
Reasoning about Denotations of

Recursive Objects

Jan Schwinghammer

Submitted for the degree of D. Phil.

University of Sussex

September, 2005

Declaration

I hereby declare that this thesis has not been previously submitted, either in the same or

different form, to this or any other university for a degree.

Signature:

Preface

The contents of Part II were obtained as the result of joint research with my supervisor,

Dr. Bernhard Reus. A preliminary version of this chapter appeared as a University of

Sussex technical report (Reus and Schwinghammer 2004), and an extended abstract of our

results has been published in the conference proceedings of the European Symposium on

Programming (Reus and Schwinghammer 2005). The full version appears as (Reus and

Schwinghammer 2006a).

Reasoning about Denotations of

Recursive Objects

Jan Schwinghammer

Summary

This thesis is concerned with reasoning about stateful programs where storage of values

of all types is possible, including those of higher type. This feature is often referred

to as higher-order store; examples are the objects in the object calculus of Abadi and

Cardelli as well as the general references of languages such as Standard ML and Scheme.

Higher-order store introduces recursion “through the store” to the language, and requires

the semantic domain to be defined by a mixed-variant recursive equation. Using domain-

theoretic techniques we investigate semantics and logics of languages with higher-order

store, with particular emphasis on object-oriented languages where subtyping introduces

additional complexity.

The thesis is divided into three parts. The first one surveys some key technical re-

sults from domain theory, and summarises various proposals of semantic interpretations

of both functional and imperative objects found in the literature. The object calculus

that is considered throughout Parts II and III is presented, including its operational and

denotational semantics.

Part II presents a denotational semantics for Abadi and Leino’s logic of objects. Our

soundness proof provides an insightful alternative to the original proof of Abadi and

Leino which was given with respect to an operational semantics. By separating validity

from derivability in the proof system, we clarify the meaning of specifications of the

logic. The logic is also extended by a notion of recursive specification and appropriate

proof rules are introduced.

In the final part, the problem of finding a typed model of the object calculus is ad-

dressed. Starting from a model of an ML-like language recently presented by Levy, we

add subtyping to obtain a semantic model that is sufficiently rich to interpret imperative

objects. The semantics is presented as a possible worlds model that explicates the allo-

cation of new memory; subtyping is interpreted using coercion maps. After establishing

coherence by extending a method due to Reynolds, a number of non-trivial programs are

shown to meet their specifications.

Submitted for the degree of D. Phil.

University of Sussex

September, 2005

Abstract

Most programming languages provide constructs for accessing and manipulating state.

In fact, languages such as Standard ML even allow the storage of executable code – in the

form of function closures – by implementing “general references”. This feature allows us

to write general recursive functions by making the recursive calls in a program “through

the store”, a technique that is known as recursion through the store or back-patching

(Landin 1964). Similarly, object-based languages provide for objects being created on-the-

fly, and arbitrary method code needs to be kept in the heap store.

This thesis is concerned with reasoning about stateful programs that use higher-order

storage. In modelling such languages, higher-order store requires the semantic domain to

be defined by a mixed-variant recursive equation. Our underlying assumption here is that

domain theory provides an adequate means to deal with the inherent recursion introduced

by higher-order store. Using domain-theoretic techniques we investigate semantics and

logics of languages with higher-order store, with particular emphasis on object-oriented

languages where subtyping introduces additional complexity.

The thesis is divided into three parts. The first one begins by reviewing the key

technical results from domain theory that are used in subsequent chapters: A number

of constructions on complete partial orders, solution of recursive domain equations in

bilimit-compact categories (Smyth and Plotkin 1982; Levy 2004), and relational structures

and invariant relations (Pitts 1996). Then, after summarising various proposals from the

literature for the semantic interpretation of (both functional and imperative) objects, a

variant of the object calculus as an elementary formalisation of object-based languages is

presented (Abadi and Cardelli 1996). This is the model of objects used in Parts II and III of

the thesis, and we recall its type system as well as its operational and denotational seman-

tics. Since the store model differs slightly from the one used in the original formulation

of the calculus, we show agreement between operational and denotational semantics by

establishing adequacy. While the result itself is not surprising, and its proof proceeds in

a standard way, this provides a first illustration of the use of relational structures.

In the second part of the thesis, a denotational semantics for Abadi and Leino’s (1997,

2004) logic of objects is given. The logic has a compositional proof system that refines

the type system. Our semantics is based on the untyped cpo model of objects considered

in previous work of Reus and Streicher (2002, 2004). We extend their work in order to

deal with mutually recursive objects, the dynamic allocation of new objects on the heap,

and a notion of subspecification featured by the logic.

Our soundness proof for the logic provides an insightful alternative to the original

proof by Abadi and Leino which was given with respect to an operational semantics. By

clearly separating validity from derivability in the proof system, we clarify the meaning

of specifications of the logic: Every specification denotes a predicate over the denota-

tions of programs. Moreover, the denotational analysis of the logic justifies some of the

restrictions made in the logic: Semantically, they guarantee the well-definedness of spec-

ifications that talk about higher-order store. Further, the denotational setting is used to

extend the logic with recursive specifications which provide a way to reason about opera-

tions on recursively defined data structures. After introducing corresponding proof rules

we demonstrate that our soundness proof can be adapted to cover this extension.

In Part III, the problem of finding a typed model of the object calculus is addressed.

Our apporach is indirect: Starting from a typed model for an SML-like language recently

presented by Levy (2002, 2004), we add subtyping to obtain a model of call-by-value

languages with higher-order functions, records, references to values of arbitrary type and

structural subtyping. Adapting the semantics from (Kamin and Reddy 1994) this provides

for an interpretation of the object calculus, too.

The semantics is presented as a possible worlds model that explicates the allocation of

new memory; subtyping is interpreted using coercion maps. Coherence of this semantics

is established by a method due to Reynolds (2002b), where a logical relation between the

typed and an untyped model is used. The coherence theorem is the main technical result

in this part. As a corollary to the coherence theorem, the logical relation gives rise to a

per model of higher-order storage. To the best of our knowledge this is the first such

model; we discuss how it differs from previous per models in order to achieve type safety

in the presence of destructive updates.

Finally, we illustrate the potential gains of reasoning in an (intrinsically) typed model.

Unfortunately our attempts at providing a logic for this language (similar to the one of

Abadi and Leino for the object calculus) did not succeed. Nevertheless the model may be

used to prove correctness of several non-trivial example programs in an ad-hoc fashion,

by reasoning directly about their denotations. The examples we give include: Recursive

functions, methods that use recursion through self, a simple call-back mechanism, and

functions and objects that use recursion through the store. Compared to similar correct-

ness proofs considered in earlier work in the untyped model (Reus and Streicher 2004),

specifications can often be written in a more concise way, taking advantage of the fact

that all programs can be assumed to be type correct.

Some preliminary results about local reasoning for higher-order store are given at the

end of the thesis, in the form of a frame property known from recent work on separation

logic (Reynolds 2002a).

Acknowledgements

I am indebted to my supervisor, Dr. Bernhard Reus, without whom this thesis would

presumably not exist. I wish to thank him for proposing the topic of this thesis to me,

and for teaching, listening and patiently answering my many questions. He also provided

much appreciated encouragement and was persistent at times when our research did not

seem to progress.

I want to thank my examiners, Prof. Guy McCusker and Prof. Uday Reddy, for their

careful reading and insightful questions that helped to improve correctness and presen-

tation. I am grateful to the members of my Thesis Committee, Prof. Guy McCusker and

Prof. Vladimiro Sassone, for their interest and their constructive and relevant feedback on

my work. Thanks as well to the other faculty, students and visitors who made the Foun-

dations group (and the Theory Lab in particular) such an enjoyable place to work. I would

also like to thank my good friends Dr. Manuel Bodirsky, Tobias Gärtner, and Dr. Timo

von Oertzen, who all read and commented on previous versions of this text, and Dami-

ano Macedonio, who explained to me the subtleties of intuitionistic logic and Brunched

Implications.

For some very interesting discussions about Abadi and Leino’s logic, and about com-

pleteness issues in general, I thank Prof. Thomas Streicher. I must also thank Dr. Paul B.

Levy for explaining his model construction to me during a visit to Sussex, and for pointing

out a flaw in an earlier version of Chapter 8.

Thanks also to Prof. Dr. Gert Smolka and the members of the Programming Systems

Lab in Saarbrücken, for their hospitality during several short visits, and for providing me

with the opportunity to finish my thesis at the lab. Andreas Rossberg in particular gave

some useful hints about ML polymorphism and could confirm that recursion through the

store is used in real programs.

Iris Kersten and Dr. Gregor Erbach provided friendship, bed, breakfast and generous

help in many ways when desperately needed, thank you. Thanks to Dr. Martin Coleman

and Dr. Sebastian Rasinger for being good friends and housemates for many years, and

to all my running and cycling friends for taking my mind off work every now and then.

I gratefully acknowledge the support for this research provided by the Engineering and

Physical Sciences Research Council of the United Kingdom, through grant GR/R65190/01,

“Programming Logics for Denotations of Recursive Objects”.

Finally, many thanks to my family for their support throughout.

Jan Schwinghammer,

Saarbrücken, October 13, 2006.

Contents

1 Introduction and Background 1

1.1 Objects, Classes and Imperative Object Calculus 2

1.2 Higher-order Store . 3

1.3 Denotational Semantics . 5

1.3.1 Domain-theoretic Models . 5

1.3.2 Denotational Semantics of Storage . 6

1.4 Subtyping . 8

1.4.1 Containment Interpretation of Subtyping 9

1.4.2 Partial Equivalence Relations . 9

1.4.3 Coercions . 10

1.5 Program Logics . 11

1.5.1 Procedures, Aliasing and Local Reasoning 11

1.5.2 Logics for Objects, and Abadi and Leino’s Logic 12

1.6 Further Related Work . 14

1.7 Contributions of this Thesis . 14

1.7.1 Our Approach and Results . 14

1.7.2 Thesis Outline . 15

1.7.3 Published Results . 16

I Preliminaries 19

2 Denotational Semantics 21

2.1 Complete Partial Orders . 21

2.2 Bilimit-Compact Categories . 25

2.3 Minimal Invariants . 26

2.3.1 Uniqueness of Minimal Invariants . 27

2.3.2 Existence of Minimal invariants . 27

2.3.3 Sub-Bilimit-Compact Categories . 28

2.4 Functor Categories . 29

2.5 Relational Properties of Bilimit-Compact Categories 30

2.5.1 Relational Structures . 31

2.5.2 Invariant R-relations . 31

2.5.3 Uniqueness of Invariant R-relations . 32

2.5.4 Existence of Invariant R-relations . 33

ii Contents

3 A Model of Objects 35

3.1 Class-based and Object-based Languages . 35

3.2 Object Encodings . 36

3.2.1 Imperative Objects . 37

3.2.2 Functional Objects . 38

3.2.3 Models of Objects in this Thesis . 40

3.3 Object Calculus . 41

3.3.1 Imperative Object Calculus . 41

3.3.2 Operational Semantics . 45

3.3.3 Denotational Semantics of the Imperative Object Calculus 48

3.3.4 Adequacy . 50

3.4 Modelling Class-based Languages . 56

3.4.1 A Class-based Language . 56

3.4.2 Classes as Objects . 57

3.4.3 Benefits of Class Objects . 59

II On Abadi and Leino’s Logic 61

4 Abadi and Leino’s Logic of Objects and its Denotational Semantics 63

4.1 Introduction . 63

4.2 Outline of Part II . 65

4.3 Abadi-Leino Logic . 67

4.3.1 Transition Relations and Specifications . 67

4.3.2 Subspecifications and Proof System . 68

4.3.3 Proving the Factorial in Abadi-Leino Logic 71

4.3.4 Semantics of Specifications . 73

5 Soundness of Abadi and Leino’s Logic 77

5.1 Store Specifications . 77

5.1.1 Result Specifications, Store Specifications and a Tentative Semantics . 78

5.1.2 On the Existence of Store Specifications 80

5.1.3 A Refined Semantics of Store Specifications 82

5.2 Soundness . 87

5.2.1 Preliminaries . 87

5.2.2 The Invariance Lemma . 90

5.2.3 Soundness Theorem . 100

5.2.4 Comparison to Object Encodings . 100

6 Recursive Specifications 103

6.1 Syntax and Proof Rules . 103

6.2 Semantics of Recursive Specifications . 106

6.2.1 Existence of Store Specifications . 106

6.2.2 Semantics . 107

iii

6.3 Soundness . 109

6.3.1 Syntactic Approximations . 109

6.3.2 Soundness Theorem . 116

7 Discussion 117

7.1 Comparison to Previous Work . 117

7.1.1 A Comparison to Abadi and Leino’s Proof 117

7.1.2 Store Specifications as Possible Worlds . 118

7.2 Outlook: Towards More Expressive Logics . 119

7.3 Summary and Conclusions . 122

III Reasoning in a Typed Model 125

8 A Typed Semantics for Languages with General References and Subtyping 127

8.1 Introduction . 127

8.2 Outline of Part III . 129

8.3 Language . 130

8.4 Intrinsic Semantics . 131

8.4.1 Worlds . 131

8.4.2 Semantic Domain . 131

8.4.3 Semantics . 134

8.5 An Untyped Semantics . 136

8.6 A Kripke Logical Relation . 137

8.6.1 Existence of RAw . 137

8.6.2 The Basic Lemma . 142

8.6.3 Bracketing . 145

8.7 Coherence of the Intrinsic Semantics . 150

8.8 A PER Model of Higher-Order Storage and Subtyping 151

8.8.1 Extrinsic PER Semantics . 151

8.8.2 On Abadi and Leino’s Logic of Objects . 152

8.8.3 Polymorphism . 153

9 A Typed Model of Objects 155

9.1 Recursive Functions . 155

9.2 Objects . 157

9.3 Reasoning about Higher-order Store and Objects 160

9.3.1 Recursive Methods: The Factorial . 160

9.3.2 Recursion through the Store: The Factorial 161

9.3.3 Call-backs . 163

9.3.4 A Semantic Object Introduction Rule . 165

9.3.5 Non-Existence of Specifications . 167

9.4 Remarks . 168

iv Contents

10 Discussion 169

10.1 Comparison to Related Work . 169

10.1.1 Comparing the Typed and Untyped Models of Objects 170

10.2 Outlook: Towards Local Reasoning for Higher-Order Store 171

10.2.1 Partial Stores . 171

10.2.2 The Frame Property . 172

10.3 Summary and Conclusions . 178

Bibliography 180

List of Tables

Table 2.1 Update and extension of records . 24

Table 2.2 Composition of records . 24

Table 3.1 Syntax of the imperative object calculus 41

Table 3.2 Typing rules for the imperative object calculus 43

Table 3.3 Well-formed recursive object types . 44

Table 3.4 Subsumption for recursive object types 45

Table 3.5 Subtyping recursive object types . 45

Table 3.6 Operational semantics of imperative objects 47

Table 3.7 Denotational semantics of imperative objects 49

Table 3.8 Contexts . 51

Table 3.9 Semantics of runtime values, stacks and heaps 52

Table 3.10 Semantics of contexts . 52

Table 3.11 Formal Approximation . 53

Table 3.12 Functionals Φ/ and Φ/St . 53

Table 3.13 Syntax of a class-based language. Types and terms 56

Table 3.14 Typing of terms and classes . 58

Table 3.15 Translation of types . 58

Table 3.16 Translation of terms . 59

Table 4.1 An example of transition and result specifications 69

Table 4.2 The subspecification relation . 70

Table 4.3 Transition relations Tres, Tobj and Tupd . 70

Table 4.4 Inference rules of Abadi-Leino logic . 71

Table 4.5 Semantics of expressions . 74

Table 4.6 Semantics of transition relations . 74

Table 4.7 Semantics of specifications . 75

Table 5.1 Store specifications, first (and incorrect) attempt 80

Table 5.2 Store predicate . 83

Table 6.1 Well-formed recursive object specifications and contexts 104

Table 6.2 Subspecification relation for recursive object specifications 105

Table 6.3 Recursive object specifications . 106

Table 6.4 Store predicate for recursive object specifications 107

Table 6.5 Interpretation of recursive specifications 108

Table 6.6 Approximations . 110

Table 6.7 The generalised object subspecification rule 111

vi List of Tables

Table 8.1 Typing . 130

Table 8.2 Semantics of types . 132

Table 8.3 Functor F : Cop ×C -→ C . 133

Table 8.4 Coercion maps . 134

Table 8.5 Semantics of typing judgements . 135

Table 8.6 Semantics of typing judgements (continued) 136

Table 8.7 Untyped interpretation of terms . 138

Table 8.8 Kripke logical relation . 139

Table 8.9 The functional Φ . 140

Table 8.10 Bracketing maps . 146

Table 9.1 Translation of object calculus types and terms 159

Table 10.1 Frame relation . 174

Table 10.2 Functional of the relation . 175

Chapter 1

Introduction and Background

The theory of functional programming languages and lambda calculus is well-developed.

In computing practice, however, almost all widely used languages contain constructs for

imperative programming, such as mutable variables, pointers and references.

The mathematical modelling of first-order While languages with integer storage poses

no particular problems; Floyd-Hoare logic and similar calculi provide formal frameworks

for specification and correctness proofs of programs (Cousot 1990). But already the com-

bination of block-allocated integer store and higher-order functions, as modelled by the

Idealized Algol family of languages (Reynolds 1981), is considerably more complex.

Many programming languages go much further and allow the storage of arbitrary, exe-

cutable code. The heap store of such languages is often referred to as higher-order store.

It has been known for a long time (Landin 1964) that higher-order store can be used to

implement recursion, by a technique called recursion through the store, or back-patching.

Consider the program fragment:

let r : ref (int⇒ int) = new λn. n in

let f : int⇒ int = λn. if n = 0 then 1 else n× (deref r)(n−1)

in r := f ; . . .

(1.1)

A reference r is created and initially contains the identity function on the integers int. The

function f declared next simply calls the function that r refers to in the else-branch. This

means that, after the final update, f calls itself recursively and one (rightly) expects that

f computes the factorial. An informal argument of this fact may be along the following

lines: If the reference r contains a function that computes the factorial, then f computes

the factorial. Hence, after the assignment of f itself to r in line 3, f computes the factorial.

Because of the inherent circularity of this description, the validity of this argument

is not at all obvious. In fact, consider the similar program where the definition of f is

replaced by

let f : int⇒ int = λn. if n = 0 then 0 else (deref r)(n−1)

in r := f ; . . .
(1.2)

2 Chapter 1. Introduction and Background

That is, f is like the function stored in the reference r but shifted by 1. Call a function g

on the natural numbers globally non-constant 0 (gnc) if it is not eventually constant 0, i.e.,

if for all n there is m ≥ n such that g(m) ≠ 0. One might be tempted to reason as before

and argue that r contains a gnc function after the assignment: If the reference r contains

a gnc function, then f is gnc. Hence, after the assignment of f itself to r , f is gnc. However,

operational intuition tells us that f is indeed 0 everywhere. We must conclude that the

soundness of this reasoning principle is guaranteed only under additional assumptions.

Abadi and Cardelli’s (1996) calculus of imperative objects also allows one to write

programs similar to (1.1):

[

fac = ς(y)λn. if n = 0 then 1 else n× y.fac(n−1)
]

(1.3)

The program defines an object with a single method fac. The self parameter y is bound

to the object itself, providing a way to call the method recursively in the method body.

According to the semantics of (Abadi and Cardelli 1996) the recursive binding of the self

parameter is through the store. A program logic, due to Abadi and Leino (1997), provides

inference rules that allow us to prove correctness of programs using recursion through

the store. Again, soundness of the logic is not obvious.

This thesis is concerned with semantics and logics of programming languages with

higher-order store. In particular, we investigate higher-order store in the context of lan-

guages with subtyping, and object-oriented languages. Denotational semantics will facil-

itate formal proofs of programs such as (1.1) and (1.3), and provide an explanation why

the reasoning in (1.2) failed. Our contributions are in two areas:

A Logic for an Object Calculus. A program logic for the object calculus, first presented

in (Abadi and Leino 1997), allows for reasoning about programs using recursion

through the store. Using an untyped domain-theoretic model of the calculus, we

use techniques similar to those of (Reus and Streicher 2004) to prove soundness of

this logic. Starting from our semantics, the logic is also extended with recursive

specifications that refine recursive types.

A Model of Higher-order Store and Subtyping. We address the problem of constructing

a typed model of the object calculus. A typed model of a lambda calculus with

general references, due to Levy (2002), is extended by the introduction of subtyping.

It is shown how to soundly model this semantically, by proving coherence. Using

a well-known encoding of imperative objects (Reddy 1988; Kamin and Reddy 1994)

this gives rise to a typed model of Abadi and Cardelli’s object calculus.

The remainder of this chapter contains an informal overview of the material, to set our

results in the wider context.

1.1 Objects, Classes and Imperative Object Calculus

Objects consist of fields providing local state, and methods that may modify this state.

In class-based languages, classes provide templates from which objects are instantiated;

a class describes the interface and behaviour of its instance objects. Classes separate

1.2. Higher-order Store 3

the method code from objects, the class name is used to select the appropriate code for

method invocations from the class table.

Object-based languages are based on the notions of prototype object and cloning

(Abadi and Cardelli 1996, Chapter 4). Their distinguishing feature – compared to class-

based object-oriented languages – is that objects are assembled on-the-fly. Rather than

instantiating from a class of a fixed class table (which means there are only finitely many

classes), there are constructs for the creation and customisation of individual objects.

This includes the dynamic adaptation of methods and has the consequence that each

object contains its own set of methods.

Abadi and Cardelli (1996) present a formal model of object-based programming. A

family of languages with various type systems and semantics is introduced, which are

often simply referred to as object calculus. Intuitively, the expression

[fi = xi , mj = ς(yj)bj]i∈I,j∈J

allocates a new object on the heap, with fields fi and methods mj . The expression a.fi

returns the value of field fi , the assignment a.fi := b updates its value. Method invocation,

a.mj (), executes the method body bj ; in the body, the variable yj refers to the host object a

(this variable is typically called self or this in object-oriented languages). Upon invocation,

the self parameter yj of the method mj is therefore bound to the location of the object in

the heap. The expression clone a produces a (shallow) copy of the object a in the store.

Certain aspects of class-based languages can also be simulated in the object calculus,

using compilation techniques (Abadi and Cardelli 1996, Chapters 8, 11 and 12).

One of the aims of (Abadi and Cardelli 1996) was the investigation of type systems

for object-oriented languages, in particular the interaction between subtyping and the

recursion through self. Later work (Abadi and Leino 1997) refined a simple type system

to obtain a program logic for the imperative object calculus.

We shall focus on reasoning about object calculus programs in this thesis. Abadi and

Leino’s logic in particular is our topic of study in Part II.

1.2 Higher-order Store

Higher-order store, by which we mean a store1 that may contain higher-order values,

comes in various guises. Many widely used programming languages, as well as founda-

tional calculi, contain constructs that give rise to store that is higher-order.

General References

Higher-order store appears in the form of general references in typed higher-order lan-

guages like Standard ML (Milner et al. 1997). References in ML denote (typed) locations, or

cells, in the heap. References can be created to values of arbitrary types: If A is any type,

including functional types B ⇒ B′, then ref A denotes the type of references containing

values of type A. Operationally, this amounts to storage cells containing function closures.

The program (1.1) illustrates general references. Indeed, apart from minor notational

differences (1.1) is valid Standard ML code. Moreover, similar examples show that general

1We use the terms store and heap synonymously

4 Chapter 1. Introduction and Background

references allow us to write general recursive functions, even in the absence of a fixed

point combinator and despite simple typing. This contrasts with simply typed lambda

calculus that is well-known to be strongly normalising. The semantics of recursively de-

fined functions in the language Scheme (Abelson et al. 1998; Honsell, Pravato, and Rocca

1998) is actually stated in terms of recursion through the store, following the pattern

of (1.1).

A surprising observation is that the combination of references for basic types such

as int and storable commands (in ML, these correspond to functions 1 ⇒ 1 on the one-

element type, 1) are already sufficient to simulate general references (Guy McCusker, per-

sonal communication). The idea is that a function of type A ⇒ B can be simulated by a

command, corresponding to the function body, that accesses the argument via a reference

of type ref A, and returns the result via a reference of type ref B.

Function Pointers

In low-level languages such as C (Kernighan and Ritchie 1988) and C++ (Stroustrup 2000),

the concept of function pointers amounts to a form of higher-order store. For instance, a

C function pointer ptr2fn is defined by

int (*ptr2fn)(int) = &f ;

where f is a function that takes an argument of type int and returns an int, and ‘&’ is the

address operator. The pointer ptr2fn is treated like any other C pointer: It can be assigned

to, can be dereferenced, and can be passed as argument and return value in function calls.

An analogue of (1.1) can be written in C as follows.

int (*ptr2fn)(int n) = NULL;

int fac(int n) { if (n == 0) return 1; else return (n× ((*ptr2fn)(n − 1))); }

int main(. . .) { ptr2fn = &fac; . . . }

Object-Based Languages

The ability to dynamically create objects in object-based languages has the consequence

that each object contains its own set of methods. Since objects are stored in the heap,

this leads to a higher-order store.

Here is yet another variant of the factorial, written in Abadi and Cardelli’s (1996)

imperative object calculus.

let a : A =
[

fac = ς(y)λn. n
]

in

let b : B =
[

f = a, fac = ς(y)λn. if n = 0 then 1 else n× y.f.fac(n− 1)
]

in b.f := b; . . .

(1.4)

where A ≡ [fac:int⇒int] and B ≡ [f:A, fac:int⇒int]. The difference to (1.3) is that the

recursion in b’s method fac is through the field f rather than directly through the self

parameter y . The assignment in the third line is acceptable because the types A and B

are in subtype relation, so that every object of type B may be used where objects of type

A are expected (by “forgetting” f, see Section 1.4 below).

1.3. Denotational Semantics 5

1.3 Denotational Semantics

Reasoning about the behaviour of programs, purely in terms of their syntax and opera-

tional semantics, is often difficult. An alternative approach to proving program properties

was initiated by the work of Scott and Strachey on denotational models of programming

languages (Strachey 1966; Scott 1993; Scott and Strachey 1971; Scott 1972). To quote

Fiore et al. (1996), a denotational semantics intends “to bring out subtle issues in lan-

guage design, to derive new reasoning principles, and to develop an intuitive abstract

model of the programming language under consideration so as to aid program develop-

ment.”

Each term a of the language is assigned a mathematical object JaK, its denotation or

meaning. The mapping from programs to their denotations is usually compositional in

the sense that the denotation of an expression is determined by the denotations of its

subexpressions. Instead of reasoning about concrete program executions, one can then

use (mathematical) properties to reason about the program’s denotation.

There must be a good “fit” between denotational model and concrete executions, usu-

ally formalised in terms of operationally defined observations and observational equiva-

lence, and the statement of adequacy with respect to these observations (Winskel 1993).

Adequacy asserts that reasoning about the denotations can soundly be transferred back

to the operational behaviour of programs (although it may not be complete). However,

in this thesis we shall focus on denotational semantics. Therefore we will not be overly

concerned with the relation between operational and denotational semantics.

1.3.1 Domain-theoretic Models

The possibility of non-termination of programs induces a natural order on (partial) func-

tions: f is less or equal g if and only if g converges on more inputs, and moreover f and g

agree on all inputs where f converges. Ordered structures therefore arise naturally in the

semantics of programming languages. The intuition is then that the ordering describes

the information content of an element (Plotkin 1983).

Domain-theoretic models are partially ordered sets that are widely used in denota-

tional semantics. They are required to be complete in that least upper bounds exist for

sets of elements that arise by approximating recursive functions, looping constructs and

similar computational phenomena. Maps between domains are required to be monotonic

and continuous (preserve the least upper bounds). Plotkin’s (1983) lecture notes contain

intuitive motivation for these definitions. Technically speaking, continuity entails that

(least) fixed points of endomaps exist.

Many classes of domains also permit solutions to domain equations X � F(X) which

allows one to define domains recursively (Smyth and Plotkin 1982). A well-known ex-

ample is the solution to X � X ⇀ X that has been used to give a semantics to untyped

lambda calculus. For our purpose of investigating higher-order storage the ability to solve

recursive domain equations is an important property, for the following reason. Let St be

a domain of stores and let Z be the set of integers. Imperative functions may have side-

6 Chapter 1. Introduction and Background

effects on the store, so semantically a function on the integers is a partial map

f : Z × St⇀ Z × St

Since such functions may also be stored in a higher-order store s ∈ St, say at location l,

we must have s.l ∈ (Z × St⇀ Z × St). In other words, the definition of St necessitates the

solution of a recursive equation.

As a consequence, program properties are generally expressed by (recursively defined)

predicates on such recursively defined domains. (Pitts 1996) introduces a framework of

relations over domains, a slight generalisation of which is presented in Chapter 2 follow-

ing the ideas of Levy (2004). This provides the technical machinery for reasoning about

programs with higher-order storage.

We follow the terminology of Reynolds (2002b) and call a denotational model of a

typed language an intrinsic semantics if meaning is given to derivations of typing judge-

ments Γ . a : A, rather than to terms a, with the consequence that

• ill-typed phrases are meaningless,

• terms satisfying several judgements will be assigned several meanings, and

• coherence between the meaning of several derivations of the same judgement must

be established.

In contrast to intrinsic semantics, an extrinsic semantics gives meaning to all terms, i.e.,

one starts with a model of an untyped language. Types and typing judgements are inter-

preted as, e.g., predicates or partial equivalence relations over the model (cf. Section 1.4).

1.3.2 Denotational Semantics of Storage

It is not hard to obtain denotational models of first-order imperative While languages,

where the store is usually modelled by (finite) maps from locations to values. But the se-

mantics of storage becomes quite involved once we look beyond such simple while lan-

guages. For example the combination of (call-by-name parameter-passing) higher-order

procedures and block-allocated storage, exemplified by Algol-like languages, poses sev-

eral challenging problems for obtaining “good” models (Reynolds 1981): Naive models of

storage allocation fail to satisfy such basic equivalences as the garbage collection equation

Jlet x = new e in cK = JcK

when x is not free in c (Meyer and Sieber 1988).

In many proposals of semantic models that more adequately treat local variables and

allocation of memory, the denotation of types is parameterized by store shapes, yielding

a possible-worlds semantics of types. Functor categories provide the necessary machin-

ery to construct such models (Oles 1982; O’Hearn and Tennent 1997). By imposing a

strong notion of uniformity, parametricity, one can explain the constrained action of non-

local procedures on local state (O’Hearn and Tennent 1995; Sieber 1994). This provides a

1.3. Denotational Semantics 7

formal link to parametric polymorphism and its application to abstract data types and in-

dependence of data representation (O’Hearn and Reynolds 2000; Reynolds 1983; Mitchell

and Plotkin 1988; Mitchell 1991).

In the co-algebraic modelling of objects (Jacobs 1996; Jacobs and Rutten 1997; Jacobs

and Poll 2003), classes are viewed as coalgebras S -→ T(S) consisting of a state space S

and an implementation of the methods T (as transition function). In this reading, an object

is modelled as an element of S; conceptually, the state can only be observed by interaction

via T . Bisimulation can be used to show indistinguishability by T -observations between

objects, possibly even belonging to different classes. However, modelling object-based

languages where there is no proper distinction between class and object appears to be

beyond current co-algebraic techniques. Reddy’s event-based semantics of objects (where

references to objects are not allowed) has a similar flavour (Reddy 2002; Reddy 1996).

Other variations of storable values have been considered; Tennent and Ghica (2000)

survey the history and development of semantic models of storage. Pitts and Stark in-

vestigate the combination of call-by-value functions and dynamically created names (Pitts

and Stark 1993; Pitts 1996) and dynamically created integer references (Pitts and Stark

1998). Functor categories prove a useful tool in this instance, too. Building on these

results, recent work of Reddy and Yang (2004), and Benton and Leperchey (2005) has pro-

vided a fairly successful semantic account of local state in languages with dynamically

allocated heap memory including pointers. Reddy and Yang use a parametric model to

express the inaccessibility of non-local, private store, employing ideas from separation

logic (O’Hearn, Reynolds, and Yang 2001) to track the visibility and leaking of pointers.

Benton and Leperchey develop similar ideas on top of a model built in the category of fm-

cpos (Shinwell and Pitts 2005). fm-sets and -cpos provide an elegant way of expressing

freshness, which is used to neatly model the irrelevance of actual location names.

Higher-order store is less well-understood. An investigation of locality, data abstrac-

tion and leakage of references in ML-like languages without restrictions on the storable

types is still largely missing. Paul Levy recently presented a possible worlds model that

provides the starting point for the typed semantics of objects we provide in the final part

of this thesis (Levy 2004; Levy 2002). The model reflects the dynamic allocation aspects

but its use of a global store prevents reasoning about private variables and data abstrac-

tion.

Besides Levy’s work we are aware of only few other (typed) semantic models of higher-

order store in the literature. The models (Abramsky, Honda, and McCusker 1998; Laird

2003) use games semantics and are storeless and not location-based, i.e., the store is

modelled only indirectly via possible program behaviours. They do not immediately give

rise to strong reasoning principles. In particular, no analogue of the minimal invariant

property has been developed, on which Pitts’ (1996) theory of relational properties is

based. We found these necessary, for instance, to establish the existence of the logical

relation in Section 8.6.

Ahmed, Appel, and Virga (2002) construct a model with a more operational flavour:

The semantics of types is obtained by approximating absence of type errors in a reduction

8 Chapter 1. Introduction and Background

semantics; soundness of this construction follows from an encoding into type theory.

Again we do not see how strong reasoning principles can be obtained. Jeffrey and Rathke

(2002) provide a model of the object calculus in terms of interaction traces, very much in

the spirit of games semantics. Apart from Jeffrey and Rathke’s semantics, none of these

models treats subtyping.

1.4 Subtyping

Subtyping is a useful and practical mechanism to increase the expressiveness of typed

languages: It allows terms of type A to be placed in contexts that expect values of type

B, whenever A is a subtype of B (written A � B). A common subtype relation is between

the types int of integers and real of floating point numbers. Postulating int � real means

that expressions of type int may be used in place of expressions of type real. In the type

system, this substitutability is realised by the inference scheme

Γ . a : A A � B

Γ . a : B

called the subsumption rule.

Given a set of subtypings A � B on base types, the subtype relation can be lifted to

higher types in a standard way, following the type structure. For instance, a function

of type A ⇒ B expects an input of type A, and returns a result of type B. Therefore

it may safely be applied to elements of a subtype of A, and used in contexts requiring

at most something of type B. Thus, we expect a function type A ⇒ B to be a subtype

of another such type A′ ⇒ B′ if A′ � A and B � B′. Similarly, the only operation on

(functional) records is the selection of fields. Therefore a record of type {fi : Ai}i∈I can

safely be placed in contexts where only a subset of the fields is accessed. Hence, a record

type {fi : Ai}i∈I should be a subtype of a record type {fj : Aj}j∈J provided J ⊆ I. The

subtype relation that we use for the language considered in Part III is induced by these

two principles.

Subtyping where the subtype relation is extended from base to higher types in this

way is called structural subtyping. It is the natural notion of (interface) subtyping in

object-based languages. In contrast, many class-based object-oriented languages imple-

ment nominal subtyping where the subtype relation is derived solely from a relation on

type names, according to the subclass hierarchy in the class table. We will be mainly

concerned with object-based languages and therefore with structural subtyping.

With regards to the denotational semantics we wish to exhibit models of structural

subtyping that justify the informal description just given. More precisely, this amounts

to establishing soundness of the subsumption rule with respect to an interpretation of

types in a model. Models of subtyping can be divided into two classes: Ones where the

subtype relation is interpreted as a suitable form of inclusion, and ones where A � B

corresponds to a coercion map cAB from the interpretation of A to the interpretation of B.

1.4. Subtyping 9

1.4.1 Containment Interpretation of Subtyping

The most intuitive view of subtyping is that subtyping means inclusion: If JAK is the set

of values of type A, and JBK is the set of values of type B, then JAK ⊆ JBK holds whenever

A � B. Soundness of subtyping on functions and record types, as described above, follows

immediately from such an interpretation of subtyping.

A semantics for typed languages can be obtained by starting with a model for the

untyped language. In a second step, types are interpreted by choosing suitable subsets

of the untyped model. As a well-known example, for lambda calculus a denotational

semantics can be given in a universal domain U where there are (partial continuous) maps

e and p,

[U ⇀ U]
e //

U
p

oo

between U and the space of partial continuous functions on U , satisfying p ◦ e = id[U⇀U].

Types are interpreted as subsets of U , defined inductively by

JA⇒ BK def
=

{

f ∈ U ∀u ∈ U. u ∈ JAK ∧ p(f)(u)↓ =⇒ p(f)(u) ∈ JBK} (1.5)

where p(f)(u) ↓ means that application of the (partial) function p(f) is defined. Indeed

this gives rise to a containment interpretation of subtyping. For richer languages the de-

notations of types may need to be more constrained. For instance, to accommodate fixed

point operators, the sets JAK typically have to be closed under taking least upper bounds.

Reynolds’ (2002b) article contains a detailed account of such an interpretation. MacQueen,

Plotkin, and Sethi (1986) use a similar setting to model recursive and polymorphic types.

The approach can also be extended from types to more precise specifications, viewed

as predicates on the domain of programs. This has been used in lcf, a logic for func-

tional programs (Paulson 1987). Our denotational semantics for Abadi and Leino’s logic

in Chapter 4 also follows the same idea.

1.4.2 Partial Equivalence Relations

The intuitively pleasing view of subtyping described above has a short-coming with re-

spect to equational reasoning. For example, in a functional language with subtyping, the

records {f = 1,g = 1} and {f = 1,g = 2} are distinct when viewed at type {f : int,g : int}.

However, they cannot be distinguished at the supertype {f : int} and should therefore be

considered equal. Consequently, equivalence of expressions depends on the type infor-

mation that a surrounding context possesses. This is not reflected by the containment

interpretation where equality is inherited from the underlying domain U and necessarily

“untyped”.

However, the interpretation can be refined to take typed equational reasoning into

account. Models based on partial equivalence relations (pers) reflect this by providing a

semantics for both type membership and typed equality (Longo and Moggi 1991; Longley

1995; Mitchell 1996): The denotation of a type A is a partial equivalence relation RA on

U , i.e., an equivalence relation on some subset U ′ ⊆ U of U . The intuition behind this is

10 Chapter 1. Introduction and Background

that the domain U ′ of RA determines the set of elements of type A, and the equivalence

determines when two elements of A are to be considered equal.

For instance, the following per JA⇒ BK of functions from JAK to JBK takes the place

of (1.5) in the inductive definition of types:

JA⇒ BK def
= {〈f , g〉 | ∀〈u, v〉 ∈ JAK .p(f)(u)↓ ∨ p(g)(v)↓ =⇒ 〈p(f)(u), p(g)(v)〉 ∈ JBK}

where 〈p(f)(u), p(g)(v)〉 ∈ JBK asserts in particular that both p(f)(u) and p(g)(v) are de-

fined. The definition of JA⇒ BK guarantees that every f in the domain of this per respects

the equivalence classes of JAK. Inclusion of pers provides for a sound interpretation of

subtyping and the subsumption rule.

In fact, pers have proven useful in obtaining models of type theories more expressive

than simply typed lambda calculus, most notably including impredicative and parametric

polymorphism and type recursion (Amadio 1991; Cardone 1989; Abadi and Plotkin 1990;

Freyd, Rosolini, Mulry, and Scott 1992; Phoa 1992; Mitchell and Viswanathan 1996). For

many purposes the universal domain U may be replaced by an arbitrary partial combina-

tory algebra: Several of the cited articles use the natural numbers, viewed as codes for

the partial recursive functions.

We will obtain a per model of higher-order store as a corollary to the technical devel-

opment in Chapter 8.

1.4.3 Coercions

A more general view of subtyping is that a subtype relation A � B determines a coercion

map cAB : JAK → JBK that converts values of type A to values of type B (Mitchell 1996;

Mitchell 1984; Reynolds 1980). For example, the internal representations of integers and

floating point numbers could be quite different in an implementation; semantically JintK
and JrealK may well be disjoint. The map cint,real : JintK → JrealK associated with int � real

would model the actual conversion that happens in the implementation.

The added flexibility, compared to the containment interpretations, comes at a price.

As mentioned in Section 1.3, the meaning of a typing judgement Γ . a : A in an intrin-

sic semantics is usually defined inductively on the derivation of this judgement. In the

presence of subtyping, in general there are many distinct derivations of the same judge-

ment possible. It becomes necessary to prove coherence, stating that if P1(Γ . a : A) and

P2(Γ . a : A) are two derivations with identical conclusion Γ . a : A, then their semantics

agrees:

JP1(Γ . a : A)K = JP2(Γ . a : A)K

Typically, coherence is proved by transforming derivations into a normal form while pre-

serving the semantics. Such proofs can be quite involved, even for purely functional lan-

guages where non-termination is the only effect, see (Breazu-Tannen, Coquand, Gunter,

and Scedrov 1991; Curien and Ghelli 1994; Mitchell 1996) for examples of this method.

An elegant, alternative proof method is presented in (Reynolds 2002b), where a logical

relation between an intrinsic coercion model of simply typed lambda calculus with sub-

typing and a cpo model of the untyped lambda calculus is defined. Reynolds’ coherence

1.5. Program Logics 11

proof essentially relies on the fact that the denotations of all derivations of a judgement

Γ . a : A are related to the untyped denotation JaK of a, via the basic lemma of logical

relations (see (Mitchell 1996), for instance). A family of retractions between the intrinsic

semantics and the untyped model is then used to obtain the meaning of JΓ . e : AK purely

in terms of Γ , JaK and A, i.e., independent of any particular derivation of the judgement.

This method is extended in Chapter 8 to prove coherence for a higher-order language with

general references and subtyping.

1.5 Program Logics

Being complementary to the equational reasoning principles mentioned in Section 1.3

above, Floyd-Hoare program logics have proved successful in verifying properties of im-

perative programs (Floyd 1967; Hoare 1969; Apt 1981; Cousot 1990). Programs are spec-

ified with respect to pre- and post-conditions (before-after assertions) that describe the

effect of a program in terms of changes between the initial and terminal store induced by

a run of the program.

A specification triple consisting of a program a and pre- and post-condition P and Q,

respectively, is traditionally written {P}a{Q}. The assertions P and Q are written in a

formal assertion language that is often first-order. The treatment of non-termination in

the definition of validity of such triples leads to a distinction between partial and total

correctness assertions. We will be interested in partial correctness of programs. For

programs a of While languages this means

îpart {P}a{Q}
def
⇐⇒ for all stores σ “satisfying P”, if JaKσ ↓ then JaKσ “satisfies Q”

(1.6)

A formal proof that a program a meets its specification {P} − {Q} is constructed in a

deductive system of axioms and inference rules. For instance, the well-known inference

{P}a1{R} {R}a2{Q}

{P}a1;a2{Q}

allows for reasoning about sequential composition, by finding a suitable logical descrip-

tion R that holds of the intermediate state. This raises questions of completeness of such

inference systems. A first source of incompleteness could be the inability to express inter-

mediate assertions like R, depending on the assertion language. By including arithmetic,

the assertion language becomes expressive, i.e., rich enough to express sufficiently many

intermediate assertions. But now Gödel’s incompleteness theorem implies incomplete-

ness of Hoare logic. Beginning with Cook’s (1978) work, proofs of relative completeness

have been found for various Hoare calculi: Under an expressiveness assumption for the

assertion language, completeness of the inference rules is shown relative to a complete

system for the assertions.

1.5.1 Procedures, Aliasing and Local Reasoning

Compared to While-languages, the combination of procedures and local variables leads

to new problems, most notably that of aliasing: Variables x and y are aliased if they

12 Chapter 1. Introduction and Background

refer to the same location in the store, so that updating one affects the other. An early

mechanism for tracking aliased variables are the type systems for interference control

(Reynolds 1978; Reynolds 1982). In general, assertions will depend on an environment

for free variables, and (1.6) must be rephrased accordingly.

The problem of completeness also becomes more subtle. A result of Clarke (1979)

shows that for sufficiently rich programming languages, with local variables and recur-

sive higher-order procedures, no complete proof system exists. However, the situation

is different again (i.e., complete systems may exist) if one is willing to sacrifice effective

proof checking and moves to a second-order assertion language (Halpern 1984).

More recently, assertion languages with new logical connectives have proven remark-

ably successful in the context of local reasoning in the presence of aliasing and sharing

(Reynolds 2002a; O’Hearn, Reynolds, and Yang 2001; Yang 2001). Based on the logic of

bunched implications (O’Hearn and Pym 1999; Ishtiaq and O’Hearn 2001; Pym, O’Hearn,

and Yang 2004), a store satisfies the separation conjunction P∗Q if it can be split into dis-

joint parts s1 and s2 for which P and Q hold respectively. With the help of the separation

connective ∗, the frame rule that is central to this approach can be stated,

{P}a{Q}

{P ∗ R}a{Q∗ R}

Thus it allows us to conjoin further invariants R without requiring a new proof about the

program a. This is practically important, for example when a is a procedure that is called

several times and in different contexts. Local reasoning has been extended to Algol-like

higher-order languages (with first-order storage) in (Birkedal, Torp-Smith, and Yang 2005).

In Chapter 10 we sketch some preliminary ideas about local reasoning and frame rules

for a language with dynamically allocated higher-order store.

1.5.2 Logics for Objects, and Abadi and Leino’s Logic

A great number of logics for object-oriented languages have been proposed, including

(Abadi and Leino 2004; Hensel et al. 1998; Jacobs and Poll 2001; Reddy 2002; Poetzsch-

Heffter and Müller 1999; de Boer and Pierik 2004; Pierik and de Boer 2005; de Boer 1999;

von Oheimb 2001; Reus et al. 2001). Most of these logics are for class-based languages;

Abadi and Leino’s (1997, 2004) work is one of the few exceptions.

Since pre- and post-conditions in Hoare logic are separated assertions, auxiliary vari-

ables are used in order to relate values in initial and terminal states (and results of func-

tion calls). Auxiliary variables are variables that appear in assertions but not in programs;

they are implicitly universally quantified. For example, in {x=N}a{x=N+1} the use of

(auxiliary variable) N expresses that the effect of executing a is to increment the (pro-

gram) variable x. Kleymann (1999) contains a thorough discussion of this issue. An

alternative approach that is used in Abadi and Leino’s logic is the use of a single transi-

tion relation instead of triples: A transition relation T denotes a predicate over pairs of

stores (and perhaps results); possible confusion arising from writing x in an assertion is

disambiguated by using primed and unprimed versions, x′ and x, to refer to the value of

the variable in terminal and initial state, respectively (Lamport 1994). Thus, Abadi and

1.5. Program Logics 13

Leino’s logic for an object calculus term a allows one to derive ` a : T , meaning that

if a terminates, then the transition relation T holds of initial and terminal state and the

result.

Transition relations in Abadi-Leino logic cannot talk directly about the methods of

objects in the store, i.e., the higher-order part of the store. However, complex results

such as an object where each of the methods has to be specified in terms of a transition

relation, too, have to be described. For this purpose, result specifications of the form A ≡
[

fi :Ai,mj :ς(yj)Bj ::Tj

]

are introduced. As in method bodies, the self parameter yj allows

us to refer to (the specification of) the host object also in specifications. Finally, reasoning

is possible under a set of assumptions for non-local variables, so that judgements in fact

have the form

x1:A1, . . . , xn:An ` a : T :: A

The meaning of this judgement is that if a terminates when run in an environment such

that each variable xi satisfies specification Ai , then the transition relation T holds of initial

and terminal state and the result, and moreover the result satisfies result specification A.

The following object introduction rule provides the proof principle for objects and

lies at the heart of Abadi and Leino’s proof system:

A ≡ [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J
Γ ` xi :Ai :: . . . ∀i ∈ I Γ , yj :A ` bj :Bj ::Tj ∀j ∈ J

Γ `
[

fi = xi , mj = ς(yj)bj
]

i∈I,j∈J
:A:: . . .

In essence, reasoning about the behaviour of a method mj is done under the assump-

tion that the host object already satisfies its specification A. In this way the recursion

through self (implemented by recursion through the store) is treated on the logical level;

not surprisingly, proving soundness of this inference rule is nontrivial. The object in-

troduction rule was previously investigated in a denotational framework by (Reus and

Streicher 2004). The full inference system, along with a more detailed explanation and

a worked example, appear in Chapter 4. Subsequent chapters present its semantics and

soundness.

We conclude with a final remark on completeness. Many of the papers for class-based

languages cited above prove completeness of the presented proof systems for objects. In

view of (Clarke 1979) such results must rely on one of the following properties. Firstly,

the assertion language is higher-order logic rather than first-order logic; for example this

is the case in (von Oheimb 2001). Secondly, methods are mutually recursive first-order,

rather than higher-order, procedures. The latter is possible since objects are instantiated

only from a predefined class table, and reasoning under a closed-world assumption is

achieved.

For the object calculus and Abadi and Leino’s logic, neither of these properties hold.

Indeed, Abadi-Leino logic is incomplete (Abadi and Leino 2004).

14 Chapter 1. Introduction and Background

1.6 Further Related Work

In recent years operationally based techniques have become much more sophisticated and

provide alternative reasoning principles. Work of Talcott and others (Mason, Smith, and

Talcott 1996; Talcott 1998) is concerned with models of (effectful) lambda calculi based

on equivalence classes of terms with respect to observational equivalence. Operational

analogues of domain-theoretic concepts, such as fixed point induction, are developed to

facilitate reasoning about recursive functions. Birkedal and Harper (1999) present a model

of recursive types in this way; the construction relies on the fact that the projections in the

operational analogue of Pitts’ minimal invariant property (see Chapter 2) are syntactically

definable. We are not aware of a similar treatment of dynamically allocated higher-order

storage, where the definability question for these projections appears to be less obvious.

Bisimulation and trace semantics provide convenient proof principles to establish con-

textual equivalences for equational reasoning. Gordon, Hankin, and Lassen (1997) and

Jeffrey and Rathke (2002) investigate this for the imperative object calculus. As in the

games models of storage, the store is described only indirectly in terms of interactions

and observations. Therefore these models do not appear directly useful as the basis for

program logics in the style of Hoare, where store descriptions form the central concept.

However, (Ghica 2001) may provide a good starting point.

In the past year, Honda et al. (Honda, Yoshida, and Berger 2005; Berger, Honda, and

Yoshida 2005; Honda 2004) have begun to investigate program logics for higher-order

languages, including higher-order storage. Their logics rely on giving names to all inter-

mediate results. This is reminiscent of Abadi and Leino’s logic and its use of locations

in assertions: Abadi-Leino logic takes advantage of the fact that all complex results are

objects, which are kept in the heap store, and are therefore addressable. In contrast to

our semantics of Abadi-Leino logic, the interpretation of the language by Honda et al. is

in a term model. As a consequence, their soundness proof requires substantial reasoning

about contextual equivalence. Another difference is the treatment of recursion through

the store: Honda et al. consider total correctness assertions, and the crucial step in a

proof of (1.1) can proceed by well-founded induction on a termination order.

1.7 Contributions of this Thesis

The motivating research question that we wish to contribute to is the problem of specifi-

cation, verification and logic of programs that use higher-order storage.

1.7.1 Our Approach and Results

The underlying assumption in this thesis is that the framework of denotational semantics

and domain theory provides adequate techniques for dealing with the recursion inherent

in the semantics of higher-order store, both on the level of terms and types.

The treatment of dynamic allocation of memory appears to naturally lead to possible-

worlds models of types and specifications. The theoretical framework is thus provided

by certain functor categories over complete partially ordered sets.

1.7. Contributions of this Thesis 15

The first major contribution is the soundness proof for Abadi and Leino’s logic in

Part II. Previous work (Abadi and Leino 1997) introduced a notion of specification but left

open the question of their semantics. Similarly, store specifications were introduced as a

technical device in their soundness proof, but on a syntactic level only. Based on a simple

denotational model of the object calculus, we define a semantics of specifications (Ta-

ble 4.7) and store specifications (Definition 5.1.7). Well-definedness of the latter requires

a non-trivial proof (Lemma 5.1.8) similar to (Reus and Streicher 2004; Pitts 1996); in con-

trast to loc. cit. existence of a family of predicates defined by mutual recursion has to be

established. Having a semantics of specifications allows us to define validity of specifi-

cation judgements (Definition 5.2.3) and to prove soundness of the logic (Theorem 5.2.6).

Our key lemma (Lemma 5.2.5) strengthens the statement so that an inductive proof goes

through.

A second contribution is the extension of this logic with recursive specifications and

corresponding proof rules (Tables 6.1 and 6.2). The semantics of recursive specifications

is given as a greatest fixed point (Table 6.5 and Lemma 6.2.5). Finite approximations

of specifications, known from the work of Amadio and Cardelli (1993) on types, are in-

troduced for recursive specifications to facilitate an inductive proof of the soundness

theorem (Lemma 6.3.8 and Theorem 6.3.9).

The next contribution is the construction of an intrinsically typed model for a higher-

order language with general references and subtyping. Our technical result here is the

coherence theorem (Theorem 8.7.1) which is established by extending Reynolds’ (2002b)

technique from simply typed lambda calculus to general references: Existence (Theo-

rem 8.6.4) is shown for a logical relation between typed and untyped models, and its

fundamental property is proved (Lemma 8.6.7). Bracketing maps are defined (Table 8.10)

which establish that the logical relation is left-unique (Theorem 8.6.8). As a corollary,

another (extrinsically typed) model of higher-order store is obtained (Section 8.8.1) based

on partial equivalence relations.

Using an encoding of objects in this language, we obtain a typed domain-theoretic

model of Abadi and Cardelli’s imperative object calculus (Table 9.1). To our knowledge

no such model has appeared in the literature before. After illustrating reasoning in this

model by a number of examples, a variant of the semantic proof rule for objects of (Reus

and Streicher 2004) is introduced and proven sound (Rule 9.11, Section 9.3.4).

Our final contribution is the presentation of some preliminary ideas for local reason-

ing about higher-order store. To this end, a frame property (O’Hearn, Reynolds, and Yang

2001) for general references is established (Table 10.1 and Lemma 10.2.6), by trimming

down the intrinsic model.

1.7.2 Thesis Outline

Part I of the thesis presents both the mathematical background and the formal program-

ming model used in subsequent chapters. Chapter 2 reviews the necessary definitions

from domain theory that will be used to give denotational semantics. Key results about

the solution of recursive domain equations and the well-definedness of recursively de-

16 Chapter 1. Introduction and Background

fined predicates on such domains are recalled. This chapter could be read on a by-need

basis. Chapter 3 contains an overview of a number of interpretations of objects and

object-oriented programming that appeared in the literature, and formally introduces

a variant of Abadi and Cardelli’s imperative object calculus, with simple and recursive

types. Its operational and denotational semantics are given and related by an adequacy

result. However, the remainder of the thesis relies on neither operational semantics nor

the adequacy result.

The two main parts of the thesis are largely independent of each other. Part II is about

Abadi and Leino’s logic for the object calculus. In Chapter 4 the logic is summarised, and

a denotational semantics for its specifications is given. Chapter 5 introduces the techni-

cally important notion of store specifications and contains the soundness proof for this

logic. Chapter 6 extends the logic and its soundness proof with recursive specifications.

Finally, a discussion of limitations and possible further extensions of the logic in Chap-

ter 7 concludes this part.

Part III addresses the problem of finding a typed denotational model of the object

calculus. Chapter 8 introduces a higher-order calculus with general references and recalls

a possible worlds model of this language due to Levy (2002, 2004). The extension with

subtyping requires a coherence proof. Then, in Chapter 9, a semantics of objects is

obtained by translation into the higher-order language. Chapter 10 concludes with an

outlook on local reasoning and a summary of further open questions.

1.7.3 Published Results

Some of the material presented in this thesis has been previously published. The results

on which Part II is based were obtained as the result of joint research with my super-

visor Bernhard Reus. A preliminary version of these results appeared in the following

publications:

• Reus, B. and J. Schwinghammer (2006a). Denotational Semantics for a Program Logic

of Objects. Mathematical Structures in Computer Science 16(2), 313–358.

• Reus, B. and J. Schwinghammer (2005). Denotational semantics for Abadi and Leino’s

logic of objects. In M. Sagiv (Ed.), Proceedings of the European Symposium on Pro-

gramming (ESOP ’05), Volume 3444 of Lecture Notes in Computer Science, pp. 264–

279. Springer.

• Reus, B. and J. Schwinghammer (2004). Denotational semantics for Abadi and Leino’s

logic of objects. Technical Report 2004:03, Informatics, University of Sussex.

In these articles we did not consider cloning, which required a minor modification in the

semantics of objects. Part III is based on the following technical report:

• Schwinghammer, J. (2005a). A typed semantics for languages with higher-order

store and subtyping. Technical Report 2005:05, Informatics, University of Sussex.

An extended abstract containing the coherence result appears as:

1.7. Contributions of this Thesis 17

• Schwinghammer, J. (2005b). A typed semantics of higher-order store and subtyp-

ing. In M. Coppo et al. (Eds.), Proceedings Ninth Italian Conference on Theoretical

Computer Science (ICTCS ’05), Volume 3701 of Lecture Notes in Computer Science,

pp. 390–404. Springer.

Part I

Preliminaries

Chapter 2

Denotational Semantics

A denotational semantics explains the constructs of a programming language in terms of

their denotations as elements of mathematical structures (Fiore et al. 1996). This is done

in a compositional way, i.e., the meaning of a compound term is determined by the deno-

tations of its constituents. Mathematical structures that have been used in denotational

semantics include domains (certain, suitably complete, partially ordered sets) (Abram-

sky and Jung 1994; Mitchell 1996), games semantics (Abramsky and McCusker 1998),

realizability structures and partial equivalence relations (Longley 1995), and functor cat-

egories (Tennent 1985).

In this thesis we use the term domain for partially ordered sets with least upper

bounds for all countable chains, but not necessarily containing a least element (note that

some authors call these structures predomains). Maps between domains are partial con-

tinuous functions, i.e., partial functions that are both monotone and preserve the least

upper bounds. In the following sections we give precise definitions, recall some results

from the literature, and fix our notation. We will need a few elementary notions from

category theory, which can be found in (Pierce 1991) for instance.

There is no original material in this chapter. In particular, the generalisation of Pitts’

work on relational structures on domains to relational structures on bilimit-compact cat-

egories is outlined in the book (Levy 2004). In the next section, the categories Cpo and

pCpo are defined, and various type constructors are given. Sections 2.2, 2.3 and 2.4 sum-

marise some key results about the solution of domain equations from work of Plotkin

and Smyth (1982), Freyd (1991), and Levy (2004). Section 2.5 reviews the material of (Pitts

1996) that will be used in subsequent chapters.

2.1 Complete Partial Orders

A partial order A = (A,vA) is a set A equipped with a reflexive, transitive, and anti-

symmetric relation vA. It is a complete partial order (cpo) if every ω-chain a0 vA a1 vA

a2 . . . in A has a least upper bound
⊔

n∈N an. If in addition A has a least element ⊥A, it

is called a complete pointed partial order (cppo). If clear from context, we may drop the

22 Chapter 2. Denotational Semantics

subscript A.

For a partial map f : A ⇀ B and a ∈ A we write f (a)↓ if the application is defined, and

f (a)↑ otherwise. Composition g ◦ f (or just gf) of partial maps f : A ⇀ B and g : B ⇀ C is

defined in the obvious way.

A partial map f : A ⇀ B between cpos A and B is monotonic iff for all a0, a1 ∈ A,

whenever a0 v a1 and f (a0) ↓ then f (a1) ↓ and f (a0) v f (a1). It is continuous if it

preserves least upper bounds of ω-chains. More precisely, for monotonic f : A ⇀ B and

an ω-chain a0 v a1 v . . . in A, let
⊔

n f (an) be undefined iff f (an) ↑ for all n ∈ N, and

otherwise denote the least upper bound of the chain f (an0) v f (an0+1) v . . . in B, where

n0 ∈ N is such that f (an0)↓. Then f is continuous iff it is monotonic and for eachω-chain

a it is the case that if either of f (
⊔

n an) and
⊔

n f (an) is defined then so is the other and

they are equal.

We write pCpo for the category of cpos and partial continuous maps as morphisms,

and Cpo for the subcategory of cpos and total continuous maps. Throughout the thesis

we use ‘
def
= ’ and ‘

def
⇐⇒’ for definitional equality and equivalence, respectively, and we write

‘≡’ for syntactic equality.

Discrete Cpos and Lifting

Each set A gives rise to a discrete cpo where the partial order is equality. Every cpo A can

be lifted into a cppo

A⊥
def
= A∪ {⊥}

by adjoining an element ⊥ ∉ A and making it least in the order. Lifting determines a

functor (−)⊥ : pCpo → Cpo,

(f)⊥(a)
def
=







⊥ if a = ⊥ or f (a)↑

f (a) otherwise

for pCpo-morphisms f : A ⇀ B. A cppo obtained by lifting a discrete cpo is called flat.

Products

The product A× B of cpos A and B is given by the componentwise partial order vA×B on

the cartesian product of the underlying sets, i.e., 〈a1, b1〉 vA×B 〈a2, b2〉 iff a1 vA a2 and

b1 vB b2. This is indeed the categorical product in Cpo. Moreover, this construction gives

rise to a functor on pCpo, sending a pair of partial maps f : A1 ⇀ A2 and g : B1 ⇀ B2 to

the partial map f × g : A1 × B1 ⇀ A2 × B2 where

(f × g)(a, b)
def
=







〈f (a), g(b)〉 if f (a)↓ and g(b)↓

undefined otherwise

The restriction of this operation to total morphisms yields a functor Cpo× Cpo -→ Cpo.

This definition generalises to products
∏

i∈I Ai of countable families of cpos (Ai)i∈I .

Any one-point cpo is a terminal object in Cpo; the empty cpo is terminal in pCpo.

2.1. Complete Partial Orders 23

Sums

The disjoint union A1 +A2 of cpos A1 and A2 is the cpo with underlying set

A1]A2
def
= {ini(a) | i = 1,2 ∧ a ∈ Ai}

The partial order is defined by x vA1+A2 x
′ iff there are i ∈ {1,2} and a, a′ ∈ Ai such that

x = ini(a), x
′ = ini(a

′) and a vAi a
′. (This makes A+ B the coproduct of A and B in Cpo.)

The construction gives rise to a functor pCpo × pCpo -→ pCpo that acts on partial maps

f : A1 ⇀ B1 and g : A2 ⇀ B2 by

(f + g)(x)
def
=







in1(f (a)) if x = in1(a) for some a ∈ A1

in2(g(a)) if x = in2(a) for some a ∈ A2

As for products, the restriction to total maps induces a functor Cpo×Cpo -→ Cpo. Finally,

everything generalises to the disjoint union
∑

i∈I Ai of countable families (Ai)i∈I ; in this

case we will often write 〈i, a〉 in place of ini(a). The empty cpo is the initial object in Cpo

and pCpo.

Function Spaces

The (continuous) function space [A → B] consists of the set Cpo(A, B) of total continuous

maps A → B. It becomes a cpo when ordered pointwise:

f v[A→B] g
def
⇐⇒ ∀a ∈ A. f (a) vB g(a)

Thus if B is pointed then so is [A → B]. The function space is the exponential in Cpo, so

in particular Cpo is cartesian closed.

The function space determines a bifunctor Cpoop × Cpo -→ Cpo, sending a Cpoop-

morphism f : A→ A′ and a Cpo-morphism g : B → B′ to

[f → g](h)
def
= ghf

for elements h ∈ [A → B].

The partial function space [A ⇀ B] is the cppo pCpo(A, B) of partial continuous maps

from A to B ordered pointwise,

f v[A⇀B] g
def
⇐⇒ ∀a ∈ A. f (a)↓ =⇒ g(a)↓ ∧ f (a) vB g(a)

The least element is given by the function ⊥ that is undefined on every a ∈ A. Finally, the

partial function space construction can be turned into a bifunctor pCpoop×pCpo -→ Cpo

by [f ⇀ g](h) = ghf for f : A′ ⇀ A, g : B ⇀ B′ and all h ∈ [A ⇀ B].

Remark 2.1.1. Note that, for every cpo A, [A ⇀ −] : pCpo -→ Cpo is a right adjoint for

−×A : Cpo -→ pCpo. Thus pCpo is partial cartesian closed (Fiore 1996).

Records

For a set L let Pfin(L) denote the set of its finite subsets. Let L be a countable set and A a

cpo. The cpo of records with labels from L and entries in A is defined as follows:

RecL(A)
def
=

∑

L∈Pfin(L)A
L

24 Chapter 2. Denotational Semantics

Table 2.1 Update and extension of records

{|li = ai|}i=1...n[l := a]
def
=







{|l1 = a1, . . . , lk = a, . . . , ln = an|} if l = lk for some k ∈ {1, . . . , n}

{|l1 = a1, . . . , ln = an, l = a|} otherwise

Table 2.2 Composition of records

{|li = ai|}i∈I + {|lj = bj|}j∈J
def
=







{|li = ai , lj = bj|}i∈I,j∈J if {li | i ∈ I} ∩ {lj | j ∈ J} = �

undefined otherwise

where AL is the set of all total functions from L to A. Viewing L as a flat cpo the ordering

on RecL(A) is determined as

r1 vRecL(A) r2 ⇐⇒ ri = 〈Li , fi〉 =⇒ L1 = L2 ∧ ∀l ∈ L1. f1(l) vA f2(l) (2.1)

Note that RecL(A) is always non-empty since it contains 〈�, ε〉 for ε : � → A the empty

map. RecL extends to an endofunctor RecL(−) on pCpo, sending g : A ⇀ B to the partial

map RecL(g) : RecL(A) ⇀ RecL(B) defined by

RecL(g)(〈L, f 〉) =







〈L, gf 〉 if g(f (l))↓ for all l ∈ L

undefined otherwise

A record r = 〈L, f 〉 ∈ RecL(A), with labels L = {l1, . . . , ln} and corresponding entries

f (li) = ai , is written as {|l1 = a1, . . . , ln = an|}. Moreover, for such records we also define

dom(r)
def
= L.

Update and extension of records is defined in Table 2.1 by the corresponding opera-

tion on functions; Table 2.2 defines a partial composition operation. These operations are

continuous. From (2.1) it follows that a record and a proper extension are incomparable.

Selection of a component labelled l ∈ L of a record r ∈ RecL(A) is written r .l. It is defined

and yields f (l) ∈ A if r is 〈L, f 〉 and l ∈ L; it is undefined if l ∉ L.

Typed Records

Suppose L is a fixed, countable set of labels. Given a finite set I, cpos Ai and labels li ∈ L

for all i ∈ I, the cpo of typed records, with entries labelled li in Ai for i ∈ I, is given by the

set

{|li : Ai|}i∈I
def
=

{

r : {li|i ∈ I} →
⋃

i∈I Ai ∀i ∈ I. r(li) ∈ Ai
}

ordered pointwise: r v{|li :Ai|} r
′ iff r(li) vAi r

′(li) for all i ∈ I. As in the case of the

(untyped) records above we write r .l for r(l), and {|li = ai|}i∈I for the map r ∈ {|li : Ai|}i∈I

such that r(li) = ai ∈ Ai for all i ∈ I. If clear from context we may omit the index set.

This construction is functorial, sending partial continuous maps fi : Ai ⇀ Bi to the

partial map {|li : fi|} : {|li : Ai|}⇀ {|li : Bi|},

{|li : fi|}i∈I(r)
def
=







{|li = fi(r .li)|}i∈I if fi(r .li)↓ ∀i ∈ I

undefined otherwise

2.2. Bilimit-Compact Categories 25

Obviously the restriction to total continuous maps determines a functor CpoI -→ Cpo.

Update and composition can be defined as in Tables 2.1 and 2.2.

Least Fixed Points

Suppose A is a cppo, and f : A → A is a total continuous map. Then f has a least (pre-)

fixed point lfp(f) ∈ A, given by the least upper bound of the ω-chain ⊥ v f (⊥) v f 2(⊥) v

. . . in A:

f (lfp(f)) = lfp(f) ∧ (∀a ∈ A. f (a) v a =⇒ lfp(f) v a)

This observation gives rise to the principle of fixed point induction: Suppose P ⊆ A con-

tains ⊥ and is closed under taking least under bounds ofω-chains in P . If P is also closed

under application of f , then lfp(f) ∈ P .

Least fixed points are uniform, in the following sense (Plotkin 1983; Abramsky and

Jung 1994): Let B be another cppo, let g : B → B be total and continuous, and suppose

ε : A → B is a total continuous map that also preserves the least element and such that

gε = εf . Then lfp(g) = ε(lfp(f)).

2.2 Bilimit-Compact Categories

The notion of bilimit-compactness (Levy 2004) abstracts a sufficient condition for the

existence of solutions to recursive domain equations. It turns out that bilimit-compact

categories are closed under the operations of constructing the opposite category, prod-

ucts and functor categories. In this section the basic definitions and constructions are

given; the construction of (minimal) “invariant” objects is considered in the next section.

Recall that a Cpo-enriched category is a category C where

• for every pair of C-objects A and B, the hom-set C(A, B) is equipped with a complete

partial order vC(A,B);

• composition of C-arrows is continuous with respect to these orderings: if f v f ′ in

C(A, B) and g v g′ in C(B, C), then gf v g′f ′ in C(A, C), and if f0 v f1 v . . . and g0 v

g1 v . . . areω-chains in C(A, B) and C(B, C), resp., then
⊔

n(gnfn) = (
⊔

n gn)(
⊔

n fn).

Both Cpo and pCpo are Cpo-enriched. If C is Cpo-enriched then so is the opposite cate-

gory Cop, with the order f vCop(A,B) g iff f vC(B,A) g. Any small product
∏

i∈I Ci of Cpo-

enriched categories Ci is Cpo-enriched, with hom-sets ordered componentwise. Details

can be found in (Levy 2004).

A functor F : B -→ C between Cpo-enriched categories B and C is locally continuous

if and only if it is continuous on the hom-sets, that is, if
⊔

n F(fn) = F(
⊔

n fn) holds for

all ω-chains f0 v f1 v . . . in B(A, B). All the (bi-)functors given in Section 2.1 are locally

continuous. Moreover, composition of functors preserves local continuity.

Recall that a C-morphism e : A → B is an embedding if there is a corresponding

projection morphism p : B → A, i.e., such that pe = idA and ep v idB . Embeddings and

projections uniquely determine each other, and we write e◦ for the projection correspond-

ing to an embedding e. Note that if F : Cop ×C -→ C is a locally continuous bifunctor and

26 Chapter 2. Denotational Semantics

e : A → B is an embedding, then F(e◦, e) : F(A,A) → F(B, B) is an embedding where

F(e◦, e)◦ = F(e, e◦).

Let ∆ = D0
f0
------------------→ D1

f1
------------------→ . . . be an ω-chain in the category CE of embeddings of C. A

cocone (en)n∈N : ∆ → D of ∆ consists of a C-object D together with embeddings en from

Dn to D, such that, for all n ∈ N,

Dn

en

��

fn // Dn+1

en+1
{{xx

xx
xx

xx
x

D

commutes in CE. Such a cocone is a bilimit for ∆ iff
⊔

n(en e
◦
n) = idD in C(D,D) (note

that en e
◦
n v en+1 e

◦
n+1, so the least upper bound does exist). It follows that any bilimit

(en)n∈N : ∆ → D is a colimit for ∆, for if (in)n∈N : ∆ → D′ is a cocone then the unique

mediating morphism D → D′ is given by the embedding
⊔

n(in e
◦
n).

Definition 2.2.1 (Levy 2004). A Cpo-enriched category C is bilimit-compact if

• each hom-cpo C(A, B) has a least element ⊥;

• composition is bi-strict, i.e., ⊥ ◦ f = ⊥ = g ◦ ⊥;

• C has an initial object (which, by bi-strictness, is also terminal);

• every ω-chain in the category CE of embeddings of C has a bilimit.

That the category pCpo is bilimit-compact is well-known; a bilimit of an ω-chain of

embeddings ∆ = D0
f0
------------------→ D1

f1
------------------→ . . . is given by the cpo

D
def
=







x ∈
∏

n∈N

Dn ∀n ∈ N. xn = f
◦
n(xn+1)







partially ordered componentwise, and the embeddings en : Dn → D are determined by the

projections x, xn from D to Dn.

Further, if C is bilimit-compact then so is Cop, and any small product
∏

i∈I Ci of bilimit-

compact categories Ci is bilimit-compact.

2.3 Minimal Invariants

Let F : Cop × C -→ C be a locally continuous bifunctor on a Cpo-enriched category C. An

invariant for F is an object D of C together with an isomorphism i : F(D,D) � D. It

is a minimal invariant for F if the identity map idD on D is the least fixed point of the

continuous endofunction δ(e)
def
= iF(e, e)i−1 on C(D,D).

The existence of solutions to recursive domain equations α = Φ(α), where Φ contains

(some of) the domain constructors of Section 2.1, can be reduced to finding invariant

objects: As mentioned above, the constructions on domains give rise to a (bi)-functor

F(D−, D+), obtained from Φ by separating positive and negative occurrences of α in Φ.

Obviously, by diagonalisation, an invariant i : F(D,D) � D is a fixed point for Φ (up to

isomorphism). As discussed below, minimal invariants i : F(D,D) � D for F are uniquely

determined (if they exist). Thus we can write recα.Φ(α) for this domain D.

2.3. Minimal Invariants 27

2.3.1 Uniqueness of Minimal Invariants

Freyd (1991) characterised minimal invariants by the following universal property. It

states that, if D is a minimal invariant for F , then the object 〈D,D〉 of Cop ×C is simulta-

neously initial in the category of F̂-algebras, and terminal in the category of F̂-coalgebras,

for the functor F̂(X, Y)
def
= 〈F(Y ,X), F(X, Y)〉 : Cop × C -→ Cop × C. Here we consider this

for the case of bilimit-compact categories only, which suffices for the applications in this

thesis.

Theorem 2.3.1 (Freyd 1991; Pitts 1996). Suppose F : Cop × C -→ C is a locally continuous

bifunctor on a bilimit-compact category C. Further, suppose i : F(D,D) � D is a minimal

invariant for F . For each pair of objects A,B and pair of morphisms f : A → F(B,A) and

g : F(A, B) → B of C, there exist unique C-morphisms h : A → D and k : D → B such that

the squares

D
i−1

// F(D,D)

A

h

OO

f
// F(B,A)

F(k,h)

OO F(D,D)

F(h,k)

��

i // D

k

��
F(A, B)

g
// B

(2.2)

commute. In particular, any two minimal invariants for F are isomorphic.

Sketch of Proof. Suppose h, k is any pair of morphisms for which the diagrams (2.2) com-

mute. Consider the continuous map ε : C(D,D) → C(A,D) × C(D, B) defined by ε(e)
def
=

〈eh, ke〉. If δ(e) = iF(e, e)i−1 as above, then by the assumptions on h and k and the

functoriality of F ,

ε(δ(e)) = 〈iF(e, e)i−1h, kiF(e, e)i−1〉

= 〈iF(ke, eh)f , gF(eh, ke)i−1〉

Thus the following diagram commutes

C(D,D)

δ

��

ε // C(A,D)×C(D, B)

φ

��
C(D,D)

ε
// C(A,D)×C(D, B)

where φ(h, k)
def
= 〈iF(k, h)f , gF(h, k)i−1〉. By bistrictness of composition in C, ε is strict,

and lfp(φ) = ε(lfp(δ)) follows from the uniformity of least fixed points. By minimality of

D, lfp(δ) = idD. Hence, lfp(φ) = ε(idD) = 〈h, k〉 is the unique pair of maps satisfying the

property (2.2).

If E is another minimal invariant for F then, taking A and B in (2.2) to be E, the maps

h and k establish the isomorphism k : D � E.

2.3.2 Existence of Minimal invariants

Theorem 2.3.2 (Levy 2004; Pitts 1996). Suppose C is bilimit-compact, and F : Cop×C -→ C

is locally continuous. Then F has a minimal invariant.

28 Chapter 2. Denotational Semantics

Sketch of Proof. Bilimit-compactness of C entails that the unique maps out of and into the

initial object form embedding-projection pairs. By local continuity of F we can therefore

construct an ω-chain ∆ in CE,

∆
def
= D0

f0
------------------→ D1

f1
------------------→ . . .

where D0 is the initial object of C, Dn+1 = F(Dn, Dn), f0 is the unique morphism D0 → D1

in C, and fn+1 = F(f ◦n , fn) is an embedding. Let (en)n∈N : ∆ → D be the bilimit for ∆. It is

easy to check that (F(e◦n, en))n∈N : F(∆,∆) → F(D,D) is a bilimit for the chain

F(∆,∆) = F(D0, D0)
F(f ◦0 ,f0)
---→ F(D1, D1)

F(f ◦1 ,f1)
---→ . . .

But this is just the chain ∆−
def
= D1

f1
------------------→ D2

f2
------------------→ . . . whose bilimit is again D. Since both D

and F(D,D) are colimits for ∆− there is a unique isomorphism i : F(D,D) � D, such that

iF(e◦n, en) = en+1 for all n ∈ N,

D

. . .
fn−1 // Dn

en

OO

F(e◦n−1,en−1) $$IIIII
IIII

fn // Dn+1

en+1

ddIIIIIIIIII
fn+1 //

F(e◦n,en)

��

. . .

F(D,D)

i

VV

Now e0 e
◦
0 = ⊥C(D,D), by bi-strictness and the fact that e0 = ⊥C(D0,D) is uniquely determined

by initiality. By induction on n we obtain en+1 e
◦
n+1 = iF(en e

◦
n, en e

◦
n)i
−1 = δn+1(⊥) for

δ(e) = iF(e, e)i−1. By the defining property of bilimits, lfp(δ) =
⊔

n δ
n(⊥) =

⊔

n(en e
◦
n) =

idD, i.e., i : F(D,D) � D is a minimal invariant for F .

Lemma 2.3.3. With notation as in the proof of Theorem 2.3.2 above, δn(⊥)◦δm(⊥) = δn(⊥)

for all n,m ∈ N with m ≥ n.

Proof. Observe that for m ≥ n we have en = emfm−1 · · · fn, hence

δn(⊥)δm(⊥) = en(f
◦
n · · · f

◦
m−1e

◦
m)eme

◦
m

= en(f
◦
n · · · f

◦
m−1)e

◦
m

= ene
◦
n = δ

n(⊥)

2.3.3 Sub-Bilimit-Compact Categories

As discussed in (Levy 2004), one often wants to solve domain equations in categories

which are not bilimit-compact. For instance, while computations in a call-by-value lan-

guage usually denote morphisms in pCpo, conceptually, values Γ . v : A of (possibly

recursively defined) types A should be interpreted by morphisms from Γ to A in Cpo

which fails to be bilimit-compact. However, Cpo is a subcategory of the bilimit-compact

category pCpo such that all isomorphisms of pCpo are in fact already morphisms of Cpo.

2.4. Functor Categories 29

This entails that minimal invariants can be found in Cpo. For the general case, the notion

of sub-bilimit-compactness of (Levy 2004) ensures the property that all isomorphisms of a

bilimit-compact supercategory are available.

Recall that a subcategory B of C is full if B(A, B) = C(A, B) for all B-objects A and B.

It is lluf, or a wide subcategory, if every object of C is an object of B. A subcategory of a

Cpo-enriched category C is admissible if it is closed under taking least upper bounds of

ω-chains. For B a subcategory of C we write B •→ C for the unique category D such that

B ⊆lluf D ⊆full C, i.e., B •→ C has the same objects as B, and all C-morphisms between

B-objects.

Definition 2.3.4 (Levy 2004). Suppose C is bilimit-compact. We say a Cpo-enriched category

B is sub-bilimit-compact within C if the following conditions hold.

• C contains B as a lluf admissible subcategory.

• Suppose ∆ = D0 → D1 → . . . and ∆′ = D′0 → D
′
1 → . . . areω-chains in CE with bilimits

(en)n∈N : ∆→ D and (e′n)n∈N : ∆′ → D′, resp. Further, suppose µ : ∆
.
→ ∆′ is a natural

transformation from ∆ to ∆′ such that µn ∈ B(Dn, D′n) for all n. Then the least upper

bound
⊔

n(e
′
nµne

◦
n) is in B(D,D′).

It follows that a sub-bilimit-compact category B within C contains already all the iso-

morphisms i : D � D′ of C (Levy 2004): This can be seen by considering the constant

ω-chains ∆ = ∆
′ = D

id
-----------------→ D

id
-----------------→ . . . , with bilimits (id)n : ∆ → D and (i)n : ∆′ → D′,

and µ = (id)n : ∆
.
→ ∆

′. By definition of sub-bilimit-compactness, i =
⊔

n(i idA idA) is in

B(D,D′).

Any bilimit-compact category is sub-bilimit-compact within itself. Note that the em-

beddings e′n in Definition 2.3.4 are necessarily total. Therefore it is easy to see that Cpo

is sub-bilimit-compact within pCpo: By virtue of bilimit-compactness of pCpo, for all x

and sufficiently large n ∈ N, e◦n(x) ↓, i.e. the least upper bound in Definition 2.3.4 is to-

tal and therefore a Cpo-morphism. Further, if B is sub-bilimit-compact within C then

so is Bop within Cop. If Bi is sub-bilimit-compact within Ci for all i ∈ I, then
∏

i∈I Bi is

sub-bilimit-compact within
∏

i∈I Ci .

2.4 Functor Categories

The possible-world models that we present later are based on functor categories. Models

based on functor categories have proved successful in the treatment of the dynamically

changing “store shapes” of both Algol-like languages with block-allocated memory (Oles

1982; Tennent 1985; O’Hearn and Tennent 1997) and languages with more general dy-

namic allocation (for instance, Levy 2002; Stark 1996).

For our purpose it suffices to consider categories of locally continuous functors be-

tween Cpo-enriched categories: If I and C are Cpo-enriched, then [I ,C] denotes the cat-

egory of locally continuous functors I -→ C and natural transformations between them.

Further, [I ,C] can be shown to be Cpo-enriched when natural transformations F
.
→ G are

ordered pointwise, µ v[I,C](F,G) ν iff µA vC(FA,GA) νA for all I-objects A. In particular, a

30 Chapter 2. Denotational Semantics

natural transformation µ : F
.
→ G is an embedding iff each component µA is an embedding

FA → GA in C.

Proposition 2.4.1 (Levy 2004). If I is a (small) Cpo-enriched category and C is bilimit-

compact then so is the category [I ,C]. Moreover, if a Cpo-enriched category B is sub-

bilimit-compact within C, then [I ,B] is sub-bilimit-compact within [I ,B] •→ [I ,C].

Proof. For the first part, observe that the natural transformation µ : F
.
→ G given at A by

µA = ⊥C(FA,GA) is least in [I ,C](F,G); bi-strictness of composition in [I ,C] is inherited

from C. The initial object is given by the constant functor 0, where 0 is the initial object

of the category C.

Finally, bilimits are computed pointwise: An ω-chain Φ = F0
µ0
----------------------------→ F1

µ1
----------------------------→ . . . in [I ,C]E

gives rise to anω-chain ΦA = F0A
µ0A
--→ F1A

µ1A
--→ . . . in CE , for each I-object A, with bilimit

(eAn)n∈N : ΦA → FA. Let F be the (locally continuous) functor defined by FA = FA on

I-objects A, and Ff =
⊔

n(eBn (Fnf) e
◦
An) on I-morphisms f : A → B. If νn denotes the

natural transformation Fn
.
→ F given at A by eAn, then (νn)n∈N : Φ → F is a cocone. Since

(
⊔

n(νn ν
◦
n))A =

⊔

n(eAn e
◦
An) = idFA for each A, i.e.,

⊔

n(νn ν
◦
n) = idF , it follows that F is a

bilimit for Φ.

For the second claim, let F0
µ0
----------------------------→ F1

µ1
----------------------------→ . . . an ω-chain in [I ,B] •→ [I ,C]. Recall that

the objects of [I ,B] •→ [I ,C] are functors F,G ∈ [I ,B] and morphisms are natural trans-

formations µ : F
.
→ G such that for all A ∈ I , µA ∈ C(FA,GA). As seen in the first

part of this proof, bilimits in [I ,C] are given by natural transformations (νn)n∈N where

νnA = eAn ∈ CE(FnA, FA). By assumption, B is sub-bilimit-compact within C, hence FA is

already in B and [I ,B] •→ [I ,C] is bilimit-compact. By definition, [I ,B] is a lluf subcate-

gory; admissibility follows easily from the pointwise ordering of natural transformations

and the assumption that B is sub-bilimit-compact within in C. Similarly, the required

property about natural transformations µ : F
.
→ F ′ between bilimits in Definition 2.3.4

follows from the pointwise construction of bilimits above and the assumption that B is

sub-bilimit-compact within C.

Note that Proposition 2.4.1 applies in particular to any (small) category I when the

hom-sets are regarded as discretely ordered cpos.

2.5 Relational Properties of Bilimit-Compact Categories

When reasoning about elements of a recursively defined domain D = recα.Φ(α), one of-

ten looks for an invariant relation ∆ = Φ(∆) on D. Establishing the existence of a specific

instance of such relations can usually be done by considering the detailed construction

of recα.Φ(α). Examples of this method can be found, e.g., in (Reynolds 1974) and (Kamin

and Reddy 1994) where correspondence (‘adequacy’) between two denotational semantics

(involving recursively defined domains) are proved.

In contrast, Pitts (1996) provides a general framework to find such invariant relations.

The method relies on extending the functor F(D−, D+) corresponding to the domain D =

recα.Φ(α) with an action on relations, for a general notion of relation. While Pitts uses

2.5. Relational Properties of Bilimit-Compact Categories 31

the category of cppos and ⊥-preserving continuous maps, Levy (2004) pointed out that

everything generalises to arbitrary bilimit-compact categories. We present the material

for this general case.

2.5.1 Relational Structures

A (normal) relational structure R on a category C consists of (1) a set of R-relations on

D, R(D), for each C-object D, and (2) a binary relation f : − ⊂ − between elements of

R(D) and elements of R(E), for each C-morphism f : D → E, and such that the following

conditions are satisfied:

(Identity) idD : R ⊂ R, for all R ∈ R(D);

(Composition) gf : R ⊂ T , for all composable f : R ⊂ S and g : S ⊂ T ;

(Normality) if idD : R ⊂ S and idD : S ⊂ R, then R = S.

As explained in (Pitts 1996), informally, f : R ⊂ S means that f maps elements ‘related’

by R to elements ‘related’ by S. For example, let W = (W ,≤) be a poset considered as

a category, and let C be the functor category [W ,pCpo]. A relational structure K of

“Kripke relations” on C is given if

• K(A) consists of all families R = (Rw)w∈W of subsets Rw ⊆ A(w) that are closed

under taking least upper bounds, and such that x ∈ Rw implies A(w ≤ w ′)(x) ∈ Rw ′

whenever A(w ≤ w ′)(x)↓; and

• µ : R ⊂ S if and only if, for all w ∈ W and for all x ∈ Rw , µw(x) ∈ Sw whenever

µw(x)↓, for all R = (Rw)w ∈ K(A) and S = (Sw)w ∈ K(B)

where A,B are C-objects, and µ : A
.
→ B is a natural transformation. Similar relational

structures will be considered in the following chapters.

In the remainder of this section let C be an arbitrary, bilimit-compact category. If R

is a relational structure on C, an R-relation S ∈ R(E) is admissible iff, for all R-relations

R ∈ R(D), the subset

[R, S]
def
= {f | f : R ⊂ S}

of the hom-cpo C(D, E) contains ⊥ and is closed under taking least upper bounds of ω-

chains. For C-objects D let Radm(D) denote the subset of admissible R-relations on D.

For instance, for the Kripke relations defined above we haveKadm(A) =K(A) for all A.

2.5.2 Invariant R-relations

An admissible action of a functor F : (Cop)m × Cn -→ C (where m,n ≥ 0) on R-relations

is an operation Φ mapping (tuples of) R-relations R = (Ri)
m
i=1 ∈

∏m
i=1R(Di) and S =

(Sj)
n
j=1 ∈

∏n
j=1R(E) to an R-relation Φ(R, S) ∈ R(F(D1, . . . , Dm, E1, . . . , En)) such that

the following conditions hold:

• if each Sj is admissible then, for any R, also Φ(R, S) is admissible;

32 Chapter 2. Denotational Semantics

• F(f1, . . . , fm, g1, . . . , gn) : Φ(R, S) ⊂ Φ(R′, S′) whenever fi : R′i ⊂ Ri and gj : Sj ⊂ S
′
j for

all i and j .

In general, there may be many admissible actions for a given functor F and relational

structureR. Pitts (1996) provides several examples of admissible actions for functors on

the category Cpo.

Now suppose that a locally continuous functor F : Cop × C -→ C is equipped with an

admissible action Φ on R-relations. By Theorem 2.3.2 there exists a minimal invariant

i : F(D,D) � D for F . We call an admissible R-relation ∆ ∈ Radm(D) an invariant R-

relation for F if and only if i : Φ(∆,∆) ⊂ ∆ and i−1 : ∆ ⊂ Φ(∆,∆).

2.5.3 Uniqueness of Invariant R-relations

Invariant R-relation for locally continuous functors are unique if they exist. This will

follow from the analogue of Theorem 2.3.1 for relational structures, given next.

Proposition 2.5.1 (Pitts 1996). Let R be a relational structure on a bilimit-compact cate-

gory C. Let F : Cop × C -→ C be a locally continuous functor with an admissible action Φ

on R, and let i : F(D,D) � D be its minimal invariant. Suppose ∆ is a minimal invariant

R-relation for F .

For any C-morphisms f : A → F(B,A) and g : F(A, B)→ B, and any relations R ∈ R(A)

and S ∈ Radm(B), if f : R ⊂ Φ(S, R) and g : Φ(R, S) ⊂ S, then

h : R ⊂ ∆ and k : ∆ ⊂ S

where 〈h, k〉
def
= lfp(φ) are the unique C-morphisms determined by f and g as in Theo-

rem 2.3.1.

Sketch of Proof. This is proved exactly as in (Pitts 1996), relying on the proof of Theo-

rem 2.3.1: For any h′ ∈ C(A,D), k′ ∈ C(D, B), if h′ : R ⊂ ∆ and k′ : ∆ ⊂ S, then

F(k′, h′) : Φ(S, R) ⊂ Φ(∆,∆) and F(h′, k′) : Φ(∆,∆) ⊂ Φ(R, S)

by admissibility of the action of F . This entails iF(k′, h′)f : R ⊂ ∆ and gF(h′, k′)i−1 : ∆ ⊂ S.

Hence, the function φ(h′, k′) = 〈iF(k′, h′)f , gF(h′, k′)i−1〉 from Theorem 2.3.1 maps the

set

[R,∆]× [∆, S] = {〈h, k〉 | h : R ⊂ ∆ ∧ k : ∆ ⊂ S}

into itself. Both ∆ and S are admissible R-relations, therefore [R,∆] × [∆, S] is a chain-

closed subset of C(A,D)×C(D, B) containing 〈⊥,⊥〉. By fixed point induction, also 〈h, k〉 =

lfp(φ) ∈ [R,∆]× [∆, S] which proves the proposition.

Choosing A = B = D, it follows that for all R ∈ R(D), S ∈ Radm(D), if i−1 : R ⊂ Φ(S, R)

and i : Φ(R, S) ⊂ S, then idD : R ⊂ ∆ and idD : ∆ ⊂ S. In particular, if∆′ is another invariant

R-relation for F then idD : ∆′ ⊂ ∆ and idD : ∆ ⊂ ∆′ implies ∆ = ∆′, by normality.

2.5. Relational Properties of Bilimit-Compact Categories 33

2.5.4 Existence of Invariant R-relations

A relational structure R is said to possess inverse images iff, for all f : D → E and

S ∈ R(E), there is an R-relation f∗S ∈ R(D) such that

g : R ⊂ f∗S ⇐⇒ fg : R ⊂ S

for all g : C → D and R ∈ R(C). R has intersections iff, for all S ⊆ R(E), there is an

R-relation ∩S in R(E) satisfying

g : R ⊂ ∩S ⇐⇒ ∀S ∈ S. g : R ⊂ S

for all g : D → E and R ∈ R(D).

Suppose a relational structureR possesses inverse images and intersections. Then the

admissibleR-relations are closed under both operations. For each D, R(D) is a complete

lattice under the order induced by idD : − ⊂ −, with meets given by intersection. Note

that f∗S and ∩S are uniquely determined, and for each f : D → E in C, the inverse image

operator f∗ : R(E) → R(D) is a monotone function. The operation f , f∗ satisfies

id∗D = idR(D) and (fg)∗ = g∗f∗.

Theorem 2.5.2 (Pitts 1996). Let R be a relational structure with inverse images and in-

tersections on a bilimit-compact category C. Let F : Cop × C -→ C be a locally continuous

functor equipped with an admissible action Φ on R, and let i : F(D,D) � D be its minimal

invariant. Then the invariantR-relation for F exists.

Sketch of Proof. Note that ∆ is the invariant R-relation for F iff ∆ = ψ(∆,∆), where ψ :

Radm(D) ×Radm(D) →Radm(D) is the map

ψ(R−, R+)
def
= (i−1)∗Φ(R−, R+)

In fact, by admissibility of the action of F on R-relations, ψ determines a monotone

endofunction ψ§ on the complete lattice Radm(D)
op ×Radm(D), by

ψ§(R−, R+)
def
= 〈ψ(R+, R−),ψ(R−, R+)〉

By the Tarski-Knaster fixed point theorem, ψ§ has a least (pre-)fixed point 〈∆−,∆+〉. It

remains to show ∆
− = ∆+, i.e., idD : ∆− ⊂ ∆+ and idD : ∆+ ⊂ ∆−, for then ∆+ = ψ(∆+,∆+)

is the invariant R-relation. The second inclusion idD : ∆+ ⊂ ∆− follows from the least

pre-fixed point property of 〈∆−,∆+〉.

We show the first inclusion idD : ∆− ⊂ ∆+. By admissibility of ∆+, the set

[∆−,∆+] = {e ∈ C(D,D) | e : ∆− ⊂ ∆+}

is chain-closed and contains ⊥. Moreover, by admissibility of the action of F and the

definition of ψ, [∆−,∆+] is closed under application of δ(e) = iF(e, e)i−1. By fixed point

induction, lfp(δ) ∈ [∆−,∆+]. Thus idD : ∆− ⊂ ∆+ since lfp(δ) = idD as D is the minimal

invariant.

34 Chapter 2. Denotational Semantics

Inspection of the proofs of Proposition 2.5.1 and Theorem 2.5.2 shows that the state-

ment can be strengthened, by allowing the action of the functor to be defined on parts of

the relational structure only (Reus and Streicher 2004). This result is used when defining

the semantics of store specifications in Chapter 4, where a functional Φ is given only on

relations R ∈ R(D) over the minimal invariant D. An even stronger requirement is used

in Chapter 10, where admissibility of a functor action can be proved only with respect to

projection maps.

Theorem 2.5.3. Let R be a relational structure with inverse images and intersections on a

bilimit-compact category C. Let F : Cop × C -→ C be a locally continuous functor, and let

i : F(D,D) � D be its minimal invariant.

Suppose I ⊆ C(D,D) is a chain-closed set that contains the projections δn(⊥). Moreover,

suppose that Φ : Radm(D) × Radm(D) → Radm(D) is an operation such that for all R-

relations R, S, R′, S′ ∈ Radm(D) and all h ∈ I,

h : R′ ⊂ R ∧ h : S ⊂ S′ =⇒ F(h, h) : Φ(R, S) ⊂ Φ(R′, S′)

Then the invariantR-relation for F exists and is uniquely determined.

Sketch of proof. In the statement of Proposition 2.5.1 let A = B = D. In the proof, replace

the set [R,∆]× [∆, S] by the set

([R,∆]× [∆, S])∩ diag(I) = {〈h, h〉 | h ∈ I ∧ h : R ⊂ ∆ ∧ h : ∆ ⊂ S}

which is also a chain-closed subset of C(D,D) that contains 〈⊥,⊥〉. Uniqueness follows

from this exactly as before.

Similarly, in the proof of Theorem 2.5.2 replace the set [∆−,∆+] by the chain-closed

set

[∆−,∆+]∩ I = {e ∈ C(D,D) | e ∈ I ∧ e : ∆− ⊂ ∆+}

From the assumption of the theorem, δn(⊥) ∈ [∆−,∆+] ∩ I for all n. Thus also idD ∈

[∆−,∆+] which shows the inclusion ∆− ⊆ ∆+ as before.

Chapter 3

A Model of Objects

In this chapter we formally introduce the object-oriented languages we are concerned

with in subsequent chapters. We review some of the many encodings and translations

of object-oriented concepts into more traditional, procedural constructs that have been

proposed in the literature.

A variant of the imperative object calculus of Abadi and Cardelli (1996) is introduced,

with simple and recursive type systems. Operational and denotational semantics are pre-

sented. A proof of adequacy follows the standard approach with respect to languages with

recursive types, for instance, see (Pitts 1996). Abadi and Leino’s (1997, 2004) logic, which

we consider in Part II, talks about behaviour of programs of this calculus. Furthermore,

Chapter 8 in Part III presents typed semantics for this language.

Finally, we provide syntax and semantics of a simple class-based language, based on

the ideas and compilation techniques outlined in (Abadi and Cardelli 1996). This language

is intended as a vehicle to investigate more advanced, dynamic aspects of class-based

languages, which are outside the scope of most previous semantic models and logics of

classes.

3.1 Class-based and Object-based Languages

The term “object-oriented” is used broadly. Two main directions are class-based and

object-based programming languages; in practice, the former are used almost exclusively.

Objects, understood as entities with (hidden) internal state and methods operating on

this state, are central to both approaches. Methods can refer to their “host” object, and

thus to its fields and further methods, by a special variable, usually called self or this. In

class-based languages, the concept of a class provides a template, describing the interface

and behaviour, for the collection of its instance objects. Classes are extensible: inheri-

tance allows us to extend the interface, and possibly adapt the behaviour of methods. In

object-based languages, the class concept is replaced by constructs to directly construct

individual objects from scratch, or clone and adapt existing objects.

While the latter may appear to be “simpler” by avoiding the separate concept of

36 Chapter 3. A Model of Objects

classes, it has been remarked that this simplicity comes at a price (Reus 2002; Bruce

2002): In class-based languages, all method code is usually known in advance. Classes

separate the method code from objects, the class name is used to select the appropriate

code for method invocations from the class table. Semantically, this distinction between

construction of the class table and program execution is often exploited by interpreting

programs with respect to the fixed point of a given class table. In contrast, in object-based

languages where objects can be created on-the-fly, every object contains its own suite of

methods. Operationally speaking, the heap store for such a language contains code, i.e.,

is higher-order.

Thus, despite their syntactic simplicity, the semantics of object-based languages be-

comes much more involved in comparison to the class-based case. This is particularly

true with regard to specification and verification of object-oriented programs: The design

and soundness of most program logics that appeared in the literature rely on a “closed-

world” assumption, i.e., that the class table defining the classes and their inheritance rela-

tionships is fixed. This is too restrictive for object-based languages which are inherently

“open”. Conversely, the closed-world assumption underlying many proposed semantic

models of class-based languages means compositionality is problematic.

Reus (2002) argues that the difference between object-based and class-based lan-

guages manifests itself on the amount of domain-theoretic machinery necessary to reason

about objects: While fixed-point induction is the main proof technique in the class-based

case, specifications in the object-based case are generally defined by a mixed-variant re-

cursion for which existence cannot be taken for granted (cf. Section 2.5 and the definition

of store specifications in Chapter 4).

Advanced class-based features lead to similar semantic challenges, see the discussions

in (Reus 2003; Reus 2002). We therefore consider object-based languages an ideal starting

point for studying modularity issues that occur also in class-based languages. In fact,

class-based programs can be compiled into object-based ones (Abadi and Cardelli 1996),

and object-based languages can naturally deal with classes defined dynamically, like inner

classes and classes loaded at run-time. See Section 3.4.

3.2 Object Encodings

A large amount of previous research investigated how object-oriented constructs could

be explained in terms of – ideally well-understood – procedural features, by giving either

a semantic model or a syntactic translation into typed lambda calculus. Both functional

and imperative variants of objects have been looked at.

In the following we give an overview of the main variants of these encodings of objects,

based on the surveys of Bruce, Cardelli, and Pierce (1999), Abadi and Cardelli (1996) and

Kamin and Reddy (1994). In a sense, encodings of (imperative) objects into lambda calculi

with imperative features can be much simpler than encodings in functional variants. This

should not be surprising: The explicit modelling of the encapsulated state of objects,

and the ability to faithfully simulate state changes, requires sophisticated type systems

in functional target languages. This is the case even for relatively poor type systems on

3.2. Object Encodings 37

the object side.

3.2.1 Imperative Objects

Apart from minor variations, one can distinguish two styles of encoding imperative ob-

jects, differing in the way the dependence of methods on the “self” parameter is resolved.

Recall from the description in Section 3.1 that this parameter refers to the host object and

allows one to access the fields and make calls to “sibling” methods from within a method

body. The first possibility, called self-application semantics in (Kamin and Reddy 1994;

Glimming and Ghani 2004), is to make this parameter explicit: Methods are encoded as

procedures with an additional parameter s, i.e., a method declaration

m(x1, . . . , xn) = e translates to m = λs λ 〈x1 . . . xn〉 . e

Such procedures are often called pre-methods, and an object is simply a record of fields

and pre-methods. At method invocation time, the self parameter s is bound to the host

object o, so that

o.m(v1, . . . , vn) translates to o.m(o)(v1, . . . , vn)

The self-application semantics is close to operational intuition and can also easily model

advanced non-standard object-oriented features such as method update (Abadi and Cardelli

1996).

The second possibility is to resolve the dependence on self immediately at object

creation time, rather than at the time of method invocation: the record of pre-methods

gives rise to objects where the methods are defined mutually recursively. More precisely,

if m = {|mj = λsλxj .ej|} is the record of pre-methods and r the (mutable) record of

fields, then an object is obtained by applying the recursively defined constructor map

create(r)(m) where

create(r)(m) = {fi = r .fi , mj =m.mj(create(r)(m))}i,j (3.1)

In particular, the self parameter is not a formal parameter of methods in this interpre-

tation. Kamin and Reddy call this encoding the fixed-point, or closure, model. The fixed

point model of objects does not model object-oriented languages where method update

is possible, since updates of methods are not visible to sibling methods.

Untyped vs. Typed Objects

Both encodings work well in the untyped case in that they provide an adequate model

of objects. In the case of typed languages, however, the fixed-point model is preferable.

In the self-application semantics, the translations of methods will be assigned types of

the form A × B1 × · · · × Bn ⇒ B where A is the type of the object (the self parameter),

B1, . . . , Bn are the types of the formal parameters, and B is the result type of the method.

The (contra-variant) occurrence of the object type A blocks desirable subtypings.

There exist, however, variations of the self-application semantics that fix this problem.

In the cyclic record encoding (Eifrig, Smith, Trifonov, and Zwarico 1995), the technique of

38 Chapter 3. A Model of Objects

“back-patching” (Landin 1964) is used. As in the fixed-point model, this means the self

parameter is bound to the location of the object in the store at object creation time. So the

type of methods is simply B1×· · ·×Bn ⇒ B, and does not contain a parameter of type A for

the host object. In contrast to the fixed point model, and as in the self-application model,

a call to a sibling method is resolved by executing the method found at the location of self

in the store at method call time. In the presence of method update, this method could be

different from the one available at object creation time. Abadi and Cardelli point out that

in order to extend the cyclic record encoding to cloning constructs, methods would have

to be abstracted on the location of self, bringing us back to the self-application model.

An encoding due to Abadi, Cardelli, and Viswanathan (1996), called imperative self-

application semantics in (Abadi and Cardelli 1996), refines the self-application seman-

tics in a different way, by using a more expressive type system with both recursive and

bounded existential types. For instance, an object with a single field f of type A and a

method m of type B1 ⇒ B2 is encoded as a record of type

µ(Y)∃(X � Y) {self : X, f : A, m : X × B1 ⇒ B2} (3.2)

The component self refers to the record itself and provides a value of the partially abstract

typeX. Method invocation is encoded by applying the component m to self. The use of the

recursive type abstraction achieves the desired subtypings. This encoding also provides

for cloning when a component clone of type {} ⇒ X is added to the record. The procedure

clone simply constructs another such record at a fresh location in memory.

3.2.2 Functional Objects

Even with a purely “functional” semantics, objects inherently embody a notion of private

local state, through their fields. Usually this means an operation that performs updates

on the state must return another object, of the same type as the self parameter, and so

the notion of self type becomes a much more important concept compared to imperative

object calculi. Consequently, the need to model state change caused by field update led

to sophisticated encodings. The encodings differ considerably in the treatment of the self

type.

As in the imperative case, one can classify the many encodings roughly into two cases,

depending on how the self parameter of methods is treated. In the recursive record en-

coding (described as OR(I) in (Bruce, Cardelli, and Pierce 1999)), objects are interpreted

as recursively defined records. Methods do not take an explicit argument for self. In con-

trast, most other encodings rely on a variant of self-application encodings where methods

require (sometimes only the state part of) the host object to be passed as an additional

argument at method invocation.

The recursive record encoding works well for objects if only internal updates are al-

lowed, i.e., all updates are of the form this.f:=b where this refers to the self parameter of

the directly enclosing host object. Thus typical examples like movable (colour) points can

be treated: The type of the encodings uses recursive record types, for instance the type

3.2. Object Encodings 39

of point object encodings is Point where

Point = {x : int, move : int⇒ Point}

Color points have an additional field,

ColorPoint = {c : color, x : int, move : int⇒ ColorPoint}

The expected subtyping between points and colour points holds. However, a uniform

treatment of arbitrary updates, such as those found in Abadi and Cardelli’s object calculi,

is lacking in this encoding.

An interesting refinement of the functional recursive record encoding is the split

method encoding (Abadi, Cardelli, and Viswanathan 1996). The ability to access a compo-

nent l (there is no need to distinguish between methods and fields in this encoding) of an

object is split into distinct abilities lsel and lupd, for selecting and updating, respectively:

An object type [li : Ai ⇒ Bi]i gives rise to a recursive record type A in the encoding, with

A = {lsel
i : Ai ⇒ Bi, l

upd
i : (A ⇒ Ai ⇒ Bi)⇒ A}i

Note that all occurrences of A on the right hand side are covariant, so this encoding val-

idates the expected subtyping rules for objects. On the level of terms, the encoding is

based on a create function that constructs recursive records, similar to (3.1) above: The

select components lsel
i are thus bound to self at object construction time. The update com-

ponents l
upd
i return updated objects, by applying the create function to the original record

of pre-methods where the i-th pre-method has been replaced by the actual parameter of

l
upd
i .

This line of work culminated in Viswanathan’s (1998) article, providing an interpre-

tation of functional objects that is fully abstract. There are interesting resemblances be-

tween the split method encoding and the work of Hofmann and Pierce (1996) on positive

subtyping, where updating of functional records is axiomatised.

In the naive self-application encoding, methods are passed the host object as addi-

tional parameter at method invocation time, exactly as in the imperative self-application

model. Consequently, an object type
[

fi : Ai,mj : Bj ⇒ Cj
]

i,j
translates to the recursive

type A with

A = {fi : Ai, mj : A× Bj ⇒ Cj}i,j

and, just as in the imperative self-application encoding, the contravariant occurrence of

the type A in the type of methods blocks all subtypings. However, combining the self-

application encoding with existential types provides a better solution. The state part of

the object is “hidden”, using the well-known connection between information hiding and

abstract data types, and existential types (Mitchell and Plotkin 1988). An object type
[

fi : Ai,mj : Bj ⇒ Cj
]

i,j
is encoded as

∃X.X × {mj : X ⇒ Bj ⇒ Cj}j

40 Chapter 3. A Model of Objects

where the state part is hidden by the existentially quantified X. In particular, the con-

travariant method arguments corresponding to the state part are abstracted too, so that

this state-application encoding (explained as OE(I) in (Bruce, Cardelli, and Pierce 1999))

validates desired subtypings between object types. Code that invokes a method must

explicitly unpack, apply, and repackage the hidden state part. A variant of this encod-

ing using also recursive types (referred to as ORE(I) in loc. cit.), shifts this burden to the

method bodies so that method calls are uniform.

A further refinement, similar to the typed imperative self-application encoding (3.2)

above, uses both recursive types and bounded existential types. It is explained as ORBE(I)

encoding in (Bruce, Cardelli, and Pierce 1999), and used in Abadi and Cardelli’s book

(1996) to provide a foundational description of the notion of self type. The advantage

over the somewhat simpler state-application encodings is that it also provides for method

update, by implicitly passing not only the state part but the whole object at method

invocations.

3.2.3 Models of Objects in this Thesis

In the remainder of this thesis, we are only concerned with semantics and logics of im-

perative object-oriented languages. The precise formalisation of objects is that of Abadi

and Cardelli (1996) which is presented in Section 3.3 below.

The semantics of untyped objects we consider for the program logic in Part II is the

self-application model. The reasons for this choice are twofold: Firstly, this corresponds

closely to the operational model of Abadi and Cardelli (1996). Secondly, self-application

can not be avoided because of the higher-order store: It is possible to write recursive

methods where the recursion is “through the store”, by calling methods of objects ref-

erenced by member fields (as in Example 1.3). The logic of Abadi and Leino can deal

with such recursive functions. In view of this, we think it is reasonable to use recursion

through the store also to implement the explicit recursion through self, and we avoid

having to additionally treat explicit fixed points in the semantics.

Object types can be expressed as predicates over objects, as a special case of the

specifications of Abadi and Leino’s logic. The semantics of typed objects which our in-

terpretation of the logic entails has some interesting similarities and differences with the

imperative self-application variants mentioned above. This is discussed in more detail

in Section 5.2.4. Note that in a previous paper (Reus and Schwinghammer 2005) we did

not consider cloning constructs. The interpretation in (Reus and Schwinghammer 2005)

essentially amounted to the cyclic record encoding.

Finally, the typed semantics of objects we obtain in Chapters 8 and 9 is based on the

fixed-point model: This model uses fixed points to interpret recursion through self in

order to avoid typing problems (cf. Section 3.2.1). Nevertheless, examples using recursion

through the store can be written using assignment, so similar reasoning techniques are

(sometimes) required.

3.3. Object Calculus 41

Table 3.1 Syntax of the imperative object calculus

a, b ∈ Ob ::= x variable

| true | false booleans

| if x then a else b conditional

| let x = a in b let

|
[

fi = xi , mj = ς(yj)bj
]

i∈I,j∈J object construction

| x.f field selection

| x.f :=y field update

| x.m method invocation

| clone x shallow copy

3.3 Object Calculus

In order to develop a theoretical foundation for object-oriented programming languages,

Abadi and Cardelli proposed a number of small calculi where objects are primitive (Abadi

and Cardelli 1996). Later work showed that for many of these calculi good encodings

into lambda calculi exist (Abadi, Cardelli, and Viswanathan 1996; Viswanathan 1998).

However, Abadi and Cardelli (1996) argued that the complexity exhibited by these trans-

lations justifies the study of primitive objects, seeing that the abstractions provided by

object-oriented languages are highly non-trivial.

Abadi and Cardelli’s book considers objects with both functional and imperative se-

mantics, and with type systems ranging from simple first-order types through recursive

and second-order to higher-order types. To provide a streamlined, minimal model of ob-

jects, fields and methods are usually identified. As a consequence, not only fields but also

methods may be updated.

In much of the technical parts of this thesis we adopt the imperative object calculus

with first-order types as our notion of object-oriented language. More precisely, we con-

sider the variant of the calculus as presented in (Abadi and Leino 2004) where fields and

methods are distinguished; field update is possible but method update is not. In addi-

tion, the cloning construct of (Abadi and Cardelli 1996) is used. It does not significantly

increase the complexity of the semantics, and is useful in transferring results from object-

based to class-based languages. We also consider the extension with recursive first-order

types, as a special case of the recursive specifications considered in Chapter 6.

In the remainder of this section the syntax and typing rules of this calculus are sum-

marised. Both operational and denotational semantics are given.

3.3.1 Imperative Object Calculus

Syntax

Let Var ,M and F be pairwise disjoint, countably infinite sets of variables, method names

and field names, respectively. Let x, y, z range over Var , let m ∈ M and f ∈ F . The

language is defined by the grammar in Table 3.1.

42 Chapter 3. A Model of Objects

Variables are (immutable) identifiers, the semantics of booleans and conditional is as

usual. The object expression let x = a in b first evaluates a and then evaluates b with

identifier x bound to the result of a.

In constructing an object
[

fi = xi , mj = ς(yj)bj
]

i∈I,j∈J
we assume all the labels fi and

mj are distinct. Such an expression allocates new storage and returns (a reference to) an

object containing fields fi , with initial value the value of xi , and methods mj . In a method

mj , the symbol ς is a binder, binding the explicit self parameter yj in the method body bj .

During method invocation, the method body is evaluated with the self parameter bound

to the host object. If clear from the context we may omit the index sets I and J.

The result of field selection x.f is the value of the field, and x.f :=y is a destructive

update of this value. A formal semantics is given in the next subsections below.

The notions of free and bound variables are defined in the usual way; fv(a) denotes

the set of free identifiers of a. We identify objects that differ only in the names of bound

variables and the order of components. Finally, we write Prog for the set of programs, i.e.,

the subset of closed object terms:

Prog
def
= {a ∈ Ob fv(a) = �}

Remark 3.3.1. As mentioned above, in contrast to (Abadi and Cardelli 1996) we distinguish

between fields and methods; method update is disallowed. Following (Abadi and Leino

2004) we also restrict the cases for field selection, field update, method invocation and

conditional to contain only variables as subterms, instead of arbitrary object terms. This

is no real limitation because of the let construct, but it simplifies the statement both of the

semantics and the rules of the logic in Section 4.3: Firstly, control-flow is made explicit;

secondly, except for the cases of let and if-then-else, evaluation of subterms is side-effect

free. We use a more generous syntax (for instance, also allowing for natural numbers) in

the examples.

Example 3.3.2. We consider an object-based modelling of a bank account as an example:

acc(x) ≡ [balance = 0,

deposit10 = ς(y) let z = y .balance+10 in y .balance:=z,

withdraw10 = ς(y) let z = y .balance−10 in y .balance:=z,

interest = ς(y) let r = x.manager.rate in

let z = y .balance×r/100 in y .balance:=z]

Note how the self parameter y is used in both methods to access the balance field. Object

acc depends on a “managing” object x in the context that provides the interest rate,

through a field manager, for the interest method.

We will come back to this example in Section 4 where we give a specification of such

bank account objects in terms of Abadi and Leino’s logic.

First-Order Types

We briefly recall the system of first-order types for the imperative object calculus (Abadi

and Cardelli 1996, Chap. 11). The syntax of types object types is given by the grammar

A,B ∈ Type ::= bool |
[

fi :Ai,mj :Bj

]

i∈I,j∈J

3.3. Object Calculus 43

Table 3.2 Typing rules for the imperative object calculus

(Term Sub)
Γ . a : B B � A

Γ . a : A

(Term Var)
Γ , x:A, Γ ′ . x : A

(Term Const)
Γ . true : bool Γ . false : bool

(Term Cond)
Γ . x : bool Γ . a : A Γ . b : A

Γ . if x then a else b : A

(Term Let)
Γ . a : A Γ , x:A. b : B

Γ . let x = a in b : B

(Term Obj)

A ≡ [fi : Ai ,mj : Bj]i∈I,j∈J
Γ . xi : Ai ∀i ∈ I Γ , yj :A. bj : Bj

Γ . [fi = xi ,mj = ς(yj)bj]i∈I,j∈J : A

(Term Sel)
Γ . x : [fi : Ai ,mj : Bj]i∈I,j∈J k ∈ I

Γ . x.fk : Ak

(Term Upd)
Γ . x : [fi : Ai ,mj : Bj]i∈I,j∈J k ∈ I Γ . y : Ak

Γ . x.fk :=y : 1

(Term Inv)
Γ . x : [fi : Ai ,mj : Bj]i∈I,j∈J k ∈ J

Γ . x.mk : Bk

(Term Copy)

A ≡ [fi : Ai ,mj : Bj]i∈I,j∈J
Γ . x : A

Γ . clone x : A

bool is the type of truth values. An object has type
[

fi :Ai ,mj :Bj
]

i∈I,j∈J
if it has fields fi of

type Ai and methods mj returning results of type Bj , for all i ∈ I and j ∈ J. As for values,

we identify object types that differ only in the order of their components.

The subtype relation A � B is the least reflexive, transitive relation closed under the

rule

(Sub Obj)
Bj�Cj ∀j ∈ J′ I′ ⊆ I J′ ⊆ J

[fi : Ai ,mj : Bj]i∈I,j∈J � [fi : Ai,mj : Cj]i∈I′,j∈J′

Thus, subtyping on objects is by width, and for methods also by depth. It is well-known

that the invariance in the types of fields is essential for type soundness.

As usual, typing judgements are of the form Γ . a : A where Γ is a context, i.e., a

finite functional relation between Var and Type. The typing rules are given in Table 3.2

where we set 1
def
= []. By (Sub Obj) and the subsumption rule, (Term Sub), every typable

object has this type. The rules for variables, constants, conditional and let are standard

as in typed lambda calculi (Pierce 2002). In the case (Term Obj) the body bj of a method

mj is typed under the assumption that the self parameter yj has type A, the type of

the object being constructed. The rules (Term Sel) and (Term Inv) of field selection and

method invocation, resp., amount to checking that a component, named with the selected

label and of appropriate type, exists. The case of field update, (Term Upd), additionally

guarantees that the new value has a type equal to the original one. Finally, cloning applies

to any object type A.

44 Chapter 3. A Model of Objects

Table 3.3 Well-formed recursive object types

(Context Emp)
� . ok

(Context Var)
∆. Y X ∉ dom(∆)

∆, X � Y . ok

(Context Top)
∆. ok X ∉ dom(∆)

∆, X � >. ok

(Type Var)
∆, X � A,∆′ . ok

∆, X � A,∆′ .X

(Type Const)
∆. ok

∆.>

∆. ok

∆. bool

(Type Obj)
∆.Ai ∀i ∈ I ∆. Bj ∀j ∈ J

∆. [fi :Ai ,mj :Bj]i∈I,j∈J

(Type Rec)
∆, X � >.A

∆. µ(X)A

Recursive Types

Recursive types are necessary when a field of an object or a result of one of the object’s

methods are supposed to have the same type as the object itself. In particular, they are

needed to implement recursive data types such as lists and trees in the object calculus.

We now extend the set Type of types by recursive types µ(X)A, describing a type solving

the equation X = A where X may occur in A.

To prevent meaningless types such as µ(X)X, type recursion is only allowed through

object types, thereby enforcing “formal contractiveness”:

A,B ::= > | bool | [fi : Ai,mj : Bj]i∈I,j∈J | µ(X)A

A, B ∈ RecType ::= A | X

where X ranges over an infinite set TyVar of type variables. The reason for introducing

> is that for the type of empty objects 1 the subtyping bool<:1 does not hold: Below we

will turn the type > into the greatest type in the subtype ordering. X is bound in µ(X)A,

and as usual we identify types up to the names of bound variables.

In addition to contexts Γ of term variables, we introduce contexts ∆ of type variables

with an upper bound, X � A, where A is either another variable or >. We may simply

write ∆, X,∆′ for ∆, X � >,∆′ if type variables have trivial upper bounds.

In the type inference rules of Table 3.2 every judgement Γ . a : A is replaced by the

judgement Γ ;∆ . a : A. We name the rules in this system accordingly: For instance, we

write (RecTerm Var) in place of (Term Var), similarly for the other rules. Moreover,

there are now the additional judgements ∆.A and ∆.ok defining well-formed types and

well-formed type contexts, respectively. These are given in Table 3.3.

The subtype relation is now defined with respect to a type environment ∆, see Ta-

ble 3.5; Table 3.4 contains the subsumption rule extended with assumptions ∆. Subtyp-

ing of recursive types is obtained by the rule (RecSub Rec) considered in (Amadio and

3.3. Object Calculus 45

Table 3.4 Subsumption for recursive object types

(RecTerm Sub)
Γ ;∆. a : B ∆. B � A

Γ ;∆. a : A

Table 3.5 Subtyping recursive object types

(RecSub Top)
∆.A

∆.A � >

(RecSub Obj)
∆. Bj�Cj ∀j ∈ J′ I′ ⊆ I J′ ⊆ J

∆. [fi : Ai ,mj : Bj]i∈I,j∈J � [fi : Ai ,mj : Cj]i∈I′,j∈J′

(RecSub Rec)
∆, Y � >, X � Y .A � B

∆. µX.A � µY.B

(RecSub Var)
∆, X � A,∆′ . ok

∆, X � A,∆′ .X � A

(RecSub Fold)
∆. µX.A

∆.A[(µX.A)/X] � µX.A

(RecSub Unfold)
∆. µX.A

∆. µX.A � A[(µX.A)/X]

Cardelli 1993). The inference (RecSub Top) makes > the maximal element in the subtype

preorder. The subtype relation is also used to fold and unfold recursive types, using the

rules (RecSub Fold) and (RecSub Unfold).

Remark 3.3.3. Our treatment of recursive object types is similar to the system for functional

objects in Chapter 9 of (Abadi and Cardelli 1996). However, we depart from loc. cit. by not

allowing arbitrary types as upper bounds in type contexts ∆. That is, we consider recursive

rather than bounded recursive types. Moreover, we did not introduce fold and unfold terms

to mediate between a recursive type µ(X)A and its unfolding A[µ(X)A/X]. Semantically

this amounts to solving the type equation X = A up to equality rather than isomorphism:

In the semantics of Chapter 6 where types (and specifications) denote predicates over an

untyped value space, µ(X)A and A[µ(X)A/X] denote the same predicate.

3.3.2 Operational Semantics

The operational semantics renders more precise the informal description of object terms

given above. Although a denotational semantics is used in later chapters, we think pre-

senting the operational semantics as well is useful for two reasons: Firstly, the adequacy

proof (Section 3.3.4) illustrates a concrete application of the abstract framework of Chap-

ter 2 to a well-understood problem; the relational structures used in subsequent chapters

tend to be more complicated. Secondly, once adequacy has been established, our sound-

ness proof of Abadi and Leino’s logic (Chapter 5) can be linked to the original presentation

(Abadi and Leino 2004) that was based on an operational semantics.

46 Chapter 3. A Model of Objects

The semantics relates terms a to values v , meaning that, operationally, executing a

yields v . We need the following ingredients:

• Locations l denoting locations in the heap, drawn from a countably infinite set Loc.

• Runtime values, which can be stored, bound to identifiers, and returned as the re-

sults of computations. They are the booleans and locations, and ranged over by v ,

i.e., v ∈ Val ::= true | false | l

• Stacks ρ, associating identifiers to values.

• Method closures c are pairs of methods and stacks, 〈ς(y)b,ρ〉, where the stack ρ

provides value bindings for the free identifiers of ς(y)b.

• Object closures o ≡ [fi = vi ,mj = cj]i,j , providing (runtime) values for the fields and

method closures for the methods of the object.

• Heaps σ, associating (a finite number of) locations to object closures.

Stacks and heaps are written as finite sequences x1,v1, . . . , xn,vn and l1,o1, . . . , lm,om

where all xi and all lj are distinct. We write Clos for the set of method closures, Env for

the set of stacks and Store for the set of heaps, and use the notation

ρ, x, v and σ, l , o (3.3)

to describe extension of the stack (the heap, resp.) by a new binding that maps x to v (l

to o, respectively). In (3.3) we make the implicit assumption that there is no binding for

x in ρ, nor for l in σ. We write ρ(x) for the value v where ρ is of the form ρ′, x , v,ρ′′;

note that v is uniquely determined if a binding for x exists. Similar notation is used for

heaps, writing σ.l for the object closure stored at l, and for σ = l1,o1, . . . , ln,on we write

dom(σ) for the set of locations {l1, . . . , ln}. Finally, if l ∈ dom(σ) then σ.l ← [o denotes

the heap that is obtained from σ by replacing the binding for location l by o.

Heaps and stacks serve different purposes: while the stack implements the static lexi-

cal scoping of let-bound identifiers and (possibly nested) self-parameters, the heap grows

dynamically whenever a new object is created during a computation.

This store model differs from the one presented by Abadi and Cardelli (1996) and used

in (Abadi and Leino 2004): In their model, a heap location contains individual method

closures, i.e., pairs of methods and stacks. Accordingly, in the definition of values in

(Abadi and Cardelli 1996), locations are replaced by records of locations. Instead, our

store model corresponds to that of Reus and Streicher’s (2004) denotational semantics,

and more in accordance with implementations of object-oriented languages.

The operational semantics is a relation between a stack, an initial store and term a,

and a result consisting of a store and a value, written

ρ;σ . a 7 -→ v ;σ′

It is defined by the system of inference rules in Table 3.6 which, modulo the differing

store model, agrees with the one of (Abadi and Cardelli 1996).

3.3. Object Calculus 47

Table 3.6 Operational semantics of imperative objects

(Red Var)
ρ(x) = v

ρ;σ . x 7 -→ v ;σ

(Red Val)
ρ;σ . v 7 -→ v ;σ

(Red Cond1)
ρ(x) = true ρ;σ . a 7 -→ v ;σ′

ρ;σ . if x then a else b 7 -→ v ;σ′

(Red Cond2)
ρ(x) = false ρ;σ . b 7 -→ v ;σ′

ρ;σ . if x then a else b 7 -→ v ;σ′

(Red Let)
ρ;σ . a 7 -→ v′;σ′′ ρ, x,v′;σ′′ . b 7 -→ v ;σ′

ρ;σ . let x = a in b 7 -→ v ;σ′

(Red Obj)

l ∉ dom(σ) ρ(xi) = vi ∀i ∈ I
σ
′ = σ, l ,

[

fi = vi ,mj = 〈ς(yj)bj ,ρ〉
]

i∈I,j∈J

ρ;σ .
[

fi = xi , mj = ς(yj)bj
]

i∈I,j∈J 7 -→ l;σ
′

(Red Sel)
ρ(x) = l σ(l) =

[

fi = vi,mj = 〈ς(yj)bj ,ρj〉
]

i∈I,j∈J
k ∈ I

ρ;σ . x.fk 7 -→ vk;σ

(Red Upd)

ρ(x) = l σ(l) =
[

fi = vi,mj = 〈ς(yj)bj ,ρj〉
]

i∈I,j∈J
k ∈ I

ρ(y) = v σ′ = σ.l ←[
[

fk = v, fi = vi ,mj = 〈ς(yj)bj ,ρj〉
]

k≠i∈I,j∈J

ρ;σ . x.fk :=y 7 -→ l;σ′

(Red Inv)

ρ(x) = l σ(l) =
[

fi = vi,mj = 〈ς(yj)bj ,ρj〉
]

i∈I,j∈J
k ∈ J

(ρk, yk , l);σ . bk 7 -→ v ;σ′

ρ;σ . x.mk 7 -→ v ;σ′

(Red Copy)
ρ(x) = l′ σ(l′) = o l ∉ dom(σ) σ

′ = σ, l , o

ρ;σ . clone x 7 -→ l;σ′

Abadi and Cardelli (1996) prove a subject reduction theorem to establish type sound-

ness of the language with respect to the first-order types of Section 3.3.1,

� . a : A and ρ;σ . a 7 -→ v ;σ′ =⇒ � . v : A (3.4)

The actual statement, and the proof thereof, require the generalisation to open terms and

the additional concept of store typings. Also, because of the use of locations as runtime

values, the typing rules of Tables 3.2 and 3.4 have to be extended and interpreted with

respect to such store typings.

Rather than repeating these definitions and the proof of (3.4) for recursive types and

our slightly different store model, we defer all considerations of type soundness until

the next part of the thesis. In fact, type soundness will be a corollary to the soundness

proof of the logic of objects of Abadi and Leino (2004). While our soundness proof is

with respect to a denotational semantics, store typings and their generalisation to store

specifications will again play an important rôle.

48 Chapter 3. A Model of Objects

3.3.3 Denotational Semantics of the Imperative Object Calculus

We give a denotational semantics of the imperative object calculus, working in the cate-

gory pCpo of cpos and partial continuous functions. The language of the previous section

finds its interpretation within the following system of recursively defined cpos:

Val = BVal+ Loc

St = RecLoc(Ob)

Ob = RecF(Val)× RecM(Cl)

Cl = Loc× St⇀ (Val+ {error})× St

(3.5)

Loc is the countably infinite set of locations Loc viewed as discrete cpo, and BVal is the set

of truth values true and false, considered as discrete cpo. Note how the domains in (3.5)

reflect the operational semantics of Section 3.3.2:

• Values are either booleans or locations. In particular, Val is a discretely ordered

countable cpo.

• Stores σ ∈ St are the semantic analogue of heaps σ. A store consists of finitely

many “allocated” locations, each associated with the object stored at this location.

• Objects 〈rF , rM〉 ∈ Ob are the semantic counterpart of object closures 〈a, ρ〉. They

consist of separate records for the fields and methods, respectively. This distinction

between field and method parts allows us to easily identify the values and the (“non-

flat”) method code of an object; see below.

• As in the operational semantics, each method h ∈ Cl of an object depends on the

location of the host object, used to interpret the self-parameter, and an initial store.

In case of termination a method call yields a result value and a new store.

We also introduce a case for exceptional termination, error. In the denotational seman-

tics of the object calculus this is used to model runtime errors, such as a method-not-

understood due to a method invocation x.m on an object that does not provide a method

with label m. Type soundness amounts to showing that the denotation of any well-typed

program is different from error.

In order to find cpos satisfying (3.5) consider the following functor FStore : pCpoop ×

pCpo → pCpo. It is obtained from (3.5) by solving for St and then separating positive and

negative occurrences of St in the right-hand side,

FStore(S, T)
def
= RecLoc(RecF(Val)× RecM(Loc× S ⇀ (Val+ {error})× T)) (3.6)

It follows that FStore is a locally continuous bifunctor. Recall from Chapter 2 that pCpo

is bilimit-compact. Thus, by Theorem 2.3.2 there exists a minimal invariant solution

St (uniquely determined up to unique isomorphism) such that FStore(St, St) � St. For

convenience we omit the isomorphisms and consider FStore(St, St) = St as equality in the

following.

Let Env
def
= Var→fin Val be the set of environments, i.e., maps between Var and Val with

finite domain. We use a similar notation to the one for records in Chapter 2 to denote

the update and extension of environments: If ρ ∈ Env and v ∈ Val then ρ[x := v] is the

3.3. Object Calculus 49

Table 3.7 Denotational semantics of imperative objects

JxKρσ def
=







〈ρ(x),σ〉 if x ∈ dom(ρ)

〈error, σ〉 otherwise

JtrueKρσ def
= 〈true, σ〉

JfalseKρσ def
= 〈false, σ〉

Jif x then b1 else b2Kρσ def
=















Jb1Kρσ ′ if JxKρσ = 〈true, σ ′〉

Jb2Kρσ ′ if JxKρσ = 〈false, σ ′〉

〈error, σ ′〉 if JxKρσ = 〈v,σ ′〉 for v ∉ BVal

Jlet x = a in bKρσ def
= let 〈v,σ ′〉 = JaKρσ in JbKρ[x := v]σ ′

r
[

fi = xi ,mj = ς(yj)bj
]

i∈I,j∈J

z
ρσ

def
=







〈l, σ[l := 〈o1, o2〉]〉 if xi ∈ dom(ρ) ∀i ∈ I

〈error, σ〉 otherwise

where















l ∉ dom(σ)

o1 = {|fi = ρ(xi)|}i∈I

o2 = {|mj = λ〈l, σ〉. JbjKρ[yj := l]σ |}j∈J

Jx.fKρσ def
= let 〈l, σ ′〉 = JxKρσ

in







〈σ ′.l.f, σ ′〉 if l ∈ dom(σ ′) and f ∈ dom(σ ′.l)

〈error, σ ′〉 otherwise

Jx.f :=yKρσ def
= let 〈l, σ ′〉 = JxKρσ in let 〈v,σ ′′〉 = JyKρσ ′

in







〈l, σ ′′[l:=σ ′′.l[f:=v]]〉 if l ∈ dom(σ ′′) and f ∈ dom(σ ′′.l)

〈error, σ ′′〉 otherwise

Jx.mKρσ def
= let 〈l, σ ′〉 = JxKρσ

in







σ ′.l.m(l, σ ′) if l ∈ dom(σ ′) and m ∈ dom(σ ′.l)

〈error, σ ′〉 otherwise

JclonexKρσ def
= let 〈v,σ ′〉 = JxKρσ

in







〈l, σ ′[l := σ ′.v]〉 if v ∈ Loc∩ dom(σ ′)

〈error, σ ′〉 otherwise

where l ∉ dom(σ ′)

environment that maps x to v , and for all y ≠ x is equal to ρ(y) if this is defined, and

undefined otherwise.

Given an environment ρ ∈ Env, Table 3.7 gives the semantic equations for the inter-

pretation JaKρ of an object expression a,

JaKρ : St ⇀ (Val+ {error})× St

In the semantic equations a (semantic) strict let is used that is also “strict” with respect

to error:

let 〈v, σ〉 = s in s′
def
=



















undefined if s is undefined

〈error, σ ′〉 if s = 〈error, σ ′〉

(λ〈v, σ〉.s′) s otherwise

50 Chapter 3. A Model of Objects

In addition, the following notational conventions are used throughout this thesis: For

o ∈ Ob we just write o.f and o.m instead of π1(o).f and π2(o).m, respectively. Similarly,

we omit the injections for elements of Val +{error}, writing simply l instead of inLoc(l) etc.

Remark 3.3.4. Observe that, in contrast to (Reus and Streicher 2004), we distinguish be-

tween non-termination (undefinedness) and exceptional termination, error. Also note that

because Loc is assumed to be infinite, the condition l ∉ dom(σ) in the case for object cre-

ation can always be satisfied. Therefore object creation will never raise error due to this

negative condition. The same holds for object cloning.

Remark 3.3.5. Other variants of cloning are conceivable. In particular, from a (space)

efficiency point of view, it may be more realistic to copy fields, but only forward method

calls to the method of the prototype object:

JclonexKρσ def
= let 〈v, σ ′〉 = JxKρσ in







〈l, σ ′[l := o]〉 if v ∈ Loc∩ dom(σ ′)

〈error, σ ′〉 otherwise

where o
def
= {|fi = v.fi , mj = λ〈l, σ〉. σ .v.mj(l, σ)|}i,j and l ∉ dom(σ ′). The difference

between these variants would become observable if method update was possible.

Projecting Stores

We will make use of a projection to the part of the store that contains just data in Val, thus

“forgetting” all closures of objects residing in the store. This projection πVal : St→ StVal is

defined by

(πVal σ).l.f
def
= σ.l.f

for all l ∈ Loc and f ∈ F , where StVal
def
= RecLoc(RecF(Val)). We refer to πVal(σ) as the flat

part of σ . Note that for all σ,σ ′ ∈ St,

σ vSt σ
′

=⇒ πVal(σ) = πVal(σ
′) (3.7)

Since Val is discretely ordered, so are RecF(Val) and RecLoc(RecF(Val)) = StVal from which

implication (3.7) immediately follows.

3.3.4 Adequacy

Computational soundness and adequacy relate different semantics of a language (e.g., an

operational and denotational one), by establishing agreement with respect to termination

of programs (in an operational semantics) and definedness (in a denotational model).

A number of adequacy results have been obtained previously for object calculi:

• Aceto et al. (2000) prove adequacy of a functional variant of the object calculus

with recursive first-order types, with respect to the per model presented in Abadi

and Cardelli’s book (1996).

• Glimming in his thesis (2005) proves adequacy for a functional object calculus with

self-types, but without subtyping, with respect to an operationally defined transla-

tion into FPC (Fiore 1996). Thus, composing this translation with an interpretation

in adequate models of FPC yields adequate models of his calculus.

3.3. Object Calculus 51

Table 3.8 Contexts

C ∈ Ctxt ::= • | if x then C else b | if x then a else C | let x = C in b

| let x = a in C | [fi = xi , mj = ς(yj)bj ,m = ς(x)C]i∈I,j∈J

• In his M.Sc. thesis, Fecher (1999) considers adequacy of both functional and imper-

ative untyped object calculi with regards to pCpo-models. While these are similar

to the model of Section 3.3.3 above, they correspond to the different store model of

Abadi and Cardelli.

In this section, we prove adequacy of the denotational model with respect to the opera-

tional semantics of Section 3.3.2. To the best of our knowledge, no adequacy proof for

our semantics appears in the literature (although it is very similar to (Fecher 1999)). The

details of the proof are complicated due to the recursively defined domain St, but follow

the standard approach for languages with recursive types by exhibiting a formal approx-

imation relation (see for example Pitts 1996). This relation is defined by a mixed-variant

recursion, thus calling for the results of Chapter 2.

Contextual Equivalence

It is easy to verify that evaluation of programs (i.e., closed object terms) does not depend

on the stack. Thus we may omit the environment in both the operational and denotational

semantics. For instance, we simply write σ . a 7 -→ v ;σ′ in place of ρ;σ . a 7 -→ v ;σ′ and

JaK instead of JaKρ. For programs a we define a termination relation,

σ . a ⇓
def
⇐⇒ ∃v ∈ Val ∃σ′ ∈ Store. σ . a 7 -→ v ;σ′

Table 3.8 defines (single-hole) contexts as extended object terms with a “hole”, where a

single subterm has been replaced by an occurrence of the distinguished, otherwise un-

used, identifier •. Substitution of a term a for • in C is written C[a]; this substitution

may capture free variables of a.

Definition 3.3.6 (Contextual Approximation). Let a, b ∈ Ob. A contextual approximation

relation Ü⊆ Ob×Ob is defined by

a Ü b
def
⇐⇒ ∀C ∈ Ctxt ∀σ ∈ Store. C[a], C[b] ∈ Prog =⇒ (σ;C[a] ⇓ =⇒ σ;C[b] ⇓)

Contextual equivalence, a � b, holds if and only if a Ü b and b Ü a.

The denotational semantics of terms of the imperative object calculus is extended

to runtime values, stacks and heaps in the evident way. The definitions of JvK ∈ Val,

JρK ∈ Env and JσK ∈ St can be found in Table 3.9.

One direction of the agreement between operational and denotational semantics is

easy to prove.

Lemma 3.3.7 (Soundness). If ρ;σ . a 7 -→ v ;σ′ then JaK JρK JσK = 〈JvK , Jσ′K〉.

52 Chapter 3. A Model of Objects

Table 3.9 Semantics of runtime values, stacks and heaps

JtrueK def
= true JfalseK def

= false JlK def
= l

JρK (x) def
=







JvK if ρ(x) = v is defined

undefined otherwise

JσK def
= {|l = ol|}l∈dom(σ) where ol

def
= 〈{|fi = JviK |}i∈I, {|mj = λ〈l, σ〉. JbjK (

q
ρj

y
[yj := l])σ |}j∈J〉

for σ.l = [fi = vi,mj = 〈ς(yj)bj ,ρj〉]i∈I,j∈J

Table 3.10 Semantics of contexts

JCKctxt
: (Env → St⇀ Val× St)→ Env → St⇀ (Val+ {error})× St

J•Kctxt
hρσ

def
= (hρ)σ

Jif x then C else bKctxt
hρσ

def
=















JCKctxt
hρσ ′ if JxKρσ = 〈true, σ ′〉

JbKρσ ′ if JxKρσ = 〈false, σ ′〉

〈error, σ ′〉 if JxKρσ = 〈v,σ ′〉 for v ∉ BVal

Proof. By a straightforward induction on the derivation of ρ;σ . a 7 -→ v ;σ′.

Two cases of the semantics JCKctxt
of contexts C ∈ Ctxt are defined in Table 3.10; the

remaining ones are similarly straightforward and omitted. This semantics is composi-

tional:

Lemma 3.3.8 (Compositionality). For all C ∈ Ctxt and a ∈ Ob, JC[a]K = JCKctxt
(JaK).

Proof. By induction on C.

Next we consider formal approximation relations,

• /St⊆ St × Store, stating that (i) all the methods of all the objects in a denotational

store σ and operational heap σ are related by /, and (ii) all the values of the fields

are equal; and

• /⊆ Cl×Clos, where h / 〈ς(y)b,ρ〉means that termination of h implies termination

(with equal result) of 〈ς(y)b,ρ〉 when run in stores related by /St, and moreover the

/St relation is preserved.

The formal definition of these relations is provided in Table 3.11. Because /St is defined

in terms of /, and there is a negative occurrence of /St in the right hand side for /, we

must show well-definedness of the formal approximation relations. This is done in the

following by appealing to the existence theorem of Chapter 2, Theorem 2.5.2.

For a cpo D letR(D) consist of all relations R ⊆ D×Store such that for each σ ∈ Store

the set {d ∈ D | 〈d,σ〉 ∈ R} forms an admissible subset of D, i.e., for which

d0 v d1 v d2 v . . . ∧ ∀i ∈ N. 〈di,σ〉 ∈ R =⇒ 〈
⊔

i∈N di,σ〉 ∈ R

3.3. Object Calculus 53

Table 3.11 Formal Approximation

σ /St σ
def
⇐⇒



























dom(σ) = dom(σ)

∧ dom(σ .l) = dom(σ.l) ∀l ∈ dom(σ)

∧ σ.l.m / σ.l.m ∀m ∈ dom(σ .l)

∧ σ.l.f = Jσ.l.fK ∀f ∈ dom(σ .l)

m / 〈ς(y)b,ρ〉
def
⇐⇒



























∀σ,σ ′ ∈ St ∀σ ∈ Store ∀l ∈ Loc ∀v ∈ Val.

(σ /St σ ∧ m(l,σ) = 〈v,σ ′〉 =⇒

∃σ′ ∈ Store ∃v′ ∈ Val.

(ρ, y,l);σ . b 7 -→ v′;σ′ ∧ σ ′ /St σ
′ ∧ v = Jv′K)

Table 3.12 Functionals Φ/ and Φ/St

Φ/(R, S)
def
=



























〈h, 〈ς(y)b,ρ〉〉

∀σ,σ ′ ∈ D ∀σ ∈ Store ∀l ∈ Loc∀v ∈ Val.

〈σ,σ〉 ∈ R ∧ h(l, σ) = 〈v,σ ′〉 =⇒

∃v′ ∈ Val∃σ′ ∈ Store.

(ρ, y,l);σ . b 7 -→ v′;σ′ ∧ 〈σ ′,σ′〉 ∈ S ∧ v = Jv′K



























Φ/St
(R, S)

def
=



























〈σ,σ〉

dom(σ) = dom(σ)

∧ dom(σ .l) = dom(σ.l) ∀l ∈ dom(σ)

∧ 〈σ.l.m,σ.l.m〉 ∈ Φ/(R, S) ∀m ∈ dom(σ .l)

∧ σ.l.f = Jσ.l.fK ∀f ∈ dom(σ .l)



























holds. Further, we define for partial continuous f : D ⇀ E and R ∈ R(D) and S ∈ R(E),

f : R ⊂ S
def
⇐⇒ ∀〈d,σ〉 ∈ R. f (d)↓ =⇒ 〈f (d),σ〉 ∈ S

According to (Pitts 1996) this makes R a normal relational structure on pCpo, with inter-

sections given by set-theoretic intersection and inverse images given by

f∗S = {〈d,σ〉 ∈ D × Store | f (d)↓ ∧ 〈f (d),σ〉 ∈ S}

For all E and S ∈ R(E), [R, S] contains ⊥ and is closed under taking least upper bounds,

thus all S ∈ R(E) are admissible in the sense of Section 2.5.1.

Table 3.12 defines a functional Φ/St on this relational structure, such that

R ∈ R(D) ∧ S ∈ R(E) =⇒ Φ/St(R, S) ∈ R(FStore(D, E)) (3.8)

Verifying that the set {σ | 〈σ,σ〉 ∈ Φ/St(R, S)} ⊆ FStore(D, E) is admissible relies on the

operational semantics being deterministic, because of the existential quantifiers in the

definition of Φ/. In the statement of the operational semantics on page 47 we glossed

over the issue of how to choose fresh locations, used in (Red Obj) and (Red Copy). Thus

the semantics as given is not deterministic. However, this is the only reason for indeter-

minism and the problem can be rectified by specifying the allocation mechanism more

54 Chapter 3. A Model of Objects

precisely: For instance, a common solution is to let Loc be a well-ordered set such as the

natural numbers, and choose the next location according to

next(σ)
def
= min{n | n ∉ dom(σ)}

depending on the locations already present in a heap. The same observation applies to the

denotational semantics. We omit the details and will be similarly sloppy in our treatment

of allocation throughout this thesis. A neater and more formal development should be

possible using the FM cpos of (Shinwell 2005; Shinwell and Pitts 2005), but we have not

investigated this further.

Next we show that for all f : D′ ⇀ D, g : E ⇀ E′, R ∈ R(D), R′ ∈ R(D′), S ∈ R(E) and

S′ ∈ R(E′),

f : R′ ⊂ R ∧ g : S ⊂ S′ =⇒ FStore(f , g) : Φ/St(R, S) ⊂ Φ/St(R
′, S′) (3.9)

Suppose 〈σ,σ〉 ∈ Φ/St(R, S) and FStore(f , g)(σ) ↓. We have to show 〈FStore(f , g)(σ),σ〉 ∈

Φ/St(R
′, S′). By definition of FStore in (3.6) on page 48,

FStore(f , g)(σ).l.f = σ.l.f ∀l ∈ Loc ∀f ∈ F

FStore(f , g)(σ).l.m(l
′, σ ′) = 〈v, g(σ ′′)〉 ∀l, l′ ∈ Loc∀m ∈M ∀σ ′ ∈ St

where 〈v, σ ′′〉
def
= σ.l.m(l′, f (σ ′)). In particular,

dom(FStore(f , g)(σ)) = dom(σ) = dom(σ)

dom(FStore(f , g)(σ).l) = dom(σ .l) = dom(σ.l) ∀l ∈ dom(σ)

FStore(f , g)(σ).l.f = σ.l.f = σ.l.f ∀l ∈ dom(σ) ∀f ∈ dom(σ .l)

By definition of Φ/St it only remains to show 〈FStore(f , g)(σ).l.m,σ.l.m〉 ∈ Φ/(R′, S′) for

all l ∈ dom(σ) and m ∈ dom(σ .l). So let 〈σ ′,σ′〉 ∈ R′, let l′ ∈ Loc and suppose

FStore(f , g)(σ).l.m(l
′, σ ′) = 〈v, σ ′′〉

Therefore, by the observation made above, there exists σ̂ ∈ St such that σ.l.m(l′, σ ′) =

〈v, σ̂〉 and σ ′′ = g(σ̂). By assumption, f : R′ ⊂ R, so that 〈f (σ ′),σ′〉 ∈ R. Hence, by the

assumption 〈σ,σ〉 ∈ Φ/St(R, S), if σ.l.m = 〈ς(x)a,ρ〉 there exist v′ ∈ Val and σ′′ ∈ Store

such that

(ρ, x,l′);σ′ . a 7 -→ v′;σ′′

where 〈σ̂ ,σ′′〉 ∈ S and v = Jv′K. Finally, by assumption g : S ⊂ S′, we also have

〈σ ′′,σ′′〉 = 〈g(σ̂),σ′′〉 ∈ S. Thus 〈FStore(f , g)(σ).l.m, 〈ς(x)a,ρ〉〉 ∈ Φ/(R
′, S′) and we

have proved (3.9).

Properties (3.8) and (3.9) express that Φ/St is an admissible action of the bifunctor

FStore:

Lemma 3.3.9 (Admissible Action). The functor FStore : pCpoop × pCpo -→ pCpo has an

admissible action on R, given by Φ/St .

3.3. Object Calculus 55

Thus by Theorem 2.5.2 the invariant R-relation for the action of FStore exists, which

we denote by /St:

/St = Φ/St(/St, /St) ∈ R(St)

We can finally define /
def
= Φ/(/St, /St) to obtain the required formal approximation rela-

tion between denotational and operational method closures.

Lemma 3.3.10. Let a ∈ Ob, ρ ∈ Env and σ ∈ Store. Then the following hold,

• λ〈l, σ〉. JaK (JρK [x := l])σ / 〈ς(x)a,ρ〉; and

• JσK /St σ.

Proof. The first part is by (a tedious) induction on a and exploiting the defining property

of the / relation. The second part then follows from the definitions of JσK and /St.

Lemma 3.3.11. For all programs a ∈ Prog and all σ ∈ Store, if JaK JσK = 〈v,σ′〉 such that

v ≠ error, then σ . a ⇓.

Proof. By Lemma 3.3.10, λ〈l, σ〉. JaK (JρK [x := l])σ / 〈ς(x)a,ρ〉 and JσK /St σ. Since

fv(a) = �, for any ρ ∈ Env and l ∈ Loc

〈v, σ ′〉 = JaK JσK = JaK (JρK [x := l]) JσK

Hence by definition of /, there exist v′ ∈ Val and σ′ ∈ Store such that (ρ, x, l);σ .

a 7 -→ v′;σ′ and v = Jv′K and σ ′ /St σ
′. In particular, σ . a ⇓ since a ∈ Prog entails

σ . a 7 -→ v′;σ′ (without the stack) too.

Theorem 3.3.12 (Adequacy). For all a, b ∈ Ob, if JaK v JbK then a Ü b. In particular,

JaK = JbK implies a � b.

Proof. Let C be any context such that both C[a] and C[b] are closed, let σ ∈ Store a store,

and suppose σ .C[a] ⇓, i.e.,

σ .C[a] 7 -→ v ;σ′

for some v ∈ Val and σ′ ∈ Store. Let σ
def
= JσK. Then

JC[b]Kσ = JCKctxt
(JbK)σ by (Compositionality), Lemma 3.3.8

w JCKctxt
(JaK)σ since JaK v JbK

= JC[a]Kσ by (Compositionality), Lemma 3.3.8

= 〈JvK , Jσ′K〉 by (Soundness), Lemma 3.3.7

Thus there exist σ ′ ∈ St and v′ ∈ Val such that JC[b]Kσ = 〈v′, σ ′〉. In particular, v′ ≠

error. By Lemma 3.3.11, σ .C[b] ⇓, and we have shown a Ü b.

56 Chapter 3. A Model of Objects

Table 3.13 Syntax of a class-based language. Types and terms

A,B ::= X | bool | . . . type variable, base types

| Object(X)
[

fi :Ai , mj :Bj
]

i,j (recursive) object type

| Class(A) class type

a, b ::= x variable

| true | . . . expressions, conditional, let,. . .

| a.f | a.m field selection, method invocation

| new c (a1, . . . , an) instance creation

c, d ::= root root class

| subclass of c:C with (x:A) class definition

(fi)i set of additional fields, i ∈ I

(mj = bj)j set of additional methods, j ∈ J

(override mk = bk)k set of overridden methods, k ∈ K

end

3.4 Modelling Class-based Languages

Many formalisations of class-based languages have appeared in the literature. Widely

cited examples are Featherweight Java (Igarashi, Pierce, and Wadler 2001; Bracha,

Odersky, Stoutamire, and Wadler 1998; Igarashi and Pierce 2000), Kool (Castagna 1997)

and the Sool family of languages of (Bruce 2002; Bruce 1994). Here, for simplicity, we

present a variant of the class-based language from Chapter 12 of Abadi and Cardelli’s

(1996) book: It can be quite straightforwardly mapped into the object calculus of the

previous section, and class-based reasoning reduces to object-based reasoning principles.

The ingredients of this translation are the following. Classes are viewed as object

generators, a view that is well in accordance with the theoretical literature on the subject

(Cook 1989; Cook and Palsberg 1994; Kamin and Reddy 1994; Bruce 1994; Abadi and

Cardelli 1996; Bono, Patel, Shmatikov, and Mitchell 1999; Boudol 2004). More precisely,

• a class is a record of pre-methods, i.e., functions abstracted on the self-parameter;

• inheritance is extension of this record, possibly replacing some of the pre-methods

in the modelling of method redefinition (“override”);

• object creation (“new”) is the creation of an object from the record of pre-methods,

obtained by binding the self-parameter.

3.4.1 A Class-based Language

Table 3.13 collects the syntax of types and terms of a simple class-based language. Types

include base types, (recursive) object types and class types. In order to distinguish be-

tween object and class types, we follow Abadi and Cardelli in writing object types now

as Object(X)
[

fi :Ai, mj :Bj

]

i,j
instead of µ(X)

[

fi :Ai , mj :Bj

]

i,j
. If A is an object type, then

3.4. Modelling Class-based Languages 57

Class(A) is a well-formed class type:

A ≡ Object(X)
[

fi :Ai, mj :Bj

]

i,j

Γ .A

Γ . Class(A)

It is the type of classes whose instance objects have type A. The class type Root is defined

by

Root
def
= Class(Object(X) [])

Much emphasis in class-based languages is put on inheritance (Taivalsaari 1996). Infor-

mally, a class consists of a set of pre-methods, that is, methods that are abstracted on

the self parameter. Viewing inheritance as pre-method reuse, one defines an inheritance

relation on class types based on the subtype relation on the underlying object types,

Class(A) may inherit from Class(B)
def
⇐⇒ .A � B

meaning that a class c:Class(A) may be defined with reference to some class d:Class(B).

The base class, root, contains no pre-methods. All other classes must be defined using

the subclass construct. Given a class c:Class(A) then

subclass of c:Class(A) with (x:B) fi, mj = bj , override mk = bk end

constructs a new class d:Class(B). The class d consists of all the pre-methods of c except

for those mk that have been replaced by a new definition bk listed in the override clause,

and extends this set with pre-methods mj = bj . Instances of this class have the fields of

instances of c, and additionally fields fi . The variable x:B is the self variable for all the

methods in this class definition. The type system will guarantee that B is an object type

such that all pre-methods may be soundly applied to the instance objects.

The typing rules for subtyping and terms remain much as before; Table 3.14 contains

the new additional rules for classes. Note that there is no subtyping on class types as

there appears to be no reasonable definition that is connected to the more fundamental

may-inherit-from relation between class types.

The rule for the instance creation new ensures that the initialisation values for the

fields have the right type. The rule for the base class has the obvious form. The type rule

for subclassing is rather complex. It ensures that the instance type of the subclass is a

subtype of the instance type of the superclass, i.e., that the subclass may indeed inherit

from the superclass. In addition, a certain well-formedness is guaranteed by (1) ruling

out any name clashes between fields inherited from the superclass and those defined

for the subclass, (2) ruling out any name clashes between methods inherited from the

superclass and those additionally defined for the subclass, and (3) checking that only

methods defined in the superclass are overridden.

3.4.2 Classes as Objects

We summarise the translation (−)◦ into the object calculus proposed by Abadi and Cardelli

next. The intuition is that a class corresponds to the record of its pre-methods, enriched

58 Chapter 3. A Model of Objects

Table 3.14 Typing of terms and classes

(Term New)

A ≡ Object(X)
[

fi :Ai , mj :Bj
]

i∈I,j∈J

Γ . c : Class(A)
Γ . xi : Ai ∀i ∈ I = {1, . . . , n}

Γ . new c(x1, . . . , xn) : A

(Term Root)
Γ . root : Root

(Term SubClass)

A ≡ Object(X)
[

fi :Ai, mj :B
′
j

]

i∈I′,j∈J′

B ≡ Object(X)
[

fi :Ai , mj :Bj
]

i∈I]I′,j∈J]J′

Γ . c : Class(A) Γ . B � A K ⊆ J′

Γ . Bj[B/X] � B
′
j[B/X] ∀j ∈ J′ −K

Γ , x:B . bl : Bl[B/X] ∀l ∈ J ∪K

Γ . subclass of c:Class(A) with (x:B)

(fi)i∈I (mj = bj)j∈J (override mk = bk)k∈K

end

: Class(B)

Table 3.15 Translation of types

X◦
def
= X

bool◦
def
= bool

Object(X)[fi :Ai, mj :Bj]i,j
◦

def
= µ(X)[fi :A

◦
i , mj :B

◦
j]i,j

Class(A)◦
def
=

[

new:(A◦1 × ·· · ×A
◦
n)⇒ A

◦,mj :A
◦⇒B◦j [A

◦/X]
]

j

where A ≡ [fi :Ai , mj :Bj]i∈I,j∈J , I = {1, . . . , n}

with a method new that assembles the pre-methods into objects. Therefore instance cre-

ation new c (. . .) corresponds directly to the method invocation c◦.new(. . .). Table 3.15

contains the translation of types that directly implements this view.

Translation of Terms

Table 3.16 summarises the translation of terms into the object calculus. The base class

root translates to an object with a method new that generates empty objects. A subclass

definition translates to an object that contains the set of new and overridden pre-methods,

mj for j ∈ J′] K, as well as the inherited pre-methods that are not overridden, mj for

j ∈ J − K. The latter are implemented by referring to the superclass c, as mj = c◦.mj .

Finally, the method new assembles all these pre-methods in an object and binds their

self-parameter by replacing the abstraction with a ς binder. The fields are initialised with

the given arguments.

Functions and Pre-Methods

We have not yet discussed how to encode functions (and methods with input parameters)

in the object calculus, which is necessary in order to make precise the translation of

3.4. Modelling Class-based Languages 59

Table 3.16 Translation of terms

(new c (x1, . . . , xn))
◦ def

= c◦.new(x1, . . . , xn)

root◦
def
=

[

new = ς(y)[]
]

(subclass of c:Class(A) with (x:B) fi, mj = bj , override mk = bk end)◦

def
= let y=c◦ in









new = ς(y)λ〈x1, . . . , xn〉[fi = xi , mj = ς(z)y.mj(z)]i∈I]I′,j∈J]J′

(mj = y.mj)j∈J−K

(ml = λx.b
◦
l)l∈J′]K









where I] I′ = {1, . . . , n}

A ≡ Object(X)
[

fi :Ai , mj :B
′
j

]

i∈I′,j∈J′

B ≡ Object(X)
[

fi :Ai , mj :Bj
]

i∈I]I′,j∈J]J′

classes as objects containing pre-methods and a constructor method. The key idea is that

supplying the input proceeds via a new field arg that is updated with the actual parameter

prior to evaluating the function or method. Thus, a function type A ⇒ B corresponds to

an object type (A ⇒ B)∗
def
=
[

arg : A∗, eval : B∗
]

, an abstraction λx.e corresponds to an

object of this type

(λx.e)∗
def
=

[

arg = . . . , eval = ς(y)e∗[y.arg/x]
]

(the arg field is initially set to an arbitrary value of type A) and application a(b) is

(a(b))∗
def
= (clone(a∗).arg := b∗).eval

The cloning of the object is necessary to simulate a proper call-stack, otherwise recursive

calls would interfere. An alternative method to achieve this effect would be to explicitly

restore arg to its original value after the call:

(a(b))∗
def
= let f=(a∗) in let y=f .arg in let r=(f .arg := b∗).eval in (f .arg := y ; r)

Of course it is also possible to directly extend the syntax and semantics (Section 3.3) of

the object calculus, introducing cases for methods with parameters.

3.4.3 Benefits of Class Objects

We believe there are the following advantages for modelling classes in this way. Firstly,

from a pragmatic point of view, this allows us to directly transfer results and techniques

for reasoning about objects to reasoning about classes. In particular, Abadi and Leino’s

(1997, 2004) logic gives rise to a logic for class-based languages in this way. Secondly,

we believe that the translation leads to a semantic model of class-based languages that

does not suffer from the short-comings of the usual closed-world assumptions: The sub-

sequent addition of further subclasses poses no problems with respect to modularity.

Moreover, we note that the translation works just as well without distinguishing the syn-

tactic categories a, b, . . . of terms and c, d, . . . of class expressions. By equating these,

60 Chapter 3. A Model of Objects

class expressions become first-class entities of the language. In particular this directly

allows for modelling of inner classes and methods returning dynamically constructed

classes.

Part II

On Abadi and Leino’s Logic

Chapter 4

Abadi and Leino’s Logic of Objects and its

Denotational Semantics

Abadi-Leino Logic (Abadi and Leino 1997, 2004) is a Hoare-calculus style logic for the

simple imperative and object-based language introduced in Chapter 3. As can be seen

from the semantics (both operational and denotational) every object comes with its own

method suite. Thus methods need to reside in the store, i.e., programs use a higher-order

store. In the logic one can prove properties of such programs.

In this part of the thesis, we present a new soundness proof for this logic using the

denotational semantics of Section 3.3.3: The object specifications of the logic are recursive

predicates on the domain of objects. Our semantics reveals which of the limitations

of Abadi and Leino’s logic are deliberate design decisions and which follow from the

use of higher-order store. We discuss the implications for the development of other,

more expressive, program logics. We also extend the logic with a notion of recursive

specification.

4.1 Introduction

For object-oriented languages several formal systems have been proposed, for instance

(Abadi and Leino 2004; Hensel, Huisman, Jacobs, and Tews 1998; Jacobs and Poll 2001;

Reddy 2002; Poetzsch-Heffter and Müller 1999; de Boer 1999; von Oheimb 2001; Reus,

Wirsing, and Hennicker 2001). A “standard” comparable to the Hoare-calculus for impera-

tive While-languages (Apt 1981) has not yet emerged. Moreover, nearly all the approaches

listed above are designed for class-based languages (usually a sub-language of sequential

Java), where method code is known statically.

One notable exception is the work of Abadi and Leino (1997, 2004) where a logic for

an object-based language is introduced that is derived from the imperative object calcu-

lus with first-order types, impς, (Abadi and Cardelli 1996). Abadi and Leino’s logic is a

Hoare-style system, dealing with partial correctness of object expressions. Their idea was

to enrich object types by method specifications, called transition relations, relating pre-

64 Chapter 4. Abadi and Leino’s Logic of Objects and its Denotational Semantics

and post-execution states of program statements, and result specifications describing the

result in case of program termination. Informally, an object satisfies such a specification

A ≡ [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J

if it has fields fi satisfying Ai and methods mj that satisfy the transition relation Tj and,

in case of termination of the method invocation, their result satisfies Bj . Just as a method

mj = ς(yj)bj can use the self-parameter yj in its body bj , we can assume that an object

a itself satisfies A in both Bj and Tj when establishing that A holds for a. This yields a

powerful and convenient proof principle for objects:

A ≡ [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J
Γ ` xi :Ai :: . . . ∀i ∈ I Γ , yj :A ` bj :Bj ::Tj ∀j ∈ J

Γ `
[

fi = xi , mj = ς(yj)bj
]

i∈I,j∈J
:A:: . . .

(4.1)

To make this more concrete let us consider an example. Suppose a is an object with a

method that implements the factorial function,











arg = 0,

fac = ς(y). if y.arg = 0 then 1

else let x=y.arg in y.arg:=x− 1;x× (y.fac)











(4.2)

Recall that in the object calculus of Section 3.3 methods do not have parameters, therefore

the input is stored in the arg field of the object prior to calling fac (see also Section 3.4.2).

Apart from this convention the program should be self-evident. The following specifica-

tion

[

arg : int, fac : ς(y)int::y.arg ≥ 0 → result = y.arg!
]

expresses (1) that the field arg contains an integer, (2) that the result of calling method fac

is an integer (int is the result specification), and (3) that the execution of fac has the effect

of computing y.arg! whenever y.arg ≥ 0 holds initially. In fact (2) and (3) are intended in

the sense of partial correctness only, i.e., termination of fac is not required.

A closer look reveals that the transition specification T ≡ y.arg≥0 → result=y.arg!

must be refined: Since the value of y.arg is decremented before each recursive call, in

general it will be different in initial and result states. It is in fact not clear which stored

value y.arg refers to in T . One standard approach to solve this problem is to use “primed”

and “unprimed” variables to distinguish between these values (Lamport 1994). Abadi and

Leino (2004) adopted a minor variation of this approach, explicating the selection of fields

with respect to the initial state using selpre(y, arg), and selpost(y, arg) with respect to the

final state1. The treatment of predicates of the assertion language is likewise. Thus, a

specification for the factorial program is

A ≡
[

arg : int, fac : ς(y)int::selpre(y, arg) ≥ 0 → result = selpre(y, arg)!
]

1Abadi and Leino (2004) use the notation σ̀ (y, arg) and σ́ (y, arg)

4.2. Outline of Part II 65

The proof rule (4.1) reduces a proof of a : A to the (trivial) proof obligation ` 0 : int, and

to

y :A ` if y.arg=0 then 1 else · · · : int :: selpre(y, arg) ≥ 0 → result = selpre(y, arg)! (4.3)

The proof of (4.3) can now proceed by application of rules that are quite standard in Hoare

calculus. The assumption y :A is sufficient to reason about the recursive call, where we

have to prove

y :A, x:int ` y.fac : int :: 0 ≤ selpre(y, arg) → result = (selpre(y, arg))!

Hence this example demonstrates that rule (4.1) in fact facilitates reasoning about recur-

sion, and should give a first impression why establishing its soundness is difficult. The

factorial example is proved in detail in Section 4.3.3, after presenting all the inference

rules of Abadi-Leino logic.

In general, the result of a method may be another object, whose methods have to be

specified in turn. That is, the result specifications may be object specifications themselves

(instead of int in the factorial example), and moreover it may depend on the self parameter

of the statically enclosing specification. An instance of this appears in the bank account

of Example 3.3.2 whose specification may depend on the enclosing manager object. See

Example 4.3.1 on page 68 below where this is carried out in more detail.

Abadi and Leino’s logic is peculiar in another respect (although the property is well-

known from the design from type systems): It is set up in a way such that specifications Γ

that hold of objects in the context cannot be invalidated by proven code. In other words,

although the correctness of an object may depend on the context (as in the bank account

example) and the object may operate on the context (for instance by updating a field),

this can not be done unrestrictedly: In the above factorial example (4.2), the method body

may query and update the context Γ ≡ y :A, x:int, as in the assignment y.arg:=x − 1, but

assigning a boolean or float to y.arg would invalidate Γ and is disallowed. Only programs

preserving the context specification Γ in this sense can be proved correct in the logic.

4.2 Outline of Part II

In this and the following chapters we are going to present a new soundness proof for

Abadi and Leino’s logic, using an untyped denotational semantics of the language and the

logic to define validity. Every program and every specification has a denotation: Those of

specifications are simply predicates on (the domain of) objects. The properties of these

predicates provide a description of inherent limitations of the logic. Such an approach is

not new; it has been used, for instance, in lcf, a logic for functional programs (Paulson

1987).

The difficulty in our case is to establish predicates that correspond to the power-

ful reasoning principle for objects (4.1). Reus and Streicher (2002, 2004) have outlined

how to use some techniques from domain theory (Pitts 1996) to guarantee existence and

uniqueness of appropriate predicates on isolated objects. In an object-calculus program,

however, an object may depend on other objects and their methods in the store. So in

66 Chapter 4. Abadi and Leino’s Logic of Objects and its Denotational Semantics

general object specifications must depend on specifications of some of the other objects

in the store, which gives rise to “store specifications”. Indeed store specifications were

already present in the operationally-based work of Abadi and Leino.

For the reasons given above, the development in this part is not simply an application

of the ideas in (Reus and Streicher 2004). Much care is needed to establish the important

invariance property of Abadi-Leino logic, namely that proved programs preserve store

specifications. Our main achievement here is that we have successfully applied the ideas

of (Reus and Streicher 2004) to the logic of (Abadi and Leino 2004) to obtain a sound-

ness proof, with a view on analysing this logic and possibly developing similar, but more

powerful, program logics as well.

Our soundness proof is not just “yet another proof” either. We consider it comple-

mentary to the one of Abadi and Leino (2004), which relies on the operational semantics

of the object calculus and does not assign proper “meaning” to specifications. We believe

the following reasons justify this claim:

• By using denotational semantics we can introduce a clear notion of validity, with no

reference to derivability. This helps clarifying what the soundness proof is actually

stating in the first place, see Section 7.1.1.

• We can extend the logic fairly easily, for instance by recursive specifications. This

has been done for the Abadi-Leino logic in (Leino 1998) but for a slightly different

programming language with nominal subtyping rather than the structural notion

used here.

• Some essential restrictions of the logic are revealed and justified, by arguing that

they correspond to sufficient conditions implying well-definedness of store specifi-

cations.

• Analogously, it is revealed where restrictions have been made for the sake of sim-

plicity that could be lifted to obtain a more powerful logic. For example, in (Abadi

and Leino 2004) transition specifications cannot talk about methods at all (see also

Section 7.2).

We proceed as follows. In the next section, Abadi-Leino logic and the denotational

semantics of its object specifications are presented. In Chapter 5 a discussion about

store specifications and their semantics follows (Section 5.1); the main result is found in

Section 5.2 where the logic is proved sound. Finally we show how recursive specifications

can be introduced (Chapter 6), and we put our model in the wider context and discuss the

possibility of further extensions (Chapter 7).

Remark 4.2.1. Chapters 4–7 are based on the technical report (Reus and Schwinghammer

2004), an extended abstract of which appeared as (Reus and Schwinghammer 2005). Most

results and proofs have had to be slightly adapted because here we are also considering

the cloning construct. Recall that this feature requires (semantically speaking) a model

where methods are maps not only from the store but also the self parameter: because the

reference to self refers to different memory locations in the prototype and cloned object,

respectively, self parameters cannot be frozen at creation time (see Section 3.2.3).

4.3. Abadi-Leino Logic 67

4.3 Abadi-Leino Logic

We recall the logic of (Abadi and Leino 2004) next. A slightly different presentation can be

found in (Tang and Hofmann 2002) where the proof system is given in a syntax-directed

way.

4.3.1 Transition Relations and Specifications

Transition relations T correspond to the pre- and post-conditions of Hoare logic and allow

to express state changes caused by computations. The syntax of transition relations is

defined by the following grammar:

T ::= e0 = e1 | allocpre(e) | allocpost(e) | ¬T | T0 ∧ T1 | ∀x.T

e ::= x | f | result | true | false | selpre(e0, e1) | selpost(e0, e1)

There is a constant for each field name f ∈ F (which we just write f, too), and constants

result, true and false. Intuitively, the function selpre(x, y) yields the value of field y of the

object at location x before execution, provided this exists in the store, and is undefined

otherwise. Correspondingly, selpost(x, y) gives the value of field y after execution. The

predicates allocpre(x) and allocpost(x) are true if the location x is allocated before and after

the execution, respectively, and false otherwise. The notions of free and bound variables

of a transition relation T carry over directly from first-order logic. As usual, further logical

connectives such as falsity and implication can be defined as abbreviations.

Specifications A combine transition relations for each method as well as the result

types into a single specification for the whole object. They generalise the first-order types

of (Abadi and Cardelli 1996; see Section 3.3.1), and are

A,B ∈ Spec ::= bool | [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J

In the case of an object specification, A ≡ [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J , ς(yj) binds the

variable yj in Bj and Tj . The sets fv(T) and fv(A) of free variables of T and A, resp.,

are defined in the obvious way. Specifications are identified up to renaming of bound

variables and reordering of components. As for types, we define 1
def
= [] for the one-

element specification.

Intuitively, true and false satisfy bool, and an object satisfies the object specification

A ≡ [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J if it has fields fi satisfying Ai and methods mj that

satisfy the transition relation Tj and, in case of termination of the method invocation,

their result satisfies Bj . Corresponding to the fact that a method mj can use the self-

parameter yj , in both Tj and Bj it is possible to refer to the ambient object yj .

Well-formed Specification Contexts

In the following let Γ range over specification contexts x1:A1, . . . , xn:An. A specification

context is well-formed if no variable xi occurs more than once, and the free variables of

Ak are contained in the set {x1, . . . , xk−1}. As for the type contexts of the previous chapter,

in writing Γ , x:A we will always assume that x does not appear in Γ . Sometimes we write �

68 Chapter 4. Abadi and Leino’s Logic of Objects and its Denotational Semantics

for the empty context. Given Γ , we write [Γ] for the ordered list of variables occurring in

Γ :

[x1:A1, . . . , xn:An]
def
= x1, . . . , xn

If clear from context, we use the notation x for a sequence x1, . . . , xn, and similarly x : A

for x1:A1, . . . , xn:An. To make the notions of well-formed specifications and well-formed

specification contexts formal, there are judgements for

• well-formed transition relations,

x1, . . . , xn ` T

which holds if the free variables of transition relation T are contained in x1, . . . , xn,

i.e., fv(T) ⊆ {x1, . . . , xn}

• well-formed specifications, x ` A,

(Spec Const)
x ` bool

(Spec Obj)

A ≡ [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J
x ` Ai ∀i ∈ I x, yj ` Bj x, yj ` Tj ∀j ∈ J

x ` [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J

• well-formed specification contexts, Γ ` ok,

(Context Emp)
� ` ok

(Context Spec)
Γ ` ok [Γ] ` A x ∉ dom(Γ)

Γ , x:A ` ok

If A is closed we may omit the empty context �, or even write A instead of ` A. Similarly

for closed T . Essentially T – and therefore also A – depend on the list [Γ] rather than Γ

because the assertion language is untyped first-order logic.

Example 4.3.1. Table 4.3 on page 70 defines a few transition relations. Table 4.1 shows

a specification for the bank accounts of Example 3.3.2 (page 42). Although we are using

UML-like notation (Stevens and Pooley 2000), our diagram actually stands for individual

objects, not classes – in fact there are no classes in the language. Observe how the tran-

sition relation Tinterest depends not only on the self parameter y of the host object but

also on the statically enclosing object x.

4.3.2 Subspecifications and Proof System

Abadi and Leino generalised the notion of subtypes to a form of subspecifications, x `

A≺:A′. This relation is defined as the least reflexive and transitive relation on specifi-

cations closed under the inference rule of Table 4.2, where `fo ϕ denotes provability in

first-order logic (in the theory with axioms for equality, and axioms stating that true, false

and all f ∈ F are distinct). Just as subtyping in the corresponding type system (Abadi and

Cardelli 1996), the subspecification relation is covariant along method specifications and

4.3. Abadi-Leino Logic 69

Table 4.1 An example of transition and result specifications

Tdeposit(y) ≡ ∃z.z = selpre(y,balance)

∧Tupd(y,balance, z + 10)

Twithdraw(y) ≡ ∃z.z = selpre(y,balance)

∧Tupd(y,balance, z − 10)

Tinterest(x, y) ≡ ∃z.z = selpre(y,balance)

∧∃m.m = selpre(x,manager)

∧∃r .r = selpre(m,rate)

∧Tupd(y,balance, z ∗ r/100)

Tcreate(x) ≡ Tobj(balance = 0)

AAccount(x) ≡ [balance : int,

deposit10 : ς(y)1 :: Tdeposit(y),

withdraw10 : ς(y)1 :: Twithdraw(y),

interest : ς(y)1 :: Tinterest(x, y)]

AAccFactory ≡ [manager : [rate : int],

create : ς(x)AAccount(x) :: Tcreate(x)]

AManager ≡ [rate : int,

accFactory : AAccFactory]

Manager

 rate: Int

 accFactory

AccFactory

 manager

 create()

Account

 balance: Int

 deposit10()

 interest()

transition relations, and invariant in field specifications (cf. rule (Sub Obj) in Section 3.3.1).

Observe that

x ` A1≺:A2 =⇒ x ` Ai (4.4)

for i = 1,2.

In the logic, judgements of the form Γ ` a:A::T can be derived, where Γ is a well-

formed specification context, a is an object expression, A is a specification, and T is a

transition relation. The rules guarantee that all the free variables of a, A and T appear in

[Γ]. In the statement of the rules we use the transition relations defined in Table 4.3.

Tres(e) states that the result of a computation is e and the flat part of the store remains

unchanged. Tobj(fi = xi) describes the allocation of a new object in memory, which is

initialised with field fi set to xi , and whose location is returned as result. Tupd(x, f , e)

describes the effect on the store when updating field x.f . Note that in (Abadi and Leino

2004) Tres is called Res and Tupd is called Update. There is no abbreviation corresponding

to Tobj.

There is one rule for each syntactic form of the language, and additionally a subsump-

tion rule. In fact, the subsumption rule plays a central rôle, generalising the consequence

rule of classical Hoare logic. The rules are given in Table 4.4.

As indicated before, one of the most interesting and powerful rules of the logic is the

70 Chapter 4. Abadi and Leino’s Logic of Objects and its Denotational Semantics

Table 4.2 The subspecification relation

(Subspec Obj)

x ` Ai ∀i ∈ I x, yj ` Bj ∀j ∈ J

x, yj ` Tj ∀j ∈ J x, yj ` T
′
j ∀j ∈ J′ I′ ⊆ I

x, yj ` Bj ≺:B′j ∀j ∈ J′ `fo Tj → T ′j ∀j ∈ J′ J′ ⊆ J

x ` [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J ≺: [fi :Ai, mj :ς(yj)B
′
j ::T

′
j]i∈I′,j∈J′

Table 4.3 Transition relations Tres, Tobj and Tupd

Tres(e)
def
= result = e ∧ ∀x ∀f . (allocpre(x) ↔ allocpost(x) ∧ selpre(x, f) = selpost(x, f))

Tobj(fi = xi)i∈I
def
= ¬allocpre(result) ∧ allocpost(result) ∧

∧

i∈I selpost(result, fi) = xi

∧ ∀x ∀f . x ≠ result → (allocpre(x)↔allocpost(x) ∧ selpre(x, f) = selpost(x, f))

Tupd(x, f , e)
def
= ∀x′. allocpre(x

′) ↔ allocpost(x
′) ∧ selpost(x, f) = e ∧ result = x

∧ ∀x′ ∀f ′. (x′ ≠ x ∨ f ′ ≠ f) → selpre(x
′, f ′) = selpost(x

′, f ′)

object introduction rule,

(AL Obj)

A ≡ [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J
Γ ` xi :Ai ::Tres(xi) ∀i ∈ I Γ , yj :A ` bj :Bj ::Tj ∀j ∈ J

Γ `
[

fi = xi , mj = ς(yj)bj
]

i∈I,j∈J
:A::Tobj(fi=xi)i∈I

In order to establish that the object satisfies specification A, when verifying the methods

bj we can assume that the self parameter yj also satisfies A. Essentially, this causes the

semantics of store specifications, to be introduced in Section 5.1 below, to be defined by

a mixed-variant recursion.

The rule (AL Let) for the let case is somewhat unusual in that it introduces additional

relation symbols, selint(·, ·) and allocint(·), to capture the intermediate state of the store

in first-order logic. It uses textual substitution of function and predicate symbols, resp., to

compose the first and second transition relation: For instance,

selpost(e1, e2)[selint(·, ·)/selpost(·, ·)] ≡ selint(e1, e2)

The side condition [Γ] ` T in (AL Let) ensures that the transition relation in the conclu-

sion respects the local scope of this intermediate state.

The remaining rules are less surprising. Rules (AL Var) and (AL Const) extend the cor-

responding type rules (Term Var) and (Term Const) of Table 3.2 on page 43 by adding the

transition relation Tres that simply states the absence of side-effects. In the precondition

of rule (AL Cond), the result specification A and transition relation T may be specialised

in the then and else branches. The rules (AL Sel) and (AL Upd) are also obvious exten-

sions of the corresponding type rules, stating absence of side-effects in the former and

describing the state change using Tupd in the latter rule. The rule (AL Inv) performs the

binding of the formal self parameter in A and T to the actual host object x on the logical

4.3. Abadi-Leino Logic 71

Table 4.4 Inference rules of Abadi-Leino logic

(AL Sub)
[Γ] ` A≺:A′ Γ ` a:A::T [Γ] ` A′ [Γ] ` T ′ `fo T → T ′

Γ ` a:A′::T ′

(AL Var)
Γ ` ok x:A in Γ

Γ ` x:A::Tres(x)

(AL Const)
Γ ` ok

Γ ` false:bool::Tres(false)

Γ ` ok

Γ ` true:bool::Tres(true)

(AL Cond)

A[true/x] ≡ At[true/x] and A[false/x] ≡ Af [false/x]
T[true/x] ≡ Tt[true/x] and T[false/x] ≡ Tf [false/x]

Γ ` x:bool::Tres(x) Γ ` a:At ::Tt Γ ` b:Af ::Tf

Γ ` if x then a else b:A::T

(AL Let)

Γ ` a:A′::T ′ Γ , x:A′ ` b:B::T ′′ [Γ] ` B [Γ] ` T
`fo T

′[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]
∧ T ′′[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)] → T

Γ ` let x = a in b:B::T

(AL Obj)

A ≡ [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J
Γ ` xi :Ai ::Tres(xi) ∀i ∈ I Γ , yj :A ` bj :Bj ::Tj ∀j ∈ J

Γ `
[

fi = xi , mj = ς(yj)bj
]

i∈I,j∈J :A::Tobj(fi=xi)i∈I

(AL Sel)
Γ ` x:[f:A]::Tres(x)

Γ ` x.f:A::Tres(selpre(x, f))

(AL Upd)

A ≡ [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J
Γ ` x:A::Tres(x) Γ ` y :Ak::Tres(y) k ∈ I

Γ ` x.fk :=y :A::Tupd(x, fk, y)

(AL Inv)
Γ ` x:[m:ς(y)A::T]::Tres(x)

Γ ` x.m:A[x/y]::T[x/y]

(AL Copy)

A ≡ [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J
Γ ` x:A::Tres(x)

Γ ` clonex:A::∃y.
∧

i∈I yi = selpre(x, fi) ∧ Tobj(fi = yi)i∈I

level. The cloning rule (AL Copy) states that the result satisfies the same object specifica-

tion as the cloned object; the transition relation describes the state change caused by the

allocation of the clone. Finally, note that the subsumption rule incorporates a weakening

of the transition relation from T to T ′ in addition to replacing A by a super specification

A′.

4.3.3 Proving the Factorial in Abadi-Leino Logic

As a demonstration of proofs in Abadi-Leino logic, the example of the factorial program

(4.2) on page 64 is considered again, this time in more detail. Thus let

a ≡











arg = 0,

fac = ς(y). if y.arg = 0 then 1

else let x=y.arg in y.arg:=x− 1;x× (y.fac)











A ≡
[

arg : int, fac : ς(y)int::T
]

72 Chapter 4. Abadi and Leino’s Logic of Objects and its Denotational Semantics

where T ≡ selpre(y, arg) ≥ 0 → result = selpre(y, arg)!. Besides the rules in Table 4.4 we

assume appropriate rules for reasoning about integer expressions. We proceed bottom-

up: An application of the rule (AL Obj),

` 0 : int::Tres(0)
y :A ` if y.arg=0 then 1 else let x=y.arg in y.arg:=x−1;x×(y.fac) : int::T

` a : A::Tobj(f = 0)

shows how a proof of ` a : A ::Tobj(arg = 0) reduces to two proof obligations of which the

first one can be immediately derived, by rule (AL Const). In order to simplify the second

one, corresponding to the method body of fac, we note that for

T ′ ≡ (e = (selpre(y, arg)=0)) → T ∧ (e ≠ (selpre(y, arg)=0))→ T

the equivalence `fo T
′ ↔ T implies, by an application of (AL Sub), that proving

y :A ` if y.arg=0 then 1 else let x=y.arg in y.arg:=x−1;x×(y.fac) : int::T ′

is sufficient. So rule (AL Cond) can be applied to obtain

y :A ` 1 : int::T ′[true/e] (4.5)

y :A ` let x=y.arg in y.arg:=x−1;x×(y.fac) : int::T ′[false/e] (4.6)

Validity of judgement (4.5) follows by rules (AL Const) and (AL Sub) by observing

`fo Tres(1) → T ′[true/e]

(which in fact depends on data type axioms such as (e=0) = true ↔ e = 0). Next we

observe

`fo (selpre(y, arg)>0→ result = selpre(y, arg)!) → T ′[false/e]

By (AL Sub) it is therefore enough to prove (4.6) with T ′[false/e] replaced by the transition

relation T ′′ ≡ selpre(y, arg)>0→ result = selpre(y, arg)!. By rule (AL Let) this splits into

y :A ` y.arg : int::T1 y :A, x:int ` y.arg:=x−1;x×(y.fac) : int::T2

y :A ` let x=y.arg in y.arg:=x−1;x×(y.fac) : int::T ′′
(4.7)

where

T1 ≡ Tres(selpre(y, arg))

T2 ≡ 0 < x ∧ x = selpre(y, arg) → result = x · (selpre(y, arg)−1)!

so that the implication

T1[selint/selpost, allocint/allocpost, x/result]∧ T2[selint/selpre, allocint/allocpre] → T ′′

is valid. The first premiss of (4.7) follows directly from (AL Var) and (AL Sel):

y :A ` y : A::Tres(y)

y :A ` y.arg : int::Tres(selpre(y, arg))

4.3. Abadi-Leino Logic 73

The second premiss of (4.7) follows by desugaring the sequential composition and apply-

ing rule (AL Let)

y :A, x:int ` y.arg := x−1 : []::T ′2 y :A, x:int ` x× (y.fac) : int::T ′′2
y :A, x:int ` y.arg:=x−1;x×(y.fac) : int::T2

(4.8)

where the transition relations T ′2 and T ′′2 are

T ′2 ≡ selpre(y, arg) = x → selpost(y, arg) = x− 1

T ′′2 ≡ 0 ≤ selpre(y, arg) ∧ selpre(y, arg) = x− 1 → result = x · (selpre(y, arg))!

Combined they imply T2:

(selpre(y, arg) = x → selint(y, arg) = x− 1) ∧

(0 ≤ selint(y, arg) ∧ selint(y, arg) = x− 1 → result = x · (selint(y, arg))!)

→ (0 < x ∧ x = selpre(y, arg) → result = x · (selpre(y, arg)−1)!)

Finally, the first premiss of (4.8) follows from (AL Upd) and a weakening step with rule

(AL Sub)

y :A, x:int ` y : A::Tres(y) y :A, x:int ` x− 1 : int::Tres(x−1)

y :A, x:int ` y.arg := x−1 : []::Tupd(y, arg, x−1)

y :A, x:int ` y.arg := x−1 : []::T ′2

The second one is more interesting, because of the recursive call. It is, however, not

difficult to prove since we can use the assumption y : A to obtain the necessary properties:

First note that by desugaring the expression x×(y.fac),

y :A, x:int ` x : int::Tres(x)

y :A, x:int ` y : A::Tres(y)

y :A, x:int ` y.fac : int::T

y :A, x:int ` x×(y.fac) : int::selpre(y, arg) ≥ 0 → result = x · (selpre(y, arg))!

from (AL Var) and (AL Inv). Hence, a further weakening step by (AL Sub) shows y :A, x:int `

x×(y.fac) : int::T ′′2 which concludes the derivation of a : A::Tobj(arg = 0).

This example makes clear that proof derivations by hand are rather tedious. Machine

support is highly desirable, and the work of Tang and Hofmann (2002) takes an important

step in this direction for Abadi and Leino’s logic. Some further elaborated examples can

be found in (Abadi and Leino 2004; Tang and Hofmann 2002).

4.3.4 Semantics of Specifications

Having recalled Abadi and Leino’s logic, we next give a denotational semantics of specifi-

cations. Informally, a transition relation T will denote a predicate relating an initial store

with a result value and the resulting store of a computation. In transition relations it is

possible to quantify over field names (for an example of this see the transition relations in

Table 4.3), and we write Env∗
def
= Var→fin (Val+F) when interpreting transition relations:

Jx ` T K : Env∗ → P(StVal × Val× StVal)

74 Chapter 4. Abadi and Leino’s Logic of Objects and its Denotational Semantics

Table 4.5 Semantics of expressions

Jx ` eK : Env∗ → StVal → Val → StVal ⇀ (Val+F)

Jx ` xKρσvσ ′ =







ρ(x) if x ∈ dom(ρ)

undefined otherwise

Jx ` fKρσvσ ′ = f

Jx ` resultKρσvσ ′ = v

Jx ` trueKρσvσ ′ = true

Jx ` falseKρσvσ ′ = false

Jx ` selpre(e0, e1)Kρσvσ ′ =















σ.l.f if Jx ` e0Kρσvσ ′ = l ∈ Loc defined

and Jx ` e1Kρσvσ ′ = f ∈ F defined

undefined otherwise

Jx ` selpost(e0, e1)Kρσvσ ′ =















σ ′.l.f if Jx ` e0Kρσvσ ′ = l ∈ Loc defined

and Jx ` e1Kρσvσ ′ = f ∈ F defined

undefined otherwise

Table 4.6 Semantics of transition relations

Jx ` TK : Env∗ → P(StVal × Val× StVal)

(σ , v,σ ′) ∈ Jx ` e0 = e1Kρ
def
⇐⇒







both Jx ` e0Kρσvσ ′ and Jx ` e1Kρσvσ ′ are defined

and equal, or both undefined

(σ , v,σ ′) ∈ Jx ` allocpre(e)Kρ
def
⇐⇒ Jx ` eKρσvσ ′↓ ∧ Jx ` eKρσvσ ′ ∈ dom(σ)

(σ , v,σ ′) ∈ Jx ` allocpost(e)Kρ
def
⇐⇒ Jx ` eKρσvσ ′↓ ∧ Jx ` eKρσvσ ′ ∈ dom(σ ′)

(σ , v,σ ′) ∈ Jx ` ¬TKρ def
⇐⇒ (σ , v,σ ′) ∉ Jx ` TKρ

(σ, v,σ ′) ∈ Jx ` T0 ∧ T1Kρ
def
⇐⇒ (σ , v,σ ′) ∈ Jx ` T0Kρ ∩ Jx ` T1Kρ

(σ, v,σ ′) ∈ Jx ` ∀x.TKρ def
⇐⇒ for all u ∈ Val]F . (σ , v,σ ′) ∈ Jx, x ` TKρ[x := u]

The ability of variables being bound to values as well as field names is related to the

distinction between program variables and auxiliary variables in Hoare logics, although

transition relations are used here in place of Hoare triples. In particular, allowing quan-

tification over locations and field names is necessary to express invariants and relate

pre- and post-execution stores, as exemplified by the relations in Table 4.3 (but see Re-

mark 4.3.2 below).

The definition of the semantics of expressions, Jx ` eK, requires some care since it may

be undefined, see Table 4.5. Once the semantics of expressions is settled, the semantics

of transition relations can be defined in a straightforward way; a few typical cases are

given in Table 4.6.

Note that even though expressions may be undefined (for example, because of refer-

ring to non-existent fields), the interpretation of transition relations is two-valued. Also

observe that the meaning of a transition relation x ` T without free variables does not

4.3. Abadi-Leino Logic 75

Table 4.7 Semantics of specifications

Jx ` AK : Env → P(Val× St)

Jx ` boolKρ def
= BVal× St

Jx ` [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈JKρ

def
=



























〈l, σ〉 ∈ Loc× St

(i) ∀i ∈ I. 〈σ.l.fi , σ〉 ∈ Jx ` AiKρ
(ii) ∀j ∈ J. if σ.l.mj(l, σ) = 〈v,σ ′〉

then 〈v,σ ′〉 ∈ Jx, yj ` BjKρ[yj := l]

and (πVal(σ), v,πVal(σ
′)) ∈ Jx, yj ` TjKρ[yj := l]



























depend on the environment. Therefore we may omit the environment and simply write

JT K for closed T .

Remark 4.3.2. We think it would be clearer to use a multi-sorted logic, with different quan-

tifiers ranging over locations, basic values and field names, resp., but decided to keep close

to the original presentation of Abadi and Leino’s logic.

An object specification x ` A gives rise to a predicate that depends on values for the

free variables. At first glance, this is reminiscent of dependent types, such as system λP

(for instance, see Barendregt 1992).

However, since the underlying logic in the transition relations is untyped, the types of

the free variables are not relevant.The interpretation of object specifications x ` A,

Jx ` AK : Env → P(Val× St)

is given in Table 4.7.

We begin with a simple observation about the interpretation which will be used to

obtain soundness of the proof system in the sense of “well-typed (or rather, verified)

programs do not raise error”.

Lemma 4.3.3. For all specifications x ` A, stores σ ∈ St and environments ρ ∈ Env,

〈error, σ〉 ∉ Jx ` AKρ

Proof. Immediate from the definition of Jx ` AKρ.

The following results establish that the denotation of a specification x ` A is down-

wards closed and admissible.

Lemma 4.3.4 (Downward Closure). For all specifications x ` A, stores σ,σ ′ ∈ St, values

v ∈ Val and environments ρ ∈ Env,

σ ′ v σ ∧ 〈v, σ〉 ∈ Jx ` AKρ =⇒ 〈v, σ ′〉 ∈ Jx ` AKρ

76 Chapter 4. Abadi and Leino’s Logic of Objects and its Denotational Semantics

Proof. The proof proceeds by induction on A. In the case where A is bool this is immedi-

ate. So suppose A is a specification of the form x ` [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J and let

〈l, σ〉 ∈ Jx ` AKρ.

By definition of σ ′ v σ we have σ ′.l.fi = σ.l.fi for all i ∈ I, which by induction hy-

pothesis entails 〈σ ′.l.fi , σ ′〉 ∈ Jx ` AiKρ. Next, σ ′.l.mj v σ.l.mj for all j ∈ J, again

from σ ′ v σ . Thus, if σ ′.l.mj(l, σ
′) ↓ then monotonicity of σ ′.l.mj and the assumption

〈l, σ〉 ∈ Jx ` AKρ yield σ.l.mj(l, σ) = 〈v, σ2〉 for some 〈v, σ2〉 ∈ Jx, yj ` BjKρ[yj := l]

such that 〈v, σ1〉 v 〈v, σ2〉 and (πVal(σ), v,πVal(σ2)) ∈ Jx, yj ` TjKρ[yj := l], where

σ ′.l.mj(l, σ
′) = 〈v, σ1〉. Induction yields 〈v, σ1〉 ∈ Jx, yj ` BjKρ[yj := l], and the con-

dition (πVal(σ
′), v, πVal(σ1)) ∈ Jx, yj ` TjKρ[yj := l] follows since πVal(σ

′) = πVal(σ)

and πVal(σ1) = πVal(σ2). Hence we have shown that 〈l, σ ′〉 ∈ Jx ` AiKρ as required.

Lemma 4.3.5 (Admissibility). For all specifications x ` A, stores σ0 v σ1 v . . . in St, values

v ∈ Val and environments ρ ∈ Env,

∀n ∈ N. 〈v, σn〉 ∈ Jx ` AKρ =⇒ 〈v, σ〉 ∈ Jx ` AKρ

where σ
def
=
⊔

n σn.

Proof. The proof is by an induction on A. In the case where A is bool there is nothing to

prove since Jx ` boolK does not depend on the store. Now assume that x ` A is of the

form x ` [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J and let σ0 v σ1 v . . . be a countable chain such

that 〈l, σn〉 ∈ Jx ` AKρ for all n ∈ N.

Let σ =
⊔

n σn, then from σ.l.fi = σn.l.fi for all n and induction hypothesis we ob-

tain 〈σ.l.fi , σ〉 ∈ Jx ` AiKρ, for all i ∈ I. Next, suppose σ.l.mj(l, σ)↓, i.e., σ.l.mj(l, σ) =

〈v, σ ′〉 for some v ∈ Val and σ ′ ∈ St. By continuity, σn.l.mj(l, σn)↓ for all sufficiently large

n ∈ N, i.e., σn.l.mj(l, σn) = 〈v, σ ′n〉. By assumption, 〈v, σ ′n〉 v 〈v, σ
′
n+1〉 v . . . is a count-

able chain in Jx, yj ` BjKρ[yj := l] and (πVal(σn), v, πVal(σ
′
n)) ∈ Jx, yj ` TjKρ[yj := l] for

all sufficiently large n. By induction, the former yields 〈v, σ ′〉 ∈ Jx, yj ` BjKρ[yj := l].

Moreover, since πVal(σ) = πVal(σn) = πVal(σn+1) = . . . and πVal(σ
′) = πVal(σ

′
n) =

πVal(σ
′
n+1) = . . . we also find (πVal(σ), v,πVal(σ

′)) ∈ Jx, yj ` TjKρ[yj := l]. This con-

cludes the proof that indeed 〈l, σ〉 ∈ Jx ` AKρ.

Lemma 4.3.6 (Subspecification). Suppose x ` A≺:B. Then, for all environments ρ ∈ Env,

Jx ` AKρ ⊆ Jx ` BKρ

Proof. This follows by induction on the derivation of x ` A≺:B. The cases for reflexivity

and transitivity are immediate. For the case where x ` A≺:B has been derived by (Subspec

Obj), both A and B are object specifications, and we need a similar lemma for transition

relations:

If x ` T and x ` T ′ then

`fo T → T ′ =⇒ Jx ` T Kρ ⊆ Jx ` T ′Kρ (4.9)

for all ρ ∈ Env∗. However, (4.9) follows immediately since `fo holds in all models of first-

order logic. The result then follows from the induction hypothesis and (4.9) by definition

of the semantics (Table 4.7).

Chapter 5

Soundness of Abadi and Leino’s Logic

In this chapter we prove soundness of Abadi and Leino’s logic with respect to the deno-

tational semantics. In Section 5.1 we argue the necessity of introducing the concept of

store specifications. After illustrating that the “obvious” definition of their semantics can-

not be established using standard techniques (Section 5.1.2), we use the domain-theoretic

techniques from Chapter 2 to establish the well-definedness of an alternative semantics

in Section 5.1.3. Section 5.2 finally presents the soundness proof. After establishing some

preliminary results, the main lemma is proved in Section 5.2.2; soundness of the logic

follows easily from this.

5.1 Store Specifications

Object specifications are not sufficient. This is a phenomenon of languages with higher-

order store well known from subject reduction and type soundness proofs in both opera-

tional and denotational settings (for instance, see (Abadi and Cardelli 1996, Chap. 11) and

the references therein, and (Levy 2002), respectively). Since statements may call subpro-

grams residing in the store, the store has to be checked as well. However, the store may

contain loops and therefore induction on the reachable part of the store is unavailable.

The standard remedy – also used in (Abadi and Leino 2004) – is to relativise the typing

judgement (here: “specification judgement”) such that it only needs to hold for well-typed

(here: “verified”) stores. In other words, judgements are interpreted with respect to store

specifications. A store specification Σ assigns a specification to each location in a store:

Σ ≡ l1:A1, . . . , ln:An

When an object is created, the specification assigned to it at the time of creation is in-

cluded in the store specification, leading to store specification extensions. In this sense,

store specifications are a dynamic concept.

In this section we will interpret such store specifications using the techniques from

previous work of Reus and Streicher (2004). Since the denotation of a store specification

will rely on mixed-variant recursion, we were not able to define a semantic notion of

78 Chapter 5. Soundness of Abadi and Leino’s Logic

subspecification for stores. However, the logic of Abadi and Leino makes essential use of

subspecifications.

We get around this problem by only using a subset relationship on denotations of ob-

ject specifications. In object specifications there is no contravariant occurrence of store,

as the semantics of objects is with respect to one fixed store (see Table 4.7).

We are restricted by the logic’s requirement that verified statements never break the

validity of store specifications. Suppose y denotes an object residing in a store σ that

satisfies a specification B. For a field update σ.l.f := y to preserve a specification l : A

where A≺: [f : B], the location l must be in the set

{l ∈ Loc | Σ.l ≡ A′ ∧ ` A′≺:A} (5.1)

which ensures that A and A′ have equal f components B. Since the semantic interpre-

tation of the subspecification relation as set containment cannot reflect this invariance,

preservation can not be guaranteed for locations in the (semantically more appealingly

defined) set

{l ∈ dom(σ) | 〈l, σ〉 ∈ JAK} (5.2)

Therefore we were forced to use the former set (5.1) for the interpretation of A in the se-

mantics of store specifications. Unfortunately this means we still rely on the (synactically

defined) notion of subspecification.

5.1.1 Result Specifications, Store Specifications and a Tentative Semantics

A store specification Σ assigns closed specifications ` A to (a finite set of) locations:

Definition 5.1.1 (Store Specifications). A record Σ ∈ RecLoc(Spec) is a store specification if

for all l ∈ dom(Σ), Σ.l = A is a closed object specification. Let StSpec denote the set of store

specifications.

Because we focus on closed specifications in the following, we need a way to turn

the components Bj of a specification [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J (which in general will

depend on the self parameter yj) into closed specifications. We do this by extending the

syntax of expressions with locations: There is one symbol l for each l ∈ Loc, and define

Jx ` lKρ def
= l (see Table 4.6). Similarly, we set true

def
= true and false

def
= false for the

elements of BVal. When clear from context we will simply write v in place of v.

Further we write A[ρ/x] (and A[ρ/Γ], respectively) for the simultaneous substitution

of all x ∈ x (x ∈ [Γ], respectively) in A by ρ(x). Then we can prove the following substitu-

tion lemma.

Lemma 5.1.2 (Substitution). Let ρ ∈ Env∗ be an environment such that x ⊆ dom(ρ).

Suppose x ` T is a transition relation and x ` A and x ` A′ are specifications. Then the

following hold:

• ` T[ρ/x] and J` T[ρ/x]K = Jx ` T Kρ

• ` A[ρ/x] and J` A[ρ/x]K = Jx ` AKρ

5.1. Store Specifications 79

• if x ` A≺:A′ then ` A[ρ/x]≺:A′[ρ/x]

Proof. The first part is by induction on T , the second by induction on A and the last by

induction on the derivation of x ` A≺:A′.

Definition 5.1.3 (Store Specification Extension). Let Σ,Σ′ ∈ StSpec be store specifications.

Σ
′ extends Σ, written

Σ
′ å Σ,

if dom(Σ) ⊆ dom(Σ′) and Σ.l ≡ Σ
′.l for all l ∈ dom(Σ).

We can then abstract away from particular stores σ ∈ St, and interpret closed result

specifications ` A with respect to such store specifications:

Definition 5.1.4 (Object Specifications). Suppose Σ ∈ StSpec is a store specification. For

closed ` A let ‖A‖Σ ⊆ Val be defined by

‖bool‖Σ
def
= BVal

‖B‖Σ
def
= {l ∈ Loc | ` Σ.l≺:B}

where B ≡ [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J is an object specification. We extend this definition

to specification contexts ‖Γ‖Σ ⊆ Env in the natural way:

ρ ∈ ‖�‖Σ
def
⇐⇒ always

ρ ∈ ‖Γ , x:A‖Σ
def
⇐⇒ ρ ∈ ‖Γ‖Σ ∧ ρ(x) ∈ ‖A[ρ/Γ]‖Σ

Remark 5.1.5. Note that StSpec is partially ordered by å. Further, observe that for all A,

Σ
′ å Σ =⇒ ‖A‖Σ ⊆ ‖A‖Σ′

Thus, ‖A‖ : StSpec -→Adm(Val) is a functor from the partial order category StSpec to the

category of (trivially admissible) subsets of Val ordered by set inclusion. This observation

provides a link to the possible worlds model of types due to Levy (2004), which is used in

Chapters 8 and 9.

We obtain the following lemma about context extensions.

Lemma 5.1.6 (Context Extension). If ρ ∈ ‖Γ‖Σ and Γ , x:A ` ok and v ∈ ‖A[ρ/Γ‖Σ then

ρ[x := v] ∈ ‖Γ , x:A‖Σ

Proof. The result follows immediately from the definition once we show ρ[x := v] ∈ ‖Γ‖Σ.

This can be seen to hold since x ∉ dom(Γ) by Γ , x:A ` ok, hence for all y :B in Γ we know

that x ∉ fv(B) and we must have B[ρ[x := v]/Γ] ≡ B[ρ/Γ].

In light of the object introduction rule (AL Obj), we would like to interpret store speci-

fications as predicates over stores, as follows. LetR
def
= P(St)StSpec denote the collection of

predicates on St, indexed by store specifications, and define a functional Φ :Rop×R →R

80 Chapter 5. Soundness of Abadi and Leino’s Logic

Table 5.1 Store specifications, first (and incorrect) attempt

σ ∈ Φ(Y ,X)Σ
def
⇐⇒ ∀l ∈ dom(Σ) where Σ.l ≡ [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J :

(F) ∀i ∈ I. σ .l.fi ∈ ‖Ai‖Σ; and

(M) ∀j ∈ J. ∀Σ′ å Σ ∀σ ′, σ ′′ ∈ St ∀l′ ∈ Loc ∀v ∈ Val.

l′ ∈ ‖Σ.l‖Σ′ ∧ σ
′ ∈ YΣ′ ∧ σ.l.mj(l

′, σ ′) = 〈v,σ ′′〉 =⇒

(M1) (πVal(σ
′), v,πVal(σ

′′)) ∈ JTj[l′/yj]K and

(M2) ∃Σ′′ ∈ StSpec. Σ′′ å Σ′ ∧ σ ′′ ∈ XΣ′′ and

(M3) v ∈
∥

∥Bj[l
′/yj]

∥

∥

Σ′′

by the equations in Table 5.1. We wish to set JΣK def
= fix(Φ)Σ to obtain the semantics of Σ

as a predicate on St.

The universal quantification over extensions Σ′ of Σ in (M) accounts for the specifi-

cations of objects allocated between time of definition and time of call of methods. The

existential quantification over extensions Σ′′ of Σ in (M2) and (M3) provides for objects

allocated by the method. In particular, since the result of a method call may be a freshly

allocated object it is not sufficient to simply use Σ′ in (M2) and (M3). This semantic struc-

ture also appears in possible world models for other languages with dynamic allocation,

for instance (Levy 2002; Levy 2004; Reddy and Yang 2004; Stark 1998).

Unfortunately, there is a problem with this “definition” of JΣK as fix(Φ)Σ, which we

discuss next.

5.1.2 On the Existence of Store Specifications

The contravariant occurrence of Y in case (M) of the “definition” of Φ above is forced by

the premise of the object construction rule in the Abadi-Leino logic. It states that, in order

to prove that specification A holds for a new object, one can assume that the self object

in methods already fulfils the specification A. As illustrated with the adequacy proof in

Chapter 3, it is this contravariance, in turn, that calls for some advanced domain theory

to show that the fixed point of Φ actually exists.

Unfortunately, the usual techniques (Pitts 1996; Reus and Streicher 2004) for estab-

lishing the existence of such predicates involving a mixed-variance recursion (suitably

extended to families of predicates as summarised in Chapter 2) do not apply: They re-

quire the functional Φ of the above recursion to map admissible predicates to admissible

predicates. Due to the existential quantification in (M2) and (M3), ranging over extensions

of the store specification Σ′, this property turns out to fail in this instance.

To see the impossibility of defining JΣK this way, consider the following example. Let

Σ ∈ StSpec be

Σ
def
= l0 : [m0 : ς(x)[m1 : ς(y)[]::True]::True]

which, informally, describes a store with a single object at location l0 containing a method

5.1. Store Specifications 81

m0. In case a call of this method converges it returns an object satisfying [m1 : ς(y)[]::True]

(which is not much of a restriction). However, this result object has to be allocated in the

store, and so a proper extension of the original store specification Σ has to be found.

Next, for i ∈ N let Ai be the object specification defined inductively by

A0
def
= [m1 : ς(y)[]::False]

Ai+1
def
= [m1 : ς(y)Ai ::True]

In particular, this means that the method m1 of objects satisfying A0 must diverge. The

method m1 of an object satisfying Ai returns an object satisfying Ai−1. Hence, for such

objects x, it is possible to have method calls x.m1.m1 . . .m1 at most i times, of which the

i-th call must necessarily diverge (the others may or may not terminate).

The example below uses the fact that we can construct an ascending chain of objects

for which the first i − 1 calls indeed terminate, and therefore do not satisfy Ai−1. Then,

the limit of this chain is an object x for which an arbitrary number of calls x.m1.m1 . . .m1

terminates, and which therefore does not satisfy any of the Ai : Set Σ′′i
def
= Σ, l : Ai and

let σ ∈ JΣK denote some store satisfying Σ according to the tentative definition above.

Moreover, define

σi
def
= {|l0 = {|m0 = λ_.〈l, σ + σ ′′i 〉|}|}

where σ ′′0
def
= {|l = {|m1 = λ_.⊥|}|} and σ ′′i+1

def
= {|l = {|m1 = λ_.〈l, σ + σ ′′i 〉|}|}, and let

σ
def
=
⊔

i σi . Finally, define (indexed) relations X,Y ∈ R by

X
Σ̂

def
=







{σ + σ ′′i } if ∃i ∈ N. Σ̂ ≡ Σ′′i

� otherwise

Y
Σ̂

def
=







{σ} if Σ̂ ≡ Σ

� otherwise

By construction, both X and Y are admissible in every component Σ̂. By induction one

obtains σ ′′0 v σ
′′
1 v . . . , therefore σ0 v σ1 v . . . in Φ(Y ,X)Σ ⊆ St. Hence we must show

σ ∈ Φ(Y ,X)Σ. But this is not the case, since it would entail, by (M2) and

σ.l0.m0(l, σ) =
⊔

i σi.l0.m0(l, σ) = 〈l, σ +
⊔

i σ
′′
i 〉

that there exists Σ′′ å Σ such that σ +
⊔

i σ
′′
i ∈ XΣ′′ . Clearly this does not hold: σ +

⊔

i σ
′′
i

is strictly above every σ + σ ′′i and therefore not in any of the XΣ′′i . Hence, by choice of X,

there is no store specification Σ′′ å Σ such that σ + σ ′′i ∈ XΣ′′ . This shows that Φ(Y ,X)Σ

is not necessarily admissible, even if X (and also Y) is.

More abstractly, this (counter-) example relies on the fact that we are dealing with

families X = (Xw)w∈W of predicates. Due to the existential quantification over the indices

w ∈ W (store specifications Σ′′ ∈ StSpec in the case of Table 5.1), it is possible to pick

different wi for each element of an ω-chain f0 v f1 v f2 v . . . so that fi(x) ∈ Xwi . Thus,

in general there need not be w ∈W such that f (x) ∈ Xw holds for the lub f =
⊔

i fi , even

under the assumption that each Xw is closed under taking least upper bounds.

82 Chapter 5. Soundness of Abadi and Leino’s Logic

5.1.3 A Refined Semantics of Store Specifications

We refine the definition of store predicates by replacing the existential quantifier in (M2)

of the functional Φ on page 80 by a choice function, as follows: We call the elements of

the recursively defined domain

φ ∈ RSF = RecLoc(RecM(Loc× St× RSF× StSpec⇀ StSpec× RSF)) (5.3)

(records of) choice functions, or Skolem Functions. The intuition is that, given a store

σ ∈ JΣK and some extension Σ′ å Σ, if σ ′ ∈ JΣ′K with choice function φ′ and the method

invocation σ.l.m(l′, σ ′) terminates with a store σ ′′, then φ.l.m(l′, σ ′, φ′,Σ′) = 〈Σ′′, φ′′〉

yields a store specification Σ
′′ å Σ

′ such that σ ′′ ∈ JΣ′′K and φ′′ is a choice function

for the extension Σ′′ of Σ. This is again an abstraction of the actual store σ , this time

abstracting the dynamic effects of methods with respect to allocation, on the level of

store specifications. Note that the argument store σ ′ is needed in general to determine

the resulting extension of the specification, for instance since allocation behaviour may

depend on the actual values of fields.

RSF is obtained as minimal invariant of a locally continuous bifunctor FRSF(St,−,−) on

pCpo, where

FRSF(R, S, T)
def
= RecLoc(RecM(Loc× R × S × StSpec ⇀ StSpec× T)) (5.4)

We use the domain RSF of choice functions explicitly in the interpretation of store spec-

ifications below. This has the effect of constraining the existential quantifier to work

uniformly on the elements of increasing chains, thereby precluding the counter-example

to admissibility of the previous subsection.

Definition 5.1.7 (Store Predicate, Revisited). Let S
def
= (Adm(St× RSF))StSpec denote the

collection of families of admissible subsets of St × RSF, indexed by store specifications. We

define a functional Φ : Sop × S → S in Table 5.2. We write σ ∈ JΣK if there is some φ ∈ RSF

such that 〈σ,φ〉 ∈ fix(Φ)Σ.

Lemma 5.1.8. Functional Φ, defined in Table 5.2, has a unique fixed point, X
def
= fix(Φ) ∈ S,

such that X = Φ(X,X).

Of course we want to use the machinery of Chapter 2 to prove Lemma 5.1.8. Thus we

define a relational structure R next: For each pair of cpos 〈D,E〉 let

R(D, E)
def
= (Adm(D × E))StSpec

be the chain-closed subsets of the cpo D × E, indexed by store specifications Σ ∈ StSpec.

Further, for X ∈ R(D,D′), Y ∈ R(E, E′) and partial continuous maps e : D ⇀ E and

e′ : D′ ⇀ E′, let

〈e, e′〉 : X ⊂ Y
def
⇐⇒ ∀Σ ∈ StSpec ∀σ ∈ D ∀φ ∈ D′.

〈σ,φ〉 ∈ XΣ ∧ (e(σ)↓ ∨ e
′(φ)↓) =⇒ 〈e(σ), e′(φ)〉 ∈ YΣ

Thus, in the case where D = St = E and D′ = RSF = E′ the statement e : X ⊂ X′ means that

e maps pairs of stores and choice functions that are in XΣ to pairs of stores and choice

functions that are in the corresponding component X′
Σ

of X′.

5.1. Store Specifications 83

Table 5.2 Store predicate

〈σ,φ〉 ∈ Φ(Y ,X)Σ
def
⇐⇒ (Dom) dom(Σ) = dom(φ) ∧

∀l ∈ dom(Σ).dom(Σ.l) = [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J =⇒

dom(φ.l) = {mj}j∈J ; and

∀l ∈ dom(Σ) where Σ.l ≡ [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J :

(F) ∀i ∈ I. σ .l.fi ∈ ‖Ai‖Σ; and

(M) ∀j ∈ J. ∀Σ′ å Σ ∀σ ′, σ ′′ ∈ St ∀φ′ ∈ RSF ∀l′ ∈ Loc ∀v ∈ Val.

l′ ∈ ‖Σ.l‖Σ′ ∧ 〈σ
′,φ′〉 ∈ YΣ′ ∧ σ.l.mj(l

′, σ ′) = 〈v,σ ′′〉 =⇒

∃Σ′′ å Σ′ ∃φ′′ ∈ RSF. φ.l.mj(l
′, σ ′,φ′,Σ′) = (Σ′′,φ′′) ∧

(M1) (πVal(σ
′), v,πVal(σ

′′)) ∈ JTj[l′/yj]K
(M2) 〈σ ′′,φ′′〉 ∈ XΣ′′

(M3) v ∈
∥

∥Bj[l
′/yj]

∥

∥

Σ′′

Lemma 5.1.9. R defines a normal relational structure on the bilimit-compact product cat-

egory pCpo × pCpo. Inverse images are given by

(f∗S)Σ = {〈σ,φ〉 ∈ D × E | f1(σ)↓ ∨ f2(φ)↓ =⇒ 〈f1(σ), f2(φ)〉 ∈ SΣ}

for all morphisms f = 〈f1, f2〉 with f1 : D ⇀ D′ and f2 : E ⇀ E′ and S ∈ R(D′, E′);

andR possesses intersections given componentwise by set-theoretic intersection. Moreover,

Radm = R.

Next, we observe that Φ indeed maps admissible predicates over St×RSF to admissible

predicates.

Lemma 5.1.10. Let X,Y ∈ R(St,RSF). Then

Φ(Y ,X)Σ ∈ Adm(FStore(St, St) × FRSF(St,RSF,RSF))

for all Σ ∈ StSpec.

Proof. To show closure under taking least upper bounds, suppose 〈σ0, φ0〉 v 〈σ1, φ1〉 v

. . . is a chain in Φ(Y ,X)Σ. Thus, σ0 v σ1 v . . . is a chain in FStore(St, St) and φ0 v φ1 v . . .

is a chain in FRSF(St,RSF,RSF). Let σ
def
=
⊔

kσk andφ
def
=
⊔

kφk (so 〈σ,φ〉 =
⊔

k〈σk, φk〉), we

show 〈σ,φ〉 ∈ Φ(Y ,X)Σ under the assumption that XΣ′ is admissible for all Σ′ ∈ StSpec.

Clearly the first condition (Dom) of the definition in Table 5.2, concerning the domains,

is satisfied since dom(φ) = dom(φk) for all k ∈ N. As for the remaining conditions,

suppose l ∈ dom(Σ) with Σ.l ≡ [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J . Since, for all i ∈ I,

σ0.l.fi = σ1.l.fi = . . . = σ.l.fi

we obtain σ.l.fi ∈ ‖Ai‖Σ by assumption 〈σ0, φ0〉 ∈ Φ(Y ,X)Σ.

Next, suppose Σ′ å Σ, 〈σ ′, φ′〉 ∈ YΣ′ , l′ ∈ ‖Σ.l‖Σ′ , v ∈ Val and σ ′′ ∈ St such that

σ.l.mj(l
′, σ ′) = 〈v, σ ′′〉. By definition of σ as

⊔

kσk and continuity, for all sufficiently

84 Chapter 5. Soundness of Abadi and Leino’s Logic

large kwe must have σk.l.mj(l
′, σ ′)↓. That is, there are σ ′′k ∈ St such that σk.l.mj(l

′, σ ′) =

〈v, σ ′′k 〉 for sufficiently large k, and

〈v, σ ′′〉 =
⊔

kσk.l.mj(σ
′) =

⊔

k〈v, σ
′′
k 〉

By assumption 〈σ0, φ0〉 v 〈σ1, φ1〉 v . . . in Φ(Y ,X)Σ, for all sufficiently large k there are

φ′′k ∈ RSF and Σ′′k ∈ StSpec such that

φk.l.mj(l
′, σ ′, φ′,Σ′) = 〈Σ′′k , φ

′′
k 〉

with Σ′′k å Σ
′ and

(M1’) (πVal(σ
′), v, πVal(σ

′′
k)) ∈ JTj[l′/yj]K;

(M2’) 〈σ ′′k , φ
′′
k 〉 ∈ XΣ′′k ; and

(M3’) v ∈
∥

∥

∥Bj[l
′/yj]

∥

∥

∥

Σ
′′
k

Since πVal(σ
′′
k) = πVal(σ

′′) by (3.7), (M1) follows:

(M1) (πVal(σ
′), v, πVal(σ

′′)) ∈ JTj[l′/yj]K

The discrete order on Spec entails Σ′′k ≡ Σ
′′
k+1 ≡ . . . , hence,φ(l′, σ ′, φ′,Σ′) =

⊔

k〈Σ
′′
k , φ

′′
k 〉 =

〈Σ′′,
⊔

kφ
′′
k 〉 with Σ′′ ≡ Σ′′k ≡ Σ

′′
k+1 ≡ Thus (M3’) entails (M3):

(M3) v ∈
∥

∥

∥Bj[l
′/yj]

∥

∥

∥

Σ′′

By assumption, XΣ′′ is an admissible subset of St × RSF. Therefore also condition (M2)

holds as required:

(M2) 〈σ ′′, φ′′〉 =
⊔

k〈σ
′′
k , φ

′′
k 〉 ∈ XΣ′′

since (〈σ ′′, φ′′〉)k∈N is a countable chain in XΣ′′ .

Next we consider the locally continuous functor

FSt,RSF(R, S) : (pCpo × pCpo)op × (pCpo × pCpo) -→ pCpo × pCpo

defined as

FSt,RSF(D, E)
def
= 〈FStore(Π1(D),Π1(E)), FRSF(Π1(D),Π2(D),Π2(E))〉

where Πi : pCpo × pCpo -→ pCpo is the projection functor to the i-th component. Note

that the pair 〈St,RSF〉 is the minimal invariant for this functor. In the following, we write

Fi for the functor Πi ◦ FSt,RSF.

We show that Φ determines an admissible action of this functor, in the following sense:

Lemma 5.1.11. Let X,X′, Y , Y ′ ∈ R(St,RSF) and suppose e v id〈St,RSF〉. Then,

e : X ⊂ X′ ∧ e : Y ′ ⊂ Y =⇒ FSt,RSF(e, e) : Φ(Y ,X) ⊂ Φ(Y ′, X′) (♣)

5.1. Store Specifications 85

Proof. This follows from a similar line of reasoning as in (Reus and Streicher 2004): Sup-

pose e = 〈e1, e2〉 v id〈St,RSF〉 such that

e : X ⊂ X′ ∧ e : Y ′ ⊂ Y (5.5)

for some X,Y ,X′, Y ′ ∈ R(St,RSF). Assume 〈σ,φ〉 ∈ Φ(Y ,X)Σ. To prove the lemma we

have to show FSt,RSF(e, e)(σ ,φ) ∈ Φ(Y ′, X′)Σ. Recall that from the action of the functor on

morphisms,

F1(e, e)(σ).l.f = FSt(e1, e1)(σ).l.f = σ.l.f

F1(e, e)(σ).l.m(l
′, σ ′) = FSt(e1, e1)(σ).l.m(l

′, σ ′)

= (idVal × e1)(σ .l.m(l
′, e1(σ

′)))

F2(e, e)(φ).l.m(l
′, σ ′, φ′,Σ′) = FRSF(e1, e2, e2)(φ).l.m(l

′, σ ′, φ′,Σ′)

= (idStSpec × e2)(φ.l.m(l
′, e1(σ

′), e2(φ
′),Σ′))

(5.6)

for all f ∈ F and m ∈M. In particular, condition (Dom) of Definition 5.1.7 is satisfied for

FSt,RSF(e, e)(σ ,φ).

To show the remaining conditions let l ∈ dom(Σ), and [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J ≡

Σ.l. From 〈σ,φ〉 ∈ Φ(Y ,X)Σ and (5.6) we immediately obtain

(F) FSt(e1, e1)(σ).l.fi ∈ ‖Ai‖Σ ∀i ∈ I

Now we check conditions (M1)–(M3) of Definition 5.1.7. Let j ∈ J. Suppose Σ′ å Σ, φ′ ∈

RSF, l′ ∈ Loc and σ ′ ∈ St with 〈σ ′, φ′〉 ∈ Y ′
Σ′ and such that FSt(e1, e1)(σ).l.mj(l

′, σ ′)↓. By

(5.6) we thus know that

FSt(e1, e1)(σ).l.mj(l
′, σ ′) = 〈v, e1(σ

′′)〉

where 〈v, σ ′′〉
def
= σ.l.mj(l

′, e1(σ
′))

for v ∈ Val and σ ′′ ∈ St. By assumption (5.5), assumption 〈σ ′, φ′〉 ∈ Y ′Σ′ shows e(σ ′, φ′) =

〈e1(σ
′), e2(φ

′)〉 ∈ YΣ′ . Together with the assumption 〈σ,φ〉 ∈ Φ(Y ,X)Σ and (5.6) this en-

tails

FRSF(e1, e2, e2)(φ).l.mj(l
′, σ ′, φ′,Σ′) = 〈Σ′′, e2(φ

′′)〉

where 〈Σ′′, φ′′〉
def
= φ.l.mj(l

′, e1(σ
′), e2(φ

′),Σ′)

by definition of Φ; where φ′′ ∈ RSF and Σ′′ å Σ′ satisfy

(M1’) (πVal(e1(σ
′)), v, πVal(σ

′′)) ∈ JT[l′/yj]K
(M2’) 〈σ ′′, φ′′〉 ∈ XΣ′′

(M3) v ∈
∥

∥

∥Bj[l
′/yj]

∥

∥

∥

Σ′′

Since e v id〈St,RSF〉 we know e1(σ
′′) v σ ′′, and in particular πVal(e1(σ

′′)) = πVal(σ
′′).

Similarly, since e1(σ
′) v σ ′ we have πVal(e1(σ

′)) = πVal(σ
′). Hence, (M1’) entails

(M1) (πVal(σ
′), v, πVal(e1(σ

′′))) ∈ JT[l/yj]K

86 Chapter 5. Soundness of Abadi and Leino’s Logic

Finally, assumption (5.5) and (M2’) give 〈e1(σ
′′), e2(φ

′′)〉 ∈ X′Σ′′ which shows (M2), and we

have proved (♣).

Note that it is necessary that the predicates denoting transition specifications are

upward-closed in the pre-execution store and downward-closed in the post-execution

store. This holds in Abadi-Leino logic as transition specifications are only defined on

the flat part of the store; if they referred to the method part, (♣) could not necessarily

be shown (unless one finds an appropriate way to restrict the reference to methods in

transitions specifications; see Reus and Streicher 2004).

Proof of Lemma 5.1.8. By Lemma 5.1.9,R is a relational structure on the bilimit-compact

category pCpo × pCpo with inverse images and intersections. Lemmas 5.1.10 and 5.1.11

show that Theorem 2.5.3 is applicable which proves the existence of the invariant R-

relation X for FSt,RSF with respect to the action Φ. In particular, X = Φ(X,X) holds by

definition of the invariant R-relation

Let δSt(e) = FStore(e, e) and define maps δnRSF : RSF⇀ RSF for all n ∈ N, by δ0
RSF = ⊥ and

δnRSF(φ).l.m(l
′, σ ′, φ′,Σ′) = (id× δn−1

RSF)(φ.l.m(l
′, δn−1

St (⊥)(σ
′), δn−1

RSF (φ),Σ
′))

for n > 0. In particular, δnRSF(φ) v φ, for all n ∈ N and all φ ∈ RSF. We note the

following property of the invariant relation fix(Φ), which will be essential in the proof of

Lemma 5.2.1 below.

Lemma 5.1.12 (Closure under projections). Let X
def
= fix(Φ) ∈ R(St,RSF) and assume

〈σ,φ〉 ∈ XΣ. Then

δnSt(⊥)(σ)↓ =⇒ δnRSF(φ)↓ ∧ 〈δ
n
St(⊥)(σ), δ

n
RSF(φ)〉 ∈ XΣ

for all n ∈ N. In particular, if σ ∈ JΣK then δnSt(⊥)(σ) ∈ JΣK, for all sufficiently large n.

Proof. The proof is by induction on n. We observe that δnSt(⊥)(σ)↑ if and only if δnRSF(φ)↑

if and only if n = 0, hence there is nothing to show in the case n = 0. So assume n > 0

and note that by the above observation both δnSt(⊥)(σ) ↓ and δnRSF(φ) ↓ in this case. We

show that 〈δnSt(⊥)(σ), δ
n
RSF(φ)〉 ∈ XΣ.

The conditions (Dom) obviously hold, since by assumption 〈σ,φ〉 ∈ XΣ and δnRSF(φ) v

φ entails dom(δnRSF(φ)) = dom(φ) and dom(δnRSF(φ).l) = dom(φ.l) for all l ∈ dom(Σ).

Let l ∈ dom(Σ) and suppose Σ.l is [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J . Since δnSt(⊥)(σ) v

σ implies δnSt(⊥)(σ).l.fi = σ.l.fi for all i ∈ I, condition (F) is satisfied. So let j ∈

J, Σ′ å Σ, l′ ∈ ‖Σ.l‖Σ′ and 〈σ ′, φ′〉 ∈ XΣ′ , and suppose δnSt(⊥)(σ).l.mj(l
′, σ ′) ↓, i.e.,

δnSt(⊥)(σ).l.mj(l
′, σ ′) = 〈v, σ ′′〉 for some v and σ ′′. By definition of δSt there exists σ̂

with σ.l.mj(l
′, δn−1

St (⊥)(σ ′)) = 〈v, σ̂〉 and σ ′′ = δn−1
St (⊥)(σ̂). In particular, δn−1

St (⊥)(σ ′)↓

so that the induction hypothesis yields δn−1
RSF (φ

′)↓ and 〈δn−1
St (⊥)(σ ′), δn−1

RSF (φ
′)〉 ∈ XΣ′ . By

〈σ,φ〉 ∈ XΣ there exist Σ′′ å Σ′ and φ̂ such that φ.l.mj(l
′, δn−1

St (⊥)(σ
′), δn−1

RSF (φ
′),Σ′) =

〈Σ′′, φ̂〉 and (M1)–(M3) hold, i.e., (πVal(δ
n−1
RSF (σ

′)), v, πVal(σ̂)) ∈ JTj[l′/yj]K and 〈σ̂ , φ̂〉 ∈

XΣ′′ and v ∈
∥

∥

∥Bj[l
′/yj]

∥

∥

∥

Σ′′
.

5.2. Soundness 87

Since δn−1
St (⊥)(σ̂) = σ ′′ is defined, the induction hypothesis applies and we obtain

〈σ ′′, φ′′〉 = 〈δn−1
St (⊥)(σ̂), δn−1

RSF (φ̂)〉 ∈ XΣ′′ , for φ′′ = δn−1
RSF (φ̂). Thus, by definition of δnRSF,

δnRSF(φ).l.m(l
′, σ ′, φ′,Σ′) = (id× δn−1

RSF)(φ.l.m(l
′, δn−1

St (⊥)(σ
′), δn−1

RSF (φ),Σ
′)) = 〈Σ′′, φ′′〉

so that (M1) holds also for 〈δnSt(⊥)(σ), δ
n
RSF(φ)〉. Further, note that δn−1

St (⊥)(σ
′) v σ ′ and

σ ′′ = δn−1
St (⊥)(σ̂) v σ̂ yields (πVal(σ

′), v, πVal(σ
′′)) ∈ JTj[l′/yj]K, i.e., (M2) holds. Finally,

(M3) holds since 〈σ ′′, φ′′〉 ∈ XΣ′′ .

For the final assertion of the lemma observe that idSt = lfp(δSt) by the minimal invari-

ant property. By continuity, δnSt(⊥)(σ)↓ for all σ ∈ St and all sufficiently large n ∈ N.

5.2 Soundness

5.2.1 Preliminaries

Recall from the previous section that the semantics of store specifications is defined in

terms of the semantics ‖A‖Σ for result specifications A. This semantics does not mention

St at all. The following key lemma establishes the relation between the object and store

specifications of Section 5.1, and object specifications JAK as defined in Section 4.3.4:

Lemma 5.2.1. For all object specifications A, store specifications Σ ∈ StSpec, stores σ ∈ St,

and locations l ∈ Loc,

σ ∈ JΣK ∧ l ∈ ‖A‖Σ =⇒ 〈l, σ〉 ∈ JAK

Proof. We prove the following property.

Claim. For all n ∈ N, for all object specifications A ∈ Spec, for all Σ ∈ StSpec, for all

l ∈ dom(Σ) and all σ ∈ JΣK,

l ∈ ‖A‖Σ ∧ δ
n
St(⊥)(σ)↓ =⇒ 〈l, δnSt(⊥)(σ)〉 ∈ JAK (5.7)

From this claim the lemma follows, since for all σ ∈ St, δnSt(⊥)(σ)↓ for almost all n ∈ N,

σ =
⊔

n δ
n
St(⊥)(σ), and JAK is closed under taking least upper bounds by Lemma 4.3.5.

The proof of the claim proceeds by induction on n ∈ N and A ∈ Spec, using the well-

founded lexicographic order on N × Spec where specifications are ordered according to

size. Since δ0
St(⊥)(σ) ↑ there is nothing to show in the case n = 0. So assume n > 0,

δnSt(⊥)(σ)↓ and write σn
def
= δnSt(⊥)(σ).

Note that because A is an object specification it is necessarily of the form

A ≡ [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J

We prove 〈l, σn〉 ∈ JAK, i.e., that

(i) for all i ∈ I, 〈σn.l.fi, σn〉 ∈ JAiK; and

(ii) for all j ∈ J, if there are v ∈ Val and σ ′ ∈ St such that σn.l.mj(l, σn) = 〈v, σ ′〉, then

– 〈v, σ ′〉 ∈ Jyj ` BjK (yj , l); and

– (πVal(σn), v, πVal(σ
′)) ∈ Jyj ` TjK (yj , l).

88 Chapter 5. Soundness of Abadi and Leino’s Logic

Recall that by definition, l ∈ ‖A‖Σ means Σ.l≺:A. From the subtyping relation we there-

fore find

Σ.l ≡ [fi :Ai,mj :ς(yj)B
′
j ::T

′
j]i∈I′,j∈J′

where I ⊆ I′, J ⊆ J′, and yj ` B
′
j ≺:Bj and yj `fo T

′
j → Tj for all j ∈ J.

For the first part, note that Lemma 5.1.12 and σ ∈ JΣK entails σn = δ
n
St(⊥)(σ) ∈ JΣK.

By Definition 5.1.7 part (F) and σn ∈ JΣK we have σn.l.fi ∈ ‖Ai‖Σ for all i ∈ I′. If Ai is bool

then ‖bool‖Σ = BVal, hence, 〈σn.l.fi, σn〉 ∈ BVal × St = JboolK. Otherwise Ai is an object

specification strictly smaller than A and we may apply the induction hypothesis (on n, Ai ,

Σ, σn.l.fi and σ ∈ JΣK) to conclude 〈σn.l.fi, σn〉 ∈ JAiK.
For the second part, let j ∈ J and suppose that σn.l.mj(l, σn) = 〈v, σ ′′〉 for some v and

σ ′′. By definition of the projections δnSt, this means that σ.l.mj(l, δ
n−1
St (⊥)(σn)) = 〈v, σ̂〉

for some σ̂ such that δn−1
St (⊥)(σ̂) = σ ′′. In particular, δn−1

St (⊥)(σn) ↓ and δn−1
St (⊥)(σ̂) ↓.

We observe that δn−1
St (⊥)(σn) = δn−1

St (⊥)(σ), since by Lemma 2.3.3 one has δmSt(⊥) ◦

δkSt(⊥) = δ
m
St(⊥) wheneverm ≤ k. Thus, δn−1

St (⊥)(σ)↓ and Lemma 5.1.12 yields σn−1 ∈ JΣK,
where we write σn−1

def
= δn−1

St (⊥)(σ). Hence, from Definition 5.1.7 parts (M2) and (M3), the

fact that l ∈ ‖Σ.l‖Σ and that σ ∈ JΣK we find v ∈
∥

∥

∥B′j[l/yj]
∥

∥

∥

Σ′′
and σ̂ ∈ JΣ′′K for some

Σ
′′ å Σ.

In the case where Bj (and thus also B′j) is bool we therefore have v ∈ BVal and imme-

diately obtain

〈v, σ ′′〉 ∈ BVal× St = JboolK = Jyj ` boolK (yj , l)

In the remaining case where Bj (and thus also B′j) is an object specification then by in-

duction hypothesis (applied to n − 1, B′j[l/yj], Σ
′′, σ̂ ∈ JΣ′′K and v) this yields 〈v, σ ′′〉 ∈q

B′j[l/yj]
y
, observing that σ ′′ = δn−1

St (⊥)(σ̂). Thus,

〈v, σ ′′〉 ∈
q
B′j[l/yj]

y
=

q
yj ` B

′
j

y
(yj , l) by Lemma 5.1.2

⊆ Jyj ` BjK (yj , l) by Lemma 4.3.6

as required.

Similarly, by Definition 5.1.7 (M1) we obtain

(πVal(σn−1), v, πVal(σ̂)) ∈
q
T ′j[l/yj]

y
=

q
yj ` T

′
j

y
(yj , l) by Lemma 5.1.2

⊆ Jyj ` TjK (yj , l) soundness of `fo

Since σn−1 v σn and σ ′′ = δn−1
St (⊥)(σ̂) v σ̂ implies πVal(σn) = πVal(σn−1) and πVal(σ

′′) =

πVal(σ̂), we also have

(πVal(σn), v, πVal(σ
′′)) ∈ Jyj ` TjK (yj , l)

This concludes the proof.

Remark 5.2.2. The use of a lexicographic order in the proof of Lemma 5.2.1 highlights the

fact that one has to deal with two problems here: possibly cyclic pointer structures in the

5.2. Soundness 89

heap (realised by the field values), and recursive methods. Due to the invariance in field

specifications, induction on A can be used to deal with the former while the projections

δnSt(⊥) resolve the latter problem. Note that a simple induction on the size of A alone is

not sufficient, because by subsumption in the case of method specifications the induction

hypothesis is, in general, not applicable.1

We can now define the semantics of judgements of Abadi-Leino logic and prove the

key lemma. The semantics of a judgement is written Γ î a : A :: T and states the follow-

ing: Suppose (the denotation of) an object term JaK returns (v, σ ′) when run in a store

σ that satisfies some store specification Σ (therefore not containing any code that vio-

lates the restrictions needed for the logic, see also the discussion in Section 5.1) and in

an environment ρ that satisfies Γ with respect to Σ. Then (v, σ ′) satisfies specification

J[Γ] ` AKρ and the state transformation provoked satisfies J[Γ] ` T Kρ. This is spelt out

formally below:

Definition 5.2.3 (Validity). Γ î a : A :: T if and only if for all Σ ∈ StSpec, for all ρ ∈ ‖Γ‖Σ,

for all σ,σ ′ ∈ St and for all v ∈ Val,

σ ∈ JΣK ∧ JaKρσ = 〈v,σ ′〉 =⇒ 〈v,σ ′〉 ∈ J[Γ] ` AKρ ∧ (πVal(σ), v,πVal(σ
′)) ∈ J[Γ] ` TKρ

Unfortunately, this definition relies on the (syntactic) notion of store specifications to

keep track of the specifications for heap objects that may be referenced from the envi-

ronment ρ. We found the use of store specifications necessary because of the dynamic

aspect of a store, for two reasons: first, locations may be updated, and some informa-

tion is needed in order to preserve the specification of locations. Second, the store may

grow during computation, which cannot be reflected by a fixed context Γ . Note that store

specification extension is defined precisely to cover these two cases.

We believe this approach is justified, however, since for the case of closed programs

Γ ` a : A :: T , i.e., where Γ = �, the condition ρ ∈ ‖Γ‖Σ is vacuous and one obtains a

“proper” semantic notion of validity.

Before proving the main technical result in Lemma 5.2.5 we state the following fact

about the transition relation that appears in the let rule:

Lemma 5.2.4. Suppose that for σ,σ ′, σ ′′ ∈ St and v, v′ ∈ Val, (πVal(σ), v,πVal(σ
′)) ∈

Jx ` T ′Kρ and (πVal(σ
′), v′, πVal(σ

′′)) ∈ Jx, x ` T ′′Kρ[x := v]. Then, if x ` T and

`foT
′[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]

∧ T ′′[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)] → T
(5.8)

then (πVal(σ), v
′, πVal(σ

′′)) ∈ Jx ` T Kρ.

Proof. Consider an extended signature of transition relations, with additional function

and predicate symbols selint(·, ·) and allocint(·), resp. We extend the interpretation of

transition relations in the natural way,

Jx1, . . . , xk ` T Kρ : P(StVal × Val× StVal × StVal)

1A faulty proof attempt along these lines was given in a previous version of this work. Thanks to Guy

McCusker for pointing out the problem.

90 Chapter 5. Soundness of Abadi and Leino’s Logic

where the second store argument is used to interpret selint(·, ·) and allocint(·):

(σ , v, σ ′, σ ′) ∈ Jx ` allocint(e)Kρ
def
⇐⇒ Jx ` eKρσvσ̂σ ′↓ ∧ Jx ` eKρσvσ̂σ ′ ∈ dom(σ̂)

and

Jx ` selint(e0, e1)Kρσvσ̂σ ′ = σ̂ .l.f

if Jx ` e0Kρσvσ̂σ ′ = l ∈ Loc and Jx ` e1Kρσvσ̂σ ′ = f ∈ F ; undefined otherwise.

By assumption and using the fact that neither T ′ nor T ′′ contains the new predicates,

we also have

(πVal(σ), v,πVal(σ
′), πVal(σ

′)) ∈ Jx, x ` T ′Kρ[x := v]

and

(πVal(σ
′), v′, πVal(σ

′), πVal(σ
′′)) ∈ Jx, x ` T ′′Kρ[x := v]

Thus,

(πVal(σ), v
′, πVal(σ

′), πVal(σ
′′)) ∈

Jx, x ` T ′[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]Kρ[x := v]

since there are no occurrences of selpost(·, ·), allocpost(·) and result, and

(πVal(σ), v
′, πVal(σ

′), πVal(σ
′′)) ∈

Jx, x ` T ′′[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)]Kρ[x := v]

since there are no occurrences of selpre(·, ·) and allocpre(·). From validity of first-order

provability and assumption (5.8) we obtain

(πVal(σ), v
′, πVal(σ

′), πVal(σ
′′)) ∈ Jx, x ` T Kρ[x := v]

and the result follows since T does not depend on x and the new predicates, by x ` T .

5.2.2 The Invariance Lemma

In this subsection we state and prove the main lemma of the soundness proof. Intuitively,

it shows that store specifications Σ are “invariant” under proved programs,

σ ∈ JΣK ∧ JaKρσ = 〈v, σ ′〉 =⇒ ∃Σ′ ∈ StSpec. Σ′ å Σ ∧ σ ′ ∈ JΣ′K (5.9)

Note that the program a will in general allocate further objects, so the resulting store only

satisfies an extension of the original store specification, not necessarily the orignial one.

The precise conditions of when (5.9) holds are given in the statement of the following

lemma, and take the choice functions φ ∈ RSF introduced in Section 5.1 into account. We

write SF for the domain of “individual” choice functions,

SF
def
= [Loc× St× RSF× StSpec ⇀ StSpec× RSF]

for which RSF = RecLoc(RecM(SF)).

5.2. Soundness 91

Lemma 5.2.5. Suppose

(H1) Γ ` a : A :: T is derivable;

(H2) Σ ∈ StSpec is a store specification; and

(H3) ρ ∈ ‖Γ‖Σ.

Then there exists φ ∈ SF = [Val×St×RSF×StSpec ⇀ StSpec×RSF] such that for all Σ′ å Σ,

for all 〈σ ′, φ′〉 ∈ fix(Φ)Σ′ , for all l ∈ Loc and all σ ′′ ∈ St, if

JaKρσ ′ = 〈v, σ ′′〉

then the following holds:

(S1) there exists Σ′′ å Σ′ and φ′′ ∈ RSF such that φ(l, σ ′, φ′,Σ′) = 〈Σ′′, φ′′〉

(S2) 〈σ ′′, φ′′〉 ∈ fix(Φ)Σ′′

(S3) v ∈ ‖A[ρ/Γ]‖Σ′′

(S4) (πVal(σ
′), v, πVal(σ

′′)) ∈ J[Γ] ` T Kρ

Proof. The proof is by induction on the derivation of Γ ` a : A :: T . In the proof,

• Lemma 5.1.6 is applied in the cases (AL Let) and (AL Obj), where an extended spec-

ification context is used in the induction hypothesis;

• invariance of subspecifications in field specifications is needed in the case for rule

(AL Upd);

• in the cases where the store changes, i.e., (AL Obj), (AL Upd) and (AL Copy), we must

show explicitly that the resulting store satisfies the store specification, according to

Definition 5.1.7.

We consider cases, depending on the last rule applied in the derivation of the judgement

Γ ` a : A :: T .

• Case (AL Sub)

Suppose that Γ ` a : A :: T has been obtained by an application of the subsumption

rule, and that

(H2) Σ is a store specification

(H3) ρ ∈ ‖Γ‖Σ

We have to show that there is φ ∈ SF such that, whenever Σ′ å Σ, 〈σ ′, φ′〉 ∈ fix(Φ)Σ′ ,

v′ ∈ ‖A‖Σ′ and JaKρσ ′ = 〈v, σ ′〉, then (S1)–(S4) hold.

Recall the subsumption rule,

(AL Sub)
[Γ] ` A′≺:A Γ ` a:A′::T ′ [Γ] ` A [Γ] ` T `fo T

′ → T

Γ ` a:A::T

so we must have Γ ` a : A′ :: T ′ for some specification A′ and transition relation T ′

with `fo T
′ → T and [Γ] ` A′≺:A.

By (IH) there exists φ ∈ SF such that for all Σ′ å Σ, l ∈ Loc, 〈σ ′, φ′〉 ∈ fix(Φ)Σ′ with

JaKρσ ′ = 〈v, σ ′〉,

92 Chapter 5. Soundness of Abadi and Leino’s Logic

(S1) there exists Σ′′ å Σ′, φ′′ ∈ RSF s.t. φ(l, σ ′, φ′,Σ′) = 〈Σ′′, φ′′〉

(S2) 〈σ ′′, φ′′〉 ∈ fix(Φ)Σ′′

(S3’) v ∈ ‖A′[ρ/Γ]‖Σ′

(S4’) (πVal(σ), v,πVal(σ
′)) ∈ J[Γ] ` T ′Kρ

Because `fo T
′ → T we know JΓ ` T ′Kρ ⊆ JΓ ` T Kρ, and therefore (S4’) implies

(πVal(σ), v,πVal(σ
′)) ∈ JΓ ` T Kρ (S4)

It remains to show

v ∈ ‖A[ρ/Γ]‖Σ′ (S3)

Note that by the subtyping rules, A ≡ bool if and only if A′ ≡ bool. In this case (S3)

follows directly from (S3’). In the case where A′ is an object specification, assump-

tion [Γ] ` A′≺:A and Lemma 5.1.2 entail ` A′[ρ/Γ]≺:A[ρ/Γ]. Transitivity of ≺:

and (S3’) then prove (S3), by the definition of ‖A′[ρ/Γ]‖Σ′ .

• Case (AL Var)

Suppose Γ ` a : A :: T has been derived by an application of the (AL Var) rule.

Further, assume

(H2) Σ is a store specification

(H3) ρ ∈ ‖Γ‖Σ

Define the (partial continuous) map φ ∈ SF by

φ(l, σ ′, φ′,Σ′)
def
= 〈Σ′, φ′〉

Now suppose Σ′ å Σ, l ∈ Loc, 〈σ ′, φ′〉 ∈ fix(Φ)Σ′ and JaKρσ ′ = 〈v, σ ′′〉 Then, by the

variable rule, we find that a is necessarily a variable x. Further we obtain x:A in Γ ,

T ≡ Tres(x), and the semantics of Table 3.7 gives 〈v, σ ′′〉 = JaKρσ ′ = 〈ρ(x), σ ′〉, i.e.,

v = ρ(x) and σ ′′ = σ ′

By definition of φ above,

(S1) φ(l, σ ′, φ′,Σ′) = 〈Σ′, φ′〉

(S2) 〈σ ′′, φ′〉 ∈ fix(Φ)Σ′ , by σ ′′ = σ ′ and assumption 〈σ ′, φ′〉 ∈ fix(Φ)Σ′

(S3) v ∈ ‖A[ρ/Γ]‖Σ′ , by v = ρ(x) and (H3)

(S4) (πVal(σ
′), v, πVal(σ

′′)) ∈ J[Γ] ` Tres(x)Kρ, by the definition of J[Γ] ` T K in Ta-

ble 4.6, and σ ′′ = σ ′ and v = ρ(x).

as required.

• Case (AL Const)

Similar to the previous case.

• Case (AL Cond)

By a case distinction, depending on whether the denotation of the guard x is true or

false. We omit this case.

5.2. Soundness 93

• Case (AL Let)

Suppose (H1) Γ ` a : A :: T has been derived by an application of the (AL Let) rule.

Hence, a is of the form let x = a1 in a2. Assume that

(H2) Σ is a store specification, and

(H3) ρ ∈ ‖Γ‖Σ

Now recall the rule for this case,

(AL Let)

Γ ` a1:A1::T1 Γ , x:A1 ` a2:A::T2 [Γ] ` A [Γ] ` T
`fo T1[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]
∧ T2[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)] → T

Γ ` let x = a1 in a2:A::T

By the premiss of this rule we must have

(H1’) Γ ` a1 : A1 :: T1

(H1”) Γ , x:A1 ` a2 : A :: T2

By induction hypothesis applied to (H1’) there is φ1 ∈ SF such that for all Σ′ å Σ,

l ∈ Loc, 〈σ ′, φ′〉 ∈ fix(Φ)Σ′ with Ja1Kρσ ′ = 〈v̂, σ̂〉, the conclusions of the lemma

hold:

(S1’) there exists Σ̂ å Σ′ and φ̂ ∈ RSF s.t. φ1(l, σ
′, φ′,Σ′) = 〈Σ̂, φ̂〉

(S2’) 〈σ̂ , φ̂〉 ∈ fix(Φ)
Σ̂

(S3’) v̂ ∈ ‖A1[ρ/Γ]‖Σ̂

(S4’) (πVal(σ
′), v̂, πVal(σ̂)) ∈ J[Γ] ` T1Kρ

In particular, by (S3’) and Lemma 5.1.6,

ρ[x := v̂] ∈ ‖Γ , x:A1‖Σ̂

Therefore, by induction hypothesis applied to (H1”) there is φ
Σ̂v̂ ∈ SF s.t. for all

Σ
′ å Σ̂, all l′ ∈ Loc and all 〈σ ′, φ′〉 ∈ fix(Φ)Σ′ with Ja2Kρ[x := v̂]σ ′ = 〈v, σ ′′〉, the

following holds:

(S1”) there exists Σ′′ å Σ′ and φ′′ ∈ RSF s.t. φ
Σ̂v̂(l

′, σ ′, φ′,Σ′) = 〈Σ′′, φ′′〉

(S2”) 〈σ ′′, φ′′〉 ∈ fix(Φ)Σ′′

(S3”) v ∈ ‖A[ρ[x := v]/Γ , x:A1]‖Σ′′

(S4”) (πVal(σ
′), v, πVal(σ

′′)) ∈ J[Γ , x:A1] ` T2Kρ[x := v̂]

Now define φ ∈ SF for all l, σ ′, φ′ and Σ′ by

φ(l, σ ′, φ′,Σ′)
def
=















φ
Σ̂v̂(l, σ̂ , φ̂, Σ̂) if Ja1Kρσ ′ = 〈v̂, σ̂〉 and

φ1(l, σ
′, φ′,Σ′) = 〈Σ̂, φ̂〉

undefined otherwise

which is continuous due to continuity of JaKρ and φ1, and since Val and StSpec are

discrete cpos.

We show that the conclusion of the lemma holds: Let Σ′ å Σ, let 〈σ ′, φ′〉 ∈ fix(Φ)Σ′

and l ∈ Loc. Suppose JaKρσ ′ = 〈v, σ ′′〉. From the definition of the semantics,

〈v, σ ′′〉 = let 〈v̂, σ̂〉 = Ja1Kρσ ′ in Ja2Kρ[x := v̂]σ̂

which shows

94 Chapter 5. Soundness of Abadi and Leino’s Logic

– Ja1Kρσ ′ = 〈v̂, σ̂〉
– Ja2Kρ[x := v̂]σ̂ = 〈v, σ ′′〉

From the definition of φ, and the considerations above, it follows that

(S1) there is Σ′′ ∈ StSpec with Σ′′ å Σ̂ å Σ′ and φ(l, σ ′, φ′,Σ′) = φ
Σ̂v̂(l, σ̂ , φ̂, Σ̂) =

〈Σ′′, φ′′〉, where φ1(l, σ
′, φ′,Σ′) = 〈Σ̂, φ̂〉, by (S1’) and (S1”)

(S2) 〈σ ′′, φ′′〉 ∈ fix(Φ)Σ′′ , by (S2’) and (S2”)

(C3) v ∈ ‖A[ρ[x := v]/Γ , x:A1]‖Σ′′ , by (S3’) and (S3”)

(C4’) (πVal(σ
′), v̂, πVal(σ̂)) ∈ J[Γ] ` T1Kρ, by (S4’)

(C4”) (πVal(σ̂), v, πVal(σ
′′)) ∈ J[Γ , x:A1] ` T2Kρ[x := v̂], by (S4”)

Since [Γ] ` A, i.e., x is not free in A, we have

A[ρ[x := v]/(Γ , x:A1)] ≡ A[ρ/Γ] (5.10)

Moreover, (C4’), (C4”), Lemma 5.2.4 and

`fo T1[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]

∧ T2[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)] → T

proves

(πVal(σ
′), v, πVal(σ

′′)) ∈ JΓ ` T Kρ (5.11)

We therefore obtain

(S3) v ∈ ‖A[ρ/Γ]‖Σ′ , by (C3) and (5.10)

(S4) (πVal(σ
′), v, πVal(σ

′′)) ∈ JΓ ` T Kρ, by (5.11)

as required.

• Case (AL Obj)

Suppose (H1): Γ ` a : A :: T has been derived by an application of rule the (AL Obj)

rule. Necessarily a ≡ [fi = xi , mj = ς(yj)bj]i∈I,j∈J . Suppose that

(H2) Σ is a store specification

(H3) ρ ∈ ‖Γ‖Σ

We recall the object introduction rule,

(AL Obj)

A ≡ [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J

Γ ` xi :Ai :: Tres(xi)
i=1...n

Γ , yj :A ` bj :Bj ::Tj
j=1...m

Γ `
[

fi = xi, mj = ς(yj)bj
]

i∈I,j∈J
:A::Tobj(fi = xi)i∈I

from which we see that A is [fi :Ai ,mj :Bj ::Tj]i∈I,j∈J , that T is Tobj(fi = xi)i∈I and that

(H1’) Γ ` xi : Ai :: Tres(xi) for i ∈ I

(H1”) Γ , yj :A ` bj : Bj :: Tj for j ∈ J

5.2. Soundness 95

We have to show that there is φ ∈ SF such that for all Σ′ å Σ, l ∈ Loc and 〈σ ′, φ′〉 ∈

fix(Φ)Σ′ with JaKρσ ′ = 〈v, σ ′′〉, conditions (S1)–(S4) hold.

From (H3) and Lemma 5.1.6 we know that for all Σ̂ å Σ and l0 ∈ ‖A[ρ/Γ]‖Σ̂,

ρ[yj := l0] ∈
∥

∥

∥Γ , yj :A
∥

∥

∥

Σ̂

Hence by induction hypothesis on (H1”), for all j ∈ J there is φ
j
l0
∈ SF such that for

all Σ1 å Σ̂, for all l1 ∈ Loc and for all 〈σ1, φ1〉 ∈ fix(Φ)
Σ̂

with JbjKρ[yj := l0]σ1 =

〈v2, σ2〉, we obtain the conclusions (S1)–(S4) of the lemma, i.e.,

(S1’) there exists Σ2 å Σ1 and φ2 ∈ RSF such that φ
j
l0
(l1, σ1, φ1,Σ1) = 〈Σ2, φ2〉

(S2’) 〈σ2, φ2〉 ∈ fix(Φ)Σ2

(S3’) v2 ∈
∥

∥

∥Bj[ρ[yj := l0]/Γ , yj :A]
∥

∥

∥

Σ2

(S4’) (πVal(σ1), v2, πVal(σ2)) ∈ J[Γ , yj :A] ` TjKρ[yj := l0]

For any location l we have rl
def
= {|l = {|mj = λ(l0, σ0, φ0,Σ0).φ

j
l0
(l0, σ0, φ0,Σ0)|}j∈J|} ∈

RSF, therefore we can define φ ∈ SF by

φ(l, σ ′, φ′,Σ′)
def
=











〈Σ′ + {|l0 = A[ρ/Γ]|}, φ′ + rl0〉

if Σ′ å Σ, l0 ∉ dom(Σ′) and JaKρσ ′ = 〈l0, σ ′′〉
undefined otherwise

(5.12)

We show that (S1)–(S4) hold. Let Σ′ å Σ, 〈σ ′, φ′〉 ∈ fix(Φ)
Σ̂

and suppose JaKρσ ′ =
〈v, σ ′′〉. By definition of the semantics, and the fact that (H1’) entails ρ(xi)↓ for all

i ∈ I, for

JaKρσ ′ = 〈v, σ ′′〉 ∈ Loc× St (5.13)

we obtain v = l0 where l0 ∉ dom(σ ′) (and so l0 ∉ dom(Σ′)) and

σ ′′ = σ ′ + {|l0 = {|fi = ρ(xi),mj = λ〈l, σ〉. JbjKρ[yj := l]σ |}i∈I,j∈J|} (5.14)

We obtain that there exists φ′′ ∈ RSF s.t.

(S1) φ(l, σ ′, φ′,Σ′) = 〈Σ′ + {|l0 = A[ρ/Γ]|}, φ′′〉, by construction of φ in equa-

tion (5.12)

(S3) v = l0 ∈ ‖A[ρ/Γ]‖Σ′,l0:A[ρ/Γ], by definition of ‖·‖

(S4) (πVal(σ
′), v, πVal(σ

′′)) ∈ JΓ ` Tobj(fi = xi)i∈IKρ, which is easily checked from

the definition of Tobj(fi = xi)i∈I , the semantics in Table 4.6 and equation (5.14).

All that remains to be shown is (S2): 〈σ ′′, φ′′〉 ∈ fix(Φ)Σ′′ , where Σ′′ is Σ′ + {|l0 =

A[ρ/Γ]|}. By the construction of φ in (5.12),

φ′′ = φ′ + {|l0={|mj=φ
j
l0
|}j∈J|} (5.15)

and we show that (S2) holds according to Definition 5.1.7 next:

As for the first condition, (Dom), by assumption the domains of φ′ and Σ′ agree,

and by construction of φ, also dom(φ′′.l0) = {mj | j ∈ J} = dom(πmthds(Σ
′′.l0)). To

check the second condition, suppose l ∈ dom(Σ′′). We distinguish two cases: For

locations l ≠ l0 the conditions follow easily from the assumption 〈σ ′, φ′〉 ∈ fix(Φ)Σ′

about the initial store σ ′. For the freshly allocated object at location l0 the previous

considerations lead to the result.

96 Chapter 5. Soundness of Abadi and Leino’s Logic

– l ≠ l0: Then

Σ
′′.l = Σ

′.l = [gi :A
′
i ,nj :ς(yj)B

′
j :: T ′j]i∈I′,j∈J′

(F) For all i ∈ I′, σ ′′.l.gi = σ
′.l.gi , and so from 〈σ ′, φ′〉 ∈ fix(Φ)Σ′

σ ′′.l.gi ∈
∥

∥A′i
∥

∥

Σ′
⊆
∥

∥A′i
∥

∥

Σ′′

(M) Let j ∈ J′, let Σ1 å Σ
′′, let l′ ∈ ‖Σ′′.l‖Σ1

, let 〈σ1, φ1〉 ∈ fix(Φ)Σ1 and suppose

σ ′′.l.nj(σ1) = 〈v2, σ2〉. Since σ ′′.l.nj = σ ′.l.nj and Σ1 å Σ
′, the assumption

〈σ ′, φ′〉 ∈ fix(Φ)Σ′ and the construction of φ′′ yield

* φ
′′.l.nj(l

′, σ1, φ1,Σ1) = φ′.l.nj(l′, σ1, φ1,Σ1) = 〈Σ2, φ2〉

* 〈σ2, φ2〉 ∈ fix(Φ)Σ2

* v2 ∈
∥

∥

∥B′j[l
′/yj]

∥

∥

∥

Σ2

* (πVal(σ1), v2, πVal(σ2)) ∈
q
T ′j[l

′/yj]
y

– l = l0:

(F) By assumption (H1’) and ρ ∈ ‖Γ‖Σ we know that for all i ∈ I there are A′i
such that ` Ai

′≺:Ai and xi :Ai
′ in Γ . Hence,

σ ′′.l0.fi = ρ(xi) ∈
∥

∥Ai
′
∥

∥

Σ
⊆ ‖Ai‖Σ ⊆ ‖Ai‖Σ′′

(M) Let j ∈ J. Suppose Σ1 å Σ
′′, let l′ ∈ ‖Σ′′.l0‖Σ1

, let 〈σ1, φ1〉 ∈ fix(Φ)Σ1 and

suppose

σ ′′.l0.mj(l
′, σ1) = 〈v2, σ2〉

Since σ ′′.l0.mj(l
′, σ1) = JbjKρ[yj := l′]σ1 and Σ1 å Σ

′′ å Σ, the assump-

tion 〈σ1, φ1〉 ∈ fix(Φ)Σ1 and the construction of φ′′ yield Σ2 å Σ1 and φ2

such that

* φ
′′.l0.mj(l

′, σ1, φ1,Σ1) = φ
j
l′(l

′, σ1, φ1,Σ1) = 〈Σ2, φ2〉, by (S1’)

* 〈σ2, φ2〉 ∈ fix(Φ)Σ2 , by (S2’)

* v2 ∈
∥

∥

∥Bj[ρ[yj := l′]/Γ , yj :A]
∥

∥

∥

Σ2
=
∥

∥

∥Bj[ρ/Γ][l
′/yj]

∥

∥

∥

Σ2
, by (S3’)

* (πVal(σ1), v2, πVal(σ2)) ∈ J[Γ , yj :A] ` TjKρ[yj := l′] = JTj[ρ/Γ][l′/yj]K,
by (S4’)

where the equations in the last two lines are by the substitution lemma,

Lemma 5.1.2.

Thus we have shown 〈σ ′′, φ′′〉 ∈ fix(Φ)Σ′′ , i.e., (S2) holds.

• Case (AL Inv)

Suppose Γ ` a : A :: T is derived by an application of the method invocation rule:

(AL Inv)
Γ ` x:[m:ς(y)A′::T ′]::Tres(x)

Γ ` x.m:A′[x/y]::T ′[x/y]

Necessarily a is of the form x.m and there are A′ and T ′ s.t. A ≡ A′[x/y] and

T ≡ T ′[x/y]. So suppose

(H1) Γ ` a : A′[x/y] :: T ′[x/y]

(H2) Σ ∈ StSpec is a store specification

(H3) ρ ∈ ‖Γ‖Σ

5.2. Soundness 97

Define φ ∈ SF using “self-application” of the argument φ′,

φ(l, σ ′, φ′,Σ′)
def
= φ′.ρ(x).m(ρ(x), σ ′, φ′,Σ′) (5.16)

Now let Σ′ å Σ, l ∈ Loc, 〈σ ′, φ′〉 ∈ fix(Φ)Σ′ and suppose JaKρσ ′ = σ ′.ρ(x).m(σ ′) =
〈v, σ ′′〉 terminates. We show that (S1)–(S4) hold.

By the hypothesis of the method invocation rule,

Γ ` x:[m:ς(y)A′::T ′]::Tres(x) (H1’)

Since this implies x:B ∈ Γ for some [Γ] ` B≺: [m : ς(y)A′ :: T ′], by assumption (H3)

and the definition of Σ′ å Σ this entails

` Σ′.(ρ(x))≺: [m : ς(y)A′ :: T ′] [ρ/Γ]

i.e., there are I, J and for all i ∈ I and j ∈ J, there exist Ai , A
′′, Bj and Tj , T

′′ such

that

Σ
′.ρ(x) ≡ [fi :Ai,mj :ς(yj)Bj :: Tj ,m:ς(y)A′′::T ′′]i∈I,j∈J

where

y ` A′′≺:A′[ρ/Γ] and `fo T
′′ → T ′[ρ/Γ] (5.17)

Note that ρ(x) ∈ ‖Σ′.ρ(x)‖Σ′ . Thus assumption 〈σ ′, φ′〉 ∈ fix(Φ)Σ′ with equa-

tion (5.16) implies that there are Σ′′, φ′′ such that Σ′′ å Σ′ and

(S1) φ(l, σ ′, φ′,Σ′) = φ′.(ρ(x)).m(ρ(x), σ ′, φ′,Σ′) = 〈Σ′′, φ′′〉

(S2) 〈σ ′′, φ′′〉 ∈ fix(Φ)Σ′′

(S3’) v ∈ ‖A′′[ρ(x)/y]‖Σ′′

(S4’) (πVal(σ
′), v, πVal(σ

′′)) ∈ J` T ′′[ρ(x)/y]K

By transitivity of ≺: equation (5.17), Lemma 5.1.2 and (S3’) yield

v ∈
∥

∥A′[ρ/Γ][ρ(x)/y]
∥

∥

Σ′′

Since A′[ρ/Γ , ρ(x)/y] ≡ A′[x/y][ρ/Γ] we also have

(S3) v ∈ ‖A′[x/y][ρ/Γ]‖Σ′′ = ‖A[ρ/Γ]‖Σ′′

Similarly, by (5.17) and (S4’),

(πVal(σ
′), v, πVal(σ

′′)) ∈ JT ′′[ρ(x)/y]K ⊆ JT ′[ρ/Γ][ρ(x)/y]K
= J[Γ] ` T[x/y]Kρ (S4)

which was to show.

• Case (AL Sel)

Similar to the previous case. The choice functionφ can be defined asφ(l, σ ′, φ′,Σ′)
def
=

〈φ′,Σ′〉, reflecting the fact the store does not change.

• Case (AL Upd)

Suppose

98 Chapter 5. Soundness of Abadi and Leino’s Logic

(H1) Γ ` a:A::T has been derived by an application of the rule (AL Upd),

(H2) Σ is a store specification

(H3) ρ ∈ ‖Γ‖Σ

Define φ ∈ SF by φ(l, σ ′, φ′,Σ′)
def
= 〈Σ′, φ′〉. This reflects the fact that store specifi-

cations are necessarily preserved when updating fields.

Let Σ′ å Σ, l ∈ Loc, 〈σ ′, φ′〉 ∈ fix(Φ)Σ′ and suppose JaKρσ ′ = 〈v, σ ′′〉 terminates.

Recall the rule for field update,

(AL Upd)

A ≡ [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J
Γ ` x:A::Tres(x) Γ ` y :Ak::Tres(y) k ∈ I

Γ ` x.fk :=y :A::Tupd(x, fk, y)

In particular, a is of the form x.fk :=y and T is Tupd(x, fk, y). From the semantics of

JaKρσ ′, this means v = ρ(x) ∈ Loc and

σ ′′ = σ ′[v := σ ′.v[fk := ρ(y)]] (5.18)

We show that (S1)–(S4) hold.

By (H3), ρ(x) ∈ ‖A[ρ/Γ]‖Σ ⊆ ‖A[ρ/Γ]‖Σ′ . Then by construction of φ, and (5.18),

(S1) φ(l, σ ′, φ′,Σ′) = 〈Σ′, φ′〉; in particular, Σ′ å Σ′

(S3) v = ρ(x) ∈ ‖A[ρ/Γ]‖Σ′

(S4) (πVal(σ
′), v, πVal(σ

′′)) ∈ J[Γ] ` T Kρ, from the semantics given in Table 4.6

It remains to show (S2), 〈σ ′′, φ′〉 ∈ fix(Φ)Σ′ , which we prove next.

By assumption 〈σ ′, φ′〉 ∈ fix(Φ)Σ′ , the first condition of Definition 5.1.7, requiring

the domains of φ′ and Σ′ to agree, is clearly satisfied. As for the further conditions,

suppose l ∈ dom(Σ′) such that

Σ
′.l ≡ [gi :A

′
i , nj :ς(yj)B

′
j :: T ′j]i∈I′,j∈J′

(F) We distinguish two cases:

– Case l = ρ(x) and gi = fk. Then, by (5.18), σ ′′.l.gi = ρ(y). By (H3),

ρ(x) ∈ ‖A[ρ/Γ]‖Σ ⊆ ‖A[ρ/Γ]‖Σ′ , which entails

` Σ′.l≺:A[ρ/Γ]

and in particular, by the definition of the subspecification relation, A′k ≡

Ak[ρ/Γ]. Note that invariance of subspecification in the field components

is needed to conclude this. Now again by (H3),

ρ(y) ∈ ‖Ak[ρ/Γ]‖Σ ⊆ ‖Ak[ρ/Γ]‖Σ′ =
∥

∥

∥A′k

∥

∥

∥

Σ′

Hence, σ ′′.l.gi ∈
∥

∥A′i
∥

∥

Σ′
as required.

– Case l ≠ ρ(x) or gi ≠ fk. Then σ ′′.l.gi = σ
′.l.gi , by (5.18). Hence, by

assumption 〈σ ′, φ′〉 ∈ fix(Φ)Σ′ , we have σ ′′.l.gi ∈
∥

∥A′i
∥

∥

Σ′
.

(M) Let Σ′′ å Σ′, let l′ ∈ ‖Σ′.l‖Σ′′ , let 〈σ1, φ1〉 ∈ fix(Φ)Σ′′ and suppose σ ′′.l.nj(σ1) =

〈v2, σ2〉. Then, by assumption 〈σ ′, φ′〉 ∈ fix(Φ)Σ′ and the fact that σ ′′.l.nj =

σ ′.l.nj by (5.18), we obtain that φ′.l.nj(l
′, σ1, φ1,Σ

′′) = 〈Σ2, φ2〉 s.t. Σ2 å Σ
′′

and

5.2. Soundness 99

(M1) (πVal(σ1), v2, πVal(σ2)) ∈
q
T ′j[l

′/yj]
y

(M2) 〈σ2, φ2〉 ∈ fix(Φ)Σ2

(M3) v2 ∈
∥

∥

∥B′j[l
′/yj]

∥

∥

∥

Σ2

as required.

• Case (AL Copy)

Suppose

(H1) Γ ` a:A::T has been derived by an application of the rule (AL Copy),

(H2) Σ is a store specification

(H3) ρ ∈ ‖Γ‖Σ

Thus, by inspection of the rule (AL Copy), A ≡ [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J and

T ≡ ∃y.
∧

i∈I yi = selpre(x, fi) ∧ Tobj(fi = yi)i∈I and a is of the form clonex. Now

define φ ∈ SF by φ(l, σ ′, φ′,Σ′)
def
= 〈Σ′′, φ′′〉 where

Σ
′′ def
= Σ

′ + {|l0 = A[ρ/Γ]|} where l0 ∉ dom(Σ′) ∧ l0 ∉ dom(φ′)

φ′′
def
=

{

φ′ + {|l0 = {|mj = φ′.(ρ(x)).mj |}j∈J|} if φ′.(ρ(x)).mj ↓ ∀j ∈ J

undefined otherwise

Suppose Σ′ å Σ, 〈σ ′, φ′〉 ∈ fix(Φ)Σ′ , l ∈ Loc and there are v ∈ Val and σ ′′ ∈ St such

that

JaKρσ ′ = 〈v, σ ′′〉

By definition of φ above,

(S1) φ(l, σ ′, φ′,Σ′) = 〈Σ′′, φ′′〉 for some Σ′′ å Σ′ and φ′′

Furthermore, from the denotational semantics of cloning,

〈v, σ ′′〉 = JaKρσ ′ = 〈l0, σ ′[l0 := σ ′.(ρ(x))]〉

Thus, both

(S3) v ∈ JA[ρ/Γ]K
Σ′′

(S4) (πVal(σ
′), v, πVal(σ

′′)) ∈ J[Γ] ` T Kρ

follow, from the definition of φ above and the definition of J[Γ] ` T K, resp. It re-

mains to prove condition (S2). This follows much as in the case (AL Upd) exploiting

the fact that all locations distinct from l0 remain unchanged, and that moreover

both the object stored at l0 and its specification Σ′′.l0 are the same as the ones at

location ρ(x) in the original store and store specification, resp.

This concludes the proof.

100 Chapter 5. Soundness of Abadi and Leino’s Logic

5.2.3 Soundness Theorem

With Lemma 5.2.1 and Lemma 5.2.5, proved in Sections 5.2.1 and 5.2.2, it is now easy to

establish our main result:

Theorem 5.2.6 (Soundness). If Γ ` a : A :: T then Γ î a : A :: T .

Proof. Suppose Γ ` a : A :: T , and let Σ ∈ StSpec be a store specification and suppose

ρ ∈ Env such that ρ ∈ ‖Γ‖Σ. Let σ ∈ JΣK, so by definition there exists φ ∈ RSF such that

〈σ,φ〉 ∈ fix(Φ)Σ. Next suppose

JaKρσ = 〈v, σ ′〉

By Lemma 5.2.5 there exists φa ∈ SF such that for all l ∈ Loc,

φa(l, σ ,φ,Σ) = 〈Σ
′, φ′〉

where Σ′ å Σ and 〈σ ′, φ′〉 ∈ fix(Φ)Σ′ , i.e., σ ′ ∈ JΣ′K follows. Moreover,

• v ∈ ‖A[ρ/Γ]‖Σ′ , and

• (πVal(σ), v,πVal(σ
′)) ∈ J[Γ] ` T Kρ

In the case where A is bool we now obtain 〈v, σ ′〉 ∈ J[Γ] ` AKρ from ‖bool‖Σ′ = BVal.

Otherwise A is an object specification, and we must have ` Σ′.v≺:A[ρ/Γ] by definition

of ‖A[ρ/Γ]‖Σ′ . Hence, by Lemma 5.2.1,

〈v, σ ′〉 ∈ JA[ρ/Γ]K = J[Γ] ` AKρ

where the last equality is by the the substitution lemma, Lemma 5.1.2.

For programs we also obtain the following corollaries to the soundness theorem.

Corollary 5.2.7 (Closed Terms). If � ` a : A :: T and JaKσ = 〈v, σ ′〉 then 〈v, σ ′〉 ∈ JAK. In

particular, v ≠ error by Lemma 4.3.3.

Corollary 5.2.8 (Type Soundness). For (first-order) types A, if �.a : A and JaKσ = 〈v, σ ′〉
then v ≠ error.

Corollary 5.2.8 follows from the observation that Γ . a : A is derivable if and only if

Γ
∗ ` a : A∗::True is derivable, where A∗ is the specification obtained from the type A by

augmenting every nested method type with the trivial transition relation True, see (Abadi

and Leino 2004).

5.2.4 Comparison to Object Encodings

It is interesting to compare the semantics of the object calculus with the object encodings

discussed in Chapter 3. As described above, types can be seen as a particular class of

specifications of Abadi and Leino’s logic, and Theorem 5.2.6 entails a type soundness

result with respect to this induced semantics of types.

5.2. Soundness 101

Suppose A ≡ [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J . Firstly recall that there are in fact two

interpretations of types A, as result specifications ‖A‖ and JAK, respectively, the first of

which are defined with respect to a syntactic store specification and abstract away from

concrete stores, while the latter denote predicates over the domain Val × St. However,

this latter interpretation only provides a very partial description of program properties:

JAK is defined in terms of interaction with the object through field lookup and method

invocation only, but not using field update.

In contrast, result specifications ‖A‖Σ are defined in terms of the store specification

Σ: The property l ∈ ‖A‖Σ holds if l is a location, specified as A in Σ (possibly using the

subspecification relation ≺: which is defined inductively from the inference rule (Subspec

Obj). Thus, the “proper” meaning of l ∈ ‖A‖Σ is obtained through the definition of store

specifications, σ ∈ JΣK, linking the location l to an actual object, σ.l, in the store. In

particular, we find that an object at such a location l has to provide methods mj that, when

the self parameter is applied to the location of any other object satisfying at least (with

respect to ≺:)A, yield results of type Bj . So the use of store specifications serves, amongst

other things, the purpose of expressing a type recursion, similar to the imperative self

application semantics of (Abadi, Cardelli, and Viswanathan 1996). Recalling the definition

of store specifications, our semantics corresponds roughly to a type

µ(Y)∀(X ≺:Y). {fi : Ai, mj : X ⇒ Bj}i,j (5.19)

rather than their encoding

µ(Y)∃(X ≺:Y). {self : X, fi : Ai, mj : X ⇒ Bj}i,j (5.20)

While the bounded existential in (5.20) allows for the subtyping of the contravariant

occurrence of self, the bounded universal (5.19) clearly does not. This provides a more

abstract explanation of why subtyping of store specifications (in the sense of pointwise

subtyping in each location) must fail.

We note that it would be interesting to obtain a semantics of object types like (5.20)

also in the case of imperative objects. However, we are not aware of any work on seman-

tics of higher-order store and existential types.

Chapter 6

Recursive Specifications

In this section we investigate an extension of Abadi and Leino’s logic with recursive speci-

fications. In analogy with recursive types, these are necessary when a field of an object or

the result of one of the object’s methods are supposed to satisfy the same specification

as the object itself. In particular, they are needed to specify any recursive datatype: Refer-

ring back to the example of the account manager in Table 4.1, if AManager should include

a list of accounts, we would need a recursive specification A such that

〈l, σ〉 ∈ JAK ⇐⇒ 〈σ.l.head, σ〉 ∈ JAAccountK ∧ 〈σ.l.tail, σ〉 ∈ JAK (6.1)

We extend the syntax of specifications, so that the recursive specification

µX. [head : AAccount, tail : X] (6.2)

denotes the predicate (6.1).

Below we discuss in more detail how recursive specifications can be dealt with in the

logic. Section 6.1 presents the syntax of recursive specifications along with a number of

proof rules. The semantics of recursive specifications is given in Section 6.2; analogu-

ously to the preceding chapter we again define a semantics of store specifications. Sec-

tion 6.3 adapts the soundness proof: The main difficulty is in establishing the analogue

of Lemma 5.2.1; see Section 6.3.1.

6.1 Syntax and Proof Rules

The introduction of recursive specifications µ(X)A proceeds very much like the devel-

opment of recursive types of Chapter 3: Meaningless specifications such as µ(X)X are

prevented by only allowing recursion through object specifications.

A,B ::= > | bool | [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J | µ(X)A

A, B ∈ RecSpec ::= A | X
(6.3)

where X ranges over an infinite set SpecVar of specification variables. X is bound in

µ(X)A, and as usual we identify specifications up to the names of bound variables and

reordering of components.

104 Chapter 6. Recursive Specifications

Table 6.1 Well-formed recursive object specifications and contexts

(Context Emp)
�;� ` ok

(Context Spec)
Γ ;∆ ` ok Γ ;∆ ` A x ∉ dom(Γ)

Γ , x:A;∆ ` ok

(Context Var)
Γ ;∆ ` Y X ∉ Γ

Γ ;∆, X≺:Y ` ok

(Context Top)
Γ ;∆ ` ok X ∉ Γ

Γ ;∆, X ≺:> ` ok

(Spec Var)
Γ ;∆, X ≺:A,∆′ ` ok

Γ ;∆, X ≺:A,∆′ ` X

(Spec Const)
Γ ;∆ ` ok

Γ ;∆ ` >

Γ ;∆ ` ok

Γ ;∆ ` bool

(Spec Obj)

A ≡ [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J
Γ ;∆ ` Ai ∀i ∈ I Γ , yj :A;∆ ` Bj [Γ , yj :A] ` Tj ∀j ∈ J

Γ ;∆ ` [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J

(Spec Rec)
Γ ;∆, X ≺:> ` A

Γ ;∆ ` µ(X)A

We introduce contexts ∆ that contain specification variables with an upper bound,

X≺:A, where A is either another variable or >. These contexts play the same rôle as con-

texts for recursive types (cf. Section 3.3.1). However, specifications may also contain free

term variables. Thus we additionally need the specification contexts Γ of Section 4.3.1: In

the rules of the logic we replace every judgement Γ ` a : A :: T by Γ ;∆ ` a : A :: T , and

the definitions of well-formed specifications and well-formed specification contexts are

extended. The inference rules defining these notions are contained in Table 6.1. We often

write ∆, X,∆′ for ∆, X≺:>,∆′.

Subspecifications for recursive specifications are obtained by analogy to the “usual”

recursive subtyping rule (Amadio and Cardelli 1993): The subspecification relation Γ ;∆ `

A≺:B is induced by

(Subspec Rec)
Γ ;∆, Y ≺:>, X≺:Y ` A≺:B

Γ ;∆ ` µX.A≺:µY.B

In particular, compare this to the rule (RecSub Rec) of Table 3.5 on page 45. > is the

greatest specification. More precisely, the subspecification relation Γ ;∆ ` A≺:B is the

least reflexive transitive relation closed under the rules summarised in Table 6.2.

In the rule (Subspec Obj) we use the trivial specification > for the self parameter yj

in the antecedent Γ , yj :>;∆ ` Bj that a method result specification Bj is well-formed, and

similarly in the antecedent Γ , yj :>;∆ ` Bj ≺:B′j that indeed Bj ≺:B′j holds. Note that this

works since well-formedness essentially depends on verifying that the nested transition

relations do not have free variables other than the ones appearing in the context. Since the

assertion language for transition relations is untyped first-order logic, the precise types

of term variables are not relevant for this purpose. In fact, there wouldn’t be a type for

6.1. Syntax and Proof Rules 105

Table 6.2 Subspecification relation for recursive object specifications

(Subspec Top)
Γ ;∆ ` A

Γ ;∆ ` A≺:>

(Subspec Obj)

Γ ;∆ ` Ai ∀i ∈ I Γ , yj :>;∆ ` Bj ∀j ∈ J

[Γ , yj :>] ` Tj ∀j ∈ J [Γ , yj :>] ` T
′
j ∀j ∈ J

′ I′ ⊆ I

Γ , yj :>;∆ ` Bj ≺:B′j ∀j ∈ J
′ `fo Tj → T ′j ∀j ∈ J′ J′ ⊆ J

Γ ;∆ ` [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J ≺: [fi :Ai, mj :ς(yj)B
′
j ::T

′
j]i∈I′,j∈J′

(Subspec Rec)
Γ ;∆, Y ≺:>, X ≺:Y ` A≺:B

Γ ;∆ ` µX.A≺:µY.B

(Subspec Var)
Γ ;∆, X ≺:A,∆′ ` ok

Γ ;∆, X≺:A,∆′ ` X≺:A

(Subspec Fold)
Γ ;∆ ` µX.A

Γ ;∆ ` A[(µX.A)/X]≺:µX.A

(Subspec Unfold)
Γ ;∆ ` µX.A

Γ ;∆ ` µX.A≺:A[(µX.A)/X]

the “auxiliary” variables ranging over field names and locations (see also the discussion

following Remark 4.3.2 on page 75).

As will be seen from the semantics below, in our model a recursive specification and

its unfolding are not just isomorphic but equal, i.e., JµX.AK = JA[(µX.A)/X]K. Because

of this, we do not need to introduce fold and unfold terms: We can deal with folding

and unfolding of recursive specifications through the subsumption rule once we close the

subspecification relation under the rules (Subspec Fold) and (Subspec Unfold). We will

prove their soundness below.

First, let us consider a simple example. Let a ≡
[

f = 0, m = ς(y)y.f:=y.f+ 1; y
]

be an

object with a method returning self, after incrementing its field f. A specification of its

behaviour is the following

A ≡ µ(X)
[

f : int, m : ς(y)X::result = y ∧ selpost(y, f) = selpre(y, f)+ 1
]

we abbreviate the transition relation by T . The proof of ` a : A is simple: By (AL Sub) and

(AL Obj) we obtain

` 0 : int::Tres(0) y :A ` y.f:=y.f+ 1; y : A::T

` a :
[

f : int, m : ς(y)A::T
]

:: Tobj(f = 0)

` a : A :: Tobj(f = 0)

where `
[

f : int, m : ς(y)A::T
]

≺:A holds by (Subspec Fold). The proof of ` 0 : int::Tres(0)

is trivial, the proof of the second obligation proceeds as in the system without recursive

specifications: By (AL Upd) and (AL Var) (and obvious rules for integer expressions),

y :A ` y : A::Tres(y)

...

y :A ` y.f+ 1 : int::Tres(selpre(y, f)+ 1)

y :A ` y.f:=y.f+ 1 : []::Tupd(y, f, selpre(y, f)+ 1)

106 Chapter 6. Recursive Specifications

Table 6.3 Recursive object specifications

‖bool‖Σ
def
= BVal

‖>‖Σ
def
= Val

‖B‖Σ
def
= {l ∈ Loc | �;� ` Σ.l≺:B} where B ≡ [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J

‖µ(X)A‖Σ
def
= {v ∈ Val | v ∈ ‖A[µ(X)A/X]‖Σ}

and by (AL Var) also

y :A ` y : A::Tres(y)

Using the rule (AL Let) for the sequential composition, the result follows from

Tupd(y, f, selpre(y, f)+1)[selint/selpost, allocint/allocpost] ∧ Tres(y)[selint/selpre, allocint/allocpre] → T

The idea is thus that proving recursive specifications proceeds by pushing the recursive

type sufficiently far “down” and then using the rules of the original system.

6.2 Semantics of Recursive Specifications

6.2.1 Existence of Store Specifications

Next, we adapt our notion of store specification to recursive specifications. The existence

proof is very similar to the one given in Section 5.1.

Definition 6.2.1. A store specification is a record Σ ∈ RecLoc(RecSpec) such that for all

l ∈ dom(Σ),

Σ.l ≡ µ(X)[fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J

is a closed (recursive) object specification. Let RecStSpec be the set of all such store specifi-

cations.

Note that because of the (Subspec Fold) and (Subspec Unfold) rules of recursive

specifications, the requirement that only object specifications with a µ-binder in head

position occur in Σ is no real restriction.

Definition 6.2.2 (Recursive Object Specifications). Let Σ ∈ RecStSpec. For closed specifica-

tions A define ‖A‖Σ ⊆ Val inductively as in Table 6.3. Note that this is a proper definition

since, in the last case, the number of binders µ in head position strictly decreases with each

unfolding, due to the formal contractiveness ensured by the syntactic restriction in (6.3).

The definition is extended to specification contexts ‖Γ‖Σ ⊆ Env as in Definition 5.1.4 on

page 79.

The definition of the functional Φ (cf. Definition 5.1.7) remains virtually the same

apart from an unfolding of the recursive specification in the cases for field and method

6.2. Semantics of Recursive Specifications 107

Table 6.4 Store predicate for recursive object specifications

〈σ,φ〉 ∈ Φ(Y ,X)Σ
def
⇐⇒ (Dom) dom(Σ) = dom(φ) ∧

∀l ∈ dom(Σ).dom(Σ.l) = [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J =⇒

dom(φ.l) = {mj}j∈J ; and

∀l ∈ dom(Σ) where Σ.l ≡ [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J :

(F) ∀i ∈ I. σ .l.fi ∈ ‖Ai[Σ.l/X]‖Σ; and

(M) ∀j ∈ J ∀Σ′ å Σ ∀σ ′, σ ′′ ∈ St ∀φ′ ∈ RSF ∀l′ ∈ Loc ∀v ∈ Val.

l′ ∈ ‖Σ.l‖Σ′ ∧ 〈σ
′,φ′〉 ∈ YΣ′ ∧ σ.l.mj(l

′, σ ′) = 〈v,σ ′′〉 =⇒

∃Σ′′ å Σ′ ∃φ′′ ∈ RSF. φ.l.mj(l
′, σ ′,φ′,Σ′) = (Σ′′,φ′′) ∧

(M1) (πVal(σ
′), v,πVal(σ

′′)) ∈ JTj[l′/yj]K
(M2) 〈σ ′′,φ′′〉 ∈ XΣ′′

(M3) v ∈
∥

∥Bj[Σ.l/X][l
′/yj]

∥

∥

Σ′′

result specifications: In the definition of the domain of choice functions, replace the set

of (syntactic) store specifications StSpec by recursive ones, RecStSpec,

RSF = RecLoc(RecM(Loc× St× RSF× RecStSpec ⇀ RecStSpec× RSF))

Definition 6.2.3. Let R
def
= P(St × RSF)RecStSpec denote the collection of families of subsets

of St × RSF, indexed by store specifications (in the sense of Definition 6.2.1). We define a

functional Φ :Rop ×R →R in Table 6.4, and write

JΣK def
= {σ ∈ St | ∃φ ∈ RSF. 〈σ,φ〉 ∈ fix(Φ)Σ}

The proof of Lemma 5.1.8 can be adapted to show that this functional also has a

unique fixed point:

Lemma 6.2.4. Functional Φ, defined in Table 6.4, has a unique fixpoint fix(Φ) ∈ R.

6.2.2 Semantics

We extend the interpretation of specifications of Section 4.3.4 to the new cases in Ta-

ble 6.5, where η maps specification variables to admissible subsets of Val× St: We write

η ` ∆ if, for all X≺:Y in ∆, η(X) ⊆ η(Y).

We briefly observe the following facts, (the duals of) which are standard (Davey and

Priestley 2002).

• By Tarski’s Fixed Point Theorem, every monotonic map f : L → L on a complete

lattice (L,≤) has a greatest fixed-point gfp(f) (which is in fact the greatest post-

fixed point).

• If f : L → L additionally preserves meets of decreasing countable chains x0 ≥ x1 ≥

. . . , i.e., f (
∧

i xi) =
∧

i f (xi), then the greatest fixed point of f can be obtained as

gfp(f) =
∧

{f n(>) | n ∈ N}

where > is the greatest element of L.

108 Chapter 6. Recursive Specifications

Table 6.5 Interpretation of recursive specifications

JΓ ;∆ ` XKρη def
= η(X)

JΓ ;∆ ` boolKρη def
= BVal× St

JΓ ;∆ ` >Kρη def
= Val× St

JΓ ;∆ ` µ(X)AKρη def
= gfp(λχ. JΓ ;∆, X≺:> ` AKρη[X := χ])

JΓ ;∆ ` BKρη def
=



























〈l, σ〉

(i) ∀i ∈ I. 〈σ.l.fi , σ〉 ∈ JΓ ;∆ ` AiKρη
(ii) ∀j ∈ J. σ .l.mj(l, σ) = 〈v,σ ′〉 =⇒

〈v,σ ′〉 ∈ JΓ , yj :B;∆ ` BjKρ[yj := l]η

∧ (πVal(σ), v,πVal(σ
′)) ∈ J[Γ , yj :B] ` TjKρ[yj := l]



























where B ≡ [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J

• For a complete lattice (L,≤) and any set A, the set of maps A→ L forms a complete

lattice when ordered pointwise, with the meet of {fi | i ∈ I} given by λa.
∧

i fi(a).

• The greatest fixed point operator is monotonic: Suppose f ≤ g are monotonic maps

in the lattice L→ L, then gfp(f) ≤ gfp(g).

• Composition preserves meets of descending chains: If f0 ≥ f1 ≥ . . . and g0 ≥

g1 ≥ . . . are maps in L → L s.t. every fi and gj is monotonic and preserves meets

of descending chains then
∧

i fi ◦
∧

j gj =
∧

n(fn ◦ gn). It follows that gfp(
∧

i fi) =
∧

i gfp(fi) i.e., the operator gfp also preserves meets of chains.

LetAdm(Val× St) denote the set of admissible subsets of Val× St, i.e., those subsets that

are closed under taking least upper bounds of countable chains. Since Adm(Val × St)

is closed under arbitrary intersections it forms a complete lattice when ordered by set

inclusion. Therefore, the set of specification environments η : SpecVar → Adm(Val× St)

endowed with the pointwise ordering forms a complete lattice.

In the following, we show that the interpretation of specifications given above is well-

defined. More precisely, we show that meets of descending chains of environments are

preserved.

Lemma 6.2.5 (Well-definedness). JΓ ;∆ ` AK preserves meets of descending chains:

η0 ≥ η1 ≥ . . . =⇒ JΓ ;∆ ` AKρ(∧i ηi) =
⋂

i JΓ ;∆ ` AKρηi

In particular, this result shows that the greatest fixed point used in the definition of recursive

specifications in Table 6.5 exists, by the observations on complete lattices and monotonic

maps made above.

Proof. We show this lemma by induction on the structure of A. The only interesting case

is where A is of the form µ(X)B.

Suppose η0 ≥ η1 ≥ If we let fi :Adm(Val× St)→Adm(Val× St),

fi(χ)
def
= JΓ ;∆, X ` BKρηi[X := χ], i ∈ N

6.3. Soundness 109

then the induction hypothesis entails that each fi is monotonic, and f0 ≥ f1 ≥ . . . is a

descending chain of environments. Moreover, since for each i ∈ N and descending chain

χ0 ⊇ χ1 ⊇ . . . inAdm(Val× St)

∧

j ηi[X := χj] = ηi[X :=
⋂

j χj]

the induction hypothesis shows that each fi preserves meets:

fi(
⋂

j χj) = JΓ ;∆, X ` BKρ(∧j ηi[X := χj])

=
⋂

j JΓ ;∆, X ` BKρ(ηi[X := χj])

=
⋂

j fi(χj)

We obtain

JΓ ;∆ ` AKρ(∧i ηi) = gfp(λχ. JΓ ;∆, X ` BKρ(∧i ηi)[X := χ]) by definition

= gfp(λχ. JΓ ;∆, X ` BKρ(∧i ηi[X := χ])) pointwise meet

= gfp(λχ.
⋂

i JΓ ;∆, X ` BKρηi[X := χ]) by induction

= gfp(
∧

i fi) pointwise meet

=
⋂

i gfp(fi) gfp preserves meet

=
⋂

i JΓ ;∆ ` AKρηi by definition

which concludes the proof.

Lemma 6.2.6 (Substitution). For all Γ ;∆, X ` A, Γ ;∆ ` B, ρ and η,

JΓ ;∆, X ` AKρ(η[X:= JΓ ;∆ ` BKρη]) = JΓ ;∆ ` A[B/X]Kρη

Proof. By induction on A.

6.3 Soundness

6.3.1 Syntactic Approximations

Recall the statement of Lemma 5.2.1, one of the key lemmas in the proof of the soundness

theorem:

∀σ,Σ, l, A. A closed ∧ σ ∈ JΣK ∧ l ∈ ‖A‖Σ =⇒ 〈l, σ〉 ∈ JAK (6.4)

In Section 5.2 this was proved by induction on the structure of A. This inductive proof

cannot be extended directly to prove a corresponding result for recursive specifications:

The recursive unfolding in cases (F) and (M3) of Definition 6.2.3 would force a similar

unfolding of A in the inductive step, thus not necessarily decreasing the size of A.

Instead, we consider finite approximations as in (Amadio and Cardelli 1993), where we

get rid of recursion by unfolding a finite number of times and then replacing all remaining

occurrences of recursion by >. We call a specification non-recursive if it does not contain

any occurrences of specifications of the form µ(X)B.

110 Chapter 6. Recursive Specifications

Table 6.6 Approximations

X|k+1 def
= X

>|k+1 def
= >

bool|k+1 def
= bool

µ(X)A|k+1 def
= A[µ(X)A/X]|k+1

B|k+1 def
= [fi : Ai|k, mj : ς(yj)Bj |k :: Tj]i∈I,j∈J

where B ≡ [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J

Definition 6.3.1 (Approximations). For each A ∈ RecSpec and k ∈ N, we define A|0
def
= >

and A|k+1 by the cases given in Table 6.6.

Note that, as in (Amadio and Cardelli 1993), well-definedness of approximation can

be shown by a well-founded induction on the lexicographic order on k and the number

of µ in head position. In particular recall that our definition of recursive specifications

syntactically ruled out troublesome cases like µ(X)X.

Properties of Approximations

Unfortunately, approximations A|k as defined above do not in fact approximate A (from

above) with respect to the subspecification relation ≺: , the reason being the invariance in

field specifications. For example, if A ≡ [f1 : X, f2 : bool] then

µ(X)µ(Y)A|2 = [f1 : µ(X)µ(Y)A, f2 : bool]|2

= [f1 : µ(X)µ(Y)A|1, f2 : bool|1]

= [f1 : [f1 : µ(X)µ(Y)A, f2 : bool]|1, f2 : bool]

= [f1 : [f1 : µ(X)µ(Y)A|0, f2 : bool|0], f2 : bool]

= [f1 : [f1 : >, f2 : >], f2 : bool]

By inspection of the rules, ` µ(X)µ(Y)A≺: µ(X)µ(Y)A|2 requires to show

Γ ;∆ ` [f1 : [f1 : µ(X)µ(Y)A, f2 : bool], f2 : bool]≺: [f1 : [f1 : >, f2 : >], f2 : bool] (6.5)

for appropriate Γ and ∆. But subspecifications of object specifications can only be derived

for equal components f1, by the rule (Subspec Obj) of Section 4.3.In particular, bool≺:>

does not imply that (6.5) holds.

For this reason we consider the more generous subspecification relation that also

allows for subspecifications in field components, by replacing the rule (Subspec Obj) for

object specifications with (Subspec Obj’), given in Table 6.7.

We write
F
≺: for this relation, and observe that

` A≺:B =⇒ ` A
F
≺: B (6.6)

6.3. Soundness 111

Table 6.7 The generalised object subspecification rule

(Subspec Obj’)

Γ ;∆ ` Ai ∀i ∈ I

Γ ;∆ ` Ai ≺:A′i ∀i ∈ I
′

Γ , yj :>;∆ ` Bj ∀j ∈ J

Γ , yj :>;∆ ` Bj ≺:B′j ∀j ∈ J
′ [Γ , yj :>] ` Tj ∀j ∈ J I′ ⊆ I

`fo Tj → T ′j ∀j ∈ J′ [Γ , yj :>] ` T
′
j ∀j ∈ J

′ J′ ⊆ J

Γ ;∆ ` [fi :Ai , mj :ς(yj)Bj ::Tj]i∈I,j∈J ≺: [fi :A
′
i , mj :ς(yj)B

′
j ::T

′
j]i∈I′,j∈J′

The relation
F
≺: is still sufficient to guarantee soundness with respect to the semantics JAK

of Section 6.2.2, as shown in Lemma 6.3.4 below. First, we obtain the following approxi-

mation lemma for the
F
≺: relation, justifying the name of the operation A|k.

Lemma 6.3.2 (Approximation). For all specifications Γ ;∆ ` A, the following hold.

1. For all k ∈ N, Γ ;∆ ` A
F
≺: A|k.

2. For all k, l ∈ N, Γ ;∆ ` A|k+l
F
≺: A|k.

3. If A is non-recursive then there exists n ∈ N such that for all k ≥ n, A ≡ A|k.

Sketch of proof. The proofs are by induction on the lexicographic order on k and the

number of binders µ in head position in A, then considering cases for the specification A.

Lemma 6.3.3 (Monotonicity of (·)|k). For all Γ , ∆, A, B and k ∈ N,

Γ ;∆ ` A
F
≺: B =⇒ Γ ;∆ ` A|k

F
≺: B|k

Proof. By induction on the derivation of Γ ;∆ ` A
F
≺: B. The case for (Subspec Top) is

immediate. The cases for (Subspec Fold) and (Subspec Unfold) follow by reflexivity of
F
≺:, since µ(X)A|k ≡ A[(µ(X)A)/X]|k for all k. The case for (Subspec Obj’) follows by

applying the induction hypothesis to all component specifications.

Finally, in the case (Subspec Var), necessarily A ≡ X and there exists an assumption

X≺:B in ∆. Without loss of generality let k > 0. By definition, X|k ≡ X. By Lemma 6.3.2

part (1), Γ ;∆ ` B
F
≺: B|k. Thus by transitivity also Γ ;∆ ` X|k

F
≺: B|k.

Soundness of Subspecification

Soundness of subspecification is established next:

Lemma 6.3.4 (Soundness of
F
≺:). If Γ ;∆ ` A

F
≺: B, ρ ∈ Env and η î ∆ then

JΓ ;∆ ` AKρη ⊆ JΓ ;∆ ` BKρη

Proof. By induction on the derivation of Γ ;∆ ` A
F
≺: B. We consider cases depending on

the last rule applied in this derivation.

112 Chapter 6. Recursive Specifications

• The cases for reflexivity and transitivity are immediate.

• Case (Top).

By inspection of the rule, necessarily B ≡ >, and from the semantics

JΓ ;∆ ` >Kρη = Val× St ⊇ JΓ ;∆ ` AKρη

for all A.

• Cases (Fold) and (Unfold).
These cases follow from the fact that the denotation of µ(X)A is indeed a fixed
point,

JΓ ;∆ ` µ(X)AKρη = gfp(λχ. JΓ ;∆, X ` AKρη[X = χ]) by definition

= JΓ ;∆, X ` AKρ(η[X = JΓ ;∆ ` µ(X)AKρη]) fixed point

= JΓ ;∆ ` A[µ(X)A/X]Kρη Subst. Lemma 6.2.6

• Case (Subspec Var).

From the conclusion of the rule, there is some specification variable X such that

A ≡ X and X ≺:B occurs in ∆. Recall that the only upper bounds in ∆ are of the

form Y or >, for Y ∈ SpecVar. In the latter case the conclusion is trivial, in the

former, it follows since

η(X) ⊆ η(Y)

holds by assumption η î ∆.

• Case (Subspec Obj’).

By inspection of the rule (Subspec Obj’) we must have

A ≡ [fi : Ai , mj : ς(yj)Bj :: Tj]i∈I,j∈J

and

B ≡ [fi : A′i , mj : ς(yj)B
′
j :: T ′j]i∈I′,j∈J′

such that for all i ∈ I′ and j ∈ J′, Γ ;∆ ` Ai
F
≺: A′i and Γ , yj :>;∆ ` Bj

F
≺: B′j and

`fo Tj → T
′
j . By induction hypothesis,

JΓ ;∆ ` AiKρη ⊆ JΓ ;∆ ` A′iKρη

and

JΓ , yj ;∆ ` BjK (ρ[yj := l])η ⊆
q
Γ , yj ;∆ ` B

′
j

y
(ρ[yj := l])η

for all i ∈ I′, j ∈ J′ and l ∈ Loc. Moreover, by soundness of `fo we know

J[Γ], yj ` TjK (ρ[yj := l]) ⊆
q
[Γ], yj ` T

′
j

y
(ρ[yj := l])

for j ∈ J′. So by definition of JΓ ;∆ ` AK and JΓ ;∆ ` BK,

〈l, σ〉 ∈ JΓ ;∆ ` AKρη =⇒ 〈l, σ〉 ∈ JΓ ;∆ ` BKρη

6.3. Soundness 113

• Case (Subspec Rec).

Suppose that Γ ;∆ ` µ(X)A
F
≺: µ(Y)B has been derived from the premiss

Γ ;∆, Y ≺:>, X≺:Y ` A
F
≺: B

We use the fact that JΓ ;∆ ` µ(Y)BKρη is the greatest post-fixed point of the map f

where

f (χ)
def
= JΓ ;∆, Y ` BKρη[Y := χ]

which is monotonic according to Lemma 6.2.5. Since α
def
= JΓ ;∆ ` µ(X)AKρη is a

fixed point of λχ. JΓ ;∆, X ` AKρη[X := χ] we calculate

α = JΓ ;∆, Y , X≺:Y ` AKρη′ Γ ;∆, X ` A independent of η(Y)

⊆ JΓ ;∆, Y , X≺:Y ` BKρη′ by induction

= f (α) Γ ;∆, Y ` B independent of η(X)

where η′
def
= η[X := α,Y := α], which shows α is a post-fixed point of f . Note that

we can apply induction in the second line since η′(X) ⊆ η′(Y) holds. Hence,

JΓ ;∆ ` µ(X)AKρη = α ⊆ gfp(f) = JΓ ;∆ ` µ(Y)BKρη

as required.

Remark 6.3.5. While we have just established soundness of
F
≺: with respect to the semantics

JAK of specifications as defined in Table 6.5, it should be noted that this is not the case for

the semantics ‖A‖ (cf. Table 6.3). In particular, the relation
F
≺: is not sufficient to establish

an invariance result corresponding to the key Lemma 5.2.5; the obvious problems are the

combination of field update and weakening along field specifications permitted through

rule (Subspec Obj’).

A crucial difference between JAK and ‖A‖ is that JAK is defined purely in terms of field

selection and method invocation. This provides an explanation why Lemma 6.3.4 could be

established.

Relating Semantics and Syntactic Approximations

Together, Lemma 6.3.4 and Lemma 6.3.2(1) show JΓ ;∆ ` AKρη ⊆
q
Γ ;∆ ` A|k

y
ρη for all

η î ∆ and k ∈ N; in particular,

JAKη ⊆
⋂

k∈N

q
A|k

y
η (6.7)

for closed specifications A. For the reverse inclusion, we use the characterisation of

greatest fixed points as meet of a descending chain, which is in close correspondence

with the syntactic approximations.

Lemma 6.3.6 (Combining Substitution and Approximation). For all specifications A, B, all

X such that Γ ;∆ ` B and Γ ;∆, X ` A, and for all k, l ∈ N

Γ ;∆ ` A[B/X]|l
F
≺: A[B|k/X]|l

In particular,
q
Γ ;∆ ` A[B/X]|l

y
ρη ⊆

q
Γ ;∆ ` A[B|k/X]|l

y
ρη for all η î ∆, by Lemma 6.3.4.

114 Chapter 6. Recursive Specifications

Proof. The proof is by induction on the lexicographic order on l and the number of µ in

head position.

• Case l = 0. By definition, A[B/X]|0 ≡ > and A[B|k/X]|0 ≡ >. Thus

Γ ;∆ ` A[B/X]|0
F
≺: A[B|k/X]|0

follows immediately from reflexivity of the
F
≺: relation.

• Case l > 0. We consider possible cases for A:

– A is X. By definition of substitution, A[B/X]|l ≡ B|l and A[B|k/X]|l ≡ B|k|l . By

Lemma 6.3.2 part (1), Γ ;∆ ` B
F
≺: B|k. Thus

Γ ;∆ ` B|l
F
≺: B|k|l

follows by Lemma 6.3.3.

– A is >,bool or Y ≠ X. Then ` A[B/X]|l ≡ A|l and A[B|k/X]|l ≡ A|l. Thus

Γ ;∆ ` A[B/X]|l
F
≺: A[B|k/X]|l

follows by reflexivity of the
F
≺: relation.

– A is [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J . Then, by induction hypothesis,

Γ ;∆ ` Ai[B/X]|
l−1

F
≺: Ai[B|

k/X]|l−1

and

Γ , yj :A;∆ ` Bj[B/X]|
l−1

F
≺: Bj[B|

k/X]|l−1

for all i ∈ I and j ∈ J. Hence, by definition of
F
≺: and (·)|l

Γ ;∆ ` A[B/X]|l
F
≺: [fi : Ai[B|

k/X],mj : Bj[B|
k/X]]|l

By definition, [fi : Ai[B|k/X],mj : Bj[B|k/X]]|l ≡ A[B|k/X]|l from which the

statement of the Lemma follows.

– A is µ(Y)C, without loss of generality Y not free in B. Then by induction hy-

pothesis we find Γ ;∆ ` C[A/Y][B/X]|l
F
≺: C[A/Y][B|k/X]|l . Using properties

of syntactic substitutions, we calculate

A[B/X]|l ≡ µ(Y)(C[B/X])|l substitution

≡ C[B/X][(µ(Y)(C[B/X]))/Y]|l definition of (·)|l

≡ C[B/X][(A[B/X])/Y]|l substitution

≡ C[A/Y][B/X]|l Y ∉ fv(B)

and analogously C[A/Y][B|k/X]|l ≡ A[B|k/X]|l , which entails the result.

6.3. Soundness 115

Lemma 6.3.7 (Approximation of Specifications). For all Γ ;∆ ` A, for all ρ ∈ Env and

environments η î ∆,

JΓ ;∆ ` AKρη = ⋂k∈N
q
Γ ;∆ ` A|k

y
ρη

Proof. By (6.7), all that remains to show is JΓ ;∆ ` AKρη ⊇ ⋂k∈N
q
Γ ;∆ ` A|k

y
ρη. We pro-

ceed by induction on the lexicographic order on pairs (M,A) where M is an upper bound

on the number of µ-binders in A. For the base case, M = 0, by Lemma 6.3.2(3) there exists

n ∈ N such that for all k ≥ n, A|k ≡ A, and so in fact

JΓ ;∆ ` AKρη = JΓ ;∆ ` A|nKρη ⊇ ⋂

k∈N

q
Γ ;∆ ` A|k

y
ρη

Now suppose that A contains at most M + 1 µ binders. We consider cases for A.

• Case A is >, X or bool. Then as above, there exists n ∈ N such that for all k ≥ n,

A|k ≡ A and we are done.

• Case A is [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J . Then, by induction hypothesis,

JΓ ;∆ ` AiKρη ⊇
⋂

k∈N

q
Γ ;∆ ` Ai|k

y
ρη

and

JΓ , yj ;∆ ` BjK (ρ[yj := l])η ⊇
⋂

k∈N

q
Γ , yj ;∆ ` Bj |k

y
(ρ[yj := l])η

for i ∈ I and j ∈ J. Hence, if 〈l, σ〉 ∈
q
Γ ;∆ ` A|k

y
ρη for all k ∈ N then

〈σ.l.fi , σ〉 ∈
⋂

k∈N

q
Γ ;∆ ` Ai|k

y
ρη ⊆ JΓ ;∆ ` AiKρη

and σ.l.mj(l, σ) = 〈v, σ ′〉 implies

〈v, σ ′〉 ∈
⋂

k∈N

q
Γ , yj ;∆ ` Bj |k

y
(ρ[yj := l])η ⊆ JΓ , yj ;∆ ` BjK (ρ[yj := l])η

by the definition of
q
Γ ;∆ ` A|k

y
ρη. This shows 〈l, σ〉 ∈ JΓ ;∆ ` AKρη as required.

• Case A is µ(X)B. Recall that

JΓ ;∆ ` AKρη = gfp(fA)

is the greatest post-fixed point of fA(χ)
def
= JΓ ;∆, X ` BKρη[X := χ]. We show that

α
def
=
⋂

k∈N

q
Γ ;∆ ` A|k

y
ρη is a post-fixed point of fA, from which

JΓ ;∆ ` AKρη ⊇ ⋂

k∈N

q
Γ ;∆ ` A|k

y
ρη

then follows: First note that by Lemma 6.3.2(2) and Lemma 6.3.4,

η[X :=
q
Γ ;∆ ` A|0

y
ρη] ≥ η[X :=

q
Γ ;∆ ` A|1

y
ρη] ≥ . . .

forms a countable descending chain of environments. Hence we can calculate

fA(α) = JΓ ;∆, X ` BKρη[X := α] def. of fA

= JΓ ;∆, X ` BKρ(∧kη[X := JΓ ;∆ ` A|kKρη]) def. of α and meets

=
⋂

k∈N JΓ ;∆, X ` BKρη[X := JΓ ;∆ ` A|kKρη] Lemma 6.2.5, meets

=
⋂

k∈N JΓ ;∆ ` B[A|k/X]Kρη substitution, Lemma 6.2.6

⊇
⋂

k∈N

⋂

l∈N JΓ ;∆ ` B[A|k/X]|lKρη induction hypothesis

⊇
⋂

m∈N JΓ ;∆ ` B[A/X]|mKρη Lemma 6.3.6, Lemma 6.3.4

=
⋂

k∈N JΓ ;∆ ` A|kKρη def. of µ(X)A|k

i.e., α ⊆ fA(α). Note that we can apply induction in the fourth line since A|k does

not contain any µ and therefore B[A|k/X] contains at most M µ-binders.

This concludes the proof.

116 Chapter 6. Recursive Specifications

6.3.2 Soundness Theorem

After the technical development in the preceding subsection we can now prove (6.4). From

this result the soundness proof of the logic extended with recursive specifications then

follows, along the lines of the proof presented in Section 5.2 for non-recursive specifica-

tions.

Lemma 6.3.8. For all σ ∈ St, Σ ∈ RecStSpec, l ∈ Loc and closed A ∈ RecSpec,

σ ∈ JΣK ∧ l ∈ ‖A‖Σ =⇒ 〈l, σ〉 ∈ JAK

Proof. The proof proceeds by considering finite specifications first. This can be proved

by induction on A, as in Lemma 5.2.1. When applying the induction hypothesis we use

the fact that ` A≺:B implies ` A
F
≺: B, and apply Lemma 6.3.4.

In order to extend the proof to all (possibly recursive) specifications, note that by

Lemma 6.3.2 part (1), ` A
F
≺: A|k holds for all k ∈ N. By assumption l ∈ ‖A‖Σ this

entails ` Σ.l
F
≺: A|k for all k by transitivity. Every A|k is non-recursive, so by the above

considerations, 〈l, σ〉 ∈
q
A|k

y
for all k. Thus

〈l, σ〉 ∈
⋂

k∈N

q
A|k

y
= JAK

by Lemma 6.3.7.

For specifications without free specification variables we obtain

Theorem 6.3.9 (Soundness). If Γ ;� ` a : A :: T then Γ ;� î a : A :: T .

Proof Sketch. Firstly, the key lemma 5.2.5 has to be proved with respect to recursive spec-

ifications (without free specification variables) and the corresponding store specifications.

Apart from the occasional folding and unfolding of recursive specifications this proceeds

as before.

Once this result is established, the proof is analogous to Theorem 5.2.6: Let Σ ∈

RecStSpec, let ρ ∈ ‖Γ‖Σ and suppose σ ∈ JΣK, i.e., 〈σ,φ〉 ∈ fix(Φ)Σ for some φ. Now

suppose that a terminates, i.e., there are v ∈ Val and σ ′ ∈ St such that JaKρσ = 〈v, σ ′〉.
Thus, by the above, there exists φa ∈ SF such that for all l ∈ Loc, φa(l, σ ,φ,Σ) = 〈Σ′, φ′〉

for some Σ′ and φ′ where Σ′ å Σ and 〈σ ′, φ′〉 ∈ fix(Φ)Σ′ . In particular, σ ′ ∈ JΣ′K. Further-

more,

• v ∈ ‖A[ρ/Γ]‖Σ′

• (πVal(σ), v,πVal(σ
′)) ∈ J[Γ] ` T Kρ

In the cases where A is bool or > one easily obtains 〈v, σ ′〉 ∈ J[Γ] ` AKρ from the def-

inition of ‖A[ρ/Γ]‖Σ′ . Otherwise (since by assumption it cannot be a specification vari-

able) A must be a (recursive) object specification. But then Lemma 6.3.8 already entails

〈v, σ ′〉 ∈ JA[ρ/Γ]K = J[Γ] ` AKρ.

Chapter 7

Discussion

The study of Abadi-Leino logic from a denotational viewpoint has not been carried for out

the belief that this particular logic is the best one can devise. However, it was the first

(and, to the best of our knowledge, so far the only) logic for the object-calculus and thus

seemed an ideal starting point for this line of research.

This short chapter summarises our technical results about Abadi and Leino’s logic.

Remaining open questions and avenues for future work are discussed.

7.1 Comparison to Previous Work

7.1.1 A Comparison to Abadi and Leino’s Proof

One clear advantage of the soundness theorem (Theorem 5.2.6) over the original sound-

ness proof presented in (Abadi and Leino 2004) is that its content is immediately evident.

We claim that this is not the case for Abadi and Leino’s soundness theorem, which was

stated with respect to an operational semantics of the object calculus. It takes the form

of a subject reduction theorem, in the sense that if a judgement is derivable for a term,

then it is also derivable for all of its reducts.

Such a syntactic approach works well for type soundness and for Hoare logics of sim-

pler languages, where the meaning of assertions is easy to define. For an example see the

exposition in (Winskel 1993, Chapter 6.5) for a while-language where integers are the only

storable values. However, we believe the applicability of this method in the presence of

higher-order store is questionable: Since (run time) values may provide links to objects in

the store, the statement of the subject reduction theorem must actually incorporate loca-

tions and thus code in the store. Consequently it must refer to the external concept of

store specifications. In contrast to our work, Abadi and Leino did not define a semantics

for store specifications independent of derivability by the proof rules (note that our def-

inition of JΣK relies on subspecification derivations, but not on the judgement derivation

relation). This is not very satisfactory, as soundness of the proof system had not been

established at that point.

In essence, Abadi and Leino’s theorem only establishes the property:

118 Chapter 7. Discussion

If Γ ` [fi = xi , mj = ς(yj)bj]i∈I,j∈J : [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J :: . . . then

executing this program yields a location as result (if it terminates) and changes

the store such that [fi :Ai, mj :ς(yj)Bj ::Tj]i∈I,j∈J can be derived for the object

stored at the result location.

This does not “explain” much, in that object specifications (except those corresponding

to base type) have no “meaning” independent of the operational semantics: As usual

with a subject reduction theorem, one obtains soundness only in the sense that verified

programs do not lead to an error situation.

We conjecture that the reason why Abadi and Leino’s proof nevertheless has some

semantic content is that, at least in the absence of recursive specifications, derivability

of a complex specification is based on derivability of its constituent components, so that

eventually meaning can be given in terms of basic specifications such as bool. Then,

for closed programs of base type, one can define a syntactic characterisation of validity.

However, if this is indeed the case, it remains implicit in the soundness theorem of (Abadi

and Leino 2004).

7.1.2 Store Specifications as Possible Worlds

While our original intention was to start from the untyped denotational semantics of

Chapter 3 and then interpret the specifications A of Abadi and Leino’s logic as predicates,

exactly as in (Reus and Streicher 2004), we found it necessary to introduce the separate

concept of store specifications from (Abadi and Leino 2004) also in our semantic ap-

proach. The reason lies in the design of the logic that implicitly assumes, and guarantees,

that fields of objects can only be updated with values preserving the original specifica-

tion. Since objects are kept in the heap we needed a way to keep track of their respective

specifications.

Due to their syntactic nature (cf. the discussion at the beginning of Section 5.1), store

specifications Σ look like an ad-hoc notion introduced for the sole purpose of obtaining

soundness. We later realised that they relate to an established concept: As mentioned in

Remark 5.1.5 on page 79, store specifications can be seen as Kripke style possible worlds,

indexing sets of untyped values ‖A‖Σ. A transition to a larger world Σ
′ å Σ extends

(possibly strictly) this set of values, ‖A‖Σ′ ⊇ ‖A‖Σ.

Much of our work relies on the fact that store specifications allow us to characterise

these sets of values ‖A‖Σ independent of concrete stores. The import of Lemma 5.2.1 on

page 87 is to relate such a set ‖A‖Σ to the predicate JAK we are really interested in, and

which is defined over Val × St. In fact, much of the work in Chapter 6 is concerned with

establishing a similar lemma for recursive specifications.

With hindsight, finding a possible worlds semantic structure in our model is not really

surprising, as many other semantic models of languages with dynamic allocation of heap

store are possible worlds models, too (Levy 2004; Reddy and Yang 2004; Stark 1998). In

particular, Levy (2004) uses store worlds that are very similar to our store specifications,

but built over simple types rather than specifications. He obtains a typed semantics of a

higher-order language with general storage, as in the programming language ML. In Part III

7.2. Outlook: Towards More Expressive Logics 119

we extend his model with subtyping, and arrive at a typed model of imperative objects.

Interestingly, in order to prove a coherence result, we will again employ a possible worlds

model over untyped terms, with predicates comparable to ‖A‖Σ here.

Stark’s (1998) worlds contain only the allocated locations without any additional infor-

mation, since he is modelling the ν-calculus that only provides references to unit values.

Reddy and Yang (2004) use much more complex relational correspondences consisting of

renamings between visible locations and a relation (itself parameterised over extensions

of renamings) to express representation invariants between hidden locations. The order

on relational correspondences not only reflects the allocation of new memory but also the

“leaking” of previously hidden private locations. These possible worlds are formalised as

subsumptive reflexive graphs (O’Hearn and Tennent 1995).

Finally, we note that the possible worlds approach, at least with regards to higher-

order store as in our and Levy’s models, exploits the fact that worlds are closed types

and specifications, respectively. This can be seen in our Definition 5.1.4 (on page 79) in

the case for object specifications; in Levy’s model, a corresponding case uses syntactic

equality ‘≡’ in place of subspecification ‘≺: ’. In the case of store specifications we heavily

depended on the fact that syntactic descriptions of all semantic values (i.e., locations and

booleans) are available, in order to substitute for free variables in specifications. This

will no longer work for the model in Chapter 8 where values also contain higher-order

functions. We consider a proper investigation of type dependency and specifications for

such a language with higher-order values an important, and challenging, topic for future

research.

7.2 Outlook: Towards More Expressive Logics

One long-term objective is to design a better, more powerful and more complete logic

building on the lessons learnt from analysing Abadi-Leino logic. To that end, we think

one should investigate the following extensions and changes to Abadi and Leino’s cal-

culus (above we have already considered one such extension, in the form of recursive

specifications).

Local Store. In this thesis we have worked with a global store model. In the semantics,

every object, including its fields and methods, is visible to any other object. For Abadi-

Leino logic this was sufficient but one significant feature of object-oriented programs is

encapsulation. Clearly encapsulation is modelled only by a refined notion of store – and

accordingly more refined store specifications. Reddy and Yang (2004) and Benton and

Leperchey (2005) have presented such models for higher-order languages with storable

references but no higher-order store. These models give rise to a large number of correct

program equivalences. The authors expressed the need to extend their models to a full

object-oriented language and to specifications. Coming from the other end, we have a

logic for a simple object-oriented language, but need to incorporate locality and encapsu-

lation.

A complementary approach to finding better (and, most likely, more intricate) models

is to restrict the language by imposing a confinement condition on programs. Banerjee

120 Chapter 7. Discussion

and Naumann (2002) use this approach to prove representation independence for a class-

based Java-like language. It should be interesting to try similar techniques for a language

with higher-order store, such as the object calculus, in order to prove a restricted form of

encapsulation and representation independence.

Invariants of fields. Abadi and Leino’s logic is peculiar in that verified programs need to

preserve store specifications. Put differently, only properties which are in fact preserved

can be expressed by object specifications. In particular, specifying fields in object speci-

fications is limited. For instance recall the bank account from Example 3.3.2. Invariants

like balance ≥ 0, stating that an account comes without overdraft, cannot be formulated.

Note that such an axiom in a transition specification only guarantees that the current bal-

ance is positive. Also note that it would be possible to extend the logic (and soundness

proof) with a subspecification pos≺: int, but demanding balance : pos may be too strong

a requirement: In general it could be necessary to temporarily invalidate the invariant

within local method bodies.

Using a store with local fields as described above, it should become possible to accom-

modate such invariants. Invariance of such a field has to be established only for those

methods that can see it.

Method Parameters. Formal method parameters of the form x:A can be attached to

method specifications – for instance, in the bank account example it would be natural to

have a method deposit:ς(y)∀(x:A)[]::Tdeposit(y, x) – by adding an extra assumption to

the definition of store specifications. When σ ′ ∈ JΣ′K then (M1)–(M3) have to be shown for

all v ∈ ‖A‖Σ′ where v is the actual parameter replacing formal parameter x in the method

call. Note that this means that the range of possible inputs varies with the store specifi-

cation. There are limitations, however, as the resulting object specification B containing

such a method specification must still allow for subspecifications. Thus, its semantics JBK
should not be defined by a recursion with negative occurrences of store.

Dynamic Loading. Dynamic loading of objects is, in a way, already available in the object

calculus (and this is one of its advantages over class-based languages). Loading an object

of which one only knows its specification A = [fi : Ai ; mj : ς(xj)Bj :: Tj] corresponds to

using a command of which one only knows its result specification A. Thus,

x : [load : ς(y)A :: ∃z. Tobj(f = z)] ` x.load : A :: ∃z. Tobj(f = z)

describes dynamic loading where x might be thought of as class loader and the load

command is x.load. It can be used to load any object fulfilling specification A, provided

to us “by the context”.

Recursive Specifications. Recursive specifications are necessary when a field of an object

or a result of one of the object’s methods are supposed to satisfy the same specification as

the object itself. As outlined at the beginning of Section 6 they are needed to implement

recursive datatypes such as lists and trees. In the preceding section we have discussed in

full detail how the logic can be safely enriched by recursive specifications.

7.2. Outlook: Towards More Expressive Logics 121

Parametric Method Specifications. Transition specifications in Abadi-Leino logic cannot

refer to methods. This is unnecessary as methods (and their specifications) are fixed at

object introduction and assumed to be immutable afterwards. But for programs that, for

example, use delegations similar to the Command pattern described in (Gamma, Helm,

Johnson, and Vlissides 1995), this is not quite adequate: The specification in use is not

known at the time of object creation but only at update (and it may change with further

updates). As a remedy one could allow placeholders for specifications (B and T) that can

be shared inside objects. For example let X and Y be such placeholders then

[f : [n : ς(x)X::Y],m : ς(x)X::Y]

states that m satisfies whatever specification n satisfies. Note that only n can be updated

via f. The invariance of specification still holds, it is just that every object providing

a method n will meet specification [n : ς(x)X::Y] and m will still satisfy m : ς(x)X::Y

if it is implemented as m = ς(y)x.f.n. More general transition specifications for m are

conceivable that assume Y to hold only for certain calls of n. To find the right (syntactic)

restrictions for these specifications, the restrictions revealed by the existence theorem

may be helpful.

Method Update. Although method update is not allowed in Abadi-Leino logic, fields can

be updated and thus the methods in a field object, similar to the Decorator pattern

(Gamma, Helm, Johnson, and Vlissides 1995). By the invariance of object specifications,

the object used for the update must satisfy the specification of the field to be updated.

Any extra conditions that the new object may fulfil are not recorded in the logic and

cannot be used later. More useful would be a “behavioural” update where result and

transition specifications of the overriding method can be proper subspecifications of the

original method. Since the design of Abadi-Leino logic relies on the idea of invariance,

any relaxation of this is problematic.

Invariance of Store Specifications. The previous point shows the need for a logic where

not all object specifications are preserved. The conclusion we draw from this fact is that

it will be worthwhile to develop a calculus where invariance properties are made explicit

in the logic. Even though this may clutter proofs (for users of such a logic), it may reveal

limitations of logics with higher-order dynamic store.

We consider this point an interesting one for future investigation.

Towards Class-based Logics. Finally, we think it will be instructive to derive a class-based

logic by translating classes into objects, as indicated in Section 3.4. Note that this would

automatically provide modular reasoning for classes.

122 Chapter 7. Discussion

Indeed, the encoding from Section 3.4 gives rise to a proof rule

A ≡ Object(X)
[

fi :Ai, mj :ς(yj)B
′
j ::T

′
j

]

i∈I′,j∈J′

B ≡ Object(X)
[

fi :Ai, mj :ς(yj)Bj ::Tj

]

i∈I]I′,j∈J]J′

Γ . c : Class(A)::Tres(c) Γ . B≺:A K ⊆ J′

Γ . Bj[B/X]≺:B′j[B/X] `fo Tj → T
′
j ∀j ∈ J′ −K

Γ , x:B . bl : Bl[B/X]::Tl ∀l ∈ J ∪K

Γ . subclass of c:Class(A) with (x:B)

(fi)i∈I (mj = bj)j∈J (override mk = bk)k∈K

end

: Class(B)

similar to the typing rule for classes in Table 3.14. In future work we plan to investigate if

this setting provides useful reasoning principles for languages with dynamic class loading

and inner classes.

7.3 Summary and Conclusions

In this part of the thesis, based on the denotational semantics of Chapter 3, we have

given a soundness proof for Abadi and Leino’s program logic of an object-based language.

Compared to the original proof, which was carried out with respect to an operational se-

mantics, our techniques allowed us to distinguish the notions of derivability and validity:

This result was captured in Theorem 5.2.6. Further, we used the denotational framework

to extend the logic to recursive object specifications, the corresponding soundness result

is Theorem 6.3.9. In comparison to a similar logic presented in (Leino 1998) our notion of

subspecification is structural rather than nominal.

Although our proof is very much different from the original one, the nature of the logic

forces us to work with store specifications too. Information for locations referenced from

the environment Γ will be needed for derivations. Since the context Γ cannot reflect the

dynamic aspect of the store (which is growing) one uses store specifications Σ. While these

store specifications do not show up in the rules of Abadi-Leino logic, they are necessarily

preserved by programs, due to the design of the logic. This is shown as part of the

soundness proof rather than being a proof obligation on the level of derivations.

By contrast to (Abadi and Leino 2004), we can view store specifications as predicates

on stores. However these predicates need to be defined by mixed-variant recursion due

to the form of the object introduction rule. Unfortunately, such recursively defined predi-

cates do not directly admit an interpretation of neither subsumption nor weakening. This

led us to a positive recursive semantics JAK of individual objects, for which the set contain-

ment models the syntactic subspecification relation; this is the content of Lemma 4.3.6.

Conditions (M1) – (M3) in the semantics of store specifications (Definitions and Lem-

mas 5.1.7 and 5.1.8, and 6.2.3 and 6.2.4, respectively) ensure that methods in the store

preserve not only the current store specification but also arbitrary extensions Σ′ å Σ.

This accounts for the (specifications of) objects allocated inbetween definition time of the

method and call time.

Clearly, not every predicate on stores is preserved. As we lack a semantic character-

isation of those specifications that are syntactically definable as Σ, specification syntax

7.3. Summary and Conclusions 123

appears in the definition of σ ∈ JΣK (cf. Definitions 5.1.7 and 6.2.4 on pages 82 and 107,

respectively). More annoyingly, field update requires subspecifications to be invariant in

the field components, otherwise even type soundness is invalidated. We do not know how

to express this property of object specifications semantically on the level of predicates,

and need to use the inductively defined syntactic subspecification relation instead.

The proof of Theorem 5.1.8, establishing the existence of store predicates, provides

an explanation why transition relations of the Abadi-Leino logic express properties of the

flat part of stores only: Semantically, a sufficient condition is that transition relations are

upwards and downwards closed in their first and second store argument, respectively.

In Section 7.1 we have set our model in the wider context of possible worlds models

for languages with store. In Section 7.2 we have also described some of the limitations of

Abadi and Leino’s logic and sketched potential improvements.

Part III

Reasoning in a Typed Model

Chapter 8

A Typed Semantics for Languages with General

References and Subtyping

The goal of this part of the thesis is to find a typed model of objects. Rather than con-

structing such a model directly, we proceed by extending and combining several tech-

niques from the literature, building on work of Reddy, Reynolds and Levy.

A call-by-value higher-order language is considered first, with higher-order functions,

records, references to values of arbitrary type, and subtyping. We then use the fixed-

point encoding of (Reddy 1988; Kamin and Reddy 1994; also see Section 3.2) to obtain a

typed denotational semantics of imperative object-oriented languages, both class-based

and object-based ones.

An intrinsically typed denotational model for a similar higher-order language but with-

out subtyping, based on a possible-world semantics, was recently given by Levy (2002).

Here, this model is adapted and related to an untyped model by a logical relation. Follow-

ing the methodology of Reynolds (2002b), this relation is used to establish coherence of

the typed semantics, with a coercion interpretation of subtyping.

8.1 Introduction

Languages such as Standard ML (Milner, Tofte, Harper, and MacQueen 1997) and Scheme

(Abelson et al. 1998) allow us to store values of arbitrary types, including function types.

Essentially the same effect is pervasive in object-based languages where objects are cre-

ated on-the-fly and arbitrary method code needs to be kept in the store, as argued in Chap-

ter 3. As explained before, this feature – often referred to as higher-order store or general

references – complicates the semantics and logics of such languages considerably (Reus

2002): Besides introducing recursion to the language (Landin 1964), higher-order store in

fact requires the semantic domain to be defined by a mixed-variant recursive equation.

In fact, only few models of typed languages with general references have appeared

in the literature so far (Abramsky, Honda, and McCusker 1998; Ahmed, Appel, and Virga

2002; Levy 2002). Most of the work done on semantics of storage does not readily apply

128 Chapter 8. A Typed Semantics for Languages with General References and Subtyping

to languages with higher-order store (Tennent and Ghica 2000).

In a recent paper, Paul Levy proposed a typed semantics for a language with higher-

order functions and higher-order store (Levy 2002; Levy 2004). This is a possible worlds

model, explicating the dynamic allocation of new (typed) storage locations in the course of

a computation. In this chapter, we extend his model to accommodate subtyping by using

coercion maps. In the terminology of (Reynolds 2002b), we obtain an intrinsic semantics:

Meaning is given to derivations of typing judgements, rather than to terms, with the

consequence that

• ill-typed phrases are meaningless,

• terms satisfying several judgements will be assigned several meanings, and

• coherence between the meaning of several derivations of the same judgement must

be established.

Due to the addition of subtyping to Levy’s model, derivations are indeed no longer unique

and we must prove coherence. A standard approach for such proofs is to transform

derivations into a normal form while preserving their semantics. This can be quite in-

volved, even for purely functional languages. For an illustration of this method refer to

(Breazu-Tannen, Coquand, Gunter, and Scedrov 1991; Mitchell 1996).

In contrast to intrinsic semantics, an extrinsic semantics gives meaning to all terms.

Types and typing judgements are interpreted as, e.g., (admissible) predicates or partial

equivalence relations over an untyped model. Usually, the interpretation of subtyping

is straightforward in such models. In (Reynolds 2002b), Reynolds uses a logical relation

between intrinsic and extrinsic cpo models of a lambda calculus with subtyping (but no

state) to prove coherence. The proof essentially relies on the fact that the denotations

of all derivations of a judgement Γ . e : A are related to the denotation JeK of e in the

untyped model underlying the extrinsic semantics, via the basic lemma of logical relations

(for instance, (Mitchell 1996)). A family of retractions between intrinsic and extrinsic

semantics is then used to obtain the meaning of JΓ . e : AK in terms of Γ , JeK and A alone,

i.e., independent of any particular derivation of the judgement.

The same ideas are applied to obtain a coherence proof for the language considered

here. Two modifications have to be made: Firstly, because of the indexing by worlds we

use a Kripke logical relation (Mitchell and Moggi 1991) to relate intrinsic and extrinsic

semantics — this is straightforward. Secondly, due to the mixed-variant recursion forced

by the higher-order store we can no longer use induction over the type structure to es-

tablish properties of the relations. In fact even the existence of the Kripke logical relation

requires a non-trivial proof — we use the framework of Pitts from Section 2.5 to deal with

this complication.

We believe the combination of higher-order storage and subtyping to be interesting in

its own right. Nevertheless, since our primary interest in this thesis is in semantics and

reasoning principles for object-oriented programs, we note that a number of object en-

codings use a target language similar to the one considered in this chapter (cf. Section 3.2;

also Abadi, Cardelli, and Viswanathan 1996; Kamin and Reddy 1994; Boudol 2004).

8.2. Outline of Part III 129

While we achieve our goal of constructing a model for the object calculus, our at-

tempts to interpret a logic in the style of Abadi and Leino’s were, unfortunately, only

partially successful. More precisely, here we give a semantics to the object calculus of

Abadi and Cardelli (Abadi and Cardelli 1996). This is done using a typed variant of Kamin

and Reddy’s closure model (Reddy 1988; Kamin and Reddy 1994). To the best of our

knowledge this is the first (intrinsically typed) domain-theoretic model of the imperative

object calculus. After presenting this semantics, some evidence that the model of this

chapter may serve as basis for program logics is provided, by adapting the semantic rea-

soning techniques of (Reus and Streicher 2004) to a typed setting. We then describe the

obstacles to devising a sound syntactic proof calculus for this language.

In the preceding part we have given a denotational semantics for a logic of objects

due to (Abadi and Leino 2004), where an untyped cpo model was used. Recall that this

logic has a built-in notion of invariance which makes it very similar to a type system. The

semantic structure of function types (or method types, more precisely) used in Chapter 5

very much resembles that of various possible worlds models for languages with dynamic

allocation (Levy 2002; Reddy and Yang 2004; Stark 1998). We compare our semantics with

an extrinsic per semantics derived from the Kripke logical relation over the typed model,

again following a construction of (Reynolds 2002b).

8.2 Outline of Part III

In summary, our technical contributions in this chapter are

• we present a model of a language that includes general references and subtyping;

• we successfully apply the ideas of (Reynolds 2002b) to prove coherence of the in-

terpretation; and

• we provide the first (intrinsically typed) model of the imperative object calculus of

Abadi and Cardelli (Abadi and Cardelli 1996), based on cpos.

In addition, we shed some more light on the “choice function” construction (page 82) used

to establish the existence of store specifications in Chapter 5.

The outline of this part is as follows. In the next section, language and type system are

introduced. Then, in Sections 8.4 and 8.5, typed and untyped models are presented. The

logical relation is defined next, and retractions between types of the intrinsic semantics

and the untyped value space are used to prove coherence in Section 8.7. In Section 8.8

both a derived per semantics and the relation to our earlier work on the interpretation of

objects are discussed.

Chapter 9 presents the applications of the theory, providing a semantics of objects and

therefore also of classes, by the translation summarised in Section 3.4. We provide several

small examples, illustrating the specification and verification of a non-trivial programs.

Finally, Chapter 10 concludes this part. Besides a summary of the technical results and

a discussion about related work, a number of open questions are listed. Besides, some

initial ideas for local reasoning (Reynolds 2002a) about the language considered here are

presented.

130 Chapter 8. A Typed Semantics for Languages with General References and Subtyping

Table 8.1 Typing

Γ . e : A A � B

Γ . e : B

x:A ∈ Γ

Γ . x : A

Γ . e1 : B Γ , x:B . e2 : A

Γ . let x=e1 in e2 : A Γ . true : bool

Γ . x : bool Γ . e1 : A Γ . e2 : A

Γ . if x then e1 else e2 : A Γ . false : bool

Γ . xi : Ai ∀i ∈ I

Γ . {mi = xi}i∈I : {mi : Ai}i∈I

Γ . x : {mi : Ai}i∈I
Γ . x.mj : Aj

(j ∈ I)

Γ , x:A. e : B

Γ . λx.e : A⇒ B

Γ . x : A⇒ B Γ . y : A

Γ . x(y) : B

Γ . x : A

Γ . newA x : ref A

Γ . x : ref A

Γ . deref x : A

Γ . x : ref A Γ . y : A

Γ . x:=y : 1

8.3 Language

Let L be a countably infinite set of labels, ranged over by m. We consider a single base type

of booleans, bool, records {mi : Ai}i∈I with finite index set I, and function types A ⇒ B.

We set 1
def
= {} for the (singleton) type of empty records. Finally, we have a type ref A

of mutable references to values of type A. Term forms include lambda calculus terms as

well as constructs for creating, dereferencing and updating storage locations. The syntax

of types and terms is given by the grammar:

A,B ∈ Type ::= bool | {mi : Ai}i∈I | A⇒ B | ref A

v ∈ Val ::= x | true | false | {mi = xi}i∈I | λx.e

e ∈ Exp ::= v | let x=e1 in e2 | if x then e1 else e2 | x.m | x(y)

| newA x | deref x | x:=y

As in our presentation of the object calculus earlier, subterms in most of these term

forms are restricted to variables in order to simplify the statement of the semantics in

the next section: There, we can exploit the fact that “evaluation” of subterms that exhibit

side-effects only appear in the let-construct. However, in subsequent examples we will

use a more generous syntax. The reduction of such syntax sugar to the expressions above

should always be immediate.

The subtyping relation A � B is the least reflexive and transitive relation closed under

the rules

Ai � A
′
i ∀i ∈ I

′ I′ ⊆ I

{mi : Ai}i∈I � {mi : A′i}i∈I′

A′ � A B � B′

A⇒B � A′⇒B′

Note that there is no rule for reference types as these need to be invariant, i.e., ref A �

ref B holds only if A ≡ B. A type inference system is given in Table 8.1, where contexts

Γ are finite sets of variable-type pairs, with each variable occurring at most once. As

8.4. Intrinsic Semantics 131

usual, in writing Γ , x:A we assume x does not occur in Γ . A subsumption rule is used for

subtyping of terms.

8.4 Intrinsic Semantics

In this section we recall the possible worlds model of (Levy 2002). Its extension with

records is straightforward, and we interpret the subsumption rule using coercion maps.

8.4.1 Worlds

For each A ∈ Type let LocA be mutually disjoint, countably infinite sets of locations. We let

l range over Loc
def
=
⋃

A∈Type LocA, and may use the notation lA to emphasize that l ∈ LocA.

A world w is a finite set of locations lA ∈ Loc. A world w ′ extends w , written w ′ ≥ w , if

w ′ ⊇ w . We writeW = (W ,≤) for the poset of worlds.

8.4.2 Semantic Domain

Recall from Chapter 2 that pCpo is the category of cpos (not necessarily containing a least

element) and partial continuous functions, and that Cpo is the wide subcategory of pCpo

where morphisms are total.

Informally, a world describes the shape of the store, i.e., the number and names of

locations of each type allocated in the store. In the semantics we want a cpo Sw of w -

stores for each w ∈ W , and a cpo JAKw of values of type A. In fact, we require that

each JAK denotes a co-variant functor from W (considered as posetal category) to Cpo,

formalising the intuition that values can always be used with larger stores. We write the

image of the morphism w ≤ w ′ under JAK as JAKw ′w . Note that, in contrast to types, the

store S is not assumed to be (either co- or contra-variant) functorial: In general there is

no obvious way to either enlarge or restrict a store (Levy 2004).

The cpo of w -stores is defined as

Sw
def
= {|lA : JAKw |}lA∈w (8.1)

consisting of records that provide a value of type A for every location lA listed in the

world w . For worlds w ∈ W , JboolKw
def
= BVal denotes the set {true, false} of truth values

considered as discrete cpo, and similarly Jref AKw
def
= {lA | lA ∈ w} is the discretely or-

dered cpo of A-locations allocated in w -stores. Further, J{mi : Ai}i∈IKw
def
= {|mi : JAiKw |} is

the cpo of all records {|mi = ai|}i∈I with component mi in JAiKw , ordered pointwise. On

morphisms w ≤ w ′, JboolKw
′

w

def
= idBVal is the identity map, and Jref AKw ′w is the inclusion

Jref AKw ⊆ Jref AKw ′ . For records, J{mi : Ai}Kw
′

w

def
= λr.{|mi = JAiKw

′

w (r .mi)|} acts pointwise

on the components. The type of functions A⇒ B is the most interesting, since it involves

the store S:

JA⇒ BKw
def
=

∏

w ′≥w(Sw ′ × JAKw ′ ⇀
∑

w ′′≥w ′(Sw ′′ × JBKw ′′)) (8.2)

This says that a function f ∈ JA⇒ BKw may be applied in any future (larger) store w ′ to

a w ′-store s and value v ∈ JAKw ′ . The computation fw ′(s, v) may allocate new storage,

132 Chapter 8. A Typed Semantics for Languages with General References and Subtyping

Table 8.2 Semantics of types

JboolKw
def
= BVal

JboolKw
′

w

def
= idBVal

Jref AKw
def
= {lA | lA ∈ w}

Jref AKw ′w
def
= λl.l

J{mi : Ai}i∈IKw
def
= {|mi : JAiKi |}i∈I

J{mi : Ai}i∈IKw
′

w

def
= λr.{|mi = JAiKw

′

w (r .mi)|}i∈I

JA⇒ BKw
def
=

∏

w ′≥w(Sw ′ × JAKw ′ ⇀
∑

w ′′≥w ′(Sw ′′ × JBKw ′′))
JA⇒ BKw

′

w

def
= λf λw ′′≥w ′ .fw ′′

Sw
def
= {|lA : JAKw |}lA∈w

and upon termination it yields a store and value in a yet larger world w ′′ ≥ w ′. For

a morphism w ≤ w ′, JA⇒ BKw
′

w (f) = λw ′′≥w ′fw ′′ is the restriction to worlds w ′′ ≥ w ′.

Table 8.2 summarises these requirements.

Equations (8.1) and (8.2) clearly show the effect of allowing higher order store: Since

functions A⇒ B can also be stored, S and JA⇒ BK are mutually recursive. Due to the use

of S in both positive and negative positions in (8.2) a mixed-variant domain equation for

S must be solved. To this end, in (Levy 2002) a bilimit-compact category C is considered

in which the above semantic requirements can be interpreted. From bilimit-compactness

it follows that every locally continuous functor F : Cop × C -→ C has a minimal invariant,

i.e., an object D in C such that F(D,D) = D (omitting isomorphisms) and idD is the least

fixed point of the continuous endofunction δ : C(D,D) → C(D,D) given by δ(e) = F(e, e)

(cf. Chapter 2).

Following (Levy 2002), the semantics of types can thus be obtained as minimal invari-

ant of the locally continuous functor F : Cop × C -→ C that is derived from the domain

equations for types (by separating positive and negative occurrences of the store), and

given in Table 8.3. Here, C is the bilimit-compact category

C
def
=

∏

w∈W pCpo×
∏

A∈Type[W ,Cpo] •→ [W ,pCpo] (8.3)

Recall from Chapter 2 that by [W ,Cpo] •→ [W ,pCpo] we denote the category where ob-

jects are functors A,B : W → Cpo and morphisms are partial natural transformations

µ : A
.
→ B, i.e., for A,B :W → Cpo the diagram

Aw
Aw

′
w ��

µw / Bw
Bw
′

w��
Aw ′ µw′

/ Bw ′

(8.4)

commutes. Thus, the objects of C are pairs D = 〈{DSw}w , {DA}A〉 consisting of a W -

indexed family of cpos DSw , and a Type-indexed family of functors DA : W -→ Cpo. A

8.4. Intrinsic Semantics 133

Table 8.3 Functor F : Cop ×C -→ C

On C-objects D,E

F(D,E)Sw = {|lA : EAw |}lA∈w

F(D,E)boolw = BVal = {true, false}

F(D,E)bool(w≤w ′) = idBVal

F(D,E){mi :Ai}w = {|mi : EAiw |}

F(D,E){mi :Ai}(w≤w ′) = λr.{|mi = EAi(w≤w ′)(r .mi)|}

F(D,E)A⇒Bw =
∏

w ′≥w(DSw ′ ×DAw ′ ⇀
∑

w ′′≥w ′(ESw ′′ × EBw ′′))

F(D, E)A⇒B(w≤w ′) = λfλw ′′ ≥ w ′.fw ′′

F(D,E)ref Aw = {lA | lA ∈ w}

F(D,E)ref A(w≤w ′) = λl.l

On C-morphisms h : D′ -→ D and k : E -→ E′ by

F(h, k)Sw = λs.







lA , kSw (s)lA if kSw (s)lA ↓ for all lA ∈ w

undefined otherwise

F(h, k)boolw = idBVal

F(h, k){mi :Ai}w = λr.







{|mi = kAiw (r .mi)|} if kAiw(r .mi)↓ for all i

undefined otherwise

F(h, k)A⇒Bw = λfλw ′ ≥ w λ〈s, a〉.






































〈w ′′, 〈kSw ′′(s′′), kBw ′′(b)〉〉

if hSw ′(s)↓ and hAw ′(a)↓ and

fw ′(hSw ′(s), hAw ′(a)) = 〈w ′′, 〈s′′, b〉〉

and kSw ′′(s
′′)↓ and kBw ′′(b)↓

undef. otherwise

F(h, k)ref Aw = λl.l

morphism h ∈ C(D, E) consists of partial continuous maps hSw : DSw ⇀ ESw for each

w ∈W , and partial natural transformations hA : DA
.
⇀ EA, for each A ∈ Type.

The first component of the product in (8.3) is used to obtain the recursively defined

cpos Sw
def
= DSw of stores from the minimal invariant D = 〈{DSw}w , {DA}A〉. The sec-

ond component yields JAK def
= DA as the denotation of types. In fact, since [W ,Cpo] is

sub-bilimit-compact within [W ,Cpo] •→ [W ,pCpo] by Proposition 2.4.1, the minimal in-

variant D provides for every A ∈ Type an isomorphism F(D,D)A = DA in the category

[W ,Cpo]. Conceptually, therefore, the model exhibits the common structure of call-by-

value models: the interpretation of a value x1:A1, . . . , xn:An . v : A can be given by a total

natural transformation from JΓ K = JA1K×· · ·× JAnK to JAK where the cpos JAKw need not

necessarily be pointed. We refer to (Levy 2004) for more details.

134 Chapter 8. A Typed Semantics for Languages with General References and Subtyping

Table 8.4 Coercion maps

s

A � A

{

w

= idJAKw

s
P(A � A′) P(A′ � B)

A � B

{

w

= JP(A′ � B)Kw ◦ JP(A � A′)Kw
s
I′ ⊆ I P(Ai � A

′
i) ∀i ∈ I

′

{mi : Ai}i∈I � {mi : A′i}i∈I′

{

w

= λr.{|mi = JP(Ai � A′i)Kw (r .mi)|}i∈I′

s
P(A′ � A) P(B � B′)

A⇒B � A′⇒B′

{

w

= λfλw ′≥w λ〈s, x〉.















〈w ′′, 〈s′, JP(B � B′)Kw ′′ x′〉〉
if fw ′〈s, JP(A′ � A)Kw ′ (x)〉 = 〈w ′′, 〈s′, x′〉〉

undefined otherwise

8.4.3 Semantics

Each subtyping derivation A � B determines a coercion, which is in fact a (total) natural

transformation from JAK to JBK, defined in Table 8.4: We follow the notation of (Reynolds

2002b) and write P(J) to distinguish a derivation of judgement J from the judgement

itself.

In the following we write JΓ Kw for the set of environments, i.e., maps from variables

dom(Γ) to
⋃

A JAKw such that ρ(x) ∈ JAKw for all x:A ∈ Γ . For w ≤ w ′, JΓ Kw
′

w (ρ) denotes

the environment such that JΓ Kw
′

w (ρ)(x) = JAKw ′w (ρ(x)) for x:A in Γ . The semantics of

(derivations of) typing judgments can now be presented,

JΓ . e : AKw : JΓ Kw → Sw ⇀
∑

w ′≥w(Sw ′ × JAKw ′)

Remark 8.4.1. As observed in Levy’s paper, each value Γ . v : A determines a natural

transformation from JΓ K to JAK in [W ,Cpo]. In our case this is a consequence of the

fact that (i) values do not affect the store and (ii) coercion maps determine (total) natural

transformations. We make use of this fact in the definition of the semantics. For example,

in the case of records we do not have to fix an order for the evaluation of the components.

The semantics of subtyping judgements is used for the interpretation of the subsump-

tion rule,

s
P(Γ . e : A) P(A � B)

Γ . e : B

{

w

ρs

=







〈w ′, 〈s′, JP(A � B)Kw ′ a〉〉 if JP(Γ . e : A)Kw ρs = 〈w ′, 〈s′, a〉〉
undefined otherwise

As explained above, the semantics of functions is parameterised over extensions of the

current world w ,

s
P(Γ , x : A. e : B)

Γ . λx.e : A⇒ B

{

w

ρs

= 〈w, 〈s, λw ′ ≥ wλ〈s′, a〉. JP(Γ , x:A. e : B)Kw ′ (JΓ K
w ′

w ρ)[x := a] s′〉〉

8.4. Intrinsic Semantics 135

Table 8.5 Semantics of typing judgements

s
P(Γ . e : A) P(A � B)

Γ . e : B

{

w

ρs

=







〈w ′, 〈s′, JP(A � B)Kw ′ a〉〉 if JP(Γ . e : A)Kw ρs = 〈w ′, 〈s′, a〉〉
undefined otherwise

s

Γ . x : A

{

w

ρs = 〈w, 〈s, ρ(x)〉〉

s
P(Γ . e1 : B) P(Γ , x:B . e2 : A)

Γ . let x=e1 in e2 : A

{

w

ρs

=















JP(Γ , x:B . e2 : A)Kw ′ (JΓ K
w ′

w ρ)[x := b] s′

if JP(Γ . e1 : B)Kw ρs = 〈w ′, 〈s′, b〉〉
undefined otherwises

Γ . true : bool

{

w

ρs = 〈w, 〈s, true〉〉

s
P(Γ . x : bool) P(Γ . ei : A) i = 1,2

Γ . if x then e1 else e2 : A

{

w

ρs

=







JP(Γ . e1 : A)Kw ρs if JP(Γ . x : bool)Kw ρs = 〈w, 〈s, true〉〉

JP(Γ . e2 : A)Kw ρs if JP(Γ . x : bool)Kw ρs = 〈w, 〈s, false〉〉

s
P(Γ . xi : Ai) ∀i ∈ I

Γ . {mi = xi}i∈I : {mi : Ai}i∈I

{

w

ρs = 〈w, 〈s, {|mi = ai|}i∈I〉〉

where 〈w, 〈s, ai〉〉 = JP(Γ . xi : Ai)Kw ρs
s
P(Γ . x : {mi : Ai}i∈I)

Γ . x.mi : Ai

{

w

ρs = 〈w, 〈s, a.m〉〉

where 〈w, 〈s, a〉〉 = JP(Γ . x : {mi : Ai})Kw ρs

s
P(Γ , x : A. e : B)

Γ . λx.e : A⇒ B

{

w

ρs

= 〈w, 〈s, λw ′ ≥ wλ〈s′, a〉. JP(Γ , x:A. e : B)Kw ′ (JΓ K
w ′

w ρ)[x := a] s′〉〉

s
P(Γ . x : A⇒ B) P(Γ . y : A)

Γ . x(y) : B

{

w

ρs = fw(s, a)

where 〈w, 〈s, f 〉〉 = JP(Γ . x : A⇒ B)Kw ρs
and 〈w, 〈s, a〉〉 = JP(Γ . y : A)Kw ρs

136 Chapter 8. A Typed Semantics for Languages with General References and Subtyping

Table 8.6 Semantics of typing judgements (continued)

s
P(Γ . x : A)

Γ . newA x : ref A

{

w

ρs = 〈w ′, 〈s′, lA〉〉

where 〈w, 〈s, a〉〉 = JP(Γ . x : A)Kw ρs,
w ′ = w ∪ {lA} for lA ∈ LocA \ dom(w) and for all l′ ∈ w ′ :

s′.l′ =







JA′Kw
′

w (s.l
′) for l′ ∈ w ∩ LocA′

JAKw ′w (a) for l′ = lAs
P(Γ . x : ref A)

Γ . deref x : A

{

w

ρs = 〈w, 〈s, s.l〉〉

where 〈w, 〈s, l〉〉 = JP(Γ . x : ref A)Kw ρs
s
P(Γ . x : ref A) P(Γ . y : A)

Γ . x:=y : 1

{

w

ρs = 〈w, 〈ŝ, {||}〉〉

where 〈w, 〈s, l〉〉 = JP(Γ . x : ref A)Kw ρs,
〈w, 〈s, a〉〉 = JP(Γ . y : A)Kw ρs and for l′ ∈ w :

ŝ.l′ =







a if l′ = l

s.l′ if l′ ≠ l

Function application is

s
P(Γ . x : A⇒ B) P(Γ . y : A)

Γ . x(y) : B

{

w

ρs = fw(s, a)

where the premiss of the rule yields 〈w, 〈s, f 〉〉 = JP(Γ . x : A ⇒ B)Kw ρs and 〈w, 〈s, a〉〉 =

JP(Γ . y : A)Kw ρs. Most of the remaining cases are similarly straightforward; Tables 8.5

and 8.6 contain the complete definition.

8.5 An Untyped Semantics

We also give an untyped semantics of the language in the (bilimit-compact) category pCpo.

Let Val be a cpo satisfying

Val = BVal+ Loc+ RecL(Val)+ (St× Val⇀ St× Val) (8.5)

where St
def
= RecLoc(Val) denotes the cpo of untyped records with labels from Loc, ordered

by r1 v r2 iff dom(r1) = dom(r2) and r1.m v r2.m for all m ∈ dom(r1); see Chapter 2. The

interpretation of terms, JeK : Env → St ⇀ St × Val, is essentially straightforward, typical

cases are those of abstraction and application:

Jλx.eKησ = 〈σ, λ〈σ ′, v〉. JeKη[x := v]σ ′〉

Jx(y)Kησ =






η(x)〈σ,η(y)〉 if η(x) ∈ [St× Val ⇀ St× Val] and η(y)↓

undefined otherwise

Compared to the intrinsic semantics of the previous section, there are now many more

possibilities of undefinedness if things “go wrong”, for instance, if the denotation of x in

x(y) is not a function value.

8.6. A Kripke Logical Relation 137

The semantics of newA may be slightly surprising as there is still some type informa-

tion in the choice of locations: If η(x)↓, define

JnewA xKησ = 〈σ + {|lA = η(x)|}, lA〉 where lA ∈ LocA \ dom(σ)

and undefined otherwise. Informally, the worlds of the intrinsic semantics are encoded in

the domain of untyped stores. Although σ with dom(σ) = w does not necessarily corre-

spond to a (typed) w -store in any sense, this will be the case for stores being derived from

well-typed terms. This is one of the results of Section 8.6 below; see also the discussion

in Section 8.8.1.

The remaining cases of the definition are given in Table 8.7.

8.6 A Kripke Logical Relation

In Reynolds’ (2002b) article a logical relation between typed and untyped models was used

to establish coherence of the typed semantics. Here this must be slightly generalised to a

Kripke logical relation because of the possible worlds semantics of types. Kripke logical

relations have appeared in work on Kripke lambda models (Mitchell and Moggi 1991), and

more recently in connection with dynamic name creation in the nu-calculus (Zhang and

Nowak 2003; Goubault-Larrecq, Lasota, and Nowak 2002). Kripke logical relations are not

only indexed by types but also by possible worlds, subject to a monotonicity condition

(Lemma 8.6.5 below) stating that related elements remain in relation when moving from

a smaller to a larger world.

In Table 8.8 we now define such a family of Type- and W -indexed relations RAw ⊆

JAKw × Val. Note that the existence of this family R is not straightforward: There are

both positive and negative occurrences of RSt
w in the clause for function types A ⇒ B.

Consequently, R cannot be defined by induction on the type structure, nor does it give

rise to a monotonic operation on (the complete lattice of) admissible predicates so that

the Tarski fixed point theorems would apply directly.

8.6.1 Existence of RAw

To establish the existence of such a relation one uses Pitts’ technique for the bilimit-

compact product category C × pCpo. Let G : pCpoop × pCpo -→ pCpo be the locally

continuous functor for which (8.5) is the minimal invariant,

G(D, E) = BVal+ Loc+ RecL(E)+ (RecLoc(D)×D ⇀ RecLoc(E)× E)

and let F be the functor defined in Table 8.3 on page 133. Therefore 〈D,Val〉 is the

minimal invariant of F × G. A (normal) relational structure R on the category C × pCpo,

in the sense of Section 2.5, is given by the following data.

• For each object 〈X,Y〉 of C × pCpo, let R(X, Y) consist of the type- and world-

indexed families R of admissible relations, where for A ∈ Type and w ∈ W , RAw ⊆

XAw × Y and RSt
w ⊆ XSw × RecLoc(Y).

138 Chapter 8. A Typed Semantics for Languages with General References and Subtyping

Table 8.7 Untyped interpretation of terms

JxKησ =






〈σ,η(x)〉 if η(x)↓

undefined otherwise

Jlet x=e1 in e2Kησ =






Je2Kη[x := v]σ ′ if Je1Kησ = 〈σ ′, v〉
undefined otherwise

JtrueKησ = 〈σ, true〉

Jif x then e1 else e2Kησ =















Je1Kησ if η(x) = true

Je2Kησ if η(x) = false

undefined otherwise

J{mi = xi}Kησ =






〈σ, {|mi = η(xi)|}〉 if η(xi)↓ for all i

undefined otherwise

Jx.mKησ =






〈σ,η(x).m〉 if η(x) ∈ RecM(Val) and η(x).m↓

undefined otherwise

Jλx.aKησ = 〈σ,λ〈σ ′, v〉. JaKη[x := v]σ ′〉

Jx(y)Kησ =















η(x)〈σ,η(y)〉 if η(x) ∈ [St× Val⇀ St× Val]

and η(y)↓

undefined otherwise

JnewA xKησ = 〈σ + {|lA = η(x)|}, lA〉, where lA ∈ LocA \ dom(σ)

Jderef xKησ =






〈σ,σ .η(x)〉 if η(x) ∈ Loc and σ.η(x)↓

undefined otherwise

Jx:=yKησ =






〈σ ′, {||}〉 if η(x) ∈ Loc, σ .η(x)↓ and η(y)↓

undefined otherwise

where σ ′.l =







η(y) if l = η(x)

σ .l otherwise

• For morphisms f = 〈f1, f2〉 : 〈X,Y〉 → 〈X′, Y ′〉, and relations R ∈ R(X, Y) and

S ∈ R(X′, Y ′), we define 〈f1, f2〉 : R ⊂ S iff for all w ∈W , A ∈ Type, for all x ∈ XAw ,

y ∈ Y , s ∈ XSw and σ ∈ RecLoc(Y):

〈x, y〉 ∈ RAw =⇒

{

f1Aw(x)↑ ∧ f2(y)↑ or

f1Aw(x)↓ ∧ f2(y)↓ ∧ 〈f1Aw(x), f2(y)〉 ∈ SAw

〈s, σ〉 ∈ RSt
w =⇒

{

f1Sw(x)↑ ∧ RecLoc(f2)(σ)↑ or

f1Sw(x)↓ ∧ RecLoc(f2)(σ)↓ ∧ 〈f1 Sw(x),RecLoc(f2)(σ)〉 ∈ SSt
w

Firstly, it is easy to see that this relational structure R on C × pCpo indeed satisfies the

axioms (Identity), (Composition) and (Normality) of Section 2.5.1:

8.6. A Kripke Logical Relation 139

Table 8.8 Kripke logical relation

〈x, y〉 ∈ Rbool
w

def
⇐⇒ y ∈ BVal ∧ x = y

〈r , s〉 ∈ R
{mi :Ai}
w

def
⇐⇒ s ∈ RecL(Val) ∧ ∀i. (s.mi ↓ ∧ 〈r .mi , s.mi〉 ∈ R

Ai
w)

〈f , g〉 ∈ RA⇒Bw

def
⇐⇒ g ∈ [St× Val ⇀ St× Val] ∧

∀w ′ ≥ w ∀〈s, σ〉 ∈ RSt
w ′ ∀〈x, y〉 ∈ R

A
w ′

(fw ′(s, x)↑ ∧ g(σ , y)↑)

∨ ∃w ′′ ≥ w ′ ∃s′ ∈ Sw ′ ∃x′ ∈ JBKw ′ ∃σ ′ ∈ St ∃y ′ ∈ Val.

(fw ′(s, x) = 〈w ′′, 〈s′, x′〉〉 ∧ g(σ , y) = 〈σ ′, y ′〉

∧ 〈s′, σ ′〉 ∈ RSt
w ′′ ∧ 〈x

′, y ′〉 ∈ RBw ′′)

〈x, y〉 ∈ Rref A
w

def
⇐⇒ y ∈ w ∩ LocA ∧ x = y

with the auxiliary relation RSt
w ⊆ Sw × St,

〈s, σ〉 ∈ RSt
w

def
⇐⇒ dom(s) = w = dom(σ) ∧ ∀lA ∈ w. 〈s.lA, σ .lA〉 ∈ RAw

• 〈idX , idY 〉 : R ⊂ R, for all objects 〈X,Y〉 and all R-relations R ∈ R(X, Y);

• for composable f , g with f : S ⊂ T and g : R ⊂ S we have f ◦ g : R ⊂ T ; and

• if id : R ⊂ S and id : S ⊂ R then R = S.

Further, for objects 〈X,Y〉, 〈X′, Y ′〉 and relations R ∈ R(X, Y) and S ∈ R(X′, Y ′), the

subset

[R, S]
def
= {〈f , g〉 | 〈f , g〉 : R ⊂ S}

of [X ⇀ X′]× [Y ⇀ Y ′] has a least element and is chain-closed, thus Radm = R:

• Clearly, the pair ⊥ = 〈⊥,⊥〉 of maps that are undefined everywhere satisfies ⊥ : R ⊂

S and is below every other f ∈ [R, S].

• Let 〈f0, g0〉 v 〈f1, g1〉 v . . . in [R, S] and 〈f , g〉 =
⊔

i〈fi, gi〉. Now suppose 〈x, y〉 ∈

XAw × Y s.t. 〈x, y〉 ∈ RAw and fAw(x) ↓ (g(y) ↓, resp.). Then fiAw(x) ↓ (gi(y) ↓, resp.)

for all sufficiently large i, which entails that also gi(y) ↓ (fiAw(x) ↓, resp.) and

〈fiAw(x), gi(y)〉 v 〈fi+1Aw (x), gi+1(y)〉 v . . . in SAw . Hence g(y) ↓ (fAw(x) ↓, resp.)

and by admissibility of SAw also 〈fAw(x), g(y)〉 ∈ SAw .

Similar reasoning shows that 〈f (x)Sw ,RecLoc(g)(σ)〉 ∈ SSt
w whenever 〈xSw , σ〉 ∈ RSt

w

and either f (x)↓ or RecLoc(g)(σ)↓. Hence, 〈f , g〉 : R ⊂ S which we needed to show.

These properties are summarised in the following lemma.

Lemma 8.6.1. R defines a normal relational structure on the bilimit-compact product cat-

egory C × pCpo. Inverse images f∗S are given by

(f∗S)Aw =
{

〈x, y〉 ∈ XAw × Y f ′Aw(x)↓ ∨f
′′(y)↓ =⇒ 〈f ′Aw (x), f

′′(y)〉 ∈ SAw
}

(f∗S)St
w =







〈s, σ〉 ∈ XSw × RecLoc(Y)
f ′Sw(s)↓ ∨ RecLoc(f

′′)(σ)↓ =⇒

〈f ′Sw(s),RecLoc(f
′′)(σ)〉 ∈ RSt

w







140 Chapter 8. A Typed Semantics for Languages with General References and Subtyping

Table 8.9 The functional Φ

At A ∈ Type, w ∈W the map Φ is defined according to

〈x, y〉 ∈ Φ(R, S)bool
w

def
⇐⇒ y ∈ BVal and x = y

〈r , s〉 ∈ Φ(R, S)
{mi :Ai}
w

def
⇐⇒ s ∈ RecM(Y

′) and ∀i ∈ I. s.mi ↓ ∧ 〈r .mi, s.mi〉 ∈ S
Ai
w

〈f , g〉 ∈ Φ(R, S)A⇒Bw

def
⇐⇒ g ∈ [RecLoc(Y)× Y ⇀ RecLoc(Y

′)× Y ′] and

∀w ′ ≥ w ∀〈s, σ〉 ∈ RSt
w ′ ∀〈x, y〉 ∈ R

A
w ′

(fw ′(s, x)↑ ∧g(σ , y)↑) or

(fw ′(s, x) = 〈w ′′, 〈s′, x′〉〉 ∧ g(σ , y) = 〈σ ′, y ′〉

∧〈s′, σ ′〉 ∈ SSt
w ′′ ∧ 〈x

′, y ′〉 ∈ SBw ′′)

〈x, y〉 ∈ Φ(R, S)ref A
w

def
⇐⇒ y ∈ w ∩ LocA and x = y

and at Sw it is given by

〈s, σ〉 ∈ Φ(R, S)St
w

def
⇐⇒ dom(s) = w = dom(σ) and ∀lA ∈ w. 〈s.l, σ .l〉 ∈ SAw

for all morphisms f = 〈f ′, f ′′〉 with f ′ : X → X′, f ′′ : Y → Y ′ and S ∈ R(〈X′, Y ′〉); and

R possesses intersections given componentwise by set-theoretic intersection. Moreover,

Radm = R.

Next, in Table 8.9, we define a map Φ(R−, R+) on the relational structure correspond-

ing to the equations for the Kripke logical relation R above (separating positive and

negative occurrences) such that for R ∈ R(X, Y) and S ∈ R(X′, Y ′) we have Φ(R, S) ∈

R((F ×G)(〈X,Y〉, 〈X′, Y ′〉)).

It is not hard to show that Φ is well-defined, in the sense that it maps admissible

relations to admissible relations: Admissibility of each SSt
w and SAw entails admissibility of

the corresponding component of Φ(R, S):

Lemma 8.6.2. Let R ∈ R(X′, Y ′) and S ∈ R(X, Y). Then, for all w ∈W and A ∈ Type,

Φ(R, S)Aw ⊆ XAw × Y and Φ(R, S)St
w ⊆ XSw × RecLoc(Y)

are admissible subsets of the cpos XAw × Y and XSw × RecLoc(Y), respectively.

Moreover, Φ defines an admissible action of the functor F × G on R, in the following

sense:

Lemma 8.6.3. For all e = 〈e1, e2〉, f = 〈f1, f2〉 and R,R′, S, S′, if e : R′ ⊂ R and f : S ⊂ S′

then (F ×G)(e, f) : Φ(R, S) ⊂ Φ(R′, S′).

According to Theorem 2.5.2, Lemma 8.6.3 guarantees that Φ has a unique fixed point

fix(Φ) in R(D,Val), and we obtain the Kripke logical relation R
def
= fix(Φ) satisfying R =

Φ(R, R) as required.

Theorem 8.6.4 (Existence). The functional Φ has a unique fixed point.

Proof of Lemma 8.6.3. Let w ∈W and A ∈ Type. We consider cases for A.

8.6. A Kripke Logical Relation 141

• Case A ≡ bool: By definition of F and G, (F ×G)(e, f) = 〈F(e1, f1), G(e2, f2)〉 with

F(e1, f1)boolw = idBVal and G(e2, f2) = idBVal

Now if 〈x, y〉 ∈ Φ(R, S)bool
w then y ∈ BVal and x = y , hence,

〈F(e1, f1)boolw(x),G(e2, f2)(y)〉 = 〈x, y〉 ∈ Φ(R
′, S′)bool

w

• Case A ≡ {mi : Ai}. Suppose 〈x, y〉 ∈ Φ(R, S)Aw , i.e., 〈x.mi , y.mi〉 ∈ S
Ai
w for all i. By

assumption, f1Aiw(x.mi)↓ if and only if f2(y.mi), and then

〈f1Aiw(x.mi), f2(y.mi)〉 ∈ S
′Ai
w (8.6)

By definition of F and G, F(e1, f1)Aw (x)↓ if and only if f1Aiw(x.mi)↓ for all i, which

by the above is equivalent to f2(y.mi)↓ for all i, i.e., G(e2, f2)(y)↓, and then

F(e1, f1)Aw (x).mi = f1Aiw(x.mi) and G(e2, f2)(y).mi = f2(y.mi)

Hence, (8.6) shows 〈F(e1, f1)Aw (x),G(e2, f2)(y)〉 ∈ Φ(R′, S′)Aw .

• A ≡ B ⇒ B′. Suppose 〈h, k〉 ∈ Φ(R, S)B⇒B
′

w , we have to show that

〈F(e1, f1)B⇒B′ w(h),G(e2, f2)(k)〉 ∈ Φ(R
′, S′)B⇒B

′

w (8.7)

So let w ′ ≥ w , 〈s, σ〉 ∈ R′St
w ′ and 〈x, y〉 ∈ R′Bw ′ . By assumption,

e1Sw ′(s)↓ ⇐⇒ RecLoc(e2)(σ)↓, and then 〈e1Sw ′(s),RecLoc(e2)(σ)〉 ∈ R
St
w ′

e1Bw ′(x)↓ ⇐⇒ e2(y)↓, and then 〈e1Bw ′(x), e2(y)〉 ∈ R
B
w ′

From 〈h, k〉 ∈ Φ(R, S)B⇒B
′

w we then obtain

hw ′(e1Sw ′(s), e1Bw ′(x)) = 〈w
′′, 〈s′, x′〉〉 ⇐⇒ k(RecLoc(e2)(σ), e2(y)) = 〈σ

′, y ′〉

and then both 〈s′, σ ′〉 ∈ SSt
w ′′ and 〈x′, y ′〉 ∈ SB

′

w ′′ . By assumption

f1Sw ′′(s
′)↓ ⇐⇒ RecLoc(f2)(σ

′)↓, and then 〈f1Sw ′′(s
′),RecLoc(f2)(σ

′)〉 ∈ S′
St
w ′′

f1B′w ′′(x
′)↓ ⇐⇒ f2(y

′)↓, and then 〈f1B′w ′′(x
′), f2(y

′)〉 ∈ S′
B′

w ′′

By definition of F,G, we have

F(f1, e1)(h)w ′(s, x)↓ =⇒

{

F(f1, e1)(h)w ′(s, x)

= 〈w ′′, 〈f1Sw ′′(s
′), f1B′w ′′(x

′)〉〉

G(e2, f2)(k)(σ , y)↓ =⇒ G(e2, f2)(k)(σ , y) = 〈RecLoc(f2)(σ
′), f2(y

′)〉

so by the above considerations (8.7) holds.

• Case A ≡ ref B. By definition of F and G,

F(e1, f1)ref B w = idw∩LocB and G(e2, f2) = idLoc

So if 〈x, y〉 ∈ Φ(R, S)ref B
w then necessarily y ∈ w ∩ LocA and x = y , hence,

〈F(e1, f1)ref B w(x),G(e2, f2)(y)〉 = 〈x, y〉 ∈ Φ(R
′, S′)ref B

w

Finally, the case for 〈s, σ〉 ∈ Φ(R, S)St
w proceeds analoguously to the case for record types

{mi : Ai} above.

142 Chapter 8. A Typed Semantics for Languages with General References and Subtyping

8.6.2 The Basic Lemma

We establish the following two monotonicity properties before proving the basic lemma

of logical relations for the Kripke logical relation R:

Lemma 8.6.5 (Kripke Monotonicity). Let w,w ′ ∈W such that w ′ ≥ w , and let 〈a, u〉 ∈ RAw .

Then 〈JAKw ′w (a), u〉 ∈ RAw ′ .

Proof. By induction on A (note that this is possible here because, in the case of function

types A⇒ B, the map JA ⇒ BKw
′

w does not depend on the store).

• Case A ≡ bool. This follows immediately from JboolKw
′

w (x) = id(x) = x.

• Case A ≡ {mi : Ai}i∈I . By definition of RAw we know y ∈ RecM(Val) and 〈x.mi, y.mi〉 ∈

R
Ai
w for all i ∈ I. So by induction hypothesis, 〈JAiKw

′

w (x.mi), y.mi〉 ∈ R
Ai
w for all i, and

〈JAKw ′w (x), y〉 ∈ RAw ′ follows since

JAKw ′w (x).mi = JAiKw
′

w (x.mi)

• Case A ≡ B ⇒ B′. By definition, JB ⇒ B′Kw
′

w (x) = λw ′′≥w ′xw ′′ , so the result follows

directly from the definition of RB⇒B
′

w ′ and the assumption 〈x, y〉 ∈ RB⇒B
′

w .

• Case A ≡ ref B. Immediately from Jref BKw
′

w (x) = x.

Lemma 8.6.6 (Subtype Monotonicity). Let w ∈ W , let A � B and suppose 〈a, u〉 ∈ RAw .

Then 〈JA � BKw (a), u〉 ∈ RBw .

Proof. By a straightforward induction on the derivation of A � B: Suppose 〈x, y〉 ∈ RAw . If

the last step in the derivation A � B is by

• (Reflexivity). In this case, A ≡ B and JA � BKw (x) = x, so that 〈JA � BKw (x), y〉 ∈ RBw
is immediate.

• (Transitivity). Assume A � B was derived from A � A′ and A′ � B. Applying the

induction hypothesis, 〈JA � A′Kw (x), y〉 ∈ RA
′

w and again by induction hypothesis,

〈JA′ � BKw (JA � A′Kw (x)), y〉 ∈ RBw

as required.

• (Arrow). Write x′
def
= JA⇒B � A′⇒B′Kw (x), we must show 〈x′, y〉 ∈ RA

′⇒B′
w . Let

w ′ ≥ w , 〈s, σ〉 ∈ RSt
w ′ and 〈u, u′〉 ∈ RA

′

w ′ .

By induction, 〈JA′ � AKw ′ (u), u′〉 ∈ RAw ′ , and therefore we have

xw ′(s, JA′ � AKw ′ (v))↓ ⇐⇒ y(σ , v′)↓

by assumption 〈x, y〉 ∈ RA⇒Bw . Moreover, if both are defined then

xw ′(s, JA′ � AKw ′ (u)) = 〈w ′′, 〈s′, v〉〉 and y(σ , u′) = 〈σ ′, v′〉

such that 〈s′, σ ′〉 ∈ RSt
w ′′ and 〈v, v′〉 ∈ RBw ′′ . By induction hypothesis, the latter

entails 〈JB � B′Kw ′′ (v), v′〉 ∈ RB
′

w ′′ and we can conclude 〈x′, y〉 ∈ RA
′⇒B′
w .

8.6. A Kripke Logical Relation 143

• (Record). Suppose {mi : Ai}i∈I � {mi : A′i}i∈I′ has been derived from hypotheses

I′ ⊆ I and Ai � A
′
i , for all i ∈ I′. Assume 〈x, y〉 ∈ R

{mi :Ai}i∈I
w . If we let x′

def
=

J{mi : Ai}i∈I � {mi : A′i}i∈I′Kw (x) we must show 〈x′, y〉 ∈ R
{mi :A

′
i}i∈I′

w .

By assumption y ∈ RecM(Val) and 〈x.mi , y.mi〉 ∈ R
Ai
w , for all i ∈ I. By induction

hypothesis, 〈JAi � A′iKw (x.mi), y.mi〉 ∈ R
Ai
w for all i ∈ I′ ⊆ I. The result follows,

since by definition x′.mi = JAi � A′iKw (x.mi).

Lemma 8.6.5 and Lemma 8.6.6 show a key property of the relation R, which lies at the

heart of the coherence proof: For 〈a, u〉 ∈ RAw we can apply coercions to a and enlarge the

world w while remaining in relation with u ∈ Val.

We extend R to contexts Γ in the natural way, by defining

〈ρ, η〉 ∈ RΓw
def
⇐⇒ 〈ρ(x), η(x)〉 ∈ RAw ∀x:A in Γ

It is tedious, but not difficult, to prove the fundamental property of logical relations.

It states that the (typed and untyped) denotations of well-typed terms compute related

results.

Lemma 8.6.7 (Basic Lemma). Suppose Γ . e : A, w ∈ W , 〈ρ, η〉 ∈ RΓw and 〈s, σ〉 ∈ RSt
w .

Then

• either JΓ . e : AKw ρs ↑ and JeKησ ↑, or

• there are w ′ ≥ w, s′, a, σ ′, u such that JΓ . e : AKw ρs = 〈w ′, 〈s′, a〉〉 and JeKησ =
〈σ ′, u〉 such that 〈s′, σ ′〉 ∈ RSt

w ′ and 〈a, u〉 ∈ RAw ′ .

Proof. The proof is by induction on the derivation of Γ . e : A, using Lemmas 8.6.5 and

8.6.6.

• (Subsumption). In this case, Γ . e : B has been derived from antecedent Γ . e : A

and A � B. By induction hypothesis, either both JΓ . e : AKw ρs ↑ and JeKησ ↑, or

JΓ . e : AKw ρs = 〈w ′, 〈s′, x〉〉 and JeKησ = 〈σ ′, y〉 where 〈s′, σ ′〉 ∈ RSt
w ′ and 〈x, y〉 ∈

RAw ′ . But then 〈JA � BKw ′ (x), y〉 ∈ RBw ′ , by the previous Lemma, which concludes

this case using the semantics of the subsumption rule.

• (Var). By assumption 〈ρ, η〉 ∈ RΓw , and by the premiss of the variable rule x : A ∈

Γ , which entails 〈ρ(x), η(x)〉 ∈ RAw . The result now follows immediately from the

definitions of JΓ . x : AK and JxK, and the assumption 〈s, σ〉 ∈ RSt
w .

• (Let). Assume we have derived Γ . let x=e1 in e2 : B by the rule (Let). By induc-

tion hypothesis, either both JΓ . e1 : AKw ρs ↑ and Je1Kησ ↑, or JΓ . e1 : AKw ρs =
〈w ′, 〈s′, u〉〉 and Je1Kησ = 〈σ ′, v〉 where 〈s′, σ ′〉 ∈ RSt

w ′ and 〈u, v〉 ∈ RAw ′ .

In the latter case, observe that 〈JΓ Kw
′

w (ρ), η〉 ∈ R
Γ

w ′ by Kripke Monotonicity, and

therefore 〈JΓ Kw
′

w (ρ)[x := u], η[x := v]〉 ∈ R
Γ ,x:A
w ′ . Applying the inductive hypothesis

to the derivation Γ , x : A. e2 : B we obtain that either both

Je2Kη[x := v]σ ′↑ and JΓ , x:A. e2 : BKw ′ (JΓ K
w ′

w (ρ)[x := u])s′ ↑

are undefined, or both are defined:

144 Chapter 8. A Typed Semantics for Languages with General References and Subtyping

– JΓ , x:A. e2 : BKw ′ (JΓ K
w ′

w (ρ)[x := u])s′ = 〈w ′′, 〈s′′, u′〉〉

– Je2Kη[x := v]σ ′ = 〈σ ′′, v′〉

where 〈s′′, σ ′′〉 ∈ RSt
w ′′ and 〈u′, v′〉 ∈ RBw ′′ . Using the definition of Jlet x=e1 in e2K

and JΓ . let x=e1 in e2 : BK, this is all that needed to be shown.

• (Const) Suppose we have derived Γ .true : bool by the rule for constant true. The re-

sult follows directly from JΓ . true : boolKw ρs = 〈s, true〉 and JtrueKησ = 〈σ, true〉,

the assumption 〈s, σ〉 ∈ RSt
w and the definition of Rbool

w . The case where Γ . false :

bool is analogous.

• (If) By induction hypothesis on the premiss Γ .x : bool, the assumption 〈ρ, η〉 ∈ RΓw
and the definition of the semantics, JΓ . x : boolKw ρs = 〈w, 〈s, u〉〉 and JxKησ =
〈σ, v〉 s.t. 〈u, v〉 ∈ Rbool

w , for all 〈s, σ〉 ∈ RSt
w . By definition this means u, v ∈ BVal and

u = v .

We consider the case where u = true = v, the case where both equal false is anal-

ogous. By induction hypothesis on Γ . e1 : A, either both JΓ . e1 : AKw ρs ↑ and

Je1Kησ ↑, or JΓ . e1 : AKw ρs = 〈w ′, 〈s′, u′〉〉 and Je1Kησ = 〈σ ′, v′〉 where 〈s′, σ ′〉 ∈

RSt
w ′ and 〈u′, v′〉 ∈ RAw ′ . The result follows by observing that

JΓ . if x then e1 else e2 : AKw ρs = 〈w ′, 〈s′, u′〉〉

and Jif x then e1 else e2Kησ = 〈σ ′, v′〉.

• (Record) For all i ∈ I, by induction hypothesis and from the fact that JxiKησ =
〈σ,η(xi)〉 one obtains JΓ . xi : AiKw ρs = 〈w, 〈s, ui〉〉 s.t. 〈ui , η(xi)〉 ∈ R

Ai
w .

From the semantic equations, JΓ . {mi = xi} : {mi : Ai}Kw ρs = 〈w, 〈s, {|mi = ui|}〉〉

and also J{mi = xi}Kησ = 〈σ, {|mi = η(xi)|}〉, so the result follows directly from the

definition of R
{mi :Ai}
w .

• (Selection) By induction hypothesis we have 〈u, η(x)〉 ∈ R
{mi :Ai}
w under the assump-

tion that 〈w, 〈s, u〉〉 = JΓ . x : {mi : Ai}Kw ρs. Therefore, the definition of R
{mi :Ai}
w

entails 〈u.mj , η(x).mj〉 ∈ R
Aj
w and the result follows from the semantics of x.mj .

• (Lambda). This case is similar to the case for (Let), using Kripke Monotonicity when

constructing an extended context.

We know that there exist f , g s.t. JΓ . λx.e : A ⇒ BKw ρs = 〈s, f 〉 and Jλx.eKησ =
〈σ, g〉, so all that needs to be shown is 〈f , g〉 ∈ RA⇒Bw . Let w ′ ≥ w , 〈u, v〉 ∈ RAw ′ and

〈s′, σ ′〉 ∈ RSt
w ′ . By Lemma 8.6.5, 〈JΓ Kw

′

w (ρ)[x := u], η[x := v]〉 ∈ R
Γ ,x:A
w ′ . By induction

hypothesis for the premiss Γ , x:A. e : B, either both

JΓ , x:A. e : BKw ′ (JΓ K
w ′

w (ρ)[x := u])s′ ↑ and JeKη[x := v]σ ′ ↑

or else there are w ′′, s′′, u′, σ ′′ and v′ for which

JΓ , x:A. e : BKw ′ (JΓ K
w ′

w (ρ)[x := u])s′ = 〈w ′′, 〈s′′, u′〉〉

and JeKη[x := v]σ ′ = 〈σ ′′, v′〉 where 〈s′′, σ ′′〉 ∈ RSt
w ′′ and 〈u′, v′〉 ∈ RBw ′′ . But this is

just the definition of 〈f , g〉 ∈ RA⇒Bw .

• (Application) Suppose the derivation of Γ . x(y) : B ends with the application

rule. By the premiss of the rule, Γ . x : A ⇒ B and Γ . y : A, so by induc-

tion JΓ . x : A ⇒ BKw ρs = 〈w, 〈s, f 〉〉 s.t. 〈f , η(x)〉 ∈ RA⇒Bw , and JΓ . y : AKw ρs =
〈w, 〈s, u〉〉 s.t. 〈u, η(y)〉 ∈ RAw .

8.6. A Kripke Logical Relation 145

By definition of RA⇒Bw , either both JΓ . x(y) : BKw ρs = fw(s, u) ↑ and Jx(y)Kησ =
η(x)(σ , η(y))↑, or

JΓ . x(y) : BKw ρs = 〈w ′, 〈s′, u′〉〉 and Jx(y)Kησ = 〈σ ′, v′〉

with 〈s′, σ ′〉 ∈ RSt
w ′ and 〈u′, v′〉 ∈ RBw ′ .

• (New) By definition, we have

JΓ . newA x : ref AKw ρs = 〈w,lA, 〈s′, lA〉〉 and JnewA xK = 〈σ ′, lA〉

with lA ∈ LocA and s′, σ ′ as in Table 8.6 in Section 8.4 and the semantic equations

given in Table 8.7 in Section 8.5, resp. All that remains to show is 〈s′, σ ′〉 ∈ RSt
w ′ ,

where w ′ = w,lA.

From the assumption 〈s, σ〉 ∈ RSt
w we immediately find dom(s′) = w ′ = dom(σ ′).

Moreover, by induction we have JΓ . x : AKw ρs = 〈w, 〈s, u〉〉 with 〈u, η(x)〉 ∈ RAw .

By Kripke Monotonicity this entails 〈JAKw ′w (u), η(x)〉 ∈ RAw ′ . Also, by assumption

〈s, σ〉 ∈ RSt
w we have 〈s.l, σ .l〉 ∈ RA

′

w for all l ∈ w ∩ LocA′ . By Kripke Monotonicity

this gives 〈JA′Kw
′

w (s.l), σ .l〉 ∈ R
A′

w ′ , and we have shown 〈s′.l′, σ ′.l′〉 ∈ RA
′

w ′ for all

l′ ∈ w ′. Thus 〈s′, σ ′〉 ∈ RSt
w ′ as required.

• (Deref) By induction hypothesis, JΓ . x : ref AKw ρs = 〈w, 〈s, l〉〉 s.t. 〈l, η(x)〉 ∈ Rref A
w ,

i.e., η(x) ∈ w∩LocA and l = η(x). Then 〈s, σ〉 ∈ RSt
w shows 〈s.l, σ .l〉 ∈ RAw . The result

follows since JΓ . deref x : AKw ρs = 〈w, 〈s, s.l〉〉 and Jderef xKησ = 〈σ,σ .η(x)〉.

• (Update) By definition and the assumptions 〈ρ, η〉 ∈ RΓw and 〈s, σ〉 ∈ RSt
w we neces-

sarily have Jx:=yKησ = 〈σ ′, {||}〉 and JΓ . x:=y : 1Kw ρs = 〈w, 〈s′, {||}〉〉, with s′ and

σ ′ as in Tables 8.6 and 8.7, resp.

Clearly 〈{||}, {||}〉 ∈ R1
w , and all that remains to be shown is 〈s′, σ ′〉 ∈ R1

w . From

〈s, σ〉 ∈ RSt
w and the definition of s′, σ ′ one sees dom(s′) = w = dom(σ ′). So let

l ∈ w ∩ LocB . Then, by the induction hypothesis, JΓ . x : ref AKw ρs = 〈w, 〈s, l0〉〉 s.t.

〈l0, η(x)〉 ∈ Rref A
w , i.e., l0 = η(x) ∈ w ∩ LocA.

Thus, if l ≠ l0 then 〈s′.l, σ ′.l〉 = 〈s.l, σ .l〉 ∈ RBw , by assumption 〈s, σ〉 ∈ RSt
w . Fi-

nally, for l = l0 we have 〈s′.l, σ ′.l〉 = 〈u, η(y)〉 ∈ RAw , since by induction hypothesis,

JΓ . y : AKw ρs = 〈w, 〈s, u〉〉 with 〈u, η(y)〉 ∈ RAw .

8.6.3 Bracketing

Next, in Table 8.10, we define families of “bracketing” maps φw , ψw ,

JAKw
φAw //

Val
ψAw

oo and Sw
φSt
w //

ψSt
w

oo St

such that ψAw ◦ φ
A
w = idJAKw

, i.e., each JAKw is a retract of the untyped model Val. As

in (Reynolds 2002b), the retraction property follows from a more general result which

justifies the term “bracketing”,

φAw ⊆ R
A
w and RAw ⊆ (ψ

A
w)

op

relating the (graphs of the) bracketing maps and the Kripke logical relation of the previous

section.

146 Chapter 8. A Typed Semantics for Languages with General References and Subtyping

Table 8.10 Bracketing maps

φbool
w (b) = b

ψbool
w (v) =







v if v ∈ BVal

undefined otherwise

φ
{mi :Ai}
w (r) = {|mi = φ

Ai
w (r .mi)|}

ψ
{mi :Ai}
w (v) =















{|mi = ψ
Ai
w (v.mi)|}

if v ∈ RecL(Val) and ψ
Ai
w (v.mi)↓ for all i

undefined otherwise

φA⇒Bw (f) = λ〈σ, v〉.



























〈φSt
w ′′(s),φ

B
w ′′(b)〉

if dom(σ) = w ′ ∈W ,ψSt
w ′(σ)↓,ψ

A
w ′(v)↓

and fw ′(ψ
St
w ′(σ),ψ

A
w ′(v)) = 〈w

′′, 〈s, b〉〉

undefined otherwise

ψA⇒Bw (g) = λw ′≥w λ〈s, a〉.







































〈w ′′, 〈ψSt
w ′′(σ),ψ

B
w ′′(v)〉〉

if g(φSt
w ′(s),φ

A
w ′(a)) = 〈σ, v〉

dom(σ) = w ′′ ∈W ,

ψSt
w ′′(σ)↓ and ψBw ′′(v)↓

undefined otherwise

φref A
w (l) = l

ψref A
w (v) =







v if v ∈ LocA

undefined otherwise

φSt
w(s) = {|lA = φAw(s.lA)|}lA∈w

ψSt
w(σ) =







{|lA = ψAw(σ .lA)|}lA∈w if ψAw(σ .lA)↓ for all lA ∈ w

undefined otherwise

Theorem 8.6.8 (Bracketing). For all w ∈W and A ∈ Type,

1. for all x ∈ JAKw . 〈x,φAw(x)〉 ∈ RAw ,

2. for all s ∈ Sw . 〈s,φSt
w(s)〉 ∈ R

St
w

3. for all 〈x, y〉 ∈ RAw . x = ψ
A
w(y),

4. for all 〈s, σ〉 ∈ RSt
w . s = ψ

St
w(σ)

Compared to Reynolds work, the proof of Theorem 8.6.8 is more involved, again due

to the (mixed-variant) type recursion caused by the use of higher-order store. Therefore

we first show a preliminary lemma, which uses the projection maps that come with the

minimal invariant solution D of the endofunctor F on C: For δ(e) = F(e, e) we set πAwn
def
=

δn(⊥)Aw , and similarly πSwn
def
= δn(⊥)Sw . Note that by definition of the minimal invariant

solution,

⊔

nπ
Aw
n = (

⊔

n δ
n(⊥))Aw = (lfp(δ))Aw = idAw

follows. Similarly,
⊔

nπ
Sw
n = idSw holds.

Lemma 8.6.9. For all n ∈ N, w ∈W , A ∈ Type,

8.6. A Kripke Logical Relation 147

1. ∀x ∈ JAKw . πAwn (x)↓ =⇒ 〈πAwn (x),φAw (π
Aw
n (x))〉 ∈ RAw

2. ∀s ∈ Sw . πSwn (s)↓ =⇒ 〈πSwn (s),φSt
w(π

Sw
n (s))〉 ∈ RSt

w

3. ∀〈x, y〉 ∈ RAw . π
Aw
n (x)↓ =⇒ πAwn (x) = πAwn (ψAw(y))

4. ∀〈s, σ〉 ∈ RSt
w . π

Sw
n (s)↓ =⇒ πSwn (s) = πSwn (ψSt

w(σ))

Proof. By a simultaneous induction on n, considering cases for A in parts 1 and 3. Clearly

the result holds for n = 0 since then πAw0 and πSw0 are undefined everywhere. For the

case n > 0:

1. We consider cases for A:

• Case A ≡ bool: By definition, πboolw
n (x) = x ∈ BVal. Thereforeφbool

w (πboolw
n (x)) =

πboolw
n (x) = x ∈ BVal. Hence,

〈πboolw
n (x),φbool

w (πboolw
n (x))〉 = 〈x, x〉 ∈ Rbool

w

by the definition of Rbool
w .

• Case A ≡ {|mi : Ai|}: We know π
{|mi :Ai|}
n (x) = {|mi = π

Aiw
n−1(x.mi)|}. By induction

hypothesis,

〈πAiwn−1 (x.mi),φ
Ai
w (π

Aiw
n−1 (x.mi))〉 ∈ R

Ai
w

for all i and, by the definition of π
{|mi :Ai|}w
n and φ

{|mi :Ai|}
w ,

φ{|mi :Ai|}
w (π{|mi :Ai|}

n (x)) = φ{|mi :Ai|}
w ({|mi = π

Aiw
n−1 (x.mi)|})

= {|mi = φ
Ai
w (π

Aiw
n−1 (x.mi))|}

Therefore 〈π
{|mi :Ai|}w
n (x).mi , φ

{|mi :Ai|}
w (π

{|mi :Ai|}w
n (x)).mi〉 ∈ R

Ai
w for all i, i.e.,

〈π{|mi :Ai|}w
n (x),φ{|mi :Ai|}

w (π{|mi :Ai|}w
n (x))〉 ∈ R{|mi :Ai |}

w

as required.

• Case A ≡ B ⇒ B′: By definition of πB⇒B
′w

n and φB⇒B
′

w ,

πB⇒B
′w

n (x) = λw ′ ≥ w λ〈s, v〉.











































〈πSw
′′

n−1 (s
′), πB

′w ′′

n−1 (v
′)〉

if xw ′(π
Sw ′

n−1(s), π
Bw ′

n−1(v))

= 〈w ′′, 〈s′, v′〉〉

and πSw
′′

n−1 (s
′)↓

and πB
′w ′′

n−1 (v
′)↓

undefined otherwise

and φB⇒B
′

w (πB⇒B
′w

n (x)) equals

λ〈σ, v〉.































〈φSt
w ′′(π

Sw ′′

n−1 (s
′)),φB

′

w ′′(π
B′w ′′

n−1 (v
′))〉

if dom(σ) = w ′ ≥ w,ψSt
w ′(σ)↓,ψ

B
w ′(v)↓

and xw ′(π
Sw ′

n−1(ψ
St
w ′(s)), π

Bw ′

n−1(ψ
B
w ′(v))) = 〈w

′′, 〈s′, v′〉〉

undefined

otherwise

In order to show 〈πB⇒B
′w

n (x),φB⇒B
′

w (πB⇒B
′w

n (x))〉 ∈ RB⇒B
′

w , let w ′ ≥ w , 〈s, σ〉 ∈

RSt
w ′ and 〈u, v〉 ∈ RBw ′ .

148 Chapter 8. A Typed Semantics for Languages with General References and Subtyping

If either of πSw
′

n−1(s) or πBw
′

n−1(u) is undefined then both πB⇒B
′w

n (x)w ′(s, u) ↑

and φB⇒B
′

w (πB⇒B
′w

n (x))w ′(σ , v) ↑. So without loss of generality assume both

πSw
′

n−1(s) ↓ and πBw
′

n−1(u) ↓ in the following. Then, by part 3 and 4, resp., of the

induction hypothesis, πBw
′

n−1(u) = π
Bw ′

n−1(ψ
B
w ′(v)) and πSw

′

n−1(s) = π
Sw ′

n−1(ψ
St
w ′(σ)).

Now if

xw ′(π
Sw ′

n−1(s), π
Bw ′

n−1(u)) = 〈w
′′, 〈s′, u′〉〉

then the induction hypothesis entails firstly 〈πSw
′′

n−1 (s
′),φSt

w ′′(π
Sw ′′

n−1 (s
′))〉 ∈ RSt

w ′′ ,

and secondly 〈πB
′w ′′

n−1 (v
′),φB

′

w ′′(π
B′w ′′

n−1 (v
′))〉 ∈ RB

′

w ′′ whenever πSw
′′

n−1 (s
′) ↓ and

πB
′w ′′

n−1 (v
′)↓ both hold.

Thus we have established 〈πB⇒B
′w

n (x),φB⇒B
′

w (πB⇒B
′w

n (x))〉 ∈ RB⇒B
′

w , by defini-

tion of RB⇒B
′

w .

• Case A ≡ ref B: By definition, π ref Bw
n (x) = x ∈ LocA. Thus φref B

w (π ref Bw
n (x)) =

φref B
w (x) = x ∈ Loc, which entails

〈π ref Bw
n (x),φref B

w (π ref Bw
n (x))〉 = 〈x, x〉 ∈ Rref B

w

This concludes this part of the proof.

2. Suppose πSwn (s)↓ and let sn = πSwn (s) = {|lA = π
Aw
n−1(s.lA)|}lA∈w , and so

φSt
w(sn) = {|lA = φ

A
w(sn.lA)|}lA∈w

= {|lA = φ
A
w(π

Aw
n−1(s.lA))|}lA∈w

Then dom(sn) = w = dom(φSt
w(sn)). Moreover, the first part of the induction hy-

pothesis yields 〈sn.lA, φSt
w(sn).lA〉 ∈ R

A
w , for all lA ∈ w , i.e., 〈sn, φSt

w(sn)〉 ∈ R
St
w as

required.

3. Again, we consider cases for A:

• Case A ≡ bool: By the definition of Rbool
w , y ∈ BVal and x = y . The result follows

immediately from πboolw
n (x) = x = y = πboolw

n (y) = πboolw
n (ψbool

w (y)).

• Case A ≡ {|mi : Ai|}: Suppose π
{|mi :Ai|}w
n (x) ↓. In particular, since by definition

we have π
{|mi :Ai|}w
n (x) = {|mi = π

Aiw
n−1 (x.mi)|} this implies π

Aiw
n−1 (x.mi) ↓ for all i.

The assumption 〈x, y〉 ∈ R
{|mi :Ai|}
w gives 〈x.mi, y.mi〉 ∈ R

Ai
w for all i, and so by

induction hypothesis

π
Ai
n−1(x.mi) = π

Ai
n−1(ψ

Ai
w (y.mi))

From this the result follows by calculating

π{|mi :Ai|}w
n (x) = {|mi = π

Aiw
n−1 (x.mi)|}

= {|mi = π
Ai
n−1(ψ

Ai
w (y.mi))|}

= π{|mi :Ai|}w
n ({|mi = ψ

Ai
w (y.mi)|})

= π{|mi :Ai|}w
n (ψ{|mi :Ai|}w

w (y))

• Case A ≡ B ⇒ B′: By definition, for all w ′ ≥ w , s ∈ Sw ′ and u ∈ JBKw ′ ,

πB⇒B
′w

n (x)w ′(s, u) =































〈w ′′, 〈πSw
′′

n−1 (s
′), πB

′w ′′

n−1 (u
′)〉〉

if xw ′(π
Sw ′

n−1(s), π
Bw ′

n−1(u)) = 〈w
′′, 〈s′, u′〉〉

and πSw
′′

n−1 (s
′)↓, πB

′w ′′

n−1 (u
′)↓

undefined

otherwise

8.6. A Kripke Logical Relation 149

and

πB⇒B
′w

n (ψB⇒B
′

w (y))w ′(s, u) =























































〈w ′′, 〈πSw
′′

n−1 (ψ
St
w ′′(σ)),π

B′w ′′

n−1 (ψ
B′

w ′′(v))〉〉

if y(φSt
w ′(π

Sw ′

n−1(s)),φ
B
w ′(π

Bw ′

n−1(u)))

= 〈σ, v〉 and dom(σ) = w ′′ ≥ w ′

and πSw
′′

n−1 (ψ
St
w ′′(σ))↓

and πB
′w ′′

n−1 (ψ
B′

w ′′(v))↓

undefined

otherwise

By the first and second parts of the induction hypothesis we know that for

ŝ = πSw
′

n−1(s) and û = πBw
′

n−1(u)

〈û,φBw ′(û)〉 ∈ R
B
w ′ and 〈ŝ, φSt

w ′(ŝ)〉 ∈ R
St
w ′

So the assumption 〈x, y〉 ∈ RB⇒B
′

w yields

xw ′(ŝ, û) = 〈w
′′, 〈s′, u′〉〉 ⇐⇒ y(φSt

w ′(ŝ),φ
B
w ′(û)) = 〈σ, v〉

where 〈s′, σ〉 ∈ RSt
w ′′ and 〈u′, v〉 ∈ RB

′

w ′′ .

If either πSw
′′

n−1 (s
′)↑ or πB

′w ′′

n−1 (u
′)↑ then, by definition, both πB⇒B

′w
n (x)w ′(s, u)↑

and πB⇒B
′w

n (ψB⇒B
′

w (y))w ′(s, u) ↑. So without loss of generality πSw
′′

n−1 (s
′) ↓ and

πB
′w ′′

n−1 (u
′)↓, and by parts 3 and 4 of the induction hypothesis we obtain

πSw
′′

n−1 (s) = π
Sw ′′

n−1 (ψ
St
w ′′(σ)) and πB

′w ′′

n−1 (v) = π
B′w ′′

n−1 (ψ
B′

w ′′(v))

Since this holds for all w ′ ≥ w , s and u we have in fact shown πB⇒B
′w

n (x) =

πB⇒B
′w

n (ψB⇒B
′

w (y)) as required.

• Case A ≡ ref B: By definition 〈x, y〉 ∈ Rref B
w implies y ∈ LocA and x = y . Similar

to the case for bool,

π ref Bw
n (x) = x = y = π ref Bw

n (ψref B
w (y))

as required.

4. Let 〈s, σ〉 ∈ RSt
w , and assume πSwn (s)↓, i.e.

πSwn (s) = {|lA = π
Aw
n−1(s.lA)|}lA∈w

In particular πAwn−1(s.lA) ↓ for all lA ∈ w . By definition of R, dom(s) = dom(σ) and

〈s.lA, σ .lA〉 ∈ RAw for all lA ∈ w . Thus, part 3 of the induction hypothesis entails

(since πAwn−1(s.lA)↓) that πAwn−1(s.lA) = π
Aw
n−1(ψ

A
w(σ .lA)) for all lA ∈ w and we obtain

πSwn (s) = {|lA = π
Aw
n−1(s.lA)|}lA∈w

= {|lA = π
Aw
n−1(ψ

A
w (σ .lA))|}lA∈w

= πSwn (ψSt
w (σ))

as required.

This concludes the proof of Lemma 8.6.9.

150 Chapter 8. A Typed Semantics for Languages with General References and Subtyping

Proof of Theorem 8.6.8. For the first part, let x ∈ JAKw . As observed above we have x =
⊔

nπ
Aw
n (x), and in particular πAwn (x)↓ for sufficiently large n ∈ N. By Lemma 8.6.9,

〈πAwn (x),φAw (π
Aw
n (x))〉 ∈ RAw

for all sufficiently large n. Since this forms an increasing chain in the cpo JAKw × Val,

completeness of RAw and continuity of φAw shows

〈x,φAw(x)〉 = 〈
⊔

nπ
Aw
n (x),φAw (

⊔

nπ
Aw
n (x))〉

=
⊔

n〈π
Aw
n (x),φAw(π

Aw
n (x))〉 ∈ RAw

as required. The other parts are similar.

8.7 Coherence of the Intrinsic Semantics

We have now all the parts assembled in order to prove coherence, which proceeds exactly

as in (Reynolds 2002b): Suppose P1(Γ . e : A) and P2(Γ . e : A) are derivations of the

judgement Γ . e : A. We show that their semantics agree. Let w ∈ W , ρ ∈ JΓ Kw and

s ∈ Sw . By Theorem 8.6.8 parts (1) and (2), 〈ρ,φΓw(ρ)〉 ∈ R
Γ
w and 〈s,φSt

w(s)〉 ∈ R
St
w . Hence,

by two applications of the Basic Lemma of logical relations, either

JP1(Γ . e : A)Kw ρs ↑ ∧ JeK (φΓw(ρ))(φSt
w (s))↑ ∧ JP2(Γ . e : A)Kw ρs ↑

or else there exist wi, si, vi and σ, v such that

JP1(Γ . e : A)Kw ρs = 〈w1, 〈s1, v1〉〉

∧ JeK (φΓw(ρ))(φSt
w (s)) = 〈σ, v〉

∧ JP2(Γ . e : A)Kw ρs = 〈w2, 〈s2, v2〉〉

where 〈si , σ〉 ∈ RSt
wi

and 〈vi , v〉 ∈ RAwi , for i = 1,2. The definition of the relation RSt
wi

entails

w1 = dom(σ) = w2, and by Theorem 8.6.8 parts (3) and (4), s1 = ψSt
w1
(σ) = ψSt

w2
(σ) = s2

and v1 = ψAw1
(v) = ψAw2

(v) = v2. We have therefore shown

Theorem 8.7.1 (Coherence). All derivations of a judgement Γ .e : A have the same mean-

ing in the intrinsic semantics.

Remark 8.7.2. Observe that the condition of the store case of the logical relation,

〈s, σ〉 ∈ RSt
w =⇒ dom(σ) = w

is essential in the above proof. Otherwise we would not be able to conclude w1 = w2.

Further note that the coherence result does not hold if the type annotation A in newA

was removed. In particular, there would then be two different derivations of the judge-

ment

x:{m : bool}. new x; true : bool (8.8)

8.8. A PER Model of Higher-Order Storage and Subtyping 151

one without use of subsumption, and one where x is coerced to type 1 before allocation.

The denotations of these two derivations are different (clearly not even the resulting ex-

tended worlds are equal). It could be argued that, at least in this particular case, this is

a defect of the underlying model: The use of a global store does not reflect the fact that

the cell allocated in (8.8) above remains local and cannot be accessed by any enclosing

program. However, in the general case we do not know if the lack of encapsulation is the

only reason preventing coherence for terms without type annotations.

8.8 A PER Model of Higher-Order Storage and Subtyping

In this section we consider two consequences of the preceding technical development in

more detail. First, the results are used to obtain an extrinsic semantics over the untyped

model, based on partial equivalence relations. Then, we discuss how this relates to the

model of Abadi and Leino’s logic for objects that was considered in Part II.

8.8.1 Extrinsic PER Semantics

Apart from proving coherence, Reynolds used his analogue of Theorem 8.6.8 to develop

an extrinsic semantics of types for the (purely applicative) language considered in (Reynolds

2002b). Besides Theorem 8.6.8 this only depends on the Basic Lemma, and we can do ex-

actly the same here. More precisely, the binary relation ‖A‖w := (RAw)
op ◦ RAw , that is, the

relation ‖A‖w ⊆ Val× Val defined by

‖A‖w
def
=

{

〈u, v〉 ∈ Val× Val ∃a ∈ JAKw . 〈a, u〉 ∈ RAw ∧ 〈a, v〉 ∈ RAw
}

(8.9)

is a partial equivalence relation (per) on Val. Note that a direct proof of transitivity is

non-trivial, but it follows easily with part (3) of Theorem 8.6.8: In case of existence, the

existentially quantified a in (8.9) is uniquely determined as a = ψAw(u) = ψ
A
w(v).

This definition induces a per ‖w‖ ⊆ St × St on untyped stores for every w ∈ W , by

〈σ,σ ′〉 ∈ ‖w‖ iff dom(σ) = w = dom(σ ′) and 〈σ.lA, σ ′.lA〉 ∈ ‖A‖w for all lA ∈ w . The

Basic Lemma then shows that the semantics is well-defined on ‖−‖-equivalence classes, in

the sense that if Γ . e : A then for all w ∈W , for all 〈η, η′〉 ∈ ‖Γ‖w and all 〈σ,σ ′〉 ∈ ‖w‖,

JeKησ ↓ ∨ JeKη′σ ′↓ =⇒







JeKησ = 〈σ1, u〉 ∧ JeKη′σ ′ = 〈σ ′1, u′〉∧
∃w ′ ≥ w. 〈σ1, σ

′
1〉 ∈ ‖w

′‖ ∧ 〈u, u′〉 ∈ ‖A‖w ′
(8.10)

The resulting per model satisfies some of the expected typed equations: For instance, the

records {|f = true,g = true|} and {|f = true,g = false|} are equal at {f : bool}. Unfortunately,

no non-trivial equations involving store hold in this model; in particular, locality and

information hiding are not captured. This is no surprise since we work with a global

store, and the failure of various desirable equations has already been observed for the

underlying typed model (Levy 2002).

However, locality is a fundamental assumption underlying many reasoning principles

about programs, such as object and class invariants in object-oriented programming. The

work of Reddy and Yang (2004), and Benton and Leperchey (2005), shows how more useful

152 Chapter 8. A Typed Semantics for Languages with General References and Subtyping

equivalences can be built in into typed models of languages with storable references. We

plan to investigate in how far these ideas carry over to full higher-order store.

We remark that, unusually, the per semantics sketched above does not seem to work

over an “untyped” partial combinatory algebra: The construction relies on the partition of

the location set Loc =
⋃

A LocA. In particular, the definition of the pers ‖A‖w depends on

this rather arbitrary partition. The amount of type information retained by using typed

locations allows us to express the invariance required for references in the presence of

subtyping. We have been unable to find a more “semantic” condition. In view of this, the

“untyped” model could be viewed simply as a means to an end, facilitating the definition

of the logical relation and bracketing maps in order to prove coherence.

Nevertheless, as pointed out to us by Bernhard Reus, the per model may be useful

for providing a semantics of languages with down-casts, for example in the form of a

construct

Γ . x : A Γ . e1 : B⇒C Γ . e2 : A⇒C

Γ . try (B)x in e1 else e2 : C
(B � A)

The intrinsic semantics of Section 8.4 is not suitable for this purpose: For instance, due

to the use of coercions, it is impossible to recover “forgotten” fields of a record.

8.8.2 On Abadi and Leino’s Logic of Objects

Further, it is interesting to observe the rôle that the typed “witness” of 〈x1, x2〉 ∈ ‖A‖w

plays, i.e., the unique element a ∈ JAKw with 〈a, xi〉 ∈ RAw : Crucially, a determines the

world w ′ ≥ w over which the result store and value are to be interpreted in the case of

application. This is closely related to the soundness proof of the program logic for objects

of Chapter 4. Recall that an untyped domain

O = RecF(Val)× RecM(Loc× S ⇀ S × Val)

is employed there, representing objects consisting of records of fields f ∈ F and pa-

rameterless methods m ∈ M, where S = RecLoc(O) denotes object stores. Types (and

more generally, specifications) are interpreted as predicates over O. Due to the use of the

higher-order store S, types were lifted to a notion of store typing Σ, leading to recursively

defined semantics of types as in the present chapter. The semantics of object types in

Chapter 4 involves a clause for methods m of type A, similar to (8.10) above. Informally,

for all Σ and all Σ-stores σ ,

m(l, σ) = 〈σ ′, v〉 =⇒ ∃Σ′ ≥ Σ.v ∈ JAK
Σ′ and σ ′ is a Σ′-store (8.11)

where JAK
Σ′ is the appropriate denotation of type A. But the use of an existential quan-

tification is problematic. As is well-known, and demonstrated by the example in Sec-

tion 5.1.2, admissibility is not preserved by arbitrary unions. Thus, existential quantifica-

tions preclude the use of the machinery of Pitts (Section 2.5).

In Section 5.1.3 the workaround for this problem was to construct a domain of “choice

functions” φ that track computations in the untyped model on the level of worlds Σ to

provide a witness w . Then, in (8.11) above, the existential quantifier can be replaced by

8.8. A PER Model of Higher-Order Storage and Subtyping 153

“φ(Σ, σ) = Σ′ for some Σ′ ≥ Σ such that. . . ”

Regarding the setting of the per model in this section, the tracking of the computation on

StSpec is hard-wired into the witnesses coming from the typed model.

8.8.3 Polymorphism

It is possible to extend the language and the type system with (explicit) predicative,

prenex-polymorphism, similar to the (implicit) polymorphism found in Standard ML (Mil-

ner, Tofte, Harper, and MacQueen 1997) and Haskell (Peyton Jones 2003). Essentially, the

type system is stratified into simple types and type schemes, with bounded universally

quantified type variables ranging over simple non-polymorphic types only; moreover, the

quantification occurs only on top-level:

A,B ∈ Type ::= . . . | α

where α ranges over a countably infinite set of type variables, and

σ ∈ TypeScheme ::= A | ∀α�A.σ

where α is bound in σ by the universal quantifier.

While this form of polymorphic typing may seem fairly restricted, it has proved very

popular and useful in practice: It provides a good compromise between expressiveness

and type inference that is tractable in many relevant cases, witnessed by the ML and

Haskell languages (Milner 1978; Wright 1995).

In (Schwinghammer 2005a) we have shown that the coherence proof can be extended

to such a language. However, similar to the per model described in Section 8.8.1 the

“untyped” model contains a lot of additional, syntactically defined structure in order to

disambiguate the world a store belongs to. We found this necessary in the definition of

the bracketing maps. This has the consequence that the model does not exhibit the uni-

formity generally associated with models of polymorphism; we therefore regard it purely

as a technical tool to establish coherence rather than a model explaining parametric poly-

morphism in the presence of storage.

Chapter 9

A Typed Model of Objects

In this chapter we show that our simple notion of subtyping is useful in obtaining a

pleasingly straightforward (typed) semantics of the object calculus (Abadi and Cardelli

1996). We proceed as follows:

Section 9.1 extends the technical results of the previous chapter to also cover a fixed

point combinator. Some care is necessary in formalising such combinators in the presence

of side-effects. In Section 9.2 a semantics of objects is given, employing a typed variant

of the fixed point model of (Reddy 1988; Kamin and Reddy 1994). Section 9.3 illustrates

how to prove properties of programs by reasoning about their denotations in the model:

• Reasoning about simple objects, such as the factorial implementation (1.3) from the

Introduction, proceeds by a fixed point induction.

• The object-oriented, “circular" implementation of the factorial function (1.4) from

the Introduction is proved correct. This requires recursively defined predicates to

reason about the use of higher-order store.

• The advantage of using an intrinsically typed model is evidenced by revisiting the

simple call-back protocol considered in (Reus and Streicher 2004): A more concise

specification of such call-backs is provided. We prove an implementation correct

with respect to this specification.

• Abstracting from the examples, an object introduction rule can be proved sound

by fixed-point induction. This is a semantic analogue of rule (AL Obj) of Abadi and

Leino’s logic.

We explain the failure of our tentative reasoning about (1.2) from the introduction: The

specification in this particular instance corresponds to a predicate that is not closed under

taking least upper bounds.

9.1 Recursive Functions

As a first step, we show how to interpret explicit recursion in the model, as opposed to

recursion through the store due to self-application. Recursive functions will be used in

the next section to resolve the dependence of methods on the self parameter.

156 Chapter 9. A Typed Model of Objects

Call-by-value languages do not provide a fixed-point operator at all types. A common

restriction is to add a constant

Γ . fixA : (A⇒A)⇒A

for functional types A ≡ B⇒B′ only. The existence of fixed points is then guaranteed by

the pointedness of (the denotations) of such types in pCpo (but see also Boudol’s (2004)

recent work on a more generous “safe” value recursion). However, in the presence of

computational effects there remains the question about the meaning of

Γ . fixA⇒B (λf .e) : A⇒B (9.1)

i.e., where the expression e is not necessarily a value. It could be taken to be equivalent

to the unfolding e[(fixA⇒B λf .e)/f], thus duplicating the side-effects of e. An alternative

semantics would be to evaluate e to a value v first, and then define (9.1) to be equiv-

alent to v[(fixA⇒B λf .v)/f]. In the latter case the side-effects are performed only once.

These issues are discussed in (Erkök and Launchbury 2000; Moggi and Sabry 2004). Here

we decided to avoid this problem and follow the simpler approach of the Standard ML

language: Essentially, (9.1) is well-formed only if e ∈ Val (i.e., e must be an abstraction).

We capture this restriction syntactically: The syntax of values is extended by a case for

recursive functions rather than providing a fixed point constant,

v ∈ Val::= . . . | µf (x).e

which may be thought of as fixA⇒B (λfλx.e). We add the new type inference rule

Γ , f :A⇒B, x:A. e : B

Γ . µf(x).e : A ⇒ B

As for the semantics, note that each derivation P(Γ , f :A⇒B, x:A.e : B) determines a total

natural transformation F : JΓ K× JA ⇒ BK -→ JA⇒ BK in [W ,Cpo], given by

Fw(ρ, h)
def
= λw ′≥wλ〈a, s〉. JP(Γ , f :A⇒B, x:A. e : B)Kw ′ ((JΓ , f :A⇒BK

w ′

w ρ[f :=h])[x:=a])s

Moreover, every cpo JA⇒ BKw is pointed, with least element ⊥w given by the function that

is undefined everywhere, ⊥w
def
= λw ′≥wλ〈a, s〉↑. By monotonicity of Fw in each argument,

⊥w v Gwρ(⊥w) v G
2
wρ(⊥w) v . . .

forms a chain for all w ∈W and ρ ∈ JΓ Kw , where Gwρ
def
= λh.Fw (ρ, h). Hence by continuity

of Fw the least fixed point exists in JA ⇒ BKw ,

lfp(Gwρ) =
⊔

nG
n
wρ(⊥w) = Gwρ(lfp(Gwρ)) = Fw (ρ, lfp(Gwρ))

Further, by induction it follows that

JA⇒BKw
′

w ◦G
n
wρ(⊥w) = Gn

w ′JΓK
w′

w (ρ)
(⊥w ′)

9.2. Objects 157

for all n ∈ N. Thus JA⇒BKw
′

w ◦ lfp(Gwρ) = lfp(G
w ′JΓK

w′

w (ρ)
) and ρ , lfp(Gwρ) is a natural

transformation JΓ K -→ JA ⇒ BK. Given the notation as above, we now set

s
Γ , f :A⇒B, x:A. e : B

Γ . µf(x).e : A⇒ B

{

w

ρs
def
= 〈w, 〈s, lfp(Gwρ)〉〉 ∈

∑

w ′≥w Sw ′ × JA⇒BKw ′

to obtain a semantics for recursive functions in the typed model. In the untyped model,

we simply set

Jµf (x).eKησ def
= 〈σ, lfp(λh. Jλx.eKη[f := h])〉

Finally, we turn to the proof of the Basic Lemma, which extends to the case of recursive

functions, too.

Proof of Lemma 8.6.7, extended. Let 〈s, σ〉 ∈ RSt
w and 〈ρ, η〉 ∈ RΓw . We know that by defi-

nition,

s
Γ , f :A⇒B, x:A. e : B

Γ . µf(x).e : A⇒ B

{

w

ρs = 〈w, 〈s, lfp(Gwρ)〉〉

and

Jµf (x).eKησ = 〈σ, lfp(λh. Jλx.eKη[f := h])〉

By assumption, 〈s, σ〉 ∈ RSt
w , and it remains to show that the two fixed points are related

by RA⇒Bw .

To see this, first observe that 〈ρ[f := h], η[f := h′]〉 ∈ R
Γ ,f :A⇒B
w for all 〈h, h′〉 ∈ RA⇒Bw .

Therefore as in the case (Lambda) of non-recursive functions, from the induction hypoth-

esis Γ , f :A⇒B, x:A. e : B it follows that

〈Gwρ(h), Jλx.eKη[f := h]〉 ∈ RA⇒Bw (9.2)

for all 〈h, h′〉 ∈ RA⇒Bw . From the definition of RA⇒Bw it is immediate that 〈⊥w ,⊥〉 ∈ RA⇒Bw

where ⊥ = λ〈σ, u〉↑ is the everywhere-undefined function in Val. Therefore induction on

n and (9.2) shows

〈Gnwρ(⊥w), (λh. Jλx.eKη[f := h])n(⊥)〉 ∈ RA⇒Bw

for all n ∈ N. Thus, 〈lfp(Gwρ), lfp(λh. Jλx.eKη[f := h])〉 ∈ RA⇒Bw by admissibility of

RA⇒Bw .

9.2 Objects

Next, we sketch how to give a semantics to Abadi and Cardelli’s imperative object calculus

with first-order types. As in Chapter 3 we distinguish between fields and methods; fields

are mutable, but methods cannot be updated. In fact, we are slightly more general here:

Rather than encoding functions as objects, methods can have parameters. The type of

objects with fields fi of type Ai and methods mj of type Cj (with self parameter yj) and

158 Chapter 9. A Typed Model of Objects

parameter zj of type Bj , is written [fi :Ai,mj :Bj⇒Cj]i,j . Thus, the introduction rule for

objects is

(Term Obj)

A ≡ [fi :Ai ,mj :Bj⇒Cj]i,j
Γ . xi : Ai ∀i Γ , yj :A, zj :Bj . bj : Cj ∀j

Γ . [fi = xi ,mj = ς(yj)λzj . bj]i,j : A

As in Chapter 3, subtyping on objects is by width, and for methods also by depth, taking

the contra-variant position of the method parameter into account:

(Sub Obj)
B′j � Bj Cj � C

′
j ∀j ∈ J′ I′ ⊆ I J′ ⊆ J

[fi : Ai ,mj : Bj ⇒ Cj]i∈I,j∈J � [fi : Ai,mj : B′j ⇒ C
′
j]i∈I′,j∈J′

The following is essentially a syntactic presentation of the closure model of objects

(Kamin and Reddy 1994, cf. Section 3.2), albeit in a typed setting: Objects of type

A ≡ [fi :Ai,mj :Bj⇒Cj]i,j

are simply interpreted as records of the corresponding record type

A∗ ≡ {fi :ref A∗i ,mj :B
∗
j ⇒C

∗
j }i,j

Note that the self parameter does not play any part in this type – this is in contrast

to functional interpretations of objects, see the discussion in Section 3.2. (For a more

detailed overview, refer to Bruce, Cardelli, and Pierce 1999.) In particular, soundness

of the subtyping rule (Sub Obj) follows directly because it is derivable in the system of

Section 8.3.

In the closure semantics a new object [fi=xi ,mj=ς(yj)λzj . bj]i,j of type A is created

by allocating a state record s and defining the methods by mutual recursion (using obvious

syntax sugar),

let s = {fi = newAi (xi)}i∈I in MethA(s)({mj = λyjλzj . bj}j∈J)

where MethA : {fi :ref Ai}i∈I ⇒ {mj :A
∗⇒Bj⇒Cj}j∈J ⇒ A∗ is the recursive function

MethA ≡ µf (s).λm. {fi = s.fi ,mj = λzj . (m.mj(f (s)(m)))(zj)}i∈I,j∈J

Soundness of the introduction rule (Term Obj) follows immediately from this interpreta-

tion of objects and object types.

The semantics of field selection and field update are simply dereferencing and update,

respectively, of the corresponding field of the record. The reduction (−)∗ of objects to

the procedural language of Section 8.3 is made precise in Table 9.1.

Remark 9.2.1. So far, we are not able to interpret a cloning construct. Following (Abadi,

Cardelli, and Viswanathan 1996) this could be added to the translation of Table 9.1 once we

introduce recursive types: The translation of each object of type A would contain a clone

method of type 1⇒A∗, that allocates new state and then calls the constructor MethA as in

the object introduction.

9.2. Objects 159

Table 9.1 Translation of object calculus types and terms

Types [fi :Ai ,mj :Bj⇒Cj]
∗
i∈I,j∈J ≡ {fi :ref A∗i ,mj :B

∗
j ⇒C

∗
j }i,j

Terms x∗ ≡ x

true∗ ≡ true

(if x then a else b)∗ ≡ if x then a∗ else b∗

(let x = a in b)∗ ≡ let x = a∗ in b∗

(a.f)∗ ≡ deref(a.f)

(a.f := b)∗ ≡ (a∗.f):=b∗

(a.m(b))∗ ≡ a∗.m(b∗)

[fi=xi ,mj=ς(yj)λzj . bj]
∗
i∈I,j∈J

≡ let s = {fi = newAi (xi)}i∈I in MethA(s)({mj = λyjλzj . b
∗
j }j∈J)

where A ≡ [fi :Ai ,mj :Bj⇒Cj]i∈I,j∈J

MethA ≡ µf (s).λm. {fi = s.fi ,mj = λzj . (m.mj(f (s)(m)))(zj)}i∈I,j∈J

Remark 9.2.2. The store model of objects induced by the translation (−)∗ differs from the

one presented in Section 3.3.3 (and used throughout Part II): Before, objects “lived” in the

store (in that object creation put the whole object into the store), and were represented by

references (i.e., their location in the store) only. But an object itself was not a value. In

contrast, objects in this chapter are particular records, and therefore values that are not

necessarily kept in the store; heap store is allocated only for the fields. This is closer to the

original operational semantics of the imperative object calculus (Abadi and Cardelli 1996,

Chap. 10), rather than the one presented in Section 3.3.2.

By the previous remark, we should really provide an adequacy result with respect to

the operational semantics. However, we refrain from doing so here: We expect that the

technical results of (Kamin and Reddy 1994) can be adapted (they prove adequacy between

the closure model and self-application model for the functional case only). Instead we

conclude this section with a brief discussion on why we found this particular store model

to be more appropriate in a typed semantics.

Assume we worked with a store model as in the previous chapter, that is, a variable

of type A is in fact a reference to a value in the store, semantically an element of JAK.
Since distinct types denote distinct objects of the category, subtype judgements A � B

necessarily give rise to coercions from JAK to JBK. Note that coercions “forget” infor-

mation, for instance, removing the component with label m2 in the case of judgement

{m1 : A1,m2 : A2} � {m1 : A1}: this is necessary since by definition the elements of

J{m1 : A1}Kw are records that simply do not possess a component with label m2. Now it

cannot be sound to apply this coercion directly on values that are kept in the store. The

problem is easily seen by considering an example where two “views” on a single value v

160 Chapter 9. A Typed Model of Objects

of type {m1 : A1,m2 : A2} are used,

let x=v in let y=x in x.m2

Applying a coercion from J{m1 : A1,m2 : A2}K to J{m1 : A1}K at the point where y is de-

clared to equal x, but at the proper supertype {m1 : A1}, would render the final expression

x.m2 meaningless. In essence this problem is caused by x and y referencing the same

store location, and allowing it to be read and written at different types.

On the other hand, by carefully separating between a stored value and its reference in

the type system (cf. the type constructor ref (−)), the problem described above is avoided:

By definition, there is no nontrivial subtyping of reference types.

9.3 Reasoning about Higher-order Store and Objects

Of course, one of the main motivations for devising a denotational semantics is to provide

proof principles. A model should enable us to specify the behaviour of, and reason about,

concrete programs.

We look at a few small case studies in this section: Firstly, an object with recursive

methods, in the form of the factorial implementation (1.3) that has been considered in

more detail in Chapter 4. The proof principle is fixed point induction. Secondly, recursion

through the store, exemplified by the object-based implementation of the factorial func-

tion (1.4), where the recursion is resolved by calling the method through an object stored

in a member field. This calls for recursively defined predicates whose well-definedness

has to be established first, similar to the existence proof for the Kripke logical relation of

Section 8.6.

Next, we consider a simple call-back mechanism (Gamma, Helm, Johnson, and Vlis-

sides 1995): the method cb we wish to specify simply sends requests on to a method m

of an object accessible via one of its fields f. As such, this method may be changed at

run-time. To reflect this, a sensible specification of the call-back would be of the form

if method m satisfies a specification S, then S holds of cb too

where S ranges over a suitable class of specifications.

We conclude by considering a proof rule for reasoning about the introduction of ob-

jects, similar to the object introduction rule (AL Obj) of Table 4.4 on page 71.

9.3.1 Recursive Methods: The Factorial

In the first example we proceed by using fixed point induction. Recall the object imple-

menting the factorial from Chapter 4:

a ≡











arg = 0,

fac = ς(y)λ(z:1). if y.arg = 0 then 1

else let x=y.arg in y.arg:=x− 1;x× (y.fac())











9.3. Reasoning about Higher-order Store and Objects 161

There, we used the proof rules of Abadi and Leino’s logic to show that the program satis-

fies the specification A, where

A ≡
[

arg : int, fac : ς(y)int::selpre(y, arg) ≥ 0 → result = selpre(y, arg)!
]

Here, we show this in an ad-hoc way by reasoning directly about the denotation of a.

Thus suppose w0 is some world containing at least a location l ∈ Locint, let B stand for
[

arg : int, fac : 1⇒int
]∗

, and let A = (Aw)w≥w0 be the family of predicates Aw ⊆ JBKw
defined by

o ∈ Aw
def
⇐⇒ ∀w ′′ ≥ w ′ ≥ w ∀s ∈ Sw ′ ∀s

′ ∈ Sw ′′∀n ∈ N.

s.(o.arg) ≥ 0 ∧ o.facw ′(s, {||}) = 〈w
′′, 〈s′, n〉〉 =⇒ n = (s.(o.arg))!

Recall that the denotation of an object is determined by application of the recursively

defined constructor MethA to the state record and record of pre-methods. We observe

that for all w the pre-method h
def
= J.λyλz.if deref(y.arg)=0 then 1 else eKw , where e is

let x=deref(y.arg) in y.arg:=x− 1; x× y.fac(), satisfies

∀w2 ≥ w1 ≥ w ∀s ∈ Sw1 ∀o ∈ Aw1 ∀s
′ ∈ Sw2 ∀n ∈ JintKw2

. hw1(s, o) ∈ J1⇒intKw1
∧

s.(o.arg) ≥ 0 ∧ (hw1(s, o))w1(s, {||}) = 〈w2, 〈s
′, n〉〉 =⇒ n = s.(o.arg)! (9.3)

Next consider the admissible predicate Mw ⊆ J{arg : ref int}⇒{fac : B⇒1⇒int}⇒BKw ,

µ ∈ Mw
def
⇐⇒ ∀s ∈ Sw . µw (s, {|arg = l|})↓ =⇒ ∃µ′. µw(s, {|arg = l|}) = 〈w, 〈s, µ′〉〉

∧ µ′w(s, {|fac = h|})↓ =⇒ ∃o. µ′w (s, {|fac = h|}) = 〈w, 〈s, o〉〉 ∧ o ∈ Aw

By fixed point induction, using (9.3),

J.MethB : {arg : ref int}⇒{fac : B⇒1⇒int}⇒BKw ∈ Mw

Thus,

J.a : BKw s = let 〈w ′, 〈s′, µ′〉〉 = (J.MethB : . . . Kw s)w (s+{|l=0|}, {|arg = l|})

in µ′w(s
′, {|fac = h|}) ∈ Sw ×Aw

follows by definition of Mw .

9.3.2 Recursion through the Store: The Factorial

In the following program let A ≡ [fac : int ⇒ int], and B ≡ [f : A, fac : int ⇒ int] (so that

B � A holds). The program also computes the factorial, but making the recursive calls

through the store. Suppose x is declared as an integer variable, and consider the program

let a : A = [fac = ς(x)λn. n] in

let b : B = [f = a, fac = ς(x)λn. if n < 1 then 1 else n× (x.f.fac(n − 1))]

in b.f := b; b.fac(x)

162 Chapter 9. A Typed Model of Objects

While we certainly do not claim that this is a particularly realistic example, it does show

how higher-order store complicates reasoning. We illustrate a pattern for dealing with

this form of self-application, arising from the use of higher-order store, following the

general ideas of (Reus and Streicher 2004) and (Pitts 1996): To prove that the call in the

last line indeed computes the factorial of x, consider the family of predicates P = (Pw)w ,

where w ranges over worlds ≥ {l:A} and Pw ⊆ Jint⇒ intKw ,

h ∈ Pw
def
⇐⇒ ∀w ′ ≥ w ∀s ∈ Sw ′ ∀n ∈ JintKw ′ . (s.l.fac ∈ Pw ′ ∧ n ≥ 0∧ hw ′(s, n)↓)

=⇒ ∃w ′′ ≥ w ′ ∃s′ ∈ Sw ′′ . hw ′(s, n) = 〈w
′′, 〈s′, n!〉〉

Note that Pw corresponds to a partial correctness assertion, i.e., if the result is defined,

then it is indeed n!. This example has also been considered in the context of total cor-

rectness, in recent work of Honda et al. (Honda, Yoshida, and Berger 2005) (where, rather

different to here, the proof relies on well-founded induction using a termination order).

Due to the (negative) occurrence of Pw ′ in the definition of Pw existence of such a

family P has to be established. This can be done along the lines of Theorem 8.6.4: A

relational structure R on the category C is given by defining R(X) to be the type- and

world-indexed admissible relations on X, and defining

f : R ⊂ T
def
⇐⇒







∀w ∈W ∀A ∈ Type ∀x ∈ RAw . fAw(x)↓ =⇒ fAw(x) ∈ TAw

∀w ∈W ∀s ∈ RSt
w . fSw(s)↓ =⇒ fSw(s) ∈ T St

w

for all R ∈ R(X), T ∈ R(Y) and C-morphisms f : X → Y . A functional Φ is defined

corresponding to the predicate P above,

f ∈ Φ(R)int⇒int
w

def
⇐⇒ ∀w ′′ ≥ w ′ ≥ w ∀n ≥ 0∀s ∈ Sw ′ ∀m ∈ JintKw ′′ ∀s′ ∈ Sw ′′ .

(s.l ∈ Rint⇒int
w ′ ∧ fw ′(s, n) = 〈w

′′, 〈s′,m〉〉 =⇒ m = n!)

at worlds w ≥ {l:int ⇒ int} (the value of Φ at other types, as well as on worlds not

extending {l:int⇒ int}, does not really matter and could be chosen as the empty relation,

for instance). This definition forms an admissible action of the functor F : C → C used to

construct the model:

e− : R′ ⊂ R ∧ e+ : T ⊂ T ′ =⇒ F(e−, e+) : Φ(R) ⊂ Φ(R′) (9.4)

As in Section 8.6, property (9.4) suffices to establish well-definedness of the predicates P ,

by Theorem 2.5.2.

Assuming that l is the location allocated for field f, a fixed-point induction shows

Jx:int, a:A. [f = a, fac = ς(x)λn. if . . .] : BKw ρs = 〈w ′, 〈s′, o〉〉 (9.5)

such that w ′ is w ∪ {l:A}, and o.fac ∈ Pw ′ .

Now let ŝ = s′[l := JB � AKw ′ (o)]. Thus, ŝ.l.fac = o.fac ∈ Pw ′ ; and if ρ(x) ≥ 0 we

conclude

Jx:int, a:A, b:[f:A, fac:int⇒int] . b.f := b;b.fac(x) : intKw ′ ρ[b := o]ŝ

= ŝ.l.facw ′(ŝ, ρ(x))

= 〈w ′′, 〈s′′, ρ(x)!〉〉

for some w ′′ and s′′.

9.3. Reasoning about Higher-order Store and Objects 163

Remark 9.3.1. In the case of the object calculus, subtyping seems necessary to construct

such a recursion through the store; otherwise (in the absence of recursive types) one could

not assign the object itself to one of its fields. It is even easier (in the sense that neither

recursive types nor subtyping are necessary) to construct similar examples in the calculus of

Section 8.3 where references on their own are an integral part of the language, rather than

being available only as part of an object. One such example was (1.2) in the Introduction.

9.3.3 Call-backs

As another example, we treat the call-back example considered in (Reus and Streicher

2004). Call-backs are used in object-oriented programming to decouple the dependency

between caller and callee objects. A typical example is that of generic buttons in user

interface libraries, described in (Gamma, Helm, Johnson, and Vlissides 1995) by the com-

mand pattern: As the implementor of the button class cannot have any knowledge about

the functionality associated with a particular window button instance, it is assumed that

there will be an object supplied (at run-time) that encapsulates the desired behaviour for

the button pressed event, by providing a method execute. That is, the object should have

type

[execute : 1⇒ 1]

Apart from implementing this interface, there are no further requirements on the sup-

plied object. In particular, no assumptions about the behaviour of its execute method are

made. The buttonPressed method of the button class will then react to events by forward-

ing to the execute method. In terms of specifications, buttonPressed would thus satisfy

any specification that execute satisfies.

The techniques developed in (Reus and Streicher 2004) to express such parametric

specifications carry over to the present semantics. However, in contrast to loc. cit., and

highlighting the fact that our model is typed, we are able to give a more concise specifica-

tion of such call-back methods (see (9.7) and (9.8) below): The existence of all the required

methods in the participating objects is already ensured by the intrinsic typing. In the un-

typed semantics of (Reus and Streicher 2004), existence of a method named execute has

to be required explicitly in the specification of the method buttonPressed. The price we

pay for this is that generally we must consider families of predicates, indexed by worlds

and types.

We proceed analogously to (Reus and Streicher 2004). Before considering the button

example in detail, a notation for semantic Hoare triples is defined.

Definition 9.3.2. For X ∈ [W ,pCpo] let Adm(X) denote the complete lattice of families

P = (Pw)w∈W of admissible predicates Pw ⊆ Sw × Xw , ordered pointwise by inclusion.

Now suppose P ∈ Adm(JAK) and Q ∈ Adm(JBK) are such families of predicates. For

w ∈W and h ∈ JA⇒ BKw we define

{P}h{Q}
def
⇐⇒ ∀w ′′ ≥ w ′ ≥ w ∀〈s, a〉 ∈ Sw ′ × JAKw ′ ∀〈s′, b〉 ∈ Sw ′′ × JBKw ′′ .

(〈s, a〉 ∈ Pw ′ ∧ hw ′(s, a) = 〈w
′′, 〈s′, b〉〉 =⇒ 〈s′, b〉 ∈ Qw ′′)

164 Chapter 9. A Typed Model of Objects

expressing a partial correctness assertion of the function h. It can be verified that since

eachQw is an admissible subset of Sw×JBKw then {P}−{Q} denotes an admissible subset

of the function space JA⇒ BKw .

Lemma 9.3.3. {P} − {Q} forms an admissible subset of JA⇒ BK.

Next we consider an implementation of the generic buttons described above. Let B

describe the interface B ≡ [execute : 1⇒1] and let

A ≡ [evHdl : B,buttonPressed : 1⇒1]

be the type of such button objects. Let a be the object

x:B .





evHdl = x,

buttonPressed = ς(y)λz. y.evHdl.execute({})



 : A (9.6)

Let l ∈ LocB , let w ′ ≥ w ≥ {l:B} and set T lw,w ′ ⊆ Sw × Sw ′ to

〈s, s′〉 ∈ T lw,w ′
def
⇐⇒ ∀P,Q ∈Adm(J1K).

{P}s.l.execute{Q} ∧ 〈s, {||}〉 ∈ Pw =⇒ 〈s′, {||}〉 ∈Qw ′
(9.7)

Since each Qw ′ is admissible and admissible predicates are closed under universal quan-

tification, T lw,w ′(s,−) determines an admissible predicate over Sw ′ for fixed s ∈ Sw . Thus,

the set

{

h ∈ J1⇒ 1Kw ∀s, s′. hw(s, {}) = 〈w
′, 〈s′, {}〉〉 =⇒ 〈s, s′〉 ∈ T lw,w ′

}

(9.8)

is admissible in J1⇒ 1Kw . Now assume that l is the location allocated for the field evHdl of

a. A fixed-point induction shows that for any w and w ′ = w ∪ {l:B}, there is an o ∈ JAKw ′
such that

〈w ′, 〈s′, o〉〉 = Jx:B . a : AKw ρs (9.9)

and o.buttonPressed∈ J1⇒ 1Kw ′ satisfies the specification (9.8).

Limits of the Approach

We remark that while this approach goes a long way towards reasoning about call-backs, it

reaches its limits when combined with recursion through the store. For example, suppose

in the call-back example methods execute and buttonPressed had the same name, m, say.

Thus, the subtype relation

A ≡ [evHdl : B, m : 1⇒1] � [m : 1⇒1] ≡ B

between types A and B holds, and the program

x:B . let y=a in y.evHdl:=y; y (9.10)

is type-correct, where a is as in (9.6). Our intuition tells us that the meaning of any call

y.m({}) is undefined (operationally, it diverges) since m immediately calls itself recur-

sively, through the store.

9.3. Reasoning about Higher-order Store and Objects 165

Writing o for the semantics of (9.10) it follows as before (substituting the altered

method name m appropriately) that o.m satisfies the specification (9.8). Expanding the

definition, this means for all stores s ∈ Sw and s′ ∈ Sw ′ , and for all P,Q ∈Adm(J1K),

{P}s.l.m{Q} ∧ o.mw(s, {||}) = 〈w
′, 〈s′, {||}〉〉 ∧ 〈s, {||}〉 ∈ Pw =⇒ 〈s′, {||}〉 ∈ Qw ′

Non-termination says there is no s′ such that o.mw(s, {||}) = 〈w ′, 〈s′, {||}〉〉, so we should

instantiate Q above with the family of predicates F = (Fw) where Fw
def
= �. But this leaves

us with the task of showing the precondition {P}s.l.m{F} holds, and since s.l.m = o.m

we must in fact prove {P}o.m{F}. Note that we set out to prove this in the first place!

In fact, the observation that co-inductively defined specifications fail in this instance

motivated the study of the more powerful, mixed-variant predicates in (Reus and Streicher

2004): It is observed there that a number of constructions, like {P} − {Q}, respect the

relational structure (in the sense that specifications built up from basic building blocks

satisfy conditions such as (9.4)), therefore possess unique fixed points.

Note that in Chapter 5 such mixed-variant specifications were already necessary to

prove the object introduction rule sound, cf. the definition of JΣK. In comparison, object

introduction in the typed semantics requires only fixed point induction, as shown next.

The reason is of course that we have replaced the self-application model of objects of

Chapter 3 by the fixed point model.

9.3.4 A Semantic Object Introduction Rule

As seen in the previous examples, the introduction of an object usually involves a fixed

point induction in order to establish properties of the fields and methods, given that the

initial values and pre-methods satisfy given specifications (see (9.5) and (9.9)). This is

due to the construction of objects by an application of the constructor MethA to the state

record and record of pre-methods. We present a semantic rule that encapsulates this

fixed point induction.

Let Adm be as in Definition 9.3.2. Given families of admissible predicates Pi ∈

Adm(JAiK) for i ∈ I and Qj ∈ Adm(JBjK), Rj ∈ Adm(JCjK) for j ∈ J, let the family

of predicates Ob(Pi ,Qj ,Rj)i∈I,j∈J where

Ob(Pi ,Qj ,Rj)w ⊆ Sw × J[fi : Ai, mj : Bj ⇒ Cj]K

defined by

〈s, o〉 ∈ Ob(Pi ,Qj ,Rj)w
def
⇐⇒ ∀i ∈ I. 〈s, s.(o.fi)〉 ∈ Piw ∧ ∀j ∈ J. {Qj}o.mj{Rj}

Stability

The following concept identifies a condition on families of admissible predicates that

suffices for the proof rule below.

Definition 9.3.4 (Stability). We call a family of predicates P ∈ Adm(X) stable (under

extensions) if and only if, for all w ∈W , all 〈s, x〉 ∈ Pw and all w ′ ≥ w and s′ ∈ Sw ′

∀lA ∈ w. s
′.l = JAKw ′w (s.l) =⇒ 〈s′, Xw

′

w (x)〉 ∈ Pw ′

166 Chapter 9. A Typed Model of Objects

That is, the allocation of further locations (with arbitrary contents) does not invalidate

the specification, as long as the original part of the store remains unchanged. Further-

more, for P ∈ Adm(JAK) and Q ∈Adm(JBK) we define P ⇒ Q ∈Adm(JA⇒ BK) by

〈s, h〉 ∈ (P ⇒ Q)w
def
⇐⇒ {P}h{Q}

for 〈s, h〉 ∈ Sw × JA⇒ BKw . We observe that P ⇒ Q is a stable family, since for all w ′′ ≥

w ′ ≥ w we have (JA⇒ BKw
′

w (h))w ′′ = hw ′′ which entails {P} JA ⇒ BKw
′

w (h){Q} whenever

{P}h{Q}. Similarly, if each Pi ∈ Adm(JAiK) is stable then so is Ob(Pi ,Qj ,Rj)i∈I,j∈J for

the same reason.

Object Introduction

We introduce the following convenient notation. If P = (Pw)w ∈ Adm(X) and r ∈
∑

w Sw ×Xw we simply write r ∈ P, meaning that 〈s, x〉 ∈ Pw ′ whenever r = 〈w ′, 〈s, x〉〉.

Now supposeA ≡ [fi : Ai,mj : Bj⇒Cj]i∈I,j∈J . For all Pi ∈ Adm(JAiK),Qj ∈ Adm(JBjK)
and Rj ∈ Adm(JCjK) the following rule is sound:

∀i ∈ I JΓ . xi : AiKw ρs ∈ Pi
∀j ∈ J JΓ . λyjλzj .bj : A⇒Bj⇒CjKw ρs ∈ Ob(Pi ,Qj ,Rj)i∈I,j∈J ⇒ Qj ⇒Rjr

Γ .
[

fi = xi, mj = ς(yj)λzj .bj
]

i∈I,j∈J
: A

z
w
ρs ∈ Ob(Pi ,Qj ,Rj)i∈I,j∈J

(9.11)

provided each Pi is stable.

For the proof, assume {1, . . . , n} = I, let w ′
def
= w, l1:A1, . . . , ln:An, let vi ∈ JAiKw be such

that JΓ . xi : AiKw ρs = 〈w, 〈s, vi〉〉 and let

s′
def
= {|l = JAKw ′w (s.l)|}lA∈w + {|li = JAiKw

′

w (ρ(xi))|}i∈I

so that 〈w ′, 〈s′, {|fi = li|}〉〉 = J{fi = newAi(xi)}Kw ρs ∈
∑

w ′≥w Sw ′ × J{fi : Ai}Kw ′ . Next

consider the admissible set M ⊆ J{fi : ref Ai} ⇒ {mj : A⇒ Bj ⇒ Cj} ⇒ AK
w ′ ,

µ ∈ M
def
⇐⇒ µw ′(s

′, {|fi = li|})↓ =⇒ ∃µ′. µw ′(s
′, {|fi = li|}) = 〈w

′, 〈s′, µ′〉〉

∧ µ′w ′(s
′, {|mj = hj |})↓ =⇒ ∃ô. µ′w ′(s

′, {|mj = hj |}) = 〈w
′, 〈s′, ô〉〉

∧ 〈s′, ô〉 ∈ Ob(Pi ,Qj ,Rj)w ′

(9.12)

where hj is determined as 〈w ′, 〈s′, hj〉〉 = JΓ . λyjλzj .bj : A ⇒ Bj ⇒ CjKw ′ ρs′. The import

of the first two lines of (9.12) is to express that application of µ does not change the store.

Recall the object constructor, MethA,

MethA ≡ µf (s).λm. {fi = s.fi ,mj = λzj . (m.mj(f (s)(m)))(zj)}i∈I,j∈J

We show that (its denotation) is in M . Clearly ⊥ ∈ M for ⊥ the function that is undefined

everywhere. Next suppose µ ∈ M , and let

o
def
= {|fi = vi, mj = hjw ′(s

′, ô)|}i,j

where ô is the result of applying µ to 〈s′, {|fi = vi|}〉 and 〈s′, {|mj = hj |}〉, as in (9.12). By

stability, 〈s′, vi〉 ∈ Piw ′ for all i ∈ I. Furthermore, since µ ∈ M , 〈s′, ô〉 ∈ Ob(Pi ,Qj ,Rj)w ′ .

9.3. Reasoning about Higher-order Store and Objects 167

Hence, {Qj}hjw ′(s
′, ô){Rj} from the premiss of the rule, and 〈s′, o〉 ∈ Ob(Pi ,Qj ,Rj)w ′

follows. By fixed point induction we can therefore conclude

JΓ .MethA : {fi : ref Ai}⇒{mj : Bj⇒Cj}⇒AK
w ′ ρs

′ ∈ M

and in particular

r
Γ .

[

fi = xi , mj = ς(yj)λzj .bj
]

i∈I,j∈J
: A

z
w
ρs

= let 〈w ′, 〈s′, µ′〉〉 = (JΓ .MethA : . . . Kw ′ ρs′)w ′(s′, {|fi = vi|}) in µ′w ′(s
′, {|mj = hj |})

proves the conclusion of the introduction rule (9.11), by definition of M .

Comparison to the work of Reus and Streicher

As indicated by this object introduction rule, the definition of Ob(Pi ,Qj ,Rj)w ′ and fixed

point induction are in fact sufficient to prove correctness of Abadi and Leino’s object

introduction rule (AL Obj). This is in apparent contradiction to (Reus and Streicher 2004)

where it was argued that predicates corresponding to specifications of the logic need be

mixed-variant. Of course the answer is that Reus and Streicher use the self-application

model whereas the fixed point model is used in this chapter. And while the program

let x = [m = ς(y)λz. y.m(z)] in x.m()

can be proved non-terminating by rule (9.11), for the variation (9.10) which uses recursion

through the store it is not obvious how to proceed without mixed-variant specifications.

Our, not very formal, conclusion is the following: Since mixed-variant predicates are the

proof principle corresponding to recursion through the store, such predicates defined

by mixed-variant recursion must be used somewhere in order to establish soundness of

reasonably expressive (syntactic) proof calculi. In particular, even though reasoning about

object construction in the fixed point model proceeds by fixed point induction, a potential

recursion through the store may sneak in through field updates. Our previous examples

have demonstrated this.

9.3.5 Non-Existence of Specifications

The failed reasoning about program (1.2) in the Introduction shows that predicates satis-

fying arbitrary recursively defined requirements need not exist. Recall that we attempted

to prove for the program

let f : int⇒ int = λn. if n = 0 then 0 else (deref r)(n−1)

in r := f ; . . .

that it denotes a function such that there exist arbitrarily large integer arguments for

which the function result is non-zero. The formalisation of the informal argument leads

us to define, for worlds w containing a function location ρ(r) ∈ Locint⇒int and h ∈

Jint⇒ intKw :

h ∈ Pw ⇐⇒ ∀w ′ ≥ w ∀s ∈ Sw ′ ∀n ∈ JintKw ′ . s.(ρ(r)) ∈ Pw ′ ∧ hw ′(s, n)↓
=⇒ ∃m ∈ JintKw ′ . m ≥ n
∧ ∀w ′′ ≥ w ′ ∀s′′ ∈ Sw ′′ ∀m

′ ∈ JintKw ′′ . hw ′(s,m) = 〈w ′′, 〈s′′,m′〉〉 =⇒m′ ≠ 0

168 Chapter 9. A Typed Model of Objects

Note the existential quantification in the right-hand side, which has the consequence that

this predicate is not closed under taking least upper bounds. Indeed, a simple counter-

example is given by the chain (hi)i in Pw , where hi(s, n)
def
= 〈w, 〈s,0〉〉 if n < i and unde-

fined otherwise. The least upper bound h of this chain is everywhere defined and 0, thus

cannot be an element of Pw .

Further note that this observation only means that the techniques of Chapter 2 are

not applicable. Example (1.2) shows the stronger property that there exists no predicate

P satisfying the above equivalence.

9.4 Remarks

Our semantic account of objects in this chapter closely follows the one considered in

Kamin and Reddy’s (1994) article, termed fixed point semantics. Classes and inheritance,

as introduced in Section 3.4, could be explained directly, as proposed in (Kamin and Reddy

1994), too. However, in loc. cit. this interpretation was developed in an untyped setting,

thus side-stepping two of the central issues we have had to deal with in our semantics:

modelling types in the presence of dynamic allocation of heap storage and subtyping.

The interpretation of objects and classes sketched above also highlights another point

which we believe deserves some discussion. At the end of (Kamin and Reddy 1994) where

the closure semantics is compared to their alternative self-application model of objects,

the advantage of the former with respect to typed languages is correctly anticipated.

They remarked that “[because] self-application uses universal reflexive domains, the fixed

point approach is better suited for typed languages.” Self-application here refers to the

self-parameter of methods (which is then bound to the host object at method invocation

time, as explained in Section 3.2) rather than the store. It is well-known that, in a typed

language, this contra-variant occurrence of the self-type in the type signature of methods

blocks desirable subtypings, again we refer to the beginning of Chapter 3 for a more

comprehensive discussion.

We want to point out that the above quotation from (Kamin and Reddy 1994) may need

some clarification: Of course there is self-application also in the imperative fixed-point

model, namely of the store parameter. This is due to the higher-order store; as explained

in Section 8.4, the domains used to interpret the language of Section 8.3 are also reflexive

domains. That this use of reflexive domains seems unavoidable is witnessed by programs

using recursion through the store, such as the factorial example of Section 9.3. However,

the store parameter remains implicit; in particular, it does not appear in the source-level

type of the methods of an object and thus does not interfere with subtyping.

Chapter 10

Discussion

This concluding chapter is organised as follows. After a comparison to related work, we

also discuss the relation of the typed model to the semantic model of Abadi-Leino logic

in Part II. Then, in the remainder of this chapter, some initial ideas for local reasoning

about higher-order store are developed. In particular, the intrinsic model is refined to

include a notion of local computation which is shown to hold of all elements definable in

the language.

We conclude with a summary of our results and identify a number of directions for

future work.

10.1 Comparison to Related Work

Apart from Levy’s work (Levy 2002; Levy 2004) which we built upon here, we are aware of

only few other typed semantic models of higher-order store in the literature. The models

in (Abramsky, Honda, and McCusker 1998; Laird 2003) use games semantics and are not

location-based, i.e., the store is modelled only indirectly via possible program behaviours.

Neither of these articles considers subtyping. Jeffrey and Rathke (2002) provide a model

of the object calculus in terms of interaction traces, very much in the spirit of games

semantics, which can be used to prove contextual equivalences.

Ahmed, Appel and co-workers (Ahmed, Appel, and Virga 2002; Appel and McAllester

2001; Ahmed, Appel, and Virga 2003; Ahmed, Fluet, and Morrisett 2005) follow a different

approach by constructing models with a rather operational flavour: The semantics of

types is obtained by approximating absence of type errors in a reduction semantics. While

they can model rich type systems in this way, their models also suffer from the fact that

allocated locations are globally accessible, i.e., encapsulation is not modelled.

Other related work we have already mentioned are the recent models of languages with

pointers, but no higher-order store: Reddy and Yang (2004) and Benton and Leperchey

(2005) provide semantic accounts of encapsulation and data abstraction for programs

with dynamically allocated heap memory where pointers may be leaked. In contrast,

Banerjee and Naumann (2002) solve the problem of modelling representation indepen-

170 Chapter 10. Discussion

dence by ruling out potential access to private memory from the outside, by imposing a

confinement condition on programs.

There is a vast body of work on interpreting objects in procedural languages. Bruce,

Cardelli and Pierce (1999) provide a fairly comprehensive overview and comparison of

the more successful encodings of typed objects. Most of the encodings in the literature

consider functional objects only. Exceptions are the denotational analyses of objects

and inheritance by Kamin and Reddy (1994), and Cook and Palsberg (1994). However,

they use untyped models, side-stepping the issues of modelling types and subtyping in

the presence of updates and dynamic allocation. Many others apply similar ideas in a

purely syntactic setting (Bono, Patel, Shmatikov, and Mitchell 1999; Thorup and Tofte

1994; Abadi, Cardelli, and Viswanathan 1996; Boudol 2004). This suffices for proofs of

type soundness, but more expressive specifications are not usually discussed, and indeed

logics of languages with higher-order store are hard to justify in such a setting. See our

discussion in Section 7.1.1 of the soundness proof of (Abadi and Leino 2004).

The proof principles for recursion through the store and call-backs applied in Sec-

tion 9.3 are direct adaptations of those presented by Reus and Streicher (2004): They

developed them in the context of the untyped model of the object calculus, given in Sec-

tion 3.3.3. The call-back example in particular shows that there is a trade-off in writing

down predicates with respect to the typed and untyped models: On the one hand, as-

suming a typed model often allows for more concise specifications. On the other, the

possible worlds structure requires one to define families of predicates instead of a single

predicate.

Honda, Berger and Yoshida (Honda, Yoshida, and Berger 2005; Berger, Honda, and

Yoshida 2005) present program logics for higher-order procedures and general refer-

ences. Soundness is proved with respect to a term model. It is not clear to us to which

extent their proof system can prove properties of higher-order store: They deal with total

correctness assertions and thus can use well-founded induction on a termination order

in their examples of recursion-through-the-store. But relying on total correctness also

entails that even very simple non-terminating programs cannot be proved as such. Inter-

estingly, the logic of (Honda, Yoshida, and Berger 2005) is based on naming (intermediate)

results. This brings it close to Abadi and Leino’s logic where objects are kept in the store

and can therefore be referred to by a unique location name.

10.1.1 Comparing the Typed and Untyped Models of Objects

We have considered untyped and typed models of the object calculus in Part II and Part III,

respectively. It is natural to ask what their respective advantages and disadvantages are.

We attempt to answer some questions here.

Firstly, reasoning directly about denotations of programs is somewhat simpler in the

untyped model since one usually has to define a single predicate over the domain. In

contrast, one must consider families of predicates, indexed by possible worlds, in the

typed model. However, reasoning in the untyped model sometimes necessitates to explic-

itly state that certain fields and methods are defined in an object, which is automatically

10.2. Outlook: Towards Local Reasoning for Higher-Order Store 171

guaranteed in a typed semantics.

Secondly, modelling the aspect of dynamic allocation adequately in the untyped model

turns out to be problematic. In particular, establishing the semantics of store specifica-

tions in Chapter 5 is awkward; the construction of the domain of choice functions appears

to be an ad-hoc solution. As long as one is only interested in type soundness it seems

much more elegant to rely on the “built-in” indexing of the typed model. Nevertheless, the

extrinsic per model of Section 8.8.1 provides a link between typed and untyped model,

using the intrinsic semantics to keep track of allocated locations.

Finally, we did not succeed in designing a program logic, similar to the one of Abadi

and Leino, for the higher-order language of Section 8.3. The problem is the following: In

general, specifications will contain free variables, i.e., depend on values. For the object

calculus we have syntax for every value, including the run-time values. Thus, using sub-

stitution instances we can in fact restrict attention to closed specifications. In a language

with higher-order functions this is not possible, so one really needs to find an appropriate

model of this dependency. At the time of writing it is not clear to us how to refine the

typed model in this way. In particular, naively extending the possible worlds to specifi-

cations that contain variables (analogous to the store specifications from Chapter 5) does

not seem to work.

10.2 Outlook: Towards Local Reasoning for Higher-Order Store

We sketch an improvement to the intrinsic semantic model of Chapter 8 next. Informally,

the property we establish states that a computation is already completely determined

by the accessible part of the store. Formally this amounts to showing a frame property

for general references. The recent work on local reasoning (Reynolds 2002a; O’Hearn,

Reynolds, and Yang 2001) has identified frame properties as a semantic justification for

frame rules.

10.2.1 Partial Stores

For local reasoning the notion of partial stores is a useful concept (Reynolds 2002a;

O’Hearn, Reynolds, and Yang 2001). We define partial stores next, in the obvious way.

Definition 10.2.1 (Partial Store). For w ′ ≥ w let the cpo Sw
′

w of partial stores be

Sw
′

w

def
= {|lA : JAKw ′ |}lA∈w

In particular, Sww = Sw , and if w = w1] w2 then s1 ∈ Sww1
and s2 ∈ Sww2

implies

s1+s2 ∈ Sw .

Definition 10.2.2 (Store Embeddings). By a slight abuse of notation (suppressing w), define

store embeddings ι
w2
w1 : S

w1
w → Sw2

w between partial stores by

ιw2
w1
(s)

def
= {|lA = JAKw2

w1
(s.lA)|}lA∈w

If there is s2 such that s = ιww1
(s1)+ s2 then we say s1 embeds in s.

172 Chapter 10. Discussion

Relations on Partial Stores

In the context of working with partial stores, the relations of interest are partial store

relations: Families P = (Pw
′

w)w ′≥w of (admissible and downwards closed) predicates over

partial stores, where Pw
′

w ⊆ Sw
′

w . In the obvious way call such a partial store relation Kripke

monotonic iff

∀w2 ≥ w1 ≥ w ∀s ∈ S
w1
w . s ∈ P

w1
w =⇒ ιw2

w1
(s) ∈ Pw2

w

We observe that Kripke monotonicity is different from the notion of stability that was

used earlier in Section 9.3 for the proof of object introduction: For instance, P = (Pw
′

w)

where s ∈ Pw
′

w iff s.l = 0 for all l ∈ w ∩ Locint is monotonic but not stable. Conversely,

the family Q = (Qw
′

w) with Qw
′

w = Sw if w = w ′, and Qw
′

w = � otherwise, is stable but not

monotonic.

In essence, Kripke monotonicity means properties are preserved across embeddings

of stores, while stability guarantees properties are preserved when adjoining a store to

another (partial) store.

10.2.2 The Frame Property

Separation and a Frame Rule

Recall from Section 9.3 that byAdm(X) we denote the set of families of admissible pred-

icates on S × X, for X ∈ [W ,pCpo]. We define a semantic (non-symmetric!) separation

conjunction between admissible predicates and Kripke monotonic partial store relations

next.

Definition 10.2.3 (Separation Conjunction). Let P = (Pw)w ∈ Adm(X) for some X ∈

[W ,pCpo]. Let Q = (Qw
′

w)w ′≥w be a Kripke monotonic partial store relation. Define a

partial store relation P <Q = (Rw)w by

〈s, x〉 ∈ Rw
def
⇐⇒ ∃w1, w2 ∈W ∃s1 ∈ Sw1 ∃s2 ∈ S

w ′

w2
∃x1 ∈ Xw1 .

w = w1]w2 ∧ s = ι
w ′

w1
(s1)+ s2 ∧ x = X

w
w1
(x1)

∧ 〈s1, x1〉 ∈ Pw1 ∧ s2 ∈ Q
w ′

w2

That is, s splits into a (complete) store s1 embedded in s and a partial store s2 that

satisfy P andQ, respectively. A consequence of this asymmetric definition is that no value

stored in the s1-part refers to s2; moreover, xmay only refer to locations in s1. Conversely

however, the contents of s2 may well depend on locations of s1.

For example, Q = (Qw
′

w) could refer to the “missing” part of the store in a hypothetic

way,

s2 ∈ Q
w ′

w

def
⇐⇒ ∀s1 ∈ Sw1 . (s1.l = 5 =⇒ . . .)

where w ′
def
= w] w1 for some w1 ∈ W and s′.l ∈ w1 ∩ Locint. This is reminiscent of the

resource interpretation of the magic wand connective −∗ of logic BI (Pym, O’Hearn, and

Yang 2004).

10.2. Outlook: Towards Local Reasoning for Higher-Order Store 173

Next suppose h ∈ JA ⇒ BK� =
∏

w Sw×JAKw ⇀
∑

w ′≥w(Sw ′×JBKw ′). We use the notation

for Hoare triples for families of admissible predicates, introduced on page 163. Our goal

is to prove the soundness of frame rules such as

{P}h{Q}

{P <R}h{Q<R} R Kripke monotonic (10.1)

where P ∈ Adm(JAK), Q ∈Adm(JBK) andR is a Kripke monotonic partial store relation.

Thus (10.1) expresses that (separated) invariants R may be conjoined to any valid

Hoare triple. Semantically, soundness of this reasoning relies on the intuitive valid prop-

erty that computations act “locally”, their result completely determined by the accessible

part of the store. This is formalised as a frame property next.

Frame Property

We prove a frame property (Reynolds 2002a; O’Hearn, Reynolds, and Yang 2001) for the

programs of the language of Section 8.3 next. The following definition introduces a notion

of programs operating locally on the store, parameterised by families of relations P and

Q. To avoid further cluttering of the already heavy notation, we write ww1 for a disjoint

union of worlds w]w1.

Definition 10.2.4 (P -Q-local Computations). Suppose P and Q are families of predicates

PSt
w ⊆ Sw and PAw ⊆ JAKw , and QSt

w ⊆ Sw and QAw ⊆ JAKw , for all w ∈ W and A ∈ Type.

Further let w ≥ w0. We say h ∈ JA⇒ BKw0
is w -P -Q-local iff,

∀s ∈ Sw ∀a ∈ JAKw .
∀w1 ∈W ∀w2 ≥ w1]w ∀s1 ∈ S

ww1
w1

∀s2 ∈ Sw2
∀b2 ∈ JBKw2

.

(ιww1
w (s)+s1) ∈ P

St
ww1

∧ JAKww1

w (a) ∈ PAww1
∧

hww1
(ιww1
w (s)+s1, JAKww1

w (a)) = 〈w2, 〈s2, b2〉〉 =⇒

∃w ′ ≥ w, s′ ∈ Sw ′ b ∈ JBKw ′ .
hw(s, a) = 〈w

′, 〈s′, b〉〉 ∧ w2 = w
′]w1 ∧

s2 = ι
w2

w ′(s
′)+s′1 ∧ s2 ∈ Q

St
w2
∧ b2 = JBKw2

w ′ (b) ∧ b2 ∈ Q
B
w2

for some s′1 v ι
w2
ww1(s1).

We simply say h is P -Q-local if it is w ′-P -Q-local for all w ′ ≥ w , and P -local if it is

P -P -local.

This situation may be pictured as follows. Fix a partial store s1 ∈ S
ww1
w1 , and define the

embeddings ε1(s)
def
= ιww1

w (s)+ s1 and ε2(s)
def
= ιw

′w1

w ′ (s)+ ιw
′w1

ww1 (s1). The following diagram

commutes (more precisely, the upper-left map is less or equal than the lower-right one):

Sww1 × JAKww1

hww1

��

Sw × JAKw
ε1×JAKww1

woo

hw

��
∑

w2≥ww1
Sw2 × JAKw2

∑

w ′≥w Sw ′ × JBKw ′
∑

w′ ε2×JBK
w′w1
w′

oo

Due to the typing assumptions, the partial store s1 is not accessible by the computation.

Definition 10.2.4 formalises the idea that in this situation (1) s1 remains unchanged, and

174 Chapter 10. Discussion

Table 10.1 Frame relation

Rbool
w = JboolKw
R
{mi :Ai}i∈I
w = {r ∈ J{mi : Ai}i∈IKw | r .mi ∈ R

Ai
w ∀i ∈ I}

Rref A
w = Jref AKw
RA⇒Bw = {h ∈ JA⇒ BKw | h is R-local}

RSt
w = {s ∈ Sw | s.lA ∈ RAw ∀lA ∈ w}

(2) the result of the computation is the same irrespective of whether s1 is or is not con-

joined.

Table 10.1 defines a Kripke logical relation R with RAw ⊆ JAKw that holds if “R-locality

of stores” is preserved. Because of the higher-order store, this can only hold of programs

when applied to stores that contain nothing but R-local values. Then, because of the

negative occurrence of R in the clause for function types, existence of R needs to be

established. The existence proof illustrates why we can only require s′1 v ι
w2
ww1(s1) –

rather than equality – in Definition 10.2.4. Fortunately this is still sufficient for the partial

correctness assertions we are interested in.

For the purpose of proving well-definedness of the logical relation R, we consider a

“Kripke” relational structure over the category

C =
∏

w∈W pCpo ×
∏

A∈Type[W ,Cpo] •→ [W ,pCpo]

as follows: Relations over an object 〈DS , D〉 are families P of admissible downward closed

subsets PSt
w ⊆ DSw and PAw ⊆ DAw such that a ∈ PAw implies DA,w≤w ′(a) ∈ P

A
w ′ for all

w ′ ≥ w , and where for e : 〈DS , D〉 → 〈ES , E〉, e : P ⊂ Q holds iff

∀w ∈W ∀d ∈ DAw . d ∈ P
A
w ∧ eAw(d)↓ =⇒ eAw(d) ∈ Q

A
w

∀w ∈W ∀s ∈ DSw . s ∈ P
St
w ∧ eSw(s)↓ =⇒ eSw(s) ∈ Q

St
w

Table 10.2 defines a functional Φ such that the definition of the relation R reduces to

finding a fixed point R = Φ(R, R). The next lemma shows that Φ defines an admissible

action of the functor F of Section 8.4 (Table 8.3) for which the semantic domain D =

〈(Sw)w∈W , (JAK)A∈Type〉 is the minimal invariant:

Lemma 10.2.5. Let I = {δn(⊥) | n ∈ N} be the set of projections δn(⊥). Let e ∈ I and

assume that e : P ′ ⊂ P and e : Q ⊂Q′. Then F(e, e) : Φ(P,Q) ⊂ Φ(P ′,Q′).

Proof sketch. The interesting case is for the components of the form A ≡ B⇒B′. Thus

if h ∈ Φ(P,Q)Aw0 and F(e, e)Aw0(h) ↓ we must show F(e, e)Aw0(h) ∈ Φ(P ′,Q′)Aw0 , i.e.,

F(e, e)Aw0(h) is P ′-Q′-local.

So let w ≥ w0, let s ∈ SSt
w and a ∈ JAKw . Let w1 ∈ W , let s1 ∈ S

ww1
w1 such that

(ι
ww1
w (s)+s1) ∈ P ′

St
ww1

and JAKww1

w (a) ∈ P ′Aww1
, and suppose there are w2 ≥ w] w1 and

s2 ∈ Sw2 and b2 ∈ JBKw2
such that

F(e, e)Aw0(h)ww1(ι
w,w1
w (s)+s1, JAKww1

w (a)) = 〈w2, 〈s2, b2〉〉

10.2. Outlook: Towards Local Reasoning for Higher-Order Store 175

Table 10.2 Functional of the relation

b ∈ Φ(P,Q)bool
w

def
⇐⇒ b ∈ JboolKw

r ∈ Φ(P,Q){mi :Ai}i∈I
w

def
⇐⇒ r ∈ J{mi : Ai}i∈IKw ∧ r .mi ∈ Q

Ai
w ∀i ∈ I

l ∈ Φ(P,Q)ref A
w

def
⇐⇒ l ∈ Jref AKw

h ∈ Φ(P,Q)A⇒Bw

def
⇐⇒ h ∈ JA⇒ BKw ∧ h is P -Q-local

s ∈ Φ(P,Q)St
w

def
⇐⇒ s ∈ Sw ∧ s.lA ∈ QAw ∀lA ∈ w

We must prove that there are w ′ ≥ w ; s′ ∈ Sw ′ and b ∈ JBKw ′ such that

hw (s, a) = 〈w
′, 〈s′, b〉〉 ∧

w2 = w
′]w1 ∧

∃s′1 v ι
w2
ww1
(s1). s2 = ι

w2

w ′(s
′)+s′1 ∧ s2 ∈ Q

′St
w2
∧

b2 = JBKw2

w ′ (b) ∧ b2 ∈Q
′B
w2

(10.2)

By definition of F , we know that s2 = eSw2(ŝ2) and b2 = eBw2(b̂2) where

〈w2, 〈ŝ2, b̂2〉〉 = hw,w1(eSww1(ι
ww1
w (s)+s1), eAww1(JAKww1

w (a)))

First observe that the projections are below the identity and act pointwise on stores.

Therefore we have eSww1(ι
ww1
w (s)+s1) = ι

ww1
w (eSw (s)) + s

′′
1 for some s′′1 v s1 in S

ww1
w1 . By

the assumption e : P ′ ⊂ P ,

ιww1
w (eSw (s)) + s

′′
1 = eSww1(ι

ww1
w (s)+s1) ∈ P

St
ww1

Similarly, JAKww1

w (eAw (a)) = eAww1(JAKww1

w (a)) ∈ PAww1
, so the assumption h ∈ Φ(P,Q)w0

entails that there exists w ′ ≥ w , ŝ ∈ Sw ′ and b̂ ∈ JBKw ′ such that

hw (eSw(s), eAw (a)) = 〈w
′, 〈ŝ, b̂〉〉

w2 = w
′]w1 ∧

ŝ2 = ι
w2

w ′(ŝ)+s
′′ ∧ ŝ2 ∈ Q

St
w2
∧

b̂2 = JBKw2

w ′ (b̂) ∧ b̂2 ∈Q
B
w2

for some s′′ v ι
w2
ww1(s

′′
1). By assumption e : Q ⊂ Q′ this entails s2 = eSw2(ŝ2) ∈ Q

′St
w2

and

b2 = eBw2(b̂2) ∈Q′
B
w2

. Furthermore,

b2 = eBw2(b̂2) = eBw2(JBKw2

w ′ (b̂)) = JBKw2

w ′ (eBw ′(b̂))

In particular, eBw ′(b̂)↓ and b2 = JBKw2

w ′ (b) where b
def
= eBw ′(b̂). Also

s2 = eSw2(ŝ2) = eSw2(ι
w2

w ′(ŝ)+s
′′)

= {|l = eAw2(JAKw2

w ′ (ŝ.l))|}lA∈w ′ + s
′
1

= {|l = JAKw2

w ′ (eAw2(ŝ.l))|}lA∈w ′ + s
′
1

= ι
w2

w ′(eSw ′(ŝ))+ s
′
1

176 Chapter 10. Discussion

for some s′1 v s
′′, which implies eSw ′(ŝ)↓. Let s′

def
= eSw ′(ŝ). It follows that s2 = ι

w2

w ′(s
′)+ s′1

where s′1 v ι
w2
ww1(s1) and since F(e, e)Aw0(h)w (s, a) = 〈w

′, 〈s′, b〉〉 by definition of F , we

have shown the requirements (10.2).

By the existence theorem, Theorem 2.5.3, we can conclude that R
def
= fix(Φ) is well-

defined. The relation R extends to contexts in the obvious way, by ρ ∈ RΓw if and only if

ρ(x) ∈ RAw for all x:A in Γ . We would like to proceed by proving a logical relations lemma

for R next. For the particular case of closed terms this would state precisely the frame

condition we are after.

Desired Property 10.2.6 (Basic Lemma, Frame Property). Suppose Γ . e : B. Assume

w,w1 ∈ W such that w ∩ w1 = �. For all ρ ∈ RΓw , for all s ∈ Sw and s1 ∈ S
ww1
w1 such

that (ι
ww1
w (s)+s1) ∈ RSt

ww1
, if

JΓ . e : BKww1 (JΓ K
ww1

w (ρ))(ιww1
w (s)+s1) = 〈w2, 〈s2, b2〉〉

for some w2 ≥ w] w1, s2 ∈ Sw2 and b2 ∈ JBKw2
, then there exist w ′ ≥ w , s′ ∈ Sw ′ and

b ∈ JBKw ′ such that

JΓ . e : BKw ρs = 〈w ′, 〈s′, b〉〉 ∧ w2 = w
′]w1 ∧

s2 = ι
w2

w ′(s
′)+s′1 ∧ s2 ∈ R

St
w2
∧ b2 = JBKw2

w ′ (b) ∧ b2 ∈ R
B
w2

for some s′1 v ι
w2
ww1(s1).

A proof of this statement would rely on the following properties of R:

• Downward closure: a ∈ RAw ∧ a′ v a =⇒ a′ ∈ RAw

• Kripke monotonicity: a ∈ RAw ∧ w ′ ≥ w =⇒ JAKw ′w (a) ∈ RAw ′

• Subtype monotonicity: a ∈ RAw ∧ A � B =⇒ JA � BK (a) ∈ RBw

and proceed by induction on the derivation of Γ . e : B.

Unfortunately there is a subtle problem lurking here. Implicit in our treatment of

the choice of new locations we assume disjointness of the location sets w ′ and w1. But

this is not justified by our semantics. More precisely, after splitting off the inaccessible

w1-part of the store, the program is run on the remaining w -part, yielding a store over

locations w ′ ≥ w . The freshness condition for allocation of new storage in the semantics

(see Table 8.6) thus applies only to w , in particular it fails to guarantee that new locations

do not already appear in w1. Concretely, this problem surfaces in a proof attempt of

Statement 10.2.6 in the case of allocation.

In other words, an allocation mechanism with only “local knowledge” cannot take

information about the inaccessible part of the store into account in order to determine the

next free location. We expect a formally correct treatment to be achievable using Pitts and

Shinwell’s fm domains (Shinwell 2005). In this setting, there is a group action on the set

of locations by the permutation group, which formalises α-renaming. This corresponds

to the informal understanding that the actual name of a location is irrelevant, as long as

10.2. Outlook: Towards Local Reasoning for Higher-Order Store 177

it is used consistently. In forthcoming work, we take a related approach and study the

problem in a functor category where W contains all injections w → w ′, rather than just

the embeddings (Reus and Schwinghammer 2006b). By taking renamings seriously we

arrive at a suitable definition of frame properties for such a model.

However, modulo this problem concerning the choice of locations, we can already

show soundness of the frame rule. In particular, the frame rule is sound for the sublan-

guage that does not use dynamic allocation.

Soundness of the Frame Rule

Consider the frame rule (10.1) again:

{P}h{Q}

{P <P′}h{Q<P′} B and P′ Kripke monotonic

where P andQ have to be interpreted as families of admissible relations over the sub-cpos

RA of JAK, rather than JAK itself.

To see soundness of the frame rule for programs of the higher-order language from

Section 8.3, let h ∈ RA⇒B� . In particular, by the Frame Property (Lemma 10.2.6), h could be

the denotation of a program of type A⇒B, i.e.,

〈�, 〈s, h〉〉
def
= J.λx. e : A ⇒ BK�

Suppose {P}h {Q} holds, and let w ∈ W . Further suppose that a ∈ RAw and s ∈ RSt
w are

such that 〈s, a〉 ∈ (P < P ′)w . By definition this means there are w1, w2 ∈ W such that

w = w1]w2, and there are a1 ∈ RAw1
, s1 ∈ RSt

w1
and s2 ∈ Sww2

such that s = ιww1
(s1)+ s2 and

a = JAKww1
(a1), and moreover 〈s1, a1〉 ∈ Pw1 and s2 ∈ P ′

w
w2

.

Suppose hws is defined, i.e., hw(s, a) = 〈w3, 〈s3, b〉〉 for some w3 ≥ w , s3 ∈ Sw3 and

b ∈ JBKw3
. By the definition of the logical relation h is R-local, so there exist w ′ ≥ w1,

s′ ∈ Sw1 and b′ ∈ JBKw ′ such that

• hw1(s1, a1) = 〈w ′, 〈s′, b′〉〉 and w3 = w ′]w2;

• s3 = ι
w3

w ′(s
′)+ s′2 for some s′2 v s2; and

• b = JBKw3

w ′ (b
′).

From assumption {P}h {Q} we obtain 〈s′, b′〉 ∈ Qw ′ . By Kripke monotonicity of P′,

ι
w3
w (s2) ∈ P ′

w3
w2

, and therefore also s′2 ∈ P
′w3
w2

by downward closure. Thus, 〈s3, b〉 ∈ (P <
P ′)w3 .

Remark 10.2.7. We were careful in the asymmetric definition of the separation conjunction

to ensure that the argument does not accidentally provide access into the part of the store

for which the separated relation P′ holds. Otherwise simple counterexamples to the frame

rule can be constructed, based on programs like the following

.λx. x:=(deref x)+ 1 : ref int⇒1

which may invalidate, e.g., the invariant s.l = 5, when applied to reference l.

178 Chapter 10. Discussion

10.3 Summary and Conclusions

Programming languages that use general references and higher-order store are common in

practice. Standard ML and object-based languages are examples. Perhaps less obviously

so, advanced features of class-based languages such as class-loading and inner classes

also lead to similar semantic domains by blurring the distinction between class tables

and data store.

In this thesis we made a number of contributions to the understanding of semantics

and logics for higher-order storage, focussing on Abadi and Cardelli’s imperative object

calculus.

Part II demonstrated that the techniques presented previously in (Reus and Streicher

2002; Reus and Streicher 2004) can be extended to the full proof calculus of Abadi and

Leino (2004), although not as directly as we had originally anticipated. We showed sound-

ness of the logic with respect to a denotational semantics and discussed extensions, in

particular the introduction of recursive specifications. The main difference to (Reus and

Streicher 2004) is in the shift in perspecitve from individual objects to stores, necessitated

by the compositionality of the logic. In particular, recursively defined object specifications

have been replaced by recursively defined store specifications.

Part III was devoted to an intrinsically typed model of the object calculus, where sub-

typing is interpreted by coercions. We proceeded indirectly, by extending the known

possible worlds model of Levy (2002, 2004) with subtyping, and then interpreting objects

via a syntactic translation. The main technical contribution of Chapter 8 is the coher-

ence result (Theorem 8.7.1). Its proof relied on the Basic Lemma of a logical relation

(Lemma 8.6.7) and the properties of certain retractions (“bracketing maps”). To obtain

a relation with the required properties we needed to show its well-definedness (Theo-

rem 8.6.4). Yet another model, based on partial equivalence relations, was obtained as a

corollary to the Bracketing theorem (Theorem 8.6.8).

The actual interpretation of the object calculus turned out to be comparatively simple,

closely following the ideas of (Kamin and Reddy 1994). Chapter 9 also contained several

examples proving non-trivial properties of objects, in some cases using recursion through

the store. In this final chapter we have developed some initial ideas for local reasoning in

the presence of higher-order store, which we plan to investigate more properly in future

work.

Finally we mention a number of open problems and directions for future work.

Logics for Objects. In Section 7.2 we have already mentioned several potential extensions

and variations of Abadi and Leino’s logic that seem important. Of those, reasoning about

invariants and access control will likely need a model that validates aspects of encapsula-

tion.

In a different direction, one idea is to investigate a logic where store specifications are

not necessarily preserved. For instance, different properties could hold of the contents of

a field at various times during a computation. This bears some resemblance to the reuse

of memory in low-level languages, for example in typed assembly language (Morrisett,

10.3. Summary and Conclusions 179

Ahmed, and Fluet 2005).

Logics for Classes. The reduction of class-based languages to object-based languages

outlined in Section 3.4 means that it is already possible to talk about classes in Abadi and

Leino’s logic.

Our plan is to more fully investigate how the logic can be used for reasoning about

dynamic class loading and inner classes. Considering Abadi-Leino logic as a logic for

class-based languages may also identify a number of further desirable extensions.

Logics for Higher-order Functions. Designing calculi for reasoning about higher-order

functions with general references seems important, also from a practical point of view.

To this end it may be worthwhile to explain the work of (Honda et al. 2005) in terms of a

model more “semantic” than their term model.

Local Reasoning. Above we have made only a very preliminary first step, showing that

procedures operate “locally” on the accessible store (i.e., a frame condition). We have also

identified some classes of predicates (stable and Kripke monotonic families) that not only

allowed the proofs to go through but also appear to express natural properties. However,

a full investigation of their closure properties and possible proof rules remains to be

done.

The fact that the Kripke worlds keep track of the possible (dangling) references be-

tween disjoint parts of the store lets us define the separation connective in the first place.

In particular, safety monotonicity which states that computation with respect to larger

stores does not introduce “memory faults”, is an immediate consequence of typing in the

intrinsic model. In contrast, in an untyped model one would have to require such a safety

property.

One might also want to try and define a local function space constructor, in the cate-

gory [W ,pCpo], rather than defining locality on top of the typed model.

Modelling encapsulation and representation independence, which go beyond the lo-

cality considered in this chapter, is likely to be a challenging problem for languages with

higher-order store.

Subtyping Recursive Types in the Presence of Higher-order Store. In a different direction,

we can extend the language with a more expressive type system: Recursive types feature

prominently in the work on semantics of functional objects. In (Levy 2004) it is suggested

that the construction of the intrinsic model also works for a variant of recursive types.

We have not considered the combination with subtyping yet, but do not expect any diffi-

culties.

Coherence. While the individual facts are much more intricate to prove than for the

functional language considered in (Reynolds 2002b), the overall structure of the coher-

ence proof in Chapter 8 is almost identical to loc. cit. This suggests it could be interesting

to work out the general conditions needed for the construction, for example, using the

setting of (Mitchell and Scedrov 1993).

Bibliography

Abadi, M. and L. Cardelli (1996). A Theory of Objects. Springer.

Abadi, M., L. Cardelli, and R. Viswanathan (1996). An interpretation of objects and

object types. In Conference record of the 23rd Symposium on Principles of Program-

ming Languages, pp. 396–409. ACM Press.

Abadi, M. and K. R. M. Leino (1997). A logic of object-oriented programs. In M. Bidoit

and M. Dauchet (Eds.), Proceedings of Theory and Practice of Software Development,

Volume 1214 of Lecture Notes in Computer Science, pp. 682–696. Springer.

Abadi, M. and K. R. M. Leino (2004). A logic of object-oriented programs. In N. Der-

showitz (Ed.), Verification: Theory and Practice. Essays Dedicated to Zohar Manna

on the Occasion of His 64th Birthday, Lecture Notes in Computer Science, pp. 11–41.

Springer.

Abadi, M. and G. D. Plotkin (1990). A per model of polymorphism and recursive types.

In Proceedings of 5th Annual IEEE Symposium on Logic in Computer Science, pp.

355–365. IEEE Computer Society Press.

Abelson, H., R. K. Dybvig, C. T. Haynes, R. Rozas, N. I. Adams IV, D. P. Friedman,

K. Kohlbecker, G. L. Steele Jr., D. H. Bartley, R. Halstead, D. Oxley, G. J. Sussman,

B. Brooks, C. Hanson, K. M. Pitman, and M. Wand (1998). Revised5 report on the al-

gorithmic language Scheme. Higher-Order and Symbolic Computation 11(1), 7–105.

Abramsky, S., K. Honda, and G. McCusker (1998). A fully abstract game semantics for

general references. In Proceedings 13th Annual IEEE Symposium on Logic in Com-

puter Science, pp. 334–344. IEEE Computer Society Press.

Abramsky, S. and A. Jung (1994). Domain theory. In S. Abramsky, D. M. Gabbay, and

T. S. E. Maibaum (Eds.), Handbook of Logic in Computer Science, Volume 3, pp. 1–

168. Clarendon Press.

Abramsky, S. and G. McCusker (1998). Game semantics. In H. Schwichtenberg and

U. Berger (Eds.), Logic and Computation. Proceedings of the 1997 Marktoberdorf Sum-

mer School. Springer.

Aceto, L., H. Hüttel, A. Ingólfsdóttir, and J. Kleist (2000). Relating semantic models

for the object calculus. In C. Palamidessi and J. Parrow (Eds.), Electronic Notes in

Theoretical Computer Science, Volume 7.

Ahmed, A., M. Fluet, and G. Morrisett (2005). A step-indexed model of substructural

state. In Proceedings of the 10th ACM SIGPLAN International Conference on Func-

tional Programming (ICFP ’05). ACM Press.

Ahmed, A. J., A. W. Appel, and R. Virga (2002). A stratified semantics of general refer-

ences embeddable in higher-order logic. In Proceedings of 17th Annual IEEE Sympo-

sium Logic in Computer Science, pp. 75–86. IEEE Computer Society Press.

Ahmed, A. J., A. W. Appel, and R. Virga (2003). An indexed model of impredicative

polymorphism and mutable references. Princeton University.

Amadio, R. M. (1991). Recursion over realizability structures. Information and Compu-

tation 91(1), 55–86.

181

Amadio, R. M. and L. Cardelli (1993). Subtyping recursive types. ACM Transactions on

Programming Languages and Systems 15(4), 575–631.

Appel, A. W. and D. McAllester (2001). An indexed model of recursive types for foun-

dational proof-carrying code. ACM Transactions on Programming Languages and

Systems 23(5), 657–683.

Apt, K. R. (1981). Ten years of Hoare’s logic: A survey — part I. ACM Transactions on

Programming Languages and Systems 3(4), 431–483.

Banerjee, A. and D. A. Naumann (2002). Representation independence, confinement

and access control. In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on

Principles of Programming Languages, pp. 166–177. IEEE Computer Society Press.

Barendregt, H. P. (1992). Lambda calculi with types. In S. Abramsky, D. Gabbay, and

T. S. E. Maibaum (Eds.), Handbook of Logic in Computer Science, Volume 2, Chapter 2,

pp. 117–309. Oxford University Press.

Benton, N. and B. Leperchey (2005). Relational reasoning in a nominal semantics for

storage. In To appear in Proceedings of the Seventh International Conference on

Typed Lambda Calculi and Applications (TLCA ’05), Lecture Notes in Computer Sci-

ence. Springer.

Berger, M., K. Honda, and N. Yoshida (2005). A logical analysis of aliasing in impera-

tive higher-order functions. In Proceedings of the 10th ACM SIGPLAN International

Conference on Functional Programming (ICFP ’05). ACM Press.

Birkedal, L. and R. W. Harper (1999). Constructing interpretations of recursive types in

an operational setting. Information and Computation 155, 3–63.

Birkedal, L., N. Torp-Smith, and H. Yang (2005). Semantics of separation-logic typing

and higher-order frame rules. In Proceedings of the 20th IEEE Symposium on Logic in

Computer Science. IEEE Computer Society Press.

Bono, V., A. J. Patel, V. Shmatikov, and J. C. Mitchell (1999). A core calculus of classes

and objects. In 15th Conference on the Mathematical Foundations of Programming

Semantics, Volume 20 of Electronic Notes in Computer Science.

Boudol, G. (2004). The recursive record semantics of objects revisited. Journal of Func-

tional Programming 14(3), 263–315.

Bracha, G., M. Odersky, D. Stoutamire, and P. Wadler (1998). Making the future safe

for the past: Adding genericity to the Java programming language. ACM SIGPLAN

Notices 33(10), 183–200.

Breazu-Tannen, V., T. Coquand, G. Gunter, and A. Scedrov (1991). Inheritance as implicit

coercion. Information and Computation 93(1), 172–221.

Bruce, K. B. (1994). A paradigmatic object-oriented programming language: Design,

static typing and semantics. Journal of Functional Programming 4(2), 127–206.

Bruce, K. B. (2002). Foundations of Object-Oriented Languages: Types and Semantics.

MIT Press.

Bruce, K. B., L. Cardelli, and B. C. Pierce (1999). Comparing object encodings. Informa-

tion and Computation 155(1/2), 108–133.

Cardone, F. (1989). Relational semantics for recursive types and bounded quantifica-

tion. In G. Ausiello, M. Dezani-Ciancaglini, and S. R. D. Rocca (Eds.), 16th Interna-

tional Colloquium Automata, Languages and Programming, Volume 372 of Lecture

Notes in Computer Science, pp. 164–178. Springer.

182 Bibliography

Castagna, G. (1997). Object-Oriented Programming: A Unified Foundation. Progress in

Theoretical Computer Science. Birkhauser.

Clarke, E. M. (1979). Programming language constructs for which it it impossible to

obtain good Hoare axiom systems. Journal of the ACM 26(1), 129–147.

Cook, S. A. (1978). Soundness and completeness of an axiom system for program veri-

fication. SIAM Journal on Computing 7 (1), 70–90.

Cook, W. and J. Palsberg (1994). A denotational semantics of inheritance and its cor-

rectness. Information and Computation 114(2), 329–350.

Cook, W. R. (1989). A Denotational Semantics of Inheritance. Ph.D. thesis, Department

of Computer Science, Brown University.

Cousot, P. (1990). Methods and logics for proving programs. In J. van Leeuwen (Ed.), For-

mal Models and Semantics, Volume B of Handbook of Theoretical Computer Science,

Chapter 15, pp. 843–993. Elsevier.

Curien, P.-L. and G. Ghelli (1994). Coherence of subsumption, minimum subtyping and

type-checking in F≤. In C. A. Gunter and J. C. Mitchell (Eds.), Theoretical Aspects of

Object-Oriented Programming: Types, Semantics, and Language Design, Foundations

of Computing Series, pp. 247–292. MIT Press.

Davey, B. A. and H. A. Priestley (2002). Introduction to Lattices and Order (Second ed.).

Cambridge University Press.

de Boer, F. S. (1999). A WP-calculus for OO. In W. Thomas (Ed.), Foundations of Software

Science and Computation Structures, Volume 1578 of Lecture Notes in Computer

Science, pp. 135–149. Springer.

de Boer, F. S. and C. Pierik (2004). How to cook a complete hoare logic for your pet oo

language. In F. S. de Boer, M. M. Bonsangue, and S. Graf (Eds.), Proceedings Formal

Methods for Components and Objects: Second International Symposium (FMCO ’03),

Number 3188 in Lecture Notes in Computer Science, pp. 111–133. Springer.

Eifrig, J., S. Smith, V. Trifonov, and A. Zwarico (1995). An interpretation of typed OOP

in a language with state. Lisp and Symbolic Computation 8(4), 357–397.

Erkök, L. and J. Launchbury (2000). Recursive monadic bindings. ACM SIGPLAN No-

tices 35(9), 174–185.

Fecher, H. (1999). Denotational semantics of untyped object-based programming lan-

guages. Master’s thesis, Technische Universität Darmstadt.

Fiore, M., A. Jung, E. Moggi, P. O’Hearn, J. Riecke, G. Rosolini, and I. Stark (1996). Do-

mains and denotational semantics: History, accomplishments and open problems.

Bulletin of the European Association for Theoretical Computer Science 59, 227–256.

Fiore, M. P. (1996). Axiomatic Domain Theory in Categories of Partial Maps. Distin-

guished Dissertations in Computer Science. Cambridge University Press.

Floyd, R. W. (1967). Assigning meanings to programs. In J. T. Schwartz (Ed.), Proceedings

of Mathematical Aspects of Computer Science, Volume 19 of Proceedings of Symposia

in Applied Mathematics, pp. 19–32. American Mathematical Society.

Freyd, P., G. Rosolini, P. Mulry, and D. Scott (1992). Extensional PERs. Information and

Computation 98(2), 211–227.

Freyd, P. J. (1991). Algebraically complete categories. In A. Carboni, M. C. Pedicchio, and

G. Rosolini (Eds.), Proceedings of 1990 Como Category Theory Conference, Volume

1488 of Lecture Notes in Mathematics, pp. 95–104. Springer.

183

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design Patterns: Elements of

Reusable Object-Oriented Software. Addison Wesley.

Ghica, D. R. (2001). A regular-language model for hoare-style correctness statements. In

M. Leuschel, A. Podelski, C. Ramakrishnan, and U. Ultes-Nitsche (Eds.), Proceedings

of the Second International Workshop on Verification and Computational Logic (VCL

’01), pp. 25–42.

Glimming, J. (2005). Dialgebraic Semantics of Typed Object Calculi. Licentiate thesis,

Stockholm University.

Glimming, J. and N. Ghani (2004). Difunctorial semantics of object calculus. In Pro-

ceedings WOOD ’04: Workshop on Object-Oriented Developments, Electronic Notes in

Theoretical Computer Science. Elsevier. To appear.

Gordon, A. D., P. D. Hankin, and S. B. Lassen (1997). Compilation and equivalence of

imperative objects. In Proceedings of FST+TCS’97, Volume 1346 of Lecture Notes in

Computer Science, pp. 74–87.

Goubault-Larrecq, J., S. Lasota, and D. Nowak (2002). Logical relations for monadic

types. In Proc. 16th Int. Workshop Computer Science Logic (CSL’02), Volume 2471

of Lecture Notes in Computer Science, pp. 553–568. Springer.

Halpern, J. Y. (1984). A good Hoare axiom system for an Algol-like language. In Confer-

ence Record of the Eleventh Annual ACM Symposium on Principles of Programming

Languages, pp. 262–271. ACM Press.

Hensel, U., M. Huisman, B. Jacobs, and H. Tews (1998). Reasoning about classes in

object-oriented languages: Logical models and tools. In C. Hankin (Ed.), Program-

ming Languages and Systems—ESOP’98, 7th European Symposium on Programming,

Volume 1381 of Lecture Notes in Computer Science, pp. 105–121. Springer.

Hoare, C. A. R. (1969). An Axiomatic Basis of Computer Programming. Communications

of the ACM 12, 576–580.

Hofmann, M. and B. Pierce (1996). Positive subtyping. Information and Computa-

tion 126(1), 11–33.

Honda, K. (2004). From process logic to program logic. ACM SIGPLAN Notices 39(9),

163–174.

Honda, K., N. Yoshida, and M. Berger (2005). An observationally complete program

logic for imperative higher-order functions. In Proceedings of 20th Annual IEEE Sym-

posium Logic in Computer Science (LiCS’05). IEEE Computer Society Press. To appear.

Honsell, F., A. Pravato, and S. R. D. Rocca (1998). Structured Operational Semantics of a

fragment of the language Scheme. Journal of Functional Programming 8(4), 335–365.

Igarashi, A. and B. C. Pierce (2000). On inner classes. In Proceedings of the European

Conference on Object-Oriented Programming, Volume 1850 of Lecture Notes in Com-

puter Science, pp. 129–153. Springer.

Igarashi, A., B. C. Pierce, and P. Wadler (2001). Featherweight Java: a minimal core

calculus for Java and GJ. ACM Transactions on Programming Languages and Sys-

tems 23(3), 396–450.

Ishtiaq, S. S. and P. W. O’Hearn (2001). BI as an assertion language for mutable data

structures. ACM SIGPLAN Notices 36(3), 14–26.

Jacobs, B. and E. Poll (2001). A logic for the Java modeling language JML. In Fundamental

Approaches to Software Engineering (FASE’2001), Volume 2029 of Lecture Notes in

Computer Science, pp. 284–299. Springer.

184 Bibliography

Jacobs, B. and E. Poll (2003). Coalgebras and monads in the semantics of Java. Theoret-

ical Computer Science 291(3), 329–349.

Jacobs, B. and J. Rutten (1997). A tutorial on (co)algebras and (co)induction. Bulletin of

the European Association for Theoretical Computer Science 62, 222–259.

Jacobs, B. P. F. (1996). Objects and classes, coalgebraically. In B. Freitag, C. B. Jones,

C. Lengauer, and H. J. Schek (Eds.), Object-Orientation with Parallelism and Persis-

tence, pp. 83–103. Kluwer Academic Publishers.

Jeffrey, A. and J. Rathke (2002). A fully abstract may testing semantics for concurrent

objects. In Proceedings 17th Annual Symposium on Logic in Computer Science, pp.

101–112. IEEE Computer Society Press.

Kamin, S. N. and U. S. Reddy (1994). Two semantic models of object-oriented languages.

In C. A. Gunter and J. C. Mitchell (Eds.), Theoretical Aspects of Object-Oriented Pro-

gramming: Types, Semantics, and Language Design, pp. 464–495. MIT Press.

Kernighan, B. and D. Ritchie (1988). The C Programming Language (Second ed.).

Prentice-Hall.

Kleymann, T. (1999). Hoare logic and auxiliary variables. Formal Aspects of Comput-

ing 11(5), 541–566.

Laird, J. (2003). A categorical semantics of higher-order store. In R. Blute and P. Selinger

(Eds.), Proceedings of the 9th Conference on Category Theory and Computer Science,

CTCS ’02, Volume 69 of Electronic notes in Theoretical Computer Science, pp. 1–18.

Elsevier.

Lamport, L. (1994). The temporal logic of actions. ACM Transactions on Programming

Languages and Systems 16(3), 872–923.

Landin, P. J. (1964). The mechanical evaluation of expressions. Computer Journal 6(4),

308–320.

Leino, K. R. M. (1998). Recursive object types in a logic of object-oriented programs. In

C. Hankin (Ed.), 7th European Symposium on Programming, Volume 1381 of Lecture

Notes in Computer Science, pp. 170–184. Springer.

Levy, P. B. (2002). Possible world semantics for general storage in call-by-value. In

J. Bradfield (Ed.), 16th Workshop on Computer Science Logic (CSL’02), Volume 2471

of Lecture Notes in Computer Science. Springer.

Levy, P. B. (2004). Call-By-Push-Value. A Functional/Imperative Synthesis, Volume 2 of

Semantic Structures in Computation. Kluwer.

Longley, J. (1995). Realizability toposes and language semantics. Ph. D. thesis, University

of Edinburgh.

Longo, G. and E. Moggi (1991). Constructive natural deduction and its ‘ω-set’ interpre-

tation. Mathematical Structures in Computer Science 1(2), 215–254.

MacQueen, D. B., G. D. Plotkin, and R. Sethi (1986). An ideal model for recursive poly-

morphic types. Information and Control 71(1–2), 95–130.

Mason, I. A., S. F. Smith, and C. L. Talcott (1996). From operational semantics to domain

theory. Information and Computation 128(1), 26–47.

Meyer, A. R. and K. Sieber (1988). Towards fully abstract semantics for local variables:

Preliminary report. In Conference Record of the Fifteenth Annual ACM Symposium

on Principles of Programming Languages, pp. 191–203. ACM Press.

Milner, R. (1978). A theory of type polymorphism in programming languages. Journal

of Computer and System Science 17 (3), 348–375.

185

Milner, R., M. Tofte, R. Harper, and D. MacQueen (1997). The Definition of Standard ML

(Revised). The MIT Press.

Mitchell, J. C. (1984). Coercion and type inference. In Conference Record of the 11th

Annual ACM Symposium on Principles of Programming Languages, pp. 175–185.

ACM Press.

Mitchell, J. C. (1991). On the equivalence of data representations. In V. Lifschitz (Ed.),

Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of

John McCarthy, pp. 305–330. Academic Press.

Mitchell, J. C. (1996). Foundations for Programming Languages. MIT Press.

Mitchell, J. C. and E. Moggi (1991). Kripke-style models for typed lambda calculus. An-

nals of Pure and Applied Logic 51(1–2), 99–124.

Mitchell, J. C. and G. D. Plotkin (1988). Abstract types have existential type. ACM Trans-

actions on Programming Languages and Systems 10(3), 470–502.

Mitchell, J. C. and A. Scedrov (1993). Notes on sconing and relators. In E. Börger, G. Jäger,

H. K. Büning, S. Martini, and M. M. Richter (Eds.), Computer Science Logic ’92, Selected

Papers, Volume 702 of Lecture Notes in Computer Science, pp. 352–378. Springer.

Mitchell, J. C. and R. Viswanathan (1996). Effective models of polymorphism, subtyping

and recursion (extended abstract). In F. Meyer auf der Heide and B. Monien (Eds.),

23rd International Colloquium on Automata, Languages and Programming, Volume

1099 of Lecture Notes in Computer Science, pp. 170–181. Springer.

Moggi, E. and A. Sabry (2004). An abstract monadic semantics for value recursion. The-

oretical Informatics and Applications 38(4), 375–400.

Morrisett, G., A. Ahmed, and M. Fluet (2005). L3: A linear language with locations. In

Proceedings of the 7th International Conference on Typed Lambda Calculi and Appli-

cations (TLCA ’05), Volume 3461 of Lecture Notes in Computer Science. Springer.

O’Hearn, P. W. and D. J. Pym (1999). The logic of bunched implications. Bulletin of

Symbolic Logic 5(2), 215–244.

O’Hearn, P. W. and J. C. Reynolds (2000). From algol to polymorphic linear lambda-

calculus. Journal of the ACM 47 (1), 167–223.

O’Hearn, P. W., J. C. Reynolds, and H. Yang (2001). Local reasoning about programs that

alter data structures. In L. Fribourg (Ed.), Proceedings of the Annual Conference of

the European Association for Computer Science Logic (CSL), Volume 2142 of Lecture

Notes in Computer Science, pp. 1–18. Springer.

O’Hearn, P. W. and R. D. Tennent (1995). Parametricity and local variables. Journal of

the ACM 42(3), 658–709.

O’Hearn, P. W. and R. D. Tennent (Eds.) (1997). Algol-Like Languages, Vols I and II.

Progress in Theoretical Computer Science. Birkhauser.

Oles, F. J. (1982). A Category-theoretic approach to the semantics of programming lan-

guages. Ph. D. thesis, Syracuse University.

Paulson, L. C. (1987). Logic and Computation : Interactive proof with Cambridge LCF,

Volume 2 of Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-

sity Press.

Peyton Jones, S. (Ed.) (2003). Haskell 98 Language and Libraries. The Revised Report.

Cambridge University Press.

186 Bibliography

Phoa, W. (1992). An introduction to fibrations, topos theory, the effective topos and

modest sets. Technical Report ECS-LFCS-92-208, Department of Computer Science,

University of Edinburgh.

Pierce, B. C. (1991). Basic Category Theory for Computer Scientists. MIT Press.

Pierce, B. C. (2002). Types and Programming Languages. The MIT Press.

Pierik, C. and F. S. de Boer (2005). A proof outline logic for object-oriented program-

ming. Theoretical Computer Science 343(3), 413–442.

Pitts, A. M. (1996). Relational properties of domains. Information and Computation 127,

66–90.

Pitts, A. M. and I. D. B. Stark (1993). Observable properties of higher order functions

that dynamically create local names, or: What’s new? In A. M. Borzyszkowski and

S. Sokolowski (Eds.), Proceedings 18th International Symposium on Mathematical

Foundations of Computer Science, Volume 711 of Lecture Notes in Computer Science,

pp. 122–141. Springer.

Pitts, A. M. and I. D. B. Stark (1998). Operational reasoning for functions with local

state. In A. D. Gordon and A. M. Pitts (Eds.), Higher-Order Operational Techniques in

Semantics, Publications of the Newton Institute, pp. 227–273. Cambridge University

Press.

Plotkin, G. D. (1983). Domain theory. Pisa notes.

Poetzsch-Heffter, A. and P. Müller (1999). A programming logic for sequential Java. In

S. D. Swierstra (Ed.), European Symposium on Programming, Volume 1576 of Lecture

Notes in Computer Science, pp. 162–176. Springer.

Pym, D. J., P. W. O’Hearn, and H. Yang (2004). Possible worlds and resources: the se-

mantics of BI. Theoretical Computer Science 315(1), 257–305.

Reddy, U. S. (1988). Objects as closures: Abstract semantics of object-oriented lan-

guages. In J. Chailloux (Ed.), Proceedings of the ACM Conference on LISP and Func-

tional Programming, pp. 289–297. ACM Press.

Reddy, U. S. (1996). Global state considered unnecessary: An introduction to object-

based semantics. LISP and Symbolic Computation 9(1), 7–76.

Reddy, U. S. (2002). Objects and classes in algol-like languages. Information and Com-

putation 172(1), 63–97.

Reddy, U. S. and H. Yang (2004). Correctness of data representations involving heap

data structures. Science of Computer Programming 50(1–3), 129–160.

Reus, B. (2002). Class-based versus object-based: A denotational comparison. In

H. Kirchner and C. Ringeissen (Eds.), Proceedings of 9th International Conference

on Algebraic Methodology And Software Technology, Volume 2422 of Lecture Notes

in Computer Science, pp. 473–488. Springer.

Reus, B. (2003). Modular semantics and logics of classes. In M. Baatz and J. A. Makowsky

(Eds.), Computer Science Logic, Volume 2803 of Lecture Notes in Computer Science,

pp. 456–469. Springer.

Reus, B. and J. Schwinghammer (2004). Denotational semantics for Abadi and Leino’s

logic of objects. Technical Report 2004:03, Informatics, University of Sussex.

Reus, B. and J. Schwinghammer (2005). Denotational semantics for Abadi and Leino’s

logic of objects. In M. Sagiv (Ed.), Proceedings of the European Symposium on

Programming, Volume 3444 of Lecture Notes in Computer Science, pp. 264–279.

Springer.

187

Reus, B. and J. Schwinghammer (2006a). Denotational semantics for a program logic of

objects. Mathematical Structures in Computer Science 16(2), 313–358.

Reus, B. and J. Schwinghammer (2006b). Separation logic for higher-order store. In

Proceedings Computer Science Logic (CSL’06), Lecture Notes in Computer Science.

Springer. To appear.

Reus, B. and T. Streicher (2002). Semantics and logic of object calculi. In Proceedings

of 17th Annual IEEE Symposium Logic in Computer Science, pp. 113–124. IEEE Com-

puter Society Press.

Reus, B. and T. Streicher (2004). Semantics and logic of object calculi. Theoretical Com-

puter Science 316, 191–213.

Reus, B., M. Wirsing, and R. Hennicker (2001). A Hoare-Calculus for Verifying Java Real-

izations of OCL-Constrained Design Models. In H. Hussmann (Ed.), FASE 2001, Vol-

ume 2029 of Lecture Notes in Computer Science, pp. 300–317. Springer.

Reynolds, J. (1974). On the relation between direct and continuation semantics. In

J. Loeckx (Ed.), Automata, Languages and Programming, Volume 14 of Lecture Notes

in Computer Science, pp. 141–156. Springer.

Reynolds, J. C. (1978). Syntactic control of interference. In Conference Record 5th

ACM Symposium on Principles of Programming Languages, pp. 39–46. ACM Press.

Reprinted in (O’Hearn and Tennent 1997).

Reynolds, J. C. (1980). Using category theory to design implicit conversions and generic

operators. In N. D. Jones (Ed.), Proceedings of the Aarhus Workshop on Semantics-

Directed Compiler Generation, Number 94 in Lecture Notes in Computer Science, pp.

211–258. Springer.

Reynolds, J. C. (1981). The essence of Algol. In J. W. deBakker and J. C. van Vliet (Eds.),

Algorithmic Languages, pp. 345–372. North-Holland.

Reynolds, J. C. (1982). Idealized Algol and its specification logic. In D. Néel (Ed.), Tools

and Notions for Program Construction, pp. 121–161. Cambridge University Press.

Reynolds, J. C. (1983). Types, abstraction, and parametric polymorphism. In R. E. A.

Mason (Ed.), Information Processing 83, pp. 513–523. Elsevier.

Reynolds, J. C. (2002a). Separation logic: A logic for shared mutable data structures. In

Proceedings of the 17th IEEE Symposium on Logic in Computer Science, pp. 55–74.

IEEE Computer Society.

Reynolds, J. C. (2002b). What do types mean? — From intrinsic to extrinsic semantics.

In A. McIver and C. Morgan (Eds.), Essays on Programming Methodology. Springer.

Schwinghammer, J. (2005a). A typed semantics for languages with higher-order store

and subtyping. Technical Report 2005:05, Informatics, University of Sussex.

Schwinghammer, J. (2005b). A typed semantics of higher-order store and subtyping. In

Proceedings Ninth Italian Conference on Theoretical Computer Science, Volume 3701

of Lecture Notes in Computer Science, pp. 390–404. Springer. To appear.

Scott, D. S. (1972). Continuous lattices. In F. W. Lawvere (Ed.), Toposes, Algebraic Geom-

etry and Logic, Volume 274 of Lecture Notes in Mathematics, pp. 97–136. Springer.

Scott, D. S. (1993). A type-theoretic alternative to ISWIM, CUCH, OWHY. Theoretical

Computer Science 121(1/2), 411–440. Reprint of a manuscript written in 1969.

Scott, D. S. and C. Strachey (1971). Toward a mathematical semantics for computer lan-

guages. In J. Fox (Ed.), Proceedings Symposium Computers and Automata. Polytech-

nic Inst. of Brooklyn Press. Also Technical Monograph PRG-6, Programming Research

Group, Oxford University.

188 Bibliography

Shinwell, M. R. (2005). The Fresh Approach: functional programming with names and

binders. Ph. D. thesis, University of Cambridge Computer Laboratory.

Shinwell, M. R. and A. M. Pitts (2005). On a monadic semantics for freshness. Theoretical

Computer Science 342(1), 28–55.

Sieber, K. (1994). Full abstraction for the second order subset of an algol-like language.

In I. Prívara, B. Rovan, and P. Ruzicka (Eds.), Proceedings 19th International Sympo-

sium Mathematical Foundations of Computer Science, Volume 841 of Lecture Notes

in Computer Science, pp. 608–617. Springer.

Smyth, M. B. and G. D. Plotkin (1982). The category-theoretic solution of recursive do-

main equations. SIAM Journal on Computing 11(4), 761–783.

Stark, I. (1996). Categorical models for local names. LISP and Symbolic Computa-

tion 9(1), 77–107.

Stark, I. (1998). Names, equations, relations: Practical ways to reason about new. Fun-

damenta Informaticae 33(4), 369–396.

Stevens, P. and R. Pooley (2000). Using UML Software Engineering with Objects and

Components (updated ed.). Object Technology Series. Addison-Wesley.

Strachey, C. (1966). Towards a formal semantics. In T. B. Steel (Ed.), Formal Language

Description Languages for Computer Programming, pp. 198–220. North-Holland.

Stroustrup, B. (2000). The C++ Programming Language (Third ed.). Addison-Wesley.

Taivalsaari, A. (1996). On the notion of inheritance. ACM Computing Surveys 28(3),

438–479.

Talcott, C. L. (1998). Reasoning about functions with effects. In A. D. Gordon and A. M.

Pitts (Eds.), Higher Order Operational Techniques in Semantics, Publications of the

Newton Institute, pp. 347–390. Cambridge University Press.

Tang, F. and M. Hofmann (2002). Generation of verification conditions for Abadi and

Leino’s logic of objects. Presented at 9th International Workshop on Foundations of

Object-Oriented Languages.

Tennent, R. D. (1985). Functor-category semantics of programming languages and log-

ics. In D. Pitt, S. Abramsky, A. Poigné, and D. Rydeheard (Eds.), Category Theory and

Computer Science, Volume 240 of Lecture Notes in Computer Science, pp. 206–224.

Springer.

Tennent, R. D. and D. R. Ghica (2000). Abstract models of storage. Higher-Order and

Symbolic Computation 13(1–2), 119–129.

Thorup, L. and M. Tofte (1994). Object-oriented programming and standard ML. In

Record of the 1994 ACM SIGPLAN Workshop on Standard ML and its Applications.

Viswanathan, R. (1998). Full abstraction for first-order objects with recursive types and

subtyping. In Proceedings of IEEE Symposium on Logic in Computer Science. IEEE

Computer Society Press.

von Oheimb, D. (2001). Hoare logic for Java in Isabelle/HOL. Concurrency and Compu-

tation: Practice and Experience 13(13), 1173–1214.

Winskel, G. (1993). The Formal Semantics of Programming Languages. MIT Press.

Wright, A. K. (1995). Simple imperative polymorphism. LISP and Symbolic Computa-

tion 8(4), 343–355.

Yang, H. (2001). An example of local reasoning in BI pointer logic: the Schorr-Waite

graph marking algorithm. In Proceedings of the Second workshop on Semantics, Pro-

gram Analysis and Computing Environments for Memory Management (SPACE’01).

189

Zhang and Nowak (2003). Logical relations for dynamic name creation. In 17th Work-

shop on Computer Science Logic (CSL’03), Volume 2803 of Lecture Notes in Computer

Science, pp. 575–588. Springer.

