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Abstract. Programming languages with countable nondeterministic choice are compu-
tationally interesting since countable nondeterminism arises when modeling fairness for
concurrent systems. Because countable choice introduces non-continuous behaviour, it is
well-known that developing semantic models for programming languages with countable
nondeterminism is challenging. We present a step-indexed logical relations model of a
higher-order functional programming language with countable nondeterminism and demon-
strate how it can be used to reason about contextually defined may- and must-equivalence.
In earlier step-indexed models, the indices have been drawn from ω. Here the step-indexed
relations for must-equivalence are indexed over an ordinal greater than ω. Finally, we define
step-indexed logical relations for showing the adequacy of a continuation-passing-style
transformation of the language.

1. Introduction

Programming languages with countable nondeterministic choice are computationally inter-
esting since countable nondeterminism arises when modeling fairness for concurrent systems.
In this paper we show how to construct simple semantic models for reasoning about may-
and must-equivalence in a call-by-value higher-order functional programming language with
countable nondeterminism, recursive types and impredicative polymorphism.

Models for languages with nondeterminism have originally been studied using deno-
tational techniques. In the case of countably branching nondeterminism it is not enough
to consider standard ω-continuous complete partial orders and the denotational models
become quite involved [3, 6]. This has sparked research in operationally-based theories of
equivalence for nondeterministic higher-order languages [1, 10, 11, 12, 13, 19]. In particular,
Lassen investigated operationally-based relational methods for countable nondeterminism
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and suggested that it would be interesting to consider also methods based on logical relations,
i.e., where the types of the programming languages are given a relational interpretation [10,
page 47]. Such an interpretation would allow one to relate terms of different types, as needed
for reasoning about parametricity properties of polymorphic types.

For languages with recursive types, however, logical relations cannot be defined by
induction on types. In the case of deterministic languages, this problem has been addressed
by the technique of syntactic minimal invariance [4] (inspired by domain theory [15]). The
idea here is that one proves that a syntactically definable fixed point on a recursive type
is contextually equivalent to the identity function, and then uses a so-called unwinding
theorem for syntactically definable fixed points when showing the existence of the logical
relations. However, in the presence of countable nondeterminism it is not clear how to define
the unwindings of the syntactic fixed point in the programming language. Indeed, Lassen
proved an unwinding theorem for his language with countable nondeterminism, but he did
so by extending the language with new terms needed for representing the unwindings and
left open the question of whether this is a conservative extension of the language.

Here we give a logical relations model of our language where we do not rely on syntactic
minimal invariance for constructing the logical relations. Instead, we use the idea of step-
indexed logical relations [2]. In particular, we show how to use step-indexing over ordinals
larger than ω to reason about must-equivalence in the presence of countable nondeterminism.

This approach turns out to be both simple and also useful for reasoning about concrete
may- and must-equivalences. We show that our logical relations are sound and complete
with respect to the contextually defined notions of may- and must-equivalence. Moreover, we
show how to use our logical relations to establish some concrete equivalences. In particular,
we prove the recursion-induction rule from Lassen [10] and establish the syntactic minimal
invariance property (without extending the language with new unwinding terms). We also
include an example to show that the model can be used to prove parametricity properties
(free theorems) of polymorphic types.

As another application we show how to define and use step-indexed logical relations for
showing the adequacy of a continutation-passing-style (cps) transformation for our language
with countable nondeterminism. Specifically, we define a cps translation for the language
and show that if the cps-transforms of two expressions are may- and must-contextually
equivalent, then also the original expressions are may- and must-equivalent.

Overview of the technical development. One way to understand the failure of ω-
continuity in an operational setting is to consider the must-convergence predicate e ⇓, which
by Tarski’s fixed point theorem can be defined as the least fixed point of the monotone
functional Φ(R) = {e | ∀e′. e 7−→ e′ ⇒ e′ ∈ R} on sets of terms. Here e 7−→ e′ means that
e reduces to e′ in one step. However, due to the countable branching the fixed point is not
reached by ω-many iterations

⋃
n∈ω Φn(∅). The reason is that even when a program has no

infinite reduction sequences, we cannot in general bound the length of reduction sequences
by any n < ω.

The idea of step-indexed semantics is a stratified construction of relations which facilitates
the interpretation of recursive types, and in previous applications this stratification has
typically been realized by indexing over ω. However, as we pointed out, the closure ordinal
of the inductively defined must-convergence predicate is strictly larger than ω: the least
fixed point ⇓ is reached after ω1-many iterations, for ω1 the least uncountable ordinal. (In
fact, the least non-recursive ordinal would suffice [3].) Thus, one of the key steps in our
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τ ::= α | 1 | τ1 × τ2 | τ1 → τ2 | µα.τ1 + . . .+ τn | ∀α.τ
v ::= x | 〈〉 | 〈v1, v2〉 | λx.e | ini v | Λα.e
e ::= v | ? | proji v | v e | case v of in1 x1. e1| . . . |inn xn. en | v τ
E ::= [] | v E

Figure 1: Types, terms and evaluation contexts

development is the definition of α-indexed uniform relations, for arbitrary ordinals α, in
Section 3.

In Section 4 we define a logical ω-indexed uniform relation, and use this relation to prove
a CIU theorem for may-contextual equivalence. The logical relation combines step-indexing
and biorthogonality, and we can prove that it coincides with may-contextual equivalence;
the proofs are similar to those in [17]. Section 5 considers the case of must-contextual
equivalence. The only modifications that this requires, compared to Section 4, are the use of
ω1-indexed uniform relations and of a suitably adapted notion of biorthogonality.

In Section 7 we define the cps-transformation and show adequacy of it by means of
step-indexed logical relations; for the must-equivalence we use indexing over ω1.

Summary of contributions. In summary, the contribution of this paper is a simple,
operationally-based model of countable nondeterminism in a higher-order language, and
the use of this model for proving several non-trivial applications in Section 6. In particular,
we derive a least-fixed point property for recursive functions in our language, answering
a question raised by Lassen [10]. Moreover, we show adequacy of a cps-transformation
for the language; this appears to be the first such result for a language with countable
nondeterminism.

Laird [9] has developed a fully abstract denotational model based on bidomains for
a calculus similar to the one studied here but without recursive and polymorphic types;
our model appears to be the first model of countable nondeterminism for a language with
impredicative polymorphism.

2. A lambda calculus with countable choice

Syntax and operational semantics. Figure 1 gives the syntax of a higher-order functional
language with recursive and polymorphic types, and a (countably branching) choice construct.
We assume disjoint, countably infinite sets of type variables, ranged over by α, and term
variables, ranged over by x. The free type variables of types and terms, ftv(τ) and ftv(e),
and free term variables fv(e), are defined in the usual way. The notation (·)[~τ/~α] denotes
the simultaneous capture-avoiding substitution of types ~τ for the free type variables ~α in
types and terms; similarly, e[~v/~x] denotes simultaneous capture-avoiding substitution of
values ~v for the free term variables ~x in e.

The syntax is kept minimal, and in examples we may use additional syntactic sugar, for
instance writing let x = e in e′ for (λx.e′) e and e τ for let f = e in f τ for some fresh f .
We define the unary natural numbers datatype as nat = µα.1 +α and write 0 = in1 〈〉 and
n+1 = in2(n). The ‘erratic’ (finitely branching) choice construct e1 or e2 can be defined
from ? as let x = ? in case x of in1 y. e1 | in2 y. e2 for fresh x, y.
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proji 〈v1, v2〉 7−→ vi case (inj v) of (. . . |inj xj . ej| . . .) 7−→ ej [v/xj ]

(λx.e) v 7−→ e[v/x] ? 7−→ n (n ∈ N)

(Λα.e) τ 7−→ e[τ/α] v e 7−→ v e′ if e 7−→ e′

Figure 2: Operational semantics

x:τ ∈ Γ ∆ ` Γ

∆; Γ ` x : τ

∆ ` Γ

∆; Γ ` 〈〉 : 1

∆; Γ ` v1 : τ1 ∆; Γ ` v2 : τ2

∆; Γ ` 〈v1, v2〉 : τ1× τ2

∆; Γ, x:τ1 ` e : τ2

∆; Γ ` λx.e : τ1→ τ2

∆; Γ ` v : τj [µα.τ1 + . . .+ τn/α]

∆; Γ ` inj v : µα.τ1 + . . .+ τn
1 ≤ j ≤ n

∆, α; Γ ` e : τ

∆; Γ ` Λα.e : ∀α.τ
∆; Γ ` v : τ1 × τ2

∆; Γ ` proji v : τi

∆; Γ ` v : τ ′ → τ ∆; Γ ` e : τ ′

∆; Γ ` v e : τ

∆; Γ ` v : µα.τ1 + . . .+ τn . . . ∆; Γ, xj :τj [µα.τ1 + . . .+ τn/α] ` ej : τ . . .

∆; Γ ` case v of (. . . | inj xj . ej | . . .) : τ

∆; Γ ` v : ∀α.τ ∆ ` τ ′

∆; Γ ` v τ ′ : τ [τ ′/α]

∆ ` Γ

∆; Γ ` ? : nat

∅ ` τ
` [] : τ( τ

∅;∅ ` v : τ → τ2 ` E : τ1 ( τ

` v E : τ1 ( τ2

Figure 3: Typing of terms and evaluation contexts, where Γ ::= ∅ | Γ, x:τ and ∆ ::= ∅ | ∆, α.
The notation ∆ ` τ means that ftv(τ) ⊆ ∆, and ∆ ` Γ means that ∆ ` τ holds
for all x:τ ∈ Γ.

The operational semantics of the language is given in Figure 2 by a reduction relation
e 7−→ e′. In particular, the choice operator ? evaluates nondeterministically to any numeral
n (n ∈ N). We also consider evaluation contexts E, and write E[e] for the term obtained by
plugging e into E. It is easy to see that e 7−→ e′ holds if and only if E[e] 7−→ E[e′].

Typing judgements take the form ∆; Γ ` e : τ where Γ is a typing context x1:τ1, . . . , xn:τn
and where ∆ is a finite set of type variables that contains the free type variables of τ1, . . . , τn
and τ . The rules defining this judgement are summarized in Figure 3. The typing judgement
for evaluation contexts, ` E : τ( τ ′, means that ∅;∅ ` E[e] : τ ′ holds whenever ∅;∅ ` e : τ .

We write Type for the set of closed types τ , i.e., where ftv(τ) = ∅. We write Val(τ)
and Tm(τ) for the sets of closed values and terms of type τ , resp., and Stk(τ) for the
set of τ -accepting evaluation contexts. For a typing context Γ = x1:τ1, . . . , xn:τn with
τ1, . . . , τn ∈ Type, let Subst(Γ) = {γ ∈ Val~x | ∀1 ≤ i ≤ n. γ(xi) ∈ Val(τi)} denote the set of
type-respecting value substitutions. In particular, if ∆; Γ ` e : τ then ∅;∅ ` eδγ : τδ for
any δ ∈ Type∆ and γ ∈ Subst(Γδ), and the type system satisfies the standard progress and
preservation theorems.
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∆; Γ ` x R x : τ
x:τ ∈ Γ

∆; Γ ` 〈〉 R 〈〉 : 1

∆; Γ ` v1 R v′1 : τ1 ∆; Γ ` v2 R v′2 : τ2

∆; Γ ` 〈v1, v2〉 R 〈v′1, v′2〉 : τ1 × τ2

∆; Γ, x:τ1 ` e R e′ : τ2

∆; Γ ` λx.e R λx.e′ : τ1 → τ2

∆; Γ ` v R v′ : τj [µα.τ1 + . . .+ τn/α]

∆; Γ ` inj v R inj v
′ : µα.τ1 + . . .+ τn

1 ≤ j ≤ n
∆, α; Γ ` e R e′ : τ

∆; Γ ` Λα.e R Λα.e′ : ∀α.τ

∆; Γ ` v R v′ : τ1 × τ2

∆; Γ ` proji v R proji v
′ : τi

∆; Γ ` v R v′ : τ ′ → τ ∆; Γ ` e R e′ : τ ′

∆; Γ ` v e R v′ e′ : τ

∆; Γ ` v R v′ : τ . . . ∆; Γ, xj :τj [τ/α] ` ej R e′j : τ ′ . . .

∆; Γ ` case v of (. . . | inj xj . ej | . . .) R case v′ of (. . . | inj xj . ej | . . .) : τ ′
τ = µα.τ1 + . . .+ τn

∆; Γ ` v R v′ : ∀α.τ
∆; Γ ` v τ ′ R v′ τ ′ : τ [τ ′/α]

ftv(τ ′) ⊆ ∆
∆; Γ ` ? R ? : nat

Figure 4: Compatibility properties of type-indexed relations

We let fix : ∀α, β.((α→β)→ (α→β))→ (α→β) denote a variant of the (call-by-value)
fixed point combinator from untyped lambda calculus, fix = Λα, β.λf.δf (in δf ) where δf is
the term λy.case y of in y′. f(λx.let r= y′ y in r x), and we write Ω : ∀α.α for the term
Λα.fix1α (λf.f) 〈〉. Note that reduction from Ω is deterministic and non-terminating.

Contextual approximation. We follow Lassen’s approach [10] and define contextual
approximation as the largest relation that satisfies certain compatibility and adequacy
properties (also see, e.g. [16, 17]). The technical advantage of this approach, compared to
the more traditional one of universally quantifying over program contexts, is that in proofs
there will be no need to explicitly take care of contexts and of term occurrences within
contexts. In our terminology, we keep close to Pitts [16], except for suitably adapting the
definitions to take the nondeterministic outcomes of evaluation into account.

The observables on which contextual approximation is based are given by may- and
must-convergence. A closed term e may-converges, written e ↓, if e 7−→∗ v for some v ∈ Val ,
and e may-diverges, written e ↑, if there is an infinite reduction sequence starting from e.
The must-convergence predicate e ⇓ is the complement of may-divergence, and it can be
defined inductively by e ⇓ if and only if for all e′, if e 7−→ e′ then e′ ⇓.

Definition 1 (Type-indexed relation). A type-indexed relation is a set of tuples (∆,Γ, e, e′, τ)
such that ∆; Γ ` e : τ and ∆; Γ ` e′ : τ holds. We write ∆; Γ ` e R e′ : τ if (∆,Γ, e, e′, τ) ∈ R.

Definition 2 (Precongruence). A type-indexed relation R is reflexive if ∆; Γ ` e : τ implies
∆; Γ ` e R e : τ . It is transitive if ∆; Γ ` e R e′ : τ and ∆; Γ ` e′ R e′′ : τ implies
∆; Γ ` e R e′′ : τ . A precongruence is a reflexive and transitive type-indexed relation R that
is closed under the inference rules in Figure 4.
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let x= ? in e ∼=ctx e (x /∈ fv(e)) let x= v in e ∼=ctx e[v/x] let x= e in x ∼=ctx e

e or e ∼=ctx e Ω .ctx
↓ e Ω .ctx

⇓ e

e1 or e2
∼=ctx e2 or e1 e1 .ctx

↓ e1 or e2 e1 or e2 .ctx
⇓ e1

(e1 or e2) or e3
∼=ctx e1 or (e2 or e3) e or Ω ∼=ctx

↓ e e or Ω ∼=ctx
⇓ Ω

Figure 5: Basic may- and must-theory, where e1 or e2 is an abbreviation for the term
let x = ? in case x of in1 y. e1 | in2 y. e2

Definition 3 (May- and must-adequate relations). A type-indexed relation R is may-
adequate if, whenever ∅;∅ ` e R e′ : τ holds, then e ↓ implies e′ ↓. It is must-adequate if,
whenever ∅;∅ ` e R e′ : τ holds, then e ⇓ implies e′ ⇓.

Definition 4 (Contextual approximations and equivalences). May-contextual approximation,
written .ctx

↓ , is the largest may-adequate precongruence. May-contextual equivalence, ∼=ctx
↓ ,

is the symmetrization of .ctx
↓ . Analogously, must-contextual approximation, written .ctx

⇓ ,

is the largest must-adequate precongruence, and must-contextual equivalence, ∼=ctx
⇓ , is its

symmetrization. Contextual approximation, .ctx, and contextual equivalence, ∼=ctx, are
given as intersections of the respective may- and must-relations, and thus ∼=ctx is also the
symmetrization of .ctx.

That this largest (may-, must-) adequate precongruence exists can be shown as in [16],
by proving that the relation S =

⋃
{R | R compatible and (may-, must-) adequate} is an

adequate precongruence.
In principle, to establish an equivalence ∆; Γ ` e ∼=ctx e′ : τ it suffices to find some

may- and must-adequate congruence R that contains the tuple (∆,Γ, e, e′, τ) since ∼=ctx is
the largest such relation. However, in practice it is difficult to verify that a relation R has
the necessary compatibility properties in Figure 4. An alternative characterization of the
contextual approximation and equivalence relations can be given in terms of CIU preorders
[14], which we define next.

Definition 5 (CIU preorders). May- and must-CIU preorder, written .ciu
↓ and .ciu

⇓ resp.,

are the type-indexed relations defined as follows: for all e, e′ with ∆; Γ ` e : τ and ∆; Γ ` e′ : τ ,

• ∆; Γ ` e .ciu
↓ e′ : τ ⇔ ∀δ ∈Type∆, γ ∈Subst(Γδ), E ∈Stk(τδ). E[eδγ] ↓ ⇒

E[e′δγ] ↓
• ∆; Γ ` e .ciu

⇓ e′ : τ ⇔ ∀δ ∈Type∆, γ ∈Subst(Γδ), E ∈Stk(τδ). E[eδγ] ⇓ ⇒
E[e′δγ] ⇓

The CIU preorder is defined as the intersection of .ciu
↓ and .ciu

⇓ .

Theorem 6 (CIU theorem). The (may-, must-) CIU preorder coincides with (may-, must-)
contextual approximation.

Using the CIU theorem, it is easy to verify that all the deterministic reductions are
also valid equivalences, and that the various call-by-value eta laws hold. Moreover, we can
establish the laws of Moggi’s computational lambda calculus and the basic (inequational)
theory of erratic choice (Figure 5). We will prove the CIU theorem in Section 4 (for the
may-CIU preorder) and Section 5 (for the must-CIU preorder).
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3. Uniform relations

For an ordinal number α and a set X we define an α-indexed uniform relation on X to be a
family (Rβ)β<α of relations Rβ ⊆ X such that

• R0 = X,
• Rβ+1 ⊆ Rβ for all β < α, and
• Rλ =

⋂
β<λRβ for every limit ordinal λ < α.

Let Relα(X) denote the α-indexed uniform relations on X.

Recursive definitions. The notions of n-equivalence, non-expansiveness and contractive-
ness (e.g., [5]) all generalize from the case of ω-indexed uniform relations: Given α-indexed
uniform relations R,S ∈ Relα(X) and ν < α we say that R and S are ν-equivalent, written

R
ν
= S, if Rβ = Sβ for all β ≤ ν. In particular, R = S if and only if R

ν
= S for all ν < α.

A function F : Relα(X1)× · · ·×Relα(Xn)→ Relα(X) is non-expansive if ~R
ν
= ~S implies

F (~R)
ν
= F (~S), and F is contractive if ~R

ν
= ~S implies F (~R)

ν+ 1
= F (~S). If R ∈ Relα(X) then

.R ∈ Relα(X) is the uniform relation determined by .Rβ+ 1 = Rβ ; this operation gives rise
to a contractive function on Relα(X).

Proposition 7 (Unique fixed points). If F : Relα(X)→ Relα(X) is contractive, then F has
a unique fixed point fix r.F (r).

Proof. First note that F has at most one fixed point: if R,S are fixed points of F then, by

the contractiveness of F , we can establish that R = F (R)
ν
= F (S) = S holds for all ν < α

by induction and thus R = S.
Because of the uniformity conditions it is sufficient to give the components of the fixed

point fix r.F (r) that are indexed by successor ordinals. We set fix r.F (r)ν+ 1 = F (R)ν+ 1

where R ∈ Relα(X) is defined by Rβ = fix r.F (r)β for β ≤ ν and Rβ = ∅ for β > ν. By
induction, it is easy to see that fix r.F (r) ∈ Relα(X) and that F (fix r.F (r))ν = fix r.F (r)ν
holds for all ν < α, and thus F (fix r.F (r)) = fix r.F (r).

Proposition 7 is an instance of Di Gianantonio and Miculan’s sheaf-theoretic fixed point
theorem [7]. Indeed, an α-indexed uniform relation on X corresponds to a subobject of the
constant sheaf on X in the sheaf topos on α.

Uniform relations on syntax. For τ, τ ′ ∈ Type we consider the collections of α-indexed
uniform relations between values, terms and evaluation contexts: we write VRelα(τ, τ ′)
for Relα(Val(τ)×Val(τ ′)), we write SRelα(τ, τ ′) for Relα(Stk(τ)×Stk(τ ′)), and we use
TRelα(τ, τ ′) for Relα(Tm(τ)×Tm(τ ′)).

The description of the logical relations in the sections below makes use of the following
(non-expansive) constructions on uniform relations:

• R1×R2 ∈ VRelα(τ1× τ2, τ
′
1× τ ′2), for R1 ∈ VRelα(τ1, τ

′
1) and R2 ∈ VRelα(τ2, τ

′
2), is

defined by (R1×R2)β = {(〈v1, v2〉, 〈v′1, v′2〉) | (v1, v
′
1) ∈ (R1)β ∧ (v2, v

′
2) ∈ (R2)β}.

• R1→R2 ∈ VRelα(τ1→ τ2, τ
′
1→ τ ′2), for R1 ∈ VRelα(τ1, τ

′
1) and R2 ∈ TRelα(τ2, τ

′
2), is

given by (R1→R2)β = {(λx.e, λx.e′) | ∀ν≤β.∀(v, v′)∈ (R1)ν . (e[v/x], e′[v′/x])∈ (R2)ν}.
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• ∀r.F (r)∈VRelα(∀α.τ1, ∀α.τ ′1), for Fτ,τ ′ : VRelα(τ, τ ′) → TRelα(τ1[τ/α], τ ′1[τ ′/α]) a
family of non-expansive maps, is the uniform relation that is defined by ∀r.F (r)β =
{(Λα.e,Λα.e′) | ∀τ, τ ′ ∈Type, R∈VRelα(τ, τ ′). (e[τ/α], e′[τ ′/α] ∈ Fτ,τ ′(R)β}.

• injR ∈ VRelα(τ, τ ′), for τ = µα.τ1 + . . .+ τm and τ ′ = µα.τ ′1 + . . .+ τ ′n and R ∈
VRelα(τj [τ/α], τ ′j [τ

′/α]), is given by (injR)β = {(inj v, inj v′) | (v, v′) ∈ Rβ}.

4. May equational theory

In this section, we will define a logical uniform relation that is used to prove that may-CIU
preorder and may-contextual approximation coincide. The key idea of the definition is
the usual one of step-indexing [2], i.e., that the observables can be stratified based on
step-counting in the operational semantics. We write e ↓n if e 7−→ . . . 7−→ v for some v ∈ Val
in at most n reduction steps, thus e ↓ holds if and only if e ↓n for some n.

Logical ω-indexed uniform relation for may-approximation. In the case of may-
approximation, it suffices to consider ω-indexed uniform relations. Using the constructions
on relations given above, we define a relational interpretation JτK (~r) ∈ VRelω(τ [~τ/~α], τ [~τ ′/~α])
by induction on the type ~α ` τ , given closed types τ1, τ

′
1, . . . , τk, τ

′
k ∈ Type and relations

r1 ∈ VRelω(τ1, τ
′
1), . . . , rk ∈ VRelω(τk, τ

′
k):

JαiK (~r) = ri Jτ1 × τ2K (~r) = Jτ1K (~r)× Jτ2K (~r)

J1K (~r) = (Id1)n<ω Jτ1 → τ2K (~r) = Jτ1K (~r)→ Jτ2K (~r)⊥⊥

J∀α.τK (~r) = ∀r.JτK (~r, r)⊥⊥ Jµα.τ1 + . . .+ τmK (~r) = fix s.
⋃
jinj(. JτjK (~r, s))

Here, value relations r ∈ VRelω(τ, τ ′) are lifted to relations r⊥ ∈ SRelω(τ, τ ′) on evaluation
contexts and to relations r⊥⊥ ∈ TRelω(τ, τ ′) on terms by biorthogonality, much as in [8]:

r⊥n = {(E,E′) | ∀j ≤ n. ∀(v, v′) ∈ rj . E[v] ↓j ⇒ E′[v′] ↓ }

r⊥⊥n = {(e, e′) | ∀j ≤ n. ∀(E,E′) ∈ r⊥j . E[e] ↓j ⇒ E′[e′] ↓ }
The fixed point in the interpretation of recursive types is well-defined by Proposition 7 since
each JτK denotes a family of non-expansive functions, and thus composition with . yields a
contractive function.

The following observation is useful for calculations:

Lemma 8 (Context composition). If (v, v′) ∈ Jτ1→ τ2K~rn and (E,E′) ∈ Jτ2K~r⊥n then

(E[v []], E′[v′ []]) ∈ Jτ1K~r⊥n+1.

Proof. Let j ≤ n+ 1, (v1, v
′
1) ∈ Jτ1K~rj . Assume E[v v1] ↓j . We have v = λx.e and v′ = λx.e′

and (λx.e, λx.e′) ∈ Jτ1→ τ2K~rn for some x, e, e′ and necessarily E[v v1] 7−→ E[e[v1/x]] ↓j−1.

By definition, (e[v1/x], e′[v′1/x]) ∈ Jτ2K~r⊥⊥j−1. From (E,E′) ∈ Jτ2K~r⊥n we obtain E′[e′[v′1/x]] ↓.
Thus, E′[v′ v′1] ↓.
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The relational interpretation extends pointwise to value substitutions: (γ, γ′) ∈ JΓK~rn if
(γ(x), γ(x′)) ∈ JτK~rn for all x:τ ∈ Γ. Based on this interpretation we consider the following
type-indexed relation:

∆; Γ ` e .log
↓ e′ : τ where ∆ = ~α

⇔ ∀~τ , ~τ ′. ∀~r ∈VRelω(~τ , ~τ ′).∀n<ω. ∀(γ, γ′) ∈ JΓK~rn. (e[~τ/~α]γ, e′[~τ ′/~α]γ′) ∈ JτK~r⊥⊥n

The definition of .log
↓ builds in enough closure properties to prove its compatibility.

Proposition 9 (Fundamental property). The relation .log
↓ has the compatibility properties

given in Figure 4. In particular, it is reflexive: if ∆; Γ ` e : τ then ∆; Γ ` e .log
↓ e : τ .

Proof. We consider the inference rules from Figure 4 in turn.

• For the introduction of recursive types, we assume that, for every 1 ≤ j ≤ m,

∆; Γ ` v .log
↓ v′ : τj [µα.τ1 + . . .+ τm/α], and then prove that ∆; Γ ` inj v .log

↓
inj v

′ : µα.τ1 + . . .+ τm.
For notational convenience we only consider the case of closed terms. Let τ

abbreviate the type µα.τ1 + . . .+ τm. Note that JτK~r =
⋃
j inj

(
. JτjK (~r, JτK~r)

)
=⋃

j inj
(
. Jτj [τ/α]K (~r)

)
by definition and a substitution lemma, and that the in-

clusion Jτj [τ/α]K (~r) ⊆ . Jτj [τ/α]K (~r) holds. Thus, assuming (E,E′) ∈ JτK~r⊥n
it follows from Lemma 8 that (E[(λx.inj x) []], E′[(λx.inj x) []]) ∈ Jτj [τ/α]K~r⊥n+1.

Thus, if E[inj v] ↓i for some i ≤ n then E′[(λx.inj x) v′]) ↓ follows from (v, v′) ∈
Jτj [τ/α]K~r⊥⊥n+1. Therefore we can conclude E′[inj v

′] ↓, and have shown (inj v, inj v
′) ∈

JτK~r⊥⊥n . Since n was chosen arbitrarily, we have ∆; Γ ` inj v .log
↓ inj v

′ : τ .

• For the elimination of recursive types, we assume that τ is of the form µα.τ1 + . . .+ τm,

∆; Γ, xj :τj [τ/α] ` ej .log
↓ e′j : τ ′ for all 1 ≤ j ≤ m and ∆; Γ ` v .log

↓ v′ : τ . We prove

∆; Γ ` case v of(. . . |inj xj . ej | . . .) .log
↓ case v′ of(. . . |inj xj . e′j | . . .) : τ ′.

For simplicity we only consider the case of closed terms. By definition and by a
substitution lemma we have JτK~r =

⋃
j inj

(
. JτjK (~r, JτK~r)

)
=
⋃
j inj(. Jτj [τ/α]K~r).

Moreover, (λx.case x of(. . . |inj xj . ej| . . .), λx.case x of(. . . |inj xj . e
′
j| . . .)) ∈

Jτ → τ ′K~rn for any n. To see this, assume k ≤ n, let (a, a′) ∈ JτK~rn and (E,E′) ∈
Jτ ′K~r⊥n such that E[case a of(. . . |inj xj . ej| . . .)] ↓k. By the above observation
we have a = injaj and a′ = inja

′
j for some (aj , a

′
j) ∈ Jτj [τ/α]K~rk−1. From

E[case a of(. . . |inj xj . ej| . . .)] ↓k we obtain E[ej [aj/xj ]] ↓k−1, and thus the as-
sumption on ej and e′j gives E′[e′j [a

′
j/xj ]] ↓. From this we can conclude that

E′[case a′ of(. . . |inj xj . e
′
j| . . .)] ↓ holds.

To prove the case, assume next that (E,E′) ∈ Jτ ′K~r⊥n . From Lemma 8 we obtain
(E[(λx.case x of(. . . |inj xj . ej| . . .)) []], E′[(λx.case x of(. . . |inj xj . e

′
j| . . .)) []]) ∈

JτK~r⊥n+1. Now, since we know (v, v′) ∈ JτK~r⊥⊥n+1 by assumption, we obtain that
E[case v of(. . . |inj xj . ej | . . .)] ↓n implies E[case v′ of(. . . |inj xj . e′j | . . .)] ↓ as
required.

• For choice, we assume ∆ ` Γ and show ∆; Γ ` ? .log
↓ ? : nat. Suppose (E,E′) ∈

JnatK~r⊥n and E[?] ↓j for some j ≤ n. Then E[?] 7−→ E[k] and E[k] ↓j−1 for some
k ∈ N. By induction on k, and using the compatibility for the introduction of

recursive types, we obtain that (k, k) ∈ JnatK~r⊥⊥n , and thus E′[k] ↓. Hence E′[?] ↓.
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∆; Γ ` v R v′ : τ ∆; Γ, x:τ ` e R e′ : τ ′

∆; Γ ` e[v/x] R e′[v′/x] : τ ′
∆, α; Γ ` e R e′ : τ ′

∆; Γ[τ/α] ` e R e′ : τ ′[τ/α]
∆ ` τ

Figure 6: Substitutivity properties of type-indexed relations

The proofs for the remaining rules are similar. and can be found in Appendix A.2.

Theorem 10 (Coincidence). ∆; Γ ` e .log
↓ e′ : τ if and only if ∆; Γ ` e .ciu

↓ e′ : τ .

Proof. For the direction from left to right, let δ ∈ Type∆, γ ∈ Subst(Γδ) and E ∈ Stk(τδ),
and assume E[eδγ] ↓, i.e., E[eδγ] ↓n for some n. We must show E[e′δγ] ↓. As a consequence

of Proposition 9, (γ, γ) ∈ JΓδKn and (E,E) ∈ JτδK⊥n . By definition of ∆; Γ ` e .log
↓ e′ : τ and

a substitution lemma we have (eδγ, e′δγ) ∈ JτδK⊥⊥n , and thus E[eδγ] ↓n gives E[e′δγ] ↓.
For the direction from right to left, first note that the logical relation is closed under

may-CIU approximation; more precisely, if ∆; Γ ` e .log
↓ e′ : τ and ∆; Γ ` e′ .ciu

↓ e′′ : τ

then ∆; Γ ` e .log
↓ e′′ : τ . This observation follows from the definition of (·)⊥⊥ used

in ∆; Γ ` e .log
↓ e′ : τ and the definition of CIU approximation. Now assume that

∆; Γ ` e .ciu
↓ e′ : τ . By Proposition 9, ∆; Γ ` e .log

↓ e : τ , and thus ∆; Γ ` e .log
↓ e′ : τ .

Proof of CIU Theorem 6(1). We first show that .ciu
↓ is contained in .ctx

↓ . By definition,

.ctx
↓ is the largest may-adequate precongruence, thus it is sufficient to establish that .ciu

↓ is a

may-adequate precongruence. From the definition it is immediate that .ciu
↓ is may-adequate,

reflexive and transitive. By Theorem 10, .ciu
↓ coincides with .log

↓ which is compatible by
Proposition 9.

For the other direction, following Pitts [17], we first consider the special case where

∅;∅ ` e .ctx
↓ e′ : τ . To prove ∅;∅ ` e .ciu

↓ e′ : τ , note that ∅;∅ ` E[e] .ctx
↓ E[e′] : τ ′ holds

for all evaluation contexts E such that ` E : τ( τ ′ since .ctx
↓ is reflexive and compatible.

Hence, that E[e] ↓ implies E[e′] ↓ follows since .ctx
↓ is may-adequate.

The general case reduces to this special case since may-contextual approximation has the
substitutivity properties given in Figure 6. For the first of these, assume ∆; Γ ` v .ctx

↓ v′ : τ

and ∆; Γ, x:τ ` e .ctx
↓ e′ : τ ′. From the definition of may-CIU approximation it is easy to see

∆; Γ ` e[v/x] .ciu
↓ (λx.e) v : τ ′ and ∆; Γ ` (λx.e′) v′ .ciu

↓ e′[v′/x] : τ ′ .

Since we have already shown that .ciu
↓ is contained in .ctx

↓ , and since ∆; Γ ` (λx.e) v .ctx
↓

(λx.e′) v′ : τ ′ by compatibility, we can conclude ∆; Γ ` e[v/x] .ctx
↓ e′[v′/x] : τ ′ by transitivity.

The second substitutivity property is proved similarly, using a weakening property of may-
contextual approximation.

5. Must equational theory

To define the logical relation for must-approximation, we need to stratify the observables
again. For terms e and ordinals β we define e ⇓β inductively, as the least relation such that
e ⇓β if for all e′ such that e 7−→ e′ there exists ν < β and e′ ⇓ν . The essential observation is
that ⇓β indeed captures must-convergent behaviour.
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Proposition 11 (Stratified must-convergence). e ⇓ if and only if e ⇓β for some β < ω1

(for ω1 the least uncountable ordinal).

Proof. The proof from left to right is by induction on e ⇓. By induction hypothesis there
exists ordinals ν(e′) < ω1 for each term e′ such that e 7−→ e′. Let β =

⋃
ν(e′), then

β+ 1 < ω1 (since there are only countably many such e′ and each ν(e′) is countable) and
e ⇓β+ 1. The direction from right to left is by induction on β.

Logical ω1-indexed uniform relation for must-approximation. Proposition 11 indi-
cates that logical relations for must-approximation need to be indexed over ω1. The lifting
of value relations r ∈ VRelω1(τ, τ ′) to relations r⊥ ∈ SRelω1(τ, τ ′) on evaluation contexts
and to relations r⊥⊥ ∈ TRelω1(τ, τ ′) on terms is defined with respect to must termination.

r⊥β = {(E,E′) | ∀ν ≤ β. ∀(v, v′) ∈ rν . E[v] ⇓ν ⇒ E′[v′] ⇓ }

r⊥⊥β = {(e, e′) | ∀ν ≤ β. ∀(E,E′) ∈ r⊥ν . E[e] ⇓ν ⇒ E′[e′] ⇓ }
Except for this difference, the relational interpretation JτK (~r) ∈ VRelω1(τ [~τ/~α], τ [~τ ′/~α]) is
literally the same as in Section 4 and defined by induction on the type ~α ` τ , given closed
types τ1, τ

′
1, . . . , τk, τ

′
k ∈ Type and relations r1 ∈ VRelω1(τ1, τ

′
1), . . . , rk ∈ VRelω1(τk, τ

′
k):

JαiK (~r) = ri Jτ1 × τ2K (~r) = Jτ1K (~r)× Jτ2K (~r)

J1K (~r) = (Id1)β<ω1 Jτ1 → τ2K (~r) = Jτ1K (~r)→ Jτ2K (~r)⊥⊥

J∀α.τK (~r) = ∀r.JτK (~r, r)⊥⊥ Jµα.τ1 + . . .+ τmK (~r) = fix s.
⋃
jinj(. JτjK (~r, s))

Logical must-approximation is defined as follows:

∆; Γ ` e .log
⇓ e′ : τ where ∆ = ~α

⇔ ∀~τ , ~τ ′. ∀~r ∈VRelω1(~τ , ~τ ′).∀β <ω1.∀(γ, γ′) ∈ JΓK~rβ. (e[~τ/~α]γ, e′[~τ ′/~α]γ′) ∈ JτK~r⊥⊥β

Proposition 12 (Fundamental property). The relation .log
⇓ has the compatibility properties

given in Figure 4. In particular, it is reflexive: if ∆; Γ ` e : τ then ∆; Γ ` e .log
⇓ e : τ .

Proof. The proof is similar to the one for Proposition 9. We give only the case for choice,

where we assume ∆ ` Γ and prove ∆; Γ ` ? .log
⇓ ? : nat. Suppose (E,E′) ∈ JnatK~r⊥β and

E[?] ⇓β . Then E[?] 7−→ e implies that e is of the form E[k] and E[k] ⇓νk for some k ∈ N and
νk < β. Using the compatibility for the introduction form of recursive types, an induction

on k shows that (k, k) ∈ JnatK~r⊥⊥νk , and thus E′[k] ⇓ for all k ∈ N. Hence E′[?] ⇓.

Theorem 13 (Coincidence). ∆; Γ ` e .log
⇓ e′ : τ if and only if ∆; Γ ` e .ciu

⇓ e′ : τ .

Proof. The proof is completely analogous to that of Theorem 10. For the direction from left
to right one uses the characterization of ⇓ in terms of ⇓β (Proposition 11) and then appeals

to Proposition 12. The direction from right to left uses the fact that .log
⇓ is closed under

must-CIU approximation.
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∆; Γ ` v v′ .ctx
↓ v′ : τ1→ τ2

∆; Γ ` fix τ1τ2 v .ctx
↓ v′ : τ1→ τ2

∆; Γ ` v v′ .ctx
⇓ v′ : τ1→ τ2

∆; Γ ` fix τ1τ2 v .ctx
⇓ v′ : τ1→ τ2

Figure 7: Recursion induction: least fixed point property of fix

Proof of CIU Theorem 6(2). The proof is analogous to that of Theorem 6(1). From the

definition, .ciu
⇓ is a must-adequate reflexive and transitive relation, by Proposition 12 and

Theorem 13 it is also compatible, and thus contained in .ctx
⇓ . From this containment and the

closure of .ciu
⇓ under beta conversion it follows that .ctx

⇓ has the substitutivity properties in

Figure 6. Thus it suffices to prove the containment of .ctx
⇓ in .ciu

⇓ for closed terms, which is

clear by the compatibility and must-adequacy of .ctx
⇓ .

6. Applications

This section illustrates how the logical relation characterization of contextual approximation
can be used to derive interesting examples and further proof principles. We consider three
such applications: a recursion-induction principle for recursively defined functions, syntactic
minimal invariance of a recursive type, and a “free theorem” about a polymorphic type.

Proving recursion-induction for a similar language (without polymorphic types) has
been an open problem [10]. Here, the proof is essentially a straightforward induction, using
the indexing of the logical relations.

Recursion-induction. Recall from the introduction that fix : ∀α, β.((α→β)→(α→β))→
(α→β) is given by the term Λα, β.λf.δf (in δf ) where δf is an abbreviation for the term
λy.case y of in y′. f(λx.(λr.r x)(y′ y)). We now prove that fix is a least fixed point combi-
nator, i.e., we prove the soundness of the recursion-induction rules in Figure 7. We only
include the proof for .ctx

⇓ and for notational simplicity we assume that the contexts ∆ and Γ
are empty. We assume the premise of the rule, and to show the conclusion we first prove that
(h, v′) ∈ Jτ1 → τ2Kβ where h is λx.(λr.r x) (δv (in δv)), for all β < ω1. The result then follows
from the agreement of the logical relation with contextual approximation and transitivity,
since fix τ1τ2 v ∼=ctx v h .ctx

⇓ v v′ .ctx
⇓ v′.

To prove (h, v′) ∈ Jτ1 → τ2Kβ we proceed by induction on β and assume that (h, v′) ∈
Jτ1 → τ2Kν1 , for all ν < β; we are then to show that (h, v′) ∈ Jτ1 → τ2Kβ. From the typing

rules, v′ must be of the form λx.e′ for some e′. So let β1 ≤ β and (u, u′) ∈ Jτ1Kβ1 , then it

remains to show ((λr.r u)(δv (in δv)), e
′[u′/x]) ∈ Jτ2K⊥⊥β1 .

Suppose β2 ≤ β1, (E,E′) ∈ Jτ2K⊥β2 and E[(λr.r u)(δv (in δv))] ⇓β2 ; we are to show

E′[e′[u′/x]] ⇓. By (the must-analogue of) Lemma 8 and the fundamental property of the
logical relation applied to v we obtain (E[(λr.r u) ((λx.v x) [])], E′[(λr.r u′) ((λx.v x) [])]) ∈
Jτ1 → τ2K⊥β2 . Then, since δv (in δv) 7−→2 v h and (λx.v x)h 7−→ v h, we have E[(λr.r u)(v h)] ⇓β3
for β3 < β2 ≤ β, and hence also E′[(λr.r u′) (v v′)] ⇓ by induction hypothesis.

By the premise and Theorem 13 we have that v v′ CIU-approximates v′, and thus we get
E′[(λr.r u′) v′] ⇓. Finally, since (λr.r u′) v′ 7−→∗ e′[u′/x] we obtain the required E′[e′[u′/x]] ⇓.
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Syntactic minimal invariance. Consider the type τ = µα.nat + α→ α. Let id = λx.x
and consider the term

f ≡ λh, x.case x of in1 y. in1 y | in2 g. in2 λy.h(g(h y)) .

We shall show that fix ττ f ∼=ctx id : τ → τ . This equivalence corresponds to the characteri-
zation of solutions to recursive domain equations as minimal invariants in domain-theoretic
work [15], from which Pitts derives several (co-) induction principles.

By the soundness of the call-by-value beta- and eta-laws for contextual equivalence
(Figure 5) and the transitivity of .ctx, it is easy to see that f id ∼=ctx id : τ → τ . The
recursion-induction principle therefore yields fix ττ f .ctx id : τ → τ .

For the reverse approximation we first show id .log
⇓ h : τ → τ where h is again the

term λx.(λr.r x)(δf (in δf )). We show this by proving (id , h) ∈ Jτ → τKβ for all β < ω1 by

induction on β. (The case for may-approximation is similar.) By definition, we need to

show that for all ν ≤ β and all (v, v′) ∈ JτKν , (id v, h v′) ∈ JτK⊥⊥ν . Since JτK = in1(. JnatK)∪
in2(. Jτ → τK) there are two cases to consider:

• Case (v, v′) ∈ in1(. JnatK)ν . Then there exist u, u′ ∈ Val(nat) such that v =
in1 u, v′ = in1 u

′ and (u, u′) ∈ JnatKν′ for all ν ′ < ν ≤ β. Note that in this

case (λx.(λr.r x)(δf (in δf ))) v′ ∼=ctx v′ : τ . Thus, given (E,E′) ∈ JτK⊥ν such that
E[id v] ⇓ν , it suffices to show E′[v′] ⇓ which easily follows from (v, v′) ∈ JτKν .
• Case (v, v′) ∈ in2(. Jτ → τK)ν . Then there exist g, g′ ∈ Val(τ→ τ) such that
v = in2 g, v

′ = in2 g
′ and (g, g′) ∈ Jτ→ τKν′ for all ν ′ < ν ≤ β. In this case,

we have the equivalence (λx.(λr.r x)(δf (in δf ))) v′ ∼=ctx in2(λy.h(g′(h y))) : τ . Thus,
it suffices to show (g, λy.h(g′(h y))) ∈ Jτ → τKν′ for all ν ′ < ν, or equivalently,

(g u, h(g′(hu′))) ∈ JτK⊥⊥ν′ for all ν ′ < ν and all (u, u′) ∈ JτKν′ . Let (E,E′) ∈ JτK⊥ν′
and suppose E[g u] ⇓ν′ ; we have to show E′[h(g′(hu′))] ⇓. From the induction

hypothesis we obtain (E[id []], E′[h []]) ∈ JτK⊥ν′+1, and thus (E,E′[h []]) ∈ JτK⊥ν′ . Since

(g, g′) ∈ Jτ→ τKν′ the latter entails (E[g []], E′[h(g′ []])) ∈ JτK⊥ν′ . Now, applying the

induction hypothesis again this shows (E[g(id [])], E′[h(g′(h []]))) ∈ JτK⊥ν′+1, and thus
the assumptions E[g u] ⇓ν′ and (u, u′) ∈ JτKν′ imply E′[h(g′(hu))] ⇓.

By Theorem 13 and the CIU theorem, id .log
⇓ h : τ → τ implies id .ctx

⇓ h : τ → τ . Since

id ∼=ctx f id : τ → τ and f h ∼=ctx fix ττ f : τ → τ we obtain id .ctx
⇓ fix ττ f : τ → τ by

compatibility and transitivity of must-contextual equivalence.

Parametricity. Let τ1, τ2 ∈ Type be closed types. Then the contextual approximation

∅;h:∀α.α×α→ α, f :τ1→ τ2, x:τ1, y:τ1 ` h τ2 〈f x, f y〉 .ctx f(h τ1 〈x, y〉) : τ2 . (6.1)

holds. For the proof of (6.1), we will consider the case of must-approximation only (may-
approximation is completely analogous) and show

∅;h:∀α.α×α→ α, f :τ1→ τ2, x:τ, y:τ ` h τ2 〈f x, f y〉 .log
⇓ f(h τ1 〈x, y〉) : τ2 .

Fix β < ω1, h ∈ Val(∀α.α×α→α), f ∈ Val(τ1→ τ2) and x, y ∈ Val(τ1). We need to show

(h τ2 〈f x, f y〉, f(h τ1 〈x, y〉) ∈ Jτ2K⊥⊥β . (6.2)

We have (h, h) ∈ J∀α.α×α→αK⊥⊥β by Proposition 12, and we will instantiate α by (the

opposite of) the graph of f . More precisely, consider the relation r ∈ VRel(τ2, τ1) given by
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rν = {(v, v′) | (v, f v′) ∈ Jτ2K⊥⊥ν+1}. Note that we have (id , f) ∈ Jα→ τ2K rβ . Hence, to prove

(6.2) it suffices to show (h τ2 〈f x, f y〉, h τ1 〈x, y〉) ∈ r⊥⊥β .

By definition of the logical relation we have (h τ2, h τ1) ∈ Jα×α→αK r⊥⊥β , and by the

compatibility properties it remains to show (f x, x) ∈ r⊥⊥β and (f y, y) ∈ r⊥⊥β . We consider

the former: Let (E,E′) ∈ r⊥ν for ν ≤ β such that E[f x] ⇓ν ; we must prove E′[x] ⇓. We

have (f, id) ∈ Jτ1→αK rν from which (E[f []], E′[]) ∈ Jτ1K⊥ν follows. By Proposition 12 we

have (x, x) ∈ Jτ1K⊥⊥ν , and thus E[f x] ⇓ν implies E′[x] ⇓.
Let us now consider the reverse approximation of (6.1), which holds under the condition

that f is total and deterministic, i.e., that for all v ∈ Val(τ1) there exists u ∈ Val(τ2) such
that f v ∼=ctx u : τ2.

We proceed as above and show only for the case of must-approximation. For β < ω1,
h ∈ Val(∀α.α×α→α), f ∈ Val(τ1→ τ2) and x, y ∈ Val(τ1) we will prove

(f(h τ1 〈x, y〉), h τ2 〈f x, f y〉) ∈ Jτ2K⊥⊥β . (6.3)

We use (h, h) ∈ J∀α.α×α→αK⊥⊥β where we instantiate α by the relation s ∈ VRel(τ1, τ2),

given by sν = {(v, v′) | (f v, v′) ∈ Jτ2K⊥⊥ν+1}. First note that (f, id) ∈ Jα→ τ2K sβ, and thus

the proof of (6.3) reduces to showing (h τ1 〈x, y〉, h τ2 〈f x, f y〉) ∈ s⊥⊥β .

Since we have (h τ1, h τ2) ∈ Jα×α→ αK s⊥⊥β it suffices to show (x, f x) ∈ s⊥⊥β and

(y, f y) ∈ s⊥⊥β , and we consider the former. Let (E,E′) ∈ s⊥ν for ν ≤ β such that E[x] ⇓ν ; we

must prove E′[f x] ⇓. By the assumption that f is total there exists u ∈ Val(τ2) such that
f x ∼=ctx u : τ2, and so it suffices to prove E′[u] ⇓. But this follows from (x, u) ∈ sν , and the
latter is immediate from the definition of s.

7. Adequacy of CPS transformation

In this section we consider a standard, call-by-value, cps transformation [18], extended in the
obvious way to our language with countable nondeterminism. In [4] Birkedal and Harper give
a correctness proof of such a cps-transformation by means of a logical relation for a language
with recursive types (but no polymorphism and no nondeterminism), where the logical
relation is constructed using syntactic minimal invariance. Here we show how to define and
use step-indexed logical relations for showing the adequacy of the cps-transformation, both
with respect to may- and must-equivalence. As far as we know, this is the first such result
for a language with countable nondeterminism.

We fix the answer type ρ of the cps-transformation to ρ = 1. The cps-transformation of
types, values and expressions is defined in Figure 8.

We will show the following adequacy theorem for the cps-transformation:

Theorem 14 (Adequacy). If ∆; Γ ` e1 : τ and ∆; Γ ` e2 : τ , then ∆; Γ◦ ` λk.(e1)•k .ctx

λk.(e2)•k : τ• implies ∆; Γ ` e1 .ctx e2 : τ .

Thus program transformations on the cps-translated programs are sound with respect
to the source level programs.

Proposition 15 (Type preservation).

• If ∆; Γ ` v : τ then ∆; Γ◦ ` v◦ : τ◦.
• If ∆; Γ ` e : τ then ∆; Γ◦, k : τ◦ → ρ ` (e)•k : ρ.
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• Translation of types:

α◦ = α

1◦ = 1

(τ1 × τ2)◦ = τ1
◦ × τ2

◦

(τ1 → τ2)◦ = τ1
◦ → τ2

•

(µα.τ1 + . . .+ τn)◦ = µα.τ1
◦ + . . .+ τn

◦

(∀α.τ)◦ = ∀α.τ•

where τ• = (τ◦ → ρ)→ ρ

• Translation of values:

x◦ = x

〈〉◦ = 〈〉
〈v1, v2〉◦ = 〈v1

◦, v2
◦〉

(λx.e)◦ = λx.λk.(e)•k

(iniv)◦ = iniv
◦

(Λα.e)◦ = Λα.λk.(e)•k

• Translation of computations:

(v)•k = k(v◦)

(?)•k = k(?)

(proji v)•k = k(proji v
◦)

(v e)•k = (e)•(λx.let y=v◦ x in y k)

(case v of in1 x1. e1| . . . |inn xn. en)•k = case v◦ of in1 x1. (e1)•k| . . . |inn xn. (en)•k

(v τ)•k = let y = v◦ τ◦ in y k

• Translation of evaluation contexts:

([])•k = k

(v E)•k = (E)•(λx.let y=v◦ x in y k)

Figure 8: Translation of types, terms and evaluation contexts.

• If ` E : τ1 ( τ2 then ∅; k : τ2
◦→ ρ ` (E)•k : τ1

◦ → ρ

Proof. The first two parts are proved simultaneously by an induction on the respective
typing derivation. The final part is by an induction on E.

The cps translation is substitutive and compositional.

Proposition 16 (Substitution).

• (e[v/x])•k = (e)•k[v
◦/x]

• (e[τ/α])•k = (e)•k[τ
◦/α]
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Lemma 17. If ` E : τ ′( τ and ∅;∅ ` e : τ ′ then, for any ∅;∅ ` v : τ◦ → ρ,
(λk.(e)•k)(E)•v 7−→ (e)•(E)•v

.

Proposition 18 (Compositionality). If ` E : τ ′( τ and ∅;∅ ` e : τ ′ then ∅;∅ `
λk.(E[e])•k

∼=ctx λk.(e)•(E)•k
: τ•.

Proof. By an induction on E, using Lemma 17 and the fact that cbv beta-reduction respects
contextual equivalence.

Computation steps of source language terms can be simulated. In fact, terms and their
image under the translation have the same termination behaviour.

Proposition 19 (Simulation). Let ∅;∅ ` e1 : τ and ∅;∅ ` e2 : τ , and let ∅;∅ ` k : τ◦→ ρ
be any value. Then e1 7−→ e2 implies (e1)•k 7−→+ (e2)•k.

Proof. The proof is by an induction on the derivation of e1 7−→ e2, using the substitution
lemma (Prop. 16).

Proposition 20 (Equitermination). If > denotes the continuation ∅;∅ ` λx.〈〉 : τ◦→ ρ
then the following holds.

(1) e ↓ ⇔ (e)•> ↓, and
(2) (e)•> ⇓ ⇔ e ⇓.

Proof. The direction from left to right of claim (1) follows from Proposition 19 since e 7−→∗ v
entails (e)•> 7−→∗ (v)•> 7−→∗ 〈〉. Similarly, for the direction from left to right of claim (2),
any infinite reduction sequence starting at e gives rise to a corresponding infinite reduction
sequence starting at (e)•>.

The converse directions of claims (1) and (2) are more involved, and we will establish
them using logical relations arguments below.

The proof of Theorem 14 then is straightforward:

Proof. Let ∆; Γ ` e1 : τ and ∆; Γ ` e2 : τ be such that ∆; Γ◦ ` λk.(e1)•k .ctx λk.(e2)•k : τ•.

By the ciu theorem it suffices to show ∆; Γ ` e1 .ciu e2 : τ .
We first consider the case of may-ciu approximation. To this end, let δ, γ and E be such

that E[e1δγ] ↓. We need to prove that E[e2δγ] ↓. Proposition 20(1) yields (E[e1δγ])•> ↓, or
equivalently by Propositions 16 and 18,

(e1)•(E)•>
δ◦γ◦ ↓

From the assumption ∆; Γ◦ ` λk.(e1)•k .ctx λk.(e2)•k : τ• we thus have (e2)•(E)•>
δ◦γ◦ ↓, i.e.,

(E[e2δγ])•> ↓. Proposition 20(1) then yields E[e2δγ] ↓.
Next, we consider the case of must-ciu approximation, which is similar. Let δ, γ and E be

such that E[e1δγ] ⇓. We need to prove that E[e2δγ] ⇓. By Proposition 20(2), (E[e1δγ])•> ⇓,
or equivalently,

(e1)•(E)•>
δ◦γ◦ ⇓

From the assumption ∆; Γ◦ ` λk.(e1)•k .ctx λk.(e2)•k : τ• we obtain (e2)•(E)•>
δ◦γ◦ ⇓, i.e.,

(E[e2δγ])•> ⇓. Proposition 20(2) now gives E[e2δγ] ⇓.
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For closed types τ, τ ′ and for r ∈ VRelω(τ◦, τ ′) we define r⊥ ∈ Relω(Val(τ◦ → ρ)× Stk(τ ′))
and r⊥⊥ ∈ TRelω(τ•, τ ′) by:

r⊥i = {(k,E′) | ∀j ≤ i. ∀(v, v′) ∈ rj . k v ↓j ⇒ E′[v′] ↓}

r⊥⊥i = {(e, e′) | ∀j ≤ i. ∀(k,E′) ∈ r⊥j . let x = e in x k ↓j ⇒ E′[e′] ↓}

Figure 9: A may-adequate logical relation

7.1. Logical relation for may-adequacy. Analogously to the earlier sections, we consider
soundness for may and must approximation separately. In this subsection, we begin by
proving (e)•> ↓ ⇒ e ↓. Figure 9 gives a notion of biorthogonality. Using this notion
of biorthogonality, the logical relation for the may-adequacy proof is defined as in the
earlier sections:1 we obtain a relational interpretation JτK (~r) ∈ VRelω(τ◦[~τ◦/~α], τ [~τ ′/~α])
by induction on the type ~α ` τ , given closed types τ1, τ

′
1, . . . , τk, τ

′
k ∈ Type and relations

r1 ∈ VRelω(τ1
◦, τ ′1), . . . , rk ∈ VRelω(τk

◦, τ ′k)

JαiK (~r) = ri Jτ1 × τ2K (~r) = Jτ1K (~r)× Jτ2K (~r)

J1K (~r) = (Id1)n<ω Jτ1 → τ2K (~r) = Jτ1K (~r)→ Jτ2K (~r)⊥⊥

J∀α.τK (~r) = ∀r.JτK (~r, r)⊥⊥ Jµα.τ1 + . . .+ τmK (~r) = fix s.
⋃
jinj(. JτjK (~r, s))

and we define a relation on (open) values and expressions by

∆; Γ ` v /↓ v′ : τ where ∆ = ~α

⇔ ∀~τ , ~τ ′. ∀~r ∈VRelω(~τ◦, ~τ ′).∀n<ω. ∀(γ, γ′) ∈ JΓK~rn. (v[~τ◦/~α]γ, v′[~τ ′/~α]γ′) ∈ JτK~rn
and

∆; Γ ` e J↓ e′ : τ where ∆ = ~α

⇔ ∀~τ , ~τ ′.∀~r ∈VRelω(~τ◦, ~τ ′). ∀n<ω. ∀(γ, γ′) ∈ JΓK~rn. (e[~τ◦/~α]γ, e′[~τ ′/~α]γ′) ∈ JτK~r⊥⊥n
In the remainder of this subsection we prove the fundamental theorem for this logical

relation.

Proposition 21 (Fundamental property).

• If ∆; Γ ` v : τ then ∆; Γ ` v◦ /↓ v : τ .

• If ` E : τ( τ ′ then (λk.(E)•k, E) ∈ JτK⊥

• If ∆; Γ ` e : τ then ∆; Γ ` λk.(e)•k J↓ e : τ .

In particular, if ∅;∅ ` e : τ then (λk.(e)•k, e) ∈ JτK⊥⊥n and (>, []) ∈ JτK⊥n hold for all n,
and thus (e)•> ↓ implies e ↓.

The proof of Proposition21 is by induction on the typing derivations.

7.2. Logical relation for must-adequacy. In this subsection, we prove e ⇓ ⇒ (e)•> ⇓.
Figure 10 gives the notion of biorthogonality and using this notion of biorthogonality, the
logical relation for the must-adequacy proof is defined as for may-adequacy. Thus the rela-
tional interpretation JτK (~r) ∈ VRelω1(τ [~τ ′/~α], τ◦[~τ◦/~α]) is defined by induction on the type

1It is not a may-adequate relation in the technical sense of Definition 3, since it is not type-indexed: the
types of e and e′ are not identical, but related via the cps type translation.
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For r ∈ VRelω1(τ, τ◦) we define r⊥ ∈ Relω1(Val(Stkτ × τ◦ → ρ)) and r⊥⊥ ∈ TRelω1(τ, τ•)
by:

r⊥α = {(E, k′) | ∀β ≤ α. ∀(v, v′) ∈ rβ. E[v] ⇓β ⇒ k v′ ⇓}

r⊥⊥α = {(e, e′) | ∀β ≤ α. ∀(E, k′) ∈ r⊥β . E[e] ⇓β ⇒ e′ k′ ⇓}

Figure 10: A must-adequate logical relation

~α ` τ , given closed types τ1, τ
′
1, . . . , τk, τ

′
k ∈ Type and relations r1 ∈ VRelω1(τ ′1, τ

◦
1 ), . . . , rk ∈

VRelω1(τ ′k, τ
◦
k ):

JαiK (~r) = ri Jτ1 × τ2K (~r) = Jτ1K (~r)× Jτ2K (~r)

J1K (~r) = (Id1)β<ω1 Jτ1 → τ2K (~r) = Jτ1K (~r)→ Jτ2K (~r)⊥⊥

J∀α.τK (~r) = ∀r.JτK (~r, r)⊥⊥ Jµα.τ1 + . . .+ τmK (~r) = fix s.
⋃
jinj(. JτjK (~r, s))

and we define a relation on (open) values and expressions as follows:

∆; Γ ` v /⇓ v′ : τ where ∆ = ~α

⇔ ∀~τ , ~τ ′. ∀~r ∈VRelω1(~τ ′, ~τ◦). ∀β <ω1. ∀(γ, γ′) ∈ JΓK~rβ. (v[~τ/~α]γ, v′[~τ ′/~α]γ′) ∈ JτK~rβ
and

∆; Γ ` e J⇓ e′ : τ where ∆ = ~α

⇔ ∀~τ , ~τ ′.∀~r ∈VRelω1(~τ ′, ~τ◦).∀β <ω1.∀(γ, γ′) ∈ JΓK~rβ. (e[~τ/~α]γ, e′[~τ ′/~α]γ′) ∈ JτK~r⊥⊥β

Proposition 22 (Fundamental property).

• If ∆; Γ ` v : τ then ∆; Γ ` v /⇓ v◦τ .

• If ` E : τ( τ ′ then (E, λk.(E)•k) ∈ JτK⊥

• If ∆; Γ ` e : τ then ∆; Γ ` e J⇓ λk.(e)•k : τ .

In particular, if ∅;∅ ` e : τ then (e, λk.(e)•k) ∈ JτK⊥⊥β and ([],>) ∈ JτK⊥β hold for all

β <ω1, and thus e ⇓ implies (e)•> ⇓.
The proof of Proposition 22 is by induction on the typing derivations; the proof case

for choice is similar in structure to the proof case shown for choice for must-equivalence
earlier and thus uses that we index the relations over ω1 rather than ω (see the proof of
Proposition 12).
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Appendix A. Definitions and proofs

Figure 3 defines the typing judgement ∆; Γ ` e : τ , for which the usual operational type
soundness properties hold.

Lemma 23 (Evaluation context typing). ∅;∅ ` E[e] : τ holds if and only if there is some
τ ′ ∈ Type such that ` E : τ ′( τ and ∅;∅ ` e : τ ′ hold.

Definition 24 (Typed values, terms, evaluation contexts and substitutions).

• Val(τ) = {v | ∅;∅ ` v : τ}
• Tm(τ) = {e | ∅;∅ ` e : τ}
• Stk(τ) = {E | ∃τ ′ ∈ Type. ` E : τ( τ ′}
• Subst(Γ) = {γ : dom(Γ)→ Val | ∀x:τ ∈ Γ. γ(x) ∈ Val(τ)}

Lemma 25 (Substitution). If ∆; Γ ` e : τ then ∅;∅ ` eδγ : τδ for all δ ∈ Type∆ and
γ ∈ Subst(Γδ).

Lemma 26 (Canonical forms).

• If v ∈ Val(1) then v is 〈〉.
• If v ∈ Val(τ1× τ2) then v is of the form 〈v1, v2〉 for vi ∈ Val(τi).
• If v ∈ Val(τ1→ τ2) then v is of the form λx.t for some x and e.
• If v ∈ Val(µα.τ1 + . . .+ τm) then v is of the form inj v

′ for some 1 ≤ j ≤ m and
v′ ∈ Val(τj [µα.τ1 + . . .+ τm/α]).
• If v ∈ Val(∀α.τ) then v is of the form Λα.e for some α and e.

Proposition 27 (Preservation and progress).

• If e ∈ Tm(τ) and e 7−→ e′ then e′ ∈ Tm(τ).
• If e ∈ Tm(τ) \Val(τ) then e 7−→ e′ for some e′.

A.1. Contextual equivalence.

Proposition 28 (Existence). The largest (may-, must-) adequate precongruence exists.

Proof. We can define the relation as S =
⋃
{R | R compatible and (may-, must-) adequate}.

As in [16], we can show that S is an adequate precongruence as follows.

(1) The identity relation Id = {(∆,Γ, e, e, τ) | ∆; Γ ` e : τ} is an adequate congruence,
hence Id ⊆ S, i.e., S is reflexive.

(2) The adequate relations are closed under taking non-empty unions, hence S is
adequate.

(3) The compatible and adequate relations are closed under relation composition, hence
S is transitive.

(4) A non-empty union of compatible relations that is transitive is compatible, hence S
is compatible.

Clearly S is the largest adequate and compatible relation, since it contains any other such
relation.
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Proposition 29 (Weakening). If ∆; Γ ` e .log
(↓,⇓) e

′ : τ then ∆,∆′; Γ,Γ′ ` e .log
(↓,⇓) e

′ : τ .

Proof. For a type-indexed relation R let Rwk be defined by

∆,∆′; Γ,Γ′ ` e Rwk e′ : τ ⇔ ∆; Γ ` e R e′ : τ .

• If R is reflexive then so is Rwk.
• If R is transitive then so is Rwk.
• If R is (may-, must-) adequate then so is Rwk.
• If R is compatible then so is Rwk.

Thus, (.log
(↓,⇓))

wk
is contained in .log

(↓,⇓).

A.2. Logical relation for may-approximation.

Lemma 30 (Substitution). If ∆, α ` τ and ∆ ` τ ′ then Jτ [τ ′/α]K (~r) = JτK (~r, Jτ ′K (~r)).

Lemma 31 (Extensiveness). For all r ∈ VRel(τ, τ ′), r ⊆ r⊥⊥.

Lemma 32 (Monotonicity). For all r, s ∈ VRel(τ, τ ′), if r ⊆ s then r⊥⊥ ⊆ s⊥⊥.

Lemma 33 (Application). If (e, e′) ∈ Jτ1K~r⊥⊥n and (v, v′) ∈ Jτ1→ τ2K~rn then (v e, v′ e′) ∈
Jτ2K~r⊥⊥n .

Proof. For any (E,E′) ∈ Jτ2K~r⊥n , (E[v []], E′[v′ []]) ∈ Jτ1K~r⊥n by Lemma 8. Thus, if E[v e] ↓j
for j ≤ n then E′[v′ e′] ↓.

Lemma 34 (Compatibility: var). If ∆ ` Γ and x:τ ∈ Γ then ∆; Γ ` x .log
↓ x : τ .

Proof. Immediate from the definition and Lemma 31.

Lemma 35 (Compatibility: unit). If ∆ ` Γ then ∆; Γ ` 〈〉 .log
↓ 〈〉 : 1.

Proof. Immediate from the definition and Lemma 31.

Lemma 36 (Compatibility: ×-intro). If ∆; Γ ` v1 .log
↓ v′1 : τ1 and ∆; Γ ` v2 .log

↓ v′2 : τ2

then ∆; Γ ` 〈v1, v2〉 .log
↓ 〈v

′
1, v
′
2〉 : τ1× τ2.

Proof. For simplicity we only consider the case of closed terms. Let (E,E′) ∈ Jτ1× τ2K~r⊥n .
and assume E[〈v1, v2〉] ↓j for some j ≤ n. Then E[(λy.〈v1, y〉) v2)] ↓j+1. By Lemma 8 it
suffices to show (λy.〈v1, y〉, λy.〈v′1, y〉) ∈ Jτ2 → τ1× τ2K~rn, for then E′[[(λy.〈v′1, y〉) v′2)] ↓ and
necessarily also E′[〈v′1, v′2〉] ↓.

From the definitions it is easy to see that (λx, y.〈x, y〉, λx, y.〈x, y〉) ∈ Jτ1 → τ2 → τ1× τ2K~rn,

and thus whenever (E,E′) ∈ Jτ2 → τ1× τ2K~r⊥n then (E[(λx, y.〈x, y〉) []], E′[(λx, y.〈x, y〉) []]) ∈
Jτ1K~r⊥n+1 so that the result follows from the assumption that (v1, v

′
1) ∈ Jτ1K~r⊥⊥n+1.

Lemma 37 (Compatibility: →-intro). If ∆; Γ, x:τ1 ` e .log
↓ e′ : τ2 then ∆; Γ ` λx.e .log

↓
λx.e′ : τ1→ τ2.

Proof. The claim follows from the definition of Jτ1→ τ2K and assumption ∆; Γ, x:τ1 ` e .log
↓

e′ : τ2, and Lemma 31.
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Lemma 38 (Compatibility: µ-intro). If ∆; Γ ` v .log
↓ v′ : τj [µα.τ1 + . . .+ τn/α] and

1 ≤ j ≤ n then ∆; Γ ` inj v .log
↓ inj v

′ : µα.τ1 + . . .+ τn.

Proof. For simplicity we only consider the case of closed terms. Let τ abbreviate the
type µα.τ1 + . . .+ τn. Note that JτK~r =

⋃
j inj

(
. JτjK (~r, JτK~r)

)
=
⋃
j inj

(
. Jτj [τ/α]K (~r)

)
by definition and the substitution lemma, and that Jτj [τ/α]K (~r) ⊆ . Jτj [τ/α]K (~r). Thus,

assuming (E,E′) ∈ JτK~r⊥n it follows from Lemma 8 that (E[(λx.inj x) []], E′[(λx.inj x) []]) ∈
Jτj [τ/α]K~r⊥n+1. Thus, if E[inj v] ↓i for some i ≤ n then E′[(λx.inj x) v′]) ↓ follows from

(v, v′) ∈ Jτj [τ/α]K~r⊥⊥n+1. Therefore we can conclude E′[inj v
′] ↓.

Lemma 39 (Compatibility: ∀-intro). If ∆, α; Γ ` e .log
↓ e′ : τ then ∆; Γ ` Λα.e .log

↓ Λα.e′ :

∀α.τ .

Proof. The claim follows from the definition of J∀α.τK and assumption ∆, α; Γ ` e .log
↓ e′ : τ ,

and Lemma 31.

Lemma 40 (Compatibility: ×-elim). If ∆; Γ ` v .log
↓ v′ : τ1× τ2 then ∆; Γ ` proji v .log

↓
proji v

′ : τi for i = 1, 2.

Proof. For simplicity we only consider the case of closed terms. First observe that we
have (λx.proji x, λx.proji x) ∈ Jτ1× τ2 → τiK~rn. Thus, given evaluation contexts (E,E′) ∈
JτiK~r⊥n , (E[(λx.proji x) []], E′[(λx.proji x) []]) ∈ Jτ1 × τ2K~r⊥n+1 by Lemma 8. So if E[proji v] ↓j
for j ≤ n then E[(λx.proji x) v] ↓j+1, hence by (v, v′) ∈ Jτ1 × τ2K~r⊥⊥n+1 also E′[(λx.proji x) v′] ↓
and we can conclude E′[proji v

′] ↓.

Lemma 41 (Compatibility: →-elim). If ∆; Γ ` v .log
↓ v′ : τ1→ τ2 and ∆; Γ ` e .log

↓ e′ : τ1

then ∆; Γ ` v e .log
↓ v′ e′ : τ2.

Proof. For simplicity we only consider the case of closed terms. First observe that (e, e′) ∈
Jτ1K~rn⊥⊥ by assumption, and that this implies (λf.f e, λf.f e′) ∈ J(τ1 → τ2)→ τ2K~rn. Thus,

given (E,E′) ∈ Jτ2K~r⊥n , (E[(λf.f e) []], E′[(λf.f e′) []]) ∈ Jτ1 → τ2K~r⊥n+1 by Lemma 8. So

if E[v e] ↓j for j ≤ n then E[(λf.f e) v] ↓j+1, hence by (v, v′) ∈ Jτ1 → τ2K~r⊥⊥n also
E′[(λf.f e′) v′] ↓ and we can conclude E′[v′ e′] ↓.

Lemma 42 (Compatibility: µ-elim). If τ ≡ µα.τ1 + . . .+ τm, ∆; Γ, xj :τj [τ/α] ` ej .log
↓ e′j :

τ ′ for all 1 ≤ j ≤ m and ∆; Γ ` v .log
↓ v′ : τ then ∆; Γ ` case v of(. . . |inj xj . ej | . . .) .log

↓
case v′ of(. . . |inj xj . e′j | . . .) : τ ′.

Proof. For simplicity we only consider the case of closed terms. Note that by definition and the
substitution lemma we have JτK~r =

⋃
j inj

(
. JτjK (~r, JτK~r)

)
=
⋃
j inj(. Jτj [τ/α]K~r). More-

over, (λx.case x of(. . . |inj xj . ej| . . .), λx.case x of(. . . |inj xj . e
′
j| . . .)) ∈ Jτ → τ ′K~rn for

any n. To see this, assume k ≤ n, let (a, a′) ∈ JτK~rn and (E,E′) ∈ Jτ ′K~r⊥n such that
E[case a of(. . . |inj xj . ej| . . .)] ↓k. By the above observation we have a = injaj and
a′ = inja

′
j for some (aj , a

′
j) ∈ Jτj [τ/α]K~rk−1. From E[case a of(. . . |inj xj . ej| . . .)] ↓k we

obtain E[ej [aj/xj ]] ↓k−1, and thus the assumption on ej , e
′
j gives E′[e′j [a

′
j/xj ]] ↓ from which

we can conclude E′[case a′ of(. . . |inj xj . e
′
j| . . .)] ↓.

To prove the lemma, assume next that (E,E′) ∈ Jτ ′K~r⊥n . From Lemma 8 we ob-
tain (E[(λx.case x of(. . . |inj xj . ej| . . .)) []], E′[(λx.case x of(. . . |inj xj . e

′
j| . . .)) []]) ∈
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JτK~r⊥n+1. Since (v, v′) ∈ JτK~r⊥⊥n+1 by assumption, we obtain that E[case v of(. . . |inj xj . ej | . . .)] ↓n
implies E[case v′ of(. . . |inj xj . e′j | . . .)] ↓ as required.

Lemma 43 (Compatibility: ∀-elim). If ∆; Γ ` v .log
↓ v′ : ∀α.τ and ∆ ` τ ′ then ∆; Γ `

v τ ′ .log
↓ v′ τ ′ : τ [τ ′/α].

Proof. We consider the case of closed terms. Let (E,E′) ∈ Jτ [τ ′/α]K~r⊥n . Note that

(λx.x τ ′, λx.x τ ′) ∈ J∀α.τ → τ [τ ′/α]Kn and thus (E[(λx.x τ ′) []], E′[(λx.x τ ′) []]) ∈ J∀α.τK~r⊥n+1

by Lemma 8. If E[v τ ′] ↓n then E[(λx.x τ ′) v] ↓n+1. By assumption, E′[(λx.x τ ′) v′] ↓, and
hence E′[v′ τ ′] ↓ follows.

Lemma 44 (Compatibility: choice). If ∆ ` Γ then ∆; Γ ` ? .log
↓ ? : nat.

Proof. Suppose (E,E′) ∈ JnatK~r⊥n and E[?] ↓j for some j ≤ n. Then E[?] 7−→ E[k] and

E[k] ↓j−1 for some k ∈ N. Using Lemma 38, induction on k shows that (k, k) ∈ JnatK~r⊥⊥n ,
and thus E′[k] ↓. Hence E′[?] ↓.

A.3. Logical relation for must-approximation.

Lemma 45 (Substitution). If ∆, α ` τ and ∆ ` τ ′ then Jτ [τ ′/α]K (~r) = JτK (~r, Jτ ′K (~r)).

Lemma 46 (Extensiveness). For all r ∈ VRel(τ, τ ′), r ⊆ r⊥⊥.

Lemma 47 (Monotonicity). For all r, s ∈ VRel(τ, τ ′), if r ⊆ s then r⊥⊥ ⊆ s⊥⊥.

Lemma 48 (Context composition). If (v, v′) ∈ Jτ1→ τ2K~rβ and (E,E′) ∈ Jτ2K~r⊥β then

(E[v []], E′[v′ []]) ∈ Jτ1K~r⊥β+1.

Proof. Let ν ≤ β+ 1, (v1, v
′
1) ∈ Jτ1K~rν . Assume E[v v1] ⇓ν . We have v = λx.e and v′ = λx.e′

and (λx.e, λx.e′) ∈ Jτ1→ τ2K~rβ for some x, e, e′ and necessarily E[v v1] 7−→ E[e[v1/x]] ⇓ν′
for ν ′ < ν, i.e., ν ′ ≤ β. By definition, (e[v1/x], e′[v′1/x]) ∈ Jτ2K~r⊥⊥ν′ . From (E,E′) ∈ Jτ2K~r⊥β
we obtain E′[e′[v′1/x]] ⇓. Thus, E′[v′ v′1] ⇓.

Lemma 49 (Application). If (e, e′) ∈ Jτ1K~r⊥⊥n and (v, v′) ∈ Jτ1→ τ2K~rn then (v e, v′ e′) ∈
Jτ2K~r⊥⊥n .

Proof. For any (E,E′) ∈ Jτ2K~r⊥β , (E[v []], E′[v′ []]) ∈ Jτ1K~r⊥β by Lemma 48. Thus, if E[v e] ↓ν
for ν ≤ β then E′[v′ e′] ↓.

Lemma 50 (Compatibility: var). If ∆ ` Γ and x:τ ∈ Γ then ∆; Γ ` x .log
⇓ x : τ .

Proof. Immediate from the definition and Lemma 46.

Lemma 51 (Compatibility: unit). If ∆ ` Γ then ∆; Γ ` 〈〉 .log
⇓ 〈〉 : 1.

Proof. Immediate from the definition and Lemma 46.

Lemma 52 (Compatibility: ×-intro). If ∆; Γ ` v1 .log
⇓ v′1 : τ1 and ∆; Γ ` v2 .log

⇓ v′2 : τ2

then ∆; Γ ` 〈v1, v2〉 .log
⇓ 〈v

′
1, v
′
2〉 : τ1× τ2.

Proof. Analogous to Lemma 36, using Lemma 48.
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Lemma 53 (Compatibility: →-intro). If ∆; Γ, x:τ1 ` e .log
⇓ e′ : τ2 then ∆; Γ ` λx.e .log

⇓
λx.e′ : τ1→ τ2.

Proof. The claim follows from the definition of Jτ1→ τ2K and assumption ∆; Γ, x:τ1 ` e .log
↓

e′ : τ2, and Lemma 46.

Lemma 54 (Compatibility: µ-intro). If ∆; Γ ` v .log
⇓ v′ : τj [µα.τ1 + . . .+ τn/α] and

1 ≤ j ≤ n then ∆; Γ ` inj v .log
⇓ inj v

′ : µα.τ1 + . . .+ τn.

Proof. Analogous to Lemma 38, using the facts that JτK~r =
⋃
j inj

(
. JτjK (~r, JτK~r)

)
=⋃

j inj
(
. Jτj [τ/α]K (~r)

)
and Jτj [τ/α]K (~r) ⊆ . Jτj [τ/α]K (~r), and using Lemma 48.

Lemma 55 (Compatibility: ∀-intro). If ∆, α; Γ ` e .log
⇓ e′ : τ then ∆; Γ ` Λα.e .log

⇓ Λα.e′ :

∀α.τ .

Proof. The claim follows from the definition of J∀α.τK and assumption ∆, α; Γ ` e .log
↓ e′ : τ ,

and Lemma 46.

Lemma 56 (Compatibility: ×-elim). If ∆; Γ ` v .log
⇓ v′ : τ1× τ2 then ∆; Γ ` proji v .log

⇓
proji v

′ : τi for i = 1, 2.

Proof. Analogous to Lemma 40, using Lemma 48.

Lemma 57 (Compatibility: →-elim). If ∆; Γ ` v .log
⇓ v′ : τ1→ τ2 and ∆; Γ ` e .log

⇓ e′ : τ1

then ∆; Γ ` v e .log
⇓ v′ e′ : τ2.

Proof. Analogous to Lemma 41, using Lemma 48.

Lemma 58 (Compatibility: µ-elim). If τ ≡ µα.τ1 + . . .+ τm, ∆; Γ, xj :τj [τ/α] ` ej .log
⇓ e′j :

τ ′ for all 1 ≤ j ≤ m and ∆; Γ ` v .log
⇓ v′ : τ then ∆; Γ ` case v of(. . . |inj xj . ej | . . .) .log

⇓
case v′ of(. . . |inj xj . e′j | . . .) : τ ′.

Proof. The proof is analogous to Lemma 42. As before, JτK~r =
⋃
j inj

(
. JτjK (~r, JτK~r)

)
=⋃

j inj(. Jτj [τ/α]K~r) and (λx.case x of(. . . |inj xj . ej| . . .), λx.case x of(. . . |inj xj . e
′
j| . . .)) ∈

Jτ → τ ′K~rn for any β. To see the latter, assume ν ≤ β, let (a, a′) ∈ JτK~rν and (E,E′) ∈
Jτ ′K~r⊥ν such that E[case a of(. . . |inj xj . ej| . . .)] ⇓ν . We have a = injaj and a′ = inja

′
j

for some aj , a
′
j such that (aj , a

′
j) ∈ Jτj [τ/α]K~rν′ for all ν ′ < ν. From the assumption

E[case a of(. . . |inj xj . ej| . . .)] ⇓ν we obtain E[ej [aj/xj ]] ⇓ν′ for some ν ′ < ν ≤ β, and thus
the assumption on ej , e

′
j gives E′[e′j [a

′
j/xj ]] ⇓. Hence E′[case a′ of(. . . |inj xj . e

′
j| . . .)] ⇓.

To prove the lemma, assume next that (E,E′) ∈ Jτ ′K~r⊥β . From Lemma 48 we ob-

tain (E[(λx.case x of(. . . |inj xj . ej| . . .)) []], E′[(λx.case x of(. . . |inj xj . e
′
j| . . .)) []]) ∈

JτK~r⊥β+1. Since (v, v′) ∈ JτK~r⊥⊥β+1 by assumption, we obtain that E[case v of(. . . |inj xj . ej | . . .)] ⇓β
implies E[case v′ of(. . . |inj xj . e′j | . . .)] ⇓ as required.

Lemma 59 (Compatibility: ∀-elim). If ∆; Γ ` v .log
⇓ v′ : ∀α.τ and ∆ ` τ ′ then ∆; Γ `

v τ ′ .log
⇓ v′ τ ′ : τ [τ ′/α].

Proof. Analogous to Lemma 43, using Lemma 48.
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Lemma 60 (Compatibility: choice). If ∆ ` Γ then ∆; Γ ` ? .log
⇓ ? : nat.

Proof. Suppose (E,E′) ∈ JnatK~r⊥β and E[?] ⇓β. Then E[?] 7−→ e implies that e is of the

form E[k] and E[k] ⇓νk for some k ∈ N and νk < β. Using Lemma 54, induction on k shows

that (k, k) ∈ JnatK~r⊥⊥νk , and thus E′[k] ⇓ for all k ∈ N. Hence E′[?] ⇓.
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