
Correctly Translating Concurrency Primitives

Jan Schwinghammer
Saarland University, Saarbrücken,

Germany

David Sabel
Manfred Schmidt-Schauß

Goethe-University, Frankfurt, Germany

Joachim Niehren
INRIA, Lille, France, Mostrare Project

Abstract
Motivated by the question of correctness of a specific implementa-
tion of concurrent buffers in the lambda calculus with futures un-
derlying Alice ML, we prove that concurrent buffers and handled
futures can correctly encode each other. Our translations map wait-
ing on handled futures to queuing of concurrent buffers and vice
versa. Correctness of translations means that they preserve and re-
flect the observations of may- and must-convergence. As a conse-
quence of compositionality, they are also adequate with respect to
a contextually defined notion of observational program semantics.
We demonstrate that our approach to the correctness of implemen-
tations applies uniformly to the whole compilation process from
high-level to low-level concurrent languages.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features – concurrent program-
ming structures; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs; F.3.2 [Log-
ics and Meanings of Programs]: Semantics of Programming Lan-
guages – operational semantics

General Terms Theory, verification

Keywords Concurrency, lambda calculus, semantics

1. Introduction
Modern concurrent programming languages extend sequential lan-
guages with concurrent threads and concurrency primitives for con-
trolling their interactions. Computation within each thread is se-
quential. Examples for concurrency primitives are MVars (i.e. con-
current buffers) in Haskell (Jones et al. 1996), channels in Con-
current ML (Reppy 1999), handled futures in Alice ML (Rossberg
et al. 2006), and joins in JoCaml (Fournet et al. 2002).

Alice ML is a concurrent extension of Standard ML, adding
both eager and lazy threads. The objective of the present paper is
to prove precise relationships between synchronization primitives
in the context of Alice ML, in particular the relation between
handled futures and concurrent buffers. Our first motivation is
to clarify the choice of the language primitives in the design of
the Alice ML language. The second motivation is to prove the
correctness of the implementation of concurrent buffers in Alice
ML. We use the concurrent lambda calculus with futures (Niehren

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ML’09, August 30, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-509-3/09/08. . . $5.00

et al. 2006) to model the operational semantics of the concurrent
core of Alice ML. Correctness results are expressed with respect to
the observational semantics for this calculus, that is based on may-
and must-convergence. The third motivation is to demonstrate the
usefulness of recent results and proof techniques for observational
semantics for concurrent languages.

The main contribution of this paper is a comprehensive proof
that concurrent buffers and handled futures are equivalent synchro-
nization primitives. From a semantic point of view, the designers
of Alice ML can thus choose either concept as a primitive and
the other as a library contribution. Both translations are composi-
tional and preserve may- and must-convergence, which means that
they are ‘observationally correct’ and allows us to transfer program
equivalences back and forth. Thus, the recently developed proof
techniques based on observational semantics for concurrent lan-
guages (Schmidt-Schauß et al. 2008) have been usefully applied
in an ambitious setting.
Language translations and observational semantics. We now
describe our approach and results in more detail. We start with
an enriched core language of Alice ML, the calculus λτ (fch)
which extends the calculi of Niehren et al. (2006, 2007). This is
a typed call-by-value lambda with futures, polymorphic data and
type constructors, concurrent threads, reference cells, and handled
futures. Programs in this language consist of a collection of eager
and lazy threads. When a concurrent thread is spawned, it immedi-
ately returns a future, which is a placeholder for the value computed
by this thread. Other threads can proceed with this placeholder until
the actual value is needed, in which case they block on the future,
and they resume once the value becomes available. Besides these
concurrent futures associated with threads, there are futures with
an explicit handler which supports single assignment of values to
futures. Handled futures, one of the two synchronization primitives
we study here, are called promises in Alice ML, following the pro-
posal of Liskov and Shrira (1988).

We use a contextual observational semantics for the concurrent
lambda calculus with futures, based on operationally-defined forms
of may- and must-convergence (De Nicola and Hennessy 1984;
Ong 1993; Carayol et al. 2005). Our form of must-convergence is
similar to the should-testing of Rensink and Vogler (2007). A com-
mon feature is that fairness of execution is mirrored in the semantic
theory. This combination of may- and must-convergence properly
captures the non-determinism arising in concurrent programming
languages (Sabel and Schmidt-Schauß 2008; Niehren et al. 2007).
Given a language C we write =C for the observational semantics on
programs of the language C, which equates all programs with equal
may- and must- convergence behavior in all contexts.

For correctness of translations between languages T : C → C′,
we use the notion of observational correctness, which for compo-
sitional translations means that all programs p and T (p) exhibit the
same convergence behavior. Observational correctness implies ade-
quacy with respect to observational semantics =C and =C′ (Riecke

1991; Ritter and Pitts 1995; Schmidt-Schauß et al. 2008), meaning
that all program transformations of C′ can be soundly applied on C
up to the translation T . Formally, a translation T is adequate if all
(equally typed) programs with equivalent translations are equiva-
lent, i.e., if T (p1) =C′ T (p2) implies p1 =C p2. If additionally the
converse holds, then T is called fully abstract. While full abstrac-
tion follows from observational correctness and some additional
assumptions, it plays only a minor role for our results.
Proving observational correctness of translations. In previous
work (Niehren et al. 2007) we analyzed a less expressive untyped
core language, the calculus λ(fh). In comparison to the calculus
λτ (fch) considered here, it lacks data constructors and case expres-
sions which are critical for our specification of buffers. For this core
language we have proved a rich set of program transformations cor-
rect with respect to contextual equivalence, using diagram-based
techniques based on the operational semantics. Instead of applying
this technically involved and complex mechanism again to λτ (fch),
we use adequacy to lift the correctness results obtained for λ(fh) to
λτ (fch), by finding suitable adequate translations.

Equipped with these results about the equational theory we
focus on the correctness of implementations of buffers in λτ (fch).
To obtain a specification of buffers that is sufficiently rigorous for
a correctness argument we extend λτ (fch) by concurrent buffers
(as e.g. used for implementing buffered channels by Jones et al.
(1996)), resulting in the calculus λτ (fchb). We then present an
implementation of buffers into the buffer-free calculus, such that
blocking buffer operations are translated into queuing and waiting.
After formalizing this implementation as a translation we show its
adequacy. Moreover, the translation turns out to be observationally
correct. As mentioned above, this means that the specification and
implementation of buffers give rise to the same observations (in
particular, they have the same convergence behavior).

We complement our result by showing that it is also possible
to go into the opposite direction and correctly implement handled
futures with buffers. In this case, the specification is again the
calculus λτ (fchb), but now viewed as an extension of a handle-
free calculus with buffers, called λτ (fcb). We provide a translation
from λτ (fchb) to λτ (fcb) and show that it is fully abstract.

The implementations of buffers and handles lead to the question
whether the constructs can already be encoded in a base language
containing neither buffers nor handles. We show that this is indeed
the case. However, the implementation that underlies this last trans-
lation can result in busy-wait situations, indicating that it is of a
more low-level character than the other encodings.

For proving adequacy, full abstraction and observational cor-
rectness of the various encodings we rely on compositionality
(Schmidt-Schauß and Sabel 2007; Schmidt-Schauß et al. 2008), on
commutation methods in order to prove invariants of implicit queu-
ing mechanisms that arise when implementing buffers by handled
futures, as well as on equivalences for λτ (fch) that we lift from
λ(fh). In turn, we inherit equations for λτ (fchb) from λτ (fch) by
the adequacy of TB .
Summary and results. Table 1 presents the syntactic features of
the various calculi which are considered in this paper.

calculus typed data
constructors

handled
futures

buffer
primitives

λ(fh) × × X ×
λτ (fc) X X × ×
λτ (fch) X X X ×
λτ (fcb) X X × X

λτ (fchb) X X X X

Table 1. Overview of the calculi considered in this paper

Our main interest lies in the last three calculi, λτ (fch), λτ (fcb),
and λτ (fchb), within which we formulate the implementations of
buffers and of futures. The following diagram summarizes our re-
sults. Doubly lined arrows (=⇒) indicate fully abstract translations,
while single lined arrows (−→) indicate adequate translations.

λτ (fch)
TC //

ιBow

λ(fh)

λτ (fchb)

TB 22

TH

�&
λτ (fcb)ιH

^f

TRB // λτ (fc)

The translation TB describes the implementation of concurrent
buffers in terms of handled futures. Conversely, the translation TH

realizes the implementation of handled futures with buffers. The
translations ιB and ιH represent the embeddings of the smaller cal-
culi into the extended calculus λτ (fchb) that contains both buffers
and handled futures as primitives. All the translations shown in the
diagram are observationally correct, and thus also preserve the con-
vergence behavior, i.e., all these implementations are indistinguish-
able from the respective primitive constructs. Note that we left the
exact status of TB open: we do not know if it is fully abstract.

Of course there are additional encodings which are implied by
the ones shown in the diagram. In particular, we mention that we
obtain adequate encodings between λτ (fcb) into λτ (fch).
Outline. The next section presents the calculus λτ (fch) underly-
ing Alice ML, and also abstracts from its observational semantics
a more general framework with respect to which we can define
language translations and establish some of their basic properties.
Section 3 develops the equational theory of λτ (fch), by showing
the adequacy of translation to λ(fh). This paves the way for the
correctness proof for the implementation of buffers, given in Sec-
tion 4. Section 5 considers the implementation of handled futures
by buffers (TH in the diagram above), and Section 6 considers an
implementation of buffers in a calculus without handled futures
(TRB above), based on busy waiting. Open questions and related
work are discussed in Section 7.

More explanations and full proofs can be found in the accom-
panying technical report (Schwinghammer et al. 2009).

2. Lambda Calculus with Futures and
Constructors

This section presents the calculus λτ (fch) underlying Alice ML.
This is a typed lambda calculus with algebraic data types, con-
current and handled futures, and reference cells, which is obtained
from the calculus with futures of Niehren et al. (2006) by adding
data constructors with recursive polymorphic type constructors.
Type and data constructors. Our encodings require n-tuples
〈v1, . . . , vn〉 of all possible types τ1 × · · · × τn. For the sake of
generality and uniformity, we keep the concrete signature of data
and type constructors as a parameter. Such a signature Σ = (K,D)
consists of a finite ranked set of type constructors κ ∈ K and a fi-
nite ranked set of data constructors k ∈ D. We denote the arities of
data and type constructors by ar(·) ≥ 0. Polymorphic types bτ over
Σ have the following abstract syntax, where α belongs to a fixed
infinite set of type variables:bτ ∈ PolyType ::= α | unit | ref bτ | bτ → bτ | κ(bτ1, . . . , bτar(κ))

Monomorphic types τ ∈ Type are polymorphic types without vari-
ables. We assume a unique polymorphic type upt(k) ∈ PolyType
for each data constructor k ∈ D, that has the form bτ1 →
. . . → bτar(k) → κ(α1, . . . , αar(κ)) where κ ∈ K and only
α1, . . . , αar(κ) may occur as type variables in bτj for all j =

τ ∈ Type ::= unit | ref τ | τ → τ | κ(τ1, . . . , τar(κ))

c ∈ Const ::= unit | refτ | threadτ | lazyτ | handleτ

π ∈ Pat ::= kτ (x1, . . . , xar(k))

e ∈ Exp ::= x | c | λx.e | e1 e2 | exch(e1, e2)
| kτ (e1, . . . , ear(k))
| caseκ e of π1 ⇒ e1 | . . . | πm ⇒ em (m > 0)

v ∈ Val ::= x | c | λx.e | kτ (v1, . . . , var(k))

p ∈ Proc ::= p1 | p2 | (νx)p

| x c v | x⇐e | x susp⇐= e | y h x | y h •

Figure 1. Types, expressions and processes of λτ (fch)

p1 | p2 ≡ p2 | p1 (p1 | p2) | p3 ≡ p1 | (p2 | p3)

(νx)(νy)p ≡ (νy)(νx)p (νx)(p1) | p2 ≡ (νx)(p1 | p2)
if x 6∈ fv(p2)

Figure 2. Structural congruence of processes

1, . . . , ar(k). The set D(κ) consists of all data constructors k ∈ D
for which κ occurs in the target type of upt(k). We assume that
D(κ) is nonempty for all κ ∈ K. In typing rules, we will write
τ � bτ if τ is a monomorphic instance of the polymorphic typebτ ∈ PolyType.

For instance, we can define lists of all types, when having a
type constructor List ∈ K with two data constructors cons, nil ∈
D(List) such that upt(cons) = α → List(α) → List(α) and
upt(nil) = List(α). For n-tuples (where n ≥ 0), we assume type
constructors · × · · · × · ∈ K and data constructors 〈·, . . . , ·〉 ∈ D
of arity n, whose unique polymorphic type is α1 → . . . → αn →
(α1 × · · · × αn).
Syntax and typing of λτ (fch). We start from a signature (K,D),
a set of variables Var, and a global assignment of variables to
monomorphic types Γ : Var → Type such that for every τ ∈ Type
there exists infinitely many x ∈ Var with Γ(x) = τ . Consis-
tent renaming of variables must preserve the type. The syntax of
λτ (fch) defined in Fig. 1 consists of two layers: a level of λ-
expressions e ∈ Exp for sequential computation within threads,
and a level of processes p ∈ Proc that compose threads in par-
allel and record the state of the system. Expressions e subsume
values v as usual in a call-by-value λ-calculus. Compared to the
original lambda calculus with futures, we add constructor appli-
cations kτ (e1, . . . , ear(k)) creating data structures by constructors
k ∈ D labeled with monomorphic types τ ∈ Type, and typed case-
expressions caseκ e of π1 ⇒ e1 | . . . | πm ⇒ em whose pat-
tern are non-overlapping and exhaustive. Thus, every constructor
k ∈ D(κ) appears exactly once in some pattern πi. A pattern has
the form kτ (x1, . . . , xar(k)) such that no variable appears twice.
All variables in a pattern π of a branch π ⇒ e are bound with scope
in e. The set of free variables of e is denoted by fv(e) (fv(p) for pro-
cesses p). Expressions and processes are identified up to consistent
renaming of bound variables.

New components in expressions are introduced by typed
(higher-order) constants. The constant refτ introduces a reference
cell. The constants threadτ and lazyτ serve for introducing ea-
ger threads and lazy threads, each of them together with a future.
Finally, the constant handleτ is used to generate futures with an
associated handler. For convenience we sometimes omit the type
label of constants as well as constructors if it is obvious or not im-
portant. The expression exch(e1, e2) expresses atomic exchange
of cell values. Note that we distinguish between constants and data
constructors k ∈ D — the latter must always be fully applied.

Γ(x) = τ

x : τ unit : unit

τ � α→ref α

refτ : τ

τ � (α→α)→α

threadτ : τ

τ � (α→α)→α

lazyτ : τ

τ � (α1→(α1→unit)→α2)→α2

handleτ : τ

x:τ1 e : τ2

(λx.e) : τ1 → τ2

e1 : τ1 → τ2 e2 : τ1

(e1 e2) : τ2

e1 : ref τ e2 : τ

exch(e1, e2) : τ

k ∈ D(κ) ∀j ∈ 1 . . . ar(k). ej : τj

τ = τ1 → . . . → τar(k) → κ(τ ′1, . . . , τ
′
ar(κ)) � upt(k)

kτ (e1, . . . , ear(k)) : κ(τ ′1, . . . , τ
′
ar(κ))

D(κ) = {k1, . . . , kn} e : κ(τ ′1, . . . , τ
′
ar(κ)) ∀i = 1 . . . n.ei : τ

∀i = 1 . . . n.τi =
Γ(xi,1) → . . .→ Γ(xi,ar(ki)) → κ(τ ′1, . . . , τ

′
ar(κ)) � upt(ki)

(caseκ e of (kτi
i (xi,1, . . . , xi,ar(ki)) ⇒ ei)i=1...n) : τ

Figure 3. Types of expressions

As in the pi-calculus, processes p are composed from smaller
components by parallel composition p1 | p2 and new name creation
(νx)p. The latter is a variable binder. It can be seen as hiding vari-
ables, whereas free variables are visible for outside observers. A
structural congruence ≡ on processes is defined by the axioms in
Fig. 2. We distinguish five types of components that have no di-
rect correspondence in pi-calculus. Cells x c v associate (a memory
location) x to a value v. Eager concurrent threads x⇐e will even-
tually bind future x to the value of expression e unless it diverges or
suspends; x is called a concurrent future. Lazy threads x

susp⇐= e are
suspended computations that will start once the proper value of x is
needed elsewhere; we call x a lazy future. Handle components y h x
associate handles y to futures x, so that y can be used to assign a
value to x. We call x a future handled by y, or more shortly a han-
dled future. Finally, a used handle component y h • indicates that
y is a handle that has already been used to bind its associated fu-
ture. A process p introduces a variable x if p ≡ p1 or p ≡ p1 | p2

for p1 a component of the following form (for some e, v and y):
x c v, or x⇐v, or x

susp⇐= e, or y h x, or x h y, or x h •. A process
is well-formed if no subprocess introduces any variable more than
once. For instance, neither x⇐v |x c v′ nor (νx)(x⇐v |x c v′) is
well-formed.

In order to have a consistent notion of typed program transfor-
mation, we rely on unique monomorphic typings. To this end, we
already assumed a unique type Γ(x) for all variables. For expres-
sions, we assign types in judgements e : τ . Process components
have to be well-typed, written p : wt . The typing rules for ex-
pressions and processes can be found in Fig. 3 and 4. Note that the
well-formedness conditions for processes described earlier are kept
orthogonal to typing, in contrast to the type system of Niehren et al.
(2006). We write e[e′/x] for the (capture-free) substitution of x by
e′ in e. It preserves the type of e if e′ : Γ(x) holds.
Syntactic abbreviations. We assume that the set of type con-
structors contains a nullary constructor bool ∈ K, with nullary
data constructors true and false. For convenience, we will freely
use the usual syntactic sugar such as a (non-recursive) let-
binding let x1=e1, . . . , xn=en in e end and sequencing e1; e2,
and also use patterns in abstractions λπ.e as shorthand for
λx.case x of π⇒ e; π′⇒ z etc. (where z represents an error, and
for instance can be defined by the component z⇐z). Instead of
case e of true⇒ e1 | false⇒ e2 we write if e then e1 else e2, and
the special case if e then true else true is written as wait e. The

p1 : wt p2 : wt

p1 | p2 : wt

x:τ e:τ

x⇐e:wt

x:τ e:τ

x
susp⇐= e:wt

x:ref τ v:τ

x c v:wt

p:wt

(νx)p:wt y h • : wt

x:τ y:τ → unit

y h x : wt

Figure 4. Well-typed processes.

ECs E::=x⇐ eEeE::=[]τ | eE e | v eE | exch(eE, e) | exch(v, eE)

| case eE of (πi ⇒ ei)
i=1...n

| k(v1, . . . vi−1, eE, ei+1, . . . , en)

Future ECs F ::=x⇐ eFeF ::= eE[[]τ v] | eE[exch([]τ , v)]

| eE[case []τ of (πi ⇒ ei)
i=1...n]

Process ECs D::= [] | p |D |D | p | (νx)D

Figure 5. Evaluation contexts

symbol ‘ ’ stands for an arbitrary fresh variable. Finally, we write
newhandled as shorthand for handle λfλh. 〈h, f〉.
Contexts and operational semantics. The operational semantics
defines an evaluation strategy via evaluation contexts in which re-
duction rules apply. We introduce contexts C and D. An expres-
sion context C is a process where exactly one expression-position
is replaced with a typed hole marker [·]τ . For technical reasons it
is important that this position is not syntactically restricted to just
values: e.g., in a cell x c (k(true, λy.e)) the position of a hole can
only be within e. A process context D is a process where exactly
one process position is replaced with the hole marker [·].

We only consider well-typed contexts, where the typing of con-
texts is like the typing of expressions, with two additional typing
rules for the context hole:

[·]τ : τ [·] : wt

The result of placing the expression e : τ (process p, resp.) in
context C with hole [·]τ (context D, resp.), possibly capturing free
variables of e (p, resp.), is written C[e] (D[p], resp.). It is easy to
verify that D[p] : wt if D : wt and p : wt, and that for expression
contexts C[[·]τ] : wt and expressions e : τ , C[e] : wt holds.

Fig. 5 defines evaluation contexts (ECs) E and future ECs F
as particular contexts. ECs encode the standard call-by-value, left-
to-right reduction strategy, while future ECs control dereferencing
operations on futures and the triggering of suspended threads. The
small-step reduction relation p → p′ is the least binary relation on
processes satisfying the rules in Fig. 6. We write ev−→ for → when
we want to distinguish reductions from transformations below. We
use ∗−→ (+−→, resp.) for the reflexive-transitive (transitive, resp.)
closure of −→. We sometimes label reductions with their name,
e.g.

BETA(ev)−−−−−→, and p
a∨b−−→ q means that either p

a−→ q or p
b−→ q.

Rule (CELL.NEW(ev)) creates new cells z c v with contents v.
The exchange operation exch(z, v1) writes v1 to the cell and re-
turns its previous contents. Since this is an atomic operation, no
other thread can interfere. The rule (THREAD.NEW(ev)) spawns a
new eager thread x⇐e where x may occur in e, so it may be viewed
as a recursive declaration x = e. Similarly, (LAZY.NEW(ev)) cre-
ates a new suspended computation x

susp⇐= e. Dereferencing of
future values (FUT.DEREF(ev)) and triggering of suspended com-

Reduction rules.
(β-CBV(ev)) E[(λx.e) v] −→ E[e[v/x]]

(CELL.NEW(ev)) E[ref v] −→ (νz)(E[z] | z c v)

(CELL.EXCH(ev)) E[exch(z, v1)] | z c v2 −→ E[v2] | z c v1

(THREAD.NEW(ev)) E[thread v] −→ (νz)(E[z] | z⇐v z)

(FUT.DEREF(ev)) F [x] |x⇐v −→ F [v] |x⇐v

(LAZY.NEW(ev)) E[lazy v]→ (νz)(E[z] | z
susp⇐= v z)

(LAZY.TRIGGER(ev)) F [x] |x
susp⇐= e→ F [x] |x⇐e

(HANDLE.NEW(ev)) E[handle v] −→ (νz)(νz′)(E[v z z′] | z′ h z)

(HANDLE.BIND(ev)) E[x v] |x h y −→ E[unit] | y⇐v |x h •
(CASE.BETA(ev))
E[case kj(v1, . . . , var(kj)) of (ki(x1, . . . , xar(ki)) ⇒ ei)

i=1...n]
→ E[ej [v1/x1, . . . , var(kj)/xar(kj)]]

Well-formed processes. The rules can only be applied to well-
formed processes.

Distinct variable convention. We assume that all processes to
which rules apply satisfy the distinct variable convention, and
that all new binders use fresh variables (z above). Reduction
results will satisfy the distinct variable convention, if after
β-CBV(ev), CASE.BETA(ev) and FUT.DEREF(ev) where values
with bound variables may be copied, α-renaming is performed
before applying the next rule.

Closure. Rule application is closed under structural congruence
and process ECs D: if p1 ≡ D[p′1], p′1 → p′2, and D[p′2] ≡ p2

then p1 → p2.

Figure 6. Small-step reduction relation → (ev−→, resp.) of λτ (fch)

putations (LAZY.TRIGGER(ev)) is controlled by future evaluation
contexts F . The rule (HANDLE.NEW(ev)) creates handle compo-
nents. The application x v in (HANDLE.BIND(ev)) “consumes” the
handle x and binds y to v, resulting in a used handle x h • and
thread x⇐v. In particular, notice that a used handle component
y h • indicates that y is a handle that has already been used to bind
its associated future. It gets stuck if an expression E[y v] has to
be evaluated. Type preservation holds for reduction, i.e., reduction
preserves well-typedness (and well-formedness) of processes.

As an example, let r:(ref List(τ)) be a reference
cell containing τ -lists. The effect of reducing process
r c v | (νx)(x⇐thread λy.(exch(r, cons(v′, y)))) is the substi-
tution of the cell content v by cons(v′, v) in a single atomic step.
More precisely, it is (νx)(νy)(r c cons(v′, y) |x⇐y | y⇐v).
This process is observationally equivalent to r c cons(v′, v).

As a second example, suppose ack is a (nullary) type con-
structor with a single data constructor Ack, and assume p is
a thread suspending on a handled future x of type ack: p ≡
F [case x of Ack ⇒ e]. The thread may resume the computa-
tion of e once a second thread uses the associated handler and pro-
vides a value for x: the process p |F ′[h Ack] |h h x can reduce
to F [e] |F ′[unit] |x⇐Ack |h h •, after (HANDLE.BIND(ev)),
(FUT.DEREF(ev)) and (CASE.BETA(ev)) reductions. In this way,
handled futures are the basic synchronization construct in λτ (fch).
Observations and contextual equivalence. A process p is
successful if it is well-formed and in every component
x⇐e of p, the identifier x is bound possibly via a chain
x⇐x1 |x1⇐x2 | . . . |xn−1⇐xn |xn⇐v to a non-variable
value, a cell or a lazy future, a handle, or a handled fu-
ture. Hence, in a non-failing computation, every non-lazy fu-
ture eventually refers to a “proper” value. For instance, x⇐λy.y,

x⇐y | y⇐〈x, x〉 and x⇐y | y c z are successful, while x⇐x (a
black hole) and x⇐(λu.λv.v) (y unit) | y⇐(λu.λv.v) (x unit)
(a deadlocked process) are ruled out.

While reductions preserve the type of expressions, we do not
have a progress lemma since the type system does not rule out all
errors. However, we can characterize these situations as follows: a
well-formed and well-typed closed process can either be reduced,
or it is successful, or it is not successful since it has a cycle of
futures, or it is not successful since it is deadlocked. Here we use
the following definitions: A waiting thread is of the form x⇐ eF [y]
and no reduction applies; a finished thread is of the form x⇐v; and
a deadlocked process is a process where every thread component is
finished or waiting, and there is at least one waiting thread.

We use p↓ to indicate that p is may-convergent, i.e., that there
is a sequence of reductions p →∗ p′ such that p′ is successful, and
p⇓ if the process is must-convergent, meaning that all reduction
descendants p′ of p are may-convergent. Dually, we call p must-
divergent (p⇑) if it has no reduction descendant that succeeds, and
may-divergent (p ↑) if some reduction descendant of p is must-
divergent. Thus, p⇑ ⇔ ¬p ↓ and p ↑⇔ ¬p⇓. For ξ ∈ {↓, ⇓},
we define contextual approximations between processes p1, p2 by:

p1 ≤ξ p2 ⇔ ∀D : D[p1]ξ ⇒ D[p2]ξ

We write p1 ≤ p2 if both p1 ≤↓ p2 and p1 ≤⇓ p2 hold, and
p1 ∼ p2 if both p1 ≤ p2 and p2 ≤ p1 hold. The same definitions
for expressions e1, e2 of equal type τ and expression contexts
C[[·]τ] results in relations ≤↓,τ , ≤⇓,τ , and ∼τ .

Note that the contextual equivalence ∼ does not distinguish
between the different kinds of error situations.
Translations. We recall the framework of Schmidt-Schauß et al.
(2008), where an abstract calculus C consists of sets of (well-
typed) processes p, contexts D, and convergence predicates ξ. The
calculus λτ (fch) and the other (possibly untyped) calculi intro-
duced in the subsequent sections fit into this general framework.
A translation T between two such calculi maps well-typed pro-
cesses to well-typed processes, and contexts to contexts. A trans-
lation T between calculi C and C′ is convergence equivalent if
T (p)ξ ⇔ pξ for all p and all convergence predicates ξ. The trans-
lation T is compositional iff for all contexts D and processes p we
have T (D)[T (p)] = T (D[p]). A translation T is observationally
correct if for all programs p and for all contexts D, and for all
convergence predicates ξ: T (D[p])ξ ⇔ T (D)[T (p)])ξ. A trans-
lation is adequate if T reflects operational approximation, i.e., if
T (p1) ≤C′

T (p2) ⇒ p1 ≤C p2 for all p1, p2. Finally, if T addi-
tionally preserves inequations, i.e., if T (p1) ≤C′

T (p2) ⇔ p1 ≤C

p2 holds for all p1, p2, then it is fully abstract.
As described in the introduction, adequacy and full abstraction

relate to the equational theories of the source and target language
of a translation, and adequate translations provide useful tools for
transferring equations. The soundness of an encoding, in the sense
that each program is indistinguishable from its translation, is given
by observational correctness. These notions are related:

Proposition 2.1 (Adequacy, (Schmidt-Schauß et al. 2008)). If a
translation T is compositional and convergence equivalent, then T
is adequate and observationally correct. Moreover, observational
correctness of a translation implies adequacy of the translation.

For the calculi considered in this paper we also require com-
positionality on expressions, i.e. T (C[e]) = T (C)[T (e)], and
type correctness of T for expressions. These requirements sim-
plify the corresponding proofs for processes. Moreover, they en-
able us to derive equivalences from the adequacy of the translations
not only between processes but also between expressions, i.e. that
T (e) ∼T (τ) T (e′) implies e ∼τ e′.

It is easy to verify that translations compose:

(FUT.DEREF(a)) C[x] |x⇐v −→ C[v] |x⇐v

(β-CBV(a)) C[(λx.e) v] −→ C[e[v/x]]

(CASE.BETA(a))
C[case kj(v1, . . . , var(kj)) of (ki(x1, . . . , xar(ki)) ⇒ ei)

i=1...n]
→ C[ej [v1/x1, . . . , var(kj)/xar(kj)]]

(CELL.DEREF) p | y c x |x⇐v −→ p | y c v |x⇐v

(GC) p | (νy1) . . . (νyn)p′ −→ p
if p′ is successful and y1, . . . , yn contain all
process variables of p′

(DET.EXCH) (νx)(y⇐ eE[exch(x, v1)] |x c v2)

−→ (νx)(y⇐ eE[v2] |x c v1)

No capturing. We assume that no variables are moved out of their
scope or into the scope of some other binder, i.e., fv(v) ∩
bv(C) = ∅.

Closure. Transformations are closed under ≡ and D-contexts.

Figure 7. Correct transformation rules for λτ (fch)

Proposition 2.2 (Composition). Let C, C′, C′′ be calculi, and T :
C → C′, T ′ : C′ → C′′ be translations. Then T ′ ◦ T : C → C′′ is
also a translation, and if T, T ′ are compositional (observationally
correct, adequate, fully-abstract, respectively), then also the com-
position T ′◦T is compositional (observationally correct, adequate,
fully-abstract, respectively).

We also recall a criterion for fully abstract translations, which
can be used if only new primitives are added to a calculus C′. The
statement of this criterion in (Schmidt-Schauß et al. 2008) contains
a flaw; the following corrected version is proved in the technical
report (Schmidt-Schauß et al. 2009).

Proposition 2.3 (Full abstraction for extensions). Let C, C′ be two
calculi, let ι : C′ → C (the embedding) and T : C → C′ be
compositional and convergence equivalent translations, such that
T ◦ ι is the identity on C′-programs, on C′-contexts, and on C′-
types. Then ι is fully abstract.
If T is injective on types, then T is also fully abstract.

If a translation T is observationally correct and injective on
types, then ≤ is retained under T , relative to its image.

Remark 2.4 (on full abstraction on images). A variation of this
full abstraction result is possible (Schmidt-Schauß et al. 2009).
Let C, C′ be calculi and T : C → C′ be an observationally
correct translation. Let C′′ := T (C) be the subcalculus of C′
consisting of the images under T , and let ≤T be the preorder
defined on C′′. Moreover, assume that for all τ , T is surjective on
the programs of type τ and for every τ ′, T is a surjective mapping
T : Oτ1,τ2 → OT (τ1),T (τ2), where Oτ1,τ2 are the contexts of type
τ2 with hole of type τ1. Then for all types τ and programs p1, p2:
p1 ≤τ p2 ⇐⇒ T (p1) ≤T,T (τ) T (p2). That is, the translation is
fully abstract as translation T : C → C′′.

3. Correctness of Transformations in λτ (fch)
We will make use of program transformations, which are called
correct if whenever p1 is transformed into p2, then p1 ∼ p2. In
Fig. 7 some program transformations are defined. It is important
that program transformations preserve the types of replaced subex-
pressions. E.g. the rule (β-CBV(a)) may also be applied from right
to left, and in this case, we must choose a variable x with Γ(x) = τ
where τ is the (uniquely determined) type of the value v. The use
of the framework sketched at the end of Section 2 makes it possi-
ble, via translations, to lift process equivalences from the untyped

lambda calculus with futures (Niehren et al. 2007) to correct pro-
gram transformations in λτ (fch). To illustrate the technique, we
establish these correctness results by using an adequate translation
from λτ (fch) into λ(fh).

We first restate known equivalences for λ(fh). The calculus
λ(fh) is the subcalculus of λτ (fch) without constructors, case-
expressions, and typing (see Niehren et al. 2007, for details).

Proposition 3.1. All reductions of λ(fh) except CELL.EXCH(ev),
and the transformations β-CBV(a), FUT.DEREF(a), CELL.DEREF,
GC and DET.EXCH (see Fig. 7) are correct for λ(fh).

Proof sketch. Correctness of the transformations was established
previously (Niehren et al. 2007). Although the standard reduction
differs slightly from the one used here, we have shown that this
makes no difference for contextual equivalence in the technical
report Schmidt-Schauß et al. (2008).

Removing constructors and types. In order to lift contextual
equivalences from λ(fh) to λτ (fch), we construct a translation
TC : λτ (fch) → λ(fh) that is adequate. For the adequacy of this
encoding it is necessary that λτ (fch) is typed; otherwise, untyped
programs that get stuck due to a dynamic type error could become
must-convergent after translation. Conversely, it is not possible
to restrict λ(fh) to simple types, since the encoding of case and
constructors cannot be monomorphically typed. These problems
are discussed by Schmidt-Schauß et al. (2008), where illustrating
examples can be found.

The main part in giving the translation is to encode case and
constructors, and to show that the translation has all required prop-
erties. The encoding is a variant of the classic Church encodings.
Let K = D(κ) be the set of constructors for a specific type con-
structor κ and let τ1, . . . , τm be types. By the assumptions on the
signature, K is non-empty. For the definition of TC we choose an
arbitrary (but from now on fixed) order of the constructors in K,
k1, . . . , kn where n ≥ 1. The two key cases of the encoding TC

are the following, where l = ar(ki):

TC(ki(e1, . . . , el)) ,
let x1=TC(e1), . . ., xl=TC(el) in λp1, . . . , pn.pi x1 . . . xl unit

TC(caseκ e of (ki(xi,1, . . . , xi,ar(ki)) ⇒ ei
i=1...n)) ,

TC(e) (λx1,1, . . . , x1,ar(k1).λ .TC(e1))
. . . (λxn,1, . . . , xn,ar(kn).λ .TC(en))

and it is extended homomorphically to all other cases (only the
translation of reference cells requires some additional care, to en-
sure that the translation of the stored value is again syntactically
in the form of a value). The additional unit argument to pi in
the encoding of constructors achieves the correct behavior in the
case of nullary constructors, with respect to call-by-value seman-
tics. Correspondingly, in the encoding of case, the additional final
abstraction in each branch leads to a uniform translation also for
nullary constructors. Finally, note that types are removed by this
encoding, i.e. threadτ , thread, refτ , ref , lazyτ , lazy, and
handleτ , handle.

Proposition 3.2 (Adequacy). The translation TC is adequate.

Remark 3.3. Note that TC is not fully abstract. We give
an example without proof: The expressions λxbool.x and
(λxbool.if x then x else x) are equivalent, but the trans-
lated expressions are not equivalent since they behave differently
when applied to unit. The second expression is translated into
λx.x (λ .x) (λ .x). Applying both expressions to unit will result
in unit and in (unit (λ .unit) (λ .unit)), respectively. The first is
a value, and the second is must-divergent. In particular, this shows

Syntactic extensions:
τ ∈ Type ::= buf τ | . . .

c ∈ Const ::= bufferτ | getτ | . . .
e ∈ Exp ::= put(e1, e2) | . . .

p ∈ Proc ::= x b − | x b v | . . .eE ::= put(eE, e) | put(v, eE) | . . .eF ::= eE[put([], v)] | eE[get []] | . . .

Extensions of the type system:
τ � unit → buf α

bufferτ : τ

τ � buf α → α

getτ : τ

e1 : buf τ e2 : τ

put(e1, e2) : unit

x b − :wt

x:buf τ v : τ

x b v:wt

Extensions of the reduction rules:
(BUFF.NEW(ev)) E[buffer v] → (νx)(E[x] |x b−) fresh x

(BUFF.PUT(ev)) E[put(x, v)] |x b−→ E[unit] |x b v

(BUFF.GET(ev)) E[get x] |x b v → E[v] |x b−

Figure 8. Extensions of λτ (fch) for λτ (fchb)

that Proposition 2.3 is not applicable: there is no identity embed-
ding from λ(fh) into λτ (fch), since the former is untyped.

Correctness of program transformations for λτ (fch) follows by en-
coding the transformations into λ(fh) using TC and then applying
adequacy of TC . This gives us the main result of this section:

Theorem 3.4. The reduction rules of λτ (fch), except for
CELL.EXCH(ev), and the transformations of Fig. 7 (note the ar-
bitrary contexts C in the first three) are correct for λτ (fch).

4. Concurrent Buffers are Encodable in λτ (fch)
By extending the syntax and operational semantics of λτ (fch),
we provide a specification of one-place buffers that describes their
desired behavior.

The calculus λτ (fch) is extended by new primitives for concur-
rent buffers. This defines the calculus λτ (fchb), with the syntac-
tic extensions shown in Fig. 8. λτ (fchb) has two new components:
x b−which represents an empty buffer, and x b v which represents
a buffer that contains the value v. There are new constants bufferτ

to create a new buffer and getτ to obtain the contents of a non-
empty buffer (and emptying the buffer). There is also a new binary
operator put, to place a new value into an empty buffer. Contexts C
are as before, but extended to the new syntax, such that exactly one
expression-position, which is not restricted to values, is replaced
with a typed hole marker [·]τ .

Fig. 8 also summarizes the operational interpretation of the new
constructs, and extends the set of (future) evaluation contexts. Note
that the reduction rules entail that get x suspends on an empty
buffer x while put(x, v) suspends on a non-empty x. For typing
we assume a new type constructor buf of arity 1. The typing of
the constants is given by (instances of) type schemes (see Fig. 8);
type preservation then extends to the calculus λτ (fchb). Contextual
preorder is defined as expected: the notion of a successful process
from λτ (fch) is extended so that λτ (fchb) also allows x b− and
x b v as components of successful processes. A λτ (fchb) process is
well-formed if (in addition to the other process variables) no buffer
variables are introduced twice.

In the remainder of this section we will show that there is an ob-
servationally correct translation TB : λτ (fchb) → λτ (fch) which
implements buffers by handled futures. The proof of observational
correctness of TB requires equivalences in λτ (fch), which have
been derived in Theorem 3.4.

buffer , λ . let 〈h, f〉 = newhandled, 〈h′, f ′〉 = newhandled,

putg = ref(true), getg = ref(f),

stored = ref(f ′), handler = ref(h)
(1) in thread λ .〈putg, getg, stored, handler〉 end

put , λ〈〈xp, xg, xs, xh〉, v〉. let 〈h, f〉 = newhandled
(1) in wait (exch(xp, f));
(2) exch(xs, v);
(3) (exch(xh, h))(true) end

get , λ〈xp, xg, xs, xh〉.
let 〈h, f〉 = newhandled; 〈h′, f ′〉 = newhandled

(1) in wait (exch(xg, f));

(2) let v = (exch(xs, f
′))

(3) in (exch(xh, h))(true); v end
end

Figure 9. Implementing the buffer operations buffer, put and get,
where (1), (2), (3) indicate subexpressions for later reference.

4.1 Implementing Buffers Using Handled Futures
Any concrete realization of buffers will rely on (more or less in-
tricate) non-interference properties and the preservation of various
invariants. We consider a particular implementation of buffers in
λτ (fch), in terms of reference cells and handled futures. This in-
duces a translation from λτ (fchb) into λτ (fch).

The implementation in λτ (fch) of operations corresponding to
buffer, put, and get is shown in Fig. 9. The buffer data structure
is implemented as a tuple, consisting of four reference cells:

buf τ , ref bool× ref bool× ref τ × ref (bool → unit).

The first and second of these reference cells serve as guards to en-
sure that succeeding put and get operations alternate. Exactly one
of them will contain a handled future: if the first guard contains a
future, this indicates that the buffer is currently non-empty, hence
put must block. Likewise, if the second guard contains a handled
future, the tuple represents an empty buffer and get must block. The
final reference cell stores a handler for this future. The third cell,
of type ref τ , stores the actual contents of the buffer. When repre-
senting an empty buffer, this reference will contain a handled future
of type τ as a dummy value. In summary, there are the following
invariants associated with the value 〈putg, getg, stored, handler〉:

- the guards putg and getg contain either a handled future or true
(perhaps reachable via dereferencing futures),

- at most one of putg and getg contains true,

- if getg contains true then the value in stored is the value cur-
rently in the buffer,

- whenever putg contains true then the value in stored is
‘garbage’, representing an empty buffer.

The procedure buffer yields a tuple representing an empty
buffer, satisfying the invariants. The procedure put, when applied
to a buffer 〈putg, getg, stored, handler〉 and a value v, suspends un-
til the buffer is guaranteed to be empty. This is achieved by pattern
matching on the contents of putg (using wait): since the first ar-
gument position of the case construct constitutes a future EC, put
can continue only when putg contains a proper (non-future) value.
By the invariants, this implies that the buffer is empty. At the same
time, putg is replaced by a fresh future f , with handle h, to indicate
that the buffer will be non-empty after put succeeds. After writing
v to the cell stored, the second guard getg is set to true (perhaps

via a reference) to permit following get operations to succeed. This
is done using the handle stored in the reference cell handler, which
is replaced by the handle h for the freshly introduced future f . The
procedure get is analogous (partly symmetric) to put.

The use of the handled futures in put and get is somewhat subtle:
in general, several threads concurrently attempt to place values into
the buffer (and dually, for reading from the buffer). The thread that
is scheduled first replaces the contents of the guard by a future
f1. This future can be bound only after this instance of put has
finished. A second instance of put can proceed immediately with
its own exchange operation, replacing f1 by a future f2 before the
wait suspends on f1. In this way, a chain of threads suspending on
futures f1, f2, . . . in their respective put operations can build up.
At the same time, a chain of threads suspending in their respective
get operations can build up.

4.2 Implementation as Translation
The implementation gives rise to a translation TB from λτ (fchb)
into λτ (fch): put, get, and buffer are replaced by the resp. pro-
gram code, put, get, and buffer from Fig. 9, where for put, the two
arguments are translated into a pair. On process level, we replace:

TB(x b−) , (νxp)(νxg)(νxs)(νxh)x⇐〈xp, xg, xs, xh〉
| (νh)(νf)(νh′)(νf ′)(h h f |h′ h f ′ |xp c true
|xg c f |xs c f ′ |xh c h)

TB(x b v) , (νxp)(νxg)(νxs)(νxh)x⇐〈xp, xg, xs, xh〉
| (νh)(νf)(h h f |xp c f |xg c true
|xs c TB(v) |xh c h).

Formally, these replacements extend homomorphically to a
mapping TB : λτ (fchb) → λτ (fch) on all λτ (fchb)-expressions,
-processes, and -contexts. A corresponding type translation is de-
fined inductively, by TB(buf τ) , buf (TB(τ)), and proceeding
homomorphically in all other cases. Note that TB is not injective
on the types, since buffer types are mapped to the type of 4-tuples.
These mappings are compatible with typing:

1. If e : τ then TB(e) : TB(τ).

2. If p is well-typed, then TB(p) is well-typed.

3. If p is well-formed, then TB(p) is well-formed.

4. For C[[·]τ] : wt and D : wt we have TB(C[[·]TB(τ)]) : wt and
TB(D) : wt.

Corresponding typing properties also hold for contexts, so that TB

forms a translation in the sense of Section 2 that is compositional:

Lemma 4.1 (Compositionality). The translation TB :
λτ (fchb) → λτ (fch) is compositional, i.e., for all p and D
we have TB(D)[TB(p)] = TB(D[p]), and for all τ , all e : τ and
C[[·]τ], we have TB(C)[TB(e)] = TB(C[e]).

Proof. Immediate from the fact that TB is extended homomorphi-
cally from constants to all terms, and from base components to ar-
bitrary processes, respectively.

We argue that the buffer implementation, described by TB

above, is correct. To this end, we will prove TB convergence equiv-
alent in this section, and use compositionality (Lemma 4.1). By
Proposition 2.1, this entails the observational correctness of TB .

Lemma 4.2 (TB preserves success). Let p be a λτ (fchb)-process.

1. If p is successful, then so is TB(p). In particular, TB(p)⇓ in
this case.

2. If TB(p) is successful, then p is also a successful process.

The definition of the translation TB also shows the following.

Lemma 4.3. If D is a process context of λτ (fchb), then TB(D) is
a process context. If E is an evaluation context of λτ (fchb), then
TB(E) is an evaluation context in λτ (fch).

Note that a corresponding property does not hold for fu-
ture evaluation contexts. As an example, consider the process
x⇐put(y, v) | y⇐get x | Assume that get is executed first,
then put. For the corresponding reduction sequence in λτ (fch) it
is unavoidable that essentially the same sequence is used on the
implementation get and put. However, the initial reductions of put
may be executed earlier. (In the case of y

susp⇐= get x, this is even
enforced.) For the reduction in the implementation this means that
the reduction steps of instances of get and put cannot be gathered
into one contiguous block; this is possible only for the main steps
1,2,3 of an instance.

4.3 Observational Correctness of the Translation TB

Proposition 4.4 (↓-preservation of TB). For every λτ (fchb)-
process p, p↓⇒ TB(p)↓.

Proof sketch. The proof can be done by induction on the length of
a reduction U of p, where one has to take into account that the
future evaluation contexts are not preserved, and so the sequence
of reductions is not straightforward. The idea is to construct a
sequence of reductions and transformations in λτ (fch), and then
use Theorem 3.4 that shows that we have only inserted correct
λτ (fch)-transformations.

The other parts of the proof of convergence equivalence of TB

require a more careful analysis.
Invariants of the Buffer-Implementation. We sketch an analysis
of the global state of the λτ (fch)-translation TB(p) during reduc-
tion. In this analysis we will focus on the reductions of put and get.
The reduction of buffer provides no problems, since all reductions
are correct in λτ (fch) according to Theorem 3.4.

The execution of each instance of put or get consists of initial
(β-CBV(ev)) and (CASE.BETA(ev)) reductions, and eventually the
argument has to be evaluated in a future-strict context.

It is possible to analyze exactly the global state and the changes
that belong to one buffer x. We will only informally describe the
results here. The analysis has to take into account all the active
instances of put and get, i.e., the code-pointer and internal state of
the implemented puts and gets until they are finished. Therefore,
we require the code-pointer that may have values 1a, 1b, 2, 3a, 3b
as in the encoding in Fig. 9, where the indexing is according to the
sequential execution. For the put-encoding:

(1) wait (exch(xp, f)); (1a) for exch . . .; (1b) for wait
(2) exch(xs, vi);
(3) (exch(xh, hp,i))(true) (3a) for exch . . .;

(3b) for handle-binding

For the get-encoding:

(1) wait (exch xg f); (1a) for exch . . .; (1b) for wait
(2) let v = exch(xs, f

′
g,i);

(3) in (exch(xh, hg,i))(true); v (3a) for exch . . .;
(3b) for handle-binding

Informally, there are two queues: one queue of put-instances
blocking on guards that need to be activated by the respective
handlers by the previous get, and another queue of get-instances
that wait for activation of their guards by handlers of the previous
put. All the futures will be bound to true at some time, provided
the evaluation terminates successfully.

Using induction on the number of buffer-related small-step re-
ductions, we see that the above description is an invariant for the
buffer-implementation of a single buffer x. Our analysis implies the

following sequencing constraint of reductions in λτ (fch), where
x,a,b−−−→ means a reduction step for a particular buffer (implementa-

tion) x of the put/get-instance b with code-pointer a.

Lemma 4.5. For a fixed buffer x the following sequence relations
holds in any ev−→-reduction U :
If for two instances b1, b2 of put, get:

x,a,b1−−−−→ is before
x,a,b2−−−−→ for

some a ∈ {1b, 2, 3a, 3b}, then for all a1, a2 ∈ {1b, 2, 3a, 3b}:
x,a1,b1−−−−−→ is before

x,a2,b2−−−−−→.
For two put-instances b1, b2 (or get-instances, respectively):
x,1a,b1−−−−→ is before

x,1a,b2−−−−→ iff
x,2,b1−−−−→ is before

x,2,b2−−−−→.

Proposition 4.6 (↓-reflection of TB). For every λτ (fchb)-process
p, TB(p)↓⇒ p↓.

Proof sketch. The main idea of the proof is to rearrange a reduction
sequence U of TB(p) using Lemma 4.5 until the reduction steps
that belong to an instance of put/get are in a contiguous block. Since
future evaluation contexts do not correspond before and after the
translation, we also have to use the equivalences from Theorem 3.4
for further rearrangement.

Proposition 4.7 (⇓-reflection of TB). For every λτ (fchb)-process
p, TB(p)⇓ ⇒ p⇓.

Proof. Suppose that for the λτ (fchb)-process p we have p↑. We
show TB(p)↑. Since p↑ there is a reduction R from p to a process
p0 ⇑. Analogous to the proof of Proposition 4.4, we can show
by induction on the length of R that there is a sequence R′ of
correct transformations and reductions from TB(p) to the process
TB(p0). Proposition 4.6 applied to p0 shows that TB(p0) ↓ is
impossible, hence TB(p0)⇑ holds. By induction on the length of
R′ (which consists of ev-reductions and correct transformations),
Theorem 3.4 is used to show TB(p)↑.

The proof of the following proposition is more intricate:

Proposition 4.8 (⇓-preservation of TB). For all p ∈ λτ (fchb):
p⇓ ⇒ TB(p)⇓.

Proof. The detailed proof is in (Schwinghammer et al. 2009); here
we give a sketch. We prove the equivalent claim that for every
λτ (fchb)-process p, TB(p) ↑⇒ p ↑. As in the proof of Proposi-
tion 4.6, a given reduction R corresponding to TB(p)↑ will be re-
arranged and modified in order to construct a λτ (fchb)-reduction
of p that shows p↑. This allows a similar rearrangement into 1,2,3-
blocks and intermediate correct transformations. However, this is
not possible for all instances of put and get, since some of these
may be started but never completed in the reduction.

Variants of the following argument can be used to overcome
this difficulty. Suppose a certain instance m of put has been started
within R, but the next reduction step, say from (3a), is missing in
R. Let pω be the last process in R, for which we necessarily have
pω⇑. The commutation properties show that

3a,m−−−→ is a reduction
possibility of pω , i.e. pω

3a,m−−−→ pω,1, which immediately implies
pω,1⇑. Thus we extend R to R· 3a,m−−−→. This procedure is repeated
until all partially executed instances are completed; as an invariant,
the number of started instances of put, get is not increased. Now
one can construct a reduction sequence showing p↑. Finally, there
is some process pω with p

∗−→ pω and TB(pω) = qω , where qω is
the final process of the rearranged and extended sequence R′. The
property qω⇑ can be shown using Theorem 3.4. Lemma 4.4 shows
that pω↓ is impossible, hence pω⇑. Thus, p↑.

Propositions 4.4, 4.6, 4.7, 4.8, and 2.1 imply:

Theorem 4.9 (Observational correctness of TB). The translation
TB is convergence equivalent. In fact, it is observationally correct:
for all C and e, C[e] and TB(C)[TB(e)] have the same conver-
gence behavior.

As a consequence of this theorem, TB is also adequate. For the
proofs in the next section, we need also the correctness of several
transformations in λτ (fchb), which follow from adequacy.

Proposition 4.10 (Correct transformations in λτ (fchb)). All re-
duction rules of λτ (fchb) are correct, with the exception of
CELL.EXCH(ev), BUFF.GET(ev), and BUFF.PUT(ev). The trans-
formations β-CBV(a), FUT.DEREF(a), CELL.DEREF, GC and
DET.EXCH (see Fig. 7) lifted to λτ (fchb) are correct.

Proof sketch. The statement follows by translating the transforma-
tions into the calculus λτ (fch) using TB . Then, the adequacy of
TB , some reasoning using Lemma 4.3, and Proposition 4.4 show
the claim.

Although we do not make use of this fact, we can show that
the embedding ιB : λτ (fch) → λτ (fchb) is fully abstract, using
Proposition 2.3.

Corollary 4.11 (Full abstraction of the embedding). The embed-
ding ιB : λτ (fch) → λτ (fchb) is fully abstract.

As an aside, note that we cannot use Proposition 2.3 to also show
full abstraction of the translation TB : the proposition requires in-
jectivity on types, which TB does not satisfy.

4.4 Applications of Observational Correctness
We can use the observational correctness of the translation TB to
derive a number of consequences for the implementation of buffers,
and in turn obtain justification for considering this notion.

A common approach to the specification of abstract data types,
in the sequential case, is by an axiomatic description of the opera-
tions. The results developed above allow us to prove that the buffers
of λτ (fchb) satisfy a number of such axioms. Using adequacy of
TB , the implied correctness of transformations for λτ (fchb) (Theo-
rem 4.10), and correctness of program transformations for λτ (fch)
(Theorem 3.4), one can show that the following transformations for
put and get are correct:

(DET.PUT) (νx).E[put(x, v)] |x b−→ (νx).E[unit] |x b v
(DET.GET) (νx).E[get x] |x b v → (νx).E[v] |x b−

These rules are like BUFF.PUT(ev) and BUFF.GET(ev),
but restricted to sequentially used buffers. Then,
get(put(buffer u, v)) ∼ v and similar equivalences follow.

More generally, we would like to show that the code in Fig. 9
correctly implements the specification of buffers, even if they are
used in a non-sequential context. In other words, any use of buffers
should give rise to the same observations, whether one computes
with buffers abstractly using the specification, or concretely using
the implementation. Informally, such a result states that the imple-
mentation as well as the specification can be considered as different
realizations of an abstract data type of buffers. Since formally, the
two live in different calculi, we use convergence equivalence (The-
orem 4.9) of the translation TB directly, rather than arguing by its
adequacy as done for (DET.PUT) and (DET.GET) above.

Specifically, let e : τ ′ be any “client” making use of buffers:
e : τ ′ is a λτ (fchb)-program that may have free occurrences of the
variables b : unit → bufτ , p : bufτ × τ → unit and g : bufτ → τ
but does not otherwise contain the buffer primitives, and τ and τ ′

are λτ (fch) types. Such client programs are not affected by the
encoding TB induced by the implementation; we have TB(C) = C
for the context C defined as let 〈b, p, g〉= [] in e, so convergence

TH(h h f) , (νf ′)(f
susp⇐= let v = get f ′ in put(f ′, v); v

| f ′ b − |h⇐λz.put(f ′, z))

TH(h h •) , h
susp⇐= h

TH(handle) , λx.let
f ′ = buffer unit
f = lazy (λ .let v = get f ′ in put(f ′, v); v)
h = thread (λ .λz.put(f ′, z))
in x f h end

TH(p) , homomorphically wrt. the term structure

Figure 10. Encoding of handles using buffers

equivalence yields

C[〈buffer, λ〈x, y〉. put(x, y), get〉]ξ ⇔ C[〈buffer, put, get〉]ξ

for all observations ξ ∈ {↓,⇓}.

5. Handled Futures are Encodable with Buffers
In this section we show that we can encode handled futures using
buffers. Let λτ (fcb) be the subcalculus of λτ (fchb) where handles
are removed. More precisely, in λτ (fcb) the components y h x, h •,
and the constant handle are removed from the syntax of processes,
expressions, evaluation contexts etc. Consequently, the reductions
HANDLE.BIND(ev), and HANDLE.NEW(ev) are also dropped.

We show that there exists a translation TH : λτ (fchb) →
λτ (fcb) which is observationally correct and fully abstract. The
translation TH is defined in Fig. 10. It does not change the types.

The idea of the translation is to simulate the synchronization
effect of handles using the synchronization mechanism of one-
place buffers. We consider the encoding of a handle component
y h x. An empty buffer represents the ability to bind the handled
future x, i.e. binding of a handle consists in performing a put
operation on the buffer. If the handled future x is accessed for the
first time, then it becomes bound to the content of the filled buffer
and another put-operation is performed on the buffer to ensure that
the buffer remains full. The encoding of the handled future using
lazy threads ensures that the possibility that a handle is not used
in a successful reduction is translated into a successful reduction
in the buffer implementation. If (non-lazy) threads were used in the
encoding instead, one would end up with a suspended get-operation
which is never successful.

The encoding of the constant handle generates the translated
components of a handle when it is applied to an argument (mod-
ulo some BETA(ev)-reductions). Note that, equivalently, we could
have defined h = λz.put(f ′, z) for the let-binding of h, since
λz.put(f ′, z) ∼τ thread (λ .λz.put(f ′, z)) can be proved in
λτ (fcb), using the correct transformations of Lemma 5.3. The vari-
ant in Fig. 10 simplifies some of the arguments below.

The encoding of the used handle is different, compared to the
result of the reduction of an encoded handler use. This appears
necessary since for the translation of h h • we do not know the
name f ′ of the buffer that was previously used to translate h h f .
However, because a HANDLE.BIND(ev)-operation on a used handle
is not possible and leads to a must-divergent process, it is sufficient
to introduce the process component h

susp⇐= h, which fails as
soon as an encoded HANDLE.BIND(ev)-operation is performed.
Moreover, after we have proved adequacy of TH , we can verify
that h

susp⇐= h ∼ h h • in λτ (fchb) and λτ (fch), respectively
(see Remark 5.9). The f

susp⇐= get f ′ and the lazy-operator in
the encoding are necessary, otherwise the future f would force the

concurrent evaluation of get f ′ even if f does not occur in an E-
context.

The translation TH is compatible with typing, i.e. if p is well-
typed and well-formed, then TH(p) is well-typed and well-formed.
Corresponding typing properties hold for contexts, so that TH is a
translation in the sense of Section 2.

Lemma 5.1 (Compositionality of TH). The translation TH :
λτ (fchb) → λτ (fcb) is compositional, i.e., for all p, D, e, C,
we have TH(D)[TH(p)] = TH(D[p]) and TH(C)[TH(e)] =
TH(C[e]).

We sketch the proof of observational correctness and adequacy.
The following properties of TH are easy to verify:

Proposition 5.2. An expression e ∈ λτ (fchb) is a λτ (fchb)-
value iff TH(e) is a λτ (fcb)-value. A process p ∈ λτ (fchb) is
a successful λτ (fchb)-process iff TH(p) is a successful λτ (fcb)-
process. For contexts of λτ (fchb): TH(D) (TH(E), TH(F), resp.)
is a D-context (E-context, F -context, resp.) for λτ (fcb) iff D (E,
F , resp.) is a D-context (E-context, F -context, resp.) for λτ (fchb).

Because of this proposition, the hard cases for proving convergence
equivalence of TH are the encodings of HANDLE.NEW(ev)- and
HANDLE.BIND(ev)-reductions; all other reduction are inherited by
the translation. We first lift program equivalences from λτ (fchb) to
λτ (fcb). Let ιH : λτ (fcb) → λτ (fchb) be the identity translation
from λτ (fcb) into λτ (fchb). Obviously, ιH is compositional and
convergence equivalent, hence it is adequate. (In fact, we will prove
that ιH is fully-abstract at the end of this section.) As an immediate
consequence of Proposition 4.10 and the adequacy of ιH we obtain
the following correct transformations.

Lemma 5.3 (Correct transformations in λτ (fcb)). All re-
duction rules of λτ (fcb) are correct, with the exception of
CELL.EXCH(ev), BUFF.GET(ev), and BUFF.PUT(ev). The trans-
formations β-CBV(a), FUT.DEREF(a), CELL.DEREF, GC and
DET.EXCH (see Fig. 7) lifted to λτ (fcb) are correct.

Proposition 5.4 (↓-preservation of TH). For all λτ (fchb)-
processes p, the following holds: if p↓, then TH(p)↓.

Proof. The proof is by induction on the length of a successfully
ending reduction for p. The induction base is covered by Propo-
sition 5.2. For the induction step let p

ev−→ p′. As induction hy-
pothesis we use that TH(p′) ↓. Due to the properties of the con-
text translation (Proposition 5.2) it is easy to see that all reductions
of λτ (fchb) except for HANDLE.BIND(ev) and HANDLE.NEW(ev)

can be transferred to the encoding in λτ (fcb), i.e. if p
a,ev−−→ p′ with

a 6∈ {HANDLE.BIND(ev), HANDLE.NEW(ev)} then TH(p)
a,ev−−→

TH(p′). Hence, for these cases we have TH(p)↓.

For p
HANDLE.BIND(ev)−−−−−−−−−→ p′ we have:

TH(p)
FUT.DEREF(ev)−−−−−−−−→ β-CBV(ev)−−−−−−→ BUFF.PUT(ev)−−−−−−−→ sp1−−→ TH(p′), where

sp1 is a program transformation in λτ (fcb) defined as:

(νf ′)(y
susp⇐= let v = get f ′ in put(f ′, v); v end

| f ′ b w |x⇐λz.put(f ′, z))

→ y⇐w |x
susp⇐= x

Since these transformations are either ev-reductions or correct
(correctness of (sp1) is proved in (Schwinghammer et al. 2009)),
TH(p′)↓ implies TH(p)↓.

For p
HANDLE.NEW(ev)−−−−−−−−−→ p′ it holds:

TH(p)
β-CBV(ev)−−−−−−→ BUFF.NEW(ev)−−−−−−−→ β-CBV(ev)−−−−−−→ LAZY.NEW(ev)−−−−−−−→

β-CBV(ev)−−−−−−→ THREAD.NEW(ev)−−−−−−−−−→ β-CBV(ev)−−−−−−→ β-CBV(ev)−−−−−−→ β-CBV(f)−−−−−→ TH(p′)
where β-CBV(f) is the following restriction of β-CBV(a): The ex-
pression context C in the transformation must be flat, i.e. the hole

marker is not below a binding construct for expressions (λ-binder,
or pattern in a case-expression). Since all these transformations
are correct (Lemma 5.3), we have TH(p′)↓ implies TH(p)↓.

Proposition 5.5 (↓-reflection of TH). For all λτ (fch)-processes p,
the following holds: if TH(p)↓, then p↓.

Proof. Let p ∈ λτ (fch) and TH(p)↓. We show how to derive a suc-
cessful reduction sequence for p. We track the encoded handles and
handle operations in the image of TH (e.g. by using an appropri-
ate labeling) and use induction on the length of the given reduction
sequence for TH(p). If TH(p) is successful, then Proposition 5.2
implies that p must be successful, too. For the induction step let
TH(p)

ev−→ q
ev,n−−→ q′ where q′ is successful. There are three cases:

- The reduction TH(p)
ev−→ q is not the first reduction of an

encoded HANDLE.NEW(ev) or HANDLE.BIND(ev)-reduction.
For these cases it holds p

ev−→ p′ and TH(p′) = q.
- The reduction TH(p)

ev−→ q is the first reduction of an en-
coded HANDLE.BIND(ev) reduction, i.e. it is a FUT.DEREF(ev)-

reduction and p
HANDLE.BIND(ev)−−−−−−−−−→ p′. In (Schwinghammer et al.

2009) using Lemma 5.3 we show that there exists a reduction
sequence TH(p′)

ev,≤n−−−→ q′′, where q′′ is successful.
- The reduction TH(p)

ev−→ q is the first reduction of an encoded
HANDLE.NEW(ev) reduction, i.e. it is a β-CBV(ev)-reduction

and p
HANDLE.NEW(ev)−−−−−−−−−→ p′. Then again it is possible to construct a

reduction sequence TH(p′)
ev,≤n−−−→ q′′ where q′′ is successful.

In all cases we can apply the induction hypothesis to TH(p′).

Proposition 5.6. The translation TH is convergence equivalent.

Proof. Propositions 5.4 and 5.5 show that TH preserves and reflects
may-convergence. Preservation and reflection of must-convergence
follows by showing that TH preserves and reflects may-divergence.
The proofs are similar, where the base cases of the inductions are
valid since from preservation and reflection of may-convergence it
also follows that TH preserves and reflects must-divergence.

Compositionality and convergence equivalence of TH imply:

Theorem 5.7 (Observational correctness and adequacy of TH).
The translation TH is observationally correct and adequate.

Since the identity translation ιH : λτ (fcb) → λτ (fchb) which
we introduced above is an embedding and obviously compositional
and convergence equivalent, and since the translation TH is injec-
tive on types, Proposition 2.3 is applicable and shows:

Corollary 5.8 (Full abstraction). The translations TH and ιH are
fully abstract.

Using ιH and ιB (see Theorem 4.11) we can define direct
translations T ′

B , T ′
H from λτ (fcb) into λτ (fch) and vice versa,

by setting T ′
B = TB ◦ ιH and T ′

H = TH ◦ ιB . Since full
abstraction and adequacy are preserved under composition, we
obtain an adequate translation T ′

B : λτ (fcb) → λτ (fch) and a
fully abstract translation T ′

H : λτ (fch) → λτ (fcb).

Remark 5.9. Adequacy of TH (T ′
H , resp.) implies that used han-

dles are equivalent to suspended black holes, i.e. x h • ∼ x
susp⇐= x

in λτ (fchb) and λτ (fch). This follows, since the translations are
syntactically equal λτ (fcb) processes, i.e. TH(x h •) ≡ x

susp⇐=

x ≡ TH(x
susp⇐= x).

buffer , λ . let xg = ref false, xp = ref true, xs = ref None
in thread λ .〈xg, xp, xs〉

get , thread(λ ig. λ x.
let 〈xg, xp, xs〉 = x, getOK = exch(xg, false)
in if getOK then let Some v = exch(xs, None)

dummy = exch(xp, true) in v
else ig x)

put , thread(λ ip. λ 〈x, v〉.
let 〈xg, xp, xs〉 = x, putOK = exch(xp, false)
in if putOK then exch(xs, Some v); exch(xg, true); unit

else ip 〈x, v〉)

Figure 11. Busy-wait encoding of buffers

6. Encoding Buffers with Cells and Busy-wait
The results obtained above lead to the question if buffers (and
therefore also handled futures) can be encoded in a calculus without
either synchronization primitive. In this section we partly answer
this question. We encode buffers as cells and buffer operations as
operations on cells, by giving a translation TRB : λτ (fcb) →
λτ (fc). Here, the target calculus λτ (fc) is like λτ (fcb) but without
buffers. The translation will be a busy-wait encoding, and our
semantics will show that this is an adequate encoding. However,
at least from a performance point of view, these kinds of encoding
should be avoided since the knowledge where processes are waiting
for a certain event gets lost.

We will use a data type option(τ) with the nullary constructor
None : option(τ) and unary constructor Some : τ → option(τ).
This simplifies the encoding since no dummy values are needed.
Fig. 11 shows the encoding of the buffer operations that induces
the translation TRB : λτ (fcb) → λτ (fc). On buffers it is defined
as follows:

TRB(x b v) , (νxg, xp, xs)(x⇐(xg, xp, xs) |xp c false
|xg c true |xs c Some TRB(v))

TRB(x b−) , (νxg, xp, xs)(x⇐(xg, xp, xs) |xp c true
|xg c false |xs cNone)

This encoding is compositional and preserves success, i.e., p is
successful iff TRB(p) is. Moreover, Theorem 3.4 and adequacy
of the identity transformation id : λτ (fc) → λτ (fch) show that
the reduction rules of λτ (fch), except for CELL.EXCH(ev) and the
handle-rules, and the transformations of Fig. 7, are also correct
transformations for λτ (fc). This allows us to prove convergence
equivalence of TRB(p), which implies correctness:

Theorem 6.1 (Observational correctness and adequacy). The
translation TRB : λτ (fcb) → λτ (fc) is observationally correct
and adequate.

As a corollary, using the translation T ′
H : λτ (fch) → λτ (fcb)

described at the end of the previous section, we obtain an observa-
tionally correct and adequate translation TRB ◦ T ′

H from λτ (fch)
into λτ (fc).

Essentially, these translations show that handled futures and
buffers are not necessary from a semantic viewpoint. However,
the blocking and waiting by queuing is preferable to the busy-
wait implementation given in this section, since a machine can
keep track of suspended processes and notify them after changes.
Accordingly, we obtain the following theoretical challenge, that we
currently leave open:

Show that there is an efficiency advantage of the handle-
removing and buffer-removing translations T ′

H , T ′
B over the

busy-wait translations.

A proof of this challenge could be possible by extending our cur-
rent development and arguments of the semantical theory of may-
and must-convergence. Specifically, one must find an appropriate
notion of corresponding reduction trees, and analyze the lengths of
the corresponding reduction sequences more carefully.

Finally, to complete the diagram from the introduction, it re-
mains to relate λτ (fc) to the calculus λ(fh). We achieve this in two
steps: First, the data constructors and case-expressions of λτ (fc)
are encoded in an (untyped) intermediate calculus that only has
concurrent and lazy futures and reference cells. In a second step,
this intermediate calculus is embedded into the calculus λ(fh)
(which additionally features handled futures). The translations used
in both steps are observationally correct and adequate, hence this
also holds for their composition. The details of this construction
can be found in the technical report (Schwinghammer et al. 2009).

7. Discussion and Related Work
In this paper we have proposed a method for specifying and reason-
ing about implementations, based on semantics-preserving transla-
tions. We have proved that concurrent buffers and handled futures
are equivalent synchronization primitives in the lambda calculus
with futures, in the sense that each can correctly encode the other.
This result can be seen as an extended case study of our method,
and illustrates how recent proof techniques based on observational
semantics permit to prove the equivalence of various concurrency
primitives of realistic concurrent programming languages.

To complete the picture in our particular setting, there are two
immediate open questions: Can we make precise the intuition that
the translations TH , TB that encode blocking by waiting and queu-
ing and vice versa, improve upon the busy-wait encoding? And, is
the translation TB fully abstract?

Questions of expressiveness have been addressed mainly in the
pi-calculus and basic process calculi (Parrow 2008; Gorla 2008);
we are not aware of previous work on formally relating synchro-
nization primitives in concurrent high-level languages with respect
to contextual semantics. Similar issues, concerning properties of
translations, arise in the verification of compilers, an ongoing re-
search topic (e.g. Leroy and Blazy 2008). However, in this context
usually only (simpler) simulation properties for closed programs,
rather than open program fragments, are established.

One technique for relating different primitives for sequential
languages are proofs of representation independence, which guar-
antees that an invariant between two implementations (or an im-
plementation and its specification) is preserved in all programs
(Reynolds 1983). While recent work (Ahmed et al. 2009; Bohr and
Birkedal 2006; Reddy and Yang 2004) has extended this method
from functional to stateful higher-order languages, it is not clear
to us whether it can also be adapted to concurrent languages. Our
Section 4.4 can be viewed as a result of this kind, which is obtained
by a detailed analysis of reduction sequences.

Proving similar correctness and expressiveness results for other
base languages is possible in principle, but requires to establish
a sufficiently rich equational theory first. Here, we derived suffi-
ciently many equivalences for our proofs via adequate translations
into “smaller” core calculi. Alternatives to this approach may be
bisimulation methods, based on suitable labelled transition sys-
tems. For instance, bisimulation methods have been developed for
an untyped, stateful higher-order language by Koutavas and Wand
(2006), and for fragments of Concurrent ML (e.g., by Jeffrey and
Rathke 2004). However, it is open in which way bisimilarity can
characterize contextual semantics with respect to may- and must-
convergence, in particular for languages like the ones considered in
this paper.

References
A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation

independence. POPL’09, pages 340–353. ACM Press, 2009.
N. Bohr and L. Birkedal. Relational reasoning for recursive types and

references. APLAS’06, LNCS 4279, pages 79–96. Springer, 2006.
A. Carayol, D. Hirschkoff, and D. Sangiorgi. On the representation of

McCarthy’s amb in the pi-calculus. TCS, 330(3):439–473, 2005.
R. De Nicola and M. Hennessy. Testing equivalences for processes. TCS,

34:83–133, 1984.
C. Fournet, F. Le Fessant, L. Maranget, and A. Schmitt. JoCaml: A lan-

guage for concurrent distributed and mobile programming. In Advanced
Functional Programming, LNCS 2638, pages 129–158. Springer, 2002.

D. Gorla. Towards a unified approach to encodability and separation results
for process calculi. CONCUR ’08, pages 492–507, Springer, 2008.

A. Jeffrey and J. Rathke. A theory of bisimulation for a fragment of
concurrent ML with local names. TCS, 323(1-3):1–48, 2004.

V. Koutavas and M. Wand. Small bisimulations for reasoning about higher-
order imperative programs. POPL’06, pages 141–152. ACM, 2006.

X. Leroy and S. Blazy. Formal verification of a C-like memory model and
its uses for verifying program transformations. J. Autom. Reasoning, 41
(1):1–31, 2008.

B. Liskov and L. Shrira. Promises: linguistic support for efficient asyn-
chronous procedure calls in distributed systems. PLDI’88, pages 260–
267. ACM Press, 1988.

J. Niehren, J. Schwinghammer, and G. Smolka. A concurrent lambda
calculus with futures. TCS 364(3):338–356, 2006.

J. Niehren, D. Sabel, M. Schmidt-Schauß, and J. Schwinghammer. Obser-
vational semantics for a concurrent lambda calculus with reference cells
and futures. 23rd MFPS, ENTCS 173, pages 313–337. Elsevier, 2007.

C.-H. L. Ong. Non-determinism in a functional setting. In LICS ’93, pages
275–286. IEEE Computer Society, 1993.

J. Parrow. Expressiveness of process algebras. ENTCS, 209:173–186, 2008.
S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. POPL’96,

pages 295–308. ACM Press, 1996.
U. S. Reddy and H. Yang. Correctness of data representations involving

heap data structures. Sci. Comput. Program., 50(1–3):129–160, 2004.
A. Rensink and W. Vogler. Fair testing. Inform. and Comput., 205(2):125–

198, 2007.
J. H. Reppy. Concurrent Programming in ML. CUP, 1999.
J. C. Reynolds. Types, abstraction, and parametric polymorphism. In

Information Processing ’83, pages 513–523. North-Holland, 1983.
J. G. Riecke. Fully abstract translations between functional languages.

POPL’91, pages 245–254, ACM Press, 1991.
E. Ritter and A. M. Pitts. A fully abstract translation between a lambda-

calculus with reference types and standard ml. TLCA’95, LNCS 902,
Springer, 1995.

A. Rossberg, D. Le Botlan, G. Tack, T. Brunklaus, and G. Smolka. Trends in
Functional Programming, volume 5, chapter Alice Through the Looking
Glass, pages 79–96. Munich, Germany, 2006.

D. Sabel and M. Schmidt-Schauß. A call-by-need lambda calculus with
locally bottom-avoiding choice: context lemma and correctness of trans-
formations. Math. Struct. Comp. Sci., 18(3):501–553, 2008.

M. Schmidt-Schauß, J. Niehren, D. Sabel, and J. Schwinghammer. Ade-
quacy of compositional translations for observational semantics. In 5th
IFIP, IFIP 273, pages 521–535. Springer, 2008.

M. Schmidt-Schauß and D. Sabel. On generic context lemmas for lambda
calculi with sharing. Frank report 27, J.W.Goethe-University, Frankfurt,
2007.

M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, and D. Sabel. Ade-
quacy of compositional translations for observational semantics. Frank
report 33, J.W.Goethe-University, Frankfurt, 2009.

J. Schwinghammer, D. Sabel, J. Niehren, and M. Schmidt-Schauß. On
correctness of buffer implementations in a concurrent lambda calculus
with futures. Frank report 37, J.W.Goethe-University, Frankfurt, 2009.

