Views and Iteratorsfor Generic Constraint
Implementations

Christian Schulttand Guido Tack

1ICT,KTH - Royal Institute of Technology, Swedesghulte@imit.kth.se
2 PS Lab, Saarland University, Saarbriicken, Germeayk@ps .uni-sb.de

Abstract. This paper introduces an architecture for generic comstigiple-
mentations based on variable views and range iteratoras\aétow, for example,
to scale, translate, and negate variables. The paper stmmwhmake constraint
implementations generic and how to reuse a single genefementation with
different views for different constraints. A wide range qipications of views
exemplifies their usefulness and their potential for sifgjplg constraint imple-
mentations. We introduce domain operations compatiblé wikws based on
range iterators. The paper evaluates the applicabilithefapproach as well as
different implementation techniques for the presentetitecture.

1 Introduction

A challenging aspect in developing and extending a comgtpgogramming system is
implementing a&omprehensivset of constraints. Ideally, a system should provide sim-
ple, expressive, and efficient abstractions that easeamwent and reuse of constraint
implementations.

This paper contributes a new architecture based on vanahles and range itera-
tors. The architecture comprises an additional level ofrab8on to decouple variable
implementations from constraint implementations, theppgators. Propagators com
pute generically with variable views instead of variables.

A view of a variable presents an adaptor that performs toansitions while ac-
cessing the variable it abstracts over. Views support djoeislike scaling, translation,
and negation of variables. Views also abstract over the nlyidg data structure used
for storing the variable domain. That way, cross-domaimwsgiean for example enable
propagators for finite set constraints to operate on finitealo variables.

This simple layer of abstraction allows one propagator tins&antiated multiple
times, with different views. For example, a simple generapagator for linear equal-
ity Ekl-k:lm = ¢ can be used with a scale-viexv= a; - y; to obtain an implementation
of ¥ ;a -y = c. Or a negated Boolean view can be used to derive an implementa
tion of Boolean disjunction from a propagator for conjunntiAs a final example, a
cross-domain view of a finite domain variable as a singletintegether with a subset
propagator, yields a propagator fok s. Variable views thus assist in implementing
propagators on a higher level of abstraction.

Range iterators support powerful and efficient domain dmera on variables and
variable views. The operations can access and modify neiltiplues of a variable

domain simultaneously. Range iterators are efficient ag ltledp avoiding temporary
data structures. They simplify propagators by serving ap#is between variables
and propagator data structures.

The architecture is carefully separated from its impleragon. Two different im-
plementation approaches are presented and evaluated. pAeniantation using para-
metric polymorphism (such as templates im)@ shown to not incur any runtime cost.
The architecture can be used for arbitrary constraint piogning systems and has been
fully implemented in Gecode [2].

Plan of the paper. The next section presents a model for finite domain constrain
programming systems. Sect. 3 introduces variable viewsexethplifies their use.
Sect. 4 presents Boolean views of finite domain variablesdiswlisses pairs of sym-
metric propagators. Sect. 5 introduces iterator-baseddooperations that are applied
to views in the following section. Variable views for set straints are discussed in
Sect. 7. In Sect. 8 implementation approaches for views tandtors are presented,
followed by their evaluation in Sect. 9. The last sectionatodes and discusses future
work.

2 Constraint Programming Systems

This section introduces the model for finite domain constrarogramming systems
considered in this paper and relates it to existing systems.

Variables and propagatorsFinite domain constraint programming systems offer ser-
vices to support constraint propagation and search. Irptper we are only concerned
with variables used for constraint propagation. We assuraed constraint is imple-
mented by g@ropagator A propagator maintains a collection of variables and penfo
constraint propagation by executing operations on therthérfollowing we consider
finite domain variables and propagators. A finite domainaldex has an associated
domaindom(x) being a subset of some finite subset of the integers.

Propagators do not manipulate variable domains directtyuba operations pro-
vided by the variable. These operations return informadioout the domain or update
the domain. In addition, they handle failure (the domaindmees empty) and control
propagation.

Value operations.A value operatioron a variable involves a single integer as result
or argument. We assume that a variakleith D = dom(x) provides the following
value operationst.getmin() returns mirD, x.getmax() returns map, x.adjmin(n)
updates dorfx) to {me D | m> n}, x.adjmax(n) updates dorfx) to {me D | m< n},
andx.excval(n) updates dorfx) to {me D | m# n}. These operations are typical for
finite domain constraint programming systems like Chocol[8DG Solver [9, 11, 4],
Eclipse [1], Mozart [8], and Sicstus [5]. Some systems ptevadditional operations
such as for assigning values.

Domain operations.A domain operatiorsupports simultaneous access or update of
multiple values of a variable domain. In many systems thgr@vided by supporting
an abstract set-datatype for variable domains, as for eleaimghoco [6], Eclipse [1],
Mozart [8], and Sicstus [5]. ILOG Solver [9, 11, 4] only allewaccess by iterating over
the values of a variable domain.

Range sequenceRange notatiofn .. m| is used for the set of integefbe Z | n <1 <
m}. A range sequencengesl) for a finite integer set C Z is the shortest sequence
s={[ny..m],...,[nk .. m]) such that is covered (s€6) = I, where sdfs) is defined
asUi_1[ni .. m]) and the ranges are ordered by their smallest elemants 1 for

1 <i < k). The above range sequence is also writtef]@s. m])ikzl. Clearly, a range
sequence is unique, none of its ranges is emptynanrdl < nj,; for 1 <i < k.

3 Variable Viewswith Value Operations

This section introduces variable views with value operegidlhe full design with do-
main operations and a discussion of their properties falmSect. 6.

Example 1 (Smart n-Queengonsider the well-known finite domain constraint model
for n-Queens using three alldifferent constraints: each quepresented by a variable
xi (0 <i < n)with domain{0,...,n— 1}. The constraints state that the values okall
the values of alk; — i, and the values of a§ +i must be pairwise differentfor@i < n.

If the used constraint programming system lacks versioadldifferent supporting
that the values of; + ¢; are different, the user must resort to using additionakdes
yi and constrainty; = X; + ¢; and the single constraint that tlyeare different. This
approach is clearly not very efficient: it triples the numbéwariables and requires
additional 21 binary constraints.

Systems with this extension of alldifferent must implemew very similar ver-
sions of the same propagator. This is tedious and increaseanount of code that
requires maintenance. In the following we make propaga&enric the same propa-
gator can be reused for several variants.

To make a propagator generic, all its operations on varsadnle replaced by oper-
ations on variable views. Aariable view(view for short) implements the same opera-
tions as a variable. A view stores a reference to a variaimeking an operation on the
view executes the appropriate operation on the view's kiaViultiple variants of a
propagator can be obtained by instantiating the singlergepepagator with multiple
different variable views.

Offset-views.For anoffset-view = voffset(x, c) for a variablex and an integec, per-
forming an operation om results in performing an operation an- ¢c. The operations
on the offset-view are:

v.getmin() :=Xgetmin()+cC Vgetmax() = X.getmax()+cC
v.adjmin(n) := x.adjmin(n—C) v.adjmax(n) ;= X.ad jmax(n— C)
v.excval(n) ;= X.excval(n—cC)

To obtain both alldifferent propagators required by Exasriplalso aidentity-view
is needed. An operation on an identity-view il for a variablex performs the same
operation orx. That is, identity-views turn variables into views to complith propaga-
tors now computing with views. In an implementation langeitigat supports subtyping,
variables can themselves be regarded as views, elimintngeed for identity views.

Obtaining the two variants of alldifferent is straightfamd: the propagator is made
generic with respect to which view it uses. Using the propagaith both an identity-
view and an offset-view yields the required propagators.

Offset-views can also be used to obtain propagators foctstrequalities from
propagators for the non-strict constraints. For instareey can be implemented as
x < voffsety,—1).

Sect. 8 discusses how views can be implemented whereasettiisrsfocuses on
the architecture only. However, to give some intuition, inf@r example, propagators
can be made generic by implementing them as templates watlhighd view as tem-
plate argument. Instantiating the generic propagator #meaunts to instantiating the
corresponding template with a particular view.

Views are orthogonal to the propagator. In the above exarffiet-views can be
used for any implementation of alldifferent using value r@piens. This includes the
naive version propagating when variables become assignétedounds-consistent
version [10].

Scale-views.In the above example, views allow to reuse the same propaigateari-
ants of a constraint, avoiding duplication of code and ¢ffarthe following, views can
also simplify the implementation of propagators.

Example 2 (Linear inequalitiesh common constraintis linear inequalify ; a - <
¢ (equality and disequality is similar) with integesisandc and variabless. In the
following we restrict they; to be positive.

A typical bounds-propagator executes fox 3 < n:

Xj.adjmax([(c—1j)/aj]) with |} = zin:l’i#jaj -Xj.getmin()

Quite often, models feature the special case 1 for 1 <i < n. For this case, itis
sufficient to execute for ¥ j <n:

xj.adjmax(c—Ij) with lj=3{,; % getnin()

As this case is common, a system should optimize it. An oggehiversion requires
less space (n@; required) and less time (no multiplication, division, amadimding).
But, a more interesting question is: can one just implememstmple propagator and
get the full version by using views?

With scale-views, the simple implementation can be usedih bases. Ascale-
view v=vscaléa, x) for a positive integea > 0 and a variable defines operations for
a-x

V.getmin() :=a-X.getmin() V.getmax() :=a-X.getmax()
v.adjmin(n) := x.adjmin([n/al) v.adjmax(n) := x.adjmax(|n/al)
v.excval(n) := if nmoda= 0then x.excval(n/a)

From the simpler implementation the special case (idewni#yws) and the general
case (scale-views) can be obtained. Multiplication, divisand rounding is separated
from actually propagating the inequality constraint. \Velnence support separation of
concerns and can simplify the implementation of propagatarparticular, multiplica-
tion, division, and rounding need to be implemented onlyedfioe the scale-view: any
generic propagator can use scale-views.

Minus-views. Another common optimization is to implement binary and &eyrvari-
ants of commonly used constraints. This optimization redule overhead with respect
to both time and memory as no array is needed.

Example 3 (Binary linear inequalityConsider a propagator fog + v, < ¢ with views

vi andv, propagating as described in Example 2. With scale-viaws vscaldas, x;)
andv, = vscaléay, xp) the propagator also implemerds- x; + a - X2 < ¢ provided
thata;,ap > 0. However,x; — X2 < ¢ cannot be obtained with scale-views. Even if
scale-views allowed negative constants, it would be inefiicto multiply, divide, and
round to just achieve negation.

A minus-view v= vminugX) for a variablex provides operations such thabehaves
as—x. Its operations reflect that the smallest possible valug fethe largest possible
value for—x and vice versa:

v.getmin() = —X.getmax() v.getmax() = —X.getmin()
v.adjmin(n) ;= X.adjmax(—n) v.adjmax(n) ;= X.adjmin(—n)
v.excval(n) ;= X.excval(—n)

With minus-viewsx; — Xz < ¢ can be obtained from an implementatiorvpft v, <
¢ with v; = vid(x;) andv, = vminugxp). With an offset-view it is actually sufficient
to implementvy + v» < 0. Thenx; + X2 < ¢ can be implemented by an identity-view
vid(xq) for v1 and an offset-view voffséty, —c) for v». But again, given just; + v, <0,
an implementation fox; — x, < ¢ with ¢ # 0 cannot be obtained.

Minus-views implement the inverse for finite domain varesylthus all propagators
that are symmetric with respect to the sign of their argusiean take advantage of
minus views. An example for a pair of symmetric propagatarsioite domain vari-
ables is minimum and maximum: m@y, ..., xn) can be obtained from a the minimum
propagator with miftvminugxz), ..., vminugx,)). We will come back to inverse views
in the sections about Boolean and set constraints.

Derived views.It is unnecessarily restrictive to define views in terms afalales. The
actual requirement for a view is that its variable provides same operations. It is
straightforward to make views generic themselves: viewslm defined in terms of
other views. The only exception are identity-views as thewe the very purpose of
casting a variable into a view. Views such as offset, scalé,minus are callederived
views they are derived from some other view.

With derived views being defined in terms of views, the firspsto use a derived
view is to turn a variable into a view by an identity-view. Fexample, a minus-
view v for the variablex is obtained from a minus-view and an identity-view:=
vminugvid(x)).

Example 4 (Binary linear inequality reconsideretl)sing offset-views, minus-views,
and scale-views, all possible variants of binary lineaguradities can now be obtained
from a propagator fok; +vo < 0. For examplea- x; — X2 < ¢ with a > 0 can be
obtained withv; = vscalda,vid(x;)) and v, = vminugvoffsefvid(xz),c)) or v =
voffsetvminugvid(xz)), —c).

Scale-views reconsidered’he coefficient of a scale-view is restricted to be positive.
Allowing arbitrary non-zero constanasn a scale-views = vscalda, x) requires to take
the signedness @finto account. This can be seen for the following two operei(ihe
others are similar):

s.getmin() :=ifa<Othena x.getmax() elsea-x.getmin()
s.adjmax(n) :=if a< Othen x.adjmin(|n/a|) else x.adjmax(|n/a])

This extension might be inefficient. Consider Example 2idaghe loop imple-
menting propagation on all views, the decision whether thefficient in question is
positive or negative must be made. For modern computerslittmmals — in particu-
lar in tight loops — can reduce performance considerably.gearefficient way is to
restrict scale-views to positive coefficients and use aritiatddl minus-view for cases
where negative coefficients are required.

Example 5 (Linear inequalities reconsideredh efficient way to implement a propa-
gator for linear inequality distinguishes positive and atég variables as iy ; x +
Yti-Yi<c.

The propagator is simple: it consists of two parts, one ferttand one for they;.
Both parts share the same implementation used with diffefiews. To propagate to
thex;, identity-views are used. To propagate to theminus-views are used. Arbitrary
coefficients are obtained from scale-views as shown above.

The example shows that it can be useful to make parts of a gadpageneric
and reuse these parts with different views. Puget preseif] an algorithm for the
bounds-consistent alldifferent. The paper presents amlgigorithm for adjusting the
upper bounds of the variablesand states that the lower bounds can be adjusted by
using the same algorithm on variablgsvherey; = —x;. With views, this technique for
simplifying the presentation of an algorithm readily casrbver to its implementation:
the implementation can be reused together with minus-views

Constant-views.Derived views exploit that views do not need to be implemerite
terms of variables. This can be taken to the extreme in thevalvas no access at all to
a variable. A constant-view= vcon(c) for an integerc provides operations such that
v behaves as a varialbixbeing equal ta:

=c

=if n < cthen fail

V.getmin() :=cC Vgetmax()
v.adjmin(n) :=if n> cthen fail v.adjmax(n)
v.excval(n) :=if n=cthen fail

Example 6 (Ternary linear inequalitieshnother optimization for linear constraints
are ternary variants. Given a propagatonfp# vo + v3 < ¢ and using a constant-view
vcon(0) for one of the views;, all binary variants as discussed earlier can be obtained.

In summary, for linear inequalities (this carries over twehr equalities and dise-
qualities), views support many optimized special casa® fisst two implementations
(the generah-ary case and the ternary case). These implementationsrgre s they
do not need to consider coefficients.

4 Boolean Views

Constraints on 0/1 variables are a special case of finite oloowastraints. However,
specialized propagators can take advantage of the mores@iarowledge about the
domain.

A Boolean-viewof a finite domain variable extends the variable’s interfadth
operations for testing its valug.gero(), x.one(), x.none()) and assigning the variable
(x.assign_one(), Xx.assign_zero()). Propagators specialized for Boolean-views, such
as equality §; = by), conjunction (b Aby) < bg), and equivalence(b; = by) < bs),
can be implemented in a straightforward way using this fater.

Symmetric Boolean propagator3he inverse of a Boolean is its logical negation, im-
plemented by anegated Boolean-vievlrhe operations for a negated Boolean-view
v =vnegXx) are straightforward:

v.zero() :=X.one() v.one() = X.zero()
v.none() := X.none()
v.assign one() := X.assign zero() v.assign zero() ;= X.assign one()

Example 7 (Ternary disjunctionpoolean disjunctiorixVy) < z can be implemented
as(—xA —y) < —z This translates directly to an instance of the Booleanuretjon
propagator. Similarly, other Boolean propagators suchxakigive or and implication
can be derived.

5 Domain Operations and Range Iterators

Today’s constraint programming systems support domairedip@s either only for ac-
cess or by means of an explicitly represented abstractygetan this paper, we propose
domain operations based on range iterators. These opeaie shown to be simple,
expressive, and efficient. Additionally, range iteratoms assential for views as pre-
sented in Sect. 6.

Range iterators.A range iterator rfor a range sequence= ([n; .. m])!‘:l allows to
iterate overs: each of then; .. m] can be obtained in sequential order but only one at
a time. A range iteratar provides the following operations:done() tests whether all
ranges have been iteratechext() moves to the next range, anchin() andr.max()
return the minimum and maximum value for the current rangeséxr) we refer to the
set defined by an iterator(which must coincide with séd)).

A possible implementation of a range iteratdor s maintains an indek which is
initially i, = 1, the operations can then be defined as:

r.done() :=ir >k rnext() := (i —ir+1)
rmin() :=n, rmax() :=m,

A range iterator hides its implementation. Iteration cabyp@osition as above, but
it can also be by traversing a list. The latter is particylarteresting if variable domains
are implemented as lists of ranges themselves.

Iterators are consumed by iteration. Hence, if the samessegneeds to be iterated
twice, a fresh iterator is needed. If iteration is cheap,setr@peration for an iterator
can be provided so that multiple iterations are supporteith®pame iterator. For more
expensive iterators, a solution is discussed later.

Domain operationsVariables are extended with operations to access and mibwity
domains with range iterators. For a variak|¢éhe operatiox.getdom() returns a range
iterator for range®lom(x)). For a range iteratar the operatiorx.setdom(r) updates
dom(x) to setr) provided that sét) C dom(x). The responsibility for ensuring that
se(r) C dom(x) is left to the programmer and hence requires careful coretide.
Later richer (and safe) domain operations are introduclked.operatiorx.setdom(r) is
genericwith respect ta': any range iterator can be used.

Domain operations can offer a substantial improvement wakre operations, if
many values need to be removed from a variable domain simadizsly. Assume a typ-
ical implementation of a variable domdhwhich organizes rangé3) = ([n; .. m]>ik:l
as a linked-list. Removing a single element frBntakesO(k) time and might increase
the length of the linked-list by one (introducing an addiabhole). Hence, in the worst
case, removing elements take®(l (k+ 1)) time. With domain operations based on it-
erators, removal takeS(k+ I) time, as the update can be implemented as one linear
pass over the linked list.

Range iterators serve as simplistic abstract datatypedcorithe finite sets of inte-
gers. However, they provide some essential advantagesaovexplicit set represen-
tation. First, any range iterator regardless of its impletaton can be used to update
the domain of a variable. This turns out to allow for simplificeent, and expressive
updates of variable domains. Second, no costly memory nesmawgt is required to
maintain a range iterator as it provides access to only amgerat a time. Third, itera-
tors are essential in providing domain operations on végiailews as will be discussed
in Sect. 6.

Intersection iterators.Let us consider intersection as an example for computinly wit
range iterators. Intersection is computed by an intersed@rator = iinter(a,b), tak-
ing two range iteratora andb as input where sét) = se{a) Nsetb). The intersection
iterator maintains integersandm for storing the smallest and largest value of its cur-
rent range. When initialized, the operatinnext() is executed once. The operations
are shown in Figure 1.

Therepeat-loop iteratesa andb until their ranges overlap. The tests whether
b are done ensure that no operation is performed on a donéoitefdne remainder
computes the resulting range and prepares for computingtaarege.

The iteratorsa andb can be arbitrary iterators (again, the intersection iterat
generig, so it is easy to obtain an iterator that computes the iatdien of three iter-
ators by using two intersection iterators. Intersectiobusone example for a generic

r.done() := a.done() vV b.done()
rmin() == n
rmax() := m
r.next() :=if a.done() vV b.done() then return
repeat
while —a.done() A (amax() < b.min()) do a.next()
if a.done() then return
while —b.done() A (b.max() < amin()) do b.next()
if b.done() then return
until amax() > b.min()
n«— maxamin(),bmin()); m«< min(amax(),b.max())
if amax() < b.max() then anext() else b.next()

Fig. 1. Operations of an intersection iterator

iterator, other useful iterators are for example: iuf@b) for iterating the union o&
andb, iminuga, b) for iterating the set difference afandb, and icomp{a) for iterating
the complement o with respect to some fixed universe.

Example 8 (Propagating equalitylConsider a propagator that implements domain-
consistent equalityx = y (assuming thak andy are variables, views are discussed
later). The propagator can be implemented as follows: gefaéterators fox andy by

rx = X.getdom() andry = y.getdom(), create an intersection iterator= iinter(rx,ry),
update one of the variable domainsygetdon(ri), and copy the domain fromtoy

by y.setdom(x.getdom()).

Cache-iterators. The above example suggests that for some propagators ittex be
to actually create an intermediate representation of thgeaequence computed by
an iterator. The intermediate representation can be reasedten as needed. This is
achieved by acache-iterator it takes an arbitrary range iterator as input, iterates it
completely, and stores the obtained ranges in an arraytlialoperations then use the
array. The cache-iterator also implements a reset oparasigiscussed above. By this,
the possibly costly input iterator is used only once, whike tache-iterator can be used
as often as needed.

Richer domain operationsWith the help of iterators, richer domain operations are
effortless. For a variablg and a range iteratar, the operatiorc.adjdom(r) replaces
dom(x) by dom(x) Nse{r), whereas.excdom(r) replaces dortx) by don(x) \ se{r):

x.adjdom(r) := X.setdom(iinter(X.getdom(),r)
x.excdom(r) := X.setdom(iminugx.getdom(),r))

Value versus range iteratorsAnother design choice is to base domain operations on
value iterators: iterate values rather than ranges of artés.is not efficient: a value
sequence is considerably longer than a range sequenceriiicufza for the common
case of a singleton range sequence).

For implementing propagators, however, it can be simpléetate values. This can
be achieved by a range-to-value iterator. A value iteratwas the operationsdone(),
v.anext(), andv.val() to access the current value. A range-to-value iteratorstake
range iterator as input and returns a value iterator itegetie values of the range se-
quence. The inverse is a value-to-range iterator: it takeis@ut a value iterator and
returns the corresponding range iterator.

Iterators as adaptors.Global constraints are typically implemented by a propagat
computing over some involved data structure, such as fomplaa variable-value

graph for domain-consistent alldifferent [12]. After peagation, the new variable do-
mains must be transferred from the data structure to thebi@s. This can be achieved
by using a range or value iterator as adaptor. The adaptoatgsson the data structure
and iterates the range or value sequence for a particulablar The iterator then can
be passed to the appropriate domain operation.

6 Variable Viewswith Domain Operations
This section discusses domain operations for variablesviesing iterators.

Identity and constant viewdDomain operations for identity-views and constant-views
are straightforward. The domain operations for an identigyv v = vid(x) use the do-
main operations or: V.getdom() := X.getdom() andv.setdomn(r) := X.setdom(r). For

a constant-view = vcon(c), the operation.getdom() returns an iterator for the single-
ton range sequengg .. c|). The operatiov.setdomn(r) just checks whether the range
sequence of is empty.

Derived views.Domain operations for an offset-view vofféetc) are provided by an
offset-iterator. The operations of an offset-iteraidor a range iterator and an integer
c (created by ioffsét, c)) are as follows:

omin() :=rmin()+cC omax() :=r.max()+cC
0.done() :=r.done() O.next() :=r.next()

The domain operations for an offset view= voffsetx, c) are as follows:
v.getdom() := ioffset(x.getdom(),C) v.setdom(r) := X.setdom(ioffset(r,—c))

For minus-views we just give the range sequence as iteriatmvious. For a given
range sequencgn; .. m]>ik:1, the negative sequence is obtained by reversal and sign
change ag[—my_j1.. — nk,i+1]>!‘:1. The same iterator for this sequence can be used
both forsetdom andgetdom operations. Note that the iterator is quite complicated as
it changes direction of the range sequence, possible ingri&ations are discussed in
Sect. 8.

Assume a scale-view= vscalda,v) with a> 0 and([n; .. m]>ik:1 being a range
sequence fov. If a= 1, the range sequence remains unchanged. Otherwise, the cor
responding range sequence ®is ({a-ni},{a- (m+1)},....{a-m},...,{a-n},
{a-(ne+1)},.... {a-md).

Assume that[n; .. m]>ik:l is a range sequence farThen for 1<i < k the ranges
[[ni/a] .. [m/a]] correspond to the required variable domainidiowever they do not
necessarily form a range sequence as the ranges might bg, @vgriapping, or adja-
cent. Iterating the range sequence is simple by skippingyenapges and conjoining
overlapping or adjacent ranges.

Consistency.An important issue is how views affect the consistency of@pgator.
Let usfirst consider all views except scale-views. Thesgvmmpute bijections on the
values as well as on the ranges of a donii bounds (domain) consistent propagator
for a constrain€ with variables«, ..., X, establishes bounds (domain) consistency for
the constrain€ with all the variables replaced lw(x) (if vk computes the view o).

Scale-views only compute bijections on values: a range doésemain a range
after multiplication. This implies that bounds consistpndpagators do not establish
bounds consistency on scale-views. Consider for examptaiads consistent propa-
gator for alldifferent. Withx,y,z € {1,2}, alldifferen{4x,4y,4z) cannot detect failure,
while alldifferentx,y,z) can. Note that this is not a limitation of our approach but a
property of multiplication.

7 Viewsfor Set Constraints

Views and iterators readily carry over to other constraomhdins. This section shows
how to apply them to finite sets.

Finite sets. Most systems approximate the domain of a finite set variaple dreatest
lower and least upper bound [3]: ddx) = (glb(x),lub(x)). The fundamental operations
are similar to domain operations on finite domain variabtggstglb() returns glifx),
x.getlub() returns lulfx), x.adjglb(D) updates dorfx) to (glb(x) U D,lub(x)), and
x.adjlub(D) updates dorfx) to (glb(x),lub(x) N D).

All these operations take sets as arguments or return thertheAabstract datatype
we use for representing sets is an iterator, iterators playcentral role here. In fact,
range iterators provide exactly the operations that sqtggators need: union, intersec-
tion, and complement. Most propagators thus do not reqeimgbrary data structures.

As for finite domain variables, set propagators now operatset views. The ob-
vious views for set variables are the identity view and camistviews — like the empty
set, the universe, or some arbitrary set. Constant-vieamdgelp derive binary propa-
gators from ternary ones. For examp@en s, = 3 implements set disjointnesssf is
the constant empty set.

Symmetric set constraintd.he inverse of a set variable is its complementdnple-
ment view = vcomplx) of a set viewx can be easily derived using the iterators already
introduced:
v.getglb() :=icompl(x.getlub()) v.getlub() :=icompl(x.getglb())
v.adjglb(D) := x.adjlub(icomplD)) v.adjlub(D) := x.adjglb(icompl(D))

All the propagators for symmetric constraints over Boolgaws directly carry
over to setsx; = XoUX3 can be implemented as vconfxl) = vcomplxz) Nvcomplxg),
ands; = s\ 53 is equivalent tas; = s, Nveompl(sg).

Cross-domain viewsWith finite domain and set constraints in a single systenmssro
domain views come into play. The most obvious cross-domiain is a finite domain
variable viewed as singleton set. Using generic propaggatiois immediately leads to
domain-connecting constraints.

Cross-domain views can support more than one implementtdiche same vari-
able type. Set variables, for example, can be implementdgdawer and upper bounds
or with their full domain using ROBDDs [7]. A cross-domairewi allows lower/upper
bound propagators to operate on ROBDD-based sets, reusipggators for which no
efficient BDD representation exists.

Finite domain constraints from set propagatorSingleton-views can also be used to
derive pure finite domain constraints from set propagakwsexample, the constraint
samé|[xi,..., %, [y1,--.,Ym|) States that the two sequences of finite domain variables
take the same values. Using singleton vieWs,;{x } = UjL;{y;} yields an imple-
mentation for this constraint. th = n, and all variables must take different values, a
disjoint union can be used instead.

8 Implementation

The presented architecture can be implemented as an ortaldgger of abstraction for
any constraint programming system. This section preskafsihdamental mechanisms
necessary for iterators and views.

Polymorphism. The implementation of generic propagators, views, ancttes re-
quirespolymorphismpropagators operate on different views, domain operaihom it-
erators on different iterators. Both subtype polymorphignmough inheritance in Java,
inheritance and virtual methods in-Cand parametric polymorphism (through tem-
plates in G, generics in Java, polymorphic functions in ML or Hasketlhde used.

In C+, parametric polymorphism through templates is resolvedaipile-time, and
the generated code is monomorphic. This enables the canipifgerform aggressive
optimizations, in particular inlining. The hope is that tdditional layer of abstraction
can be optimized away entirely. Some ML compilers also appbnomorphization,
so similar results could be achieved. Java generics areithipto casts and virtual
method calls, any optimization is left to the just-in-tim@apiler.

Achieving high efficiency in € with templates sacrifices expressiveness. Instantia-
tion canonly happen at compile-time. Hence, either @Qust be used for modeling, or
all potentially required propagator variants must be piediby explicit instantiation.
The choicewhich propagator to use can however be made at runtime:featiequa-
tions, for instance, we can test if all coefficients are yratsall are positive, and post
the respective optimized propagators. In Gecode, we cilyrenly use template-based
polymorphism.

For the instantiation of templates as well as for inlinirigg tode that is instantiated
or inlined must be available at compile time of the code ttsasuit. This is why most
of the actual code in Gecode resides in lizader files, slowing down compilation of
the system. On the interface level however, no templatessae, such that the header
files needed fousingthe library are reasonably small.

System requirement¥ariable views and range iterators can be added as an orthbgo
extension to existing systems. While value operations atecritical as discussed in
Sect. 2, depending on which domain operations a systemdes\mefficiency can differ.
In the worst case, domain operations need to be translatedatue operations. This
would decrease efficiency considerably, however interatediomputations on range
iterators would still be carried out efficiently.

A particularly challenging aspect is reversal of range seges required for the
minus-iterator. One approach to implement reversal is terekall iterators such that
they can iterate both backwards and forwards. Another ambrés similar to a cache-
iterator: store the ranges generated from the input iteiat@n array and iterate in
reverse order from the array. In Gecode, we have chosen twflatter approach due to
its simplicity. We are going to explore also the former agmtu as variable domains in
Gecode are provided as doubly-linked lists, iteration ithlmbrections can be provided
efficiently.

9 Analysisand Evaluation

This section analyzes the impact different implementatiofriterators and views have
on efficiency. Two aspects are evaluated: compile-timerpolphism versus run-time
polymorphism, and iterators versus temporary data strestu

The experiments use the Gecode @ersion 1.0.0) constraint programming li-
brary [2]. All tests were carried out on a Intel Pentium IV lwR.8GHz and 1GB of
RAM, using Linux and the GNU € compiler, version 3.4.3. Runtimes are the average
of 20 runs, with a coefficient of deviation less than 2% fortelhchmarks. Gecode is
competitive in efficiency with state-of-the art systemspmparison is available on the
Gecode web pages [2].

The optimizedcolumn in Table 1 gives the time in milliseconds of the optied
system, the other columns are relativeotatimized The examples used are standard
benchmarks, the first group using only finite domain constsathe second group using
mainly set constraints.

Code inspectionA thorough inspection of the code generated by the GN@@npiler
and the Microsoft Visual € compiler shows that they actually perform the optimiza-
tions we consider essential. Operations on both views anakdrs are inlined entirely
and thus implemented in the most efficient way. The abstmastilo not impose a run-
time penalty (compared to a system without views and itesgto

Templates versus virtual methodas the previous section suggested, in, Compile-
time polymorphism using templates is far more efficient thmtual method calls. To
evaluate this, we changed the basic operations of finite @omews such that they
cannot be inlined. The required changes are rather invpbede did not try the same
for iterators and set views. An implementation based om&innethods will typically
exhibitan even higher overhead. Table 1 shows the resudtdimnno-inline Function
calls that are not inlined cause a runtime overhead betw@#nahd 58%.

Table 1. Runtime comparison

Benchmark optimized no-inline|temporar
time in ms relative %

Alpha 122.83 141.30 103.7(

Donald 0.64 155.60 114.7(

Golomb 10 (bound)|| 1260.50 158.20 101.1(
Golomb 10 (domair)) 2064.00 129.70 100.0d
Magic Sequence 500 192.38 129.80 101.4d

Magic Square 6 0.8§ 133.40 105.2(
Partition 32 6930,00 135.50 101.40
Photo 143.13 131.3(99.6(
Queens 100 1.90 132.24¢ 99.30
Crew 338 — 191.10
Golf 8-4-9 498.00 — 271.44
Hamming 20-3-32 1496.00 — 200.7¢
Steiner 9 124.08 — 191.0d

Temporary data structureSOne important claim is that iterators are advantageous be-
cause they avoid temporary data structures. Table 1 shoaslimntemporarythat
computing temporary data structures has limited impaa{aB%) on finite domain
variables, but considerable impact for set constraintstdup71% overhead). Tempo-
rary data structures have been emulated by wrapping atdes in a cache-iterator as
described in Sect. 5.

Applicability. Deriving several instances from a single propagator implaation sig-
nificantly reduces the overall amount of code that needs tariiten. In Gecode, 31
finite domain propagators are instantiated from 12 geneoipggators, 9 Boolean prop-
agators from 4 generic propagators, and 22 set propagabonf generic propagators.
The generic propagators make up approximately 3800 lineofces code, saving
approximately 4800 lines of code to be written, tested, aathtained.

Obviously, views and iterators are no silver bullet. The haggsm only yields effi-
cient propagators if the compiler can generate the codentbatd otherwise have been
hand-written. If, for example, set complement views arelesdensively, the overhead
compared to a hand-written propagator can become prolabiti

10 Conclusion and Future Work

The paper has introduced an architecture decoupling pedpesyfrom variables based
on views and range iterators. We have argued how to make gatqa generic, simpler,
and reusable with views for different constraints. We hateduced range iterators as
abstractions for efficient domain operations compatibléh wiews. The architecture
has been shown to be applicable to many finite domain and §etteonstraints. Using
parametric polymorphism for views and iterators leads t@fficient implementation
that incurs no runtime cost.

Future work. An obvious route for future work is to explore richer variahliews.
Possible candidates are sums and products of variableg geyond a single variable
per view: the challenge here will be to provide efficient raitgrators.

This paper explores views only for implementation purpogeselated question
is whether views can also be useful for modeling or for aut@reansformation of
models.

Acknowledgements Christian Schulte is partially funded by the Swedish Redear
Council (VR) under grant 621-2004-4953. Guido Tack is pdlstifunded by DAAD
travel grant D/05/26003. Thanks to Patrick Pekczynski fepiwith the benchmarks,
and to Mikael Lagerkvist for helpful comments. We thank therymous reviewers, of
this paper and of a previous version, for their construatvaments.

References

1. Pascal Brisset, Hani El Sakkout, Thom Frithwirth, Wakwktarvey, Micha Meier, Stefano
Novello, Thierry Le Provost, Joachim Schimpf, and Mark \&ed. ECLiPSe Constraint
Library Manual 5.8. User manual, IC Parc, London, UK, Feby005.

2. Gecode: Generic constraint development environmei.2@vailable as an open-source
library fromwww.gecode . org.

3. Carmen Gervet. Interval propagation to reason aboutBefmition and implementation of
a practical languageConstraints 1(3):191-244, 1997.

4. ILOG S.A.ILOG Solver 5.0: Reference Manudbentilly, France, August 2000.

5. Intelligent Systems Laboratory. SICStus Prolog use@mual, 3.12.1. Technical report,
Swedish Institute of Computer Science, Box 1263, 164 29KBweden, April 2005.

6. Francois Laburthe. CHOCO: implementing a CP kernel. icoMs Beldiceanu, Warwick
Harvey, Martin Henz, Francois Laburthe, Eric Monfroy, TabMuller, Laurent Perron, and
Christian Schulte, editor®roceedings of TRICS: Techniques foR Implementing Canstra
programming Systems, a post-conference workshop of CP, 2008ber TRA9/00, pages
71-85, 55 Science Drive 2, Singapore 117599, September 2000

7. Vitaly Lagoon and Peter J. Stuckey. Set domain propagatging ROBDDs. In Mark
Wallace, editor,Tenth International Conference on Principles and Practi¢eConstraint
Programming volume 3258 of.ecture Notes in Computer Scienpages 347-361, Toronto,
Canada, September 2004. Springer-Verlag.

8. Tobias Miuller. Constraint Propagation in Mozart Doctoral dissertation, Universitat des
Saarlandes, Fakultat fur Mathematik und Informatik,Hraahtung Informatik, Im Stadtwald,
66041 Saarbriicken, Germany, 2001.

9. Jean-Francois Puget. A*Gmplementation of CLP. liProceedings of the Second Singapore
International Conference on Intelligent Systems (SPICh&pes B256-B261, Singapore,
November 1994.

10. Jean-Francois Puget. A fast algorithm for the boundistency of alldiff constraints. In
Proceedings of the 15th National Conference on Atrtificidelligence (AAAI-98)pages
359-366, Madison, WI, USA, July 1998. AAAI Press/The MIT §5e

11. Jean-Francois Puget and Michel Leconte. Beyond th&sdlax: Constraints as objects.
In John Lloyd, editorProceedings of the International Symposium on Logic Progréng
pages 513-527, Portland, OR, USA, December 1995. The MI3sPre

12. Jean-Charles Régin. A filtering algorithm for constraiof difference in CSPs. [Rroceed-
ings of the Twelfth National Conference on Atrtificial Inigdince pages 362—-367, Seattle,
WA, USA, 1994. AAAI Press.

