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Abstract. Various concurrency primitives have been added to sequen-
tial programming languages, in order to turn them concurrent. Promi-
nent examples are concurrent buffers for Haskell, channels in Concurrent
ML, joins in JoCaml, and handled futures in Alice ML. Even though one
might conjecture that all these primitives provide the same expressive-
ness, proving this equivalence is an open challenge in the area of program
semantics. In this paper, we establish a first instance of this conjecture.
We show that concurrent buffers can be encoded in the lambda calculus
with futures underlying Alice ML. Our correctness proof results from
a systematic method, based on observational semantics with respect to
may and must convergence.

1 Introduction

Modern concurrent programming languages extend sequential languages with
concurrent threads, and concurrency primitives for controlling their interactions.
Computation in each thread is sequential. Examples for concurrency primitives
are concurrent buffers in Haskell [4], channels in Concurrent ML [11], handled
futures in Alice ML [14], and joins in JoCaml [3].

Even though one might conjecture that all these primitives provide the same
expressiveness, proving such equivalences is an open challenge in the area of
programming language semantics. Encodings are usually not difficult to find for a
fixed common sequential base language. In fact, synchronization mechanisms are
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often provided through libraries of the programming languages, and implemented
in terms of lower-level primitives. The difficult part is to introduce appropriate
notions of program semantics, and corresponding proof techniques for showing
correctness of an encoding. Recent progress allows us to settle these questions,
as we will illustrate in the present paper.

Our starting point is to view the implementation of synchronization con-
structs by low-level primitives as a translation T : C → C′ between two languages.
Correctness of an implementation then becomes a question about relating pro-
grams and their images under this translation. We consider the adequacy of a
translation as the appropriate correctness condition [12, 13, 17]. It can be defined
for any kind of program semantics that gives rise to an equivalence relation =C
on the programs of C (e.g. a denotational, bisimulation-based, or operationally-
defined observational semantics): a translation is adequate if all (equally typed)
programs with equivalent translations are equivalent, i.e., T (p1) =C′ T (p2) im-
plies p1 =C p2. If additionally the converse holds, then T is called fully abstract.

We assume observational semantics based on operationally-defined forms of
may- and must-convergence [2, 7, 1]. Their combination properly captures the
non-determinism arising in concurrent programming languages [5, 15].

In this paper, we consider the lambda calculus with futures, reference cells
and handles as base language [6], which was introduced as foundation of the op-
erational semantics of Alice ML [14]. We define a typed version of the lambda cal-
culus with futures called λτ (fc), which extends the untyped original version λ(f)
[6, 5] by recursive data types, algebraic constructor terms and case-expressions.
We then consider a particular encoding of concurrent buffers in λτ (fc). In turn,
such buffers can be used to implement more complex concurrency abstractions,
like buffered channels (see [10]). We specify the semantics of buffers by extending
the syntax and operational semantics; our main contribution is the proof of full
abstraction of the encoding (which relies on typing). This result tells us that the
implementation is faithful to the specification, with respect to the observable
behavior. As a corollary, we can derive equivalences for concurrent buffers from
equivalences valid for λτ (fc).

Our adequacy and full abstraction proof is based on a systematic method
comprising two parts. First of all, we have to establish appropriate equivalences
for the base language λτ (fc). For λ(f) a rich collection of equivalences were proved
valid on the basis of a context lemma and diagram based methods [5]. In order to
lift them to λτ (fc), we encode λτ (fc) into λ(f) via a simplified intermediate cal-
culus, and prove the adequacy of both translations. In the second part, we prove
that the encoding of buffers preserves and reflects may- and must-convergence.
The proof uses commutation techniques for reduction steps as well as valid equiv-
alences previously shown for λτ (fc). These are necessary to prove invariants of
the implicit queuing mechanisms that arise in the buffer implementation. Using
compositionality of the translation this lets us conclude full abstraction [16, 17].

Questions of expressiveness have been addressed mainly in pi-calculus and
basic process calculi [9]; we are not aware of previous work on formally relat-
ing synchronization primitives in concurrent high-level languages. Similar issues
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(concerning properties of translations) arise in the verification of compilers, but
usually only (simpler) simulation properties for closed programs, rather than
open program fragments, are established. An alternative approach to equational
correctness proofs are Hoare-style program logics; recently, concurrent separa-
tion logic has been used to prove properties of concurrent data structures [8].

2 The Lambda Calculus with Futures

In this section we introduce λτ (fc), a typed variant of the λ-calculus with fu-
tures λ(f) from [6]. The calculus extends λ(f) by recursive data types, algebraic
constructor terms and the corresponding case-expressions.
Syntax. We use vector notation for many syntactic categories, so we write ~a
for a sequence of objects a1, . . . , an where n ≥ 0. Let a signature Σ = (K,D)
consist of two finite ranked sets, a set of type constructors κ ∈ K and a set of
data constructors k ∈ D, with fixed arities ar(κ) ≥ 0 and ar(k) ≥ 0. A simple
type τ ∈ T is a term built from function symbols in K∪ {ref ,→}, as defined in
Fig. 1. We assume that each data constructor k ∈ D has a unique type of the
form τ ′1 → . . . → τ ′ar(k) → κ(~τ). In this case, we write inD(k) = τ ′1 . . . τ ′ar(k) for
the sequence of input types of k. Let D(κ(~τ)) be the set of data constructors in
D with output type κ(~τ). We assume that none of these sets is empty, so that we
obtain a partition into finite non-empty sets D =

⋃
κ(~τ)∈T D(κ(~τ)). Moreover,

we assume that the signature contains constructors for (n-ary) products: there
are n-ary type constructors (· × . . . × ·) in K and data constructors 〈·, . . . , ·〉 in
D(τ1 × . . .× τn) with inD(〈·, . . . , ·〉) = ~τ , for all types ~τ = τ1, . . . , τn.

The syntax of λτ (fc)-expressions is defined in Fig. 1, where Var is a fixed
infinite set of variables. It consists of two layers: a level of λ-expressions e ∈ Exp
(using constructors in D) for sequential computation within threads, and a level
of processes p ∈ Proc that compose threads in parallel and record the state of
the system. For typed case-expression caseκ(~τ) e of π1 ⇒ e1 | . . . | πm ⇒ em,
we assume that each constructor k ∈ D appears at most once in the patterns πi,
and the set of all these constructors is exactly D(κ(~τ)). Thus the patterns are
non-overlapping and exhaustive. Like abstractions, patterns act as binders in a
branch π ⇒ e, and all the variables appearing in π must be distinct. The set of
free variables of e is denoted by fv(e) (similarly fv(p) for processes p), expressions
and processes are identified up to consistent renaming of bound variables, and
we write e[e′/x] for the (capture-free) substitution of e′ for x in e.

New operations in expressions are introduced by (higher-order) constants:
the constants thread, lazy and handle serve for introducing eager threads, lazy
threads, and handles, each of them together with a future. The constant cell
introduces reference cells, and the expression exch(e1, e2) expresses atomic ex-
change of cell values. Note that we distinguish between constants and data con-
structors k ∈ D – the latter must always be fully applied. Values v are defined
as usual in a call-by-value λ-calculus.

As in the π-calculus, processes p are composed from smaller components by
parallel composition p1 | p2 and new name creation (νx)p. The latter is a variable
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τ ∈ Type ::= ref τ || τ → τ || κ(τ1, . . . , τar(κ))

c ∈ Const ::= cell || thread || handle || lazy || unit

π ∈ Pat ::= k(x1, . . . , xar(k))

e ∈ Exp ::= x || c || λx.e || e1 e2 || exch(e1, e2) || k(e1, . . . , ear(k))
|| caseκ(~τ) e of π1 ⇒ e1 | . . . | πm ⇒ em

v ∈ Val ::= x || c || λx.e || k(v1, . . . , var(k))

p ∈ Proc ::= p1 | p2 || (νx)p || x c v || x⇐e || y h x || y h • || x
susp⇐= e

Fig. 1. Types, expressions and processes of λτ (fc), where m ≥ 0

p1 | p2 ≡ p2 | p1 (p1 | p2) | p3 ≡ p1 | (p2 | p3)

(νx)(νy)p ≡ (νy)(νx)p (νx)(p1) | p2 ≡ (νx)(p1 | p2) if x 6∈ fv(p2)

Fig. 2. Structural congruence of processes

binder. A structural congruence ≡ on processes is defined by the axioms in Fig. 2.
We distinguish five types of components that have no direct correspondence in
π-calculus: (eager concurrent) threads x⇐e will eventually bind future x to the
value of expression e unless it diverges or suspends; x is called a concurrent
future. Lazy threads x

susp⇐= e are suspended computations that will start once
the proper value of x is needed elsewhere; we call x a lazy future. Cells x c v
associate (a memory location) x to a value v. Handle components y h x associate
handles y to futures x, so that y can be used to assign a value to x. We call x
a future handled by y, or more shortly a handled future. Finally, a used handle
component y h • indicates that y is a handle that has already been used to bind
its associated future.
Contexts and Operational Semantics. The operational semantics defines
an evaluation strategy via (evaluation) contexts in which reduction rules apply.
A context is a process or expression with a single occurrence of the hole marker
[ ]. The hole marker for terms can only occur in positions where the grammar
allows arbitrary expressions: for instance, in a cell x c v the position of a hole
can only be in subterms of v that are abstractions. The result of placing e in
context C (possibly capturing free variables of e) is written C[e].

Fig. 3 defines evaluation contexts (ECs) E and future ECs F as particular
contexts. ECs encode the standard call-by-value, left-to-right reduction strategy,
while future ECs control dereferencing operations on futures and the triggering
of suspended threads. The small-step reduction relation p→ p′ is the least binary
relation on processes satisfying the rules in Fig. 4.4 We write ev−→ for→ when we
want to distinguish reductions from transformations.

4 Here we use call-by-value β-reduction as in [6]. In [5] we used a sharing variant of call-
by-value β-reduction. To distinguish between both calculi we denote the calculus of
[6] with λ(f) and the calculus of [5] with λ(f’). The equational theories of both calculi
are the same. In Appendix A we formalize this claim by showing full-abstractness
for the identity translations between both calculi.
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ECs E::=x⇐ eEeE::=[ ] || eE e || v eE || exch( eE, e) || exch(v, eE)

|| case eE of (πi ⇒ ei)
i=1...n || k(v1, . . . vi−1, eE, ei+1, . . . , en)

Future ECs F ::=x⇐ eFeF ::= eE[[ ] v] || eE[exch([ ], v)] || eE[case [ ] of (πi ⇒ ei)
i=1...n]

Process ECs D::= [ ] || p |D || D | p || (νx)D

Fig. 3. Evaluation contexts

The rule (thread.new(ev)) spawns a new eager thread x⇐e where x may
occur in e, so it may be viewed as a recursive declaration x = e. Similarly,
(lazy.new(ev)) creates a new suspended computation x

susp⇐= e. Dereferenc-
ing of future values (fut.deref(ev)) and triggering of suspended computa-
tions (lazy.trigger(ev)) is controlled by future evaluation contexts F . The
rule (handle.new(ev)) introduces handle components y h x with static scope in
e; the application x v in (handle.bind(ev)) “consumes” the handle x and binds
y to v, resulting in a used handle x h • and thread x⇐v. Rule (cell.new(ev))
creates new cells z c v with contents v. The exchange operation exch(z, v1) writes
v1 to the cell and returns the previous contents. Since this is an atomic operation,
no other thread can interfere.

Handled futures are the basic synchronization construct in λτ (fc): a thread
may block on a future x until a second thread uses the associated handle and
provides a value for x.
Typing. Types are assigned to both expressions and processes. The typing
relation for expressions, Γ ` e : τ where Γ is a type context that associates
types to distinct identifiers, is defined by the usual typing rules of simply typed
lambda calculus together with the types for constructors and the typing rules for
exch and case expressions given in Fig. 5. The types of each constant c are given
by a polymorphic type scheme, with TypeOf (c) denoting the set of all instances.

On the level of processes, types ensure a number of well-formedness con-
ditions. For instance, there is a unique binding for every (concurrent, lazy, or
handled) future and each reference cell. Intuitively, the judgement Γ ` p : Γ ′

expresses that p has free variables as described by Γ which need to be provided
externally, while p provides visible bindings described by Γ ′ which may be used
externally. Fig. 6 gives the inference rules defining this judgement. The rule for
parallel compositions can be understood by noting the similarity to (mutually
recursive) declarations. It requires that the variables introduced by p1 and p2

are disjoint, by the convention that Γ, Γ ′ is defined only if the domains of Γ and
Γ ′ are disjoint. The binding operator (νx)p restricts the observational scope of
an introduced variable x to p; the binding is therefore removed from Γ ′.

For a more detailed explanation of the type system we refer to [6] and note
only that the type safety theorem extends to λτ (fc).
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Reduction rules.

(β-cbv(ev)) E[(λy.e) v] −→ E[e[v/y]]

(thread.new(ev)) E[thread v] −→ (νz)(E[z] | z⇐v z)

(fut.deref(ev)) F [x] |x⇐v −→ F [v] |x⇐v

(handle.new(ev)) E[handle v] −→ (νz)(νz′)(E[v z z′] | z′ h z)

(handle.bind(ev)) E[x v] |x h y −→ E[unit] | y⇐v |x h •
(cell.new(ev)) E[cell v] −→ (νz)(E[z] | z c v)

(cell.exch(ev)) E[exch(z, v1)] | z c v2 −→ E[v2] | z c v1

(lazy.new(ev)) E[lazy v] → (νz)(E[z] | z
susp⇐= v z)

(lazy.trigger(ev)) F [x] |x
susp⇐= e → F [x] |x⇐e

(case.beta(ev)) E[case kj(v1, . . . , var(kj)) of (ki(x1, . . . , xar(ki)) ⇒ ei)
i=1...n]

→ E[ej [v1/x1, . . . , var(kj)/xar(kj)]]
Distinct variable convention. We assume that all processes to which rules apply

satisfy the distinct variable convention, and that all new binders use fresh variables
(z and z′). Reduction results will satisfy the distinct variable convention, if after
β-cbv(ev), case.beta(ev) and fut.deref(ev) where values with bound variables
may be copied, α-renaming is performed before applying the next rule.

Closure. Rule application is closed under structural congruence and process ECs D:
if p1 ≡ D[p′1], p′1 → p′2, and D[p′2] ≡ p2 then p1 → p2.

Fig. 4. One-step reduction relation of λτ (fc), denoted by → or
ev−→

Observations and Contextual Equivalence. A process p is successful
(meaning it has terminated successfully) if in every component x⇐e of p, the
identifier x is bound (possibly via a chain x⇐x1 |x1⇐x2 | . . . |xn−1⇐xn) to a
non-variable value, a cell, a lazy future, a handle, or a handled future. Hence,
in a non-failing computation, every future eventually refers to a “proper” value.
For instance, x⇐λy.y, x⇐y | y⇐〈x, x〉 and x⇐y | y c z are successful, while x⇐x
(a black hole, in the terminology of call-by-need calculi) and x⇐yx | y⇐xy (a
deadlocked process) are ruled out.

We use p↓ to indicate that p is may-convergent, i.e., that there is a sequence
of reductions p →∗ p′ such that p′ is successful, and p⇓ if the process is must-
convergent, meaning that all reduction descendants p′ of p are may-convergent.
Dually, we call p must-divergent (p⇑) if it has no reduction descendant that
succeeds, and may-divergent (p↑) if some reduction descendant of p is must-
divergent. Thus, p⇑ ⇔ ¬p↓ and p↑⇔ ¬p⇓.

The typing of terms and processes gives rise to a notion of typed contexts:
for ∆ = (Γ, Γ ′) a pair of type environments we define the judgement ∆ ` p by
Γ ` p : Γ ′, and let Ctxt(∆) be the set of contexts C for which ∆ ` p implies
the existence of ∆′ with ∆′ ` C[p]. Now, for obs ∈ {↓,⇓}, we define contextual
approximation relations between processes p1 and p2 with ∆ ` pi by:

∆ ` p1 ≤obs p2 ⇔ ∀D ∈ Ctxt(∆). D[p1] ∈ obs⇒ D[p2] ∈ obs
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unit : unit thread : (α→α)→α lazy : (α→α)→α

handle : (α→(α→unit)→β)→β cell : α→ref α

τ ∈ TypeOf (c)

Γ ` c : τ

Γ ` e1 : ref τ Γ ` e2 : τ

Γ ` exch(e1, e2) : τ

k ∈ D(κ(~τ)) Γ ` ~e : inD(k)

Γ ` k(~e) : κ(~τ)

Γ ` e : κ(~τ) D(κ(~τ)) = {k1, . . . , kn} ∀i = 1 . . . n. Γ, ~xi : inD(ki) ` ei : τ

Γ ` (caseκ(~τ) e of (ki ~xi ⇒ ei)
i=1...n) : τ

Fig. 5. Some typing rules for expressions

Γ, Γ1 ` p1 : Γ2 Γ, Γ2 ` p2 : Γ1

Γ ` p1 | p2 : Γ1, Γ2

Γ, x:τ ` e : τ

Γ ` x
(susp)⇐= e : (x:τ)

Γ, x:ref τ ` v : τ

Γ ` x c v : (x:ref τ)

Γ ` p : Γ ′

Γ ` (νx)p : Γ ′ − x

y /∈ dom(Γ )

Γ ` y h • : (y:τ → unit)

x, y /∈ dom(Γ )

Γ ` y h x : (x:τ, y:τ → unit)

Fig. 6. Typing of processes

We write ∆ ` p1 ≤ p2 if both ∆ ` p1 ≤↓ p2 and ∆ ` p1 ≤⇓ p2 hold, and
∆ ` p1 ∼ p2 if both ∆ ` p1 ≤ p2 and ∆ ` p2 ≤ p1 hold.
Translations. An abstract calculus with observational semantics in the frame-
work from [17] consists of sets of processes, contexts, types and convergence
predicates. The calculus λτ (fc) is a calculus in this general framework, where
∆’s serve as types. The (untyped) calculus λ(f) is another such calculus with a
single type that is universal.

A translation T between two such calculi maps types to types, processes to
processes, and contexts to contexts, such that their types correspond. A transla-
tion T between calculi C and C′ is adequate if T reflects operational approxima-
tion, i.e. iff T (∆) ` T (p1) ≤C′ T (p2) ⇒ ∆ ` p1 ≤C p2 for all ∆ and p1, p2 such
that ∆ ` pi. If T additionally preserves inequations, i.e. iff for all ∆, p1, p2 with
∆ ` p1, ∆ ` p2 the equivalence ∆ ` p1 ≤C p2 ⇔ T (∆) ` T (p1) ≤C′ T (p2) holds,
then it is fully abstract. A translation is convergence equivalent iff T (p)↓⇔ p↓
and T (p)⇓⇔ p⇓ for all p. Finally T is compositional if for all ∆, all D ∈ Ctxt(∆)
and p with ∆ ` p, we have T (D)[T (p)] = T (D[p]). A simple but helpful obser-
vation is:

Proposition 2.1 (Adequacy, [17]). If a translation T is compositional and
convergence equivalent, then T is adequate.

If only new primitives are added to a calculus C′, then full abstraction follows
from moderate assumptions:

Proposition 2.2 (Full abstraction for extensions, [17]). Let C, C′ be two
calculi, let ι : C′ → C (the embedding) and T : C → C′ be compositional and
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(fut.deref(a)) C[x] |x⇐v −→ C[v] |x⇐v
(β-cbv(a)) C[(λx.e) v] −→ C[e[v/x]]

(case.beta(a)) C[case kj(v1, . . . , var(kj)) of (ki(x1, . . . , xar(ki)) ⇒ ei)
i=1...n]

→ C[ej [v1/x1, . . . , var(kj)/xar(kj)]]

(cell.deref) p | y c x |x⇐v −→ p | y c v |x⇐v
(gc) p | (νy1) . . . (νyn)p′ −→ p if p′ is successful and

y1, . . . , yn contain all process variables of p′

(det.exch) (νx)(y⇐ eE[exch(x, v1)] |x c v2) −→ (νx)(y⇐ eE[v2] |x c v1)

No capturing. We assume that no variables are moved out of their scope or into
the scope of some other binder, i.e., fv(v) ∩ bv(C) = ∅, and that processes are
α-renamed when necessary.

Closure. Transformations are closed under ≡ and process contexts.

Fig. 7. Correct transformation rules for λτ (fc)

convergence equivalent translations, such that T ◦ι is the identity on C′-programs,
on C′-observers, and on C′-types. Then T as well as ι are fully abstract.

Correctness of Transformations in λτ (fc). In the correctness proofs we often
rely on program transformations, which therefore must be sound for equivalence.

Definition 2.3. A program transformation ≈ is a binary relation on processes.
We say that ≈ is correct on (typed) processes if for all ∆ and p, p′ such that
∆ ` p and ∆ ` p′ it holds that p ≈ p′ ⇒ ∆ ` p ∼ p′.

The use of the framework sketched above makes it possible to lift program equiv-
alences from the untyped lambda calculus with futures [5] to correct program
transformations in λτ (fc).

Theorem 2.4 (Correct transformations). All of the following are correct
transformations for λτ (fc):

- all reduction rules of λτ (fc), except for cell.exch(ev)
- the transformations given in Fig. 7 (note the use of arbitrary contexts in the

first three).

The proof of this theorem proceeds by considering the untyped calculus λ(f) that
has no constructors and no case expressions. One defines an adequate translation
λτ (fc) → λ(f) that allows us to transfer known equivalences from λ(f) (see [5]
and Appendix A) to λτ (fc). The translation λτ (fc)→ λ(f) is factored through an
intermediate calculus: first the arguments of data constructors are restricted to
values, next case-expressions and constructors are encoded using abstractions,
and types are removed. The complete proofs can be found in Appendix B.
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τ ∈ Type ::=buf τ || . . .
c ∈ Const ::=newBuf || get || . . .
e ∈ Exp ::=put(e1, e2) || . . .
p ∈ Proc ::=x b − || x b v || . . .

Fig. 8. Syntactic extensions for λτ (fcb)

ECs eE::=put( eE, e) || put(v, eE) || . . .

Future ECs eF ::= eE[put([ ], v)] || eE[get [ ]] || . . .

Fig. 9. Extended evaluation contexts of λτ (fcb)

(buff.new(ev)) E[newBuf v] → (νx)(E[x] |x b−) fresh x

(buff.put(ev)) E[put(x, v)] |x b−→ E[unit] |x b v

(buff.get(ev)) E[get x] |x b v → E[v] |x b−

Fig. 10. Extension of the reduction rules of λτ (fc) for λτ (fcb)

newBuf : α → buf α get : buf α → α

Γ ` e1 : buf τ Γ ` e2 : τ

Γ ` put(e1, e2) : unit

x /∈ dom(Γ )

Γ ` x b− : (x : buf τ)

Γ, x:buf τ ` v : τ

Γ ` x b v : (x : buf τ)

Fig. 11. Typing of buffer-expressions and processes

3 Implementing Buffers

Any concrete realization of buffers will rely on (more or less intricate) non-
interference properties and the preservation of various invariants. In this section,
by extending the syntax and operational semantics of λτ (fc), we first provide a
specification of one-place buffers that describes their desired behavior. We call
the resulting calculus λτ (fcb). We then provide an implementation of buffers in
λτ (fc). This induces a translation from λτ (fcb) into λτ (fc).
Specification. The calculus λτ (fc) is extended by new primitives for concurrent
buffers. This defines the calculus λτ (fcb), with the syntactic extensions shown in
Fig. 8. λτ (fcb) has two new components: x b− which represents an empty buffer,
and x b v which represents a buffer that contains the value v. There are two new
constants: newBuf to create a new buffer, and get to obtain the contents of a
non-empty buffer (and emptying the buffer). There is also a new binary operator
put, to place a new value into an empty buffer.

Fig. 10 summarizes the operational interpretation of the new constructs, and
Fig. 9 extends the set of (future) evaluation contexts. Note that the reduction
rules entail that get x suspends on an empty buffer x while put(x, v) suspends
on a non-empty x. For typing we assume a new type constructor buf of arity 1.
The typing of the constants is given by type schemes (see Fig. 11). Type safety
then extends to the calculus λτ (fcb). Contextual preorder is defined as expected,
where a successful process in λτ (fc) is extended such that λτ (fcb) allows x b−
and x b v as additional components of successful processes.
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newBuf , λ . let 〈h, f〉 = newhandled, 〈h′, f ′〉 = newhandled,

putg = cell(True), getg = cell(f),

stored = cell(f ′), handler = cell(h)
(1) in thread λ .〈putg, getg, stored, handler〉 end

put , λ〈〈xp, xg, xs, xh〉, v〉.
let 〈h, f〉 = newhandled

(1) in wait (exch(xp, f));
(2) exch(xs, v);
(3) (exch(xh, h))(True)

end

get , λ〈xp, xg, xs, xh〉.
let 〈h, f〉 = newhandled

〈h′, f ′〉 = newhandled
(1) in wait (exch(xg, f));
(2) let v = (exch(xs, f

′))
(3) in (exch(xh, h))(True); v end

end

Fig. 12. Implementing the buffer operations newBuf, put and get. The numbers (1),
(2), (3) indicate subexpressions for later reference.

Implementation. A particular implementation of buffers in terms of reference
cells and futures is considered.

From now on we assume that the set of type constructors contains a
nullary constructor bool ∈ K, with nullary data constructors True and False.
We will freely use the usual syntax sugar such as a (non-recursive) let-
binding let x1=e1, . . . , xn=en in e end and sequencing e1; e2, and also use pat-
terns in abstractions λπ.e as shorthand for λx.case x of π⇒ e etc. Instead of
case e of True⇒ e1 |False⇒ e2 we write if e then e1 else e2, and the special case
if e then True else True is written as wait e. The symbol ‘ ’ stands for an arbitrary
fresh variable. Finally, we write newhandled as shorthand for handle λfh. 〈h, f〉.

The implementation in λτ (fc) of operations corresponding to newBuf, put,
and get is shown in Fig. 12. The buffer data structure is here implemented as a
tuple, consisting of four reference cells:

buf τ , ref bool× ref bool× ref τ × ref (bool→ unit).

The first and second of these reference cells serve as guards to ensure that suc-
ceeding put and get operations alternate. Exactly one of them will contain a
handled future: if the first guard contains a future, this indicates that the buffer
is currently non-empty, hence put must block. Likewise, if the second guard
contains a handled future, the tuple represents an empty buffer and get must
block. The final reference cell stores a handler for this future. The third cell,
of type ref τ , stores the actual contents of the buffer. When representing an
empty buffer, this reference will contain a handled future of type τ as a dummy
value. In summary, there are the following invariants associated with the value
〈putg, getg, stored, handler〉 that implements the buffer:

- the guards putg and getg contain either a handled future or True (perhaps
reachable via dereferencing futures),

- at most one of putg and getg contains True,



On Proving the Equivalence of Concurrency Primitives 11

- whenever getg contains True then the value in stored is the value currently
in the buffer, and

- whenever putg contains True then the value in stored is ‘garbage’, represent-
ing an empty buffer.

The procedure newBuf yields a tuple representing an empty buffer,
satisfying the invariants. The procedure put, when applied to a buffer
〈putg, getg, stored, handler〉 and a value v, suspends until the buffer is guaran-
teed to be empty. This is achieved by pattern matching on the contents of putg
(using wait): since the first argument position of the case construct constitutes
a future EC, put can continue only when putg contains a proper (non-future)
value. By the invariants, this implies that the buffer is empty. At the same time,
putg is replaced by a fresh future f , with handle h, to indicate that the buffer
will be non-empty after put succeeds. After writing v to the cell stored, the sec-
ond guard getg is set to True (perhaps via a reference) to permit following get
operations to succeed. This is done using the handle stored in the reference cell
handler, which is replaced by the handle h for the freshly introduced future f .
The procedure get is analogous (partly symmetric) to put.

The use of the handled futures in put and get is somewhat subtle: in general,
several threads concurrently attempt to place values into the buffer (and dually,
for reading from the buffer). The thread that is scheduled first replaces the
contents of the guard by a future f1. This future can be bound only after this
instance of put has finished. A second instance of put can proceed immediately
with its own exchange operation, replacing f1 by a future f2 before the wait
suspends on f1. In this way, a chain of threads suspending on futures f1, f2, . . .
in their respective put operations can build up. At the same time, a chain of
threads suspending in their respective get operations can build up.
Implementation as Translation. The implementation gives rise to a trans-
lation TB from λτ (fcb) into λτ (fc): put, get, and newBuf are replaced by the
resp. program code, put, get, and newBuf from Fig. 12, where for put, the two
arguments are translated into a pair. On process level, we replace:

x b− 7→ (νxp)(νxg)(νxs)(νxh)x⇐〈xp, xg, xs, xh〉
| (νh)(νf)(νh′)(νf ′)(h h f |h′ h f ′ |xp c True |xg c f |xs c f ′ |xh c h)

x b v 7→ (νxp)(νxg)(νxs)(νxh)x⇐〈xp, xg, xs, xh〉
| (νh)(νf)(h h f |xp c f |xg c True |xs c TB(v) |xh c h).

Formally, these replacements homomorphically extend to a mapping TB :
λτ (fcb)→ λτ (fc) on all λτ (fcb)-terms, -processes, and -contexts. A corresponding
type translation is defined inductively, by TB(buf τ) , buf (TBτ), and proceeding
homomorphically in all other cases.

These mappings are compatible with typing: if ∆ ` p then TB(∆) ` TB(p),
where TB(∆) , (TB(Γ ), TB(Γ ′)) for ∆ = (Γ, Γ ′) and TB(x1:τ1, . . . , xn:τn) ,
x1:TB(τ1), . . . , xn:TB(τn) denotes the pointwise extension to type environments.
Corresponding typing properties hold for contexts, so that TB forms a translation
in the sense of [17]. It is easy to see that:

Lemma 3.1 (Compositionality). The translation TB : λτ (fcb) → λτ (fc) is
compositional, i.e., for all p, D, we have TB(D)[TB(p)] = TB(D[p]).
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4 Correctness of Buffer Implementations

Convergence Equivalence. We argue that the buffer implementation, de-
scribed by TB : λτ (fcb)→ λτ (fc) above, is correct. To this end, we will prove TB

convergence equivalent in this section, and use compositionality (Lemma 3.1).
By Lemma 2.1, this entails that TB is adequate. Moreover, we will prove that
λτ (fcb) is an extension of λτ (fc), which means ≤ is extended conservatively.

Lemma 4.1 (TB preserves success). Let p be a λτ (fcb)-process.

1. If p is successful, then so is TB(p). In particular, TB(p)⇓ in this case.
2. If TB(p) is successful, then p is also a successful process.

The definition of the translation TB also shows the following.

Lemma 4.2 (Context translation). If D is a process context of λτ (fcb), then
TB(D) is a process context. If E is an evaluation context of λτ (fcb), then TB(E)
is an evaluation context in λτ (fc).

Note that the corresponding property does not hold for future evaluation
contexts. For example, get [] forces its argument to be a buffer before reducing,
while its image get [] proceeds with arbitrary values as argument. The argument
ends in a future EC only after further beta- and case-reductions.

Proposition 4.3 (↓-preservation). For every λτ (fcb)-process p, p↓⇒ TB(p)↓.

Proof (sketch). The idea is to simulate reductions of λτ (fcb) in λτ (fc), up to
contextual equivalence: for every p1

ev−→ p2 there exists p′1, p
′
2 ∈ λτ (fc) such that

TB(p1) ∼ p′1
ev,∗−−→ p′2 ∼ TB(p2). The equivalences are established by transforma-

tions from Theorem 2.4. Then, we can use induction on the length of a successful
reduction sequence in λτ (fcb) to derive a successful sequence for the translated
process. Proposition C.3 in the appendix gives the detailed proof. ut

The converse implication requires a more careful analysis. The execution
of each instance of put or get (newBuf provides no problems) consists of ini-
tial (β-cbv(ev)) and (case.beta(ev)) reductions, and eventually the argument
has to be evaluated in a future-strict context. The ensuing (case.beta(ev))
and (fut.deref(ev))-reduction (pattern matching on the cells in a tuple
〈p, g, s, h〉 and proceeding after wait, resp.) can be ignored in the following
analysis. Referring to Fig. 12, the internal code-pointer is denoted 1a, 1b,
2, 3a, 3b. For instance, we describe subexpressions of put as follows: (1) for
wait (exch(xp, f)) with (1a) for exch . . . and (1b) for wait, (2) for exch(xs, vi),
and (3) for (exch(xh, hp,i))(True) with (3a) for exch . . . and (3b) for handle bind-
ing. The subexpressions of get are described similarly.

One of the difficulties is illustrated by a process x⇐put(y, v) | y⇐get x | . . ..
Assume that get is executed first, then put. For the corresponding reduction
sequence in λτ (fc) it is unavoidable that essentially same sequence is used on
the implementation get and put. However, the initial reductions of put may be
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executed earlier. (In the case of y
susp⇐= get x, this is even enforced.) For the

reduction in the implementation, this means that the reduction steps of instances
of get and put cannot be gathered into one contiguous block; this is possible only
for the main steps 1,2,3 of an instance.

Due to space limitations, the detailed analysis of the possible behavior of
the implementation is found in Appendix C. It implies the following sequencing
constraint of reductions, where

x,a,b−−−→ means a reduction step for a particular
buffer x of the put/get-instance b with code-pointer a.

Lemma 4.4. For a buffer x the following sequencing holds in a ev−→-reduction:
If for two instances b1, b2 of put, get:

x,a,b1−−−−→ is before
x,a,b2−−−−→ for some a ∈

{1b, 2, 3a, 3b}, then for all a1, a2 ∈ {1b, 2, 3a, 3b}: x,a1,b1−−−−→ is before
x,a2,b2−−−−→.

For two put-instances b1, b2 (or get-instances, respectively):
x,1a,b1−−−−→ is before

x,1a,b2−−−−→ iff
x,2,b1−−−−→ is before

x,2,b2−−−−→.

Proposition 4.5 (↓-reflection). For every λτ (fcb)-process p, TB(p)↓⇒ p↓.

Proof (sketch; the full proof appears in the appendix as Prop. C.4). The main
idea of the proof is to rearrange a reduction sequence R of TB(p) to a successful
process pω, such that it can be retranslated into λτ (fcb). One obstacle is men-
tioned above: the initial reduction steps and the steps 1,2,3 have to be treated
separately. It is possible to rearrange the reduction steps 1,2,3 such that the
reduction steps of every instance of put,get occur without interrupt. The strat-
egy is to move the reductions (1b) and then (1a) close to their corresponding
(2)-reduction, starting from the rightmost reduction step. Next reductions from
(3a), and then (3b), are moved to the left to their corresponding (2)-reduction,
starting from the left. These commutations are justified by Lemma 4.4. The ini-
tial reduction steps, including dereferencing of the buffer variable, are correct
transformations due to Theorem 2.4. After this reordering of R a retranslation
is possible, which shows p↓. ut

Proposition 4.6 (⇓-reflection). For every λτ (fcb)-process p, TB(p)⇓⇒ p⇓.

Proof. Suppose that for the λτ (fcb)-process p we have p↑. We show TB(p)↑.
Since p↑ there is a reduction R from p to a process p0⇑. Analogous to the proof
of Proposition 4.3, we can show by induction on the length of R that there is a
sequence R′ of correct transformations and reductions from TB(p) to the process
TB(p0). Proposition 4.5 applied to p0 shows that TB(p0)↓ is impossible, hence
TB(p0)⇑ holds. By induction on the length of R′ (which consists of ev-reductions
and correct transformations), Corollary B.20 is used to show TB(p)↑. ut

The proof of the following proposition is more intricate:

Proposition 4.7 (⇓-preservation). For every λτ (fcb)-process p, p⇓⇒ TB(p)⇓.

Proof. The detailed proof is in Appendix C; here we give a sketch. We prove
the equivalent claim that for every λτ (fcb)-process p, TB(p)↑⇒ p↑. As in the
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proof of Proposition 4.5, a given reduction R corresponding to TB(p)↑ will be
rearranged and modified in order to construct a λτ (fcb)-reduction of p that shows
p↑. This allows a similar rearrangement into 1,2,3-blocks and intermediate correct
transformations. However, this is not possible for all instances of put get, since
some of these may be started but never completed in the reduction.

Variants of the following argument can be used to overcome this difficulty.
Suppose a certain instance m of put has been started within R, but the next
reduction step, say from (3a), is missing in R. Let pω be the last process in
R, for which we necessarily have pω⇑. The commutation properties show that
3a,m−−−→ is a reduction possibility of pω, i.e. pω

3a,m−−−→ pω,1, which immediately

implies pω,1⇑. Thus we extend R to R· 3a,m−−−→. This procedure is repeated until
all partially executed instances are completed; as an invariant, the number of
started instances of put, get is not increased. Now it is possible to construct a
reduction sequence showing p↑. Finally, there is some process pω with p

∗−→ pω

and TB(pω) = qω, where qω is the final process of the rearranged and extended
sequence R′. The property qω⇑ can be shown using Theorem 2.4. Lemma 4.3
shows that pω↓ is impossible, hence pω⇑. This implies p↑. ut

Full Abstraction. Propositions 4.3, 4.5, 4.6, 4.7, and 2.1 imply:

Theorem 4.8 (Adequacy). The translation TB: λτ (fcb)→ λτ (fc) is adequate.

We need also correctness of several transformations in λτ (fcb), which can be
shown using adequacy of the translation TB . (The detailed proof is given in the
appendix in Lemma C.6).

Theorem 4.9 (Correct transformations in λτ (fcb)). The following holds:

- All reduction rules of λτ (fcb) except for cell.exch(ev),buff.get(ev), and
buff.put(ev) are correct.

- The transformations β-cbv(a), fut.deref(a), cell.deref, gc and
det.exch (see Fig. 7) lifted to λτ (fcb) are correct.

Theorem 4.10 (Full abstraction). TB : λτ (fcb) → λτ (fc) and the identity
λτ (fc)→ λτ (fcb) are fully abstract.

Proof. This follows from adequacy (Theorem 4.8) and Proposition 2.2, since the
identity translation λτ (fc)→ λτ (fcb) is an embedding of λτ (fc) into λτ (fcb). ut

Some Axiomatic Laws for Buffers. A common approach to the specification
of abstract data types, in the sequential case, is by an axiomatic description of
the operations. The machinery developed above allows us to prove that the
buffers of λτ (fc) satisfy such axioms. Using adequacy of TB (Theorem 4.8), the
implied correctness of transformations for λτ (fcb) (Theorem 4.9), and correctness
of program transformations for λτ (fc) (Theorem 2.4), one can show the following
rules for put and get are correct:

(det.put) (νx).E[put(x, v)] |x b− → (νx).E[unit] |x b v
(det.get) (νx).E[get x] |x b v → (νx).E[v] |x b−
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The detailed proof can be found in the appendix (Proposition C.7). Note that
these equivalences are like buff.put(ev) and buff.get(ev), but restricted to
sequentially used buffers. Then,

∆ ` E[get(put(newBuf unit, v))] ∼ E[v]

and similar equivalences follow.

5 Conclusion

We have proved formally that concurrent buffers can be correctly expressed in
the lambda calculus with futures. This illustrates how recent proof techniques
based on observational semantics permit to prove for a first time the equivalence
of various concurrency primitives of realistic concurrent programming languages.
In future work, it remains to elaborate this statement further, by proving the
equivalence of concurrent buffers, channels, and handled futures in the context
of the lambda calculus with futures. In particular, we have to show that we can
remove handles from λτ (fcb) by some correct encoding, and that we can encode
channels in this calculus too. Proving similar results for other base languages
is possible in principle, but requires to establish a sufficiently rich equational
theory first.
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A Modifying β-cbvL(ev)-reduction in λ(f’)

The calculus λ(f’) described in [5] is the subcalculus of λτ (fc) without construc-
tors, case-expressions, and typing. Moreover, instead of the β-cbv(ev)-reduction
rule from Fig. 4, a sharing variant used that introduces a new future instead of
substituting into the body. This ‘lazy’ call-by-value β-rule (β-cbvL(ev)) takes
the form E[(λy.e) v] −→ (νy)(E[e] | y⇐v).

We call the modification of λ(f’) with the usual (substituting) call-by-value
β-reduction λ(f) (this is the calculus presented in [6]). We first prove that the
identity translation from λ(f) into λ(f’) is fully-abstract. This essentially means
that, as far as contextual equivalence is concerned, it does not matter which
β-rule we choose.

For the proof we expect familiarity with the definitions, lemmas and theorems
in [5]. Obviously, the identity translation from λ(f’) to λ(f) as well as the identity
translation from λ(f) to λ(f’) are bijective and compositional. We show that both
translations are convergence equivalent, which by Proposition 2.2 implies that
both translations are fully-abstract.

Lemma A.1. For all λ(f’)-processes p, p↓⇔ p↓λ(f) and p⇓⇔ p⇓λ(f), i.e. the
identity translations from λ(f’) and λ(f) and back are convergence equivalent.

Proof. 1. Theorem 4.23 of [5] proves that β-cbv(a) is a correct program trans-
formation for λ(f’). From p↓λ(f), induction on the length of a reduction from
p to a successful process shows that p↓. This is because the reduction corre-
sponding to p↓λ(f) consists of λ(f’)-reductions and β-cbv(ev)-reductions.

2. In order to prove the other direction, assume that p↓, i.e. p
k−→ p′ where p′

is a successful process of λ(f’). We use induction on k. If k = 0, then p is
also a successful process of λ(f). For the induction step there are two cases:
If the first reduction of p −→ p′′

k−1−−→ p′ is also a reduction of λ(f), then
the claim follows by using the induction hypothesis. If the reduction is a
β-cbvL(ev)-reduction, then we have the following situation:

p = D[E[(λy.e) v]]
β-cbv(ev) //

β-cbvL(ev) ��

p = D[E[e[v/y]]]

p′′ = D[E[e] | y⇐v]
ev,k−1 ��

(fut.deref(a) ∨ gc),∗

22eeeeeeeeeeeeeee

p′

It is easy to verify that the sequence of (fut.deref(a) ∨ gc)-transformations
always exists. It is sufficient to show that there exists a reduction from
p to a successful process of length less than k. This implies that we can
apply the induction hypothesis to p and the claim follows. The missing part
follows from Lemma 4.18 (1) and the proof of Proposition 4.31 in [5] for
the transformation (fut.deref(a)); for (gc) it follows from Lemma 4.7 in
combination with Theorem 4.8 in [5].
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3. Assume that p↑λ(f), and note that (1),(2) imply p⇑ ⇔ p⇑λ(f). Induction on
the length of a reduction shows that p↑, where the induction step is either
obvious or follows from correctness of the transformation β-cbv(a).

4. To show the last case assume that p↑. The proof is by induction on the
length of a reduction to a must-divergent process, using the same methods
as (2). ut

Theorem A.2. The identity translations from λ(f’) into λ(f) and back are fully-
abstract.

This result immediately allows us to transfer correct program transformations
for λ(f’) (shown in [5]) to λ(f).

Corollary A.3. All reductions of λ(f) except cell.exch(ev), and all the trans-
formations β-cbv(a), fut.deref(a), cell.deref, gc and det.exch (see
Fig. 7) are correct program transformations for λ(f).

Proof. Correctness of the transformations was established for λ(f’) in [5]. Be-
cause of full abstraction, they are also correct in λ(f). ut

B Removing Constructors and Case-Expressions

The constructors and case-expressions are removed from λτ (fc) in two steps.
We first provide an encoding from λτ (fc) into a subset of itself. Let λτ (fcav)
be the sublanguage of λτ (fc) where in constructor applications k(e1, . . . , en) the
arguments ei are restricted to values.

We provide an encoding enc1 : λτ (fc) → λτ (fcav), where additionally we
introduce some labels to mark the encoded constructors. These labels are used
in later proofs. The encoding enc1 is defined as follows

enc1(k(e1, . . . , en)) , (λl1x1. . . . λlnxn.k(x1, . . . , xn)) enc1(e1)l1 . . . enc1(en)ln ,
where xi are fresh, and li are new labels

enc1(t) , homomorphically wrt. the term structure of t

extended to contexts in the evident way, and acting as identity on types.
The second step is an encoding enc2 that maps processes of λτ (fcav) to

λ(f)-processes, by removing constructors, case expressions, and types: Let K =
D(κ(τ1, . . . , τm)) be the set of constructors for a specific type constructor κ
and types τ1, . . . , τm. By the assumptions on the signature, K is non-empty.
We choose an arbitrary (but from now fixed) order of the constructors in K,
k1, . . . , kn where n ≥ 1. A constructor application of λτ (fcav) is encoded as:

enc2(ki(v1, . . . , var(vi))) , (λp1, . . . , pn.pi enc2(v1) . . . enc2(var(ki)) unit)

The additional unit argument to pi achieves the correct behavior in the case of
nullary constructors, with respect to call-by-value semantics. The encoding for
case expressions is the following:

enc2(caseκ(τ1,...,τm) e of (ki(xi,1, . . . , xi,ar(ki))⇒ ei
i=1...n)) ,

enc2(e) (λx1,1, . . . , x1,ar(k1).λ .enc2(e1)) . . . (λxn,1, . . . , xn,ar(kn).λ .enc2(en))
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Again, the additional abstraction λ . . . . in each branch leads to a uniform trans-
lation, including the correct behavior for nullary constructors. For all other con-
structs, the encoding enc2 operates homomorphically wrt. the term structure.
Types are removed by this second encoding.

Definition B.1. The translation enc : λτ (fc) → λ(f) is the composition enc2 ◦
enc1 of the above translations enc1 and enc2.

As an example we demonstrate the encoding of lists (over a fixed element type τ).
Assume that D contains constructors cons : τ → list→ list and nil : list. Then:

enc(cons(eh, et)) = enc2(enc1(cons(eh, et)))
= enc2(λx1, x2 (cons(x1, x2)) enc1(eh) enc1(et))
= (λx1, x2, anil, acons.x1 x2 unit) enc(eh) enc(et)

enc(nil) = enc2(nil) = (λanil, acons.anil unit)

enc

caselist e of
nil⇒ e1

| cons(x, y)⇒ e2

 = enc(e) (λ .enc(e1)) (λx, y.λ .enc(e2))

B.1 Adequacy of enc2

Lemma B.2. For every value v of λτ (fcav), enc2(v) is a λ(f)-value.

Proof. Clear, since all values are translated into abstractions. ut

Lemma B.3. For all p1, p2 ∈ λτ (fcav) with p1
ev−→ p2, enc2(p1)

ev,∗−−→ enc2(p2).

Proof. First observe that the EC or future EC, resp., containing the redex that is
contracted by p1

ev−→ p2 must correspond to an EC or future EC, resp., for λ(f):
since only λτ (fcav)-values appear in constructor applications, the hole cannot
be below a constructor. Hence the only exceptional case is the decomposition
p1 = D[E[case E′ . . .]], but in this case the translation wrt. enc2 does yield an
EC. Now one needs to check that the reduction p1

ev−→ p2 is transferable. The
only exception is a case.beta(ev)-reduction, and we prove this case explicitly:

enc2(p1)

= enc2(D[E[case kj(v1, . . . , var(kj)) of (ki(x1, . . . , xar(ki)) ⇒ ei)
i=1...n]])

= enc2(D)[enc2(E)[enc2(case kj(v1, . . . , var(kj)) of (ki(x1, . . . , xar(ki)) ⇒ ei)
i=1...n])]

= enc2(D)[enc2(E)

2664
((λp1, . . . , pn.pj enc2(v1) . . . enc2(var(kj)) unit)

(λx1,1, . . . , x1,ar(k1).λ .enc2(e1))
. . .
(λxn,1, . . . , xn,ar(kn).λ .enc2(en))

3775)]

β-cbv(ev),∗−−−−−−−→
enc2(D)[enc2(E)[((λxj,1, . . . , xj,ar(kj).λ .enc2(ej)) enc2(v1) . . . enc2(var(kj)) unit)]]

β-cbv(ev),∗−−−−−−−→ enc2(D)[enc2(E)[enc2(ej)[enc2(v1)/xj,1, . . . , enc2(var(kj))/xj,ar(kj)]]]

= enc2(p2)

Note,that Lemma B.2 ensures that all enc2(vi) are values for λ(f), validating the
β-cbv(ev) steps. ut
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Proposition B.4. The translation enc2 is adequate.

Proof. Since types are removed and the encoding translates every syntactic con-
struct separately, enc2 is compositional. Hence, by Proposition 2.1, it suffices to
show convergence equivalence of enc2, i.e. we have to show four parts:

1. p↓⇒ enc2(p)↓. This follows by induction on the length of a successful reduc-
tion for p. For the base case, Lemma B.2 shows that enc2(p) is successful
when p is. The induction step follows by the simulation Lemma B.3.

2. enc2(p)↓⇒ p↓. We use induction on the length of a successful reduction

enc2(p)
ev,k−−→ p0. The base case obviously holds. For the induction step let

enc2(p) ev−→ p′
ev,k−1−−−−→ p′′ where p′′ is successful.

We first argue that p cannot be an irreducible non-value. Due to typing of p,
then p would be an open process of the form D[E[(x e)]], D[E[case x . . .]],
D[E[exch(x, v)] or D[F [x]] where x is a free variable. For all cases it is easy
to verify that enc2(p) would be an irreducible value non-value, contradicting
enc2(p)↓.
If the redex is not the translation of an case.beta(ev)-redex, then the
reduction can be performed directly for p, i.e. p

ev−→ p1 with p′ = enc2(p1)
holds. The induction hypothesis implies p1 ↓ and thus p ↓. If the re-
duction enc2(p) ev−→ p′ is the beginning of an encoded case.beta(ev),
then we perform the complete encoded
case.beta(ev)-reduction using β-cbv(ev)-

reductions for λ(f): enc2(p)
beta(ev),∗−−−−−−→ p2,

p
case.beta(ev)−−−−−−−−→ p′2, and p2 = enc2(p′2). An

illustration of the situation is shown on the
right.

p
case.beta(ev) //_____ p′2

enc(p′2)

enc2(p)
beta(ev)

// p′
beta(ev),∗

OO

ev,k−1
// p′′

Now one needs to verify that the following holds in λ(f):

If q
ev,k−−→ q′ where q′ is successful and q

beta(ev)−−−−−→ q′′ then
q′′

ev,≤k−−−→ q′′′ where q′′′ is successful. This is easy to prove,
since beta(ev)-reductions commute with other standard re-
ductions, as the diagram shows.
Using this fact we have a successful reduction for enc(p′2)

q1

ev

��

beta(ev)// q2

ev

���
�
�

q3
beta(ev)

//___ q4

of length ≤ k. From the induction hypothesis we derive p′2↓ and thus p↓.
3. p⇓⇒ enc2(p)⇓. We show the equivalent claim enc2(p)↑⇒ p↑, by an induction

on the length of a reduction starting with enc2(p) and ending in a must-
divergent process. For the base enc2(p)⇑ and thus by part 1, p is must-
divergent. The induction step is analogous to part 2.

4. enc2(p)⇓⇒ p⇓. The equivalent claim p↑⇒ enc2(p)↑ is proved by induction
on the length of a reduction for p ending in a must-divergent process. The
proof is analogous to part 1, and the base case is covered by part 2. ut

Corollary B.5. The following transformations are correct for λτ (fcav):

- All standard reductions except for cell.exch(ev).
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- The transformations β-cbv(a), case.beta(a), fut.deref(a), cell.deref,
gc and det.exch (See Fig. 7, with definitions adjusted to λτ (fcav)).

Proof. Let ≈ be one of the mentioned transformations. Due to adequacy of enc2

it suffices to show ∆ ` enc2(p) ∼ enc2(p′) for every p ≈ p′ with ∆ ` p and
∆ ` p′. This follows from Corollary A.3 and the fact that the case.beta(a)-
reduction can be performed as a sequence of β-cbv(a) reductions in the image
of the encoding. ut

B.2 Adequacy of enc1

Let enc1 be the backtranslation from labelled λτ (fcav)-processes into λτ (fc)-
processes, which is homomorphic except for the case of labelled λ abstractions:

enc1((λl1x1. . . . λlnxn.e) el1
1 . . . eln

n ) , enc1(e)[enc1(e1)/x1, . . . enc1(en)/xn]

Definition B.6. Let p ∈ λτ (fcav) be a labelled process. We say that the labelling
of p is valid iff the following conditions hold:

- if there is a labelled subexpression e with label li, then e is an argument of a
nested application, which is of the form ((λlj xj . . . . λlixi.e

′) e
lj
j . . . ei

li)
- if there is a labelled λ labelled with li, then the abstraction is of the following

form λlj . . . . λlixi. . . . λln .k(e1, . . . , ej−1, xj , . . . , xn). Moreover there are n−
j + 1 arguments of a nested application and the arguments are labelled with
j, j + 1, . . . , n.

Let p ∈ λτ (fcav) be validly labelled. For a reduction of p the labelling is inherited
as in labelled reduction, with the following exceptions:

- If a labelled λ of p is reduced using β-cbv(ev), then the label of the lambda
and the label of the argument are removed before the reduction is performed.

- If an expression is copied using fut.deref(ev), case.beta(ev), or
β-cbv(ev) and the copied expression contains labels, then the labels are also
copied but renamed with fresh labels.

Obviously, for every process p ∈ λτ (fc) its encoding enc1(p) is validly labelled.

Lemma B.7. For all p ∈ λτ (fc): enc1(enc1(p)) = p and for all validly labelled

p ∈ λτ (fcav): enc1(enc1(p))
β-cbv(a),∗−−−−−−→ p

Proof. The first part is obvious from the definitions of enc1 and
enc1. The second part is by induction on p. The exceptional case is
an unlabelled constructor application k(v1, . . . , vn) so that enc1 yields
k(enc1(v1), . . . , enc1(vn)), but enc1 abstracts the constructor application re-
sulting in (λx1, . . . , xn.k(x1, . . . , xn)) enc1(enc1(v1)) . . . enc1(enc1(vn)). Nev-
ertheless, β-cbv(a)-reductions can be applied, since by induction hypoth-
esis, every enc1(enc1(vi)) can be reduced to vi. The result of this is
(λx1, . . . , xn.k(x1, . . . , xn)) v1 . . . vn. Since each vi is a λτ (fcav)-value, β-cbv(a)
can be used to to reduce this further to k(v1, . . . , vn). ut
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Lemma B.8. For all processes of λτ (fcav): p
ev−→ p′ ⇒ p′ ∈ λτ (fcav). Moreover,

if p is validly labelled, then p′ is validly labelled.

Proof. By inspecting the reduction rules of λτ (fc), and the inheritance rules for
the labelling. ut

Let p be a validly labelled process of λτ (fcav) with p
ev−→ q. We call this

reduction a-labelled if and only if it is by a beta(ev)-reduction of a labelled
abstraction. If p

ev−→ q and the (inner) redex is inside a labelled expression, and
the reduction is not already a-labelled, then we say the reduction is b-labelled.
In all other cases, the reduction is called unlabelled.

Lemma B.9. Let p be a validly labelled process, and p
ev−→ p′.

- If the reduction is a-labelled, then enc1(p) = enc1(p′).
- If the reduction is b-labelled or unlabelled, then enc1(p) ev−→ enc1(p′).

Proof. The first part follows since the a-labelled reduction performed for p is
also performed when calculating enc1(p). For the second part we distinguish two
cases: If the reduction is b-labelled, then the position of the reduction for p is
moved to another position in enc1(p). Nevertheless, since the labelling of p is
valid, this reduction can be performed as a standard reduction. If the reduction
is unlabeled, then it is easy to verify that the reduction can be performed for
enc1(p), since enc1 does not change the corresponding position. ut

Lemma B.10. Let p0 ∈ λτ (fcav) be a validly labelled process with p0 ↓, i.e.

p0
ev,k−−→ pk, pk successful. Then enc1(p0)↓.

Proof. We use induction on k. The base case is obvious. For the induction step
let p0

ev−→ p1
ev,k−1−−−−→ pk. From the induction hypothesis we have enc1(p1)↓. For

the reduction p0
ev−→ p1: If the reduction is a-labelled, then enc1(p1) = enc1(p0)

and the claim holds. Otherwise, the reduction is b-labelled or unlabeled. Then
Lemma B.9 shows that enc1(p0)

ev−→ enc1(p1). Hence, the claim holds. ut

Corollary B.11. For all p, enc1(p)↓⇒ p↓.

Proof. Assume enc1(p)↓. Lemma B.10 shows enc1(enc1(p))↓, and thus p↓. ut

Lemma B.12. Let v be a λτ (fc)-value. Then there exists a λτ (fcav)-value w
such that for all process contexts D and expression contexts C, there is a trans-

formation D[C[enc1(v)]]
β-cbv(a),∗−−−−−−→ D[C[w]].

Proof. This follows by structural induction on the value v. The only exceptional
case are constructor applications, when some a-labelled reductions are necessary
to obtain values from the translation of enc1(k(~v)). ut

Lemma B.13. For the translation enc1 the following holds:

- If D is a process context of λτ (fc), then enc(D) is a process context.
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- For every evaluation context Ẽ of λτ (fc) there exists an evaluation context
Ẽ′ such that for all expressions e, process contexts D, expression contexts
C, and variables x such that D[x⇐C[enc1(Ẽ)[e]]] is well-typed, we have the

transformation D[x⇐C[enc1(Ẽ)[e]]]
β-cbv(a),∗−−−−−−→ D[x⇐C[Ẽ′[e]]].

- For every future evaluation context F̃ of λτ (fc), there exists an future eval-
uation context F̃ ′ such that for all expressions e and process contexts D
and expression contexts C and variables x such that D[x⇐C[enc1(F̃ )[e]]] is

well-typed we have D[x⇐C[enc1(F̃ )[e]]]
β-cbv(a),∗−−−−−−→ D[x⇐C[F̃ ′[e]]].

Proof. By inspecting all cases for process, evaluation, and future evaluation con-
texts, and using Lemma B.12 to obtain values from translated values. ut

Lemma B.14. For all p1, p2 ∈ λτ (fc) with p1
ev−→ p2 we have enc1(p1)

β-cbv(a),∗−−−−−−→
p′

ev−→ p′′
β-cbv(a),∗←−−−−−− enc1(p2).

Proof. By Lemma B.13, and inspection of all standard reduction rules. ut

Lemma B.15. For all processes p of λτ (fc), p↓⇒ enc1(p)↓.

Proof. This follows by induction on the length of a successful reduction of p. For
the base case, let p be a successful process. Then we can transform enc1(p) into
a successful process using Lemma B.12. These transformations are correct by
Corollary B.5, and thus enc1(p)↓. For the induction step let p

ev−→ p′ be the first
reduction for p. By the induction hypothesis we have enc1(p′)↓. We now apply

Lemma B.14 to p
ev−→ p′, i.e., enc1(p)

β-cbv(a),∗−−−−−−→ p1
ev−→ p2

β-cbv(a),∗←−−−−−− enc(p′).
Since β-cbv(a) is correct (Corollary B.5) we have p2↓ and thus p1↓. Applying
correctness of β-cbv(a) again yields enc1(p)↓. ut

Lemma B.16. For all validly labelled processes p of λτ (fcav), p↑⇒ enc1(p)↑.

Proof. The proof is by induction on the length of a successful reduction for p. For
the base case we show p⇑⇒ enc1(p)⇑ by the equivalent claim enc1(p)↓⇒ p↓. So
let us assume enc1(p)↓. Then by Lemma B.15 enc1(enc1(p))↓. From Lemma B.7

we have enc1(enc1(p))
β-cbv(a),∗−−−−−−→ p. Correctness of β-cbv(a) (Corollary B.5)

shows the required p↓. The induction step is analogous to Lemma B.10. ut

Corollary B.17. For all p, p⇓⇒ enc1(p)⇓.

Proof. The claim is equivalent to enc1(p)↑⇒ p↑, which follows from Lemma B.16
since enc1(enc1(p)) = p by Lemma B.7. ut

Proposition B.18. The translation enc1 is adequate.

Proof. enc1 is obviously compositional. Hence, it remains to show convergence
equivalence. We have to show that may- and must-convergence are preserved
and reflected by enc1. From Corollary B.11, Lemma B.15, and Corollary B.17
we obtain three of the four parts. Hence, it remains to show that enc1(p)⇓⇒ p⇓
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holds. The equivalent claim p↑⇒ enc1(p)↑ can be proved by induction on the
length of a reduction sequence for p ending in a must-divergent expression. The
base case is covered by Corollary B.11, and the induction step is analogous to
Lemma B.15. ut

By combining the Propositions B.4 and B.18, and using that composition
preserves adequacy, we obtain the following theorem:

Theorem B.19. The translation enc is adequate.

It remains to show correctness of program transformations for λτ (fc).

Corollary B.20. The following program transformations are correct in λτ (fc):

- All reduction rules of λτ (fc), except for cell.exch(ev).
- The transformations β-cbv(a), fut.deref(a), cell.deref, gc, det.exch,

and case.beta(a) (see Fig. 7).

Proof. We must show that ∆ ` p ∼ p′ for every p ≈ p′ such that ∆ ` p and
∆ ` p′, with ≈ any of the listed transformations. By adequacy and the fact that
enc1 acts as identity on types, it suffices to prove ∆ ` enc1(p) ∼ enc1(p′). But
this is guaranteed by the correctness results for λτ (fcav) (Corollary B.5) and
using Lemma B.13 to obtain values, Lemma B.12 to obtain process, evaluation
and future evaluation contexts in the image of enc1. ut

C On the Translation TB from λτ (fcb) to λτ (fc)

Let Ctxt(∆′; ∆) denote the contexts C such that ∆′ ` p ⇒ ∆ ` C[p], and let
Ctxt(Γ, τ ; ∆) be the set of contexts C such that Γ ` e : τ ⇒ ∆ ` C[e].

Lemma C.1 (Compositionality). The translation TB : λτ (fcb) → λτ (fc)
is compositional, i.e., for all e, p, C, D we have TB(C)[TB(e)] = TB(C[e]) and
TB(D)[TB(p)] = TB(D[p]).

Proof. Immediate from the fact that TB is extended homomorphically from con-
stants to all terms, and from base components to arbitrary processes, resp. ut

Lemma C.2 (Type correctness). Let e and p be λτ (fcb)-terms and processes,
and C,D be λτ (fcb)-term and -process contexts, respectively.

1. If Γ ` e : τ then TB(Γ ) ` TB(e) : TB(τ).
2. If ∆ ` p then TB(∆) ` TB(p).
3. If C ∈ Ctxt(Γ, τ ; ∆) then TB(C) ∈ Ctxt(TB(Γ ), TB(τ); TB(∆)).
4. If D∈Ctxt(∆1; ∆2) then TB(D)∈Ctxt(TB(∆1); TB(∆2)).

Proof.

1. The proof is by induction on the typing derivation. The main work is in the
case of the buffer constants, where one checks that the implementations given
in Figure 12 can be typed in λτ (fc) with all the instances of the (translations
of) type schemes from Figure 11.
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2. Again by induction on the typing derivation. Analogously to the above,
one shows that the translation of processes x b− and x b v have type
TB(Γ ; x:TB(buf τ)) ` . . . whenever x /∈ dom(Γ ). For latter we can addition-
ally assume Γ, x:buf τ ` v : τ , and thus TB(Γ ), x:TB(buf τ) ` TB(v) : TB(τ)
by the above. The remaining cases then follow immediately by induction
hypothesis.

3. We first prove for term-valued contexts C that whenever there exists TBΓ `
e : TBτ such that TBΓ ′ 6` C[e] : TBτ ′, then there also exists some e′ such
that Γ ` e′ : τ and TBΓ ′ 6` C[TB(e′)] : TBτ ′. In other words, witnesses for
a type failure can be found in the image of the translation. A corresponding
property then holds for λτ (fcb)-term contexts.
Now assuming that there exists TBΓ ` e : TBτ but TB∆ 6` (TBC)[e], then
this gives us e such that Γ ` e : τ and TB∆ 6` (TBC)[TB(e)]. By compo-
sitionality, the latter is expressed equivalently as TB∆ 6` TB(C[e]). Hence
by part (2), ∆ 6` C[e]. But since Γ ` e : τ it cannot be the case that
C ∈ Ctxt(Γ, τ ; ∆). We therefore have proved that C ∈ Ctxt(Γ, τ ; ∆) implies
TB(C) ∈ Ctxt(TB(Γ ), TB(τ); TB(∆)).

4. Similarly to the previous case. ut

C.1 Invariants of the Buffer-Implementation

In this subsection we analyze the global state of the λτ (fc)-translation TB(p)
during reduction. The argument will be used for any number of buffers, but we
will restrict the arguments mainly to the situation where one buffer is used.

We describe the state of TB(p) during evaluation, where we only focus on
the part that implements the buffer x. We also describe in detail the active
instances of put and get, i.e., the code-pointer and internal state of the im-
plemented puts and gets until they are finished. The notation in general is
fx,g,i, hx,g,i, fx,p,i, hx,p,i for futures and handles and nx,p, nx,g for the number
of processes for the buffer x, and g for get, p for put, and i is an index. In the
following we omit the buffer x in the notation if it is not ambiguous.

- For the active get-functions: For i = 0, . . . , ng there are futures fg,i and the
corresponding handles hg,i, and also the futures f ′g,i and the corresponding
handles h′g,i,

- For the active put-functions: For i = 0, . . . , np, there are futures fp,i and the
corresponding handles hp,i.

- For active put- and get-functions, we index the corresponding code-pointer
in the functions with i = 1, . . . , np and i = 1, . . . , ng, and the code-pointer
may have values 1a, 1b, 2, 3a, 3b as in the encoding in Fig. 12, where the
indexing is according to the sequential execution. For the put-encoding:

(1) wait (exch(xp, f)); (1a) for exch . . .; (1b) for wait
(2) exch(xs, vi);
(3) (exch(xh, hp,i))(True) (3a) for exch . . .; (3b) for handle-binding
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For the get-encoding:

(1) wait (exch xg f); (1a) for exch . . .; (1b) for wait
(2) let v = exch(xs, f

′
g,i);

(3) in (exch(xh, hg,i))(True); v (3a) for exch . . .; (3b) for handle-binding

We can assume that the initial generation of handle-future pairs is exe-
cuted together with the evaluation of the first exchange-operation. Other
reductions, like beta-reduction of the let and other beta-, case- and deref-
reductions, are not explicitly mentioned in our analysis.

- With k we denote the index of the active get or put function that has currently
access to the cell xs of the buffer.

- We let fp,0 = True. The variables fg,0, hg,0, f ′g,0, h
′
g,0 are the future-handle

pairs from the execution of newBuf that generates the buffer x (or from the
initial translation of buffer-components).

- The current values (possibly futures) stored in the cells are xg, xp, xs, xh.
Initially: 〈xp, xg, xs, xh〉 = 〈True, fg,0, f

′
g,0, hg,0〉.

- The only synchronizations occur at the wait-command, where the execution
has to wait until the handle corresponding to the future is bound to True by
the corresponding handle-bind.

The current bindings of the futures fg,i and fp,i do not contribute, since they
can only be bound to True, or are not yet available due to a missing handle-bind.
An active put with index i has one of the following possible states, and can be
interrupted at any of these points:

1a . . . (exch(xp, f)); xp := fp,i where np = i
1b wait fp,i−1 synchronization
2 exch(xs, vi); provided hp,i has been bound

xs := vi where now k := i
3a (exch(xh, hp,i))(True) xh := hp,i

3b (hg,i−1)(True) handle hg,i−1 will be used: fg,i−1⇐True

The state of an active get with index i has one of the following possibilities,
and can be interrupted at any of these points:

1a . . . (exch(xg, f)); xg := fg,i where ng = i;
1b wait gp,i−1 synchronization
2 let v = exch(xs, f

′
g,i) . . . provided hg,i has been bound

let v = vi . . . xs := f ′g,i where now k := i
3a . . . (exch(xh, hg,i)) . . . xh := hg,i

3b hp,i(True) hp,i will be used, fp,i⇐True and v returned

The complete execution of newBuf creates four cells and returns a 4-tuple of
these cells. During reduction there are several possibilities for 〈xp, xg, xs, xh〉:
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〈fp,0, fg,0, f
′
g,0, hg,o〉 Initially, i.e. after newBuf, where k = np = ng = 0

〈fp,np
, fg,ng

, vk, hg,k−1〉 after 2 of Pp,k

〈fp,np
, fg,ng

, vk, hp,k〉 after 3a of Pp,k

〈fp,np
, fg,ng

, f ′g,ng
, hp,k〉 after 2 of Pg,k

〈fp,np , fg,ng , f ′g,ng
, hg,k〉 after 3a of Pg,k

A further invariant is that the occurrences of the handles and futures, and
also of the reference cells belonging to x, are only at the mentioned places, and
nowhere else. Note this is only true since we look for the images of processes by
the implementation TB .

Informally, there are two queues: one of active put-instances waiting for ac-
tivating the respective handles by the previous get, and a queue of get-instances
waiting for activating the handle by the previous put. All the futures will be
bound to True at some time, provided the evaluation terminates successfully.

Using induction on the number of buffer-related small-step reductions, we
see that the above description is an invariant for the buffer-implementation of a
single buffer x.

C.2 Convergence Equivalence of TB

Proposition C.3. For every λτ (fcb)-process p, p↓⇒ TB(p)↓.

Proof. We use induction on the number of reduction steps in a fixed reduction U
corresponding to p↓ in order to construct a transformation sequence Uc of TB(p)
to a successful process, where Lemma 4.1 shows the base case. The translation
TB modifies the evaluation contexts and future evaluation contexts, but only in a
predictable way. We use the following diagrams to construct for every reduction
step a corresponding sequence of transformations and reductions. We omit the
trivial diagrams where a reduction is simply mirrored. The following diagrams
can be completed:

p1

TB
��

a // p2

TB
��

q1
ev,∗

//_____ q3
cell.deref,∗//_____ q4

gc //_____ q2

where a ∈ {buff.put(ev),buff.get(ev),buff.new(ev)}; and the correspond-
ing reduction q1

∗−→ q3 is the complete reduction of the respective body of the
translation including the dereferences before the wait followed by perhaps the
transformation cell.deref, then followed by the transformation gc that re-
moves certain no longer used handle- and thread-components.

p1

TB
��

a // p2

TB
��

q1
β-cbv(ev),case.beta(ev),∗

//_______ q3 ev,a
//_______ q4 q2

β-cbv(a),case.beta(a),∗
oo_ _ _ _ _ _ _
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where a ∈ {fut.deref(ev), lazy.trigger(ev)}; and the first sequence of re-
ductions are beta- and case-reductions of the start of the body of the put- or
get-instance in order to bring the focussed variable in an F̃ -context, which is
provided by a nesting of cases. The second sequence are the beta- and case-
reductions backwards, such that q1

a−→ q2, however as a transformation (i.e.
non-reduction).

We illustrate the diagram for a buff.put(ev)-reduction:

y⇐put(x, v) |x b− ←− y⇐unit |x b v.

The reduction after the translation is as follows:
y⇐put〈x, TB(v)〉) | (νxp)(νxg)(νxs)(νxh)(x⇐〈xp, xg, xs, xh〉
| (νh)(νf)(νh′)(νf ′)(h h f |h′ h f ′ |xp c True |xg c f |xs c f ′ |xh c h))
will reduce to (we show also some intermediate states)
y⇐wait True; . . . | (νh1)(νf1)h1 h f1 |
(νxp)(νxg)(νxs)(νxh)(x⇐〈xp, xg, xs, xh〉
| (νh)(νf)(νh′)(νf ′)(h h f |h′ h f ′ |xp c f1 |xg c f |xs c f ′ |xh c h))
→ y⇐exch(xh, h1) . . . | (νh1)(νf1)h1 h f1 |
(νxp)(νxg)(νxs)(νxh)(x⇐〈xp, xg, xs, xh〉
| (νh)(νf)(νh′)(νf ′)(h h f |h′ h f ′ |xp c f1 |xg c f |xs c TB(v) |xh c h))
→ y⇐unit | (νh1)(νf1)h1 h f1 |
(νxp)(νxg)(νxs)(νxh)(x⇐〈xp, xg, xs, xh〉
| (νh)(νf)(νh′)(νf ′)(h h • |h′ h f ′ |xp c f1 |xg c f |xs c TB(v) |xh c h1) | f⇐True)
cell.deref−−−−−−−→ y⇐unit | (νh1)(νf1)h1 h f1 |
(νxp)(νxg)(νxs)(νxh)(x⇐〈xp, xg, xs, xh〉

| (νh)(νf)(νh′)(νf ′)(h h • |h′ h f ′ |xp c f1 |xg c True
|xs c TB(v) |xh c h1) | f⇐True)

gc−→ y⇐unit | (νh1)(νf1)h1 h f1 |
(νxp)(νxg)(νxs)(νxh)(x⇐〈xp, xg, xs, xh〉
| xp c f1 |xg c True |xs c TB(v) |xh c h1)
By induction on the length of U , the sequence Uc will be constructed such that
there is a correspondence between the intermediate processes of U and Uc:

If the first reduction of U is not a buff.new(ev)-, buff.get(ev)-, or
buff.put(ev)-reduction, and not a fut.deref(ev), lazy.trigger(ev) that is
triggered through an argument-position of an buff.get(ev)-, or buff.put(ev),
then the same reduction is concatenated to Uc. Otherwise, we use the diagrams
above to extend Uc. Thus we can assume that executing the code of newBuf, get
and put is completely done, respectively, and not disturbed by a concurrent
thread. We have constructed a transformation sequence Uc for TB(P ) resulting
in a successful process. However, in general this sequence is not an ev−→-reduction.

Corollary B.20 now shows that all non-ev-reductions in Uc are correct λτ (fc)-
transformations. This implies, using an induction on the length of Uc, that there
is also an ev−→-reduction of TB(p) to a successful process. ut

Proposition C.4. For every λτ (fcb)-process p, TB(p)↓⇒ p↓.
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Proof. Suppose that for the λτ (fcb)-process p there is a reduction U of TB(p) to
a successful process pω. Then the λτ (fcb)-reduction of p is constructed in several
steps. In the following we do not mention the beta-reductions that are used for
the reduction of the let and the sequential operator “;”. We will make use of the
implied sequence of reductions as stated in Lemma 4.4.

1. Rearranging U : In general the single reductions of a put, or of a get are not
in a single block, but may be interleaved with other reductions. We show
that it is possible to gather the 1,2,3-reductions in one block:
The idea is to commute reductions.
(a) The

x,1b−−→-reductions are moved to the right. The strategy is to start
with the rightmost type-2-reduction and to move the closest type-1b-
reduction to the right. I.e. a single operation is:
x,1b−−→ · ∗−→ · x,2−−→ Ã ∗−→ · x,1b−−→ · x,2−−→. This is possible, since all other re-
duction are triggered from parallel processes, and since these reductions
commute with all other reductions. The result will be a rearranged re-
duction, where all 1b and 2-reductions of the same process are neighbors.
In a similar way we move the perhaps necessary dereferencing reductions
that are a precondition for the execution of the 1b-reduction (i.e. the
wait) immediately before the 1b-reduction.

(b) The same can be done for the type 1a-reductions, which will result in
a reduction, where 1a, 1b and 2-reductions of the same instance are
executed without other intermediate reductions. For the 1a-type it is
important to note that the sequence of

x,1a−−−→-reductions is the same as
the type-2-reductions, if the sorting criteria is the body of the put, gets.

(c) It is also easy to see that the newhandled-reductions can also be moved
close to their corresponding 1a, 1b and 2-block.

(d) The type 3-reductions, i.e. 3a and 3b of the put- and get-body can also
be moved to the left, where the strategy is now to start with the leftmost
type-2-reduction. The arguments are as in the previous items, where also
the sequence of the 3a,3b-reductions (w.r.t the bodies put, get) are the
same as the type-2-reductions (see Lemma 4.4).

In a similar way we can rearrange the reduction from a newBuf, where the
reductions before the final reduction within the body are moved to the right.
In summary, we obtain an ev-reduction U1, where the reductions of every
newBuf are without interrupt, and where the reduction of get and put are in
one block, with the exception of the first reductions which are beta- and case-
reductions. The reason is that the future-strict evaluation of the arguments
of put, get is mirrored after the translation by the future-strict evaluation
of the arguments that will start only after the first beta-reduction for get, or
after the first beta- and case-reduction for put.

2. Now we modify the reduction U1 from left to right. This is done in a similar
way as in the proof of Proposition 4.3: Whenever there is an a-reduction
with a ∈ {fut.deref(ev), lazy.trigger(ev)} that is triggered after the
first reductions of a put, get, and it is not followed by the corresponding 1a-
reduction, we immediately add a transformation sequence W consisting of
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inverse beta-and case-reductions after the a-reductions where W eliminates
the initial (beta,case)-reductions of put or get that triggers the a-reduction.
After W , we add the inverse reduction W−1 immediately after W .The reduc-
tion sequence can be chosen such that W−1 is an ev-reduction. The following
correspondence diagram then holds:

p

TB ��

buff.put(ev)∨buff.get(ev)
// ·

TB

���
�
�

q = TB(p)
β-cbv

∨case.beta(ev)

//______ ·
1a;...;1b;2;2a;2b

//______ ·
W

//______ ·
W−1

//______ ·

The effect is to replace a−→ by a−→ ·W ·W−1. The idea is to move the reduction
steps in W−1 further to the right to the 1a–3b-block of the reductions,
to whom they belong. This is possible, if between the beta,case-reductions
and the 1a–3b-block there are no more a-reductions that are triggered by
the result of the beta,case-reductions. In order to make the correspondence
completely analogous to the construction in the proof of Proposition 4.3,
we also have to add gc and cell.deref-reductions and their inverses. This
gives a sequence of correct transformations and reductions U2

This rearrangement is performed from left to right, such that the reduction
Ub of p, corresponding to U2 via TB , can be constructed. It is easy to see by
induction that the constructed reduction is according to the ev-strategy.

Now p
Ub−→ pω, TB(p) U2−−→ Q ∼ TB(pω), where

Q
fut.deref(ev),lazy.trigger(ev),∗−−−−−−−−−−−−−−−−−−−−−→ TB(pω) and hence by Corollary B.20 and

Lemma 4.1, we have p↓. ut

The hard part is the proof of the following proposition:

Proposition C.5. For every λτ (fcb)-process p: p⇓ =⇒ TB(p)⇓.

Proof. We prove the equivalent claim that for every λτ (fcb)-process p: TB(p)↑
=⇒ p↑.
Let p be a λτ (fcb)-process such that q := TB(p)↑. Let U = (TB(p) ∗−→ qω) be a
λτ (fc)-reduction sequence with qω⇑.

p

TB ��
q = TB(p)

ev,U
// qω⇑

According to the previous analysis of the intermediate states of
newBuf, put, get-operations, and using a similar construction as in the proof of
Proposition C.4, we look for all translated buffer-operations in U , for all buffers.
The goal of the modification is to rearrange the reduction steps such that the re-
duction steps of every newBuf, get, put are a contiguous block of reductions, up to
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the initial beta- and case-reductions. However, since the reduction is ending with
a must-divergent process, there may be started executions of newBuf, get, put
that are not finished within the reduction. So, for the proof it may be necessary
to insert reduction steps. However, in order to have an induction measure, we
never add reductions of type 1a, thus the number of these will not be increased.
The other parts of the induction measure are then standard.

1. First we argue that the newBuf-reductions can be adjusted: It is easy to
see that for the reductions of a single newBuf-instance, we can shift all the
corresponding reduction steps to the right (they commute with all other
reduction steps), immediately before the last reduction step of the newBuf,
provided all of them are performed in U ′. If some are missing, it is possible
to perform the reductions starting from qω, which leads to a must-divergent
process, since these are reductions according to the ev-strategy. Then we can
perform the rearrangement as before. In order to have an induction measure,
we do not insert the first beta-reduction of an newBuf.

2. Now we rearrange the reduction steps of put, get, where we make implicit
use of Lemma 4.4. Since the cell.exch(ev)-reductions are not correct in
general, we have to be a bit careful. First we consider the case where the
x,type−2−−−−−−→ reduction is in U .
(a) The reduction sequence

x,1b−−→ ·W · x,2−−→, where the 1b and 2 reduction step

are activated by the same body, is rearranged as follows: W · x,1b−−→ · x,2−−→.
This can be done in all cases.

(b) The reduction sequence
x,1a−−−→ ·W · x,1b−−→ · x,2−−→, where the 1a and 2 reduc-

tion step are activated by the same body, is rearranged as follows: The
(x,1a)-reductions in W have to be moved to the right of the sequence

W · x,1b−−→ · x,2−−→, keeping their sequence. Then the
x,1a−−−→ can be moved im-

mediately to the left of
x,2−−→. Lemma 4.4 justifies these moves, and since

the other commutations are possible. We perform this exhaustively.
(c) Now we shift the (x,3a) and (x,3b)-reductions to the left. This can be

done using the strategy by starting with the rightmost (x,3a)-reduction,
then the rightmost (x,3b)-reduction, and so on. However, there may
be (x,2)-reductions without corresponding (x,3a),(x,3b)-reduction in the
sequence. In this case, the first missing (x,3a)-reduction is also a ev-
reduction for qω, thus the result is again must-divergent, and so we can
insert it after qω, i.e. assume that it is already in the reduction. The
same holds for for the first missing (x,3b)-reduction.

3. Now we consider the case where some type (x,1a)-reduction is in the se-
quence, but there is no corresponding continuation. Let us consider the left-
most (x,1a)-reduction with missing (x,1b)-reduction. As above, this is an
ev-reduction for qω and hence we can assume that it is already in the reduc-
tion sequence. The same for (x,1b)- and (x,2)-reductions. Note that between
(x,1a) and (x,1b) there may be some dereferencing, which can be shifted
along with the other reductions and can be treated in a standard way.
If a process has performed the newhandled-reduction(s), but the (x,1a)-
reduction is not in the sequence, then this can be shifted in the reduction
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such that it ends with q′
newhandled−−−−−−→ qω. Then Corollary B.20 shows that q′ is

also must-divergent, and we can remove the newhandled-operation.
4. Treatment of triggering dereferencing and lazy-trigger can done be as usual.

Now the situation is as follows: There is some process pω with p
∗−→ pω and

TB(pω) = qω and qω⇑. Proposition 4.3 shows that pω↓ is impossible, hence pω⇑,
which implies p↑.

C.3 Lifting Equivalences to λτ (fcb)

Lemma C.6. The following equivalences hold in λτ (fcb):

- All reduction rules of λτ (fcb) except for cell.exch(ev) and buff.put(ev),
buff.get(ev) are correct.

- The transformations β-cbv(a), fut.deref(a), cell.deref, gc and
det.exch (see Fig. 7) lifted to λτ (fcb) are correct.

Proof. Let ≈ be a program transformation mentioned in the claim. Due to
adequacy of TB , it is sufficient to show TB(∆) ` TB(p1) ∼ TB(p2) for all
(p1, p2) ∈ ≈ with ∆ ` pi, i = 1, 2. As already argued (see Lemma C.2)
the translation TB of D- and E-contexts of λτ (fcb) results in D and E-
contexts of λτ (fc). The same holds for values. Thus the correctness of the reduc-
tion rules β-cbv(ev), thread.new(ev), handle.new(ev), handle.bind(ev),
cell.new(ev), lazy.new(ev) and case.beta(ev) is easy to obtain by us-
ing the according equivalence for λτ (fc). For the rules using F -contexts
(fut.deref(ev) and lazy.trigger(ev)), similar as in the proof of Proposi-
tion C.3 we can show that the equivalence holds: A reduction a−→ with (a ∈
{fut.deref(ev), lazy.trigger(ev)} corresponds by TB to a transformation of

the form
β-cbv(ev),case.beta(ev),∗−−−−−−−−−−−−−−−−→ .

a−→ .
β-cbv(ev),case.beta(ev),∗←−−−−−−−−−−−−−−−−, which is a cor-

rect transformation. The correctness of β-cbv(a), fut.deref(a), gc, det.exch
and cell.deref follows directly by using the equivalences for the encodings
in λτ (fc). Correctness of buff.new(ev) follows by inspecting the encoding (see
proof of Proposition C.3): The translation only consists of reductions that are
correct transformations of λτ (fc). ut

C.4 Correctness of Axiomatic Laws

Finally, we prove the correctness of the axiomatic laws at the end of Section 4.

Proposition C.7. Using Corollary B.20, we show that the following rules hold
for put and get:

(det.put) (νx).E[put(x, v)] |x b− → (νx).E[unit] |x b v
(det.get) (νx).E[get x] |x b v → (νx).E[v] |x b−
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Proof. The proof is done by using the adequate encoding of buffers in λτ (fc),
and the valid equivalences in λτ (fc). Using the encoding of buffers, we focus on
the translation of the expression (νx).E[put(x, v)] |x b−. This results in

(νx)(νxp)(νxg)(νxs)(νxh)(νh)(νf)(νh′)(νf ′).
E[put〈x, v〉] |x⇐〈xp, xg, xs, xh〉

|h h f |h′ h f ′ |xp c True |xg c f |xs c f ′ |xh c h

(Strictly speaking, the context E must be translated as well. But its translation
is another EC.) Reducing put and applying dereferencing and case-reductions,
we obtain:

(νx)(νxp)(νxg)(νxs)(νxh)(νh)(νf)(νh′)(νf ′)(νf1)(νh1)
E[put1[x, v]] |h1 h f1 |x⇐〈xp, xg, xs, xh〉

|h h f |h′ h f ′ |xp c True |xg c f |xs c f ′ |xh c h

The notation puti[x, v] means put〈x, v〉 after some reductions. Executing ex-
change of f1 in xp and reducing wait results in:

(νx), (νxp)(νxg)(νxs)(νxh)(νh)(νf)(νh′)(νf ′)(νf1)(νh1)
E[put2[x, v]] |h1 h f1 |x⇐〈xp, xg, xs, xh〉

|h h f |h′ h f ′ |xp c f1 |xg c f |xs c f ′ |xh c h

The next reduction is to exchange v in the cell xs, resulting in

(νx), (νxp)(νxg)(νxs)(νxh)(νh)(νf)(νh′)(νf ′)(νf1)(νh1)
E[put3[x, v]] |h1 h f1 |x⇐〈xp, xg, xs, xh〉

|h h f |h′ h f ′ |xp c f1 |xg c f |xs c v |xh c h

The next reduction is to exchange h1 in the cell xh, resulting in

(νx), (νxp)(νxg)(νxs)(νxh)(νh)(νf)(νh′)(νf ′)(νf1)(νh1)
E[h True] |h1 h f1 |x⇐〈xp, xg, xs, xh〉

|h h f |h′ h f ′ |xp c f1 |xg c f |xs c v |xh c h1

The next reduction is a handle-bind, resulting in

(νx), (νxp)(νxg)(νxs)(νxh)(νh)(νf)(νh′)(νf ′)(νf1)(νh1)
E[unit] | f⇐True |h1 h f1 |x⇐〈xp, xg, xs, xh〉
|h h • |h′ h f ′ |xp c f1 |xg c f |xs c v |xh c h1

Now we can use a cell-dereferencing, giving

(νx), (νxp)(νxg)(νxs)(νxh)(νh)(νf)(νh′)(νf ′)(νf1)(νh1)
E[unit] | f⇐True |h1 h f1 |x⇐〈xp, xg, xs, xh〉

|h h • |h′ h f ′ |xp c f1 |xg c True |xs c v |xh c h1

A final garbage collection leads to

(νx)(νxp)(νxg)(νxs)(νxh)(νf1)(νh1)
E[unit] |h1 h f1 |x⇐〈xp, xg, xs, xh〉
|xp c f1 |xg c True |xs c v |xh c h1)
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This is exactly the encoding of (νx).E[unit] |x b v after some renaming.

The next check is whether the transformation (det.get) is satisfied: Now we
focus on the translation of (νx).E[getx] |x b v ∼ E[v] |x b− and its reductions:

(νx).E[get x] | (νxp)(νxg)(νxs)(νxh)x⇐〈xp, xg, xs, xh〉
| (νh)(νf)h h f |xp c f |xg c True |xs c v |xh c h

The two first new handle-reductions result in:

(νx)(νxp)(νxg)(νxs)(νxh)(νh)(νf)(νh1)(νf1)(νh2)(νf2)
E[get(1)[x]] |h1 h f1 |h2 h f2 |x⇐〈xp, xg, xs, xh〉

|h h f |xp c f |xg c True |xs c v |xh c h

After a reduction of exchange of f1 in xg and a wait the result is:

(νx)(νxp)(νxg)(νxs)(νxh)(νh)(νf)(νh1)(νf1)(νh2)(νf2)
E[get(2)[x]] |h1 h f1 |h2 h f2 |x⇐〈xp, xg, xs, xh〉

|h h f |xp c f |xg c f1 |xs c v |xh c h

After a reduction of exchange of f2 in xs the result is:

(νx)(νxp)(νxg)(νxs)(νxh)(νh)(νf)(νh1)(νf1)(νh2)(νf2)
E[get(3)[x]] |h1 h f1 |h2 h f2 |x⇐〈xp, xg, xs, xh〉

|h h f |xp c f |xg c f1 |xs c f2 |xh c h

After a reduction of exchange of h1 in xh the result is:

(νx)(νxp)(νxg)(νxs)(νxh)(νh)(νf)(νh1)(νf1)(νh2)(νf2)
E[get(3)[x]] |h1 h f1 |h2 h f2 |x⇐〈xp, xg, xs, xh〉

|h h f |xp c f |xg c f1 |xs c f2 |xh c h1

After a handle-bind in (h True) and reducing (unit; v):

(νx)(νxp)(νxg)(νxs)(νxh)(νh)(νf)(νh1)(νf1)(νh2)(νf2)
E[v] |h1 h f1 |h2 h f2 |x⇐〈xp, xg, xs, xh〉

|h h • | f⇐True |xp c f |xg c f1 |xs c f2 |xh c h1

Now a cell-deref transformation results in:

(νx)(νxp)(νxg)(νxs)(νxh)(νh)(νf)(νh1)(νf1)(νh2)(νf2)
E[v] |h1 h f1 |h2 h f2 |x⇐〈xp, xg, xs, xh〉

|h h • | f⇐True |xp c True |xg c f1 |xs c f2 |xh c h1

Garbage collecting f, h results in:

(νx)(νxp)(νxg)(νxs)(νxh)(νh1)(νf1)(νh2)(νf2)
E[v] |h1 h f1 |h2 h f2 |x⇐〈xp, xg, xs, xh〉
|xp c True |xg c f1 |xs c f2 |xh c h1

This is exactly the translation corresponding to an empty buffer
(νx).E[v] |x b−. Hence we have shown equivalence. ut


