
JFP 19 (2): 157–172, 2009. c© 2008 Cambridge University Press

doi:10.1017/S0956796808006886 First published online 30 June 2008 Printed in the United Kingdom

157

THEORETICAL PEARL

Coherence of subsumption for monadic types

JAN SCHWINGHAMMER

Programming Systems Lab, Saarland University, 66041 Saarbrücken, Germany

(e-mail: jan@ps.uni-sb.de)

Abstract

One approach to give semantics to languages with subtypes is by translation to target

languages without subtyping: subtypings A�B are interpreted via conversion functions

A→B. This paper shows how to extend the method to languages with computational effects,

using Moggi’s computational metalanguage.

1 Introduction

Subtyping is a binary relation � on types, where A � B states that expressions

of type A may be used in contexts expecting values of type B. The metatheory

is well developed, covering systems of simple, higher-order and dependent types

with subtyping (e.g. Cardelli 1988; Curien & Ghelli 1992; Pierce & Steffen 1997;

Zwanenburg 1999; Aspinall & Compagnoni 2001). When it comes to the semantics

of subtyping, a flexible and robust method is to interpret A � B as a conversion c :

A → B from type A to type B (Reynolds 1980; Breazu-Tannen et al. 1991; Mitchell

1996). Conversions give rise to a translation into a target language without subtyping,

thereby enabling the reuse of existing models. The key step is the elimination of the

subsumption rule that allows to infer the type B for a term e from the assumption

that e has type A and A � B. In the target language, subsumption is replaced by an

application c(e) of the conversion function corresponding to A � B.

Such a conversion interpretation is defined recursively, following the structure of

the subtyping derivations for A � B and typing derivations Γ � e : A, respectively,

in the source language. But in the presence of subtyping, type derivations are no

longer uniquely determined by Γ, e, and A alone, and, a priori, the translation

may differ on different type derivations of the same judgment. Breazu-Tannen et al.

(1991) address the problem by proving coherence, in the sense that the translation is

independent of the chosen derivation, up to provable equality in the target language.

Coherence results have been obtained for a variety of typed lambda calculi, including

polymorphic recursive and sum types (Breazu-Tannen et al. 1991), intersection types

(Reynolds 1991), and system F� (Curien & Ghelli 1992).

Subtyping is also an important ingredient of imperative programming, in particular

object-oriented languages. In fact, the motivation for this work stems from an

158 J. Schwinghammer

attempt to reason about Abadi and Cardelli’s imperative object calculus. It is

surprising, therefore, that no corresponding coherence results for languages that

combine subtyping and computational effects (notably state) can be found in the

literature. The aim of this short note is to fill this gap, by considering subtypes in

the context of Moggi’s computational metalanguage.

Moggi’s calculus extends the simply typed lambda calculus by monadic types

TA (Moggi 1991). Monads provide for a distinction between “pure” values and

“effectful” computations, where TA is the type of computations over A. Every

monad T comes equipped with an operation mapT that lifts a function f : A → B

to mapT f : TA → TB. For instance, to accommodate recursion, a type A might

denote a complete partial order, TA the lifted partial order A⊥, and mapTf the

strict extension of a continuous map f : A → B. In the case of the list monad,

mapTf is the function that maps a list [x1, . . . , xn] to [fx1, . . . , fxn], well known to

functional programmers. Monads have proved a useful tool, both in programming

theory and practice. Benton et al. (2002) give a very accessible introduction to their

many applications.

Looking at the instances of computational monads from Moggi (1990, 1991), it

appears sensible to postulate TA � TB whenever A � B. Indeed, the conversion

interpretation of subtyping extends to Moggi’s calculus in a generic, monad-

independent way: given a conversion c : A → B corresponding to A � B, mapT c

provides a conversion from TA to TB. (Readers with a background in type theory

will recognize that this construction is quite standard, using functoriality of the type

constructor T to define the conversions.) There exist translations of call-by-value

and call-by-name lambda calculi into Moggi’s language where function spaces are

decomposed as A →cbv B = A → TB and A →cbn B = TA → TB, respectively.

Because of the (covariant) monadic subtyping sketched above, these translations

now extend to lambda calculi with subtyping.

It is worth pointing out that, while the coherence result as such is to be expected,

the fact that we can give an elementary proof is perhaps less so. For instance,

Breazu-Tannen et al. (1991) axiomatized a separate type of coercion functions,

because of problems arising from the interaction of fixed points and the eta law for

sum types. In Schwinghammer (2005), where I add subtyping on top of a semantic

model that combines nontermination and dynamically allocated state, coherence is

proved by a semantic construction due to Reynolds (2003). The method is elegant

but does not easily generalize to other effects as it relies on the existence of suitable

reflexive objects, i.e., appropriate untyped models. In contrast, the strict separation

between pure and effectful computations in the monadic calculus allows for a

pleasingly straightforward extension of previous work (Curien & Ghelli 1992): the

coherence proof proceeds by transforming type derivations to a unique normal

form. The equational theory of the monadic metalanguage suffices to show that the

transformations preserve the semantics.

The next section recalls the computational metalanguage of Moggi (1991),

including a notion of subtyping. Section 3 develops the conversion semantics. The

coherence theorem is proved in Section 4, and Section 5 discusses some extensions

to the basic setting. In the choice of notation we keep close to Mitchell (1996).

Theoretical pearl 159

Table 1. Subtypes and typing

(ref)

Σ � A � A

(trans)

Σ � A � B Σ � B � C

Σ � A � C

(arrow)

Σ � B1 � A1 Σ � A2 � B2

Σ � A1 → A2 � B1 → B2

(ax)

b1�b2 ∈ SΣ

Σ � b1 � b2

(monad)

Σ � A � B

Σ � TA � TB

(sub)

Γ � e : A Σ � A � B

Γ � e : B

(var)

x:A ∈ Γ

Γ � x : A

(abs)

Γ, x:A � e : B

Γ � λx:A.e : A → B

(app)

Γ � e1 : A → B Γ � e2 : A

Γ � e1 e2 : B

(const)

c : typeOf(c) ∈ CΣ

Γ � c : typeOf(c)

(unit)

Γ � e : A

Γ � [e] : TA

(bind)

Γ � e1 : TA Γ, x:A � e2 : TB

Γ � let x ⇐ e1 in e2 : TB

2 A monadic metalanguage with subtyping

Let x, y, z range over a countably infinite set of variables. Let Σ = 〈BΣ, CΣ, SΣ〉 be a

signature, consisting of a set BΣ of type constants ranged over by b, a set CΣ of term

constants ranged over by c, and a set SΣ of basic subtyping assertions b � b′ between

type constants. We assume that each constant c ∈ CΣ has a specified type typeOf(c)

built from T , →, and the type constants. The types and terms of the computational

metalanguage MLT (Σ) are defined by the following grammar:

A,B ∈ Type ::= b | A → B | TA

e ∈ Exp ::= c | x | λx:A.e | e1 e2 | [e] | let x ⇐ e1 in e2

As mentioned above, MLT (Σ) is an extension of the simply typed lambda calculus

over signature Σ by monadic types. The terms [e] and let x ⇐ e1 in e2 are the

inclusion of values and composition of computations, respectively. We let Γ range

over type contexts x1:A1, . . . , xn:An, where all xi are distinct.

Table 1 defines the subtype relation and typing rules, parameterized by the

signature Σ. With the exception of rule (monad) this is entirely standard. The

equational theory of MLT (Σ) consists of the β- and η-equalities of simply typed

lambda calculus, together with three additional equalities that axiomatize the

monadic computations. Only equations Γ � e1=e2 : A between well-typed terms

of the same type will be considered; if the type and context are clear from context

we may simply write e1 = e2. This is summarized in Table 2.

Types A and B match if they have the same shape. Formally, matching is the least

relation between types such that b1 matches b2, for any type constants b1, b2 ∈ BΣ,

and if A matches B and A′ matches B′ then A → A′ matches B → B′ and TA

matches TB. The following observation is an immediate consequence of restricting

basic subtypings SΣ to type constants:

160 J. Schwinghammer

Table 2. MLT equations

(→ .β) Γ � (λx.e1) e2 = e1[e2/x] : A

(→ .η) Γ � λx.ex = e : A → B provided x /∈ fv (e)

(T .β) Γ � let x ⇐ [e2] in e1 = e1[e2/x] : TA

(T .η) Γ � let x ⇐ e in [x] = e : TA

(T .ass) Γ � let x2 ⇐ (let x1 ⇐ e1 in e2) in e3 = let x1 ⇐ e1 in (let x2 ⇐ e2 in e3) : TA

Lemma 2.1 (Structural subtyping)

If Σ � A � B then A and B match.

We introduce some useful notation. Let idA = λx:A.x and write e1; e2 =

λx:A.e2(e1 x) for the composition of e1 : A → B and e2 : B → C in diagrammatic

order. Using (→ .β) and (→ .η) it is easily verified that composition is associative

and has id as left and right unit: for all f : A → B, g : B → C , and h : C → D,

f; (g; h) = (f; g); h and idA; f = f = f; idB

Let mapT : (A → B) → TA → TB be defined by

mapT = λf:A → B.λx:TA. let y ⇐ x in [fy]

Strictly speaking, mapT should also be indexed by the types A and B, but in the

following these can usually be reconstructed from context. Compatibility of mapT

with identities and composition follows from the equational axioms of MLT (Σ)

mapT (idA) = λx:TA. let y ⇐ x in [idAy] by (→ .β)

= λx:TA. let y ⇐ x in [y] by (→ .β)

= idTA by (T .η)

and

mapT (f; g) = λx:TA. let z ⇐ x in [g(fz)] by (→ .β)

= λx:TA. let z ⇐ x in let y ⇐ [fz] in [gy] by (T .β)

= λx:TA. let y ⇐ let z ⇐ x in [fz] in [gy] by (T .ass)

= λx:TA. let y ⇐ mapT (f)(x) in [gy] by (→ .β)

= mapT (f);mapT (g) by (→ .β)

These identities show that the monad T is a functor in the category theoretic

sense, with the action on morphisms given by mapT , and relate to an alternative

axiomatization of monads (Moggi 1991). Corresponding to the functorial action of

function types we let map→ : (A2→A1) → (B1→B2) → (A1→B1) → A2 → B2 be

map→ = λf:A2 → A1λg:B1 → B2λh:A1 → B1. f; h; g

The equations map→(idA)(idB) = idA→B and

(map→ f1 g1); (map→ f2 g2) = map→ (f2; f1) (g1; g2)

are direct consequences of (→ .β) and (→ .η). Note the contravariance of map→ in

its first argument.

Theoretical pearl 161

Many notions of computation fit the monadic framework. The following examples,

taken from Moggi (1991), illustrate this:

Exceptions where TA = A + E adjoins a set of exceptions E to A, and

[a] = inl (a)

let x ⇐ e1 in e2 = case e1 of inl (x) ⇒ e2 | inr(x) ⇒ inr(x)

Thus, omitting the injections, the definition of mapT yields mapT f x = x if x ∈ E

and mapT f x = f x otherwise.

Nondeterminism where TA = ℘(A) is the powerset on A, and

[a] = {a}

let x ⇐ e1 in e2 =
⋃

{e2 | x ∈ e1}

Then mapT f x = {f y | y ∈ x}.
Global state where TA = (A × S)S for a set of states S , and

[a] = λs. (a, s)

let x ⇐ e1 in e2 = λs.let (x, s′) = e1 s in e2 s
′

Then mapT f x s = (f y, s′) where x s = (y, s′)

Continuations where TA = R(RA) for some fixed set R of “results”, and

[a] = λk.k a

let x ⇐ e1 in e2 = λk.e1 (λx.e2 k)

In this case, mapT f x k = x (k ◦ f)

3 Conversion semantics

We follow Pierce (2002) and write C :: Σ � A � B to distinguish the derivation C of

a subtype judgment from the judgment itself. Similarly, we write D :: Γ � e : A for

the derivation of a typing judgment Γ � e : A.

To obtain a conversion semantics, a conversion function cb
′

b : b → b′ must be

assumed for every basic subtyping b � b′. More precisely, let Σsub = 〈BΣ, Csub〉
be the signature with the same type constants as Σ, no basic subtypings, and

where Csub extends CΣ by new constants cb
′

b with typeOf(cb
′

b) = b → b′, for every

b � b′ ∈ SΣ. These basic conversions are required to commute: if a, b ∈ B and

a1, . . . , am, b1, . . . , bn ∈ B are such that both a = a1 � a2 � · · · � am = b and

a = b1 � b2 � · · · � bn = b in SΣ, then

� ca2
a1

; . . . ; camam−1
= cb2

b1
; . . . ; cbnbn−1

: a → b (1)

where associativity of composition allows us to omit parentheses. Let EΣ be the set

consisting of all equations of this form. Note that for any cbb, Equation (1) implies

cbb = idb.

Every subtype derivation C :: Σ � A � B gives rise to a conversion �C� which is

a term over signature Σsub. This conversion function is defined by induction on C.

162 J. Schwinghammer

• If C = Σ � A � A then �C� = idA.

• If C =
C1 :: Σ � A � B C2 :: Σ � B � C

Σ � A � C
then �C� = �C1� ; �C2�.

• If C =
b1�b2 ∈ Σ

Σ � b1 � b2

then �C� = cb2

b1
.

• If C =
C1 :: Σ � B1 � A1 C2 :: Σ � A2 � B2

Σ � A1 → A2 � B1 → B2

then �C� = map→ �C1� �C2�.

• If C =
C′ :: Σ � A � B

Σ � TA � TB
then �C� = mapT �C′�.

It is easy to verify that, for every C :: Σ � A � B, the conversion �C� is a closed,

well-typed term of type A → B over signature Σsub.

Intuitively at least, choosing mapT �C′� as conversion function between monadic

types is sensible. A brief glance at the examples given earlier confirms this.

Exceptions. For the exception monad, the conversion is applied to proper values but

exceptions are passed on.

Nondeterminism. For nondeterministic computations, the conversion is applied

pointwise to coerce every possible result value to the supertype.

Global state. For stateful computations, the conversion is applied to the result value

but the store remains unaffected.

Continuations. For computations in continuation passing style, the continuation is

coerced by precomposition with the conversion.

The translation of terms proceeds by replacing instances of rule (sub) by

applications of the correspondingly derived conversions. Formally, this is defined by

induction on the derivation D :: Γ � e : A.

• If D =
D′ :: Γ � e : A C :: Σ � A � B

Γ � e : B
then �D� = �C� (�D′�).

• In all other cases, the translation is trivial.

Note that Γ � �D� : A is a well-typed term over signature Σsub. In fact, this may be

derived without use of (sub).

4 Coherence

In this section, we establish coherence of the conversion semantics: the translations

of any two derivations of the same judgment are provably equal. As in previous

work, the proof is by a sequence of transformations of derivations, employing the

rules of Table 3.

We say that two derivations C1,C2 :: Σ � A � B are equivalent if �C1� = �C2� is

provable in MLT (Σsub) from the equations in EΣ, and analogously for derivations

D1,D2 of the same typing judgment Γ � e : A. Note that the conversion semantics

is compositional: if C1 is equivalent to C2 and D1 is equivalent to D2 then

�C[C1]� = �C[C2]� and �D[D1]� = �D[D2]�

Theoretical pearl 163

Table 3. Proof transformations: subtyping derivations

T-ArrowRef

Σ � A → B � A → B =⇒
Σ � A � A Σ � B � B

Σ � A → B � A → B

T-MonadRef

Σ � TA � TA =⇒
Σ � A � A

Σ � TA � TA

T-Arrow

C1 :: Σ � C1�A1

C2 :: Σ � A2�C2

Σ � A1→A2�C1→C2

C3 :: Σ � B1�C1

C4 :: Σ � C2�B2

Σ � C1→C2�B1→B2

Σ � A1→A2 � B1→B2

=⇒

C3 C1

Σ � B1�A1

C2 C4

Σ � A2�B2

Σ � A1→A2 � B1→B2

T-Monad

C1 :: Σ � A � C

Σ � TA � TC

C2 :: Σ � C � B

Σ � TC � TB

Σ � TA � TB
=⇒

C1 C2

Σ � A � B

Σ � TA � TB

where C[C′] denotes (one or more) occurrences of a subderivation C′ in C, and

similarly for D[D′]. This observation is used to simplify the arguments given below.

Lemma 4.1

For any derivation C, the application of a transformation rule from Table 3 yields

an equivalent derivation C′.

Proof

It is easy to see that each rule transforms a derivation C into a derivation C′ of

the same judgment. Moreover, the conversions obtained by translating the left-hand

and right-hand sides, respectively, agree.

• Case T-ArrowRef. Equivalence follows from idA→B = map→(idA)(idB).

• Case T-MonadRef. Similarly, since idTA = mapT (idA).

• Case T-Arrow. By (map→f1 f2); (map→f3 f4) = map→(f3; f1) (f2; f4).

• Case T-Monad. Similarly, by mapTf1; mapTf2 = mapT (f1; f2).

The statement now follows by compositionality of the conversion semantics. �

By repeated use of T-ArrowRef and T-MonadRef, derivations of Σ � A � A

may be expanded so that they reflect the structure of A. The rules T-Arrow and

T-Monad can be used to push instances of the transitivity rule to the leaves of a

derivation tree. The following lemmas make this procedure precise:

Lemma 4.2

For any subtype derivation C there is an equivalent derivation where (ref) is used

only on type constants.

164 J. Schwinghammer

Proof

Suppose there is a subderivation of a judgment Σ � A → B � A → B by (ref). It may

be replaced by the right-hand side of T-ArrowRef to obtain an equivalent derivation

that uses (ref) only on strictly smaller types. Similarly, any subderivation of Σ �
TA � TA by (ref) may be replaced by the right-hand side of T-MonadRef, using

(ref) on strictly smaller types. Repeating this transformation process exhaustively

must therefore terminate, with a derivation equivalent to C where (ref) is used only

on type constants. �

Lemma 4.3

For any subtype derivation C there is an equivalent derivation C′ where (ref) and

(trans) are used only on type constants, but not for functional or monadic types.

Proof

Transforming derivations by T-Arrow and T-Monad reduces the total number

of “→” and “T” symbols, respectively, occurring in the derivation. Consequently

the process of exhaustively transforming a derivation must terminate. Since neither

transformation introduces new instances of (ref), by Lemma 4.2 it is clear that we

may restrict attention to derivations where inference rule (ref) is used only on base

types.

We argue that a derivation C is already of the required form if no transformation

applies. Suppose that C contains an inference

C1 :: Σ � TA � C ′ C2 :: Σ � C ′ � TB

Σ � TA � TB

using (trans) for monadic types. Amongst all such inferences, consider one that does

not use (trans) on function or monadic types in the derivation of its hypotheses. By

Lemma 2.1, C ′ must be of the form TC for some C . By our earlier assumption,

neither hypothesis is a direct inference by (ref), so both C1 and C2 must end with

an application of (monad) which is the only rule besides (ref) and (trans) with

conclusions of the form Σ � TA � TC and Σ � TC � TB, respectively. Clearly this

entails that a further transformation by T-Monad is possible.

The case where C contains an inference by (trans) with conclusion of the form

Σ � A1 → A2 � B1 → B2 is similar, and may be found in Mitchell (1996). �

Lemma 4.4 (Uniqueness of conversions)

If C1,C2 :: Σ � A � B then the equation � �C1� = �C2� : A → B is provable in

MLT (Σ) from EΣ.

Proof

By Lemma 2.1, types A and B match. By Lemma 4.3, we may assume that (trans)

and (ref) are only used on type constants. This entails that C1 and C2 have the same

structure, with the possible exception of the way that a subtyping b � b′ between type

constants b, b′ ∈ BΣ is proved by (trans) and (ref) from basic subtyping assertions

in SΣ. The equivalence of all such proofs is guaranteed, however, by the identities

(1) contained in EΣ. �

Theoretical pearl 165

Table 4. Proof transformations: typing derivations

T-Sub

D :: Γ � e : A

C1 :: Σ � A � B

Γ � e : B C2 :: Σ � B � C

Γ � e : C
=⇒

D
C1 C2

Σ � A � C

Γ � e : C

T-Abs

D :: Γ, x:A � e : C C :: Σ � C � B

Γ, x:A � e : B

Γ � λx:A.e : A → B
=⇒

D
Γ � λx:A.e : A→C

Σ � A � A C
Σ � A→C � A→B

λx:A.e : A → B

T-App

C1 :: Σ � A � A′

C2 :: Σ � B′ � B

Σ � A′→B′ � A→B

D1 :: Γ � e1 : A′→B′

Γ � e1 : A → B D2 :: Γ � e2 : A

Γ � e1 e2 : B
=⇒

D1

D2 C1

Γ � e2 : A′

Γ � e1 e2 : B′ C2

Γ � e1 e2 : B

T-Unit

D :: Γ � e : A C :: Σ � A � B

Γ � e : B

Γ � [e] : TB
=⇒

D
Γ � [e] : TA

C
Σ � TA � TB

Γ � [e] : TB

T-BindL

D1 :: Γ � e1 : TA

C :: Σ � A � A′

Σ � TA � TA′

Γ � e1 : TA′ D2 :: Γ, x:A′ � e2 : TB

Γ � let x ⇐ e1 in e2 : TB

=⇒
D1 D2[x:A,C]

Γ � let x ⇐ e1 in e2 : TB

T-BindR

D1 :: Γ � e1 : TA

D2 :: Γ, x:A � e2 : TB′

C :: Σ � TB′ � TB

Γ, x:A � e2 : TB

Γ � let x ⇐ e1 in e2 : TB
=⇒

D1 D2

Γ � let x ⇐ e1 in e2 : TB′ C
Γ � let x ⇐ e1 in e2 : TB

Table 4 presents several transformations on typing derivations, generally moving

subsumption “down” to the conclusion (T-BindL is an exception). Repeating these

transformations results in a derivation of the minimum typing of a term, where the

use of (sub) is restricted to the arguments of function applications.

T-BindL transforms derivations in a nonlocal way, and relies on the following

weakening property. Suppose C :: Σ � A � A′ and D :: Γ, x:A′ � e : B. We

166 J. Schwinghammer

let D[x:A,C] be the derivation obtained from D by Equation (1) replacing the

assumption x:A′ in the type contexts by x:A, and Equation (2) replacing every

inference of Γ, x:A′,Γ′ � x : A′ by (var) with an inference Γ, x:A,Γ′ � x : A followed

by (sub) with hypothesis C. That D[x:A,C] is a derivation of Γ, x:A � e : B and

Γ, x:A � �D[x:A,C]� = �D� [(�C� x)/x] : B (2)

follows by an induction on D.

Lemma 4.5

For any derivation D, transformation by a rule from Table 4 yields an equivalent

derivation D′.

Proof

Clearly the transformation provides a derivation of the same judgment (the case of

T-BindL is an immediate consequence of the considerations above). The translation

of the left-hand and right-hand sides agree in all cases.

• Case T-Sub. Immediate, by f2(f1 e) = (f1; f2) e.

• Case T-Abs. By map→(idA)(f)(λx.e) = (λx.e); f = λx.(f e) and Lemma 4.4.

• Case T-App. Since (map→f1 f2 e1) e2 = (f1; e1; f2) e2 = f2(e1(f1 e2)).

• Case T-Unit. By (→ .β) and (T .β), mapTf [e] = let x ⇐ [e] in [fx] = [fe].

• Case T-BindR. Since mapTf (let x ⇐ e1 in e2) = let x ⇐ e1 in mapTf e2, by

(→ .β) and (T .ass).

• Case T-BindL. We have let x ⇐ mapTf e1 in e2 = let x ⇐ e1 in e2[(fx)/x], by

(→ .β) and (T .ass). The required equality follows by Equation (2).

Compositionality of the conversion semantics implies the lemma. �

Lemma 4.6

For any typing derivation D there is an equivalent derivation D′ that uses (sub) only

for the arguments of function applications and (possibly) the final inference.

Proof

Establishing termination for the transformations from Table 4 is tricky, because

T-BindL introduces (many) new instances of the subsumption rule. Suppose wΓ

maps each x in Γ to a natural number wΓ(x) � 0; we extend this to associate a

measure wΓ(D) ∈ � with each derivation D of a judgment Γ � e : A as follows:

• wΓ(D) = 0 if D :: Γ � c : A is an instance of (const).

• wΓ(D) = wΓ(x) if D :: Γ � x : A is an instance of (ax).

• wΓ(D) = 1 + wΓ(D′) if D ends in (sub) applied to D′ and some C.

• wΓ(D) = 3 · wΓ(D1) + wΓ(D2), if D :: Γ � e1 e2 : A ends in (app) applied to

D1 :: Γ � e1 : B → A and D2 :: Γ � e2 : B.

• wΓ(D) = 2 · wΓ,x:B(D′) if D :: Γ � λx:B.e : A ends in (abs) applied to

D′ :: Γ, x:B � e : B′, where wΓ,x:B maps x to 0 and otherwise agrees with wΓ.

• wΓ(D) = 2 · wΓ(D′) if D :: Γ � [e] : A ends in (unit) applied to D′ :: Γ � e : B.

• wΓ(D) = wΓ(D1) + 2 · wΓ,x:B(D2), if D :: Γ � let x ⇐ e1 in e2 : A ends in (bind)

applied to D1 :: Γ � e1 : TB and D2 :: Γ, x:B � e2 : A, where wΓ,x:B maps x to

wΓ(D1) and otherwise agrees with wΓ.

Theoretical pearl 167

Table 5. Equations for products, sums, polymorphism, and recursion

(×.β) Γ � fst (e1,e2) = e1 : A Γ � snd (e1,e2) = e2 : A′

(×.η) Γ � (fst e,snd e) = e : A × A′

(+.β) Γ � case ini(e) of in1 y ⇒ e1 | in2 y ⇒ e2 = ei[e/x] : A

(+.η) Γ � f(case e of in1 y ⇒ e1 | in2 y ⇒ e2) = case e of in1 y ⇒ f(e1) | in2 y ⇒ f(e2) : A

(∀.β) Γ � (Λα.e)A = e[A/α] : B[A/α]

(∀.η) Γ � Λα.eα = e : ∀α.A provided α /∈ fv (e)

(μ.β) Γ � unfold(foldμX.A e) = e : A[μX.A/X]

(μ.η) Γ � foldμX.A(unfold e) = e : μX.A

(fix) Γ � fixB f = f(fixB f) : B B pointed

Inspection of the transformations now shows that each application strictly decreases

this measure. Since the measure is independent of the subtyping derivations

appearing in D, it is invariant under application of transformations from Table 3.

Consequently, the union of both systems is terminating.

Applying the transformations exhaustively results in an equivalent derivation, by

Lemmas 4.1 and 4.5. By Lemma 4.3, this derivation uses (trans) and (ref) only on

type constants. But then this derivation must already have the required shape, for

otherwise one of the transformations in Table 4 applies. �

Now suppose Γ � e : A is derivable. An induction on e shows that any typing

derivation that uses (sub) only for the arguments of applications and a final step is

uniquely determined by Γ, e, and A, except for the derivation of subtyping judgments.

In combination with Lemmas 4.4 and 4.6 this proves the following:

Theorem 4.1 (Coherence)

If D1,D2 :: Γ � e : A then Γ � �D1� = �D2� : A is provable from EΣ.

5 Extensions

This section briefly discusses some extensions to the basic setting, as needed for

more realistic applications. Most of them have appeared in the literature before, and

the main point is that they combine well with the monadic types.

Products. The addition of product types follows the earlier procedure. Subtyping

is covariant, i.e., A × A′ � B × B′ whenever A � B and A′ � B′, and we omit the

(standard) typing rules. For f : A → B and g : A′ → B′ the function

map× f g = λx:A×A′.(f(fst x), g(snd x))

is used to define the conversion from A×A′ to B ×B′. For the coherence proof, the

β- and η-equalities for products (Table 5) establish that map× preserves identities

and function composition. This then allows us to replace all uses of (ref) and (trans)

on product types, by semantics-preserving proof transformations analogous to those

of Table 3. Typing derivations ending in the introduction of pairs or a projection

are transformed by pushing the subsumption rule from antecedent to conclusion,

analogous to Table 4, with an appropriate adaptation of the subtype derivation.

168 J. Schwinghammer

A generalization is possible to records, i.e., labeled n-ary products, with additional

width-subtyping. The nullary case then gives a terminal type, unit. In turn, this can

be used to interpret a greatest type � with respect to the subtype ordering.

Sums. For sum types, with covariant subtyping, the function

map+ f g = λx:A+A′.case x of in1 y ⇒ in1(f y) | in2 y ⇒ in2(g y)

is used to define the conversion A + A′ → B + B′ from f : A → B and g : A′ → B′.

From the β- and η-equalities for sums (Table 5) it follows that map+ preserves

identities and function composition, and we can use semantics-preserving proof

transformations to eliminate uses of (ref) and (trans) on sum types as in Table 3.

For the transformation of typing derivations, subsumption can simply be pushed

down through the introduction rules. Now consider the elimination construct:

D :: Γ � e : A1 + A2 D1 :: Γ, y:A1 � e1 : B D2 :: Γ, y:A2 � e2 : B

Γ � case e of in1 y ⇒ e1 | in2 y ⇒ e2 : B

The case where D ends with (sub) is handled by a transformation similar to T-BindL.

The case where one or both of D1 and D2 end with (sub) is more complicated: in

general, e1 could be coerced from B1 to B while e2 is coerced from some different

B2. Therefore, to achieve the uniqueness of “normalized” derivations, it is necessary

that all (bounded) joins exist in the type system. With this proviso, a transformation

similar to T-BindR from Table 4 works, by factoring the conversions Bi → B

through B1 ∨ B2, and pushing the coercion B1 ∨ B2 → B to the conclusion.

Polymorphism. As shown by Breazu-Tannen et al. (1991), subtyping of (bounded)

polymorphic types can be interpreted by conversion functions expressible in a

polymorphically typed lambda calculus: a bounded quantification ∀α � A.B is

viewed as depending on a witness conversion, and becomes (∀α � A.B)∗ = ∀α.(α →
A∗) → B∗. Accordingly, (the derivation of) a subtype judgment Σ;�α � �A � B � B′

with free type variables �α = α1, . . . , αn determines a term e, with free variables

�x = x1, . . . , xn that correspond to coercions from αi to Ai. Consider the inference rule

for subtyping quantified types,

Σ;�α � �A, α � A � B � B′

Σ;�α � �A � ∀α�A.B � ∀α�A.B′

Corresponding to the type constructor A,B �→ ∀α�A.B, with α possibly free in B,

the conversion map determined by this inference rule is derived from the following

function:

map∀ f = λz:(∀α�A.B)∗.Λα.λx:α→A∗.fα x (zα x)

where f : ∀α.(α → A∗) → B∗ → B′∗. Thus, assuming g : ∀α.(α → A∗) → B′∗ → B′′∗,

the equations map∀ (Λα.λx:α→A.idB) = id∀α.(α→A)→B and

(map∀ f); (map∀ g) = map∀ (Λα.λx:α→A.(fαx; gαx))

Theoretical pearl 169

follow from the various β- and η-equations. They serve to justify proof

transformations to eliminate (ref) and (trans) from derivations, analogous to the

ones of Table 3. That (sub) and type abstraction can be permuted is a consequence

of

map∀ f (Λαλx:α→A.e) = Λαλx:α→A. fα x e

and that (sub) can be pushed through type application is an immediate consequence

of the definition of map∀.

Breazu-Tannen et al. (1991) also discuss a stronger rule for subtyping-bounded

universals which permits (contravariant) subtyping of the bounds. However, this

more general rule is incompatible with the existence of joins which are needed for

sums, as described above.

Type recursion. Polymorphism is also useful to give an account of type recursion.

Cardelli’s Amber rule (Pierce 2002) gives a form of subtyping between recursive

types under a set �α ��α′ of subtype assumptions for type variables:

Σ;�α ��α′, α � α′ � B � B′

Σ;�α ��α′ � μα.B � μα′.B′

For instance, it lets us infer that the type of integer lists, B = μα.unit + int×α, is a

subtype of lists with real number entries, B′ = μα.unit+float×α. Intuitively, it is clear

how to coerce an integer list to a real number list: the conversion c : int → float is

applied to every element of the list, i.e., using the recursively defined function

coerce(x) = case (unfold x) of in1 y ⇒ foldB′(in1 y)

| in2 y ⇒ foldB′(in2(c(fst y), coerce(snd y)))

In fact, analogously defined conversions work for arbitrary recursive types; for

simplicity, let us consider the case without nested recursion. Then, each subtype

derivation of Σ; α � α′ � B � B′, with α possibly free in B and α′ possibly free in B′,

respectively, yields a polymorphic conversion k with type ∀αα′.(α → α′) → B → B′.

The conversion from A = μα.B to A′ = μα′.B′ is determined by

fixA→A′ (λf:A→A′.λx:A. foldA′(kAA′ f (unfold x)))

Technically, given k and k′ corresponding to Σ; α � α′ � B � B′ and Σ; α′ � α′′ �
B′ � B′′, one has for all g; h = g′; h′ : A → A′ (via C and C ′, respectively) that the

equation (kACg); (k′
CA′h) = (kAC ′g′); (k′

C ′A′h′) holds. From this, by the axioms, it is

possible to show that the transitivity rule can be removed from subtype derivations.

(The proof relies on fixed point induction with fix denoting the least fixed point

operator, as in the “usual” complete partial order (CPO) models of recursive types,

or on an operationally based unwinding property of recursive functions.)

The introduction of recursively defined types requires some care because the

combination of fixed points and the eta axiom for sum types is inconsistent.

Deviating from the approach of (Tannen et al. 1989; Breazu-Tannen et al. 1991)

we can take advantage of the monadic types: we restrict recursion to pointed types,

170 J. Schwinghammer

i.e., those of the form TA, A → B, B × B′ and μα.B where B is pointed, and only

consider recursive types μα.B well formed if B is pointed.

Monadic operations. For the particular operations associated with each notion of

computation, one usually introduces additional constructs. This can be tricky.

Exceptions where one may consider expressions Γ � raisee : TA (for arbitrary A)

to throw an exception e ∈ E. Semantically, raisee is inr(e) ∈ TA = A + E. Note

that Γ � mapTf (raisee) = raisee : TB for all f : A → B, so one expects that

this extension does preserve coherence of the interpretation: removing all uses of

subsumption following the introduction rule for raisee leads to the uniqueness of

derivations that is exploited in the coherence theorem.

Nondeterminism where one may consider a binary choice Γ � e1 ⊕e2 : TA, assuming

that Γ � ei : TA for i = 1, 2. It is interpreted as set union on TA = ℘(A). Note

that mapTf (e1 ⊕ e2) = (mapTf e1) ⊕ (mapTf e2) holds under this interpretation,

for all f : A → B. This allows us to extend the coherence proof by pushing uses

of subsumption on the components e1 and e2 from the premise to the conclusion

of the typing rule for choice. Similar to the case construct for sum types, however,

this relies on the existence of joins in the type system.

State where one may consider constructs to update and dereference memory

locations. Due to the invariance of the reference type constructor, there are

no coherence conditions required. However, adding an operation Γ � new e :

T (RefA), assuming that Γ � e : A, to dynamically allocate new memory is

problematic: the invariance of Ref prevents us from moving possible uses of

subsumption from the antecedent to the conclusion of the typing rule for new.

Technically, this rule breaks the minimal type property, and the coherence proof

does not extend.

An alternative to extending the expression syntax is to add the required operations

as (polymorphic) constants. For instance, choice and allocation take the form ⊕ :

∀α.Tα × Tα → Tα and new : ∀α.α → T (Ref α). Since type instantiation is reflected

in the term syntax, any application of (sub) on the arguments of such constants

becomes explicit. This case is already covered by the given coherence theorem.

Subtyping monadic types. It is also interesting to consider several monadic types, and

subtyping between them. This situation arises naturally in work on effect analysis

and in security type systems (Wadler & Thiemann 2003; Crary et al. 2005). For

instance, a computation without side-effects can be viewed as having only trivial

effects, corresponding to a conversion from the identity monad to the state monad.

Similarly, a low-security computation (e.g., one that does not read high-security data)

can be run in a high-security context (e.g., one that permits reading of high-security

data), corresponding to a conversion between different state monads.

To make the elimination of reflexivity and transitivity from subtyping derivations

work in this case, the conversion from T1 to T2 must be a function c : ∀α.T1α → T2α

such that for all f : A → B, cA; mapT2
f = mapT1

f; cB .

Theoretical pearl 171

6 Concluding remarks

The structure of our coherence proof is similar to the classic ones of Breazu-Tannen

et al. (1991) and Curien and Ghelli (1992); the rewriting aspect of coherence proofs

has been emphasized in Curien and Ghelli’s work. Using a monadically typed

language gives a somewhat dual approach to that of Breazu-Tannen et al. Rather

than introducing a separate type of conversions (corresponding to “pure” functions),

all potentially “impure” computations are encapsulated in the monad. Later work

already conjectured that a simplification could be achieved with a computational

metalanguage (Breazu-Tannen et al. 1990). As argued in Section 5 this is indeed the

case, provided that fixed points are restricted to monadic types.

The coherence theorem provides an alternative (and considerably more

elementary) proof to Schwinghammer (2005), where subtyping was considered for

an ML-like language with general references: a model for this language (Levy 2004)

may be presented as an instance of Moggi’s calculus, where the monad combines

nontermination, side-effects, and dynamic allocation.

Acknowledgments

I would like to thank Marco Kuhlmann and Bernhard Reus for their helpful

comments on an earlier draft.

References

Aspinall, David & Compagnoni, Adriana B. (2001) Subtyping dependent types. Theor. Comput.

Sci. 266(1–2), 273–309.

Benton, Nick, Hughes, John & Moggi, Eugenio. (2002) Monads and effects. In Advanced

Lectures from International Summer School on Applied Aemantics, APPSEM 2000, Barthe,

Gilles, Dybjer, Peter, Pinto, Luı́s & Saraiva, João (eds), Lecture Notes in Computer Science,

vol. 2395. Springer, Heidelberg, pp. 42–122.

Breazu-Tannen, Val, Coquand, Thierry, Gunter, Carl & Scedrov, Andre. (1991) Inheritance

as implicit coercion. Inf. Comput. 93(1), 172–221. Reprinted in Gunter and Mitchell (1994).

Breazu-Tannen, Val, Gunter, Carl A. & Scedrov, Andre. (1990) Computing with coercions.

In Proceedings of the ACM Conference on LISP and Functional Programming, Kahn, Gilles

(ed). ACM Press, New York, pp. 44–60.

Cardelli, Luca. (1988) A semantics of multiple inheritance. Inf. Comput. 76(2/3), 138–164.

Crary, Karl, Kliger, Aleksey & Pfenning, Frank. (2005) A monadic analysis of information

flow security with mutable state. J. Funct. Program. 15(2), 249–291.

Curien, Pierre-Louis & Ghelli, Giorgio. (1992) Coherence of subsumption, minimum subtyping

and type-checking in F�. Math. Struct. Comput. Sci. 2, 55–91. Reprinted in Gunter and

Mitchell (1994).

Gunter, Carl A. & Mitchell, John C. (eds). (1994) Theoretical Aspects of Object-Oriented

Programming: Types, Semantics, and Language Design. MIT Press, Cambridge, MA.

Levy, Paul Blain. (2004) Call-by-Push-Value. A Functional/Imperative Synthesis. Semantic

Structures in Computation, vol. 2. Springer, New York.

Mitchell, John C. (1996) Foundations for Programming Languages. MIT Press, Cambridge,

MA.

172 J. Schwinghammer

Moggi, Eugenio. (1990) An Abstract View of Programming Languages. Tech. rept. ECS-

LFCS-90-113. Laboratory for Foundations of Computer Science, Department of Computer

Science, University of Edinburgh.

Moggi, Eugenio. (1991) Notions of computation and monads. Inf. Comput. 93, 55–92.

Pierce, Benjamin C. (2002) Types and Programming Languages. MIT Press, Cambridge, MA.

Pierce, Benjamin C. & Steffen, Martin. (1997) Higher-order subtyping. Theor. Comput. Sci.

176(1–2), 235–282.

Reynolds, John C. (1980) Using category theory to design implicit conversions and

generic operators. In Proceedings of the Aarhus Workshop on Semantics-Directed Compiler

Generation, Jones, Neil D. (ed). Lecture Notes in Computer Science, no. 94. Springer,

Heidelberg. Reprinted in Gunter and Mitchell (1994).

Reynolds, John C. (1991) The coherence of languages with intersection types. In Theoretical

Aspects of Computer Software (TACS’91), Ito, Takayasu & Meyer, Albert R. (eds). Lecture

Notes in Computer Science, no. 526. Springer, Heidelberg, pp. 675–700.

Reynolds, John C. (2003) What do types mean?—From intrinsic to extrinsic semantics. In

Programming Methodology, McIver, Annabelle & Morgan, Carroll (eds). Monographs in

Computer Science. Springer, New York.

Schwinghammer, Jan. (2005) A typed semantics of higher-order store and subtyping. In

Proceedings Ninth Italian Conference on Theoretical Computer Science (ICTCS’05), Coppo,

Mario, Lodi, Elena & Pinna, G. Michele (eds). Lecture Notes in Computer Science,

vol. 3701. Springer, Heidelberg,pp. 390–405.

Tannen, Val, Gunter, Carl A. & Scedrov, Andre. (1989) Denotational Semantics for Subtyping

Between Recursive Types. Research Report MS-CIS-89-63/Logic & Computation 12.

Department of Computer and Information Science, University of Pennsylvania.

Wadler, Philip & Thiemann, Peter. (2003) The marriage of effects and monads. ACM Trans.

Comput. Logic 4(1), 1–32.

Zwanenburg, Jan. (1999) Pure type systems with subtyping. In International Conference on

Typed Lambda Calculi and Applications (TLCA’99). Lecture Notes in Computer Science,

vol. 1581. Springer, Heidelberg, pp. 381–396.

