
On Correctness of Buffer Implementations in a
Concurrent Lambda Calculus with Futures

Jan Schwinghammer1, David Sabel2, Joachim Niehren3, and
Manfred Schmidt-Schauß2

1 Saarland University, Saarbrücken, Germany
2 Goethe-Universität, Frankfurt, Germany
3 INRIA, Lille, France, Mostrare Project

Technical Report Frank-37

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

May 12, 2009

Abstract. Motivated by the question of correctness of a specific imple-
mentation of concurrent buffers in the lambda calculus with futures un-
derlying Alice ML, we prove that concurrent buffers and handled futures
can correctly encode each other. Correctness means that our encodings
preserve and reflect the observations of may- and must-convergence, and
as a consequence also yields soundness of the encodings with respect
to a contextually defined notion of program equivalence. While these
translations encode blocking into queuing and waiting, we also describe
an adequate encoding of buffers in a calculus without handles, which is
more low-level and uses busy-waiting instead of blocking. Furthermore
we demonstrate that our correctness concept applies to the whole com-
pilation process from high-level to low-level concurrent languages, by
translating the calculus with buffers, handled futures and data construc-
tors into a small core language without those constructs.

1 Introduction

Modern concurrent programming languages extend sequential languages with
concurrent threads and concurrency primitives for controlling their interactions.
Computation within each thread is sequential. Examples for concurrency prim-
itives are MVars (i.e. concurrent buffers) in Haskell [8], channels in Concurrent
ML [19], handled futures in Alice ML [23], and joins in JoCaml [5].

Even though one might conjecture that many of these concurrency primitives
can express each other, proving such results is an open challenge in the area of

2 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

programming language semantics. Encodings are often straightforward to find,
or provided in libraries of existing programming languages. The difficult part
is to introduce an appropriate program semantics for concurrent and higher-
order programming languages, and to develop corresponding proof techniques
for showing the correctness of an encoding.

Such correctness results of encodings are clearly of interest in many areas of
programming languages. In language design these statements can help to deter-
mine an appropriate set of primitives for the language, while other constructs are
provided as derived concepts. For the implementation of compilers, correctness
of encodings can express that the compilation is semantics-preserving; they may
also guarantee the admissibility of various program transformations. When rea-
soning about (concurrent) programs, correctness of encodings can be used as a
technical device; by lifting program equivalences from lower-level to higher-level
languages, one can abstract away from the concrete implementations and treat
composite constructs as primitives.

In the present paper, we focus on two different but closely related ques-
tions. First, given two sets of synchronization primitives, how can we show their
equivalence? Second, given an implementation of a “high-level” synchronization
construct by a “lower-level” one, how can we show its correctness?

In order to address the question of correct implementations of synchroniza-
tion constructs by low-level primitives, our starting point is to view the imple-
mentation as a translation T : C → C′ between two languages. Correctness of
an implementation then becomes a question about relating programs and their
images under this translation. We consider the adequacy of a translation as the
main correctness condition with respect to an equational theory [21, 22, 27], since
it ensures that program transformations of the target calculus C′ can be soundly
applied to the translated C programs. Adequacy can be defined for any kind of
program semantics that gives rise to a preorder ≤C (or an equivalence relation
=C , that may be declared as ≤C ∩ ≥C if necessary) on the programs of C, e.g. a
denotational, bisimulation-based, or operationally-defined observational seman-
tics. Formally, a translation is adequate if all (equally typed) programs with
equivalent translations are equivalent, i.e., T (p1) ≤C′ T (p2) implies p1 ≤C p2. If
additionally the converse holds, then T is called fully abstract.

For correctness with respect to the observations in the domain and co-domain
of a translation we use the notion of observational correctness, which holds if
the observations are not changed by the translation. Observational correctness
implies adequacy and also – under mild conditions – that the translation is a
fully abstract translation into the image-calculus.

In this paper, we assume observational (i.e. contextual) semantics based on
operationally-defined forms of may- and must-convergence [4, 13, 3]. Our form of
must-convergence is similar to the should-testing of Rensink and Vogler [18]. A
common feature is that fairness of execution is mirrored in the semantic theory.
This combination of may- and must-convergence properly captures the non-
determinism arising in concurrent programming languages [11, 24].

Correctness of Concurrent Buffer Implementations 3

We investigate the lambda calculus with futures [12, 11], a formalization of
the operational semantics of Alice ML [23]. We start with an enriched core lan-
guage of Alice ML, the calculus λτ (fch). This is a typed call-by-value lambda
with futures, polymorphic data and type constructors, concurrent threads, ref-
erence cells, and handled futures which support single assignment of values to
futures by concurrent threads. Futures are the synchronization primitive of Alice
ML.

In previous work [11] we analyzed a less expressive untyped core language (the
calculus λ(f’h)) which lacks data constructors and case expressions. There, we
proved a rich set of program transformations correct wrt. contextual equivalence
using diagram-based techniques based on the operational semantics. Instead of
applying this technically involved and complex mechanism again to λτ (fch), we
use adequacy to lift the correctness results obtained for λ(f’h) to λτ (fch), by
finding suitable adequate translations. A small technical obstacle for this lifting
is that λ(f’h) uses a sharing variant of beta-reduction. Hence we also need to
show that an adapted calculus λ(fh) with (non-sharing) beta-reduction can be
fully abstractly encoded in λ(f’h).

Equipped with these results we focus on the correctness of implementations of
buffers in λτ (fch). To obtain a specification of buffers that is sufficiently rigorous
for a correctness argument we extend λτ (fch) by concurrent buffers (as e.g. used
for implementing buffered channels in [16]), resulting in the calculus λτ (fchb).
We then present an implementation of buffers into the buffer-free calculus, such
that blocking buffers are translated into queuing and waiting, and waiting is
translated into blocking. After formalizing this implementation as a translation
we show adequacy of the translation. Moreover, the translation turns out to be
observationally correct. As mentioned above, this means that the specification
and implementation of buffers give rise to the same observations (in particular,
they have the same convergence behavior).

We strengthen our result by showing that it is also possible to go in the
opposite direction and correctly implement handled futures with buffers. In this
case, the specification is again the calculus λτ (fchb), but now viewed as an
extension of a handle-free calculus with buffers, called λτ (fcb). We provide a
translation from λτ (fchb) to λτ (fcb) and show that it is fully abstract.

The implementations of buffers and handles lead to the question whether the
constructs can already be encoded in a base language containing neither buffers
nor handles. We show that this is indeed the case: buffers of λτ (fcb) can be
encoded into the calculus λτ (fc), the calculus with futures without handles and
buffers, using a fully abstract translation. This implementation of buffers relies
on the presence of reference cells with atomic exchange operation in an essential
way. In contrast to the previously mentioned encodings, it results in busy-wait
situations, and is thus of a more low-level character than the other encodings.

The following diagram summarizes our results. Doubly lined arrows (=⇒)
indicate fully abstract translations, while single lined arrows (−→) indicate ade-
quate translations. For completeness we also mention the calculus λ(f) which is

4 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

like λ(fh) without handled futures.

λτ (fch) //

(†)rz

λ(fh)
(0
λ(f’h)go

λτ (fchb)

55

�"
λτ (fcb)

Zb

// λτ (fc) // λ(f)

ZZ5555555555555555

In fact, all these translations are observationally correct and thus also preserve
the convergence behavior.

Of course there are additional encodings which are implied by the ones
shown in the diagram. In particular, we mention that we obtain adequate encod-
ings from λτ (fcb) into λτ (fch) and vice versa, by composing other translations.
However, the proof of adequacy is indirect and facilitated by using the calcu-
lus λτ (fchb) – we expect a direct proof to be considerably more involved. We

also note that the identity translation λτ (fch)
(†)−−→ λτ (fchb) cannot be composed

with the translation λτ (fchb)→ λτ (fch). The reasons for this are subtle, and
explained in Remark 4.14. Nevertheless (†) can be composed with the fully ab-
stract translation λτ (fchb) → λτ (fcb), resulting in a fully abstract translation
from λτ (fch)→ λτ (fcb).

For proving adequacy and full abstraction of the various encodings we rely on
compositionality [26, 27], on commutation methods in order to prove invariants
of implicit “queuing mechanisms” when implementing buffers via handles, as
well as on equivalences for λτ (fch) that we lift from λ(fh). In turn, we inherit
equations for λτ (fchb) from λτ (fch) via the adequacy of this encoding.

Although our investigation concentrates on call-by-value lambda calculi with
futures, we are confident that our methods and techniques can be applied to
other (concurrent) core languages.

2 Lambda Calculus with Futures and Constructors

This section presents the calculus λτ (fch) underlying Alice ML. This is a typed
lambda calculus with algebraic data types, concurrent and handled futures, and
reference cells, which is obtained from the calculus with futures of [12] by adding
data constructors with recursive polymorphic type constructors.
Data and type constructors. Our encodings require n-tuples 〈v1, . . . , vn〉
of all possible types τ1 × · · · × τn. For the sake of generality and uniformity,
we keep the concrete signature of data and type constructors as a parameter.
Such a signature Σ = (K,D) consists of a finite ranked set of type constructors
κ ∈ K and a finite ranked set of data constructors k ∈ D. We denote the arities
of data and type constructors by ar(·) ≥ 0. Polymorphic types τ̂ over Σ have
the following abstract syntax, where α belongs to a fixed infinite set of type

Correctness of Concurrent Buffer Implementations 5

τ ∈ Type ::= unit || ref τ || τ → τ || κ(τ1, . . . , τar(κ))
c ∈ Const ::= unit || refτ || threadτ || lazyτ || handleτ

π ∈ Pat ::= kτ (x1, . . . , xar(k))
e ∈ Exp ::= x || c || λx.e || e1 e2 || exch(e1, e2) || kτ (e1, . . . , ear(k))

|| caseκ e of π1 ⇒ e1 | . . . | πm ⇒ em (m > 0)
v ∈ Val ::= x || c || λx.e || kτ (v1, . . . , var(k))

p ∈ Proc ::= p1 | p2 || (νx)p || x c v || x⇐e || x
susp⇐= e || y h x || y h •

Fig. 1. Types, expressions and processes of λτ (fch)

variables:

τ̂ ∈ PolyType ::= α || unit || ref τ̂ || τ̂ → τ̂ || κ(τ̂1, . . . , τ̂ar(κ))

Monomorphic types τ ∈ Type are polymorphic types without variables. We as-
sume a unique polymorphic type upt(k) ∈ PolyType for each data constructor
k ∈ D, that has the form τ̂1 → . . . → τ̂ar(k) → κ(α1, . . . , αar(κ)) where κ ∈ K
and only α1, . . . , αar(κ) may occur as type variables in τ̂j for all j = 1, . . . , ar(k).
The set D(κ) consists of all data constructors k ∈ D for which κ occurs in the
target type of upt(k). We assume that D(κ) is nonempty for all κ ∈ K. In typing
rules, we will write τ ¹ τ̂ if τ is a monomorphic instance of the polymorphic
type τ̂ ∈ PolyType.

For instance, we can define lists of all types, when having a type constructor
List ∈ K with two data constructors cons, nil ∈ D(List) such that upt(cons) =
α → List(α) → List(α) and upt(nil) = List(α). For n-tuples (where n ≥ 0), we
assume type constructors · × · · · × · ∈ K and data constructors 〈·, . . . , ·〉 ∈ D of
arity n, whose unique polymorphic type is α1 → . . .→ αn → (α1 × · · · × αn).
Syntax of λτ (fch). We start from a signature (K,D), a set of variables Var, and
a global assignment of variables to monomorphic types Γ : Var→ Type such that
for every τ ∈ Type there exists infinitely many x ∈ Var with Γ (x) = τ . Consistent
renaming of variables must preserve the type. The syntax of λτ (fch) defined in
Fig. 1 consists of two layers: a level of λ-expressions e ∈ Exp for sequential
computation within threads, and a level of processes p ∈ Proc that compose
threads in parallel and record the state of the system. Expressions e subsume
values v as usual in a call-by-value λ-calculus. Compared to the original lambda
calculus with futures, we add constructor applications kτ (e1, . . . , ear(k)) creating
data structures by constructors k ∈ D labeled with monomorphic types τ ∈ Type
and typed case-expressions caseκ e of π1 ⇒ e1 | . . . | πm ⇒ em whose pattern
are non-overlapping and exhaustive. I.e., every constructor k ∈ D(κ) appears
exactly once in some pattern πi. A pattern has the form kτ (x1, . . . , xar(k)) such
that no variable appears twice. All variables in a pattern π of a branch π ⇒ e
are bound with scope in e. The set of free variables of e is denoted by fv(e)
(similarly fv(p) for processes p). Expressions and processes are identified up to
consistent renaming of bound variables.

New components in expressions are introduced by typed (higher-order) con-
stants. The constant refτ introduces a reference cell. The constants threadτ and

6 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

p1 | p2 ≡ p2 | p1 (p1 | p2) | p3 ≡ p1 | (p2 | p3)
(νx)(νy)p ≡ (νy)(νx)p (νx)(p1) | p2 ≡ (νx)(p1 | p2) if x 6∈ fv(p2)

Fig. 2. Structural congruence of processes

lazyτ serve for introducing eager threads and lazy threads, each of them together
with a future. Finally, the constant handleτ is used to generate futures with an
associated handler. For convenience we sometimes omit the type label of con-
stants as well as constructors if it is obvious or not important. The expression
exch(e1, e2) expresses atomic exchange of cell values. Note that we distinguish
between constants and data constructors k ∈ D – the latter must always be fully
applied.

As in the pi-calculus, processes p are composed from smaller components
by parallel composition p1 | p2 and new name creation (νx)p. The latter is a
variable binder. It can be seen as hiding variables, whereas free variables are
visible for outside observers. A structural congruence ≡ on processes is defined
by the axioms in Fig. 2. We distinguish five types of components that have no
direct correspondence in pi-calculus. Cells x c v associate (a memory location)
x to a value v. Eager concurrent threads x⇐e will eventually bind future x to
the value of expression e unless it diverges or suspends; x is called a concurrent
future. Lazy threads x

susp⇐= e are suspended computations that will start once the
proper value of x is needed elsewhere; we call x a lazy future. Handle components
y h x associate handles y to futures x, so that y can be used to assign a value to
x. We call x a future handled by y, or more shortly a handled future. Finally, a
used handle component y h • indicates that y is a handle that has already been
used to bind its associated future. A process p introduces a variable x if p ≡ p1

or p ≡ p1 | p2 for p1 a component of the following form (for some e, v and y):
x c v, or x⇐v, or x

susp⇐= e, or y h x, or x h y, or x h •. A process is well-formed
if no subprocess introduces any variable more than once. For instance, neither
x⇐v |x c v′ nor (νx)(x⇐v |x c v′) is well-formed.
Typing. In order to have a consistent notion of typed program transformation,
we rely on unique monomorphic typings. To this end, we already assumed a
unique type Γ (x) for all variables. For expressions, we assign types in judgements
e : τ . Process components have to be well-typed, written p : wt . The typing
rules for expressions and processes can be found in Fig. 3 and 4. Note that the
well-formedness conditions for processes described earlier are kept orthogonal to
typing, in contrast to the type system of [12]. We write e[e′/x] for the (capture-
free) substitution of x by e′ in e. It preserves the type of e if e′ : Γ (x) holds.
Syntactic Abbreviations. We assume that the set of type constructors con-
tains a nullary constructor bool ∈ K, with nullary data constructors true and
false. For convenience, we will freely use the usual syntactic sugar such as a (non-
recursive) let-binding let x1=e1, . . . , xn=en in e end and sequencing e1; e2, and
also use patterns in abstractions λπ.e as shorthand for λx.case x of π⇒ e; π′⇒ z
etc. (where z represents an error, and for instance can be defined by the compo-
nent z⇐z). Instead of case e of true⇒ e1 | false⇒ e2 we write if e then e1 else e2,

Correctness of Concurrent Buffer Implementations 7

unit : unit

τ ¹ α→ref α

refτ : τ

τ ¹ (α→α)→α

threadτ : τ

τ ¹ (α→α)→α

lazyτ : τ

τ ¹ (α1→(α1→unit)→α2)→α2

handleτ : τ

Γ (x) = τ

x : τ

x:τ1 e : τ2

(λx.e) : τ1 → τ2

e1 : τ1 → τ2 e2 : τ1

(e1 e2) : τ2

e1 : ref τ e2 : τ

exch(e1, e2) : τ

k ∈ D(κ) τ = τ1 → . . . → τar(k) → κ(τ ′1, . . . , τ
′
ar(κ)) ¹ upt(k) ∀j ∈ 1 . . . ar(k). ej : τj

kτ (e1, . . . , ear(k)) : κ(τ ′1, . . . , τ
′
ar(κ))

D(κ) = {k1, . . . , kn} e : κ(τ ′1, . . . , τ
′
ar(κ)) ∀i = 1 . . . n. ei : τ

∀i = 1 . . . n. τi = Γ (xi,1) → . . . → Γ (xi,ar(ki)) → κ(τ ′1, . . . , τ
′
ar(κ)) ¹ upt(ki)

(caseκ e of (kτi
i (xi,1, . . . , xi,ar(ki)) ⇒ ei)i=1...n) : τ

Fig. 3. Types of expressions

p1 : wt p2 : wt

p1 | p2 : wt

x:τ e:τ

x⇐e:wt

x:τ e:τ

x
susp⇐= e:wt

x:ref τ v:τ

x c v:wt

p:wt

(νx)p:wt

y h • : wt

x:τ y:τ → unit

y h x : wt

Fig. 4. Well-typed processes.

and the special case if e then true else true is written as wait e. The symbol ‘ ’
stands for an arbitrary fresh variable. Finally, we write newhandled as shorthand
for handle λfλh. 〈h, f〉.
Contexts and Operational Semantics. The operational semantics defines
an evaluation strategy via evaluation contexts in which reduction rules apply.
We introduce contexts C and D. An expression context C is a process where
exactly one expression-position is replaced with a typed hole marker [·]τ . For
technical reasons it is important that this position is not syntactically restricted
to just values: e.g., in a cell x c (k(true, λy.e)) the position of a hole can only be
within e. A process context D is a process where exactly one process position is
replaced with the hole marker [·].

We only consider well-typed contexts, where the typing of contexts is like the
typing of expressions, with two additional typing rules for the context hole:

[·]τ : τ [·] : wt

The result of placing the expression e : τ (process p, resp.) in context C with
hole [·]τ (context D, resp.), possibly capturing free variables of e (p, resp.), is
written C[e] (D[p], resp.). It is easy to verify that D[p] : wt if D : wt and p : wt,

8 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

ECs E::=x⇐ eEeE::=[]τ || eE e || v eE || exch(eE, e) || exch(v, eE)

|| case eE of (πi ⇒ ei)
i=1...n || k(v1, . . . vi−1, eE, ei+1, . . . , en)

Future ECs F ::=x⇐ eFeF ::= eE[[]τ v] || eE[exch([]τ , v)] || eE[case []τ of (πi ⇒ ei)
i=1...n]

Process ECs D::= [] || p |D || D | p || (νx)D

Fig. 5. Evaluation contexts

and that for expression contexts C[[·]τ] : wt and expressions e : τ , C[e] : wt
holds.

Fig. 5 defines evaluation contexts (ECs) E and future ECs F as particular
contexts. ECs encode the standard call-by-value, left-to-right reduction strategy,
while future ECs control dereferencing operations on futures and the triggering
of suspended threads. The small-step reduction relation p→ p′ is the least binary
relation on processes satisfying the rules in Fig. 6. We write ev−→ for → when we
want to distinguish reductions from transformations below. We use ∗−→ for the
reflexive-transitive closure of −→ and +−→ for the transitive closure. We sometimes
label reductions with their name, e.g.

beta(ev)−−−−−→, and the notation p
a∨b−−→ q means

that either p
a−→ q or p

b−→ q holds.
Rule (cell.new(ev)) creates new cells z c v with contents v. The ex-

change operation exch(z, v1) writes v1 to the cell and returns its previous con-
tents. Since this is an atomic operation, no other thread can interfere. The
rule (thread.new(ev)) spawns a new eager thread x⇐e where x may oc-
cur in e, so it may be viewed as a recursive declaration x = e. Similarly,
(lazy.new(ev)) creates a new suspended computation x

susp⇐= e. Dereferenc-
ing of future values (fut.deref(ev)) and triggering of suspended computa-
tions (lazy.trigger(ev)) is controlled by future evaluation contexts F . The
rule (handle.new(ev)) creates handle components. The application x v in
(handle.bind(ev)) “consumes” the handle x and binds y to v, resulting in a
used handle x h • and thread x⇐v. In particular, notice that a used handle com-
ponent y h • indicates that y is a handle that has already been used to bind
its associated future. It gets stuck if an expression E[y v] has to be evaluated.
Type safety holds for reduction, i.e., reduction preserves well-typedness (and
well-formedness) of processes.

As an example, let r:(ref List(τ)) be a reference cell containing τ -lists. The
effect of reducing process r c v | (νx)(x⇐thread λy.(exch(r, cons(v′, y)))) is the
substitution of the cell content v by cons(v′, v) in a single atomic step. More pre-
cisely, it is (νx)(νy)(r c cons(v′, y) |x⇐y | y⇐v). This process is observationally
equivalent to r c cons(v′, v), as we will show later on.

As a second example, suppose ack is a (nullary) type constructor with a single
data constructor Ack, and assume p is a thread suspending on a handled future x
of type ack: p ≡ F [case x of Ack⇒ e]. The thread may resume the computation

Correctness of Concurrent Buffer Implementations 9

Reduction rules.

(β-cbv(ev)) E[(λx.e) v] −→ E[e[v/x]]

(cell.new(ev)) E[ref v] −→ (νz)(E[z] | z c v)

(cell.exch(ev)) E[exch(z, v1)] | z c v2 −→ E[v2] | z c v1

(thread.new(ev)) E[thread v] −→ (νz)(E[z] | z⇐v z)

(fut.deref(ev)) F [x] |x⇐v −→ F [v] |x⇐v

(lazy.new(ev)) E[lazy v] → (νz)(E[z] | z
susp⇐= v z)

(lazy.trigger(ev)) F [x] |x
susp⇐= e → F [x] |x⇐e

(handle.new(ev)) E[handle v] −→ (νz)(νz′)(E[v z z′] | z′ h z)

(handle.bind(ev)) E[x v] |x h y −→ E[unit] | y⇐v |x h •
(case.beta(ev)) E[case kj(v1, . . . , var(kj)) of (ki(x1, . . . , xar(ki)) ⇒ ei)

i=1...n]

→ E[ej [v1/x1, . . . , var(kj)/xar(kj)]]

Well-formed processes. The rules can only be applied to well-formed processes.
Distinct variable convention. We assume that all processes to which rules apply

satisfy the distinct variable convention, and that all new binders use fresh variables
(z above). Reduction results will satisfy the distinct variable convention, if after
β-cbv(ev), case.beta(ev) and fut.deref(ev) where values with bound variables
may be copied, α-renaming is performed before applying the next rule.

Closure. Rule application is closed under structural congruence and process ECs D:
if p1 ≡ D[p′1], p′1 → p′2, and D[p′2] ≡ p2 then p1 → p2.

Fig. 6. Small-step reduction relation of λτ (fch), denoted by → or
ev−→

of e once a second thread uses the associated handler and provides a value for
x: the process p |F ′[h Ack] |h h x can reduce to F [e] |F ′[unit] |x⇐Ack |h h •,
after (handle.bind(ev)), (fut.deref(ev)) and (case.beta(ev)) reductions. In
this way, handled futures are the basic synchronization construct in λτ (fch).

Observations and Contextual Equivalence. A process p is successful if it
is well-formed and in every component x⇐e of p, the identifier x is bound possi-
bly via a chain x⇐x1 |x1⇐x2 | . . . |xn−1⇐xn |xn⇐v to a non-variable value,
a cell or a lazy future, a handle, or a handled future. Hence, in a non-failing
computation, every non-lazy future eventually refers to a “proper” value. For
instance, x⇐λy.y, x⇐y | y⇐〈x, x〉 and x⇐y | y c z are successful, while x⇐x (a
black hole) and x⇐(λu.λv.v) (y unit) | y⇐(λu.λv.v) (xunit) (a deadlocked pro-
cess) are ruled out.

We use p↓ to indicate that p is may-convergent, i.e., that there is a sequence
of reductions p →∗ p′ such that p′ is successful, and p⇓ if the process is must-
convergent, meaning that all reduction descendants p′ of p are may-convergent.
Dually, we call p must-divergent (p⇑) if it has no reduction descendant that
succeeds, and may-divergent (p↑) if some reduction descendant of p is must-
divergent. Thus, p⇑ ⇔ ¬p↓ and p↑⇔ ¬p⇓. Now, for ξ ∈ {↓, ⇓}, we define

10 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

contextual approximation relations between processes p1 and p2 by:

p1 ≤ξ p2 ⇔ ∀D : D[p1]ξ ⇒ D[p2]ξ

We write p1 ≤ p2 if both p1 ≤↓ p2 and p1 ≤⇓ p2 hold, and p1 ∼ p2 if both
p1 ≤ p2 and p2 ≤ p1 hold. The same definitions for expressions e1, e2 of equal
type τ and expression contexts C[[·]τ] results in relations ≤↓,τ , ≤⇓,τ , and ∼τ .
Translations. We recall the framework of [27], where an abstract calculus C
consists of sets of (well-typed) processes p, contexts D, and convergence pred-
icates ξ. The calculus λτ (fch) and the other (possibly untyped) calculi intro-
duced in the subsequent sections fit into this general framework. A translation
T between two such calculi maps well-typed processes to well-typed processes,
and contexts to contexts. A translation T between calculi C and C′ is con-
vergence equivalent if T (p)ξ ⇔ pξ for all p and all convergence predicates
ξ. The translation T is compositional iff for all contexts D and processes p
we have T (D)[T (p)] = T (D[p]). A translation T is observationally correct, if
for all all programs p and all contexts D, and all convergence predicates ξ:
T (D[p])ξ ⇐⇒ T (D)[T (p)])ξ. A translation is adequate if T reflects operational
approximation, i.e. if T (p1) ≤C

′
T (p2) ⇒ p1 ≤C p2 for all p1, p2. Finally, if T

additionally preserves inequations, i.e. if T (p1) ≤C
′

T (p2) ⇔ p1 ≤C p2 for all
p1, p2 holds, then it is fully abstract.

As described in the introduction, adequacy and full abstraction relate to the
equational theories of the source and target language of a translation, and ade-
quate translations provide useful tools for transferring equations. The soundness
of an encoding, in the sense that each program is indistinguishable from its
translation, is given by observational correctness. Of course, these notions are
related:

Proposition 2.1 (Adequacy, [27]). If a translation T is compositional and
convergence equivalent, then T is adequate and observationally correct. More-
over, observational correctness of a translation implies adequacy of the transla-
tion.

For the considered calculi in this paper we also require compositionality on
expressions, i.e. T (C[e]) = T (C)[T (e)] and type correctness of T for expressions.
These requirements simplify the corresponding proofs for processes. Moreover,
they enable us to derive equivalences from the adequacy of the translations not
only between processes but also between expressions, i.e. that T (e) ∼T (τ) T (e′)
implies e ∼τ e′.

It is easy to verify that translations compose:

Proposition 2.2 (Composition). Let C, C′, C′′ be calculi, and T : C → C′,
T ′ : C′ → C′′ be translations. Then T ′ ◦ T : C → C′′ is also a translation,
and if T, T ′ are compositional (observationally correct, adequate, fully-abstract,
respectively), then also the composition T ′ ◦ T is compositional (observationally
correct, adequate, fully-abstract, respectively).

Correctness of Concurrent Buffer Implementations 11

(fut.deref(a)) C[x] |x⇐v −→ C[v] |x⇐v
(β-cbv(a)) C[(λx.e) v] −→ C[e[v/x]]

(case.beta(a)) C[case kj(v1, . . . , var(kj)) of (ki(x1, . . . , xar(ki)) ⇒ ei)
i=1...n]

→ C[ej [v1/x1, . . . , var(kj)/xar(kj)]]

(cell.deref) p | y c x |x⇐v −→ p | y c v |x⇐v
(gc) p | (νy1) . . . (νyn)p′ −→ p if p′ is successful and

y1, . . . , yn contain all process variables of p′

(det.exch) (νx)(y⇐ eE[exch(x, v1)] |x c v2) −→ (νx)(y⇐ eE[v2] |x c v1)
No capturing. We assume that no variables are moved out of their scope or into the

scope of some other binder, i.e., fv(v) ∩ bv(C) = ∅.
Closure. Transformations are closed under ≡ and D-contexts.

Fig. 7. Correct transformation rules for λτ (fch)

We also recall a criterion for fully abstract translations, which can be used if
only new primitives are added to a calculus C′. The statement of this criterion
in [27] contains a flaw; the following corrected version is proved in the technical
report [25].

Proposition 2.3 (Full abstraction for extensions).
Let C, C′ be two calculi, let ι : C′ → C (the embedding) and T : C → C′ be com-

positional and convergence equivalent translations, such that T ◦ ι is the identity
on C′-programs, on C′-observers, and on C′-types. Then ι is fully abstract.
If T is injective on types, then T is also fully abstract.

If a translation T is observationally correct and injective on types, then ≤ is
retained under T , relative to its image.

Remark 2.4 (on full abstraction on images). A variation of this full abstraction
result is possible [25]. Let C, C′ be calculi and T : C → C′ be an observationally
correct translation. Let C′′ := T (C) be the subcalculus of C′ consisting of the
images under T , and let ≤T be the preorder defined on C′′. Moreover, assume
that for all τ , T is surjective on the programs of type τ and for every τ ′, T is
a surjective mapping T : Oτ1,τ2 → OT (τ1),T (τ2), where Oτ1,τ2 are the contexts of
type τ2 with hole of type τ1. Then for all types τ and programs p1, p2: p1 ≤τ

p2 ⇐⇒ T (p1) ≤T,T (τ) T (p2). That is, the translation is fully abstract as
translation T : C → C′′.

3 Correctness of Transformations in λτ (fch)

In the correctness proofs we will make use of program transformations, which are
called correct if whenever p1 is transformed into p2, then p1 ∼ p2. In Fig. 7 some
program transformations are defined. It is important that program transforma-
tions preserve the types of replaced subexpressions. E.g. the rule (β-cbv(a)) may
also be applied from right to left, and in this case, we must choose a variable x

12 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

with Γ (x) = τ where τ is the (uniquely determined) type of the value v. The use
of the framework sketched at the end of Section 2 makes it possible to lift process
equivalences from the untyped lambda calculus with futures [11] to correct pro-
gram transformations in λτ (fch). We establish these correctness results by using
an adequate translation from λτ (fch) into λ(f’h), which technically requires an-
other intermediate calculus λ(fh) which can be translated fully-abstractly into
λ(f’h).

In summary, in this section we prove the following part of the diagram from
page 4, where enc is the translation removing case and constructors and id is
the respective identity translation.

λτ (fch) enc // λ(fh)
id (0

λ(f’h)
id

go

In the subsequent section we show that the translations between λ(fh) and
λ(f’h) are fully-abstract. Thus we can lift the known equivalences for λ(f’h) into
λ(fh). In Section 3.2 we provide an encoding from λτ (fch) into λ(fh) and show
that this translation is adequate, which allows us at the end to lift program
equivalences into λτ (fch).

3.1 Modifying beta(ev)-Reduction

The calculus λ(f’h) described in [11] is the subcalculus of λτ (fch) without con-
structors, case-expressions, and typing. Moreover, instead of the β-cbv(ev)-
reduction rule from Fig. 6, a sharing variant is used that introduces a new
future instead of substituting into the body. This ‘lazy’ call-by-value β-rule
(β-cbvL(ev)) takes the form E[(λy.e) v] −→ (νy)(E[e] | y⇐v).

We call the modification of λ(f’h) with the usual (substituting) call-by-value
β-reduction λ(fh) (this is the calculus presented in [12]). We first prove that
the identity translation from λ(fh) into λ(f’h) is fully-abstract. This essentially
means that, as far as contextual equivalence is concerned, it does not matter
which β-rule we choose.

Obviously, the identity translation from λ(f’h) to λ(fh) as well as the identity
translation from λ(fh) to λ(f’h) are bijective and compositional. We show that
both translations are convergence equivalent, which by Proposition 2.3 implies
that both translations are fully-abstract.

Lemma 3.1. For all λ(f’h)-processes p, p↓⇔ p↓λ(fh) and p⇓⇔ p⇓λ(fh), i.e. the
identity translations from λ(f’h) and λ(fh) and back are convergence equivalent.

Proof. 1. Theorem 4.23 of [11] proves that β-cbv(a) is a correct program trans-
formation for λ(f’h). From p↓λ(fh), induction on the length of a reduction from
p to a successful process shows that p↓. This is because the reduction corre-
sponding to p↓λ(fh) consists of λ(f’h)-reductions and β-cbv(ev)-reductions.

Correctness of Concurrent Buffer Implementations 13

2. In order to prove the other direction, assume that p↓, i.e. p
k−→ p′ where

p′ is a successful process of λ(f’h). We use induction on k. If k = 0, then
p is also a successful process of λ(fh). For the induction step there are two
cases: If the first reduction of p −→ p′′

k−1−−→ p′ is also a reduction of λ(fh),
then the claim follows by using the induction hypothesis. If the reduction is
a β-cbvL(ev)-reduction, then we have the following situation:

p = D[E[(λy.e) v]]
β-cbv(ev) //

β-cbvL(ev) ��

p = D[E[e[v/y]]]

p′′ = D[E[e] | y⇐v]
ev,k−1 ��

(fut.deref(a) ∨ gc),∗

22eeeeeeeeeeeeeee

p′

It is easy to verify that the sequence of (fut.deref(a) ∨ gc)-transformations
always exists. It is sufficient to show that there exists a reduction from
p to a successful process of length less than k. This implies that we can
apply the induction hypothesis to p and the claim follows. The missing part
follows from Lemma 4.18 (1) and the proof of Proposition 4.31 in [11] for
the transformation (fut.deref(a)); for (gc) it follows from Lemma 4.7 in
combination with Theorem 4.8 in [11].

3. Assume that p↑λ(fh), and note that (1),(2) imply p⇑ ⇔ p⇑λ(fh). Induction on
the length of a reduction shows that p↑, where the induction step is either
obvious or follows from correctness of the transformation β-cbv(a).

4. To show the last case assume that p↑. The proof is by induction on the length
of a reduction to a must-divergent process, using the same methods as (2).

Theorem 3.2. The identity translations from λ(f’h) into λ(fh) and back are
fully-abstract.

This allows us to transfer correct transformations for λ(f’h) shown in [11] to
λ(fh).

Corollary 3.3. All reductions of λ(fh) except cell.exch(ev), and all the
transformations β-cbv(a), fut.deref(a), cell.deref, gc and det.exch (see
Fig. 7) are correct program transformations for λ(fh).

Proof. Correctness of the transformations was established for λ(f’h) in [11]. Be-
cause of full abstraction, they are also correct in λ(fh).

3.2 Removing Constructors and Types

In order to lift contextual equivalences from λ(fh) to λτ (fch), we construct a
translation enc : λτ (fch) → λ(fh) that is observationally correct and adequate.
Note that for adequacy of this encoding it is necessary that λτ (fch) is typed, since
otherwise untyped programs that get stuck due to a dynamic type error may be-
come must-convergent after the translation. Furthermore, it is not possible to

14 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

restrict λ(fh) to monomorphic typing, since the encoding of case and construc-
tors cannot be monomorphically typed. These problems are already extensively
discussed in [27] where illustrating examples can be found.

The main part is to encode the case and constructors, thus removing them,
and to show that the translation has all required properties.

Constructors and case-expressions are removed from λτ (fch) in two steps. We
first provide an encoding from λτ (fch) into a subset of itself. Let λτ (fchav) be
the sublanguage of λτ (fch) where in constructor applications k(e1, . . . , en) the
arguments ei are restricted to values.

We provide an encoding enc1 : λτ (fch) → λτ (fchav), where additionally we
introduce some labels to mark the encoded constructors. These labels are used
in later proofs. The encoding enc1 uses for the syntactic correct translation of
cell-values the encoding enc#1. Both translations are defined as follows:

enc1(x c v) , x c enc#1(v)
enc1(k(e1, . . . , en)) , (λl1x1. . . . λlnxn.k(x1, . . . , xn)) enc1(e1)l1 . . . enc1(en)ln ,

where xi are fresh, and li are new labels
enc1(t) , homomorphically wrt. the term structure of t

enc#1(λx.e) , λx.enc1(e)
enc#1(k(v1, . . . , vn) , k(enc#1(v1), . . . , enc#1(vn))

The translation enc1 (but not the translation enc#1) is extended to contexts in
the evident way, and acting as identity on types.

The second step is an encoding enc2 that maps processes of λτ (fchav) to λ(fh)-
processes, by removing constructors, case expressions, and types: Let K = D(κ)
be the set of constructors for a specific type constructor κ and let τ1, . . . , τm

be types. By the assumptions on the signature, K is non-empty. We choose an
arbitrary (but from now on fixed) order of the constructors in K, k1, . . . , kn

where n ≥ 1. A constructor application of λτ (fchav) is encoded as:

enc2(ki(v1, . . . , var(vi))) , (λp1, . . . , pn.pi enc2(v1) . . . enc2(var(ki)) unit)

The additional unit argument to pi achieves the correct behavior in the case of
nullary constructors, with respect to call-by-value semantics. The encoding for
case expressions is the following:

enc2(caseκ e of (ki(xi,1, . . . , xi,ar(ki))⇒ ei
i=1...n)) ,

enc2(e) (λx1,1, . . . , x1,ar(k1).λ .enc2(e1)) . . . (λxn,1, . . . , xn,ar(kn).λ .enc2(en))

Again, the additional abstraction λ in each branch leads to a uniform trans-
lation, including the correct behavior for nullary constructors. For all other con-
structs, the encoding enc2 operates homomorphically wrt. the term structure.
Types are removed by this second encoding, i.e. threadτ , thread, refτ , ref,
lazyτ , lazy, and handleτ , handle.

Definition 3.4. The translation enc : λτ (fch)→ λ(fh) is the composition enc2 ◦
enc1 of the above translations enc1 and enc2.

Correctness of Concurrent Buffer Implementations 15

As an example we demonstrate the encoding of lists (over a fixed element type τ).
Assume that D contains constructors cons : τ → list(τ) → list(τ) and nil :
list(τ). Then:

enc(cons(eh, et)) = enc2(enc1(cons(eh, et)))
= enc2(λx1, x2 (cons(x1, x2)) enc1(eh) enc1(et))
= (λx1, x2, anil, acons.acons x1 x2 unit) enc(eh) enc(et)

enc(nil) = enc2(nil) = (λanil, acons.anil unit)

enc

caselist e of
nil⇒ e1

| cons(x, y)⇒ e2

 = enc(e) (λ .enc(e1)) (λx, y.λ .enc(e2))

3.3 Adequacy of enc2

Lemma 3.5. For every value v of λτ (fchav), enc2(v) is a λ(fh)-value.

Proof. Clear, since all values of the form k(. . .) are translated into abstractions.

Lemma 3.6. For all p1, p2 ∈ λτ (fchav) with p1
ev−→ p2, enc2(p1)

ev,∗−−→ enc2(p2).

Proof. First observe that the EC or future EC, resp., containing the redex that is
contracted by p1

ev−→ p2 must correspond to an EC or future EC, resp., for λ(fh):
since only λτ (fchav)-values appear in constructor applications, the hole cannot
be below a constructor. Hence the only exceptional case is the decomposition
p1 = D[E[case E′ . . .]], but in this case the translation wrt. enc2 does yield an
EC. Now one needs to check that the reduction p1

ev−→ p2 is transferable. The
only exception is a case.beta(ev)-reduction, and we prove this case explicitly:

enc2(p1)
= enc2(D[E[case kj(v1, . . . , var(kj)) of (ki(x1, . . . , xar(ki))⇒ ei)

i=1...n]])
= enc2(D)[enc2(E)[enc2(case kj(v1, . . . , var(kj))

of (ki(x1, . . . , xar(ki))⇒ ei)
i=1...n])]

= enc2(D)[enc2(E)

((λp1, . . . , pn.pj enc2(v1) . . . enc2(var(kj)) unit)

(λx1,1, . . . , x1,ar(k1).λ .enc2(e1))
. . .
(λxn,1, . . . , xn,ar(kn).λ .enc2(en))

)]

β-cbv(ev),∗−−−−−−−→ enc2(D)[enc2(E)[((λxj,1, . . . , xj,ar(kj).
λ .enc2(ej)) enc2(v1) . . . enc2(var(kj)) unit)]]

β-cbv(ev),∗−−−−−−−→ enc2(D)[enc2(E)[enc2(ej)[enc2(v1)/xj,1, . . . , enc2(var(kj))/xj,ar(kj)]]]
= enc2(p2)

Lemma 3.5 ensures that all enc2(vi) are values, validating the β-cbv(ev) steps.

Proposition 3.7. The translation enc2 is observationally correct and adequate.

16 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

Proof. Since types are removed and the encoding translates every syntactic con-
struct separately, enc2 is compositional. Hence, by Proposition 2.1, it suffices to
show convergence equivalence of enc2, i.e. we have to show four parts:

1. p↓⇒ enc2(p)↓. This follows by induction on the length of a successful re-
duction for p. For the base case, Lemma 3.5 shows that enc2(p) is successful
when p is. The induction step follows by the simulation in Lemma 3.6.

2. enc2(p)↓⇒ p↓. We use induction on the length of a successful reduction

enc2(p)
ev,k−−→ p0. The base case obviously holds. For the induction step let

enc2(p) ev−→ p′
ev,k−1−−−−→ p′′ where p′′ is successful.

We first argue that p cannot be an irreducible non-value. Due to typing of
p, p would be an open process of the form D[E[(x e)]], D[E[case x . . .]],
D[E[exch(x, v)] or D[F [x]] where x is free. In all cases it is easy to verify
that enc2(p) would be an irreducible value non-value, contradicting enc2(p)↓.
If the redex is not the translation of an case.beta(ev)-redex, then the
reduction can be performed directly for p, i.e. p

ev−→ p1 with p′ = enc2(p1)
holds. The induction hypothesis implies p1 ↓ and thus p ↓. If the re-
duction enc2(p) ev−→ p′ is the beginning of an encoded case.beta(ev),
then we perform the complete encoded
case.beta(ev)-reduction using β-cbv(ev)-

reductions for λ(fh): enc2(p)
beta(ev),∗−−−−−−→ p2,

p
case.beta(ev)−−−−−−−−→ p′2, and p2 = enc2(p′2). An il-

lustration of the situation is shown on the

p
case.beta(ev) //_____ p′2

enc(p′2)

enc2(p)
beta(ev)

// p′
beta(ev),∗

OO

ev,k−1
// p′′

right. Now one needs to verify that the following holds in λ(fh):

If q
ev,k−−→ q′ where q′ is successful and q

beta(ev)−−−−−→ q′′ then
q′′

ev,≤k−−−→ q′′′ where q′′′ is successful. This is easy to prove, since
beta(ev)-reductions commute with other standard reductions,
as the diagram shows. Using this fact we have a successful

q1

ev

��

beta(ev)// q2

ev

���
�
�

q3
beta(ev)

//___ q4

reduction for enc(p′2) of length ≤ k. The induction hypothesis implies p′2↓
and thus p↓.

3. p⇓⇒ enc2(p)⇓. We show the equivalent claim enc2(p)↑⇒ p↑, by an induction
on the length of a reduction starting with enc2(p) and ending in a must-
divergent process. For the base enc2(p)⇑ and thus by part 1, p is must-
divergent. The induction step is analogous to part 2.

4. enc2(p)⇓⇒ p⇓. The equivalent claim p↑⇒ enc2(p)↑ is proved by induction
on the length of a reduction for p ending in a must-divergent process. The
proof is analogous to part 1, and the base case is covered by part 2.

Corollary 3.8. The following transformations are correct for λτ (fchav):

- All standard reductions except for cell.exch(ev).
- The transformations β-cbv(a), case.beta(a), fut.deref(a), cell.deref,

gc and det.exch (See Fig. 7, with definitions adjusted to λτ (fchav)).

Correctness of Concurrent Buffer Implementations 17

Proof. Let ≈ be one of the transformations. Due to adequacy of enc2 it suffices
to show enc2(p) ∼ enc2(p′) for every p ≈ p′ where p, p′ are well-typed and well-
formed. This follows from Corollary 3.3 and the fact that the case.beta(a)-
reduction can be performed as a sequence of β-cbv(a) reductions in the image
of the encoding.

3.4 Adequacy of enc1

Let enc1 be the backtranslation from labeled λτ (fchav)-processes into λτ (fch)-
processes, which is homomorphic except for the case of labeled λ abstractions:

enc1((λl1x1. . . . λlnxn.e) el1
1 . . . eln

n) , enc1(e)[enc1(e1)/x1, . . . enc1(en)/xn]

Definition 3.9. Let p ∈ λτ (fchav) be a labeled process. We say that the labeling
of p is valid iff the following conditions hold:

- if there is a labeled subexpression e with label li, then e is an argument of a
nested application, which is of the form ((λlj xj λlixi.e

′) e
lj
j . . . ei

li)
- if there is a labeled λ labeled with li, then the abstraction is of the following

form λlj λlixi. . . . λln .k(e1, . . . , ej−1, xj , . . . , xn) and there are n− j + 1
arguments of a nested application and the arguments are labeled with j, j +
1, . . . , n.

Let p ∈ λτ (fchav) be validly labeled. For a reduction of p the labeling is inherited
as in labeled reduction, with the following exceptions:

- If a labeled λ of p is reduced using β-cbv(ev), then the label of the lambda
and the label of the argument are removed before the reduction is performed.

- If an expression is copied using fut.deref(ev), case.beta(ev), or
β-cbv(ev) and the copied expression contains labels, then the labels are also
copied but renamed with fresh labels.

Obviously, for every process p ∈ λτ (fch) its encoding enc1(p) is validly labeled.

Lemma 3.10. For all p ∈ λτ (fch): enc1(enc1(p)) = p and for all validly labeled

p ∈ λτ (fchav): enc1(enc1(p))
β-cbv(a),∗−−−−−−→ p.

Proof. The first part is obvious from the definitions of enc1 and
enc1. The second part is by induction on p. The exceptional case is
an unlabeled constructor application k(v1, . . . , vn) so that enc1 yields
k(enc1(v1), . . . , enc1(vn)), but enc1 abstracts the constructor application re-
sulting in (λx1, . . . , xn.k(x1, . . . , xn)) enc1(enc1(v1)) . . . enc1(enc1(vn)). Nev-
ertheless, β-cbv(a)-reductions can be applied, since by induction hypoth-
esis, every enc1(enc1(vi)) can be reduced to vi. The result of this is
(λx1, . . . , xn.k(x1, . . . , xn)) v1 . . . vn. Since each vi is a λτ (fchav)-value,
β-cbv(a) can be used to reduce this further to k(v1, . . . , vn).

Lemma 3.11. For all processes of λτ (fchav): p
ev−→ p′ ⇒ p′ ∈ λτ (fchav). More-

over, if p is validly labeled, then p′ is validly labeled.

18 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

Proof. By inspecting the reduction rules of λτ (fch), and the inheritance rules for
the labeling.

Let p be a validly labeled process of λτ (fchav) with p
ev−→ q. We call this

reduction a-labeled if and only if it is by a beta(ev)-reduction of a labeled
abstraction. If p

ev−→ q and the (inner) redex is inside a labeled expression, and
the reduction is not already a-labeled, then we say the reduction is b-labeled. In
all other cases, the reduction is called unlabeled.

Lemma 3.12. Let p be a validly labeled process, and p
ev−→ p′.

- If the reduction is a-labeled, then enc1(p) = enc1(p′).
- If the reduction is b-labeled or unlabeled, then enc1(p) ev−→ enc1(p′).

Proof. The first part follows, since the a-labeled reduction performed for p is
also performed when calculating enc1(p). For the second part we distinguish two
cases: If the reduction is b-labeled, then the position of the reduction for p is
moved to another position in enc1(p). Nevertheless, since the labeling of p is
valid, this reduction can be performed as a standard reduction. If the reduction
is unlabeled, then it is easy to verify that the reduction can be performed for
enc1(p), since enc1 does not change the corresponding position.

Lemma 3.13. Let p0 ∈ λτ (fchav) be a validly labeled process with p0 ↓, i.e.

p0
ev,k−−→ pk, pk successful. Then enc1(p0)↓.

Proof. We use induction on k. The base case is obvious. For the induction step
let p0

ev−→ p1
ev,k−1−−−−→ pk. From the induction hypothesis we have enc1(p1)↓. For

the reduction p0
ev−→ p1: If the reduction is a-labeled, then enc1(p1) = enc1(p0)

and the claim holds. Otherwise, the reduction is b-labeled or unlabeled. Then
Lemma 3.12 shows that enc1(p0)

ev−→ enc1(p1). Hence, the claim holds.

Corollary 3.14. For all p, enc1(p)↓⇒ p↓.

Proof. Assume enc1(p)↓. Lemma 3.13 shows enc1(enc1(p))↓, and thus p↓.

Lemma 3.15. Let v be a λτ (fch)-value. Then there exists a λτ (fchav)-value
w such that for all process contexts D and expression contexts C, there is a

transformation D[C[enc1(v)]]
β-cbv(a),∗−−−−−−→ D[C[w]].

Proof. This follows by structural induction on the value v. The only exceptional
case are constructor applications, when some a-labeled reductions are necessary
to obtain values from the translation of enc1(k(v1 . . . , var(k))).

Lemma 3.16. For the translation enc1 the following holds:

- If D is a process context of λτ (fch), then enc(D) is a process context.

Correctness of Concurrent Buffer Implementations 19

- For every evaluation context Ẽ of λτ (fch) there exists an evaluation context
Ẽ′ such that for all expressions e, process contexts D, expression contexts
C, and variables x such that D[x⇐C[enc1(Ẽ)[e]]] is well-typed, we have the

transformation D[x⇐C[enc1(Ẽ)[e]]]
β-cbv(a),∗−−−−−−→ D[x⇐C[Ẽ′[e]]].

- For every future evaluation context F̃ of λτ (fch), there exists a future evalua-
tion context F̃ ′ such that for all expressions e, process contexts D, expression
contexts C and variables x such that D[x⇐C[enc1(F̃)[e]]] is well-typed, we

have D[x⇐C[enc1(F̃)[e]]]
β-cbv(a),∗−−−−−−→ D[x⇐C[F̃ ′[e]]].

Proof. By inspecting all cases for process, evaluation, and future evaluation con-
texts, and using Lemma 3.15 to obtain values from translated values.

Lemma 3.17. For all p1, p2 ∈ λτ (fch) with p1
ev−→ p2 we have

enc1(p1)
β-cbv(a),∗−−−−−−→ p′

ev−→ p′′
β-cbv(a),∗←−−−−−− enc1(p2).

Proof. By Lemma 3.16, and inspection of all standard reduction rules.

Lemma 3.18. For all processes p of λτ (fch), p↓⇒ enc1(p)↓.

Proof. This follows by induction on the length of a successful reduction of p. For
the base case, let p be a successful process. Then we can transform enc1(p) into
a successful process using Lemma 3.15. These transformations are correct by
Corollary 3.8, and thus enc1(p)↓. For the induction step let p

ev−→ p′ be the first
reduction for p. By the induction hypothesis we have enc1(p′)↓. We now apply

Lemma 3.17 to p
ev−→ p′, i.e., enc1(p)

β-cbv(a),∗−−−−−−→ p1
ev−→ p2

β-cbv(a),∗←−−−−−− enc(p′).
Since β-cbv(a) is correct (Corollary 3.8) we have p2↓ and thus p1↓. Applying
correctness of β-cbv(a) again yields enc1(p)↓.

Lemma 3.19. For all validly labeled processes p of λτ (fchav), p↑⇒ enc1(p)↑.

Proof. The proof is by induction on the length of a successful reduction for p. For
the base case we show p⇑⇒ enc1(p)⇑ by the equivalent claim enc1(p)↓⇒ p↓. So
let us assume enc1(p)↓. Then by Lemma 3.18 enc1(enc1(p))↓. From Lemma 3.10

we have enc1(enc1(p))
β-cbv(a),∗−−−−−−→ p. Correctness of β-cbv(a) (Corollary 3.8)

shows the required p↓. The induction step is analogous to Lemma 3.13.

Corollary 3.20. For all p, p⇓⇒ enc1(p)⇓.

Proof. The claim is equivalent to enc1(p)↑⇒ p↑, which follows from Lemma 3.19
since enc1(enc1(p)) = p by Lemma 3.10. ut

Proposition 3.21. The translation enc1 is observationally correct and ade-
quate.

Proof. Whenever enc#1 is used for the translation enc1, at the corressonding
position a context hole is disallowed, since these are value restricted positions.
Hence, enc1 is compositional. It remains to show convergence equivalence. We

20 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

have to show that may- and must-convergence are preserved and reflected by
enc1. From Corollary 3.14, Lemma 3.18, and Corollary 3.20 we obtain three
of the four parts. Hence, it remains to show that enc1(p)⇓⇒ p⇓ holds. The
equivalent claim p↑⇒ enc1(p)↑ can be proved by induction on the length of a
reduction sequence for p ending in a must-divergent expression. The base case is
covered by Corollary 3.14, and the induction step is analogous to Lemma 3.18.

Since composition preserves observational correctness and adequacy, Propo-
sitions 3.7 and 3.21 imply:

Theorem 3.22. The translation enc is observationally correct and adequate.

Remark 3.23. Note that enc is not fully abstract. We give an example without
proof: The expressions λxbool.x and (λxbool.if x then x else x) are equivalent, but
the translated expressions are not equivalent since they behave differently when
applied to unit. The second expression is translated into λx.x x x. Applying
both expressions to unit will result in unit and in (unit unit unit). The first is a
value, and the second is not a value.
This in particular shows that Proposition 2.3 is not applicable: there is no iden-
tity embedding from λ(fh) into λτ (fch) since the former is untyped.

It remains to show correctness of program transformations for λτ (fch).

Theorem 3.24. All of the following are correct transformations for λτ (fch):

- the reduction rules of λτ (fch), except for cell.exch(ev), and
- the transformations of Fig. 7 (note the arbitrary contexts C in the first three).

Proof. We must show that p ∼ p′ for every p ≈ p′ where p, p′ are well-typed
and well-formed and where ≈ is any of the listed transformations. By ade-
quacy and the fact that enc1 acts as identity on types, it suffices to prove that
enc1(p), enc1(p′) are well-typed and well-formed. But this is guaranteed by the
correctness results for λτ (fchav) (Corollary 3.8) and using Lemma 3.16 to obtain
values, Lemma 3.15 to obtain process, evaluation and future evaluation contexts
in the image of enc1.

4 Concurrent Buffers are Encodable in λτ (fch)

By extending the syntax and operational semantics of λτ (fch), we provide a
specification of one-place buffers that describes their desired behavior.

The calculus λτ (fch) is extended by new primitives for concurrent buffers.
This defines the calculus λτ (fchb), with the syntactic extensions shown in Fig. 8.
λτ (fchb) has two new components: x b− which represents an empty buffer, and
x b v which represents a buffer that contains the value v. There are new constants
bufferτ to create a new buffer and getτ to obtain the contents of a non-empty
buffer (and emptying the buffer). There is also a new binary operator put, to
place a new value into an empty buffer. Contexts C are as before, but extended to

Correctness of Concurrent Buffer Implementations 21

Syntactic extensions:
τ ∈ Type ::= buf τ || . . . c ∈ Const ::= bufferτ || getτ || . . .
e ∈ Exp ::= put(e1, e2) || . . . p ∈ Proc ::= x b − || x b v || . . .eE ::= put(eE, e) || put(v, eE) || . . . eF ::= eE[put([], v)] || eE[get []] || . . .

Extensions of the type system:
τ ¹ unit → buf α

bufferτ : τ

τ ¹ buf α → α

getτ : τ

e1 : buf τ e2 : τ

put(e1, e2) : unit x b − :wt

x:buf τ v : τ

x b v:wt

Extensions of the reduction rules:
(buff.new(ev)) E[buffer v] → (νx)(E[x] |x b−) fresh x
(buff.put(ev)) E[put(x, v)] |x b− → E[unit] |x b v
(buff.get(ev)) E[get x] |x b v → E[v] |x b−

Fig. 8. Extensions of λτ (fch) for λτ (fchb)

the new syntax, such that exactly one expression-position, which is not restricted
to values, is replaced with a typed hole marker [·]τ .

Fig. 8 also summarizes the operational interpretation of the new constructs,
and extends the set of (future) evaluation contexts. Note that the reduction rules
entail that get x suspends on an empty buffer x while put(x, v) suspends on a
non-empty x. For typing we assume a new type constructor buf of arity 1. The
typing of the constants is given by (instances of) type schemes (see Fig. 8); type
safety then extends to the calculus λτ (fchb). Contextual preorder is defined as
expected: the notion of a successful process from λτ (fch) is extended so that
λτ (fchb) also allows x b− and x b v as components of successful processes. A
λτ (fchb) process is well-formed if (in addition to the other process variables) no
buffer variables are introduced twice.

4.1 Implementing Buffers Using Handled Futures

In the rest of this section we will show that there is an observationally cor-
rect (and thus also adequate) translation TB : λτ (fchb) → λτ (fch) which en-
codes buffers by handled futures. Note that the proof of adequacy of TB requires
equivalences in λτ (fch), which are derived from [11] (see Theorem 3.24).

Any concrete realization of buffers will rely on (more or less intricate) non-
interference properties and the preservation of various invariants. We consider
a particular implementation of buffers in λτ (fch), in terms of reference cells,
futures and handles. This induces a translation from λτ (fchb) into λτ (fch).

The implementation in λτ (fch) of operations corresponding to buffer, put,
and get is shown in Fig. 9. The buffer data structure is implemented as a tuple,
consisting of four reference cells:

buf τ , ref bool× ref bool× ref τ × ref (bool→ unit).

The first and second of these reference cells serve as guards to ensure that suc-
ceeding put and get operations alternate. Exactly one of them will contain a
handled future: if the first guard contains a future, this indicates that the buffer

22 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

buffer , λ . let 〈h, f〉 = newhandled, 〈h′, f ′〉 = newhandled,

putg = ref(true), getg = ref(f),

stored = ref(f ′), handler = ref(h)
(1) in thread λ .〈putg, getg, stored, handler〉 end

put , λ〈〈xp, xg, xs, xh〉, v〉.
let 〈h, f〉 = newhandled

(1) in wait (exch(xp, f));
(2) exch(xs, v);
(3) (exch(xh, h))(true)

end

get , λ〈xp, xg, xs, xh〉.
let 〈h, f〉 = newhandled

〈h′, f ′〉 = newhandled
(1) in wait (exch(xg, f));
(2) let v = (exch(xs, f

′))
(3) in (exch(xh, h))(true); v end

end

Fig. 9. Implementing the buffer operations buffer, put and get. The numbers (1), (2),
(3) indicate subexpressions for later reference.

is currently non-empty, hence put must block. Likewise, if the second guard
contains a handled future, the tuple represents an empty buffer and get must
block. The final reference cell stores a handler for this future. The third cell,
of type ref τ , stores the actual contents of the buffer. When representing an
empty buffer, this reference will contain a handled future of type τ as a dummy
value. In summary, there are the following invariants associated with the value
〈putg, getg, stored, handler〉:

- the guards putg and getg contain either a handled future or true (perhaps
reachable via dereferencing futures),

- at most one of putg and getg contains true,
- if getg contains true then the value in stored is the value currently in the

buffer,
- whenever putg contains true then the value in stored is ‘garbage’, representing

an empty buffer.

The procedure buffer yields a tuple representing an empty buffer,
satisfying the invariants. The procedure put, when applied to a buffer
〈putg, getg, stored, handler〉 and a value v, suspends until the buffer is guaran-
teed to be empty. This is achieved by pattern matching on the contents of putg
(using wait): since the first argument position of the case construct constitutes
a future EC, put can continue only when putg contains a proper (non-future)
value. By the invariants, this implies that the buffer is empty. At the same time,
putg is replaced by a fresh future f , with handle h, to indicate that the buffer
will be non-empty after put succeeds. After writing v to the cell stored, the sec-
ond guard getg is set to true (perhaps via a reference) to permit following get
operations to succeed. This is done using the handle stored in the reference cell
handler, which is replaced by the handle h for the freshly introduced future f .
The procedure get is analogous (partly symmetric) to put.

Correctness of Concurrent Buffer Implementations 23

The use of the handled futures in put and get is somewhat subtle: in general,
several threads concurrently attempt to place values into the buffer (and dually,
for reading from the buffer). The thread that is scheduled first replaces the
contents of the guard by a future f1. This future can be bound only after this
instance of put has finished. A second instance of put can proceed immediately
with its own exchange operation, replacing f1 by a future f2 before the wait
suspends on f1. In this way, a chain of threads suspending on futures f1, f2, . . .
in their respective put operations can build up. At the same time, a chain of
threads suspending in their respective get operations can build up.

4.2 Implementation as Translation

The implementation gives rise to a translation TB from λτ (fchb) into λτ (fch):
put, get, and buffer are replaced by the resp. program code, put, get, and buffer
from Fig. 9, where for put, the two arguments are translated into a pair. On
process level, we replace:

TB(x b−) , (νxp)(νxg)(νxs)(νxh)x⇐〈xp, xg, xs, xh〉
| (νh)(νf)(νh′)(νf ′)(h h f |h′ h f ′ |xp c true |xg c f |xs c f ′ |xh c h)

TB(x b v) , (νxp)(νxg)(νxs)(νxh)x⇐〈xp, xg, xs, xh〉
| (νh)(νf)(h h f |xp c f |xg c true |xs c TB(v) |xh c h).

Formally, these replacements homomorphically extend to a mapping TB :
λτ (fchb)→ λτ (fch) on all λτ (fchb)-expressions, -processes, and -contexts. A cor-
responding type translation is defined inductively, by TB(buf τ) , buf (TB(τ)),
and proceeding homomorphically in all other cases.

These mappings are compatible with typing:

Lemma 4.1 (Type correctness). Let e and p be λτ (fcb)-terms and processes,
and C, D be λτ (fcb)-term and -process contexts, respectively.

1. If e : τ then TB(e) : TB(τ).
2. If p is well-typed, then TB(p) is well-typed.
3. If p is well-formed, then TB(p) is well-formed.
4. For C[[·]τ] : wt and D : wt we have TB(C[[·]TB(τ)]) : wt and TB(D) : wt.

Proof. The first item follows by induction on the structure of expressions, the
second by induction on the structure of processes. The third part holds, since
introduction of process variables is either not changed by the transformation, or
for the buffer-components it is easy to check that well-formedness is not changed.
The last part follows by induction on the structure of contexts.

Corresponding typing properties hold for contexts, so that TB forms a trans-
lation in the sense of [27]. It is easy to see that:

Lemma 4.2 (Compositionality). The translation TB : λτ (fchb) → λτ (fch)
is compositional, i.e., for all p, D we have TB(D)[TB(p)] = TB(D[p]), and for
all τ , and e : τ and C[[·]τ], we have TB(C)[TB(e)] = TB(C[e]).

24 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

Proof. Immediate from the fact that TB is extended homomorphically from con-
stants to all terms, and from base components to arbitrary processes, resp.

We argue that the buffer implementation, described by TB above, is cor-
rect. To this end, we will prove TB convergence equivalent in this section, and
use compositionality (Lemma 4.2). By Proposition 2.1, this entails that TB is
observationally correct and adequate.

Lemma 4.3 (TB preserves success). Let p be a λτ (fchb)-process.

1. If p is successful, then so is TB(p). In particular, TB(p)⇓ in this case.
2. If TB(p) is successful, then p is also a successful process.

The definition of the translation TB also shows the following.

Lemma 4.4 (Context translation of TB). If D is a process context of
λτ (fchb), then TB(D) is a process context. If E is an evaluation context of
λτ (fchb), then TB(E) is an evaluation context in λτ (fch).

Note that the corresponding property does not hold for future evaluation con-
texts. As an example consider the process x⇐put(y, v) | y⇐get x | Assume
that get is executed first, then put. For the corresponding reduction sequence in
λτ (fch) it is unavoidable that essentially the same sequence is used on the imple-
mentation get and put. However, the initial reductions of put may be executed
earlier. (In the case of y

susp⇐= get x, this is even enforced.) For the reduction in
the implementation, this means that the reduction steps of instances of get and
put cannot be gathered into one contiguous block; this is possible only for the
main steps 1,2,3 of an instance.

4.3 Observational Correctness and Adequacy of the Translation TB

Proposition 4.5 (↓-preservation of TB). For every λτ (fchb)-process p, p↓
⇒ TB(p)↓.

Proof. We use induction on the number of reduction steps in a fixed reduction U
corresponding to p↓ in order to construct a transformation sequence Uc of TB(p)
to a successful process, where Lemma 4.3 shows the base case. The translation
TB modifies the evaluation contexts and future evaluation contexts, but only in a
predictable way. We use the following diagrams to construct for every reduction
step a corresponding sequence of transformations and reductions. We omit the
trivial diagrams where a reduction is simply mirrored. The following diagrams
can be completed:

p1

TB
��

a // p2

TB
��

q1
ev,∗

//_____ q3
cell.deref,∗//_____ q4

gc //_____ q2

Correctness of Concurrent Buffer Implementations 25

where a ∈ {buff.put(ev),buff.get(ev),buff.new(ev)}; and the correspond-
ing reduction q1

∗−→ q3 is the complete reduction of the respective body of the
translation including the dereferences before the wait followed by perhaps the
transformation cell.deref, then followed by the transformation gc that re-
moves certain no longer used handle- and thread-components.

p1

TB
��

a // p2

TB
��

q1
β-cbv(ev),case.beta(ev),∗

//_______ q3 ev,a
//_______ q4 q2

β-cbv(a),case.beta(a),∗
oo_ _ _ _ _ _ _

where a ∈ {fut.deref(ev), lazy.trigger(ev)}; and the first sequence of re-
ductions are beta- and case-reductions of the start of the body of the put- or
get-instance in order to bring the focussed variable in an F̃ -context, which is
provided by a nesting of cases. The second sequence are the beta- and case-
reductions backwards, such that q1

a−→ q2, however as a transformation (i.e.
non-reduction).

We illustrate the diagram for a buff.put(ev)-reduction:

y⇐put(x, v) |x b− −→ y⇐unit |x b v.

The reduction after the translation is as follows:
y⇐put〈x, TB(v)〉) | (νxp, xg, xs, xh)(x⇐〈xp, xg, xs, xh〉
| (νh, f, h′, f ′)(h h f |h′ h f ′ |xp c true |xg c f |xs c f ′ |xh c h))

This will reduce to (we show also some intermediate states)
y⇐wait true; . . . | (νh1)(νf1)h1 h f1 | (νxp, xg, xs, xh)(x⇐〈xp, xg, xs, xh〉
| (νh, f, h′, f ′)(h h f |h′ h f ′ |xp c f1 |xg c f |xs c f ′ |xh c h))

→ y⇐exch(xh, h1) . . . | (νh1)(νf1)h1 h f1 | (νxp, xg, xs, xh)(x⇐〈xp, xg, xs, xh〉
| (νh, f, h′, f ′)(h h f |h′ h f ′ |xp c f1 |xg c f |xs c TB(v) |xh c h))

→ y⇐unit | (νh1)(νf1)h1 h f1 | (νxp, xg, xs, xh)(x⇐〈xp, xg, xs, xh〉
| (νh, f, h′, f ′)(h h • |h′ h f ′ |xp c f1 |xg c f |xs c TB(v) |xh c h1) | f⇐true)

cell.deref−−−−−−−→
y⇐unit | (νh1)(νf1)h1 h f1 | (νxp, xg, xs, xh)(x⇐〈xp, xg, xs, xh〉
| (νh, f, h′, f ′)(h h • |h′ h f ′ |xp c f1 |xg c true |xs c TB(v) |xh c h1) | f⇐true)

gc−→ y⇐unit | (νh1)(νf1)h1 h f1 | (νxp, xg, xs, xh)(x⇐〈xp, xg, xs, xh〉
|xp c f1 |xg c true |xs c TB(v) |xh c h1)

By induction on the length of U , the sequence Uc will be constructed such
that there is a correspondence between the intermediate processes of U and Uc:

If the first reduction of U is not a buff.new(ev)-, buff.get(ev)-, or
buff.put(ev)-reduction, and not a fut.deref(ev), lazy.trigger(ev) that is
triggered through an argument-position of an buff.get(ev)-, or buff.put(ev),
then the same reduction is concatenated to Uc. Otherwise, we use the diagrams
above to extend Uc. Thus we can assume that executing the code of buffer, get
and put is completely done, respectively, and not disturbed by a concurrent
thread. We have constructed a transformation sequence Uc for TB(p) resulting
in a successful process. However, in general this sequence is not an ev−→-reduction.

26 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

Theorem 3.24 now shows that all non-ev-reductions in Uc are correct λτ (fch)-
transformations. This implies, using an induction on the length of Uc, that there
is also an ev−→-reduction of TB(p) to a successful process.

The other parts of the proof of convergence equivalence of TB require a more
careful analysis.
Invariants of the Buffer-Implementation. We analyze the global state of
the λτ (fch)-translation TB(p) during reduction. In this analysis we will focus
on the reductions of put and get. The reduction of buffer provides no problems,
since all reductions are correct according to Theorem 3.24.

The execution of each instance of put or get consists of initial (β-cbv(ev)) and
(case.beta(ev)) reductions, and eventually the argument has to be evaluated
in a future-strict context. The ensuing (case.beta(ev)) and (fut.deref(ev))-
reduction (pattern matching on the cells in a tuple 〈p, g, s, h〉 and proceeding
after wait, resp.) are ignored in the following analysis.

The following analysis will be used for any number of buffers, but we will
first restrict the arguments to the situation where one buffer is used. We describe
the state of TB(p) during evaluation, where we only focus on the part that
implements the buffer x. We also describe in detail the active instances of put
and get, i.e., the code-pointer and internal state of the implemented puts and
gets until they are finished. The notation in general is fx,g,i, hx,g,i, fx,p,i, hx,p,i

for futures and handles and nx,p, nx,g for the number of processes for the buffer
x, and g for get, p for put, and i is an index. In the following we omit the buffer
x in the notation if it is not ambiguous.

- For the active get-functions: For i = 0, . . . , ng there are futures fg,i and the
corresponding handles hg,i, and also the futures f ′g,i and the corresponding
handles h′g,i,

- For the active put-functions: For i = 0, . . . , np, there are futures fp,i and the
corresponding handles hp,i.

- For active put- and get-functions, we index the corresponding code-pointer
in the functions with i = 1, . . . , np and i = 1, . . . , ng, and the code-pointer
may have values 1a, 1b, 2, 3a, 3b as in the encoding in Fig. 9, where the
indexing is according to the sequential execution. For the put-encoding:

(1) wait (exch(xp, f)); (1a) for exch . . .; (1b) for wait
(2) exch(xs, vi);
(3) (exch(xh, hp,i))(true) (3a) for exch . . .; (3b) for handle-binding

For the get-encoding:

(1) wait (exch xg f); (1a) for exch . . .; (1b) for wait
(2) let v = exch(xs, f

′
g,i);

(3) in (exch(xh, hg,i))(true); v (3a) for exch . . .; (3b) for handle-binding

For the analysis of the invariants, we assume that the initial generation
of handle-future pairs is executed together with the evaluation of the first
exchange-operation. Other reductions, like beta-reduction of the let and
other beta-, case- and deref-reductions, are ignored for the moment.

Correctness of Concurrent Buffer Implementations 27

- With k we denote the index of the active get or put function that has currently
access to the cell xs of the buffer.

- We let fp,0 = true. The variables fg,0, hg,0, f ′g,0, h
′
g,0 are the future-handle

pairs from the execution of buffer that generates the buffer x (or from the
initial translation of buffer-components).

- The current values (possibly futures) stored in the cells are xg, xp, xs, xh.
Initially: 〈xp, xg, xs, xh〉 = 〈true, fg,0, f

′
g,0, hg,0〉.

- The only synchronizations occur at the wait-command, where the execution
has to wait until the handle corresponding to the future is bound to true by
the corresponding handle-bind.

The current bindings of the futures fg,i and fp,i do not contribute, since they
can only be bound to true, or are not yet available due to a missing handle-bind.
An active put with index i has one of the following possible states, and can be
interrupted at any of these points:

1a . . . (exch(xp, f)); xp := fp,i where np = i
1b wait fp,i−1 synchronization
2 exch(xs, vi); provided hp,i has been bound

xs := vi where now k := i
3a (exch(xh, hp,i))(true) xh := hp,i

3b (hg,i−1)(true) handle hg,i−1 will be used: fg,i−1⇐true

The state of an active get with index i has one of the following possibilities, and
can be interrupted at any of these points:

1a . . . (exch(xg, f)); xg := fg,i where ng = i;
1b wait gp,i−1 synchronization
2 let v = exch(xs, f

′
g,i) . . . provided hg,i has been bound

let v = vi . . . xs := f ′g,i where now k := i
3a . . . (exch(xh, hg,i)) . . . xh := hg,i

3b hp,i(true) hp,i will be used, fp,i⇐true and v returned

The complete execution of buffer creates four cells and returns a 4-tuple of
these cells. During reduction there are several possibilities for 〈xp, xg, xs, xh〉:

〈fp,0, fg,0, f
′
g,0, hg,o〉 Initially, i.e. after buffer, where k = np = ng = 0

〈fp,np
, fg,ng

, vk, hg,k−1〉 after 2 of Pp,k

〈fp,np
, fg,ng

, vk, hp,k〉 after 3a of Pp,k

〈fp,np
, fg,ng

, f ′g,ng
, hp,k〉 after 2 of Pg,k

〈fp,np , fg,ng , f ′g,ng
, hg,k〉 after 3a of Pg,k

A further invariant is that the occurrences of the handles and futures, and
also of the reference cells belonging to x, are only at the mentioned occurrences,
and nowhere else. This only holds, since we look for the images of processes by
the translation TB .

Informally, there are two queues: one of active put-instances waiting for ac-
tivating the respective handles by the previous get, and a queue of get-instances

28 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

waiting for activating the handle by the previous put. All the futures will be
bound to true at some time, provided the evaluation terminates successfully.

Using induction on the number of buffer-related small-step reductions, we
see that the above description is an invariant for the buffer-implementation of a
single buffer x.

Referring to Fig. 9, the internal code-pointer is denoted 1a, 1b, 2,
3a, 3b. For instance, we describe subexpressions of put as follows: (1) for
wait (exch(xp, f)) with (1a) for exch . . . and (1b) for wait, (2) for exch(xs, vi),
and (3) for (exch(xh, hp,i))(true) with (3a) for exch . . . and (3b) for handle bind-
ing. The subexpressions of get are described similarly.

Our analysis implies the following sequencing constraint of reductions in
λτ (fch), where

x,a,b−−−→ means a reduction step for a particular buffer (implemen-
tation) x of the put/get-instance b with code-pointer a.

Lemma 4.6. For a fixed buffer x the following sequence relations holds in any
ev−→-reduction U :
If for two instances b1, b2 of put, get:

x,a,b1−−−−→ is before
x,a,b2−−−−→ for some a ∈

{1b, 2, 3a, 3b}, then for all a1, a2 ∈ {1b, 2, 3a, 3b}: x,a1,b1−−−−→ is before
x,a2,b2−−−−→.

For two put-instances b1, b2 (or get-instances, respectively):
x,1a,b1−−−−→ is before

x,1a,b2−−−−→ iff
x,2,b1−−−−→ is before

x,2,b2−−−−→.

Proof. The analysis above shows that if for a fixed buffer x, a specific instance
b of put or get performs a reduction (1b)-reduction step, then the reductions (2)
(3a) (3b) of this instance can also be executed, in this sequence, and no other
instance of put or get for this buffer x can make a reduction in between, which
proves the first part.

This does not hold for (1a). However, the analysis of the global state above
shows that (1a) corresponds to an enqueue for the access to the cell xs, within
put-instances (get-instances, respectively).

Proposition 4.7 (↓-reflection of TB). For every λτ (fchb)-process p, TB(p)↓
⇒ p↓.

Proof. Suppose that for the λτ (fchb)-process p there is a reduction U of TB(p)
to a successful process pω. Then the λτ (fchb)-reduction of p is constructed in
several steps. In the following we do not mention the beta-reductions that are
used for the reduction of the let and the sequential operator “;”. We will make
use of the implied sequence of reductions as stated in Lemma 4.6.

1. Rearranging U : In general the single reductions of a put, or of a get are not
in a single block, but may be interleaved with other reductions. We show
that it is possible to gather the 1,2,3-reductions in one block:
The idea is to commute reductions.
(a) The

x,1b−−→-reductions are moved to the right. The strategy is to start
with the rightmost type-2-reduction and to move the closest type-1b-
reduction to the right. I.e. a single operation is:

Correctness of Concurrent Buffer Implementations 29

x,1b−−→ · ∗−→ · x,2−−→ Ã ∗−→ · x,1b−−→ · x,2−−→. This is possible, since all other re-
duction are triggered from parallel processes, and since these reductions
commute with all other reductions. The result will be a rearranged re-
duction, where all 1b and 2-reductions of the same process are neighbors.
In a similar way we move the perhaps necessary dereferencing reductions
that are a precondition for the execution of the 1b-reduction (i.e. the
wait) immediately before the 1b-reduction.

(b) The same can be done for the type 1a-reductions, which will result in
a reduction, where 1a, 1b and 2-reductions of the same instance are
executed without other intermediate reductions. For the 1a-type it is
important to note that the sequence of

x,1a−−−→-reductions is the same as
the type-2-reductions, if the sorting criteria is the body of the put, gets.

(c) It is also easy to see that the newhandled-reductions can also be moved
close to their corresponding 1a, 1b and 2-block.

(d) The type 3-reductions, i.e. 3a and 3b of the put- and get-body can also
be moved to the left, where the strategy is now to start with the leftmost
type-2-reduction. The arguments are as in the previous items, where also
the sequence of the 3a,3b-reductions (w.r.t the bodies put, get) are the
same as the type-2-reductions (see Lemma 4.6).

In a similar way we can rearrange the reduction from a buffer, where the
reductions before the final reduction within the body are moved to the right.
In summary, we obtain an ev-reduction U1, where the reductions of every
buffer are without interrupt, and where the reduction of get and put are in
one block, with the exception of the first reductions which are beta- and case-
reductions. The reason is that the future-strict evaluation of the arguments
of put, get is mirrored after the translation by the future-strict evaluation
of the arguments that will start only after the first beta-reduction for get, or
after the first beta- and case-reduction for put.

2. Now we modify the reduction U1 from left to right. This is done in a similar
way as in the proof of Proposition 4.5: Whenever there is an a-reduction
with a ∈ {fut.deref(ev), lazy.trigger(ev)} that is triggered after the
first reductions of a put, get, and it is not followed by the corresponding 1a-
reduction, we immediately add a transformation sequence W consisting of
inverse beta-and case-reductions after the a-reductions where W eliminates
the initial (beta,case)-reductions of put or get that triggers the a-reduction.
After W , we add the inverse reduction W−1 immediately after W .The reduc-
tion sequence can be chosen such that W−1 is an ev-reduction. The following
correspondence diagram then holds:

p

TB ��

buff.put(ev)∨buff.get(ev)
// ·

TB

���
�
�

q = TB(p)
β-cbv

∨case.beta(ev)

//______ ·
1a;...;1b;2;2a;2b

//______ ·
W

//______ ·
W−1

//______ ·

The effect is to replace a−→ by a−→ ·W ·W−1. The idea is to move the reduction
steps in W−1 further to the right to the 1a–3b-block of the reductions,

30 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

to whom they belong. This is possible, if between the beta,case-reductions
and the 1a–3b-block there are no more a-reductions that are triggered by
the result of the beta,case-reductions. In order to make the correspondence
completely analogous to the construction in the proof of Proposition 4.5,
we also have to add gc and cell.deref-reductions and their inverses. This
gives a sequence of correct transformations and reductions U2

This rearrangement is performed from left to right, such that the reduction
Ub of p, corresponding to U2 via TB , can be constructed. It is easy to see by
induction that the constructed reduction is according to the ev-strategy.

Now p
Ub−→ pω, TB(p) U2−−→ Q ∼ TB(pω), where

Q
fut.deref(ev),lazy.trigger(ev),∗−−−−−−−−−−−−−−−−−−−−−→ TB(pω) and hence by Theorem 3.24 and

Lemma 4.3, we have p↓.

Proposition 4.8 (⇓-reflection of TB). For every λτ (fchb)-process p, TB(p)⇓
⇒ p⇓.

Proof. Suppose that for the λτ (fchb)-process p we have p↑. We show TB(p)↑.
Since p↑ there is a reduction R from p to a process p0⇑. Analogous to the proof
of Proposition 4.5, we can show by induction on the length of R that there is a
sequence R′ of correct transformations and reductions from TB(p) to the process
TB(p0). Proposition 4.7 applied to p0 shows that TB(p0)↓ is impossible, hence
TB(p0)⇑ holds. By induction on the length of R′ (which consists of ev-reductions
and correct transformations), Theorem 3.24 is used to show TB(p)↑.

The proof of the following proposition is more intricate:

Proposition 4.9 (⇓-preservation of TB). For all p ∈ λτ (fchb): p⇓ ⇒ TB(p)⇓.

Proof. We prove the equivalent claim that for every λτ (fchb)-process p: TB(p)↑
=⇒ p↑.
Let p be a λτ (fchb)-process such that q := TB(p)↑. Let U = (TB(p) ∗−→ qω) be a
λτ (fch)-reduction sequence with qω⇑.

p

TB ��
q = TB(p)

ev,U
// qω⇑

According to the previous analysis of the intermediate states of
buffer, put, get-operations, and using a similar construction as in the proof of
Proposition 4.7, we look for all translated buffer-operations in U , for all buffers.
The goal of the modification is to rearrange the reduction steps such that the
reduction steps of every buffer, get, put are a contiguous block of reductions, up
to the initial beta- and case-reductions. However, since the reduction is ending
with a must-divergent process, there may be started executions of buffer, get, put
that are not finished within the reduction. So, for the proof it may be necessary

Correctness of Concurrent Buffer Implementations 31

to insert reduction steps. However, in order to have an induction measure, we
never add reductions of type 1a, thus the number of these will not be increased.
The other parts of the induction measure are then standard.

1. First we argue that the buffer-reductions can be adjusted: It is easy to see
that for the reductions of a single buffer-instance, we can shift all the corre-
sponding reduction steps to the right (they commute with all other reduction
steps), immediately before the last reduction step of the buffer, provided all
of them are performed in U ′. If some are missing, it is possible to perform the
reductions starting from qω, which leads to a must-divergent process, since
these are reductions according to the ev-strategy. Then we can perform the
rearrangement as before. In order to have an induction measure, we do not
insert the first beta-reduction of an buffer.

2. Now we rearrange the reduction steps of put, get, where we make implicit
use of Lemma 4.6. Since the cell.exch(ev)-reductions are not correct in
general, we have to be a bit careful. First we consider the case where the
x,type−2−−−−−−→ reduction is in U .
(a) The reduction sequence

x,1b−−→ ·W · x,2−−→, where the 1b and 2 reduction step

are activated by the same body, is rearranged as follows: W · x,1b−−→ · x,2−−→.
This can be done in all cases.

(b) The reduction sequence
x,1a−−−→ ·W · x,1b−−→ · x,2−−→, where the 1a and 2 reduc-

tion step are activated by the same body, is rearranged as follows: The
(x,1a)-reductions in W have to be moved to the right of the sequence

W · x,1b−−→ · x,2−−→, keeping their sequence. Then the
x,1a−−−→ can be moved im-

mediately to the left of
x,2−−→. Lemma 4.6 justifies these moves, and since

the other commutations are possible. We perform this exhaustively.
(c) Now we shift the (x,3a) and (x,3b)-reductions to the left. This can be

done using the strategy by starting with the rightmost (x,3a)-reduction,
then the rightmost (x,3b)-reduction, and so on. However, there may
be (x,2)-reductions without corresponding (x,3a),(x,3b)-reduction in the
sequence. In this case, the first missing (x,3a)-reduction is also a ev-
reduction for qω, thus the result is again must-divergent, and so we can
insert it after qω, i.e. assume that it is already in the reduction. The
same holds for for the first missing (x,3b)-reduction.

3. Now we consider the case where some type (x,1a)-reduction is in the se-
quence, but there is no corresponding continuation. Let us consider the left-
most (x,1a)-reduction with missing (x,1b)-reduction. As above, this is an
ev-reduction for qω and hence we can assume that it is already in the reduc-
tion sequence. The same for (x,1b)- and (x,2)-reductions. Note that between
(x,1a) and (x,1b) there may be some dereferencing, which can be shifted
along with the other reductions and can be treated in a standard way.
If a process has performed the newhandled-reduction(s), but the (x,1a)-
reduction is not in the sequence, then this can be shifted in the reduction
such that it ends with q′

newhandled−−−−−−→ qω. Then Theorem 3.24 shows that q′ is
also must-divergent, and we can remove the newhandled-operation.

32 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

4. Treatment of triggering dereferencing and lazy-trigger can done be as usual.

Now the situation is as follows: There is some process pω with p
∗−→ pω and

TB(pω) = qω and qω⇑. Proposition 4.5 shows that pω↓ is impossible, hence pω⇑,
which implies p↑.

Propositions 4.5, 4.7, 4.8, 4.9, and 2.1 imply:

Theorem 4.10 (Convergence equivalence of TB). The translation TB is
convergence equivalent. In fact, it is observationally equivalent: for all C and e,
C[e] and TB(C)[TB(e)] have the same convergence behavior.

This directly shows the following.

Theorem 4.11 (Observational correctness of TB). The translation TB is
observational correct and adequate.

For the proofs in the next section, we need also correctness of several trans-
formations in λτ (fchb), which follow from adequacy of the translation TB .

Theorem 4.12 (Correct transformations in λτ (fchb)). The following holds:

- All reduction rules of λτ (fchb) are correct, with the exception of
cell.exch(ev),buff.get(ev), and buff.put(ev).

- The transformations β-cbv(a), fut.deref(a), cell.deref, gc and
det.exch (see Fig. 7) lifted to λτ (fchb) are correct.

Proof. Let ≈ be a program transformation mentioned in the claim. Due to ad-
equacy of TB by Theorem 4.10, it is sufficient to show TB(p1) ∼ TB(p2) for all
(p1, p2) ∈ ≈ such that p1, p2 are well-typed and well-formed. As already argued
(see Lemma 4.4) the translation TB of D- and E-contexts of λτ (fchb) results in D
and E-contexts of λτ (fch). The same holds for values. Thus the correctness of the
reduction rules β-cbv(ev), thread.new(ev), cell.new(ev), lazy.new(ev) and
case.beta(ev) is easy to obtain by using the according equivalence for λτ (fch).
For the rules using F -contexts (fut.deref(ev) and lazy.trigger(ev)), similar
as in the proof of Proposition 4.5 we can show that the equivalence holds: A re-
duction a−→ with (a ∈ {fut.deref(ev), lazy.trigger(ev)} corresponds by TB to

a transformation of the form
β-cbv(ev),case.beta(ev),∗−−−−−−−−−−−−−−−−→ .

a−→ .
β-cbv(ev),case.beta(ev),∗←−−−−−−−−−−−−−−−−,

which is a correct transformation. The correctness of β-cbv(a), fut.deref(a),
gc, det.exch and cell.deref follows directly by using the equivalences for the
encodings in λτ (fch). Correctness of buff.new(ev) follows by inspecting the en-
coding (see proof of Proposition 4.5): The translation only consists of reductions
that are correct transformations of λτ (fch).

We can show that the embedding ιB : λτ (fch) → λτ (fchb) is fully abstract.
However, we have to leave open the full abstractness of TB .

Theorem 4.13 (Full abstraction of the embedding). The embedding ιB :
λτ (fch)→ λτ (fchb) is fully abstract.

Correctness of Concurrent Buffer Implementations 33

Proof. This follows from a general fully abstractness theorem of the embedding
for extensions in [25].

Remark 4.14. Full abstraction cannot be shown for the translation TB , since
Proposition 2.3 is not applicable for the following subtle reason: TB changes
the types, and using a global environment Γ before the translation, we have in
fact: TB : λτ (fchb)(Γ) → λτ (fch)(TB(Γ)). Note also that we have types for the
expressions but only one type for processes. In order to find an embedding, we
would have to construct a reverse embedding ι : λτ (fch)(TB(Γ))→ λτ (fchb)(Γ),
which is not possible, since then there are well-typed expressions that cannot be
embedded as (well-typed) expression in λτ (fchb), e.g. an expressions (case x . . .)
in λτ (fch), where the variable x is of type buf bool in λτ (fchb).

4.4 Observational Correctness of the Implementation

A common approach to the specification of abstract data types, in the sequential
case, is by an axiomatic description of the operations. The results developed
above allow us to prove that the buffers of λτ (fchb) satisfy such axioms. Using
adequacy of TB (Theorem 4.11), the implied correctness of transformations for
λτ (fchb) (Theorem 4.12), and correctness of program transformations for λτ (fch)
(Theorem 3.24), one can show that the following rules for put and get are correct:

(det.put) (νx).E[put(x, v)] |x b− → (νx).E[unit] |x b v
(det.get) (νx).E[get x] |x b v → (νx).E[v] |x b−

These rules are like buff.put(ev) and buff.get(ev), but restricted to sequen-
tially used buffers. Then, get(put(buffer u, v)) ∼ v and similar equivalences fol-
low.

More generally, we would like to show that the code in Fig. 9 correctly im-
plements the specification of buffers, even if they are used in a non-sequential
context. In other words, any use of buffers should give rise to the same obser-
vations, whether one computes with buffers abstractly using the specification,
or concretely using the implementation. Informally, such a result states that
the implementation as well as the specification can be considered as different
realizations of an abstract data type of buffers. Since formally, the two live in
different calculi, we use convergence equivalence (Theorem 4.10) of the transla-
tion TB directly, rather than arguing by its adequacy as done for (det.put) and
(det.get) above.

More particularly, let e : τ ′ be any “client” making use of buffers: e : τ ′ is a
λτ (fchb)-program that may have free occurrences of the variables b : unit→ bufτ ,
p : bufτ × τ → unit and g : bufτ → τ but does not otherwise contain the
buffer primitives, and τ and τ ′ are λτ (fch) types. Such client programs are not
affected by the encoding TB induced by the implementation; we have TB(C[]) =
C for the context C defined as (λ〈b, p, g〉. e) []. Thus, convergence equivalence
(Propositions 4.5, 4.7, 4.8 and 4.9) yields

C[〈buffer, λ〈x, y〉.put(x, y), get〉]ξ ⇔ C[〈buffer, put, get〉]ξ

for all observations ξ ∈ {↓,⇓}.

34 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

TH(h h f) , (νf ′)(f
susp⇐= let v = get f ′ in put(f ′, v); v | f ′ b − |h⇐λz.put(f ′, z))

TH(h h •) ,h
susp⇐= h

TH(handle),λx.let f ′ = buffer unit
f = lazy (λ .let v = get f ′ in put(f ′, v); v)
h = thread (λ .λz.put(f ′, z))

in x f h end

TH(p) ,homomorphically wrt. the term structure

Fig. 10. Encoding of handles using buffers

5 Handled Futures are Encodable with Buffers

In this section we show that we can encode handled futures using buffers. Let
λτ (fcb) be the subcalculus of λτ (fchb) where handles are removed. More pre-
cisely, in λτ (fcb) the components y h x, h •, and the constant handle are removed
from the syntax of processes, expressions, evaluation contexts etc. Consequently,
the reductions handle.bind(ev), and handle.new(ev) are also dropped.

We show that there exists a translation TH : λτ (fchb) → λτ (fcb) which is
fully abstract. The translation TH is defined in Fig. 10. It does not change the
types.

The idea of the translation is to simulate the synchronization effect of han-
dles using the synchronization mechanism of one-place buffers. We consider the
encoding of a handle component y h x. An empty buffer represents the ability to
bind the handled future x, i.e. binding of a handle consists in performing a put
operation on the buffer. If the handled future x is accessed for the first time, then
it becomes bound to the content of the filled buffer and another put-operation is
performed on the buffer to ensure that the buffer remains full. The encoding of
the handled future using lazy threads ensures that the possibility that a handle
is not used in a successful reduction is translated into a successful reduction in
the buffer implementation. Using (non-lazy) threads in the encoding would end
up in a suspended get-operation, which is never successful.

The encoding of the constant handle generates the translated components of
a handle when it is applied to an argument (modulo some beta(ev)-reductions).

The encoding of the used handle is different, compared to the result of the
reduction of an encoded handler use. Nevertheless, since a handle.bind(ev)-
operation on a used handle is not possible and leads to a must-divergent process,
it is sufficient to introduce the process component h

susp⇐= h, which fails as soon as
an encoded handle.bind(ev)-operation is performed. Moreover, after we have
proved adequacy of TH , we can verify that h

susp⇐= h ∼ h h • in λτ (fchb) and
λτ (fch), resp. (see Remark 5.17). The f

susp⇐= get f ′ and the lazy-operator in the
encoding are necessary, since otherwise the future f would enforce the concurrent
evaluation of get f ′, even if f does not occur in an E-context.

We first show some properties of TH . The translation TH is compatible with
typing:

Correctness of Concurrent Buffer Implementations 35

Lemma 5.1 (Type correctness of TH). Let e and p be λτ (fchb)-expressions
and processes, and C, D be λτ (fchb)-expression and -process contexts, respec-
tively.

1. If e : τ then TH(e) : TH(τ).
2. If p is well-typed, then TH(p) is well-typed.
3. If p is well-formed, then TH(p) is well-formed.
4. For C[[·]τ] : wt and D : wt we have TH(C[·]TH(τ)]) : wt and TH(D) : wt.

Proof. This follows by induction of the structure of expressions, processes, and
contexts, respectively. The condition on well-formedness holds: the introduction
of process variables is not changed, and for the handle components the well-
formedness remains intact, as can be checked easily.

Thus, TH is a translation in the sense of [27].

Lemma 5.2 (Compositionality of TH). The translation TH : λτ (fchb) →
λτ (fcb) is compositional, i.e., for all p, D, e, C, we have TH(D)[TH(p)] =
TH(D[p]) and TH(C)[TH(e)] = TH(C[e]).

Proposition 5.3. The following properties of TH hold:

- For all expressions e ∈ λτ (fchb): e is a λτ (fchb)-value iff TH(e) is a λτ (fcb)-
value.

- For all processes p ∈ λτ (fchb): p is a successful λτ (fchb)-process iff TH(p) is
a successful λτ (fcb)-process.

- TH(D) is a D-context for λτ (fcb) iff D is a D-context for λτ (fchb).
- TH(E) is a E-context for λτ (fcb) iff E is an E-context for λτ (fchb).
- TH(F) is a F -context for λτ (fcb) iff F is a F -context for λτ (fchb).

Proof. The first part holds since the constant handle is translated into a value,
and other values are translated homomorphically. Since (used) handle compo-
nents are successful for λτ (fchb) and their translations are also successful for
λτ (fcb), and since values are translated to values, the second part follows. The
remaining parts use the first property.

Due to the last proposition the hard cases for proving convergence equivalence
of TH are the encodings of handle.new(ev)- and handle.bind(ev)-reductions.
All other reduction are inherited by the translation.

We first lift program equivalences from λτ (fchb) to λτ (fcb). Let ιH :
λτ (fcb) → λτ (fchb) be the identity translation from λτ (fcb) into λτ (fchb). Ob-
viously, ιH is compositional and convergence equivalent and hence it is obser-
vationally correct and adequate. In fact, at the end of the section we will prove
that ιH is fully-abstract.

Theorem 5.4 (Correct transformations in λτ (fcb)). The following holds:

- All reduction rules of λτ (fcb) are correct, with the exception of
cell.exch(ev),buff.get(ev), and buff.put(ev).

36 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

- The transformations β-cbv(a), fut.deref(a), cell.deref, gc and
det.exch (see Fig. 7) lifted to λτ (fcb) are correct.

Proof. This follows by Theorem 4.12 and adequacy of ιH .

Hence, we must prove some necessary properties for the encoded reductions
involving handles. This requires us to prove correctness of some additional pro-
gram transformations in λτ (fcb) in a series of lemmas.

Since TH is compositional, for using our methods for proving observational
correctness and adequacy, it is sufficient to show convergence equivalence.

Let li, i = 1, . . . , 6 and r be the following (meta-)processes:

l1 := (νf ′)(y
susp⇐= let v = get f ′ in put(f ′, v); v | f ′ b w |x⇐λz.put(f ′, z))

l2 := (νf ′)(y⇐let v = get f ′ in put(f ′, v); v | f ′ b w |x⇐λz.put(f ′, z))
l3 := (νf ′)(y⇐let v = w in put(f ′, v); v | f ′ b − |x⇐λz.put(f ′, z))
l4 := (νf ′)(y⇐put(f ′, w); w | f ′ b − |x⇐λz.put(f ′, z))
l5 := (νf ′)(y⇐(λ .w)unit | f ′ b w |x⇐λz.put(f ′, z))
l6 := (νf ′)(y⇐w | f ′ b w |x⇐λz.put(f ′, z))
r := y⇐w |x

susp⇐= x

Let sp be the union of the program transformations (spi) defined as D[li]→ D[r]
for i = 1, . . . , 6.

Lemma 5.5. For all p ∈ λτ (fcb) the following holds: if p
ev,n−−→ p′ where p′ is

successful and p
spi−−→ q, then q

ev,≤n−−−−→ q′ where q′ is successful.

Proof. We use induction on the length n of the given reduction sequence for p.
For the base case, n = 0, it is obvious that if p is successful, then also q is a
successful process, i.e. the claim holds. For the induction step let us assume that
p

ev−→ p1
ev,n−1−−−−→ pn, where pn is successful, and p

spi−−→ q. We now inspect the
cases, which may occur, and show how the forking situation p1

ev←− p
spi−−→ can be

closed, such that the induction hypothesis can be applied:

p
spi //

ev

��

q

ev

���
�
�

p1 spi

//___ q1

p
sp1 //

lazy.trigger(ev)

��

q

p1

sp2

??~
~

~
~

p
sp2 //

buff.get(ev)

��

q

p1

sp3

??~
~

~
~

p
sp3 //

β-cbv(ev)

��

q

p1

sp4

??~
~

~
~

p
sp4 //

buff.put(ev)

��

q

p1

sp5

??~
~

~
~

p
sp5 //

β-cbv(ev)

��

q

p1

sp6

??~
~

~
~

A final case is that the future x is dereferenced by the reduction p
ev−→ p1. In this

case p and q are always must-divergent processes, and thus these cases cannot
occur. In all other cases we can apply the induction hypothesis to p1

spi−−→ q or
p1

spi−−→ q1, which then shows the claim.

Correctness of Concurrent Buffer Implementations 37

Lemma 5.6. For all p ∈ λτ (fcb): if p↓ and q
spi−−→ p, then q↓.

Proof. We use induction on the number n of reductions of a given reduction
sequence from p to a successful process. If n = 0 then p is successful and q must
be may-convergent. For the induction step, let q

spi−−→ p
ev−→ p1

ev,n−1−−−−→ pn where
pn is successful. Inspecting the possibilities for q

spi−−→ p
ev−→ p1 shows that the

following cases are sufficient:

q
spi //

ev

���
�
� p

ev

��
q1 spi

//___ p1

q
spi //

ev,∗
���
�
� p

fut.deref(ev)

��

·

fut.deref(ev)

���
�
�

q1 sp6
//___ p1

A final case is that p
ev−→ p1 triggers the lazy future x. Then both p and q are

must-divergent processes. The diagrams show that we can apply the induction
hypothesis to q1

spi−−→ p1 to derive the demanded reduction sequence for q.

Lemma 5.7. For all p ∈ λτ (fcb) holds: if p
ev,n−−→ p′ where p′ is must-divergent

and p
spi−−→ q, then q

ev,≤n−−−−→ q′ where q′ is must-divergent.

Proof. The proof is analogous to the proof of Lemma 5.5, where the base case
of the induction holds, since Lemma 5.6 implies that p⇑ =⇒ q⇑.

Proposition 5.8. For p1, p2 ∈ λτ (fcb) with p1
sp−→ p2 it holds: p1 ∼ p2.

Proof. Due to Lemmas 5.5, 5.6, 5.7 it is sufficient to show that p1
sp−→ p2 and

p2↑ implies p1↑. This proof is analogous to the proof of Lemma 5.6. The base
case follows from Lemma 5.5.

Proposition 5.9 (↓-preservation of TH). For all λτ (fchb)-processes p, the
following holds: if p↓, then TH(p)↓.

Proof. The proof is by induction on the length of a successfully ending reduc-
tion for p. The induction base is covered by Proposition 5.3. For the induction
step let p

ev−→ p′. As induction hypothesis we use that TH(p′) ↓. Due to the
properties of the context translation (Proposition 5.3) it is easy to see that
all reductions of λτ (fchb) except for handle.bind(ev) and handle.new(ev)
can be transferred to the encoding in λτ (fcb), i.e. if p

a,ev−−→ p′ with a 6∈
{handle.bind(ev),handle.new(ev)} then TH(p)

a,ev−−→ TH(p′). Hence, for these
cases we have TH(p)↓.

For p
handle.bind(ev)−−−−−−−−−−→ p′ we have: TH(p)

fut.deref(ev)−−−−−−−−→ β-cbv(ev)−−−−−−→ buff.put(ev)−−−−−−−−→ sp1−−→
TH(p′). Since these transformations are either ev-reductions or correct , TH(p′)↓
implies TH(p)↓.

38 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

For p
handle.new(ev)−−−−−−−−−−→ p′ it holds: TH(p)

β-cbv(ev)−−−−−−→ buff.new(ev)−−−−−−−−→ β-cbv(ev)−−−−−−→ lazy.new(ev)−−−−−−−−→

β-cbv(ev)−−−−−−→ thread.new(ev)−−−−−−−−−−→ β-cbv(ev)−−−−−−→ β-cbv(ev)−−−−−−→ β-cbv(f)−−−−−→ TH(p′) where β-cbv(f) is
the following restriction of β-cbv(a): The expression context C in the trans-
formation must be flat, i.e. the hole marker is not below a binding construct
for expressions (λ-binder, or pattern in a case-expression). Since all these
transformations are correct (Theorem 5.4), we have TH(p′)↓ implies TH(p)↓.

Before we can prove reflection of may-convergence for TH we need to show
that some transformations can be commuted wrt. ev-reductions.

Lemma 5.10. Let p1, p2 ∈ λτ (fcb) with p1
t−→ p2 where t ∈

{β-cbv(f),buff.new(ev), lazy.new(ev),thread.new(ev), fut.deref(ev)}.
If p1

ev,n−−→ p′1 where p′1 is successful (must-divergent, resp.), then there exists p′2

with p2
ev,≤n−−−−→ p′2 where p′2 is successful (must-divergent, resp.).

Proof. We first prove the claim for reduction sequences ending in successful
processes. We use induction on n. If n = 0, then p1 is successful and p2 must be
successful, too. For the induction step it is easy to verify that
all mentioned transformations fulfil the diagram shown on the
right or that p2 = p3. For the latter case the claim obviously
holds, for the former case we apply the induction hypothesis to
p3

t−→ p4 resulting in a reduction sequence for p4 of length < n.

p1

ev

��

t // p2

ev

���
�
�

p3
t

//___ p4

Appending this sequence to p2
ev−→ p4 then shows the claim. Proving the

claim for reduction sequences ending in must-divergent processes is analogous
except for the base case of the induction: If p1 is must-divergent, then p2 is
must-divergent, since all the mentioned transformations preserve contextual
equivalence (see Theorem 5.4).

We define the program transformation
dp−→ as follows, where f ′ does not occur

in E and w is a value.

D[(νf ′)(E[put(f ′, w)] | y
susp⇐= let v = get f ′ in put(f ′, v); v

| f ′ b − |x⇐λz.put(f ′, z))]
→ D[E[unit] | (νf ′)(y

susp⇐= let v = get f ′ in put(f ′, v); v | f ′ b w |x⇐λz.put(f ′, z))]

Lemma 5.11. Let p1, p2 ∈ λτ (fcb) with p1
dp−→ p2. If p1

ev,n−−→ p′1 where p′1 is

successful (must-divergent, resp.), then there exists p′2 with p2
ev,≤n−−−−→ p′2 where

p′2 is successful (must-divergent, resp.).

Proof. We first show the part for successfully ending reduction sequences.
We use induction on n. For the base case p1 cannot be successful, since
(dp) is also an buff.put(ev)-reduction. For the induction step
one can verify that the diagram shown on the right must hold
or that p2 = p3. This shows that we can apply the induction
hypothesis to p3

dp−→ p4 to derive a successful reduction sequence
for p4 of length < n. This sequence can be appended to p2

ev−→ p4

p1
dp //

ev

��

p2

ev

���
�
�

p3
dp

//___ p4

resulting in the demanded reduction sequence.

Correctness of Concurrent Buffer Implementations 39

The part for reduction sequences ending in a must-divergent process is anal-
ogous where the base case of the induction holds: if p1⇑ then p2⇑ must hold,
since (dp) is also an ev-reduction.

Proposition 5.12 (↓-reflection of TH). For all λτ (fchb)-processes p, the fol-
lowing holds: If TH(p)↓, then p↓.

Proof. Let p ∈ λτ (fchb) and TH(p)↓. We show how to derive a successful reduc-
tion sequence for p. We remember the encoded handles and handle operations
in the image of TH (e.g. by using an adequate labelling) and use induction on
the length of the given reduction sequence for TH(p). If TH(p) is successful, then
Proposition 5.3 implies that p must be successful, too.

Now let TH(p) ev−→ q
ev,n−−→ q′ where q′ is successful. There are three cases:

- The reduction TH(p) ev−→ q is not the first reduction of an encoded
handle.new(ev) or handle.bind(ev)-reduction. For these cases it holds
p

ev−→ p′ and TH(p′) = q. Applying the induction hypothesis to TH(p′) shows
the claim.

- The reduction TH(p) ev−→ q is the first reduction of an encoded
handle.bind(ev) reduction, i.e. it is an fut.deref(ev)-reduction and

p
handle.bind(ev)−−−−−−−−−−→ p′. Then we complete the encoded handle.bind(ev)-

reduction as shown by the dashed arrows in the following diagram:

TH(p′)
ev,≤n // q′′

·
sp1

OO�
�

·
dp

OO�
�

TH(p)
fut.deref(ev)

// q
β-cbv(ev)

OO�
�

ev,n
// q′

It is sufficient to show that there exists q′′ with TH(p′)
ev,≤n−−−−→ q′′ where q′′

is successful, since then we can apply the induction hypothesis to p′. The
existence of the reduction sequence TH(p′)

ev,≤n−−−−→ q′′ follows by Lemmas 5.10,
5.11, and 5.5 applied to the given reduction sequence q

ev,n−−→ q′.
- The reduction TH(p) ev−→ q is the first reduction of an en-

coded handle.new(ev) reduction, i.e. it is an β-cbv(ev)-reduction and

p
handle.new(ev)−−−−−−−−−−→ p′. Then we complete the encoded handle.new(ev)-

reduction as shown by the dashed arrows in the following diagram where

RED :=
buff.new(ev)−−−−−−−−→ β-cbv(ev)−−−−−−→ lazy.new(ev)−−−−−−−−→ β-cbv(ev)−−−−−−→

thread.new(ev)−−−−−−−−−−→ β-cbv(ev)−−−−−−→ β-cbv(ev)−−−−−−→ β-cbv(f)−−−−−→

40 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

TH(p′)
ev,≤n // q′′

TH(p)
β-cbv(ev)

// q
RED

OO�
�

ev,n
// q′

Applying Lemma 5.10 several times shows that there exists a reduction
TH(p′)

ev,≤n−−−−→ q′′. Hence, we can apply the induction hypothesis to p′.

Proposition 5.13. The translation TH is convergence equivalent.

Proof. Propositions 5.9 and 5.12 show that TH preserves and reflects may-
convergence. Preservation and reflection of must-convergence follows by showing
that TH preserves and reflects may-divergence. The proofs are similar, where the
base cases of the inductions are valid since from preservation and reflection of
may-convergence it also follows that TH preserves and reflects must-divergence.

Since TH is compositional and convergence equivalent, we have:

Theorem 5.14 (Observational Correctness of TH). The translation TH is
observational correct and adequate.

The identity translation ιH : λτ (fcb) → λτ (fchb) (see Theorem 5.4) is an
embedding and obviously compositional and convergence equivalent, and since
the translation TH is injective on types, Proposition 2.3 is applicable:

Theorem 5.15. The translations TH and ιH are fully-abstract.

Using ιH and ιB (see Theorem 4.13) we can define direct translations T ′B , T ′H
from λτ (fcb) into λτ (fch) and vice versa as follows: T ′B = TB ◦ ιH , T ′H = TH ◦ ιB .
Since observational correctness, full-abstraction and adequacy are preserved by
the composition of translation we have:

Proposition 5.16. T ′B : λτ (fcb) → λτ (fch) is observational correct and ade-
quate and T ′H : λτ (fch)→ λτ (fcb) is fully abstract.

Remark 5.17. Adequacy of TH (T ′H , resp.) implies that used handles are equiv-
alent to suspended black holes, i.e. x h • ∼ x

susp⇐= x in λτ (fchb) and λτ (fch).
This follows, since the translations are syntactically equal λτ (fcb) processes, i.e.
TH(x h •) ≡ x

susp⇐= x ≡ TH(x
susp⇐= x).

6 Encoding Buffers with Cells and Busy-wait

The results obtained above lead to the question if buffers (and therefore also
handled futures) can be encoded in a calculus without either synchronization
primitive. In this section we partly answer this question. We encode buffers
and buffer operations as cells and operations on cells by giving a translation
TRB : λτ (fcb)→ λτ (fc). The translation will be a so-called busy-wait encoding.
Our semantics will show that the busy-wait encoding is observationally correct

Correctness of Concurrent Buffer Implementations 41

buffer , λ . let xg = ref false

xp = ref true

xs = ref Nothing

in thread λ .〈xg, xp, xs〉

get , thread(λ ig. λ x. let 〈xg, xp, xs〉 = x

getOK = exch(xg, false)

in if getOK

then let Just v = exch(xs, Nothing)

dummy = exch(xp, true)

in v

else ig x)

put , thread(λ ip. λ 〈x, v〉. let 〈xg, xp, xs〉 = x

putOK = exch(xp, false)

in if putOK

then exch(xs, Just v);

exch(xg, true)

else ip 〈x, v〉)

Fig. 11. Busy-wait encoding of buffers

and adequate. However, at least from a performance point of view, these kinds
of encoding should be avoided, since the knowledge where processes are waiting
for a certain event gets lost.

We will use a data type Maybe(a) with the constructors Nothing and unary
constructor Just: a → Maybe(a). This simplifies the encoding since no dummy
values are needed.

Fig. 11 shows the encoding of the buffer operations that induces the trans-
lation TRB : λτ (fcb)→ λτ (fc). On buffers it is defined as follows:

TRB(x b v) , (νxg, xp, xs)(x⇐(xg, xp, xs) |xp c false
|xg c true |xs c Just TRB(v))

TRB(x b−), (νxg, xp, xs)(x⇐(xg, xp, xs) |xp c true
|xg c false |xs c Nothing)

Lemma 6.1. The encoding TRB is compositional.

Lemma 6.2 (TRB preserves success). Let p be a λτ (fcb)-process.

1. If p is successful, then so is TRB(p). In particular, TRB(p)⇓ in this case.

42 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

2. If TRB(p) is successful, then p is also a successful process.

Theorem 6.3. All of the following are correct transformations for λτ (fc):

- the reduction rules of λτ (fch), except for cell.exch(ev) and the handle-
rules, and

- the transformations of Fig. 7 (note the arbitrary contexts C in the first three).

Proof. This follows from Theorem 3.24, since the identity transformation id :
λτ (fc) → λτ (fch) is compositional and convergence equivalent, and hence ade-
quate.

Lemma 6.4. Let p be a λτ (fcb)-process. If p↓, then also TRB(p)↓.

Proof. The construction follows the same scheme as the construction of the
handle-encoding of buffers. We show that for p and reduction sequence Red
from p to a successful process there is also a reduction from TRB(p) to a suc-
cessful process. The induction is on the length of Red . The base case is Lemma
6.2. Thus consider a reduction sequence p

a−→ p1 Red ′. In the standard case, the
reduction can be immediately transferred, such that TRB(p) a−→ TRB(p1).

If the redex is of the form (buffer v) and the reduction is p
buff.new(ev)−−−−−−−−→ p1, then

the body of the encoding can be reduced and requires several reductions ending
in TRB(p1).
The non-standard case is that the redex is of the form (get x) or put(x, v), where
x is a variable. There are several subcases:
If x is the buffer-variable, and the next reduction is an buff.put(ev)
or buff.get(ev), then the respective code can be executed, and we have
TRB(p) ∗−→ gc−→ TRB(p1), where the final garbage collection removes the in-
termediately generated thread for the get or put-code, respectively. Since
gc is correct according to Theorem 6.3, we can use induction. If x is
not a buffer-variable, but a future, then either a dereferencing or trigger-

ing has to be done. Then p
a(ev)−−−→ p1 can be mirrored (in the deref-

erencing case) as follows: TRB(p) thread.new−−−−−−−→ β-cbv−−−→ fut.deref−−−−−−→ β-cbv−−−→ a(ev)−−−→
β-cbv←−−− fut.deref←−−−−−− β-cbv←−−− thread.new←−−−−−−− TRB(p1). Similarly for the triggering case.

Since all reductions before and after
a(ev)−−−→ are correct transformations due to

Theorem 6.3, the induction can be completed also in this case.

Lemma 6.5. Let p be a λτ (fcb)-process. If TRB(p)↓, then also p↓.

Proof. We show that for p and a reduction sequence Red from TRB(p) to a
successful process there is also a reduction from p to a successful process. The
induction will be on the length of Red . However, since the reduction steps of a
get, put, buffer may be interleaved with other reductions, several rearrangements
of the reduction Red are necessary to enable the induction proof. The base case
is that TRB(p) is a successful process. Then p is also a successful process.
Now let Red be a reduction of TRB(p) to a successful process. We assume that

Correctness of Concurrent Buffer Implementations 43

the reduction steps that come from different instances of put, get, buffer can be
identified in the reduction sequence Red . If there are busy-wait loops in the re-
duction, i.e. reduction of exch(xg, false) or exch(xp, false) with result false, then
the reduction steps until the next exch(xg, false) or exch(xp, false), respectively
of the same instance of put, get can be removed from the reduction. Thus we can
assume that exch(xg, false) or exch(xp, false) is only reduced if the result will be
true. Now we can construct the reduction of p. There are different cases:
If the first reduction step is not from an put, get, buffer-instance, then the reduc-
tion is also performed for p.
If the first reduction step is from buffer, then all the reduction steps that belong
to this instance of buffer can be moved to the left, not changing their relative
order, until they are in a contiguous sequence. Then there is some p1, such that

Red is exactly TRB(p)
∗,ev−−→ TRB(p1), and p

buff.new(ev)−−−−−−−−→ p1.
If there is a reduction step that does not belong to an instance of put, get and
that can shifted to the start of the sequence (the reduction step commutes with
prefix of the reduction), then we shift it and treat it as already done above.
Now we have to rearrange the reductions corresponding to get, put in order
to shift the essentially first put, get to the start of the sequence. We focus
on the first reduction step

a,ev−−→ which is exch(xg, false) or exch(xp, false) in
Red . Note that due to our assumptions above the result can only be true. Let
Red = Red1·

a,ev−−→ ·Red2. We look for the reduction steps that are in Red1 and
that belong to the same instance as

a,ev−−→, or are triggered by a case-reduction
from the instance. There are two subcases:
The first such reduction may be a

fut.deref(ev)−−−−−−−−→ (or an
lazy.new(ev)−−−−−−−−→). Then the

next reduction for p is constructed as
fut.deref(ev)−−−−−−−−→ and Red1 is modified as fol-

lows: TRB
fut.deref−−−−−−→ q1Red1,1 · Red1,2, where Red1,1 is constructed from Red1

by the modifications of the fut.deref−−−−−−→, i.e. the argument of get, put is modified.
Note that the occurrence of x in the subexpression (ig x), or (ip x) will never
be reduced, since we assumed that there are no busy-wait loops, hence we can
ignore this occurrence. The same is done if there is the first triggered reduction

is
lazy.new(ev)−−−−−−−−→. Now we can again assume, as above that non-instance reductions

are shifted to the start, if possible.
The final case is that in Red1, i.e. before

a,ev−−→, there are only the initial re-
ductions of other instances of put, get. Now all the reductions belonging to the
instance of put, get with the

a,ev−−→-reduction can be completely shifted to the
start of Red1. It is possible to construct the next step of the reduction for p

as a
buff.get(ev)−−−−−−−−→, or a

buff.put(ev)−−−−−−−−→-reduction, such that p
buff.get(ev)−−−−−−−−→ p1 and

TRB(p)
∗,ev−−→ q

gc−→ TRB(p1). This corresponds to a forking situation:

q

Red,n

��

gc // TRB(p1)

ev,≤n

���
�
�

· gc //______ ·

44 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

It is easy to see that the forking diagram for gc−→ holds, hence we can use induction
in this case.

Lemma 6.6. Let p be a λτ (fcb)-process. If TRB(p)⇓, then also p⇓.

Proof. We show that p↑ implies that TRB(p)↑. Let us assume that p↑, hence
there is a reduction sequence Red of p ending in a must-divergent process. This
is done by induction on the length of Red . The base case is proved in Lemma
6.5. Now the construction and the arguments are the same as in the proof of
Lemma 6.4.

The following proof is a bit harder since we have to construct and rearrange
a reduction in λτ (fc), but the arguments are as for the buffer-encoding into
handles.

Lemma 6.7. Let p be a λτ (fcb)-process. If p⇓, then also TRB(p)⇓.

Proof. The proof shows that TRB(p)↓ =⇒ p↓ by an induction on a reduction of
TRB(p) to a must-divergent process. The arguments are similar to those of the
proof of Lemma 6.5. However, we have to add reduction steps such that the con-
struction can be performed. Thus the induction measure cannot be the length
of the reduction. An appropriate induction measure is a pair (n1, n2), where n1

is the number of exch(xg, false) or exch(xp, false)-reductions as instances of put
and get which result in true. The second number is the number of reductions
that do not belong to an instance of put, get, buffer.
The base case of the induction is that TRB(p) is must-divergent. Then Lemma
6.4 shows that p is also must-divergent. If the reduction has length greater than
0, then we proceed as in the proof of Lemma 6.5. The construction is almost
the same, where the following additional construction steps are required: If the
reductions of some instance of put, get, buffer are incompletely performed, then
there are two cases: if the exch(xg, false) or exch(xp, false) is present, then the
missing reductions are added to the reduction sequence. Here we use the fact,
that for a must-divergent q and a reduction q

∗,ev−−→ q′, the process q′ is also must-
divergent. We also use the fact that these reductions can be rearranged by shift-
ing to the left. If for an instance the reductions exch(xg, false) or exch(xp, false)
are not present, then again there are two subcases: if a dereferencing or trigger-
ing a lazy thread is enforced by the case-redex of the instance, then the same
construction and shift as in the proof of Lemma 6.5 is done. If there is no trig-
gering by the case, then the reductions can be shifted completely to the right
of the sequence. Then we use Theorem 6.3 that shows that if q

a,ev−−→ q′ where

a ∈ { thread.new(ev)−−−−−−−−−−→,
β-cbv−−−→,

fut.deref(ev)−−−−−−−−→} and q′⇑, then also q⇑.

Lemmas 6.4, 6.5, 6.6 and 6.7 show the following theorem:

Theorem 6.8. The translation TRB : λτ (fcb) → λτ (fc) is observationally cor-
rect and adequate.

Correctness of Concurrent Buffer Implementations 45

Using the translation λτ (fch)
T ′H−−→ λτ (fcb) TRB−−−→ λτ (fc), we obtain as a corol-

lary:

Corollary 6.9. The translation TRB ◦ T ′H is an observationally correct and ad-
equate translation from λτ (fch) into λτ (fc).

This shows that semantically, handles and buffers are not necessary. However,
the blocking and waiting by queuing is preferable for the following reason: It is
far more efficient in an abstract machine, when the machine can keep track of
waiting processes and “knows” when it can resume, instead of simply looping
until something changes. Another reason is that the busy waiting-translation
loses the knowledge when to wait or block that was available in the higher-level
implementation.
A theoretical challenge that we currently leave open is this:

Show that there is an efficiency advantage of the handle-removing and
buffer-removing translations T ′H , T ′B over the busy-wait translations.

A proof of this appears to be possible by extending our current development
and arguments of the semantical theory of may- and must-convergence. Specifi-
cally, one must find an appropriate notion of corresponding reduction trees, and
analyze the lengths of the corresponding reduction sequences more carefully.

6.1 Connecting λτ (fc) to λ(fh)

Let λ(f) be the subcalculus of λ(fh) where handles are removed, i.e. the calculus
that has futures, lazy futures, and reference cells. Then in exactly the same way
as we encoded λτ (fch) into λ(fh) in Section 2 by removing types and encoding
case-expressions and constructors as abstractions, we can encode λτ (fc) into λ(f)
and obtain observational correctness and adequacy of this encoding. That is. if
enc′ : λτ (fc) → λ(f) is the encoding enc : λτ (fch) → λ(fh) with the domain
restricted to processes of λτ (fc), then the corollary easily follows:

Corollary 6.10. The encoding enc′ is observationally correct and adequate.

Note that enc′ is not fully abstract, see Remark 3.23 for an example that can be
adapted. Furthermore, it is obvious that we can embed λ(f) into λ(fh) using the
identity translation. This translation is compositional and clearly convergence
equivalent which allows us to apply Proposition 2.1:

Corollary 6.11. The identity translation from λ(f) into λ(fh) is observationally
correct and adequate.

7 Discussion and Related Work

We have proved that concurrent buffers and handled futures are equivalent syn-
chronization primitives in the lambda calculus with futures. This result can be

46 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

seen as an extended case study, illustrating how recent proof techniques based
on observational semantics permit to prove for a first time the equivalence of
various concurrency primitives of realistic concurrent programming languages.

Questions of expressiveness have been addressed mainly in the pi-calculus
and basic process calculi [15, 6]; we are not aware of previous work on formally
relating synchronization primitives in concurrent high-level languages. Similar
issues, concerning properties of translations, arise in the verification of compil-
ers, an ongoing research topic (e.g. [10]). However, in this context usually only
(simpler) simulation properties for closed programs, rather than open program
fragments, are established.

One technique for relating different primitives for sequential languages are
proofs of representation independence, which guarantees that an invariant be-
tween two implementations (or an implementation and its specification) is pre-
served in all programs [20]. While recent work [1, 2, 17] has extended this method
from functional to stateful higher-order languages, it is not clear to us whether
it can be adapted to concurrent languages. Our Section 4.4 can be viewed as a
result of this kind, but it is obtained by analysis of reduction sequences rather
than by a more abstract (logical) relational proof.

Proving similar correctness and expressiveness results for other base lan-
guages is possible in principle, but requires to establish a sufficiently rich equa-
tional theory first. Here, we derived sufficiently many equivalences for our proofs
via adequate translations into “smaller” core calculi. Alternatives to this ap-
proach include bisimulation methods, based on suitable labelled transition sys-
tems. This has been developed for a fragment of Concurrent ML (e.g., [7]) and
for higher-order languages with ML-like general references (for instance, [9]).

An very different approach to equational correctness proofs about stateful
programs is the use of Hoare-style program logics. Recently, concurrent separa-
tion logic has been used to prove properties of concurrent data structures [14].

References

1. Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representa-
tion independence. In Zhong Shao and Benjamin C. Pierce, editors, Proceedings
of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’09), pages 340–353. ACM, 2009.

2. Nina Bohr and Lars Birkedal. Relational reasoning for recursive types and ref-
erences. In Naoki Kobayashi, editor, Proceedings Programming Languages and
Systems (APLAS’06), volume 4279 of Lecture Notes in Computer Science, pages
79–96. Springer, 2006.

3. Arnaud Carayol, Daniel Hirschkoff, and Davide Sangiorgi. On the representation
of McCarthy’s amb in the pi-calculus. Theor. Comput. Sci., 330(3):439–473, 2005.

4. R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83–133, 1984.

5. Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. JoCaml:
A language for concurrent distributed and mobile programming. In Advanced
Functional Programming, volume 2638 of Lecture Notes in Computer Science, pages
129–158. Springer Verlag, 2002.

Correctness of Concurrent Buffer Implementations 47

6. Daniele Gorla. Towards a unified approach to encodability and separation results
for process calculi. In CONCUR ’08: Proceedings of the 19th international confer-
ence on Concurrency Theory, pages 492–507, Berlin, Heidelberg, 2008. Springer-
Verlag.

7. Alan Jeffrey and Julian Rathke. A theory of bisimulation for a fragment of con-
current ML with local names. Theoretical Computer Science, 323(1-3):1–48, 2004.

8. Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell.
In Proc. POPL’96, pages 295–308. ACM Press, 1996.

9. Vasileios Koutavas and Mitchell Wand. Small bisimulations for reasoning about
higher-order imperative programs. In J. Gregory Morrisett and Simon L. Peyton
Jones, editors, Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’06), pages 141–152. ACM, 2006.

10. Xavier Leroy and Sandrine Blazy. Formal verification of a C-like memory model
and its uses for verifying program transformations. J. Autom. Reasoning, 41(1):1–
31, 2008.

11. Joachim Niehren, David Sabel, Manfred Schmidt-Schauß, and Jan Schwingham-
mer. Observational semantics for a concurrent lambda calculus with reference cells
and futures. In 23rd Conference on Mathematical Foundations of Programming
Semantics, volume 173 of Electronical notes in theoretical computer science, pages
313–337. Elsevier, April 2007.

12. Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda
calculus with futures. Theoretical Computer Science, 364(3):338–356, November
2006.

13. C.-H. Luke Ong. Non-determinism in a functional setting. In LICS ’93: Proceedings
of the Eighth Annual IEEE Symposium on Logic in Computer Science, pages 275–
286. IEEE Computer Society, 1993.

14. Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. Modular verifica-
tion of a non-blocking stack. In Martin Hofmann and Matthias Felleisen, editors,
Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2007, pages 297–302. ACM Press, 2007.

15. Joachim Parrow. Expressiveness of process algebras. Electronic Notes in Theoret-
ical Computer Science, 209:173–186, 2008.

16. Simon Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In 23rd
ACM Symposium on Principles of Programming Languages, pages 295–308, St
Petersburg Beach, Florida, January 1996. ACM.

17. Uday S. Reddy and Hongseok Yang. Correctness of data representations involving
heap data structures. Science of Computer Programming, 50(1–3):129–160, March
2004.

18. Arend Rensink and Walter Vogler. Fair testing. Inform. and Comput., 205(2):125–
198, 2007.

19. John H. Reppy. Concurrent Programming in ML. Cambridge University Press,
1999.

20. John C. Reynolds. Types, abstraction, and parametric polymorphism. In Infor-
mation Processing ’83, pages 513–523. North-Holland, Amsterdam, 1983.

21. Jon G. Riecke. Fully abstract translations between functional languages. In 18th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 245–254, New York, NY, USA, 1991. ACM-Press.

22. Eike Ritter and Andrew M. Pitts. A fully abstract translation between a lambda-
calculus with reference types and standard ml. In Second International Conference
on Typed Lambda Calculi and Applications, volume 902 of Lecture Notes in Com-
puter Science, pages 397–413, London, UK, 1995. Springer Verlag.

48 Schwinghammer, Sabel, Niehren, Schmidt-Schauß

23. Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunklaus, and Gert
Smolka. Trends in Functional Programming, volume 5, chapter Alice Through the
Looking Glass, pages 79–96. Munich, Germany, February 2006.

24. David Sabel and Manfred Schmidt-Schauß. A call-by-need lambda calculus with
locally bottom-avoiding choice: context lemma and correctness of transformations.
Mathematical Structures in Computer Science, 18(3):501–553, 2008.

25. Manfred Schmidt-Schauß, Joachim Niehren, Jan Schwinghammer, and David
Sabel. Adequacy of compositional translations for observational semantics. Frank
report 33, Inst. f. Informatik, J.W.Goethe-University, Frankfurt, 2009.

26. Manfred Schmidt-Schauß and David Sabel. On generic context lemmas for lambda
calculi with sharing. Frank report 27, Inst. f. Informatik, J.W.Goethe-University,
Frankfurt, 2007.

27. Manfred Schmidt-Schauß, Joachim Niehren, David Sabel, and Jan Schwingham-
mer. Adequacy of compositional translations for observational semantics. In
5th IFIP International Conference on Theoretical Computer Science, volume 273,
pages 521–535. Springer Verlag, 2008.

