Fachbereich 14 Informatik
Universitit des Saarlandes

An Implementation of the Programming Language
DML in Java: Runtime Environment

Diplomarbeit

Angefertigt unter der Leitung von Prof. Dr. Gert Smolka

Daniel Simon

23.12. 1999

Erklirung

Hiermit erkldre ich, daff ich die vorliegende Diplomarbeit zusammen mit Andy Walter / selb-
standig verfafit und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Die folgende Tabelle zeigt die Autoren der einzelnen Kapitel. Gemeinsame Kapitel sind iden-
tisch in beiden Arbeiten enthalten; die Kapitel, die nur von einem der Autoren geschrieben wur-
den erscheinen nur in der jeweiligen Arbeit.

Kapitel 1 (Introduction) beide je 50%
Kapitel 2—4 Andy Walter
Kapitel 5-7 Daniel Simon
Kapitel 8-10 beide je 50%
Anhang A (Compilation Scheme) Andy Walter
Anhang B (Code of the Benchmarks) | beide je 50%

Saarbriicken, den 23. 12. 1999

Daniel Simon /

Abstract

DML is an experimental language that has emerged from the developement of the
Oz dialect Alice. DML is dynamically typed, functional, and concurrent. It supports
transients and provides a distributed programming model.

To translate DML to the Java Virtual Machine, a runtime environment is needed. This
work presents a simple and secure implementation of the basic DML runtime classes
and elaborates on relevant improvements. Pickling, a mechanism to make higher or-
der values persistent, is provided on top of the Java Object Serialization. Finally, a
high-level distributed programming model for DML is implemented based on Java’s
Remote Method Invocation architecture.

Finally, the implemented compiler and the runtime environment of DML are com-
pared to similar projects.

Acknowledgements

First of all, I want to thank Prof. Dr. Gert Smolka for the interesting subjects of the theses.

I am indebted to Leif Kornstddt who supported us with patience during almost one year of
research and programming. He implemented the compiler frontend together with Andreas Ross-
berg. Both Andreas and Leif were always open to our questions and suggestions concerning the
compiler.

Further, I would like thank the people at the Programming Systems Lab for their answers to
our numerous questions and all the fun we had during that time.

Finally, I am grateful to my family and Mira Schade who supported and inspired me during
the past months.

Contents

1 Introduction 1
1.1 Standard ML 1
12 Oz ..o 2
1.3 DML . .. 2
14 Java . . .o 3
1.5 Organisationof the Paper 4

2 Compilation Scheme 7
2.1 TheJava Virtual Machine 7

211 TheMachine. 8
212 ClassFiles 8
2.2 Typography for the Compilation Scheme 9
2.3 Intermediate Language L L L oo 9
23.1 Componentsand Pickles. 9
232 Statements L 10
233 EXpressions 11
234 PatternMatching Lo 11
23,5 Function Arguments L L oo 12
23.6 Constant Propagation 13
2.4 A Short Description of the Runtime 13
241 Values 13
25 HelperFunctions 14
2.5.1 Loading Values of Stamps onto theStack 14
2.6 Compilation of Expressions 15
2.6.1 Constructors and Constructor Names 15
2.6.2 Primitive Operations L o 16
263 Applications 16
264 Abstraction 17
265 Literals 17

266 Records 18

2.6.7 Other Expressions
2.7 Compilation of Statements L L L
2.71 Non-Recursive Declarations
2.7.2 Recursive Declarations L L L.
273 PatternMatching L
274 SharedCode.
275 Exceptions
2.7.6 EvaluationStatement. o L L.
2.7.7 Returning from Functions,
278 Exports.
2.8 Summary
Optimizations
31 TheConstantPool
3.2 Functionsand Methods L L
321 m-aryPFunctions L
322 TailRecursion
3.2.3 Using Tableswitches and Lookupswitches
324 Codelnlining
3.25 Unboxed Representation.
33 Summary
Implementation
41 TheModules

Value Representation

51 BasicConcept
52 Implementation
5.2.1 General Notes About The Implementation
522 DMLValue
523 Literals
5.2.4 Names, Constructors and Constructed Values
525 TuplesandRecords
526 Functions e
527 Transients
528 Threads
529 Exceptions e
5.2.10 Miscellaneous Types
53 Enhancements
531 Tuples

27
27
28
28
29
30
30
30
31

33
33

532 Constructed Values

533 Functions
534 GeneralSpeedups o
54 Summary
Pickling
6.1 ToPickleOrNotToPickle
6.2 Pickling and Serialization L Lo
6.2.1 Outline of Java Serialization
6.3 Implementation of Pickling
6.3.1 Globalization and Localization
6.3.2 Annotationof ClassCode
633 ClassLoading
6.34 ReadingPickles Lo
6.4 Summary

Distributed Programming

7.1 Establishing Connectionsin DML
72 JavaRMI . . . o e e
7.3 Distributed Semanticsof DML
74 Implementation
741 ProvidingValues L.
7.4.2 Stateless Entities
743 Stateful Entities
744 References
7.5 Reimplementing RMI L
76 SUMMATYo
Related Work
8.1 Kawa
82 MLj . . .
83 Bertelsen
8.4 Javarelated software
Benchmarks
91 How WeMeasure i
9.2 TheTestPlatform
9.3 Benchmark Programs
94 Analysis
95 DynamicContest

9.6 SUMMATY oottt

51
51
52
54
55
55
56
57
57
57

59
59
60
61
61
63
63
63
64
67
68

69
69
69
69
69

10 Conclusion

A Compilation Scheme

A1 Compilation of Expressions
A1l References
A12 Variables
A13 Tuplesand Vectors

A.2 Recursive Declarations

B The Code of the Benchmarks

B.1 Differences . .

B.2 Common Parts

Bibliography

79

81
81
81
82
82
82

85
85
86

89

Chapter 1

Introduction

The subject of this work is the implementation of DML, an experimental, functional, concurrent,
distributed, dynamically typed language with support for transients and first class threads. In
the following we present a compiler backend and a runtime environment for translating DML
programs to Java Virtual Machine code.

The goal of our work is a simple and secure implementation of DML for the JVM. We want
further to investigate the question of efficiency. We try to estimate the influence of dynamic typing
on the speed of the implementation by comparing our results with related projects. We elaborate
what support the JVM gives us for our implementation and what features we are missing.

The compiler is written in Standard ML; the implementation follows general well-known com-
piler construction techniques as described, e.g., in [ASU86, WM92]. The runtime environment
consists of Java classes that provide the basic functionality for the execution of DML programs on
the Java Virtual Machine; parts of the Standard ML basis library are implemented directly in Java
to improve efficiency.

This chapter gives an overview about the various programming languages relevant for this
work. We describe the key features of Standard ML, Oz, and Java. Further, an overview of the
important features of DML is given.

1.1 Standard ML

Standard ML is a functional language commonly used in teaching and research. ML is type safe,
i.e.,, a program accepted by the compiler cannot go wrong at runtime because of type errors.
The compile-time type checks result in faster execution and can help in the development process
to avoid common mistakes. The type inference system of ML makes programs easier to write
because the compiler tries to derive the type of expressions from the context.

SML supports polymorphism for functions and data types. Data-type polymorphism allows
to describe lists of ints, lists of strings, lists of lists of reals, etc. with a single type declaration.
Function polymorphism avoids needless duplication of code by permitting a single function dec-
laration to work on polymorphic types. SML functions are higher order values; functions are
dynamically created closures that encapsulate the environment in which they are defined. Func-
tions can be returned as results of functions, they can be stored in data structures and passed to
functions as arguments. Function calls in SML are call-by-value, i.e., the arguments of a function
are evaluated before the body of the function is evaluated.

In SML, most variables and data structures are immutable, i.e., once created they can never be
changed or updated. This leads to guarantees on data structures when different parts of a pro-
gram operate on common data. Such unchangable data fits well into a functional context, where

2 Introduction

one tends to create new structures instead of modifying old ones. The automatic garbage collec-
tion of SML supports the functional style of programs and makes code simpler, cleaner, and more
reliable. However, SML also has updatable reference types to support imperative programming.

SML comes with an exception-handling mechanism that provides dynamic nesting of handlers
and provides — similar to other languages like C++, Java, Ada, etc. — the possibility to separate
error handling from the rest of the code. The Standard ML language supports modules (called
structures) and interfaces (called signatures). The signatures of modules specify the components
and types from the module that are visible from outside.

The language and its module system are defined formally in [MTHM97]. A consequence of
having the language definition in a formal notation is that one can prove important properties of
the language, such as deterministic evaluation or soundness of type checking. There are several
efficient implementations of Standard ML available: Moscow ML, SML/N]J, and others. Moscow
ML is a light weight implementation; SML/N] has more developer tools such as a compilation
manager and provides a concurrent extension CML.

1.2 Oz

Since 1991 the programming language Oz has been developed at the Programming Systems Lab
under the direction of Gert Smolka. Oz combines concepts of logic, functional, and object oriented
programming. It features concurrent programming and logical constraint-based inference. The
first implementation of Oz was officially released in 1995 as DFKI Oz 1.0 [Oz95]. Two years later
the release of Oz 2.0 [0z97] was completed. In January 1999, the successor of Oz 2.0, Mozart, was
announced to the public. The current development of Mozart is a collaboration with the Swedish
Institute of Computer Science (SICS) and the Université catholique de Louvain in Belgium.

The Mozart system [Mo0z99] provides distributed computing over a transparent network. The
computation is extended across multiple sites and automatically supported by efficient protocols.
Mozart further provides automatic local and distributed garbage collection.

Many features of Oz are inherited by DML and thus are explained in detail in the correspond-
ing section. Among the features not shared with DML are constraints, encapsulated search, and
objects.

Similar to Java, Oz is compiled to byte code that can be run on several platforms. Unlike
Java, Mozart provides true network transparency without the need of changing the distribution
structure of applications. Further, Oz is a data-flow language, i.e., computations are driven by
availability of data. Finally, Mozart provides low-cost threads. Thus, it is possible to create thou-
sands of threads within a process.

1.3 DML

The Amadeus project now develops a dialect of Oz, Alice, with its implementation called Stock-
hausen. DML is an experimental language that has emerged from the development process of
Alice. The roots of DML are described in [MSS98, Smo098a, Smo98b].

DML stands for ‘Dynamic ML’; the syntax is derived from Standard ML. Like Oz, DML is
dynamically typed. Further, DML supports transients and concurrency with first class threads.

The transient model of DML is a mixture of Mozart’s transient model and the Alice model. In
DML, there are three different kinds of transients: logic variables, futures and by-need futures. In our
context, logic variables are single assignment variables and futures are read-only views of logic
variables. A by-need future is a future that has a reference to a nullary function. The function’s
application is delayed until the value of the by-need future is requested and then the by-need

1.4 Java 3

future is replaced by the function’s return value. All transients become transparent after they
have been bound.

Transients can be obtained by the operations
I var Sounit ->
future : "a ->"a
byNeed : (unit ->'a) ->"a

a

The operation
bind: ("a* 'a) ->"a
assigns a value to a logic variable. The operation

future : "a ->"a
returns a future if the argument is a logic variable or otherwise it returns the argument as is.

Requesting transients is always implicit.

Threads can be created by
spawn : (unit ->"a) -> unit
and can be synchronized by using transients. DML allows recursive values, e.g.,

1:: X

(x,y,2)

{a=y, b=z}

ref baz

ref foo

#[f 0o, baz, vec]

val rec X
and y
and
and
and
and vec

N

U —
Qv O
N O
I

is valid in DML. Similar to Oz, exceptions and exception handling are more liberal than in SML:
17 + ((raise 5) handle _ => 2)

evaluates to 19.

DML has a component system that is implemented by pickling. The component system is illus-
trated in Section 2.3.1; pickling is explained in detail in Chapter 6. Also a high level distributed
programming model adopted from Mozart is implemented (cf. Chapter 7) that makes the network
completely transparent.

Like Java and Oz, DML is platform-independent. A DML pickle can be used on any Java
capable platform.

1.4 Java

Java was originally called ‘Oak” and has been developed by James Gosling et al. of Sun Microsys-
tems. Oak was designed for embedded consumer-electronic systems. After some years of expe-
rience with Oak, the language was retargeted for the Internet and renamed to ‘Java’. The Java
programming system was officially released in 1995. The design principles of Java are defined in
the Sun white papers [GM96].

4 Introduction

Java is a general-purpose, concurrent, class-based, object-oriented language. It is related to C
and C++, but has a different organization. A number of aspects of C and C++ are omitted and
some ideas from other languages are adopted. Java is meant to be a production language, so new
and untested features are excluded from the design.

Java is strongly typed and it is specified what errors may occur at runtime and what errors
must be detected at compile time. Java programs are compiled into a machine-independent byte-
code representation (write once, run everywhere). However, the details of the machine represen-
tation are not available through the language. Java includes automatic storage management to
avoid the unsafeties of explicit memory deallocation. Java has distributed programming facilities
and supports networking with the special aspect of Internet programming. A security model for
execution of untrusted code [Gon98] is supplied.

The Java programming system consists of the object oriented programming language, the class
libraries of the Java API, a compiler for the language, and the Java Virtual Machine. The Java
language is defined in [G]JS96]; the Java Virtual Machine is specified in [LY97]. The program-
mer’s interface is documented in [GYT96a, GYT96b]. Java also comes with a documentation tool
(j avadoc), and a generated documentation of the API classes is available in HTML. The Java
platform provides a robust and secure basis for object oriented and multi-threaded distributed
programming.

Since 1995, Java has spread widely and the language has changed its former target architecture
from embedded systems to other subjects. People implement applications in Java that are not
restricted to run on a limited hardware (e.g., hand-held devices), but run as user interfaces for
business applications. Java is also used for scientific computing, cf. [Phi98, PJK98].

One of the less common kind of project in Java is to implement other programming languages
for the Java Virtual Machine (see [Tol99]): There are a lot of implementations for various Lisp
dialects available; BASIC variants have been ported; there are Java variants of logic programming
languages; other object oriented languages (Ada, COBOL, SmallTalk) can be translated to Java or
JVM byte code. There are some efforts to extend Java with generic classes, higher order functions
and pattern matching and transparent distribution [OW97, PZ97].

1.5 Organisation of the Paper

This is how this document is organized:

e Chapter 1 (this chapter) gives an introduction into the programming languages of interest
and a general overview of the work and its goals.

e Chapter 2 states a naive compilation scheme for DML. The features of the Java Virtual Ma-
chine and the DML runtime environment are described. An overview of the intermediate
representation of the Stockhausen compiler and backend independent transformations on
this representation is also given.

e Chapter 3 describes platform-dependent optimizations of the compiler backend.

e Chapter 4 specifies implementation details of the compiler backend and transformations on
the generated JVM instructions.

e Chapter 5 introduces the Java classes that make up the core of the runtime implementation.
First, the basic idea is presented and then we show how this can be improved in terms of
running time and memory usage.

e Chapter 6 explains the idea of pickling, i.e., making a persistent copy of stateless entities. The
implementation in Java is presented and how the current DML system makes use of it.

1.5 Organisation of the Paper 5

e Chapter 7 shows how the DML language can easily be extended for distributed program-
ming issues.

e Chapter 8 summarizes related projects and compares the achievements of others with the
DML system.

e Chapter 9 is about benchmarking issues. The execution speed of DML is compared to others.
We compare implementations of related languages.

e Chapter 10 draws a conclusion, gives a lookout into future dos and don’ts, advantages and
disadvantages of Java/object orientation resp. DML /functional programming.

Introduction

Chapter 5

Value Representation

The basic task of the runtime environment is to define a mapping of DML values to Java classes.
Since Java doesn’t provide corresponding constructs, we have to write classes that model the
behavior of the DML values. The representation of the values is coupled with the primitive oper-
ations of the language.

In the following we discuss several implementation strategies and justify our basic design con-
cept. We present a simple and secure implementation of DML values: literals, names, construc-
tors, and tuples straightforward to model. DML threads are based on Java threads, the different
kinds of transients can be used to synchronize the computation. The treatement of functions is
adopted from Pizza [OW97]. The exception model of DML is implemented as light weight as pos-
sible. After representing a simple version of the runtime classes, we describe some optimizations
that save access time and memory:.

In Section 5.1 we explain and justify our basic class concept. Section 5.2 presents the impleme-
nation of the runtime classes that will be refined and improved in Section 5.3. The features of the
Java programming language the implementation relies on are explained as far as needed.

5.1 Basic Concept

The DML language has the following key properties:
. the language is dynamically typed

. concurrency with first class threads is supported
. transients are supported

1

2

3

4. values are higher order

5. any value can be raised as an exception
6

. state is represented in terms of references

The modeling of the features of DML into the Java language makes use of the concepts of
Java’s object oriented system (see Section 1.4). The key properties of DML induce the following
constraints on the implementation.

e Property 1 enforces the usage of a common supertype, i.e., a common superclass or the
implementation of an interface for all classes that represent DML values. Further, type tests
are required at runtime and literals have to be boxed in wrapper classes. In particular this
means that we can not use the Java Virtual Machine primitive types directly.

38

Value Representation

Property 2 causes us to subclass the Thr ead class of Java. We will have to take care to
synchronize parts of the code in order to preserve the semantic characteristics of references
and transients.

Property 3, the support of transients, requires additional runtime tests, since transients are
used implicitly. This concerns amongst other things the equal s method of the classes. This
is another reason why the implementation has to provide wrapper classes for the literals.

Property 4 implies that many values can be applied, i.e., many of the objects representing a
value are applicable values.

Property 5 induces us to implement exception raising and handling as light weight as pos-
sible; we have to choose between subclassing some Java exception class or using exception
wrappers.

For the implementation different possibilities could have been chosen.

1. The first idea is that the superclass value should extend some exception class. Then Prop-

erty 5 is fulfilled. But exception creation, i.e., the instantiation of an exception class, in Java
is quite expensive even if the exception is not raised.

. The second idea is to use the Java top class j ava. | ang. Obj ect as the superclass of all

values. Then we will have to use an exception wrapper in order to be able to raise arbitrary
values. First class threads can be provided by simply subclassing j ava. | ang. Thr ead.
The application of values can be done by explicitly type testing whenever an application
occurs — and raise a type error if the object is not a function value.

. The third idea is to define the supertype value as an interface that declares a method appl y.

This has several advantages with respect to 2. We can implement first class threads by
subclassing j ava. | ang. Thr ead and implementing the interface. We reduce the number of
necessary type tests as follows. Values that are not applicable implement the appl y method
by raising a type error. This will speed up evaluation when there is no error condition. The
usage of an interface makes the runtime more flexible for changes, it is easier to add further
types and classes. The declaration is separated from the implementation.

We decided for the third idea, because this will be the most efficient way to implement the

runtime. The resulting class hierarchy can be seen in Figure 5.1.

— Literals
— Nane
— Constructor

— ConVal
DM_Val ue

— Tupl es
— Functi ons

— DMLTr ansi ent

'— Thr ead

Figure 5.1: The basic class hierarchy.

5.2 Implementation 39

5.2 Implementation

5.2.1 General Notes About The Implementation
Presented Code

In the sequel we present code to illustrate the runtime classes. This code is not ‘pure Java’ but
can be read as pseudo code in the style of Java. Some sections of the actual code are replaced by
comments that merely describe what happens instead of giving the hard-to-read Java reality. At
other places, macros like RAI SE are used; their meaning should be clear from the context.

Access Modifiers

Due to the extensions to SML, DML allows much more recursive values. Such recursive values
must be constructed top-down. To achieve foreign function security, the content fields of recursive
constructed objects should be private to the objects and accessible only via methods that check the
semantical constraints. This has one obvious disadvantage: it is too slow. As a consequence, object
fields that are immutable in the sense of DML are declared ‘blank final” as far as possible. For the
other fields security in that sense can only be achieved with high costs that we are not willing to
pay. We relax security on demands of efficieny.

Threads and Synchronize

This is how Java understands threads. There is a shared main memory where all objects fields,
class fields, and arrays are stored. In the main memory each object is associated with a lock. Every
thread has its own working memory where it can execute the methods of a Java program. There
the local variables of methods are stored; no other thread can see these variables. The working
memory (cache) keeps working copies of the shared objects in the main memory. This situation
is shown in Figure 5.2. Operations on the memory are executed in terms of actions, i.e., atomic
instructions, see Figure 5.3. There are rules that define when a thread is obliged to transfer the
content of the working copies to or from the shared memory. These rules can be found in [G]S96,
Chapter 17] and in [LY97].

Consider the following code of a DML program.

| et
val r1
val r2

=ref O

=ref O
spawmn (fn () => (rl :=1; r2 := 2));
('rl, !'r2)

end

According to the semantic rules of DML, there are three possible results of the expression
above:

e (0, 0) — the freshly spawned thread runs only after the references are dereferenced

e (1,0) — the spawned thread changes the value of r 1, then the dereferenciation of both
references takes place

e (1,2) — the spawned thread does all his work, then the dereferenciation is computed.

However, in Java we have to take care that there cannot be the result (0, 2) . Such a situation
could occur according to the Java rules for threads, cf. [G]S96, Chapter 17.10]. To avoid that out-
come of the computation, all methods of the reference objects have to be synchronized, i.e., must
aquire the lock of the reference object. This guarantees the correctness of the implementation.

40 Value Representation

Thread 1 Thread 2 Thread n
orking copy
working copy
'l use use use
" assign assign Working Memory assign \\
\ load load load \
\ store store store \
‘\ lock lock lock ‘\
__unlock unlock unlock \
\ \
N 1
N
N ~ 1
Sl 4D el ook |
i I
. / Object |
class or instance field read ,
) write /
(o] lock ’
) unlock ’
7
N Main Memory e
N 7

~ -
~ _ -

Figure 5.2: How Java sees the memory of Threads.

The method t oSt ri ng

Each of the classes overrides the t oSt ri ng() method in an appropriate way. There is also a
method t oSt ri ng(i nt) that can be used to control the ‘print depth’ of recursive values. Those

will not be shown explicitly in the following.

The method equal s

For many of the objects in the runtime, equal s is reduced to pointer equality. Because of the
transients, we have to reconsider the equal s method of each class. It usually looks similar to the

following:

bool ean equal s(Obj ect other) {
if (this == other) {
return true;
} else if (other instanceof DML.Transient) {
return other.equal s(this);
} else {
return fal se;

}

First the pointer equality is tested. If this test fails, we have to consider the ot her object to
be a transient. If so, the equal s of ot her will produce the correct result. Otherwise the objects
cannot be equal. In the following we will present the code for equal s methods only if they differ
much from this concept and modulo the test for transients.

5.2 Implementation 41

Working Memory

Thread

I I
I I
I I
| |
[-} use I
| © - 1
| o assign |
s |
| |
I (1) store lock I
I I
| unlock |
I I
[J]
h=t
S =
-
2 S
=l
—
N

Main Memory

Figure 5.3: Atomic actions threads may perform.

5.2.2 DMLValue

The supertype DMLValue is provided by defining an interface DM_Val ue. This interface provides
basic functions for all subtypes.

public interface DM.Val ue {
publ i ¢ DM.Val ue appl y(DM.Val ue val);
}

Since any value in DML may be an applicable value, the method appl y has to be imple-
mented. When invoked at runtime, late binding will resolve the method call to the implementing
class and the appropriate object method will be executed.

5.2.3 Literals

In DML the literals consist of integers, words, reals, strings, and characters. These literals are
implemented by wrapper classes. Since the corresponding classes j ava. | ang. | nt eger, etc.
are declared final, they cannot be extended for our purpose. Therefore we need our own wrapper
classes. We present the character wrapper as an example.

public class Char inplenments DM.Val ue {
final public char val ue;
public Char(char c) {
val ue = c;
}
publ i c DM_Val ue appl y(DM_Val ue val) {
RAI SE(runtinmeError);

}

We define an appropriate constructor for each of the literal classes. Each class has a field where
the Java primitive value is stored. Two literals are equal if their primitive values are equal. The
application of a literal value results in an error.

42 Value Representation

5.2.4 Names, Constructors and Constructed Values
Terminology

In SML, there are nullary and unary constructors and exceptions. In analogy we have the follow-
ing situation in DML. Names are nullary constructors, e.g. uni t and t r ue. Constructors in terms
of DML are unary constructors, e.g. : :, ref, and Opti on. SOVE. Since in DML any value can
be raised as an exception, there is no need to have a special exception construct. If you apply a
constructor to some arbritrary value, you obtain a constructed value; this corresponds to a value
tagged with a constructor.

Name

The application of a name results in a type error. Equality is reduced to pointer equality of Java
objects (modulo transients).

public class Nane inpl enments DM.Val ue {
public Narme() {}

}

Construct or

Again, equality is pointer equality. Applying a constructor results in a constructed value with a
pointer to its constructor and the content value.

public class Constructor inplenents DM.Val ue {
public Constructor() {}
public DM.Val ue appl y(DM.Val ue val) {
return new ConVal (this,val);

}

ConVal

A constructed value has a reference to the constructor by that it was constructed and a reference
to the value. We define a unary constructor that is needed for recursive constructed values, and a
constructor with constructor and value arguments.

public class ConVal inplenents DM.Val ue {

public Constructor constructor;

public DM.Val ue content = null;

publ i c ConVal (Constructor con) {
constructor = con;

}

public ConVal (Constructor con, DM.Val ue ct) {
constructor = con;
content = ct;

}

In the DML model, references are constructed values, too. Therefore we have to consider the
following methods:

publ i c bool ean equal s(Obj ect val) {
if (val instanceof ConVal &&

5.2 Implementation 43

((ConVval) val).constructor != REFERENCE) ({
return
(constructor == ((ConVal) val).constructor) &&
content. equal s(((ConVal) val).content);
} else if (val instanceof DML.Transient) ({
return val . equal s(this);
} else {
return fal se;
}
}
publ i c synchroni zed DM_Val ue exchange(DM.Val ue val) {
i f (constructor == REFERENCE) ({
DM.Val ue ret = content;
content = val;
return ret;
} else {
RAI SE(runti neError);
}
}

Equality is equality of the constructor and the value if the constructor is not the reference
constructor. References have the property to be non-structural equal. The method exchange is
synchr oni zed to make the exchange of the content of a reference atomic.

5.2.5 Tuples and Records

Tuples are implemented by a Java class that stores the items of the tuple in an array.

public class Tuple inplenments DM.Val ue {
public DM.Val ue val s[];
public Tupl e(DM.Val ue[] V) {
val s = v;
}
}

We must be aware that it is possible to dynamically create records with new labels. That means
we cannot statically map record labels to numbers, i.e., we can’t replace them by tuples. Records
are somewhat more complex. The labels have to be stored with the values in order to be able to
reference them again. Record labels are represented by Java strings and assumed to be sorted by
the compiler backend.

public class Record inplenments DM Val ue {

prot ect ed Hashtabl e | abel s;

publ i c DM.Val ue[] val ues;

public Record (String[] |Is, DMLValue[] vals) {
val ues = vals;
/1l enter the | abels with the val ues’ index
// into the hashtable ‘I abels’

}

public DM.Val ue get(String label) {
/1 1 ookup | abel’s index in the hashtable
/1 return ‘val ue[index]"’

}

We use the hashtable | abel s to map labels to indices in the value array. In this naive im-
plementation equality testing is rather expensive — labels and associated values have to be com-

44 Value Representation

pared. Also, records need much memory because each record keeps its own hashtable to lookup
the values.

5.2.6 Functions

We proceed as follows:

abstract public class Function inplenents DM.Val ue {
publ i c bool ean equal s(Obj ect val) {
return getd ass().equal s(val .getC ass());
}
}

We consider two functions to be equal if their class names are the same. SML doesn’t allow
comparison of functions at all, so this can be seen as an extension.

5.2.7 Transients

LVar
DM_.Tr ansi ent Future

ByNeedFut ur e

Figure 5.4: The transients of DML.

Terminology

The terminology used in the sequel is defined in Section 1.3.

Implementation

The class hierarchie of the transients is depicted in Figure 5.4. All the variants of transients have
three operations in common: r equest, get Val ue, and bi nd. Therefore we define a new inter-
face DMLTr ansi ent as follows:

public interface DM.Transi ent extends DM.Val ue {
publ i c DM.Val ue get Val ue();
public DM.Val ue request();
publ i c DM.Val ue bi nd(DM_Val ue val);

}

Any concrete implementation of this interface contributes these three methods. The first im-
plementation presented is LVar , representing a logic variable.

public class LVar inplenments DMLTransi ent {
protected DM.Val ue ref = null;
synchroni zed public DWMLVal ue getVal ue() {
if (ref == null) {
return this;
} else {
if (ref instanceof DM.Transient) {

5.2 Implementation 45

ref = ((DM.Transient) ref).getValue();
}

return ref;

}

}
synchroni zed public DM.Val ue request() {

while (ref == null) {
try {
this.wait();
} catch (java.lang.|InterruptedException e) {
/1 This shoul d never happen!

}

if (ref instanceof DML.Transient) {
ref = ((DMLTransient) ref).request();

}

return ref;

The LVar contains a reference to the not yet known value. The method get Val ue returns
the content if known (and makes a path compression on the reference chain) or the logic variable
itself. The method r equest either returns the known value (again with path compression) or
suspends the current thread. The suspended threads are entered into the wait-set of the logic
variable.

synchroni zed public DM.Val ue bi nd(DM.Val ue v) {
if (ref '=null) {
RAI SE(LVvar. Ful fill);
} else {
while (v instanceof DM.Transient) {
if (v ==this) {
RAI SE(LVar. Ful fill);
}
DM_Val ue vv = ((DM.Transi ent) v).getVal ue();
if (v == vv) {
br eak;
} else {

}
}
ref = v;
this.notifyAl();
return UNIT;

}

By using bi nd on the logic variable the reference is bound and all threads in the wait-set are
woken up. Equality is the equality of the referenced values. If the logic variable is used as a
function, the appl y method simply requests the referenced value and calls its apply.

Fut ur es are essentially like LVar s, except that the bi nd operation will result in an error.

The third implemented variant are ByNeedFut ur es. A ByNeedFut ur e contains a reference
to an applicable value cl osur e of typeunit -> " a. When the value is requested, cl osur e is
applied to uni t and the reference of the function replaced by the result of the application. The
ByNeedFut ur e knows three states: not yet evaluated function (UNBOUND), an exception occurred
when the function was evaluated (ERROR), and successfully evaluated function (BOUND).

46 Value Representation

5.2.8 Threads

All threads we will run in a DML program are instances of the following class.

public class Thread extends java.l ang. Thread i npl enents DM.Val ue {
final public DM.Val ue fcn;
public Thread(DM.Val ue v) {
fcn = v;
}
public void run() {
fcn.appl y(UNIT);
}
}

A DML thread extends the class j ava. | ang. Thr ead. The builtin function spawn uses the
thread constructor with the DM_Val ue argument. The thread defines the r un method that will be
executed as its main loop. Equality is pointer equality. Uncaught Java exceptions and uncaught
DML exceptions will be propagated up the call stack and they will not leave the thread context.
The thread terminates, the exception is printed to the console.

We could have solved the problem of tail recursion with a field t ai | in the class Thread where
the continuation would have been passed. The tail recursion is explained in detail in the backend
(see Section 3.2.2).

5.2.9 Exceptions

Speaking in Java terms, an exception is an event that occurs during the execution of a program
that disrupts the normal flow of instructions. Exception are intended to be used when an error
condition occurs. This has the advantages that

e the programmer can separate the error handling from the normal control flow
e errors are propagated up the call stack

e errors can be grouped and differentiated

Java has different types of exceptions, including I/O exceptions, runtime exceptions, and excep-
tions of one’s own creation. The exception can either be checked or unchecked. Unchecked excep-
tions are subclasses of the class Runt i meExcept i on. Runtime exceptions can occur anywhere in
a program and in a typical Java program can be very numerous. The cost of checking for runtime
exceptions often exceeds the benefit of catching or specifying them. Thus the compiler does not
enforce that you catch or specify runtime exceptions, although you can do so.

In DML we want to be able to raise any value as an exception. Since we don’t want our
values to extend some of the Java exception classes, we need to wrap the values to be raised into
a wrapper class. Because in DML an exception can be raised everywhere and will be handled
explicitly in some other (Java) context, it is a good idea to make our exception wrapper class a
runtime exception.

public class Excepti onW apper extends RuntinmeException {
final public DM.Val ue val ue;
publ i c ExceptionW apper (DM_Val ue val) {
val ue = val;
}
}

The value to be raised is an argument to the constructor of the wrapper class.

5.3 Enhancements 47

5.2.10 Miscellaneous Types
Literals

There is one additional class JObj ect that represents Java API objects. With some builtin func-
tions, any Java object can be treated as a DML value. The JObj ect s cannot be seen as a real
interface to the Java API. This would require a support by the frontend, cf. [BKR99].

Ports, Vectors, Arrays

One of the more sophisticated types is the Por t . Ports implement a many-to-many communica-
tion. They use a stream, i.e., a list with a logic variable at the end. If a thread wants to write to
a port, the logic variable at the end of the list is replaced by a ‘cons’ cell with the message as the
‘car’ and a fresh logic variable as the ‘cdr’.

public class Port inplenments DMLVal ue {
LVar last = null;
public Port(LVar f) {
last = f;
}
publ i ¢ DM_.Val ue send(DM.Val ue nsg) {
LVar newLast = new LVar();
synchroni zed (last) {
| ast. bi nd(new Cons(nsg, new Future(newLast)));
| ast = newlLast;

}
return UNIT;

}

Receiving messages from a port is an implicit operation; it is not distinguishable from a usual
list. Appropriate primitive functions for creation of ports and sending messages are supplied:

type 'a port
val newPort : unit -> 'a port * "a list
val send : 'a port * 'a -> unit

The SML Basis Library defines Arrays and Vectors. For reasons of efficiency these additional
types are implemented in Java. The implementation is straightforward, and the code is not repre-
sented here.

5.3 Enhancements

All the enhancements implemented in this section result in the class tree shown in Figure 5.5.

5.3.1 Tuples

In the case of tuples there can be done several things to improve efficiency. First, we implement
special classes Tupl ei for tuples of arity 2, 3, and 4. We avoid the indirection of a Java array and
achieve faster access to the subvalues by defining 2, 3 resp. 4 object fields.

Since all these Tupl eis are of type tuple, we define a common interface DMLTupl e. To pre-
serve the former class hierarchy position of the record class, the interface also declares a method
get (String) thatcan be used to fetch values by a label.

48 Value Representation

— Literals
— Nanme
— Constructor — Ref erence
— DM.ConVal —1— Cons
— ConVal i
DM_LVal ue — — Tupl e
— DM_.Tuple —— Record
— Functi ons — Tupl ei
— LVar
— DMLTr ansi ent — Future
— Thr ead — ByNeedFut ur e

Figure 5.5: The class hierarchy after considering the enhancements.

Records are more efficient if the labels (we assume labels are always sorted) are stored in a
global hashtable and the record only keeps a pointer to the so called Recor dAri t y. The compar-
ison of two records then is reduced to pointer equality of the records’ arities. Only if the arities
match, the values in the record have to be compared. Furthermore record values can be accessed
by index (since the sorted labels are the same) rather than by label.

5.3.2 Constructed Values

Constructed values also can be specialized into ConVal i classes that avoid the indirection of a
tuple but store the content in object fields. We define an interface DM_ConVal similar to the DM_-
Tupl e interface. Now a method get Const r uct or is necessary, since interfaces cannot define
object fields.

Another point is the storage of the constructor: references and cons-cells know their construc-
tor statically and don’t need an object field for it; we define two special classes Ref er ence and
Cons.Since we have different objects for references and cons-cells we also have to take care of
the constructors. The class Const r uct or is subclassed for each of : : and Ref er ence, and the
default implementation of appl y is changed. In both cases testing for the constructor can be
reduced to an i nst anceof test.

5.3.3 Functions

In SML functions only have one argument. If a function is always called with tuples, we may
avoid the wrapping and unwrapping of values into tuples. We can gain some speed by specializ-
ing appl y. We define appl yO(), appl y2(v, w), ... Still, the compiler must produce a method
appl y, not only because the interface definition requires it, but because the function could be
called at runtime with some other value than a tuple. If the closure of a function is empty, i.e.,
there are no free variables, we can additionally define static methods sappl yi. There are of course

5.4 Summary 49

changes to the DMLVal ue interface — now the appl ys have to be defined. All the implementing
classes have to provide implementations.

5.3.4 General Speedups

In Java, there are several things to do to speed up execution of methods. One thing is to declare
methods to be class methods, i.e., st at i ¢ methods. Another improvement is the declaration of
methods to be f i nal whenever possible. It is also a good idea to avoid synchr oni zed methods
— these are much slower. If possible, classes should be declared final, too.

Since the Java Virtual Machine specification doesn’t define the cost of method invocation or
object creation or anything else, these enhancements vary in result on the concrete implementation
of the virtual machine.

54 Summary

The DML runtime can be implemented in Java with a reasonable effort. The DML top level type is
defined by an interface DM_Val ue. All classes representing DML values have to implement that
interface. The equal s method of any class has to be aware of transients. The method appl y has
to be reimplemented by all of the classes since Java provides no multiple inheritance or default
implementations.

DML threads can be based on Java threads, and transients use Java’s wai t and noti f yAl |
methods to synchronize the computation. The transients are not replaced by the value they are
bound to — there are always reference chains, but the implementation provides the illusion of
disappearing transients. To avoid that, transient support by the virtual machine would be needed.

New DML types can easily be added to the runtime environment. Any new type just has to
implement the DM_Val ue interface and to contribute the implementation for equality testing and
application.

50

Value Representation

Chapter 6
Pickling

Pickling is the process of making (higher order) stateless values persistent, i.e., to store them to
some medium. Pickling plays a major role during the compilation process: each DML program is
compiled into a pickle file. Execution then consists of depickling such a file and calling the mai n
function of the pickle (see Chapter 2.3.1).

Pickling uses Java’s Object Serialization mechanism [Sun98]. Object Serialization encodes an
object, and objects reachable from it, into a stream of bytes and reconstructs the object graph from
the stream when deserializing. The properties of Object Serialization have to be extended in order
to achieve the semantic properties of pickling: while deserialization creates new objects, we want
the objects to preserve their identity. Further, pickling abstracts away the existence of class files
for user defined functions and stores the byte code with the function instances in the pickle. The
size of the pickle files can be reduced by compression of the byte stream.

The Object Serialization of Java provides many possibilities to customize the default serial-
ization behavior and the implementation of pickling requires only small changes to the runtime
classes as presented in Chapter 5.

6.1 To Pickle Or Not To Pickle

In DML stateless values can be pickled. Stateful entities such as transients, references, ports,
and threads cannot be pickled and pickling one of those results in a runtime error. For names and
constructors, we have a special handling to preserve pointer equality: globalization and localization.
The following table summarizes the behavior of the diverse values.

Value Type Pickled As

Literals themselves

Nane globalized name
Const ruct or globalized constructor
ConVal constructor globalized
Tupl e, Record | themselves

Functi on closure

Ref er ence runtime error

Thr ead runtime error

DMLTr ansi ent | runtime error

Array, Port runtime error

Pickling can be invoked in the following way

52 Pickling

val _ = Ceneral.pickle ("fil enane", sonet hi ng)
and unpickling is simply

val v = Ceneral .unpickle "fil enanme"

6.2 Pickling and Serialization

To implement pickling, Java Object Serialization is used. The Java Object Serialization process is
specified in [Sun98]. Here we give a short summary of the serialization concept and its properties.
The differences to pickling are elaborated, and the hooks are shown by which the pickling process
can be customized.

The default properties of Java’s serialization are

—_

. objects are optionally serializable

2. serialization/deserialization works by copy rather than by reference

3. the object graph is traversed

4. cyclic data structures and coreferences are preserved

5. the class code of objects is located by the class name which is attached to each object

6. static fields are not serialized with the object instances
Pickling needs some more sophisticated treatment. We want further

7. objects to enshrine their identity
8. the class code to reside in the pickle

9. static values of closures to be stored with the function’s class. At the instantiation time of
the closure, the transitive closure of all reachable data structures is built up. The external
references of the code are made explicit as static fields of the function class.

As one can see there is some conflict between 2. and 7., 5., and 8. as well as between 6., and 9..
Considering this, the following has to be done:

e provide a mechanism for the pickled objects to have a unique identity
e modify the serialization so that class code will be attached to the objects in the pickle

e figure out how static properties of closures can be stored so that we don’t have to compute
them at unpickling time

Since serialization produces copies of objects, pointer equality is lost when serialization works
on instances of Name or Const r uct or. Therefore, to pickle Name or Const r uct or values re-
quires globalizing them during serialization, and respectively localizing them during deserializa-
tion. For the builtin names and constructors (t r ue, f al se, : :, etc.) we need unigue names and
constructors that are further equal across machines and pickling operations.

6.2 Pickling and Serialization

53

ST T m—
)

true
fal se
true
0 already replaced —>| write handle of replacement
true

0 already written

do nothing

al se

: true o write descriptor of the class
@ ————| ecallout.annotated ass(0) f—
e assign handle
fal se

Process potential substitutions
e callo. witeRepl ace()
e call out . r epl aceQbj ect (0)

]

call o. wri teObj ect (out) |

call out . wri t eObj ect with
0’s contents

)

v

true
o == nul | return nul |
fal se

true

—_— return previous object

0 is handle to pre-
viously written object

fal se

,@ true
fal se

For all other objects

o read the descriptor

e retrieve local class for that descriptor
v

e create instance of Ol ass

e call 0. readObj ect (i n)

e call 0. readResol ve()
ecallin.resol ve(bj ect (0)

y

e calli n. resol ved ass(descriptor)
e return corresponding Cd ass

Figure 6.1: Java’s Object Input and Output Routines

54 Pickling

6.2.1 Outline of Java Serialization

To serialize objects, the j ava. i 0. Qbj ect Qut put St r eamclass can be used. To write the objects
to an underlying output stream the Cbj ect Qut put St r eamprovides a method voi d write-
Obj ect (Obj ect) . To deserialize objects there is the j ava. i 0. Qbj ect | nput St r eamclass. It
provides the input routine by the method Cbj ect readbj ect () !. All objects that want to use
the default serialization mechanism have to be declared serializable by implementing the interface
java.io. Serializabl e. This interface has no methods to implement, it serves only to identify
the semantics of being serializable.

The algorithm for the output and the input of objectgraphs is depicted in Figure 6.1. Let out
the outputstream and i n the inputstream. The serialization starts with a call to out . wri t eQb-
j ect with the object 0 that is to be serialized. The object’s class must implement Seri al i zabl e,
or else an exception is thrown. Deserialization is performed by the r eadCbj ect method. Each
call to r eadObj ect returns one data structure. The depicted algorithm is simplified for the sake
of understanding; the precise description can be found in [Sun98].

So, if a class implements Ser i al i zabl e and is written to resp. read from one of the provided
streams, one has the default behavior with the following properties:

e data structures are serialized by traversal
e coreferences and cycles in the structures are preserved
e objects are written once to the stream

e each object is annotated with its corresponding class descriptor

In order to customize this behavior we can on the one hand implement several methods in the
classes of the objects we want to serialize. On the other hand, we can subclass the default streams
and customize the output algorithm. The following methods of the respective class influence
serialization:

1. (a) private void witeQnbject(ObjectQutputStream,and
(b) private void readObj ect (Ohj ect Qut put Strean)
can be overridden to provide special handling for the classes’ fields. Note that the access
modifier pri vat e is mandatory here.
2. (a) ject witeReplace(),and
(b) Obj ect readResol ve()

give the user a way of replacing and resolving objects by other objects. The r eadResol ve
is called after deserialization, but before the object is inserted into the object graph.

The following methods of the stream classes are overridden and modified in the implementa-
tion.

1. voi d annot at eCl ass(Cl ass) of Qbj ect Qut put St r eamis invoked when the object’s
Cl ass is written to the stream. This happens before the object itself is written. Therefore
this class annotation will always be read from a stream before the corresponding instances.

2. Cl ass resol ved ass(descriptor) of Cbj ect | nput St r eamis called when deserializa-
tion of an object starts and before the actual reading of the object itself.

1We are aware of the fact that using the default mechanism of Java is not the best solution considering speed or size of
serialized objects. Efforts have been successfully made to improve the general behavior of the object serialization process,
e.g., in [HP99]. Yet the improved versions don’t have the full functionality (replacing objects is not possible), so we have
to use the Java defaults.

6.3 Implementation of Pickling 55

3. Cbj ect repl aceChj ect (Chj ect) of the Coj ect Qut put St r eamreplaces objects simi-
lar to the wri t eRepl ace method of the class to serialize. The r epl aceQbj ect is called
only if enabl eRepl aceQbj ect (t r ue) method has been invoked on the stream.

The tasks of pickling can be fulfilled as follows. Globalizing and localizing uses the mentioned
methods of the classes. Annotation of byte code to the objects uses annot at eCl ass and r ead-
Resol ve. The r epl aceObj ect method will be used to check the admissibility of the pickling.

6.3 Implementation of Pickling

The tasks can now be specified as follows:

e modify the default serialization behavior of

— transients, Thr ead, Arr ay, Port etc. to raise errors
- Nare and Const r uct or to be globalized /localized

e annotate objects of type Funct i on with their byte code and their static fields, i.e., store class
properties with objects

e load the byte code of the classes from the pickle when deserializing, and

e provide a class loader that can handle pickled classes.

In order to use the default serialization of Java, the interface DM_Val ue looks like this:

public interface DM.Val ue extends java.io. Serializable {
/1

}

Most of the already mentioned value types are now ready to be serialized and nothing has to
be changed in the classes, excepting Nanme and Const r uct or.

6.3.1 Globalization and Localization

Globalization and localization concerns names and constructors. It preserves pointer equality
in terms of Java. The names and constructors must be globalized when serialized and localized
when deserialized. The builtin names and constructors must be unique across machines and
serialization processes. The implementation realizes localization by object replacement.

Therefore, we add a field to the classes where a so-called GName (for ‘global name’) is stored.
The field is initially empty. A GNane is an object that is globally unique across Java machines.
The constructor and name objects can then be identified by their GName. A global hashtable maps
the GNanes to objects. The globalization takes place in the wr i t eObj ect method of Name resp.
Const ruct or : If the name or constructor is pickled for the first time, it gets a new GNane and
registers itself with the new GName in the global table GNarre. gNames. After that, the default
mechanism is used for serialization.

The localization is implemented by r eadResol ve: When unpickling a name or constructor
object, the constructor is looked up by its GNane in the global table. If there already is a reference,
the current object reference is discarded and the one from the hashtable is used instead.

Unique names and constructors now can be realized by subclassing the Nanme and the Con-
st ruct or class and rewriting the write and read routines. This is done by replacing the GNane by

56 Pickling

a string. Now the GNane is already initialized when the name or constructor is created. Therefore,
nothing needs to be done in wr i t eCbj ect 2. It cannot be assumed that such names and construc-
tors are always available in the global hashtable since there is the possibility that a unique object is
first encountered during unpickling®. Thus r eadResol ve checks if the unique object is already
present and returns either the value in the hashtable or the freshly created object.

6.3.2 Annotation of Class Code

Since functions are instances of classes we have to care about their byte code definition. One of
the purposes of pickling is to make the presence of class files transparent for the programmer.
To achieve transparency the byte code of the class files is stored with the instance of the class. It
would be a waste of resources to annotate all of the function classes because much of the byte
code is defined in the runtime’s basis library and exists on all machines. Therefore we split up
functions in two kinds: user defined functions and runtime defined builtins. In the following, we
annotate only objects of type Funct i on. The resulting class tree is shown in Figure 6.2.

The annotation with class code cannot be implemented by modifying the methods of the
Functi on objects — at the time of the deserialization the code needed to countermand the anno-
tation of the object is the concrete implementation; what we have here is a variant of the “chicken-
egg-problem’. So the annotation of the classes is deferred to the output stream.

— Literals

— Name

— Const ruct or — Ref erence

— DML.ConVal ———— Cons

— ConVal i

DMLVal ue — — Tupl e

— DML.Tuple ——— Record

— Builtin — Tupl ei

— Function — LVar

— DMLTr ansi ent — Future

— Thr ead — ByNeedFut ur e

Figure 6.2: The class hierarchy after the introduction of pickling.

We define a Pi ckl eCut put St r eamsubclassing Cbj ect Qut put St r eam The constructor of the
class enables replacement of objects. We annotate the Cl ass object of the Funct i on objects.
During the serialization process, Java writes a Cl ass handle for each object before the object itself
is written (see Figure 6.1). The annotation is implemented in the annot at eCl ass method. We
do not present the detailed code here because it is rather tricky to find out where to get the class
code from and how to write it to the stream. The concept of the method is as follows: The method

2The method is not inherited from the superclass because of the required pr i vat e access.
30n the other side, the runtime takes care that the builtin names and constructors are created only if they do not already
exist.

6.4 Summary 57

repl aceCbj ect gives us the possibility to clean up references of transients and the chance to
wait for transient values to be bound. This is the place where an error is raised if someone tries to
pickle a Thread, Array, Port or Ref er ence. We prevent the pickling of transients or threads
etc. Note that this does not prevent those objects from being serialized — it’s just not possible to
pickle them. We will need this feature later, when we use distribution, cf. Chapter 7.

6.3.3 Class Loading

To deserialize pickles we need a class loader that can handle the pickled class code. To create such
a class loader, the j ava. | ang. Cl assLoader class is extended and adapted for our purpose.
The class loader contains a hashtable where the byte code is stored by the corresponding class
name. The method fi ndCl ass is modified so that it can define classes that are stored in the
hashtable. The Pi ckl eCl assLoader will be invoked when annotated classes are detected to
define the classes in the VM.

6.3.4 Reading Pickles

To read pickles we adaptj ava. i 0. Obj ect | nput St r eamfor our purpose. When the Obj ect -
St reanCl ass of an object is read from the input stream, the r esol veCl ass method of the
stream is called. At that time, we determine if the class was annotated with byte code by the
Pi ckl eQut put St r eam The byte code of the class is then read and defined with the Pi ckl e-
C assLoader . Then we read the values of the static fields from the stream.

6.4 Summary

Pickling of DML values is implemented using Java Serialization. The DM_Val ue interface ex-
tends Seri al i zabl e so that all values use the default mechanism. Modification of the objects
during serialization can be realized by implementing r eadCbj ect and wri t eCbj ect . The glob-
alization and the localization are realized by the methods r eadResol ve and wri t eRepl ace.
The annotation of special classes with their byte code requires the usage of a customized Ob-
j ect Qut put St r eamand Obj ect | nput St r eam The annotation itself takes place in the anno-
t at eCl ass method. Furthermore a class loader has to be created that can handle the byte code
from the pickle. That class loader is used during deserialization in the method r esol ved ass.
As a by-product, pickling cleans up references of transients. The actual implementation of pick-
ling further uses compression on the pickled files. We just use a GZI PQut put St r eamresp. a
GZI Pl nput St r eamas an intermediate layer between the file stream and the pickle stream. Pick-
ling simplifies the usage of the compiler since it abstracts away the class file handling.

58

Pickling

Chapter 7

Distributed Programming

This chapter introduces DML's features of distributed programming and explains the basic con-
cepts. We show how a high level distribution can be implemented in Java.

Today computers are no longer standalone machines but are usually connected together by
networks of different kinds. Still, it is an often error-prone task to implement distributed applica-
tions, partly because the programmer has to explicitly deal with the network.

By making mobility control a primitive concept, one can abstract away the network and so
release the programmer of the low level handling of transport layers etc. By defining the behavior
of different data structures, the network is still there, but on a higher level. The key concepts
are network awareness and network transparency'. The idea behind the distribution model of DML
comes from Mozart [HVS97, HVBS98, VHB*97].

Java’s design goals include distributed programming in heterogenous networks, so we can
hope to find a simple way of implementing distribution in DML. Java Remote Method Invocation
(RMI) provides the mechanism by which servers and clients may communicate and pass infor-
mation back and forth. One of the central features of RMI is its ability to download the code of a
class if the class is not available on the receiver’s virtual machine. Yet this involves the presence of
a HTTP or FIP server; the distribution of DML removes this necessity by modifying some classes
in the Java APL

This chapter is organized as follows. In Section 7.1 we explain the usage of distribution in
DML. Section 7.2 gives a summary of Java’s distribution model. The distributed semantics of
DML is specified in Section 7.3 and the implementation of the DML model is presented in Sec-
tion 7.4. To facilitate the handling of class code we have to modify some of the Java RMI classes;
this is explained in Section 7.5. The results of the chapter are summarized in Section 7.6.

7.1 Establishing Connections in DML

The user of DML can provide values for other sites with

Connection. of fer a ->"a ticket
This function takes a value and makes it available for access from some other machine. It returns
a ticket by which the value can be taken from somewhere else with

Connection.take : "a ticket -> "a

IThese terms first appeared in [Car95].

60 Distributed Programming

Aticket isa unique identifier that carries information about where the value is offered. Such a
ti cket is simply a string and can be sent to an other site via email or something like that.

7.2 Java RMI

Java has a distributed object model, implemented by using Remote Method Invocation RMI. RMI
is a correspondent to Remote Procedure Call RPC in procedural languages. RMI abstracts away
the communication protocol layer and tries to be both simple and natural for the Java program-
mer. Java RMI uses Java serialization; many of the properties discussed in Chapter 6 are main-
tained.

Speaking in Java terms a remote object is an object on one Java Virtual Machine that provides
methods that can be invoked from another Java Virtual Machine, potentially on a different host.
An object of that kind implements some remote interface that declares the methods that can be
invoked remotely. A remote method invocation is the action of invoking such a method on an remote
object. There is no difference in syntax for remote or non-remote methods. Similar to the non-
distributed environment, references of remote objects can be passed as arguments to and as results
from methods. One can still type cast a remote object along the implemented interfaces hierarchy.
The i nst anceof operator of Java works as before.

To make objects remote one must define an interface that extends the interfacej ava. rm . Re-
not e. The remote object implementation class must implement that interface. The remote object
class must extend one of the Renpt ebj ect classes provided in the j ava. rm package, e.g.,
Uni cast Renot eQbj ect . It is further required to define an appropriate constructor for the class
and to provide implementations for the remote methods in the interface.

There are some characteristics that the programmer has to keep in mind when using RMI. First,
remote objects are usually referred to by their interface methods and never by their implementa-
tion. Second, non-remote arguments that are used in a remote method invocation are transferred
using Java serialization and therefore passed by copy. In contrast, remote objects are passed by ref-
erence. Two further details have to be respected: some methods of j ava. | ang. Cbj ect are spe-
cialized, and each remote method must declare to throw the checked exception j ava. r m . Re-
not eExcepti on.

Java RMI applications usually are comprised of several programs, namely a server and a client.
Server applications create remote objects and make them available for clients, which in turn in-
voke methods on those objects. The arguments of these methods (and the return values) can also
be remote objects created by the client — eventually the client is a server, too. So there are the
following tasks to comply with:

1. provide a naming service for remote objects,

2. organize the communication between remote objects

The naming service is provided by the so called registry. The communication between objects is
implemented by RML. Since in Java a subclass can be passed instead of the class itself we have to

3. load class code of objects for which the class code is not available locally

This is realized by RMI’s class loading facility which annotates objects with the location of the
corresponding class. The code can then be fetched from the web server denoted by the location.
Figure 7.1 shows the Java model of distribution.

7.3 Distributed Semantics of DML 61

RMI

RMI

client [~

\O RMI /URL protocol
O

URL protocolf_,:?:‘::‘

web server web serverf”

Figure 7.1: RMI distributed computation model.

7.3 Distributed Semantics of DML

To use the distribution correctly a semantics has to be specified for the primitive values. The
semantics of DML tries to imitate the semantics of distributed Oz (see [HVS97]). A summary of
the semantics is depicted in Figure 7.2.

Furthermore, while Java speaks in terms of clients and servers, the DML distribution model
doesn’t make such a distinction, we simply talk about sites. The home site of a value V is the site,
where the value was created; other sites that have a reference to V are called foreign sites.

Literals, constructed values, names, constructors, records, tuples, and functions are stateless
and can be replicated, i.e., if such a value is offered to another site, the requesting site simply gets
a copy of that value.

Stateful values such as references, transients, threads, arrays, ports, and vectors are treated in a
different way. Threads and arrays are not sent to another site, but are replaced by a NoGood which
does not allow the foreign site to perform any operationson the value. NoGoods are globalized
so that if a NoGood comes back to its creation site, it will be localized and replaced by its former
entity, and the home site can use the respective value as before. Ports and transients are stationary
on their creation site, and foreign sites only get a proxy for the requested value. All operations
performed on such a proxy are forwarded to the home site and executed there.

References use a Mobile Protocol that works as follows. On each site, references have a proxy.
Only one site can own the content in the proxy. There is one manager on the home site of the
reference which is responsible for the coordination of the proxies. To request the cell content the
proxy on the site asks the manager for it. The manager then takes the content from the actual
owner and gives it to the requesting site. Subsequent requests are handled in a first-in-first-out-
manner.

7.4 Implementation

To implement the distributed part of DML, Java’s Remote Method Invocation is used. This has
the advantages that

e there is much functionality implemented

62

Distributed Programming

Const ruct or

me
ConVal
/t erals
/

stateless ~—————— replicable
—
Record
Tupl e
Vect or
DA.Val ue Functi on
Array
/
NoGood
——
/ Thread
DMLTr ansi ent
stateful Proxy _—
—
Port
Mobi | e —— Ref erence
Pr ot ocol

Figure 7.2: DML values and their distributed semantics.

7.4 Implementation 63

e distribution is compact and secure

e distributed garbage collection is provided by RMI

There is one problem if we want to use the standard RMI. The class code for values must be
provided via a web server working on the offering machine. To facilitate the handling and avoid
the need for a web server, we have to reimplement some classes of the RMI API (see Section 7.5).

7.4.1 Providing Values

To facilitate the handling of tickets and values, all the interchange of values works via one boot-
strap remote object. This bootstrap object is created and installed the first time one of the Con-
nect i on functions is used. At that time, the registry is started on a specified port of the host
and the special bootstrap object is bound in that registry. The bootstrap object is defined by the
Export interface and the implementing Export er class. All communication goes through the
exporter; that object handles an internal hash table that maps tickets to values. This situation is
illustrated in Figure 7.3. There is one registry per host, several JVMs may use one single registry.

Site 1 Site 2

P Exporter
Exporter

RMI

Figure 7.3: Offering and Taking Connections

7.4.2 Stateless Entities
All stateless values as listed in Figure 7.2 are replicable. Literals are easy to implement: nothing

has to be changed. The same holds for tuples and records. Functions and builtins don’t have to
be changed either, since their default behavior is to be passed by copy, and this is the desired way:.

7.4.3 Stateful Entities
Array and Thr ead

Values that are offered as NoGoods have to be changed slightly, e.g., the Ar r ay class.

64 Distributed Programming

public class Array inplenents DM.Val ue {
private NoGood ng = null;
private Object witeReplace() throws Object StreanException {
if (ng==mnull) { // if serialized for the first tine
GName gn = new GNane();
ng = new NoGood(gn);
GNane. gNanes. put (gn, ng) ;
return ng;
} else {
return ng;

}
}

The wr i t eRepl ace method replaces the values by an instance of the NoGood class. In order
to achieve uniqueness, the NoGood has an associated GNare. The actual value is stored under
that GNane, so that original value can be restored if the NoGood returns to its creation site.

Transi entsand Ports

For the proxy-providing values the following has to be done. We define new interfaces DMLTr an-
si ent and DMLPor t for the respective classes. These interfaces extend the Renot e interface of
Java’s RMI and our DM_Val ue.

public interface DMLTransi ent extends Renote, DM.Val ue {
public DM.Val ue getVal ue() throws RenoteException;
public DM.Val ue request() throws RenoteException;
publ i c DM.Val ue bi nd(DM_Val ue val) throws RenoteExcepti on;

}

The methods declared in the DMLTr ansi ent interface can be invoked remotely. No other
methods of the transients can be invoked, since the remote site only sees the DMLTr ansi ent
interface.

The remote interface for the Por t s looks similar; Por t s provide a method send and, to pre-
serve the DMLValue type, a method appl y.

In order to make objects stationary, it is required to extend one of the Renpt eCbj ect classes
(remote objects are passed by reference). In our case this is realized as follows:

public class LVar extends Uni cast Renot eCbj ect
i mpl enents DMLTransi ent {
public LVar() throws RenoteException { }
I

7.4.4 References

References implement the Mobile Protocol. On its home site, the reference is associated with a
server manager. All sites communicate with the reference via a client manager. The server man-
ager and the client manager are modeled by remote objects. The reference is a non-remote object
and transferred by serialization.

The manager classes implement remote interfaces, SManager and CManager . These have the
following definitions respectively.

public interface Svanager extends Renote {

7.4 Implementation 65

publ i ¢ DM_.Val ue request (CMVanager requester) throws RenpteException;

public interface Cvanager extends Renote {
publ i c DM.Val ue rel ease() throws RenoteException;

}

The interfaces are implemented by Ser ver Manager resp. Cl i ent Manager :

public class ServerManager extends Uni cast Renpt eObj ect

i npl emrents SManager {

Chvanager content Oaner;

publ i c ServerManager (CVanager initial) throws RenoteException {
contentOmer = initial;

}

publi ¢ synchroni zed DM.Val ue request (CVanager iWantlt)
t hr ows Renot eException {

DM_Val ue val = contentOaner.rel ease();
content Omer = iWantlt;
return val;

}

The r equest method takes the requesting client manager as its argument. It enforces the
former owner to release the content of the reference and registers the requesting client as the new
content owner. Then it returns the content value of the reference.

The client manager provides the possibility to delete the content of the reference and return it
to the server manager.

public class CientManager extends Uni cast Renot eObj ect
i npl ements CManager {
Reference ref = null;
public dientManager (Reference r) throws RenoteException {
ref=r;
}
final public DM.Val ue rel ease() throws RenoteException {
return ref.rel ease();
}
}

The Ref er ence class now looks as follows:

public class Reference inplenents DM.ConVal {

DM_Val ue content = null;
ShManager ngr = null; // Honesite-Mnager
ChVanager cngr =null; // dientsite-Mnager

11
}

The object has fields for the homesite manager and a client manager, both are initially empty.
As long as no distribution takes place, we have no overhead in the code. The content of a reference
is now removable:

public DM_.Val ue rel ease() {
DM_.Val ue t = content;
content = null;
return t;

66 Distributed Programming

The r el ease method is used by the server manager to fetch and delete the content from a
client reference.

The content of a reference can be accessed by:

synchroni zed public DMWMLVal ue get Content() throws RenoteException {
if (content == null) {
content = ngr.request(cngr);

}

return content;

}
Before we can return the content of the reference, we have to make sure that the reference on
which the method is invoked owns the content or else we ask the manager to request it.

The managers of a Ref er ence are only created if the reference is used in an distributed con-
text. Since Ref er ence is a non-remote class, the distribution is performed by serialization, i.e.,
the wr i t eObj ect method of the Ref er ence object is used.

private void witeObject(ObjectCQutputStreamout) throws | OException {

try {
/1 the client manager is not witten to the stream
/1 since the readOnject nethod will install a new one
Cvanager CMGR = nul | ;
if (cmgr == null) { // i.e., we are on the hone site

CMGR = new C i ent Manager (this);
} else { /] previously installed by readObject

CMGR = cnyr;
}
cmgr = nul | ;
/1 the content will not be transferred i nmedi ately

DMLVal ue t = content;
content = null;
/1 install and export the server nmanager
if (mgr == null) { // i.e., we are at hone
ngr = new Server Manager (CVGR) ;
}
/1 wite Reference to streamand restore the client
/1 manager and the content
out.defaul tWiteChject();
cngr = CVGR;
content = t;
} catch (RenoteException e) {
Systemerr.printlin(e);
}
}
private void readCbject (CbjectlnputStreamin)
t hrows | CException, C assNot FoundException {
i n. def aul t ReadObj ect () ;
cmgr = new Cient Manager(this);
}

When the reference is written to the RMI output stream, the managers are installed. The client
manager and the content are not written to the stream, since the site that deserializes the reference
installs its own client manager. Note that if you re-distribute references the new server manager
remains the same.

To make clear that the references have the desired behavior, look at the following. Imagine
we have two sites A and B. On site A we create a reference R. At first nothing happens at all —

7.5 Reimplementing RMI 67

the reference class is designed such that there is no overhead if the user doesn’t use distribution.
Then site A offers Rto the world, using

val ticket = Connection.offer R
Then the ticket is somehow transferred to site B, and B uses the ticket with
val myR = Connection.take ticket

At this point in time several things happen. First of all, B connects via a TCP/IP connection to
A, asking for the value with the ticket t i cket . A now serializes R and uses the wr i t eChj ect
method, i.e., installs a ClientManager, a Ser ver Manager and transfers a copy of the Ref er ence
without the content, but with a reference to the Ser ver Manager . Site B receives the reference and
uses the r eadCbj ect method of Ref er ence to deserialize the object. It knows nothing about
the content, but receives the reference of the Ser ver Manager . If site B now wants to do anything
with nyR, the methods of my Renforce the connection to the ServerManager and the request of the
content. This example is illustrated in Figure 7.4.

Home Site A Remote Site B
CM

~

content

A creates a reference

o

. co;tent

content

B obtains the reference

content

content

B uses the reference

Figure 7.4: The Mobile Protocol of Ref er ence.

7.5 Reimplementing RMI

After having a look at the sources of RMI, we are faced with the following situation: Java RMI
uses specialized subclasses of Mar shal | nput St r eamresp. Mar shal Qut put St r eamfor the se-
rialization of non-remote objects in the remote environment. The solution is to reimplement these
classes and tell the Virtual Machine to use the modified implementation instead. The virtual ma-
chine then has to be invoked with the - Xboot cl asspat h command line option as follows:

68 Distributed Programming

Site 1 Marshal Unmarshal Site 2
]

take (1)

- ~ClassLoader

provide class (2)

|
|
|
|
|
|
|
|
1

get class (3)

define class (4)
Exporter

Exporter

new
RMI

Figure 7.5: The patched RMI without a web server and URL protocol.

% java -Xbootcl asspat h: $PATCH: $RT - cl asspat h $CLASSPATH . ..

The environment variable PATCH contains the path to the patched class files and the variable RT
points to Java’s default runtime classes (usually something like / opt / j dk/jre/lib/rt.jar).

The modifications are the following. In the output class we have to make sure the byte code of
offered functions is provided. The server will make the code available via the export facility which
itself simply looks up the code in the Pi ckl el assLoader . So we modify the annot at eCl ass
method similar to the annot at eCl ass of pickling. The unmarshalling has to check whether it
has to load the class via net and is modified by overriding the r esol veCl ass method.

That is all you have to do. All other parts of the runtime classes are left unchanged. The
Export interface has to be extended with a method that provides class byte code and another
method that has access to the static fields of classes.

Since the classes that we have modified are platform-dependant, the current implementation
works with Linux. The source code for other platforms has not been available for me, but the
modifications are straight forward and could easily be transferred to other operating systems.

The model of DML’s distribution is sketched in Figure 7.5. In contrast to Java RMI’s class
loading concept, DML doesn’t need a web server and the use of a URL protocol.

7.6 Summary

In DML distributed programming is implemented using Java Remote Method Invocation. We
have to modify the default behavior of the marshaling classes to achieve a smart solution. The
DML system provides distributed programming on a high level, many of the explicit Java con-
structs are avoided. In this respect, a similar approach is taken in [PZ97], where an add-on for
Java RMI is presented.

Because we use RMI, we don’t have to care about distributed garbage collection and low level
protocols; no failure handling is implemented. The implementation is compact and reuses much
of Java’s facilities.

There are alternative implementations of RMI [NPH99], but we don’t have the source code to
adapt it to our input and output streams.

Chapter 8

Related Work

In this chapter we briefly describe projects that share some properties with our work. We sketch
what other systems do and give references to these works. As mentioned in Chapter 1, there are
already many programming languages that are translated to the Java VM. An always changing
and useful list can be found at [Tol99].

8.1 Kawa

Kawa [Bot98] is a compiler for the LISP dialect Scheme to the JVM. It provides a higher-level
programming interface with support for scripting and interactive read-eval-print loops. It gives
a full integration between Java and Scheme. The author, Per Bothner, describes a possibility for
generally treating tail calls in a CPS-like style. Just like our proposal in Section 3.2.2, this slows
down all applications but operates on a constant call stack.

8.2 MLj

MLj is meant to be a complete system for compilation of Standard ML to Java byte code. It has a
static type system with extensions for classes and objects. MLj provides a Java API interface with
additional syntax. MLj performs whole program optimization and gains much speed because of
that: Polymorphism is reduced to monomorphism by duplicating methods. Functions are de-
curried and boxing can be avoided rather efficiently. So far, only simple tail recursion is handled.
See also [BKR99].

8.3 Bertelsen

In his Master Thesis Peter Bertelsen describes a new compiler backend for Moscow ML that com-
piles Standard ML to Java. In contrast to MLj, no API interface is given. There is no tail call
handling implemented. Bertelsen performs no optimizations that go beyond MLjj. See [Ber98] for
details.

8.4 Java related software

For the Java programming language several software projects are concerned with issues we ad-
dressed in Chapters 5-7. For one, the serialization routines have been reimplemented to provide

70 Related Work

faster (and more compact) algorithms, cf. [HP99]. In correspondence, the Java RMI facilities have
been improved. Java RMI uses Java serialization so it is useful to enhance both in conjunction. The
reimplementation provides a much faster RMI, designed to work on high speed network connec-
tions rather than insecure and unstable Internet connections. This work is described in [NPH99].

Java’s RMI needs much care to be used by a programmer such as exception handling etc. Java-
Party [PZ97] gives transparent remote objects and further improvements to facilitate the usage of
distributed programming in Java.

Chapter 9

Benchmarks

In this chapter we present some benchmarks and show how we use them to analyze the perfor-
mance of the DML system. We compare the execution time of programs with SML/N]J and MLj
to figure out the pros and conts of the way we implemented DML. The benchmark programs and
the evaluation follows the evalutation of the Oz VM [Sch98].

To what other system should we compare DML? Of course, MLj and SML/N]J are good can-
didates for comparison. DML is dynamically typed and therefore needs many runtime type tests
while SML/NJ and MLj don’t; so we can hope to figure out the cost of dynamic typing. While both
MLj and DML are interpreted by the Java Virtual Machine, SML/N] is compiled to native code.
DML supports transients and has the possibilty to dynamically read higher order values; the for-
mer induces further runtime type tests, and the latter prohibits some optimizations. Neither MLj
nor SML/NJ have similar features.

Due to dynamic typing, we expect DML to be slower than MLj or SML/N]. Further, because
DML provides transients, pattern matching and primitive operations of the language are more
expensive. If we compare DML to MLj, we can analyze the cost of our dynamic properties and
the support for transients. The costs of concurrency and distribution cannot be compared because
MLj does not provide similar features. By comparing DML to SML/N], we try to determine how
much overhead is introduced by using a virtual machine to interpret the code instead of using
native code. Again the costs of concurrency and the omitted static type information have to be
considered. SML/N]J provides concurrency as a module and we will have a look at the costs of
threads. The distributed programming facility of DML have no counterpart in SML/NJ.

Another system we compare DML with is Kawa. Similar to DML, Kawa programs are inter-
preted by the JVM. Kawa is dynamically typed and in this respect more similar to DML than MLj
and SML/NJ. But because the source language differs from DML considering the translation of
closures, the benchmark results are not so significant.

9.1 How We Measure

The time is measured with GNU Time v1.7. Let X denote the benchmark to be executed. In the
case of DML, the execution time of

dm X
is measured. For ML}, the execution of the command

java -classpath X zip X

72 Benchmarks

is used. For both DML and MLj we start the JVM with identical runtime options. SML/N] pro-
grams are started by

sm @M.I| oad=X

The execution of Java byte code can be accellerated by using so called Just In Time (JIT) compil-
ers. For Linux, there are several JIT compilers available; we only consider ‘tyal.5” [Kle99] and the
default ‘sunwijit’ that comes with Blackdown’s JDK [dSR"99]. The usage of JIT compilers is only
for the profit of DML and MLj with respect to SML/N]J as SML/N] has no such way of speeding
up.

First we call each benchmark program without arguments and measure the time it takes to ex-
ecute the dummy call. By doing this, we can get a good estimation of how much time is consumed
before the actual benchmark is started; the startup time will be subtracted from the overall run-
time. If we use a JIT compiler we have to take into account the time that is needed to JIT-compile
the class code. In practice, this time span was infinitesimal with respect to the total time of the
execution, so that we can simply neglect this aspect. Each benchmark program then is executed
25 times, the time listed in the result table is the arithmetic average of the overall time minus the
startup time. The standard deviation was also computed in order to show that the results of the
benchmarks don’t vary too much. We do not show the values of the deviation here, we usually
gained results where we had o < 5%.

1 25

= (2—5 : ;time cmd;) — startup

The standard deviation is computed as follows:

25

Z (time cmd; — pu)?

i=0

1
25

g =

Since the running time measured in seconds is not so interesting as the ratio we give the results
in the form ‘SML/NJ : MLj : DML’ resp. ‘MLj : DML’ normalized with respect to SML/N]J resp.
MLj, ie.,

L s pouey/fsme/ws © Mowe/ Msur /s
resp.

1: MDML/MMLJ‘

The benchmarks on the JVM are run with ‘green” threads. For Linux running on a single
processor machine the choice of green threads results in a better running time; native threads are
heavy weight. Note that Linux limits the number of threads per user to 256 by default; each Java
native thread counts as one system thread. A normal user therefore is not able to create more than
the system limit; some programs will not be able to run as expected. For green threads there is no
such limit.

9.2 The Test Platform

The benchmarks programs are executed by using the following hardware and software:

9.3 Benchmark Programs

73

Architecture

x86

Processor

Intel Celeron (Mendocino), 466 MHz

Main Memory

128 MB

oS

(Red Hat 6.1) Linux 2.2.12

Java

Blackdown JDK1.2.2-RC2

T

TYAL.5

JIT

sunwjit (included in JDK1.2.2-RC2)

ML

Persimmon IT. MLj 0.2

Kawa

Kawa 1.6.62

SML

SMLofN]J Version 110.0.3

Time

GNU Time v1.7

9.3 Benchmark Programs

We perform and analyze the following benchmarks:

e Fib/Tak — The Fibonacci numbers are computed in order to measure how good function
application and integer arithmetic works. The Takeushi function serves the same purpose
with a different ratio of function calls and arithmetics.

e Deriv — This program computes symbolic derivations to show the costs of using construc-

tors and pattern matching.

e NRev — By using naive reverse of lists, we want to find out the costs of transients and
allocation of lists on the heap (see below)

e Concfib — Concfib measures the cost of thread creation and synchronization with transients

in DML resp. channels in CML (the concurrent extension to SML/NJ).

The code of the benchmarks can be found in Appendix B.

9.4 Analysis

Fibonacci and Takeushi

The Fibonacci benchmark computes f i b 31 and thereby induces circa 2.1 million recursive calls.
In each call of the function, one comparison on integers, one addition and one subtraction has

to be performed. The Takeushi benchmarks computes t ak(24, 16, 8) which causes about
2.5 million function calls. In this case, less arithmetic functions have to be performed.

The benchmark results for Fibonacci are the following;:

1

1

04

:0.6 :26.5

:40 (no JIT)

1 1.5 :25.5 (tya)

(sunwjit)

There are two things one notices at once: MLj code that is accelerated by a JIT compiler beats

SML/NJ and DML falls back by the factor of about 10-12. One can image that the native code of

SML/N] is way faster than the interpreted byte code of Java, but this contradicts the fact that MLj
is as fast as SML/NJ. So this can’t be the reason why the DML code is so slow. What else could

74 Benchmarks

cause that breakdown? The analysis of the runtime behavior of the DML Fibonacci program
shows that about 90% of the time is spent for arithmetics, particularly the creation of integer
wrapper objects. To confirm that the missing type information (or better: statically unused type
information) causes the high costs we try the following: we add and use type information ‘by
hand’. If we then use the enhanced Fibonacci we indeed gain about 95% of run time and are
almost as fast as MLj. The benchmark ratio then is

1 :06 :0.7 (sunwjit)

The conclusion is that object creation makes the computation expensive; the high costs emerge
from wrapping and unwrapping integers.

The Takeushi benchmark confirm these assumptions. As there are less arithmetic operations
to perform the ratio looks slightly better for DML:

1 :3 122 (no JIT)
1 :1.2 115 (tya)
1 :04 115 (sunwjit)

If static type information could be used, we could again be as fast as MLj.

Deriv

Computing symbolic derivations does not use arithmetic. So we can hope to have nicer results
with that benchmark. Indeed the ratio is

1 :25 :6.5 (no JIT)
1 1.7 :4.3 (tya)
1 :34 :4.3 (sunwjit)
Considering the case of sunwj i t, we are almost as fast as MLj, the ratio MLj: DML is 1: 1.2.

The loss of efficiency can be put down to the presence of transients and DML'’s dynamic properties
that prohibit the optimizations MLj may perform.

NRev

Naive reverse depends mainly on the append function; languages that support transients can
write append in a tail recursive manner and should have some advantage over the others. So we
have to compare the following functions to one another:

fun append’ (nil, ys, p) = bind (p, ys)
| append’ (x::xr, ys, p) =

| et
val p° = lvar ()
val x* =x::p’
in
bind (p, x');

append’ (xr, ys, p')
end

9.4 Analysis 75

versus
fun append (nil, ys) =ys
| append (x::xs, ys) = x :: (append (Xxs,ys))

Using append’ results in

1 :15 :13.000 (noJIT)
1 :11 :14.000 (tya)
1 :10 :24.000 (sunwjit)

The disastrous result comes from the creation of logic variables. These objects are very ex-
pensive to create because they inherit from Uni cast Renot eCbj ect (for distribution). A way of
speeding up is therefore to provide different transients for non-distributed programming. Indeed
this speeds up the DML execution

1 :13.5 :91 (no JIT)
1 11 : 86 (tya)
1 :10 : 98 (sunwjit)

The append’ function creates twice as much objects as the corresponding function used with
MLj. But since in Java object creation is more expensive than method invocation, we still are much
slower than SML/N]J or MLj though the append can only be written with simple recursion. For
ML this has the consequence that the limit on the length of the lists is tighter than that of DML,
because the stack depth is greater. As SML/N]J doesn’t use a call stack there are no consequences
for them.

If we compare the run times using the append function that is not tail recursive, the following
ratio is achieved:

1 :135 :20 (noJIT)

The ratio is similar if we use JIT compilers.

As a consequence we propose the implementation of two transient variants — one that can
supports distribution and one that can only be used on one site. Further it seems that the cost for
object creation exceeds the benefits of saving a method invocation by far.

Concfib

Concfib repeatedly computes the value of fi b 12. Each recursive invocation creates two fresh
threads that compute the sub value. Results are given back via transients resp. channels.

ML has no special feature for concurrency so we only compare DML to SML/N]. The SML/N]J
version of Concf i b uses the CML facilities. The communication between threads is implemented
by the use of channels. The Java-Linux Porting Team considers ‘the usage of hundreds or even
thousands of threads is bad design’. This point of view is reflected in the costs for threads as the
ratio shows

1 :124 (no JIT, green threads)

76 Benchmarks

1 :116 (t ya, green threads)

1 :105 (sunwj i t, green threads)

For the native threads implementation we have

1 :273 (no JIT)
1 :281 (tya)
1 :275 (sunwjit)

In this benchmark, we have used the cheaper versions of transients. By using the expensive
versions, we obtain a result that is worse (due to the costs of creating transients that can be used
distributedly).

Code Size

Besides the run time of the programs the size of the compiled code is worth a look. The size is
given in bytes.

SML/NJ | MLj | DML
Fibonacci 385960 | 5941 | 2866
Takeushi 384936 | 6004 | 2922
Derivate 388008 | 8448 | 6239
NRev 385960 | 6426 | 3709
Concfib 647432 - | 4638

We do not consider the runtime systems here, i.e., for SML/N] the size of the Linux heap image
is listed; the heap image was produced by expor t Fn and can be executed via r un. x86- 1 i nux.
The Java runtime is used to execute MLj’s output. MLj stores the generated class code in zip files.
DML compiles the programs into pickles and additionally has runtime libraries. Note that the
pickles are compressed using gzip output streams and are therefore somewhat reduced in size.

As one can see, the size of the files interpreted by the JVM are more compact by up to two
orders of magnitude. This aspect becomes important if we consider distributed programming —
the more data transferred, the slower the transmission and the slower the execution of distributed
programs.

9.5 Dynamic Contest

Kawa is the only competitor that translates a dynamically typed language to the JVM. If we want
to compare our implementation with Kawa, we have to rewrite the benchmarks in the Scheme
language. We measured for all of the benchmarks that DML is faster than Kawa by a factor of
about 3-4. This factor is achieved with each benchmark no matter which JIT is used. So we can
conclude that we have the fastest implementation of a functional dynamically typed language
executed on the JVM.

9.6 Summary 77

9.6 Summary

As expected, DML is usually slower than SML/N] and MLj. The main performance loss comes
from the boxing and unboxing of literals. If we avoid boxing (as done in the manually optimized
Fibonacci benchmark), we achieve significantly better results. If we take advantage of type in-
formation, the Fibonacci benchmark runs even faster on the JVM than the native compilation of
SML/NJ.

The transients of DML introduce only little overhead for pattern matching and primitive oper-
ations if they are not used. In the case of NRev, the cost for creating transients exceeds the benefits
of constant call-stack size of tail recursive append. Transients that can be used in a distributed
environment are very expensive to create; it is recommended to provide a further variant of tran-
sients that can only be used locally. Threads in DML cannot be used in the way Mozart or CML
propagate the use of threads. It is not possible to create zillions of threads on a JVM because Java
threads are valuable resources that are not suitable for short live cycles.

The component system and distribution facilities of DML prohibit whole program optimiza-
tion. MLj can perform such optimizations at the expense of modularity and separate compilation.
According to Benton, Kennedy, and Russell [BKR99] this is the most important step to achieve a
reasonable performance.

DML is faster than Kawa in any benchmark we have tested. This is the result of Scheme’s
environment model that provides less possibilities for optimization.

The influence of JIT compilers for the JVM depends on the program executed; there are pro-
grams that cannot be run with a special JIT compiler, some run faster, some are slower. In general,
the JIT compilers achieved better performance enhancements for MLj programs than for the DML
counterparts.

78

Benchmarks

Chapter 10

Conclusion

We have built a compiler and a runtime environment for translating a dynamically typed high-
level language to the Java Virtual Machine.

The compiler produces pickle files that contain evaluated components. Pickle files can be exe-
cuted on any Java capable platform in combination with the DML runtime that provides the value
representation and the primitives of the language. The goal of a simple and secure implementa-
tion of DML for the JVM has been achieved.

The naive implementation of the DML system is straightforward and compact. We take advan-
tage of many Java features. DML'’s concurrency is based on Java threads, the pickling mechanism
reuses Java Object Serialization, and the distribution model adopts the Java RMI infrastructure.
The data-flow synchronization of threads by transients is implemented using Java synchroniza-
tion primitives. Exceptions can directly use the corresponding JVM exceptions.

The implementation is enhanced by refining the representation of tuples and constructed val-
ues. Further, function closures have special support for tuple arguments. One of the problems of
Java as a target platform for a dynamically typed source language is that the typed byte-code en-
forces the usage of expensive wrappers. The DML compiler omits boxing and unboxing of literals
whenever possible. The representation of constant values is built at compilation time to avoid the
creation of objects at runtime. Mutually recursive functions are merged into a single function to
enable tail call optimization. The compiler performs code inlining for primitive functions.

It is interesting to look at the optimizations MLj performs on programs. MLj can avoid box-
ing and unboxing completely due to whole program optimization. Polymorphic functions are
replaced by separate versions for each type instance for which they are used. The problem with
this approach is that the code size can grow exponentially. Because MLj operates on the com-
plete source code, it can limit the blowup by only generating the monomorphic functions that are
actually used. In contrast, DML’s component system prohibits that approach.

General tail-call optimization cannot be implemented reasonably without support of the JVM.
Solutions that use CPS-like approaches are too slow. Without special treatment, tail recursion
requires linear call-stack size and leads to stack overflow exceptions of the JVM. The current ver-
sions of MLj and Kawa have no special treatment for mutually tail recursive functions. This
limitation may cease to exist in future versions of the JVM. The Java Virtual Machine specification
limits the amount of code per method to 65535 bytes. This limit is no problem for most pro-
grams, yet the generated code of the DML parser exceeds that size and cannot be compiled. As a
consequence, the compiler cannot be bootstrapped.

As the benchmark results show, future versions of DML should use static type information to
further reduce boxing and runtime type checks. The current RMI model and implementation rec-
ommends the support for variants of transients: One version that is capable of being distributed
and another one that is faster but can only be used locally. A good implementation of transients

80 Conclusion

takes advantage of VM support. E.g., the Oz VM provides transient support at the level of the
bytecode interpreter and can replace transients by their value as soon as they are bound. The
DML implementation has to keep the wrapper objects instead.

Appendix B

The Code of the Benchmarks

This Chapter lists the code for the benchmarks performed in Chapter 9. We present the code for
SML/N]J, MLj, and DML where is it identical, the differences are listed seperately.

B.1 Differences

SML/N]J wants the programmer to do the following to make a program ‘executable”:

fun foon = ...
fun callfoo (_, [Xx]) =
| et
val arg = Int.fronString Xx;
in

case arg of
NONE => 1
| SOME n => (foo n; 0)
end
| callfib _ =2
val _ = SM.of NJ. export Fn (" Foo", callfoo0)

To fetch the command line arguments, MLj programs have to look as follows:

structure Foo :
sig
val main : string option array option -> unit
end

struct
fun do_foo = ...
fun main (env: string option array option) =
case env of
NONE => ()
| SOVE env’ =>
if Array.length env’ = 0 then ()

el se
case Array.sub(env’, 0) of
NONE => ()
| SOME str =>
case Int.frontring str of
NONE => ()

| SOVE n => (do_foo n; ())

86

The Code of the Benchmarks

end

In DML we have the following situation
fun foon = ...
fun main [x] =

| et

val n = val O (fronBtring x)

in
foo n
end
| main _ = ()

B.2 Common Parts

Fibonacci
fun fib n =
if (1 <n)
then fib(n-2) + fib(n-1)
else 1
Takeushi

fun tak(x,y,z) = if y<x

then tak(tak(x-1,vy,z),
tak(y-1,z,x),
tak(z-1,x,y))

el se z

Derivations

dat atype expr = Plus of expr * expr
M nus of expr * expr

Var of int

Const of int

Ti mes of expr * expr

Di v of expr * expr

Exp of expr * int

Um nus of expr

Log of expr;

dotimes(0,p) =0

—
c

deriv(Var (u), x)
| deriv(Const(u), x)
| deriv(Plus(u,v),Xx)
| deriv(Mnus(u,vVv),Xx)
| deriv(Times(u,v),Xx)
| deriv(Div(u,vV),Xx)

n

| dotinmes(n,p) = (p(); dotimes(n-1,p))

n if u=x then Const(1l) el se Const(0)

Const (0)

Pl us(deriv(u,x),deriv(v,x))

M nus(deriv(u,x),deriv(v,X))

Pl us(Ti nes(deriv(u,x),v), Tinmes(u,deriv(v,x)))
Di v(M nus(Ti mes(deriv(u,x), V),

Ti mes(u, deriv(v,x))),

Exp(v, 2))

| deriv(Exp(u,n), x)
| deriv(Um nus(u), x)

Ti mes(Ti nes(deriv(u,x), Const(n)), Exp(u, n-1))
Um nus(deriv(u, X))

B.2 Common Parts 87

| deriv(Log(u), x) = Div(deriv(u,x),u)
fun nthderiv(0, exp, X) exp
| nthderiv(n, exp, x) nt hderi v(n-1, deriv(exp, x), X)
fun goderiv n =
dotinmes(n, fn () => nthderiv(6, Exp(Di v(Const(1),Var(1)),3),1));

Naive Reverse

fun append (nil, ys) =ys
| append (x::xs, ys) = x :: (append (Xxs,ys))
fun nrev(nil) = nil
| nrev(a::bs) = append(nrev(bs), a::nil);

fun append” (nil, ys, p) = fulfill (p, ys)
| append’ (x::xr, ys, p) =

| et
val p° = lvar ()
val x’ = x::p’
in
bind (p, x');
append’ (xr, ys, p’)
end
fun append (xs, ys) =
| et
val p = lvar ()
in
append’ (xs, ys, p); p
end
fun rev nil = nil
| rev (x::xr) = append (rev xr, X :: nil)

Concfib

Concfib is implemented using CML; threads communicate through channels:

open CML
fun fib 0 =1
| fib1=1
| fibn =
| et
fun fib’ n =
| et
val res = channel ()
in
spawn (fn () => send (res, fib n));
recv res
end
in
fib” (n-1) + fib (n-2)
end
fun loop 1 = (fib 12; ())
| Toop n = (fib 12; loop (n-1))

fun loopit (_, [x]) =
| et
val b = Int.fronfString x
in

88

The Code of the Benchmarks

case b of
NONE => 1
| SOVE i =>
(RunCML. doit ((fn ()
print "Done.\n";
0)
end
loopit _ =2

=> loop i),

NONE) ;

In DML, Concfib uses transients. The threads communicate by binding logic variables:

fun fib O

fib 1
fibn
| et

fun

in
fib
end

fun loop 1

| oop n

’

1
1
fib> n =
| et
val res = lvar ()
in
spawn (fn () => bind (res,
future res
end
(n- 1) +fib (n - 2)
fib 12
(fib 12 ; (loop (n - 1)))

fibn)):

Bibliography

[App92]

[ASUS6]

[Ber98]

[BKR99]

[Bot9s]

[Car95]

[dSRT99]

[G199]

[GJS96]

[GM96]

[Gon98]

[GYT96a]

[GYT96b]

Andrew W. Appel. Compiling with Continuations. Cambridge University Press, Cam-
bridge, UK, 1992.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers — Principles, Techniques,
and Tools. Addison-Wesley, Reading, MA, USA, 1986.

Peter Bertelsen. Compiling SML to Java Bytecode. Master’s thesis, Department of
Information Technology, Technical University of Denmark, Copenhagen, Denmark,
January 1998. Available at ht t p: / / www. di na. kvl . dk/ ~pnb.

Nick Benton, Andrew Kennedy, and George Russell. Compiling Standard ML to Java
bytecodes. In Proceedings of the ACM SIGPLAN International Conference on Functional
Programming (ICFP '98), volume 34(1) of ACM SIGPLAN Notices, pages 129-140, Bal-
timore, MD, USA, June 1999. ACM Press.

Per Bothner. Kawa: Compiling Scheme to Java. Lisp Users Conference (“Lisp in
the Mainstream” / “40th Anniversary of Lisp”) in Berkeley, CA., November 1998.
Available at ht t p: / / sour cewar e. cygnus. coni kawa/ papers.

Luca Cardelli. A language with distributed scope. Computing Systems, 8(1):27-59,
1995.

Kars de Jong, Michael Sinz, Paul Michael Reilly, Cees de Groot, Scott Hutinger, Tod
Matola, Juergen Kreileder, Karl Asha, and Stephen Wynne. Blackdown JDK1.2, De-
cember 1999. Available at htt p: // www. bl ackdown. or g/ j ava- | i nux.

Vincent Gay-Para et al. The KOPI Project, 1999. Available atht t p: // www. dns. at .

James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. The Java
Series. Addison-Wesley, Reading, MA, USA, August 1996.

James Gosling and Henry McGilton. The Java Language Environment, May 1996.
Available at ht t p: //j ava. sun. com docs/ whi t e.

Li Gong. Java Security Architecture (JDK1.2). Sun Microsystems, Inc., 1.0 edition,
October 1998. Available athtt p: //j ava. sun. coni product s/ j dk/ 1. 2/ docs.

James Gosling, Frank Yellin, and The Java Team. The Java Application Programming
Interface. Vol. 1: Core packages. The Java Series. Addison-Wesley, Reading, MA, USA,
1996.

James Gosling, Frank Yellin, and The Java Team. The Java Application Programming
Interface. Vol 2: Window Toolkit and Applets. The Java Series. Addison-Wesley, Reading,
MA, USA, 1996.

90

BIBLIOGRAPHY

[HP99]

[HVBS98]

[HIVS97]

[K1e99]

[LY97]

[Mey97]

[Mo0z99]

[MSS98]

[MTHM97]

[NPH99]

[OW97]

[0z95]

[0z97]

[Phios8]

[PJK98]

[PZ97]

[Sch9s8]

Bernhard Haumacher and Michael Philippsen. More Efficient Object Serialization. In
Parallel and Distributed Processing, LNCS 1586, pages 718-732, San Juan, Puerto Rico,
April 1999. International Workshop on Java for Parallel and Distributed Computing.

Seif Haridi, Peter Van Roy, Per Brand, and Christian Schulte. Programming Lan-
guages for Distributed Applications. New Generation Computing, 16(3):223-261, 1998.

Seif Haridi, Peter Van Roy, and Gert Smolka. An Overview of the Design of Dis-
tributed Oz. In Proceedings of the Second International Symposium on Parallel Symbolic
Computation (PASCO "97), pages 176-187, Maui, Hawaii, USA, July 1997. ACM Press.

Albrecht Kleine. TYA 1.5 JIT compiler, September 1999. Available at ftp://
gonzal ez. cyberus. ca/ pub/ Li nux/j ava.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The Java Series.
Addison-Wesley, Reading, MA, USA, January 1997.

Jon Meyer. Jasmin, March 1997. Available at ht t p: / / www. cat . nyu. edu/ meyer/
j asmin.

Mozart Consortium. The Mozart programming system, 1999. Available at ht t p:
/I www. nozart - oz. org.

Michael Mehl, Christian Schulte, and Gert Smolka. Futures and By-Need Syn-
chronisation for Oz, Mai 1998. Draft. Available at htt p: / / www. ps. uni - sb. de/
~snol ka/ draft s/ oz-futures. ps.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). The MIT Press, Cambridge, MA, USA, 1997.

Christian Nester, Michael Philippsen, and Bernhard Haumacher. A More Efficient
RMI. In ACM 1999 Java Grande Conference, pages 152-159, Sir Francis Drake Hotel,
San Francisco, California, June 12-14 1999.

Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into practice.
In Conference Record of POPL "97: The 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 146159, Paris, France, 15-17 January 1997.

The dfki oz programming system, 1995. Available at htt p: //www. ps. uni - sb.
de/ oz1l.

The dfki oz programming system (version 2), 1997. Available at ht t p: / / www. ps.
uni - sb. de/ 0z2.

Michael Philippsen. Is Java ready for computational science? In Euro-PDS’98, pages
299-304, Vienna, Austria, July 1998. 2nd European Parallel and Distributed Systems
Conference.

Michael Philippsen, Matthias Jacob, and Martin Karrenbach. Fallstudie: Parallele
Realisierung geophysikalischer Basisalgorithmen in Java. In Informatik — Forschung
und Entwicklung, pages 72-78. Universitat Karlsruhe, Germany, 1998.

Michael Philippsen and Matthias Zenger. JavaParty — transparent remote objects in
Java. Concurrency: Practice and Experience, 9(11):1225-1242, November 1997. Available
athttp://wwi pd.ira. uka. de/ ~phli pp/ partyd. ps. gz.

Ralf Scheidhauer. Design, Implementierung und Evaluierung einer virtuellen Maschine fiir
Oz. Dissertation, Universitidt des Saarlandes, Fachbereich Informatik, Saarbriicken,
Germany, December 1998.

BIBLIOGRAPHY 91

[Smo98a]

[Smo98b]

[Sun98]

[TAL90]

[Tol99]

[VHB+97]

[WM92]

Gert Smolka. Concurrent Constraint Programming Based on Functional Program-
ming. In Chris Hankin, editor, Programming Languages and Systems, Lecture Notes in
Computer Science, vol. 1381, pages 1-11, Lisbon, Portugal, 1998. Springer-Verlag.

Gert Smolka. Concurrent Constraint Programming based on Functional Program-
ming, April 1998. Available at ht t p: / / www. ps. uni - sb. de/ ~snol ka/ draft s/
et aps98. ps.

Sun Microsystems, Inc. Java Object Serialization Specification, November
1998. Available at http://java. sun. conf products/j dk/ 1. 2/ docs/ gui de/
serialization.

David Tarditi, Anurag Acharya, and Peter Lee. No assembly required: Compiling
standard ML to C. Technical Report CMU-CS-90-187, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA, November 90.

Robert Tolksdorf. Programming Languages for the Java Virtual Machine, 1999. Avail-
ableathttp://grunge.cs.tu-berlin.de/~tol k/vnm anguages. htm .

Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl, and Ralf Scheid-
hauer. Mobile Objects in Distributed Oz. ACM Transactions on Programming Languages
and Systems, 19(5):804-851, September 1997.

Reinhard Wilhelm and Dieter Maurer. Ubersetzerbau — Theorie, Konstruktion, Gener-
ierung. Springer, Berlin, Germany, 1992.

