above to avoid introducing equations for proper parameters. The tactic
general induction also takes care of cleaning up the goals corresponding to
the inductive cases, which gets rid of (most of) the equations again.
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18 Related Work

This section discusses related work in depth. Many sections include a paragraph
that explicitly compares LVC to related work and is marked with LVC.

18.1 Control Flow Graphs, Reaching Definitions, Liveness

The importance of control-�ow analysis for compilation has been realized early. The
origins of such analyses, including reaching de�nitions and live variables seem to be
di�cult to attribute. Hecht [Hec77] wrote in 1977 that the de�nitions appear in a
large number of papers. According to Seidl, Wilhelm, and Hack [SWH12], the no-
tion of true liveness originates from Giegerich, Möncke, and Wilhelm [GMW81].
For a discussion about di�erent representations for control-�ow, dominance rela-
tionships and references to literature from before the 1970s, we refer the reader
to Allen [All70]. An important notion is that of a reaching de�nition [All70] in a
control-�ow graph (CFG): A de�nition of a variable reaches a use of the same vari-
able, if there is a path in the CFG from the de�nition to the use.

LVC The notion of liveness (see §9) is central to LVC, in particular, it is the basis for
coherence. Coherence is based on a reaching de�nitions analysis, and an alternate
way to explain coherence is that it ensures that every use has at most one reaching
de�nition.

18.2 Static Single Assignment

A key problem for imperative programs is that they cannot be renamed apart with-
out further ado. The problem are join-points in the CFG that are reached by two
di�erent de�nitions of a the same variable. The value of the variable at the join-
point hence depends on the predecessor from which the join-point was reached. If
either de�nition is renamed, this relationship is lost.
Static single assignment (SSA) solves this problem by introducing the notion of a
φ-function, and placing phony assignments of the form x = φ(y1, . . . , yn) at every
join-point that is reached by n > 1 di�erent de�nitions yi of x. Upon execution,
the φ-function chooses one of its arguments depending on the predecessor block
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from which the join-point was reached. Once such φ-assignments are in place, the
imperative program can be renamed apart without losing information.
SSA is the culmination point of a line of research in data-�ow analysis conducted
during the 1980s. φ-functions appear �rst at POPL 1989 in two di�erent papers.
One is due to Rosen, Wegman, and Zadeck [RWZ88], the other is due to Alpern,
Wegman, and Zadeck [AWZ88]. Zadeck [Zad09] gave a talk about the history of
SSA. The standard construction algorithm for SSA [Cyt+91] also happens to be the
standard reference for SSA. The standard construction algorithm uses a dominance
ordering of the nodes in the CFG to determine where to introduce φ-assignments.
An alternative construction algorithm, which works on partially constructed CFGs,
is available [Bra+13].
Appel [App98] and Kelsey [Kel95] showed that the φ-assignments can be simulated
by tail-call function applications. In particular, if a block in a CFG has i-many φ-
assignments xi = φ(y(i,1), . . . , y(i,n)), then this CFG block can be encoded as a
function with formal parameters x1, . . . , xi. The k-th predecessor then tail-calls this
function with arguments y(1,k), . . . , y(i,k). Based on this observation, Kelsey [Kel95]
seems to be the �rst to provide an informal but detailed proof that SSA programs cor-
respond a certain class of CPS programs. The correspondence, however, had been
noted before Kelsey by others [App92; ODo93].

LVC LVC follows Appel and Kelsey and uses a functional representation which
encodes φ-assignments as function application. A key contribution of LVC is the
additional imperative interpretation for the functional language, which allows to
approach SSA from a di�erent angle. In LVC, we did not try to answer the ques-
tion how the particular de�nition of SSA given by Cytron et al. [Cyt+91] could be
formalized, but approached the problem from the more general angle how an imper-
ative program can be renamed apart. This approach allowed us to get rid of CFGs,
φ-nodes, and, most importantly, dominance constraints and replace them by a lan-
guage with nested mutually recursive functions and two semantic interpretations.

18.3 SSA Optimizations

One original goal of SSA was to lower the complexity of reaching de�nition analysis:
In an imperative program, the reaching de�nition relation is potentially quadratic in
the program size. This can be seen by assuming only one variable and observing that
every de�nition of this variable could potentially reach every use. If, on the other
hand, every variable has at most one de�nition, the reaching de�nition relation is
trivially linear in the program size.
As it turns out, renaming apart the program, which is only possible in SSA, im-
proves the complexity of many value optimizations. This is the case because having
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unique variable names allows to track one abstract analysis values per a variable
for the whole program, instead of tracking one abstract value per variable and pro-
gram point. This approach reduces the analysis complexity typically by a factor
proportional to the program size. A downside is that the approach precludes con-
text sensitive analyses. For example, such a SSA analysis cannot conclude that in-
side the consequence of a conditional with condition x = 2, that x has the value
2 without losing the asymptotic complexity advantage. Nevertheless, many elab-
orate optimizations are formulated primarily as SSA optimizations. Examples of
SSA optimizations include global value numbering (GVN) [RWZ88], sparse condi-
tional constant propagation (SCCP) [WZ91b], and partial redundancy elimination
(PRE) [VH04].

LVC LVC includes a veri�ed implementation of SCCP (see §14.3). SCCP has been
reformulated for a functional language by Chakravarty, Keller, and Zadarnowski
[CKZ03] in an informal setting. Our veri�cation of SCCP is based on a framework
(see §14) that we hope can also be used to verify GVN, and with some extensions,
PRE.

18.4 Continuation Passing Style

Continuation Passing Style (CPS) has played a fundamental role for both practical
compilation and programming languages research in general. We refer to the survey
of Reynolds [Rey93] for an overview over the di�erent contexts in which continu-
ations have been discovered. In our opinion, the key insight behind CPS is that
higher-order arguments can be used to encode a wide variety of control-�ow behav-
ior. For example, CPS-bases models are known to give semantically precise accounts
of the function return mechanism in assembly language (return pointer) and excep-
tions. Famously, CPS has been used by Appel [App92] to construct compilers for a
wide range of languages.
The transformation to CPS has received considerable attention. The transformation
to CPS produces a large number of λ-terms. Danvy and Filinski [DF92] single out ad-
ministrative λ-terms and devise a restricted form of β-reduction to eliminate them.
Sabry and Felleisen [SF93] prove the resulting reduction system con�uent and termi-
nating, a result which gives rise to administrative normal form (ANF). Flanagan et al.
[Fla+04] show that ANF form can be constructed directly from a functional source
language without applying a CPS transformation �rst. ANF seems to be similar
to linear programs mentioned in Kelsey and Hudak [KH89], which refer to Plotkin
[Plo75] as source for the transformation they use to achieve linearity.
Chakravarty, Keller, and Zadarnowski [CKZ03] reformulates SSA-based sparse con-
ditional constant propagation [WZ91b] on a functional language in ANF. Our inter-
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mediate language is similar to a subset of the language used by Chakravarty, Keller,
and Zadarnowski [CKZ03], but is not in ANF.

LVC The �rst-order restriction of IL does not permit higher-order arguments, and
hence rules out CPS. However, IL also has a tail call restriction, so it is valid to see
IL programs as a special case of CPS programs, where the continuation is always
statically known.

18.5 Reducibility and Recursive Functions

Allen [All70] classi�es �ow graphs as either reducible or irreducible. Hecht and Ull-
man [HU72] provides a second characterization of reducibility and shows that struc-
tured control �ow always yields a reducible control-�ow graph, while unstructured
control �ow may yield an irreducible control-�ow graph. See Hecht and Ullman
[HU74] for a list of alternative characterizations of reducibility.

LVC LVC o�ers mutually recursive functions, which can directly express irre-
ducible control �ow.

18.6 Verified Compilers

18.6.1 C-like Languages

Two major veri�cation projects for compilers of C-like languages exist. CompCert
[Ler09b] is a veri�ed compiler for a realistic subset of the C language. CompCert fol-
lows a conservative design without SSA, which includes constant propagation, local
common subexpression elimination, and register allocation as central optimizations.
Leroy [Ler09a] notes that SSA was originally not integrated into CompCert because
its advantages for correctness proofs were not immediately clear. For CompCert, the
SSA-based optimizations GVN is available via the CompCertSSA project [BDP12].
CompCertSSA adds a SSA translation pass to CompCert. Register allocation is not
performed on SSA.
The VeLLVM Project [Zha+12; Zha+13; ZZ12] is an ongoing e�ort to verify the pro-
duction compiler LLVM [LA04] including its advanced, production-grade optimiza-
tions. The VeLLVM project has recently completed all steps [Zha+12; ZZ12; Zha+13]
to verify the standard SSA-construction algorithm [Cyt+91]. The intermediate lan-
guage of LLVM is an imperative intermediate language with φ-functions to enable
SSA [Zha+12].

LVC Our approach leverages the correspondence between functions with param-
eters and blocks with φ-functions and uses the intermediate language IL with coher-
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ence to formalize SSA and be able to �exibly break and re-establish the SSA invari-
ant. In contrast, Both VeLLVM and CompCertSSA use a global invariant to ensure
the SSA condition, and have to maintain that invariant during every transformation.

18.6.2 Functional Languages

Chlipala [Chl10] proves correctness for a compiler from Mini-ML to assembly in-
cluding mutable references, but without system calls. Register assignment uses an
interference graph constructed from liveness information. Chlipala restricts func-
tions to take exactly one argument and requires the program to be closure converted
prior to register assignment. This means liveness coincides with free variables and
values shared or passed between functions reside in an (argument) tuple in the heap:
E�ectively, register assignment is function local. Chlipala does not prove bounds on
the number of di�erent variables used after register assignment and does not inves-
tigate the relationship to α-equivalence.
CakeML [Owe+16] is a veri�ed compiler for a substantial subset of Standard ML.
The compiler for CakeML is veri�ed in HOL4. The compiler represents loops as re-
cursive functions and forces all variables a function uses to be parameters through
closure conversion. This breaks all live ranges at loop headers. The CakeML com-
piler assumes all function parameters are live, hence register pressure may increase
if closure conversion introduces dead parameters. CakeML does not use SSA with
φ-functions and delegates register allocation to a non-SSA-based, veri�ed IRC al-
gorithm [GA96] that performs spilling and register assignment in one phase in an
intertwined fashion. In contrast to the CakeML approach, our approach is SSA-
based, separates spilling from register assignment, and allows �ne-grained control
over live range splitting. Our approach does not require closure conversion, but
allows functions to refer to variables that are not parameters.

18.7 Translation Validation

Translation validation [PSS98] is widely used in veri�ed compilers. Translation val-
idation means that the translation itself is not veri�ed, but a (usually simpler) val-
idator decides afterwards whether the translation was correct. An explanation of
the signi�cance of translation validation for compiler veri�cation has been given by
Leroy [Ler09b].

LVC While LVC supports translation validation to attain �exibility, we veri�ed all
translation steps in LVC.
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18.8 Bisimulations

Alternative characterizations of contextual equivalence for the purpose of proof are
in the literature: Logical relations [Pit04] and bisimulations [Pit12] are the standard
examples. Recently, Hur et al. [Hur+12] have presented a hybrid approach of bisim-
ulations and logical relations. Bisimulations emerged in the analysis of concurrent
systems [BK08]. Our �rst-order setting simpli�es proving the congruence property
of our simulation.
Simulations have been used for proving semantic preservation in CompCert and
derived projects [Ler09a]. CakeML uses an evaluation function with a step limit
that counts function applications to specify the semantics. This approach supports
inductive proofs on the step limit.

18.8.1 Inductive Proofs for Bisimulations

The idea to use compatibility lemmas to simplify correctness proofs is outlined in
§2.8 of the master thesis of one of the authors [Sch13]. The master thesis uses a
version of IL without mutual recursion and system calls. A basic version of the
extension lemma, which enables the inductive method and which we prove in §8.3.2,
appears in the master thesis as Lemma 3. The masters thesis uses the extension
lemma to show that contextual equivalence is characterized by a simulation-based
de�nition. In §8.2 of this thesis we show that a bisimulation-based de�nition is sound
for contextual equivalence.
Neis et al. [Nei+15] recently used an inductive method to deal with stuttering steps
when proving their elaborate parametric inter-language simulations (PILS). In the
PILS framework, they verify a compiler for an imperative higher-order language
with non-mutually recursive functions that take a �xed number of arguments.
Neis et al. use an inductive method to deal with stuttering steps in, among other
things, the correctness proof of a form of DCE with respect to PILS that only elimi-
nates unused let-bindings. Neis et al. mention that their framework provides a series
of compatiblity lemmas simplifying the proof, but do not state the precise form of the
lemmas in the paper. Our DCE removes dead function parameters, unused function
de�nitions, and unreachable branches of conditionals.

18.8.2 Correctness Arguments in Verified Compilers

The correctness arguments in VeLLVM [Zha+13], the veri�ed LLVM project, Com-
pCertSSA [BDP12], and CompCertTSO [Sev+13] are based on showing simulation
diagrams, which, by a general lemma, provide for the existence of a suitable simula-
tion relation.
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Both CompCert and VeLLVM operate on a graph-based program representation, on
which structural induction is not as useful as in our term-based setting.
Our determinism requirements are similar, but subtly weaker than the requirements
found in the work of Sevcík et al. [Sev+13]. In contrast to their work, our IDRS
are not necessarily receptive, and are only determinate for τ transitions (c.f. condi-
tion 6). This is because we view the system as being a part of the IDRS, while Sevcík
et al. [Sev+13] view the system as an external component. In our setting, we use
non-τ transitions to inform the semantic framework about non-determinism, very
much in the sense of an instrumentation, while other work uses non-τ transitions
to synchronize with an external process in the style of CCS [] or π-calculus. The
advantage our approach is that we can verify implementations of system calls. One
IDRS can give an external call a non-deterministic semantics, and another can re-
place it with an implementation of a system call that has less behavior (but at least
one behavior). This means that forward and backward simulation on IDRS do not
coincide, as the following example shows.

Example 18.1 Consider any state σ in an IDRS which can reduce with an external
eventα that non-deterministically returns one of its arguments to a stuck state. Now
consider the a similar state σ′ in a second IDRS, which can reduce with an external
event α that returns its �rst argument to a stuck state. σ can simulate σ′, but not
vice versa.

18.9 Languages with Dual Interpretation

Kelsey and Hudak [KH89] constructed a simple compiler with an intermediate lan-
guage that has both functional and imperative features. To produce an assembly
program, the intermediate language is transformed to a subset of the language that
corresponds to assembly, and this subset has a dual semantics. We extend this idea,
integrate it with SSA construction, and formally prove correctness of our transfor-
mations.
Beringer, MacKenzie, and Stark [BMS03] used a language with a functional and im-
perative interpretation for proof carrying code. They give a su�cient condition for
the two semantics to coincide which they call Grail normal form (GNF). GNF requires
functions to not use the closure at all, i.e. a function must only depend on its param-
eters. This makes the notion signi�cantly weaker than ours: The requirement that
a function must only depend on its parameters corresponds to maximal insertion of
φ-functions, hence GNF is not suitable for SSA construction. Register allocation is
not considered.
Correspondences between imperative and functional programming languages have
been investigated very early on [Lan65].
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18.10 Research Compilers with Functional Intermediate
Languages

Research compilers have employed (essentially) functional intermediate representa-
tions (IR) for at least a decade now. Compilers strive to normalize the source program
aggressively; contextual equivalence facilitates normalization. Johnson and Mycroft
[JM03] minimize code for embedded systems on a functional IR. Tate et al. [Tat+09]
introduce the program expression graph (PEG), a graph-based IR with a lazy seman-
tics. libFirm [Ger12] is a research compiler that uses a graph-based, functional IR for
the compilation of C.
An important idea in compiler construction are sea-of-nodes intermediate represen-
tations put forward by Click and Cooper [CC95] and Click and Paleczny [CP95].
The key idea of the sea-of-nodes approach is to represent the program, including
expressions such as additions, as a graph on which certain rewriting steps are sound
with respect to program equivalence. Many optimizations can be characterized as
rewriting operations and their correctness can be established by arguing that the
rewrites steps are semantics preserving. The research compilers mentioned before
[JM03; Tat+09; Ger12], and the production-grade Java HotSpot VM [PVC01] build to
di�erent degrees on the sea-of-nodes idea.

18.11 Register Allocation

Every register allocation approach must lower the register pressure su�ciently, and
then �nd an assignment of variables to registers. Register pressure is lowered by tem-
porarily moving values to memory, and reloading values when necessary. Spilling is
the problem of determining where and what to spill and reload. Register assignment
is the problem of �nding an assignment from variables to registers while satisfy-
ing register constraints. In an imperative approach, spilling and register assignment
are interdependent, and must hence be performed in one phase in an intertwined
fashion.
In SSA, the spilling problem can be decoupled from the register assignment prob-
lem, because, the number of simultaneously live variables equals the register pres-
sure [HGG06]. This means that SSA-based spilling algorithms can e�ectively deter-
mine how many variables must be spilled at each program point without a concrete
register assignment. Braun and Hack [BH09] provide such a SSA-based spilling al-
gorithm that is very sensitive to the underlying program structure.
SSA-based register allocation [HGG06] consists of three phases. First spills and loads
are inserted into the program to lower the register pressure su�ciently. Second, a
register assignment that assigns each pseudo-register a machine register is com-
puted. Such an assignment can always be found in polynomial time. Note that at
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this point, there are still φ-assignments at each join point that must be implemented
by a parallel move. Finding an assignment that provides optimal coalescing, i.e. one
that minimizes the number of copies required to implement the parallel moves at
join-points is NP-complete. All practical SSA-based coalescing is hence based on
heuristics. Coalescing is complicated by the fact that many architectures require a
temporary register to implement the parallel move.

LVC LVC implements SSA-based register assignment and spilling, but does not
attempt to optimize coalescing. In joint work with Julian Rosemann [RSH17], we
developed an novel approach that we call “translation-validation with repair” and
which we do not describe in this thesis.

18.11.1 Global register allocation

Chaitin [Cha82] pioneered register allocation. Since Chaitin’s initial work, there
have been several improvements to graph coloring that mostly concentrated on coa-
lescing, i.e. the removal of copy instructions. Most graph coloring approaches decide
for every variable globally whether it resides in a register (and if so, in which) or a
spill slot. Especially, graph coloring allocators do not attempt to split live ranges
sophistically but rather transfer spilled variables from/to memory upon each access.
This gives a simple spilling scheme that is also amenable to formal veri�cation (see
below). However, in practice the spilling quality of these algorithms is not su�cient
to achieve acceptable performance [BH09].

18.11.2 Register Allocation via Linear Scan

Poletto and Sarkar [PS99] devised linear scan, a register allocation approach that is
the basis for many practically popular approaches to register allocation. Linear scan
splits live ranges, i.e. it allows a variable to be in a register at one program point
and in memory at another. For performance reasons, linear scan over-approximates
the live ranges of variables by linearizing control �ow, hence the name. Linear scan
intertwines spilling and register assignment.

18.11.3 Computational Complexity of Register Allocation

Chaitin proves NP-completeness of global register allocation [Cha82]. Bouchez et
al. show that minimizing spills and loads is NP-complete in SSA [BDR07]. Bouchez
also shows NP-completeness of di�erent coalescing problems, i.e. minimizing the
number of copies/swaps required to implement SSA’s φ-functions after the register
allocation phase.
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18.11.4 Register Allocation in Verified Compilers

There are several veri�ed compilers which perform register allocation.

CompCert

Register allocation in the �rst version of CompCert used a translation validated
graph coloring algorithm implemented in OCaml [Ler09a]. Spilling is veri�ed and
very simple: Variables not in a register are loaded before use and spilled after re-
de�nition. Later Blazy et al. [BRA10] fully veri�ed Appel’s [GA96] iterated register
coalescing (IRC) approach, which includes spilling. Being a graph coloring tech-
nique, this algorithm su�ers from the same drawbacks concerning spilling that we
discussed above. Hence, especially for machines with few registers (such as IA32),
the code quality is hardly acceptable. Instead of changing the fully veri�ed spiller,
which would have been a tremendous e�ort, Rideau et al. [RL10] developed a new
translation validated algorithm for register allocation and spilling. The new spilling
algorithm tracks recently spilled and loaded variables and thus avoids loading if the
variable is still in a temporary register.
In contrast to the veri�ed register allocation by Blazy et al., the second spilling al-
gorithm we verify as case study splits live ranges. The algorithm follows a strategy
similar to the translation validated algorithm of Rideau et al, is veri�ed, but does
not support overlapping registers yet. There is a project that aims to bring SSA to
CompCert [BDP12], but SSA-based register allocation for CompCert has not been
explored yet.

LambdaTamer

Chlipala [Chl10] proves correctness for a compiler from Mini-ML to assembly in the
context of the LambdaTamer project. The language includes mutable references but
not system calls. Register assignment uses an interference graph constructed from
liveness information. Chlipala does not use SSA form. Instead, Chlipala restricts
functions to take exactly one argument and requires the program to be closure con-
verted prior to register assignment, which is very similar to what CakeML does. This
means liveness coincides with free variables and values shared or passed between
functions reside in an (argument) tuple in the heap: E�ectively, register assignment
is function local. Chlipala considers spilling only indirectly: Some n variables are as-
signed to registers, the rest resides permanently in spill slots. This approach makes it
unnecessary to prove bounds on the number of di�erent variables used after register
assignment. Chlipala does not investigate the relationship to α-equivalence.
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CakeML

CakeML [Owe+16] is a veri�ed compiler for a substantial subset of Standard ML.
The compiler for CakeML [Tan+16] is veri�ed in HOL4. CakeML uses 12 di�erent
intermediate languages. The compiler represents loops as recursive functions. Im-
proving over Chlipala’s LambdaTamer, CakeML allows functions to take more than
one argument, but still uses a heap-allocated closure for variables occurring free in
the function. CakeML also does not use SSA with φ-functions for register allocation,
but translates to a su�ciently low-level language to use a non-SSA-based, veri�ed
IRC algorithm [GA96] that performs spilling and register assignment in one phase
in an intertwined fashion.

LVC In contrast to the CakeML approach, our approach is �rst-order, SSA-based,
and separates spilling from register assignment. Our approach does not require clo-
sure conversion, allows functions to refer to variables that are not parameters, and
lets the spilling phase decide whether a variable it accesses (be it a parameter or
a value from the closure) shall resides in a register or in a memory location upon
invocation.

18.12 IL and SSA-properties

As previously discussed, since SSA and functional programming correspond [Kel95;
App98], the translation from IL/I to IL can be seen as SSA construction [Cyt+91], and
the translation from IL to IL/I as SSA destruction. In this section we discuss variants
of SSA, and how they map to IL with coherence.

18.12.1 Pruned SSA

Pruned SSA adds the additional constraint that all φ-functions in SSA must be live.
Recall that φ-functions in a CFG correspond to parameters in IL. IL supports pruned
SSA because Lemma 12.4 shows that to obtain a coherent programs, only live pa-
rameters must be inserted.
Lemma 12.4 together with the correctness result in Theorem 12.8 for our SSA con-
struction algorithm form §12.5 produces pruned SSA. Semi-Pruned SSA is a relax-
ation of pruned SSA, and hence also supported.

18.12.2 Critical Edges

Critical edges are artifacts that arise in CFGs that group straight-line code (i.e. code
without conditional branches) in so called basic blocks, and view the CFG as a graph
of basic blocks. In such a CFG, an edge is critical if neither the predecessor block of
the edge nor the successor block is executed if and only if the edge is taken. This
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means that there is no basic block in which code can be placed that should be exe-
cuted if and only if the edge is taken. This is especially important in the phase where
SSA’s φ-nodes are lowered in basic-block-based compilers, because of the placement
of the lowering code. Since IL is statement based, any statement can be pre-pended
by any number of assignments (i.e. let-bindings), hence no critical edges exist and
there is always a place for the lowering code.

18.12.3 Loop Closed SSA

Loop-closed SSA is variant of SSA which requires additional φ-nodes for variables
de�ned in loop bodies: whenever variable de�ned inside the loop is used outside
the loop body, it must go through a φ. Pop, Jouvelot and Silber [PJS08] mention
loop-closed SSA; it is, however, supported in realistic, practical compilers such as
GCC [PJS08; Con17], and LLVM [Goh09].
IL supports loop-closed SSA, but does not enforce it. To convert a program to loop-
closed SSA, it su�ces to ensure that the loop is left through a the application of a
function with a su�cient number of arguments. See Figure 18.1 for an example.

1

2

3

4 fun f (x,y) =
5 let z = x + y
6 if (x / 5 = 0) then
7 let a = 13 + z in
8 a
9 else

10 f (x + 1, y*2)
11 in f (a,b)

1 fun g (z) =
2 let a = 13 + z in a
3 in
4 fun f (x,y) =
5 let z = x + y
6 if (x / 5 = 0) then
7 g (z)
8

9 else
10 f (x + 1, y*2)
11 in f (a,b)

Figure 18.1: An example not in loop-closed SSA (left) and a similar program in loop-
closed SSA (right). To convert a program to loop-closed SSA, it su�ces to ensure all
branches that leave the loop consist of exactly one applications of a function with
su�cient parameters.
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19 Conclusion

We presented the design of the veri�ed compiler LVC that realizes SSA advantages
with the term-based language IL and the notion of coherence. We showed that IL
and coherence realize the asymptotic complexity advantage for SSA program analy-
ses that originally motivated the development of SSA by verifying SCCP in §14 and
the associated analysis using the program analysis framework we described in §15.
Furthermore, we implemented a SSA-speci�c version of register assignment in §13
and showed that IL and coherence allows to separate register allocation into two
separate passes, which is known to only work on SSA programs. We integrated our
approach with CompCert in §16 and our research prototype is able to produce Pow-
erPC assembly code. We hence think that we have successfully demonstrated that
IL and coherence provide a faithful and viable implementation of SSA in a veri�ed
setting.
Our approach based on coherence has the key advantage that the SSA invariant can
be broken, because its semantic foundation is simply the semantics of IL/I and IL/F.
LVC makes use of this feature during register allocation, where the SSA invariant is
broken and reestablished as usual in SSA-based register allocation approaches. We
think that a coherence-based approach is hence �exible and well suited for a veri�ed
setting.
Our formalization relies on a term-based language, in contrast to many other veri�-
cation projects which are CFG-based. This allowed us to formulate many properties
as inductive predicates. We leverage the inductive structure further by providing
the custom proof method for bisimulation we developed in §8, which works by in-
duction on the program structure and solves the problem of stutter-steps usually
encountered in coinductive proofs.
For the formalization of optimizations, we followed a three-layer approach: An anal-
ysis algorithm that produces analysis information, a inductive predicate that spec-
i�es soundness, and sometimes completeness, of analysis information, and a trans-
formation that uses the analysis information to transform the program. We think
that this is a success: The correctness of the analysis is insulated from the correct-
ness of the transformation by our inductive soundness speci�cation. Furthermore,
the inductive predicates allow us to stay away from instrumented semantics. Instru-
mented semantics are tailored towards the transformations they are used for, and in
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CompCert and CakeML, which use this approach, this results in 9, and 12 di�erent
semantic speci�cations, respectively.
For analysis information, we often specify only soundness, for example for live-
ness information in §9. Correctness proofs only require soundness of analysis infor-
mation, and our proofs make this explicit. Restricting the requirements to sound-
ness only also provides �exibility: Many transformations must maintain sound live-
ness information, and had we also required completeness, we would also have had
to maintain completeness across transformations. Completeness, however, often
makes transformations more e�ective. For example, for reachability information,
which we discussed in §11, we require completeness because we must eliminate all
unreachable code. In general, we follow the paradigm that for a transformation,
we only show correctness, but not e�ectiveness. For example, our analysis likely
produces information which is as complete as it can be given undecidability of the
problem. But we never have to deal with this fact, and never have to formally prove
it. Another example is the nesting of function de�nitions discussed in §12.6: We
conjecture that both SSA construction and register allocation are more e�ective if
the program is deeper nested. For this reason, CFG-based SSA register allocation
approaches require to process CFG nodes in dominance order; in LVC we show got
rid of all dominance requirements and used the program structure instead, which is
su�cient to prove correctness. This is due to the fact that program structure in IL is
always sound wrt. the dominance order.

19.1 Future Work

There are several directions in which would be interesting to explore.
First, we would like to formally show that our IL-based approach is on par with CFG-
based approaches with respect to quality of SSA construction and register allocation.
Our term-based approach can be seen as essentially a AST-based approach. How-
ever, we think that, at least for the transformations we veri�ed, our approach does
not su�er from principal limitations in comparison with a CFG-based approach. We
would like to formally show that the quality of SSA construction and register alloca-
tion on IL matches the quality that the same transformations on a CFG could obtain
if the IL program is maximally nested with respect to the dominance order. This
would require specifying the dominance order of function de�nitions on IL, devis-
ing an analysis that computes the optimal order, and another algorithm that reorders
de�nitions to optimize the nesting structure.
Second, we developed a program logic for value optimizations, and would like to
use it to verify global value numbering and partial redundancy elimination. For this
purpose, we would need to extend the program logic with the ability to introduce
new variables, which is currently not possible.
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Third, we already worked into the direction of SMT-based translation validation in
the context of LVC. We would like to integrate an SMT solver with the program logic
to allow a more general form of translation validation. First experiments into this
direction have been encouraging.
Finally, we would like to improve the integration with CompCert, and develop LVC
to the point where it can replace the middle end in CompCert. Although much work
remains to be done in this direction, we think that the results of this thesis show that
functional SSA is a viable approach to integrating SSA in CompCert.
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