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Abstract. Frame and anti-frame rules have been proposed as proof rules
for modular reasoning about programs. Frame rules allow one to hide ir-
relevant parts of the state during verification, whereas the anti-frame
rule allows one to hide local state from the context. We give the first
sound model for Charguéraud and Pottier’s type and capability system
including both frame and anti-frame rules. The model is a possible worlds
model based on the operational semantics and step-indexed heap rela-
tions, and the worlds are constructed as a recursively defined predicate
on a recursively defined metric space.
We also extend the model to account for Pottier’s generalized frame and
anti-frame rules, where invariants are generalized to families of invari-
ants indexed over pre-orders. This generalization enables reasoning about
some well-bracketed as well as (locally) monotonic uses of local state.

1 Introduction

Reasoning about higher-order stateful programs is notoriously difficult, and often
involves the need to track aliasing information. A particular line of work that
addresses this point are substructural type systems with regions, capabilities and
singleton types [2, 8, 9]. In this context, Pottier [14] presented the anti-frame rule
as a proof rule for hiding invariants on encapsulated state: the description of a
piece of mutable state that is local to a procedure can be removed from the
procedure’s external interface (expressed in the type system). The benefits of
hiding invariants on local state include simpler interface specifications, simpler
reasoning about client code, and fewer restrictions on the procedure’s use because
potential aliasing is reduced. Thus, in combination with frame rules that allow
the irrelevant parts of the state to be hidden during verification, the anti-frame
rule provides an important ingredient for modular reasoning about programs.

Essentially, the frame and anti-frame rules exploit the fact that programs
cannot access non-local state directly. However, in an ML-like language with
higher-order procedures and the possibility of call-backs, the dependencies on
non-local state can be complex; consequently, the soundness of frame and anti-
frame rules is anything but obvious.



Pottier [14] sketched a soundness proof for the anti-frame rule by a progress
and preservation argument, which rests on assumptions about the existence of
certain recursively defined types and capabilities. (He has since formalized the
details in Coq.) More recently, Birkedal et al. [6] developed a step-indexed model
of Charguéraud and Pottier’s type and capability system with higher-order frame
rules, but without the anti-frame rule. This was a Kripke model in which ca-
pabilities are viewed as assertions (on heaps) that are indexed over recursively
defined worlds: intuitively, these worlds are used to represent the invariants that
have been added by the frame rules.

Proving soundness of the anti-frame rule requires a refinement of this idea, as
one needs to know that additional invariants do not invalidate the invariants on
local state which have been hidden by the anti-frame rule. This requirement can
be formulated in terms of a monotonicity condition for the world-indexed asser-
tions, using an order on the worlds that is induced by invariant extension, i.e.,
the addition of new invariants [17]. (The fact that ML-style untracked references
can be encoded from strong references with the anti-frame rule [14] also indicates
that a monotonicity condition is required: Kripke models of ML-style references
involve monotonicity in the worlds [7, 1].) More precisely, in the presence of the
anti-frame rule, it turns out that the recursive domain equation for the worlds
involves monotonic functions with respect to an order relation on worlds, and
that this order is specified using the isomorphism of the recursive world solution
itself. This circularity means that standard existence theorems, in particular the
one used in [6], cannot be applied to define the worlds. Thus Schwinghammer
et al. [17], who considered a separation logic variant of the anti-frame rule for
a simple language (without higher-order functions, and untyped), had to give
the solution to a similar recursive domain equation by a laborious inverse-limit
construction.

In the present paper we develop a new model of Charguéraud and Pottier’s
system, which can also be used to show soundness of the anti-frame rule. More-
over, we show how to extend our model to show soundness of Pottier’s generalized
frame and anti-frame rules, which allow hiding of families of invariants [15]. The
new model is a non-trivial extension of the earlier work because, as pointed out
above, the anti-frame rule is the “source” of a circular monotonicity requirement.

Our approach can loosely be described as a metric space analogue of Pitts’
approach to relational properties of domains [13] and thus consists of two steps.
First, we consider a recursive metric space domain equation without any mono-
tonicity requirement, for which we obtain a solution by appealing to a standard
existence theorem. Second, we carve out a suitable subset of what might be
called hereditarily monotonic functions. We show how to define this recursively
specified subset as a fixed point of a suitable operator. The resulting subset
of monotonic functions is, however, not a solution to the original recursive do-
main equation; hence we verify that the semantic constructions used to justify
the anti-frame rule in [17] suitably restrict to the recursively defined subset of
hereditarily monotonic functions. This results in a considerably simpler model
construction than the earlier one in loc. cit. We show that our approach scales by



extending the model to also allow for hiding of families of invariants, and using
it to prove the soundness of Pottier’s generalized frame and anti-frame rules [15].

Contributions. In summary, the contributions of this paper are (1) the de-
velopment of a considerably simpler model of recursive worlds for showing the
soundness of the anti-frame rule; (2) the use of this model to give the first sound-
ness proof of the anti-frame rule in the expressive type and capability system of
Charguéraud and Pottier; and (3) the extension of the model to include hiding of
families of invariants, and showing the soundness of generalized frame and anti-
frame rules. Moreover, at a conceptual level, we augment our earlier approach to
constructing (step-indexed) recursive possible worlds based on a programming
language’s operational semantics via metric spaces [6] by a further tool, viz.,
defining worlds as recursive subsets of recursive metric spaces.

Outline. In the next section we give a brief overview of Charguéraud and
Pottier’s type and capability system [8, 14] with higher-order frame and anti-
frame rules. Section 3 summarizes some background on ultrametric spaces and
presents the construction of a set of hereditarily monotonic recursive worlds. The
worlds thus constructed are then used (Section 4) to give a model of the type
and capability system. Finally, in Section 5 we show how to extend the model
to also prove soundness of the generalized frame and anti-frame rules.

2 A Calculus of Capabilities

Syntax and operational semantics. We consider a standard call-by-value,
higher-order language with general references, sum and product types, and poly-
morphic and recursive types. For concreteness, the following grammar gives the
syntax of values and expressions, keeping close to the notation of [8, 14]:

v ::= x | () | inji v | (v1, v2) | fun f(x)=t | l
t ::= v | (v t) | case(v1, v2, v) | proji v | ref v | get v | set v

Here, the term fun f(x)=t stands for the recursive procedure f with body t, and
locations l range over a countably infinite set Loc. The operational semantics is
given by a relation (t |h) 7−→ (t′ |h′) between configurations that consist of a
(closed) expression t and a heap h. We take a heap h to be a finite map from
locations to closed values, we use the notation h#h′ to indicate that two heaps
h, h′ have disjoint domains, and we write h · h′ for the union of two such heaps.
By Val we denote the set of closed values.

Types. Charguéraud and Pottier’s type system uses capabilities, value types,
and memory types, as summarized in Figure 1. A capability C describes a heap
property, much like the assertions of a Hoare-style program logic. For instance,
{σ : ref int} asserts that σ is a valid location that contains an integer value. More
complex assertions can be built by separating conjunctions C1 ∗C2 and universal



Variables ξ ::= α | β | γ | σ

Capabilities C ::= C ⊗ C | ∅ | C ∗ C | {σ : θ} | ∃σ.C | γ | µγ.C | ∀ξ.C

Value types τ ::= τ ⊗ C | 0 | 1 | int | τ + τ | τ × τ | χ→χ | [σ] | α | µα.τ | ∀ξ.τ

Memory types θ ::= θ ⊗ C | τ | θ + θ | θ × θ | ref θ | θ ∗ C | ∃σ.θ | β | µβ.θ | ∀ξ.θ

Computation types χ ::= χ⊗ C | τ | χ ∗ C | ∃σ.χ

Value contexts ∆ ::= ∆⊗ C | ∅ | ∆, x:τ

Linear contexts Γ ::= Γ ⊗ C | ∅ | Γ, x:χ | Γ ∗ C

Fig. 1. Capabilities and types

and existential quantification over names σ. Value types τ classify values; they
include base types, singleton types [σ], and are closed under products, sums, and
universal quantification. (We do not consider existential types in this paper.)
Memory types (and the subset of computation types χ) describe the result of
computations. They extend the value types by a type of references, and also
include all types of the form ∃~σ.τ ∗ C which describe both the value and heap
that result from the evaluation of an expression. Arrow types (which are value
types) have the form χ1 → χ2 and thus, like the pre- and post-conditions of
a triple in Hoare logic, make explicit which part of the heap is accessed and
modified by a procedure call. We allow recursive capabilities, value types, and
memory types, resp., provided the recursive definition is formally contractive
[11], i.e., the recursion must go through a type constructor such as × or →.

Since Charguéraud and Pottier’s system tracks aliasing, so-called strong (i.e.,
non-type preserving) updates are permitted: a possible type for such an update
operation is ∀σ, σ′.([σ]× [σ′])∗{σ : ref τ} → 1∗{σ : ref [σ′]}. Here, the argument
to the procedure is a pair consisting of a location (named σ) and the value to
be stored (named σ′), and the location is assumed to be allocated in the initial
heap (and store a value of some type τ). The result of the procedure is unit, but
as a side-effect σ′ will be stored at the location σ.

Frame and anti-frame rules. Each of the syntactic categories is equipped
with an invariant extension operation, ·⊗C. Intuitively, this operation conjoins
C to the domain and codomain of every arrow type that occurs within its left
hand argument, which means that the capability C is preserved by all procedures
of this type. This intuition is made precise by regarding capabilities and types
modulo a structural equivalence which subsumes the “distribution axioms” for
⊗ that are used to express generic higher-order frame rules [5]. The two key
cases of the structural equivalence are the distribution axioms for arrow types,
(χ1 → χ2)⊗ C = (χ1 ⊗ C ∗ C) → (χ2 ⊗ C ∗ C), and for successive extensions,
(χ⊗C1)⊗C2 = χ⊗ (C1 ◦C2) where the derived operation C1 ◦C2 abbreviates
the conjunction (C1 ⊗ C2) ∗ C2.

There are two typing judgements, x1:τ1, . . . , xn:τn ` v : τ for values, and
x1:χ1, . . . , xn:χn  t : χ for expressions. The latter is similar to a Hoare triple
where (the separating conjunction of) χ1, . . . , χn serves as a precondition and χ



as a postcondition. This view provides some intuition for the following “shallow”
and “deep” frame rules, and for the (essentially dual) anti-frame rule:

[SF ]
Γ  t : χ

Γ ∗ C  t : χ ∗ C
[DF ]

Γ  t : χ

(Γ ⊗ C) ∗ C  t : (χ⊗ C) ∗ C
(1)

[AF ]
Γ ⊗ C  t : (χ⊗ C) ∗ C

Γ  t : χ

As in separation logic, the frame rules can be used to add a capability C (which
might assert the existence of an integer reference, say) as an invariant to a
specification Γ  t : χ, which is useful for local reasoning. The difference between
the shallow variant [SF ] and the deep variant [DF ] is that the former adds C only
on the top-level, whereas the latter also extends all arrow types nested inside
Γ and χ, via · ⊗ C. While the frame rules can be used to reason about certain
forms of information hiding [5], the anti-frame rule expresses a hiding principle
more directly: the capability C can be removed from the specification if C is an
invariant that is established by t, expressed by · ∗ C, and that is guaranteed to
hold whenever control passes from t to the context and back, expressed by ·⊗C.

Pottier [14] illustrates the anti-frame rule by a number of applications. One of
these is a fixed-point combinator implemented by means of “Landin’s knot”, i.e.,
recursion through heap. Every time the combinator is called with a functional
f : (χ1→χ2) → (χ1→χ2), a new reference cell σ is allocated in order to set up
the recursion required for the resulting fixed point fix f . Subsequent calls to fix f
still rely on this cell, and in Charguéraud and Pottier’s system this is reflected in
the type (χ1→χ2)⊗ I of fix f , where the capability I = {σ : ref (χ1→χ2)⊗ I}
describes the cell σ after it has been initialized. However, the anti-frame rule
allows one to hide the existence of σ, and leads to a purely functional interface
of the fixed point combinator. In particular, after hiding I, fix f has the much
simpler type (χ1→χ2), which means that we can reason about aliasing and type
safety of programs that use the fixed-point combinator without considering the
reference cells used internally by that combinator.

3 Hereditarily Monotonic Recursive Worlds

Intuitively, capabilities describe heaps. A key idea of the model that we present
next is that capabilities (as well as types and type contexts) are parameterized by
invariants – this will make it easy to interpret the invariant extension operation
⊗, as in [16, 17]. That is, rather than interpreting a capability C directly as a
set of heaps, we interpret it as a function JCK : W → Pred(Heap) that maps
“invariants” from W to sets of heaps. Intuitively, invariant extension of C is
then interpreted by applying JCK to the given invariant. In contrast, a simple
interpretation of C as a set of heaps would not contain enough information to
determine the meaning of every invariant extension of C.

The question is now what the set W of invariants should be. As the frame and
anti-frame rules in (1) indicate, invariants are in fact arbitrary capabilities, so W



should be the set used to interpret capabilities. But, as we just saw, capabilities
should be interpreted as functions from W to Pred(Heap). Thus, we are led
to consider a Kripke model where the worlds are recursively defined : to a first
approximation, we need a solution to the equation

W = W → Pred(Heap) . (2)

In fact, we will also need to consider a preorder on W and ensure that the
interpretation of capabilities and types is monotonic. We will find a solution to
a suitable variant of (2) using ultrametric spaces.

Ultrametric spaces. We recall some basic definitions and results about ul-
trametric spaces; for a less condensed introduction to ultrametric spaces we re-
fer to [18]. A 1-bounded ultrametric space (X, d) is a metric space where the
distance function d : X × X → R takes values in the closed interval [0, 1]
and satisfies the “strong” triangle inequality d(x, y) ≤ max{d(x, z), d(z, y)}.
A metric space is complete if every Cauchy sequence has a limit. A function
f : X1 → X2 between metric spaces (X1, d1), (X2, d2) is non-expansive if
d2(f(x), f(y)) ≤ d1(x, y) for all x, y ∈ X1. It is contractive if there exists some
δ < 1 such that d2(f(x), f(y)) ≤ δ · d1(x, y) for all x, y ∈ X1. By the Banach
fixed point theorem, every contractive function f : X → X on a complete and
non-empty metric space (X, d) has a (unique) fixed point. By multiplication of
the distances of (X, d) with a non-negative factor δ < 1, one obtains a new
ultrametric space, δ · (X, d) = (X, d′) where d′(x, y) = δ · d(x, y).

The complete, 1-bounded, non-empty, ultrametric spaces and non-expansive
functions between them form a Cartesian closed category CBUltne. Products
are given by the set-theoretic product where the distance is the maximum of
the componentwise distances. The exponential (X1, d1) → (X2, d2) has the set
of non-expansive functions from (X1, d1) to (X2, d2) as underlying set, and the
distance function is given by dX1→X2(f, g) = sup{d2(f(x), g(x)) | x ∈ X1}.

The notation x
n= y means that d(x, y) ≤ 2−n. Each relation n= is an equiva-

lence relation because of the ultrametric inequality; we refer to this relation as
“n-equality.” Since the distances are bounded by 1, x

0= y always holds, and the
n-equalities become finer as n increases. If x

n= y holds for all n then x = y.

Uniform predicates, worlds and world extension. Let (A,v) be a partially
ordered set. An upwards closed, uniform predicate on A is a subset p ⊆ N×A that
is downwards closed in the first and upwards closed in the second component:
if (k, a) ∈ p, j ≤ k and a v b, then (j, b) ∈ p. We write UPred(A) for the
set of all such predicates on A, and we define p[k] = {(j, a) | j < k}. Note
that p[k] ∈ UPred(A). We equip UPred(A) with the distance function d(p, q) =
inf{2−n | p[n] = q[n]}, which makes (UPred(A), d) an object of CBUltne.

In our model, we use UPred(A) with the following concrete instances for
the partial order (A,v): (1) heaps (Heap,v), where h v h′ iff h′ = h · h0 for
some h0#h, (2) values (Val ,v), where u v v iff u = v, and (3) stateful values
(Val ×Heap,v), where (u, h) v (v, h′) iff u = v and h v h′. We also use variants



of the latter two instances where the set Val is replaced by the set of value
substitutions, Env , and by the set of closed expressions, Exp. On UPred(Heap),
ordered by subset inclusion, we have a complete Heyting BI algebra structure
[4]. Below we only need the separating conjunction and its unit I, given by

p1 ∗ p2 = {(k, h) | ∃h1, h2. h = h1·h2 ∧ (k, h1) ∈ p1 ∧ (k, h2) ∈ p2}

and I = N×Heap. Still, this observation on UPred(Heap) suggests that Pottier
and Charguéraud’s system could be extended to a full-blown program logic.

It is well-known that one can solve recursive domain equations in CBUltne

by an adaptation of the inverse-limit method from classical domain theory [3].
In particular, with regard to the domain equation (2) above:

Theorem 1. There exists a unique (up to isomorphism) metric space (X, d) ∈
CBUltne and an isomorphism ι from 1

2 ·X→UPred(Heap) to X.

Using the pointwise lifting of separating conjunction to 1
2 ·X→UPred(Heap)

we define a composition operation on X. More precisely, ◦ : X × X → X is a
non-expansive operation that for all p, q, x ∈ X satisfies

ι−1(p ◦ q)(x) = ι−1(p)(q ◦ x) ∗ ι−1(q)(x) ,

and it can be defined by an easy application of Banach’s fixed point theorem as
in [16]. This operation reflects the syntactic abbreviation C1 ◦C2 = C1⊗C2 ∗C2

of conjoining C1 and C2 and additionally applying an invariant extension to C1;
the isomorphism ι−1 lets us view p, q and p ◦ q as UPred(Heap)-valued functions
on 1

2
·X. One can show that this operation ◦ is associative and has a left and

right unit given by emp = ι(λw.I); thus (X, ◦, emp) is a monoid in CBUltne.
Then, using ◦ we define an extension operation ⊗ : Y (1/2·X)×X → Y (1/2·X)

for any Y ∈ CBUltne by (f⊗x)(x′) = f(x◦x′). Not going into details here, let us
remark that ⊗ is the semantic counterpart to the syntactic invariant extension,
and thus plays a key role in the model. However, for Pottier’s anti-frame rule we
also need to ensure that specifications are not invalidated by invariant extension.
This requirement is stated via monotonicity, as we discuss next.

Relations on ultrametric spaces and hereditarily monotonic worlds.
As a conseqence of the fact that ◦ defines a monoid structure on X there is an
induced preorder on X: x v y ⇔ ∃x0. y = x ◦ x0.

For modelling the anti-frame rule, we aim for a set of worlds similar to
X ∼= 1/2 · X → UPred(Heap) but where the function space consists of the
non-expansive functions that are additionally monotonic, with respect to the
order induced by ◦ on X and with respect to set inclusion on UPred(Heap):

(W,v) ∼= 1
2 · (W,v) →mon (UPred(Heap),⊆) . (3)

Because the definition of the order v (induced by ◦) already uses the isomor-
phism between left-hand and right-hand side, and because the right-hand side
depends on the order for the monotonic function space, the standard existence



theorems for solutions of recursive domain equations do not appear to apply
to (3). Previously we have constructed a solution to this equation explicitly as
inverse limit of a suitable chain of approximations [17]. We show in the following
that we can alternatively carve out from X a suitable subset of what we call
hereditarily monotonic functions. This subset needs to be defined recursively.

Let R be the collection of all non-empty and closed relations R ⊆ X. We set

R[n]
def= {y | ∃x ∈ X. x

n= y ∧ x ∈ R} .

for R ∈ R. Thus, R[n] is the set of all points within distance 2−n of R. Note
that R[n] ∈ R. In fact, ∅ 6= R ⊆ R[n] holds by the reflexivity of n-equality, and
if (yk)k∈N is a sequence in R[n] with limit y in X then d(yk, y) ≤ 2−n must hold
for some k, i.e., yk

n= y. So there exists x ∈ X with x ∈ R and x
n= yk, and hence

by transitivity x
n= y which then gives limn yn ∈ R[n].

We make some further observations that follow from the properties of n-
equality on X. First, R ⊆ S implies R[n] ⊆ S[n] for any R,S ∈ R. Moreover,
using the fact that the n-equalities become increasingly finer it follows that
(R[m])[n] = R[min(m,n)] for all m,n ∈ N, so in particular each (·)[n] is a closure
operation on R. As a consequence, we have R ⊆ . . . ⊆ R[n] ⊆ . . . ⊆ R[1] ⊆ R[0].
By the 1-boundedness of X, R[0] = X for all R ∈ R. Finally, R = S if and only
if R[n] = S[n] for all n ∈ N.

Proposition 2. Let d : R × R → R be defined by d(R,S) = inf {2−n | R[n] =
S[n]}. Then (R, d) is a complete, 1-bounded, non-empty ultrametric space. The
limit of a Cauchy chain (Rn)n∈N with d(Rn, Rn+1) ≤ 2−n is given by

⋂
n(Rn)[n],

and in particular R =
⋂

n R[n] for any R ∈ R.

We will now define the set of hereditarily monotonic functions W as a recur-
sive predicate on the space X. Let the function Φ : P(X) → P(X) on subsets of
X be given by Φ(R) = {ι(p) | ∀x, x0 ∈ R. p(x) ⊆ p(x ◦ x0)}.

Lemma 3. Φ restricts to a contractive function on R: if R ∈ R then Φ(R) is
non-empty and closed, and R

n= S implies Φ(R) n+1= Φ(S).

While the proof of this lemma is not particularly difficult, we include it here to
illustrate the kind of reasoning that is involved.

Proof. It is clear that Φ(R) 6= ∅ since ι(p) ∈ Φ(R) for every constant function p
from 1

2 ·X to UPred(Heap). Limits of Cauchy chains in 1
2 ·X → UPred(Heap)

are given pointwise, hence (limn pn)(x) ⊆ (limn pn)(x ◦ x0) holds for all Cauchy
chains (pn)n∈N in Φ(R) and all x, x0 ∈ R. This proves Φ(R) ∈ R.

We now show that Φ is contractive. To this end, let n ≥ 0 and assume R
n= S.

Let ι(p) ∈ Φ(R)[n+1]. We must show that ι(p) ∈ Φ(S)[n+1]. By definition of the
closure operation there exists ι(q) ∈ Φ(R) such that p and q are (n+1)-equal.
Set r(w) = q(w)[n+1]. Then r and p are also (n+1)-equal, hence it suffices to
show that ι(r) ∈ Φ(S). To establish the latter, let w0, w1 ∈ S be arbitrary. By
the assumption that R and S are n-equal there exist elements w′

0, w
′
1 ∈ R such



that w′
0

n= w0 and w′
1

n= w1 in holds X, or equivalently, such that w′
0 and w0 as

well as w′
1 and w1 are (n+1)-equal in 1

2 ·X. By the non-expansiveness of ◦, this
implies that also w′

0 ◦ w′
1 and w0 ◦ w1 are (n+1)-equal in 1

2 ·X. Since

q(w0)
n+1= q(w′

0) ⊆ q(w′
0 ◦ w′

1)
n+1= q(w0 ◦ w1)

holds by the non-expansiveness of q and the assumption that ι(q) ∈ Φ(R), we
obtain the required inclusion r(w0) ⊆ r(w0 ◦ w1) by definition of r. ut

By Proposition 2 and the Banach theorem we can now define the hereditarily
monotonic functions W as the uniquely determined fixed point of Φ, for which

w ∈ W ⇔ ∃p. w = ι(p) ∧ ∀w,w0 ∈ W. p(w) ⊆ p(w ◦ w0) .

Note that W thus constructed does not quite satisfy (3). We do not have an iso-
morphism between W and the non-expansive and monotonic functions from W
(viewed as an ultrametric space itself), but rather between W and all functions
from X that restrict to monotonic functions whenever applied to hereditarily
monotonic arguments. Keeping this in mind, we abuse notation and write

1
2 ·W →mon UPred(A)

def= {p : 1
2 ·X → UPred(A) | ∀w1, w2 ∈ W. p(w1) ⊆ p(w1 ◦ w2)} .

Then, for our particular application of interest, we also have to ensure that all the
operations restrict appropriately (cf. Section 4 below). Here, as a first step, we
show that the composition operation ◦ restricts to W . In turn, this means that
the ⊗ operator restricts accordingly: if w ∈ W and p is in 1

2 ·W →mon UPred(A)
then so is p⊗ w.

Lemma 4. For all n ∈ N, if w1, w2 ∈ W then w1 ◦ w2 ∈ W[n]. In particular,
since W =

⋂
n W[n] it follows that w1, w2 ∈ W implies w1 ◦ w2 ∈ W .

Proof. The proof is by induction on n. The base case is immediate as W[0] = X.
Now suppose n > 0 and let w1, w2 ∈ W ; we must prove that w1 ◦ w2 ∈ W[n].
Let w′

1 be such that ι−1(w′
1)(w) = ι−1(w1)(w)[n]. Observe that w′

1 ∈ W , that
w′

1 and w1 are n-equal, and that w′
1 is such that n-equality of w,w′ in 1

2 · X
already implies ι−1(w′

1)(w) = ι−1(w′
1)(w

′). Since w′
1 and w1 are n-equivalent,

the non-expansiveness of the composition operation implies w1 ◦ w2
n= w′

1 ◦ w2.
Thus it suffices to show that w′

1 ◦ w2 ∈ W = Φ(W ). To see this, let w,w0 ∈ W
be arbitrary, and note that by induction hypothesis we have w2 ◦ w ∈ W[n−1].
This means that there exists w′ ∈ W such that w′ n= w2 ◦w holds in 1

2 ·X, hence

ι−1(w′
1 ◦ w2)(w) = ι−1(w′

1)(w2 ◦ w) ∗ ι−1(w2)(w) by definition of ◦
= ι−1(w′

1)(w
′) ∗ ι−1(w2)(w) by w′ n= w2 ◦w

⊆ ι−1(w′
1)(w

′ ◦ w0) ∗ ι−1(w2)(w ◦ w0) by hereditariness
= ι−1(w′

1)((w2 ◦w) ◦w0) ∗ ι−1(w2)(w ◦w0) by w′ n= w2 ◦w

= ι−1(w′
1 ◦ w2)(w ◦ w0) by definition of ◦.

Since w,w0 were chosen arbitrarily, this calculation establishes w′
1 ◦w2 ∈ W . ut



4 Step-indexed Possible World Semantics of Capabilities

We define semantic domains for the capabilities and types of the calculus de-
scribed in Section 2,

Cap = 1
2 ·W →mon UPred(Heap)

VT = 1
2 ·W →mon UPred(Val)

MT = 1
2 ·W →mon UPred(Val ×Heap) ,

so that p ∈ Cap if and only if ι(p) ∈ W . Next, we define operations on the seman-
tic domains that correspond to the syntactic type and capability constructors.
The most interesting of these is the one for arrow types. Given T1, T2 ∈ 1/2·X →
UPred(Val ×Heap), T1 → T2 in 1

2 ·X → UPred(Val) is defined on x ∈ X as

{(k, fun f(y)=t) | ∀j < k. ∀w∈W. ∀r∈UPred(Heap).
∀v, h. (j, (v, h)) ∈ T1(x ◦ w) ∗ ι−1(x ◦ w)(emp) ∗ r ⇒

(j, (t[f :=fun f(y)=t, y:=v], h)) ∈ E(T2 ∗ r)(x ◦ w)} ,

(4)

where E(T ) is the extension of a world-indexed, uniform predicate on Val×Heap
to one on Exp × Heap. It is here where the index is linked to the operational
semantics: (k, (t, h)) ∈ E(T )(x) if and only if for all j ≤ k, t′, h′,

(t |h) 7−→j (t′ |h′) ∧ (t′ |h′) irreducible
⇒ (k−j, (t′, h′)) ∈

⋃
w′∈W T (x ◦ w′) ∗ ι−1(x ◦ w′)(emp) .

Definition (4) realizes the key ideas of our model as follows. First, the univer-
sal quantification over w ∈ W and subsequent use of the world x ◦ w builds
in monotonicity, and intuitively means that T1 → T2 is parametric in (and
hence preserves) invariants that have been added by the procedure’s context. In
particular, (4) states that procedure application preserves this invariant, when
viewed as the predicate ι−1(x ◦ w)(emp). By also conjoining r as an invariant
we “bake in” the first-order frame property, which results in a subtyping axiom
T1 → T2 ≤ T1 ∗ C → T2 ∗ C in the type system. The existential quantification
over w′, in the definition of E , allows us to “absorb” a part of the local heap
description into the world. Finally, the quantification over indices j < k in (4)
achieves that (T1 → T2)(x) is uniform. There are three reasons why we require
that j be strictly less than k. Technically, the use of ι−1(x ◦w) in the definition
“undoes” the scaling by 1/2, and j < k is needed to ensure the non-expansiveness
of T1 → T2 as a function 1/2 ·X → UPred(Val). Moreover, it lets us prove the
typing rule for recursive functions by induction on k. Finally, it means that →
is a contractive type constructor, which justifies the formal contractiveness as-
sumption about arrow types that we made earlier. Intuitively, the use of j < k
for the arguments suffices since application consumes a step.

The function type constructor, as well as all the other type and capability con-
structors, restrict to Cap,VT and MT, respectively. With their help it becomes



straightforward to define the interpretation JCKη and JτKη of capabilities and
types, given an environment η which maps region names σ ∈ RegName to closed
values η(σ) ∈ Val , capability variables γ to semantic capabilities η(γ) ∈ Cap,
and type variables α and β to semantic types η(α) ∈ VT and η(β) ∈ MT. The
type equivalences can then be verified with respect to this interpretation. We
state this for the case of arrow types:

Lemma 5. Let T1, T2 non-expansive functions from 1
2 ·X to UPred(Val ×Heap).

1. T1 → T2 is non-expansive, and (T1 → T2)(x) is uniform for all x ∈ X.
2. T1 → T2 ∈ VT.
3. The assignment of T1 → T2 to T1, T2 is contractive.
4. Let c ∈ Cap and w

def= ι(c). Then (T1 → T2)⊗w = (T1⊗w ∗c) → (T2⊗w ∗c).

Recall that there are two kinds of typing judgments, one for typing of values
and the other for the typing of expressions. The semantics of a value judgement
simply establishes truth with respect to all worlds w, environments η, and k ∈ N:

|= (∆ ` v : τ) def⇐⇒ ∀η. ∀w. ∀k. ∀ρ. (k, ρ) ∈ J∆Kη w ⇒ (k, ρ(v)) ∈ JτKη w .

Here ρ(v) means the application of the substitution ρ to v. The judgement for
expressions mirrors the interpretation of the arrow case for value types, in that
there is also a quantification over heap predicates r ∈ UPred(Heap) and an
existential quantification over w′ ∈ W through the use of E :

|= (Γ  t : χ) def⇐⇒ ∀η. ∀w. ∀k. ∀r∈UPred(Heap).

∀ρ, h. (k, (ρ, h)) ∈ JΓ Kη w ∗ ι−1(w)(emp) ∗ r ⇒ (k, (ρ(t), h)) ∈ E(JχKη ∗ r)(w).

Theorem 6 (Soundness). If ∆ ` v : τ then |= (∆ ` v : τ), and if Γ  t : χ
then |= (Γ  t : χ).

To prove the theorem, we show that each typing rule preserves the truth of
judgements. Detailed proofs for the shallow and deep frame rules are included in
the appendix. Here, we consider the anti-frame rule. Its proof employs so-called
commutative pairs [14, 17], a property expressed by the following lemma.

Lemma 7. For all worlds w0, w1 ∈ W , there exist w′
0, w

′
1 ∈ W such that

w′
0 = ι(ι−1(w0)⊗ w′

1), w′
1 = ι(ι−1(w1)⊗ w′

0), and w0 ◦ w′
1 = w1 ◦ w′

0 .

Lemma 8 (Soundness of the anti-frame rule). Suppose |= (Γ ⊗ C  t :
χ⊗ C ∗ C). Then |= (Γ  t : χ).

Proof. We prove |= (Γ  t : χ). Let w ∈ W , η an environment, r ∈ UPred(Heap)
and

(k, (ρ, h)) ∈ JΓ Kη (w) ∗ ι−1(w)(emp) ∗ r .

We must prove (k, (ρ(t), h)) ∈ E(JχKη ∗ r)(w). By Lemma 7,

w1 = ι(ι−1(w)⊗ w2), w2 = ι(JCKη ⊗ w1) and ι(JCKη) ◦ w1 = w ◦ w2 (5)



holds for some worlds w1, w2 in W .
First, we find a superset of the precondition JΓ Kη (w) ∗ ι−1(w)(emp) ∗ r in

the assumption above, replacing the first two ∗-conjuncts as follows:

JΓ Kη (w) ⊆ JΓ Kη (w ◦ w2) by monotonicity of JΓ Kη and w2 ∈ W

= JΓ Kη (ι(JCKη) ◦ w1) since ι(JCKη) ◦ w1 = w ◦ w2

= JΓ ⊗ CKη (w1) by definition of ⊗.

ι−1(w)(emp) ⊆ ι−1(w)(emp ◦ w2) by monotonicity of ι−1(w) and w2 ∈ W

= ι−1(w)(w2 ◦ emp) since emp is the unit
= (ι−1(w)⊗ w2)(emp) by definition of ⊗
= ι−1(w1)(emp) since w1 = ι(ι−1(w)⊗ w2).

Thus, by the monotonicity of separating conjunction, we have that

(k, (ρ, h)) ∈ JΓ Kη (w)∗ι−1(w)(emp)∗r ⊆ JΓ ⊗ CKη (w1)∗ι−1(w1)(emp)∗r . (6)

By the assumed validity of the judgement Γ ⊗ C  t : χ⊗ C ∗ C, (6) entails

(k, (ρ(t), h)) ∈ E(Jχ⊗ C ∗ CKη ∗ r)(w1) . (7)

We need to show that (k, (ρ(t), h)) ∈ E(JχKη ∗ r)(w), so assume (ρ(t) |h) 7−→j

(t′ |h′) for some j ≤ k such that (t′ |h′) is irreducible. From (7) we then obtain

(k−j, (t′, h′)) ∈
⋃

w′ Jχ⊗ C ∗ CKη (w1 ◦ w′) ∗ ι−1(w1 ◦ w′)(emp) ∗ r . (8)

Now observe that we have

Jχ⊗ C ∗ CKη (w1 ◦ w′) ∗ ι−1(w1 ◦ w′)(emp)
= JχKη (ι(JCKη) ◦ w1 ◦ w′) ∗ JCKη (w1 ◦ w′) ∗ ι−1(w1 ◦ w′)(emp)
= JχKη (ι(JCKη) ◦ w1 ◦ w′) ∗ ι−1(ι(JCKη) ◦ w1 ◦ w′)(emp)
= JχKη (w ◦ w′′) ∗ ι−1(w ◦ w′′)(emp)

for w′′ def= w2 ◦w′, since w◦w2 = ι(JCKη)◦w1. Thus, (8) entails that (k−j, (t′, h′))
is in

⋃
w′′ JχKη (w ◦ w′′) ∗ ι−1(w ◦ w′′)(emp) ∗ r, and we are done. ut

5 Generalized Frame and Anti-frame Rules

The frame and anti-frame rules allow for hiding of invariants. However, to hide
uses of local state, say for a function, it is, in general, not enough only to allow
hiding of global invariants that are preserved across arbitrary sequences of calls
and returns. For instance, consider the function f with local reference cell r:

let r = ref 0 in fun f(g)=(inc(r); g(); dec(r)) (9)

If we write int n for the singleton integer type containing n, we may wish to hide
the capability I = {σ : ref (int 0)} to capture the intuition that the cell r : [σ]



stores 0 upon termination. However, there could well be re-entrant calls to f and
{σ : ref (int 0)} is not an invariant for those calls.

Thus Pottier [15] proposed two extensions to the anti-frame rule that allows
for hiding of families of invariants. The first idea is that each invariant in the
family is a local invariant that holds for one level of the recursive call of a
function. This extension allows us to hide “well-bracketed” [10] uses of local
state. For instance, the N-indexed family of invariants I n = {σ : ref (int n)} can
be used for (9); see the examples in [15]. The second idea is to allow each local
invariant to evolve in some monotonic fashion; this allows us to hide even more
uses of local state. The idea is related to the notion of evolving invariants for local
state in recent work on reasoning about contextual equivalence [1, 10]. (Space
limitations preclude us from including examples; please see [15] for examples.)

In summary, we want to allow the hiding of a family of capabilities (I i)i∈κ

indexed over a preordered set (κ,≤). The preorder is used to capture that the
local invariants can evolve in a monotonic fashion, as expressed in the new def-
inition of the action of ⊗ on function types (note that I on the right-hand side
of ⊗ now has kind κ→cap):

(χ1 → χ2)⊗ I = ∀i.
(
(χ1 ⊗ I) ∗ I i → ∃j ≥ i. ((χ2 ⊗ I) ∗ I j)

)
Observe how this definition captures the intuitive idea: if the invariant I i holds
when the function is called then, upon return, we know that an invariant I j (for
j ∈ κ, j ≥ i) holds. Different recursive calls may use different local invariants
due to the quantification over i. The generalized frame and anti-frame rules are:

[GF ]
Γ  t : χ

Γ ⊗ I ∗ I i  t : ∃j ≥ i. (χ⊗ I) ∗ I j
[GAF ]

Γ ⊗ I  t : ∃i. (χ⊗ I) ∗ I i

Γ  t : χ

We now show how to extend our model of the type and capability calculus to
accomodate hiding of such more expressive families of invariants. Naturally, the
first step is to refine our notion of world, since the worlds are used to describe
hidden invariants.

Generalized worlds and generalized world extension. Suppose K is a
(small) collection of preordered sets. We write K∗ for the finite sequences over
K, ε for the empty sequence, and use juxtaposition to denote concatenation.
For convenience, we will sometimes identify a sequence α = κ1, . . . , κn over K
with the preorder κ1 × · · · × κn. As in Section 3, we define the worlds for the
Kripke model in two steps, starting from an equation without any monotonicity
requirements: CBUltne has all non-empty coproducts, and there is a unique
solution to the two equations

X ∼=
∑

α∈K∗

Xα , Xκ1,...,κn
= (κ1× · · ·×κn) → ( 1

2 ·X → UPred(Heap)) , (10)

with isomorphism ι :
∑

α∈K∗ Xα → X in CBUltne, where each κ ∈ K is equipped
with the discrete metric. Each Xα consists of the α-indexed families of (world-
dependent) predicates so that, in comparison to Section 3, X consists of all these
families rather than individual predicates.



The composition operation ◦ : X × X → X is now given by x1 ◦ x2 =
ι(〈α1α2, p〉) where 〈αi, pi〉 = ι−1(xi), and where p ∈ Xα1α2 is defined by

p(i1i2)(x) = p1(i1)(x2 ◦ x) ∗ p2(i2)(x) .

for i1 ∈ α1, i2 ∈ α2. That is, the combination of an α1-indexed family p1 and an
α2-indexed family p2 is a family p over α1α2, but there is no interaction between
the index components i1 and i2: they concern disjoint regions of the heap.

From here on we can proceed essentially as in Section 3: The composition
operation can be shown associative, with a left and right unit given by emp =
ι(〈ε, λ , .I〉). For f : 1

2 ·X → Y the extension operation (f ⊗ x)(x′) = f(x ◦ x′)
is also defined as before (but with respect to the solution (10) and the new
◦ operation). We then carve out from X the subset of hereditarily monotonic
functions W , which we again obtain as fixed point of a contractive function on
the closed and non-empty subsets of X. Let us write ∼ for the (recursive) partial
equivalence relation on X where ι(〈α1α2, p〉) ∼ ι(〈α2α1, q〉) holds if p(i1i2)(x1) =
q(i2i1)(x2) for all i1 ∈ α1, i2 ∈ α2 and x1 ∼ x2. Then w ∈ W iff w ∼ w and

∃α, p. w = ι〈α, p〉 ∧ ∀i ∈ α. ∀w1, w2 ∈ W. p(i)(w1) ⊆ p(i)(w1 ◦ w2) .

Finally, the proof of Lemma 4 can be adapted to show that the operation ◦
restricts to the subset W .

Semantics of capabilities and types. The definition of function types changes
as follows: given x ∈ X, (k, fun f(y)=t) ∈ (T1 → T2)(x) if and only if

∀j < k. ∀w ∈ W where ι−1(x ◦ w) = 〈α, p〉. ∀r∈UPred(Heap). ∀i ∈ α. ∀v, h.

(j, (v, h)) ∈ T1(x ◦ w) ∗ p(i)(emp) ∗ r ⇒
(j, t[f :=fun f(y)=t, y:=v], h)) ∈ E(T2 ∗ r, x ◦ w, i) ,

where the extension to expressions now depends on i ∈ α: (k, t) ∈ E(T, x, i) if

∀j ≤ k, t′, h′. (t |h) 7−→j (t′ |h′) ∧ (t′ |h′) irreducible
⇒ (k − j, (t′, h′)) ∈

⋃
w∈W, i1∈α, i2∈β, i1≥iT (x ◦ w) ∗ q(i1i2)(emp)

for 〈αβ, q〉 = ι−1(x ◦ w).
Next, one proves the analogue of Lemma 5 which shows the well-definedness

of T1 → T2 and (a semantic variant of) the distribution axiom for generalized
invariants: in particular, given p ∈ κ → Cap and setting w

def= ι(〈κ, p〉),

(T1 → T2)⊗ w = ∀i∈κ

(
(T1 ⊗ w) ∗ p i) → ∃j≥i((T2 ⊗ w) ∗ p j)

)
where ∀ and ∃ denote the pointwise intersection and union of world-indexed
uniform predicates.

Once similar properties are proved for the other type and capability con-
structors (which do not change for the generalized invariants), we obtain:

Theorem 9 (Soundness). The generalized frame and anti-frame rules [GF ]
and [GAF ] are sound.

In particular, this theorem shows that all the reasoning about the use of local
state in the (non-trivial) examples considered by Pottier in [15] is sound.



6 Conclusion and Future Work

We have developed the first soundness proof of the anti-frame rule in the ex-
pressive type and capability system of Charguéraud and Pottier by constructing
a Kripke model of the system. For our model, we have used a new approach
to the construction of worlds by definining them as a recursive subset of a re-
cursively defined metric space, thus avoiding a tedious explicit inverse-limit con-
struction. We have shown that this approach scales, by also extending the model
to show soundness of Pottier’s generalized frame and anti-frame rules. Future
work includes exploring some of the orthogonal extensions of the basic type and
capability system: group regions [8] and fates & predictions [12].
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