
Perfect Derived Propagators

Christian Schulte1 and Guido Tack2

1 ICT, KTH - Royal Institute of Technology, Sweden, cschulte@kth.se
2 PS Lab, Saarland University, Saarbrücken, Germany, tack@ps.uni-sb.de

Abstract. When implementing a propagator for a constraint, one must
decide about variants: When implementing min, should one also imple-
ment max? Should one implement linear equations both with and with-
out coefficients? Constraint variants are ubiquitous: implementing them
requires considerable effort, but yields better performance.
This paper shows how to use variable views to derive perfect propagator
variants: derived propagators inherit essential properties such as correct-
ness and domain and bounds completeness.

1 Introduction

When implementing a propagator for a constraint, one typically needs to decide
whether to also implement some of its variants. For example, when implementing
a propagator for maxn

i=1 xi = y, should one also implement minn
i=1 xi = y? When

implementing the linear equation
∑n

i=1 aixi = c for integer variables xi and
integers ai and c, should one implement

∑n
i=1 xi = c for better performance?

While resulting in better performance, special implementations for propaga-
tor variants inflate code and documentation, and impair maintainability. The
approach we take is to derive propagators from already existing propagators us-
ing variable views. In [8], we introduced an implementation architecture for vari-
able views to reuse generic propagators without performance penalty. Gecode [4]
makes massive use of views: every propagator implementation is reused 3.6 times
on average. Without views, Gecode would feature 140 000 rather than 40 000 lines
of propagator implementation to be written, tested, and maintained. Due to the
extensive use of views, it is vital to develop a model that allows us to prove that
derived propagators have the desired properties.

In this paper, we argue that propagators that are derived using variable
views are indeed perfect : they are not only perfect for performance, we prove
that they inherit all essential properties such as correctness and completeness
from their original propagator. The key contribution is the identification of prop-
erties of views that yield perfect derived propagators. The paper establishes a
formal model that defines a view as a function and a derived propagator as
functional composition of views (mapping values to values) with a propagator
(mapping domains to domains). This model yields all the desired results, in that
derived propagators are indeed propagators; faithfully implement the intended
constraints; preserve domain completeness of the original propagators; and pre-
serve bounds completeness if the views satisfy additional properties.



2 Preliminaries

We assume a finite set of variables Var = {x1, . . . , xn} and a finite set of values
Val . An assignment a ∈ Asn maps variables to values: Asn = Var → Val . A
constraint c ∈ Con is a relation over the variables, represented as the set of all
assignments that satisfy the constraint, Con = 2Asn .

Constraints are implemented by propagators over domains, which are con-
structed as follows. A domain d ∈ Dom maps each variable to a finite set of
possible values, the variable domain d(x) ⊆ Val . We identify a domain d with a
set of assignments d ∈ 2Asn , and therefore treat domains as constraints to sim-
plify presentation. A domain d1 is stronger than a domain d2 (written d1 ⊆ d2),
iff for all variables x, d1(x) ⊆ d2(x).

Propagators, also called narrowing operators or filter functions, serve as im-
plementations of constraints. A propagator is a function p ∈ Dom → Dom that
is contracting (p(d) ⊆ d) and monotone (d′ ⊆ d⇒ p(d′) ⊆ p(d)).

A propagator p implements its associated constraint cp = {a ∈ Asn |
p({a}) = {a}}. Monotonicity implies that cp ∩ d ⊆ p(d) for any domain d:
no solution of cp is ever removed by p. We say that p is sound for any c ⊆ cp and
weakly complete for any c′ ⊇ cp (it accepts all assignments in c and rejects all
assignments not in c′). For any constraint c, we can find a propagator p such that
c = cp. Typically, there are several propagators, differing by propagation strength
(see Sect. 3). Our definitions of soundness and different notions of completeness
are based on and equivalent to Benhamou’s [1] and Maher’s [5].

3 Views and Derived Propagators

A view on a variable x is an injective function ϕx ∈ Val → Val ′, mapping values
from Val to values from a possibly different set Val ′. We lift a family of views
ϕx point-wise to assignments as follows: ϕAsn(a)(x) = ϕx(a(x)). Finally, given
a family of views lifted to assignments, we define a view ϕ ∈ Con → Con on
constraints as ϕ(c) = {ϕAsn(a) | a ∈ c}. The inverse of that view is defined
as ϕ−(c) = {a ∈ Asn | ϕAsn(a) ∈ c}. Views can now be composed with a
propagator: a derived propagator is defined as ϕ̂(p) = ϕ− ◦ p ◦ ϕ.

Example. Given a propagator p for the constraint c ≡ (x = y), we want to
derive a propagator for c′ ≡ (x = 2y) using a view ϕ such that ϕ−(c) = c′.
It is usually easier to think about the other direction: ϕ(c′) ⊆ c. Intuitively,
the function ϕ leaves x as it is and scales y by 2, while ϕ− does the inverse
transformation. We thus define ϕx(v) = v and ϕy(v) = 2v. We have a subset
relation because some tuples of c may be ruled out by ϕ.

This example makes clear why the set Val ′ is allowed to differ from Val . In
this particular case, Val ′ has to contain all multiples of 2 of elements in Val .

The derived propagator is ϕ̂(p) = ϕ− ◦ p ◦ ϕ. We say that ϕ̂(p) “uses a scale
view on” y, meaning that ϕy is the function defined as ϕy(v) = 2v. Similarly,
using an identity view on x amounts to ϕx being the identity function on Val .

2



Given the assignment a = (x 7→ 2, y 7→ 1), we first apply ϕAsn and get
ϕAsn(a) = (x 7→ 2, y 7→ 2). This is returned unchanged by p, so ϕ− transforms
it back to a. Another assignment, a′ = (x 7→ 1, y 7→ 2), is transformed to
ϕAsn(a′) = (x 7→ 1, y 7→ 4), rejected (p({ϕAsn(a′)}) = ∅), and the empty domain
is mapped to the empty domain by ϕ−. Thus, ϕ̂(p) implements ϕ−(c).

Common views capture linear transformations for integer variables, negation
for Boolean variables, or complement for set variables. For example, in [8] the
following views are introduced for a variable x and values v: a minus view on x is
defined as ϕx(v) = −v, an offset view for o ∈ Z on x is defined as ϕx(v) = v + o,
and a scale view for a ∈ Z on x is defined as ϕx(v) = a · v.

The central properties of derived propagators are expressed in the following
theorems (with proofs in the long version of this paper [9]):

Theorem 1. A derived propagator is a propagator: for all propagators p and
views ϕ, ϕ̂(p) is a monotone and contracting function in Dom → Dom.

Theorem 2. If p implements cp, then ϕ̂(p) implements ϕ−(cp).

Theorem 3. Views preserve contraction: for any domain d, if p(ϕ(d)) ⊆ ϕ(d),
then ϕ̂(p)(d) ⊂ d. This property makes sure that if the propagator makes an
inference, then this inference will actually be reflected in a domain change.

A propagator is domain complete (or simply complete) for a constraint c if it
establishes domain consistency. More formally, dom(c) is the strongest domain
including all valid assignments of a constraint, defined as min{d ∈ Dom | c ⊆ d}.
The minimum exists as domains are closed under intersection, and the definition
is non-trivial because not every constraint can be captured by a domain. Now,
for a constraint c and a domain d, dom(c∩ d) refers to removing all values from
d not supported by the constraint c. A propagator p is complete for a constraint
c iff for all domains d, we have p(d) ⊆ dom(c ∩ d). A complete propagator thus
removes all assignments from d that are inconsistent with c. One of the main
results of this paper is that domain completeness is preserved by views.

Theorem 4. If p is complete for c, then ϕ̂(p) is complete for ϕ−(c).

A propagator is bounds complete for a constraint c, if it only affects do-
main bounds, or only depends on domain bounds for its inferences. For our pur-
poses, we only distinguish bounds(Z) and bounds(R) completeness (see [3] for
an overview). Our definitions of bounds completeness are based on the strongest
convex domain that contains a constraint, conv(c) = min{d ∈ Dom | c ⊆
d and d convex}. A convex domain maps each variable to an interval, so that
conv(c)(x) = {mina∈c(a(x)), . . . , maxa∈c(a(x))}. Following Benhamou [1] and
Maher [5], we define that p is bounds(Z) complete for c iff p(d) ⊆ conv(c ∩
conv(d)), and p is bounds(R) complete for c iff p(d) ⊆ conv(cR ∩ convR(d)),
where convR(d) is the convex hull of d in R, and cR is c relaxed to R.

The result for domain completeness does not carry over directly to bounds
completeness: we can only derive bounds complete propagators using views that

3



satisfy certain additional properties. A constraint c is a ϕ constraint iff for all
a ∈ c, there is a b ∈ Asn such that a = ϕAsn(b). A view ϕ is interval injective iff
ϕ−(conv(c)) = conv(ϕ−(c)) for all ϕ constraints c. It is interval bijective iff it is
interval injective and ϕ(conv(d)) = conv(ϕ(d)) for all domains d. The following
table summarizes how completeness depends on view bijectivity:

propagator interval bijective view interval injective view arbitrary view

domain domain domain domain
bounds(Z) bounds(Z) bounds(R) weakly
bounds(R) bounds(R) bounds(R) weakly

Minus and offset views are interval bijective. A scale view for a ∈ Z on
x is always interval injective and only interval bijective if a = 1 or a = −1.
An important consequence is that a bounds(Z) complete propagator for the
constraint

∑
i xi = c, when instantiated with scale views for the xi, results in a

bounds(R) complete propagator for
∑

i aixi = c.
Views are related to indexicals [2, 10], propagators that prune a single vari-

able and are defined over range expressions. However, views are not used to
define propagators, but to derive new propagators from existing ones. Allowing
the full expressivity of indexicals for views would imply giving up our complete-
ness results. Another related concept are arithmetic expressions (as found in
ILOG Solver [6]). In contrast to views, expressions are used for modeling, not
for propagation, and, like indexicals, yield no completeness guarantees.

4 Extended Properties of Derived Propagators

A derived propagator permits further derivation: ϕ̂(ϕ̂′(p)) is perfectly acceptable,
properties like correctness and completeness carry over. For instance, we can
derive a propagator for x− y = c from a propagator for x + y = 0 by combining
an offset and a minus view on y.

A propagator is idempotent iff p(p(d)) = p(d) for all domains d. Some sys-
tems require all propagators to be idempotent, others apply optimizations if the
idempotence of a propagator is known [7].

Theorem 5. If a propagator is derived from an idempotent propagator, the
result is idempotent again: If p(p(d)) = p(d) for a propagator p and a domain d,
then, for any view ϕ, ϕ̂(p)(ϕ̂(p)(d)) = ϕ̂(p)(d).

A propagator is subsumed for a domain d iff for all stronger domains d′ ⊆ d,
p(d′) = d′. Subsumed propagators do not contribute any propagation in the re-
maining subtree of the search, and can therefore be removed. Deciding subsump-
tion is coNP-complete in general, but for most propagators an approximation
can be decided easily. This can be used to optimize propagation.

Theorem 6. p is subsumed by ϕ(d) iff ϕ̂(p) is subsumed by d.

An alternative model of views is to regard a view ϕ as additional view con-
straints, implementing the decomposition of a constraint.

4



Example. Assume the equality constraint c ≡ (x = y). In order to propagate
c′ ≡ (x = y + 1), we could use a domain complete propagator p for c and a view
ϕ with ϕx(v) = v, ϕy(v) = v+1. The alternative model would contain additional
variables x′ and y′, a view constraint cϕ,x for x′ = x, a view constraint cϕ,y for
y′ = y + 1, and c[x/x′, y/y′], which enforces equality of x′ and y′.

In general, every view constraint cϕ,i shares exactly one variable with c and
no variable with any other cϕ,i. Thus, the constraint graph is Berge-acyclic,
and we can reach a fixpoint by first propagating all the cϕ,i, then propagating
c[x1/x′1, . . . , xn/x′n], and then again propagating the cϕ,i. This is exactly what
ϕ−◦p◦ϕ does. In this sense, views can be seen as a way to specify a perfect order
of propagation, which is usually not possible in constraint programming systems.
Furthermore, if ϕ̂(p) is domain complete for ϕ−(c), it achieves path consistency
for c[x1/x′1, . . . , xn/x′n] and all the cϕ,i in the decomposition model.

Acknowledgements. We thank Mikael Lagerkvist and Gert Smolka for fruitful
discussions about views and helpful comments on a draft of this paper.

References

1. F. Benhamou. Heterogeneous Constraint Solving. In Proceedings of the fifth Inter-
national Conference on Algebraic and Logic Programming (ALP’96), volume 1139
of LNCS, pages 62–76. Springer, 1996.

2. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In H. Glaser, P. H. Hartel, and H. Kuchen, editors, Programming Languages:
Implementations, Logics, and Programs, 9th International Symposium, PLILP’97,
volume 1292 of LNCS, pages 191–206, Southampton, UK, 1997. Springer.

3. C. W. Choi, W. Harvey, J. H. M. Lee, and P. J. Stuckey. Finite domain bounds
consistency revisited. In A. Sattar and B.-H. Kang, editors, AI 2006: Advances in
Artificial Intelligence, volume 4304 of LNCS, pages 49–58. Springer, 2006.

4. Gecode: Generic constraint development environment, 2008. Available as an open-
source library from http://www.gecode.org.

5. M. J. Maher. Propagation completeness of reactive constraints. In ICLP ’02:
Proceedings of the 18th International Conference on Logic Programming, volume
2401 of LNCS, pages 148–162, London, UK, 2002. Springer.

6. J.-F. Puget and M. Leconte. Beyond the glass box: Constraints as objects. In
J. Lloyd, editor, Proceedings of the International Symposium on Logic Program-
ming, pages 513–527, Portland, OR, USA, Dec. 1995. The MIT Press.

7. C. Schulte and P. J. Stuckey. Efficient constraint propagation engines. Transactions
on Programming Languages and Systems, 2008. To appear.

8. C. Schulte and G. Tack. Views and iterators for generic constraint implementations.
In Recent Advances in Constraints (2005), volume 3978 of LNAI, pages 118–132.
Springer, 2006.

9. C. Schulte and G. Tack. Perfect derived propagators, June 2008. Available from
http://arxiv.org/abs/0806.1806.

10. P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation, and
evaluation of the constraint language cc(FD). The Journal of Logic Programming,
37(1–3):139–164, Oct. 1998.

5


