
Concurrent Constraint ProgrammingBased on Functional Programming(Extended Abstract)Gert SmolkaProgramming Systems LabDFKI and Universit�at des SaarlandesPostfach 15 11 50, D-66041 Saarbr�ucken, Germanysmolka@dfki.de, http://www.ps.uni-sb.de/~smolka/To appear in Proceedings of the 1998 European Joint Conferences onTheory and Practice of Software (ETAPS), Lisbon, Portugal, LNCS,Springer-Verlag, Berlin, 1998.1 IntroductionWe will show how the operational features of logic programming can be addedas conservative extensions to a functional base language with call by value se-mantics. We will address both concurrent and constraint logic programming [9,2, 18]. As base language we will use a dynamically typed language that is ob-tained from SML by eliminating type declarations and static type checking. Ourapproach can be extended to cover all features of Oz [6, 15].The experience with the development of Oz tells us that the outlined ap-proach is the right base for the practical development of concurrent constraintprogramming languages. It avoids unnecessary duplication of concepts by reusingfunctional programming as core technology. Of course, it does not unify thepartly incompatible theories behind functional and logic programming. Theyboth contribute at a higher level of abstraction to the understanding of di�erentaspects of the class of programming languages proposed here.2 The Base Language DMLAs base language we choose a dynamically typed language DML that is obtainedfrom SML by eliminating type declarations and static type checking. Given thefact that SML is a strictly statically typed language this surgery is straightfor-ward. To some extent it is already carried out for the de�nition of the dynamicsemantics in the de�nition of SML [4].There are several reasons for choosing SML. For the extensions to come itis essential that the language has call by value semantics, sequential executionorder, and assignable references. Moreover, variants, records and exceptions areimportant. Finally, SML has a compact formal de�nition and is well-known.



Since SML does not make a lexical distinction between constructors andvariables, we need to retain constructor declarations. Modules loose their specialstatus since they can be easily expressed with records functions.Since DML is dynamically typed, the primitive operations of the languagewill raise suitable exceptions if some of their arguments are ill-typed. Equalityin DML is de�ned for all values, where equality of functions is de�ned analogousto references.Every SML program can be translated into an DML program that producesexactly the same results. Hence we can see SML as a statically typed languagethat is de�ned on top of DML. There is the interesting possibility of a program-ming system that based on DML o�ers a variety of type checking disciplines.Code checked with di�erent type disciplines can be freely combined.To provide for the extensions to come, we will organize the operational se-mantics of DML in a style that is rather di�erent from the style used in thede�nition of SML [4].3 ValuesWe distinguish between primitive values and compound values. Primitive valuesinclude numbers, nullary constructors, and names. Names represent primitiveoperations, reference cells, and functions. Compound values are obtained byrecord and variant construction.We organize values into a �rst-order structure over which we obtain suf-�ciently rich �rst-order formulas. This set-up gives us a relation � j= � thatholds if an assignment � satis�es a formula �. An assignment is a mapping fromvariables to values. The details of such a construction can be found in [17].4 StatesA state is a �nite function � mapping addresses a to so-called units u. Units areeither primitive values other than names or representations of records, variants,reference cells, functions, and primitive operations:fl1 = a1; : : : ; lk = akgc(a)ref(a)fun(Match; Env)primopA match Match is a sequence of clauses (p1=>e1 | : : : | pk=>ek). An environ-ment Env is a �nite function from program variables to addresses.For technical convenience we will identify addresses, names and variablesoccurring in formulas. We say that an assignment � satis�es a state � and write� j= � if for every address a in the domain of � the following holds:



1. If �(a) is a primitive value v, then �(a) = v.2. If �(a) is a reference cell, a function, or primop, then �(a) = a.3. If �(a) = fl1 = a1; : : : ; lk = akg, then �(a) = fl1 = �(a1); : : : ; lk = �(ak)g.4. If �(a) = c(a0), then �(a) = c(�(a0)).Note that every state is satis�able and that all assignments satisfying a state �agree on the domain of �.Our states and environments are di�erent from the corresponding notionsin the de�nition of SML. There environments map program variables to valuesand states map addresses to values. In our set-up environments map programvariables to addresses and states map addresses to units. This means that ourstates represent both stateful and stateless information. Moreover, our statesmake structure sharing explicit. The sharing information is lost when we movefrom a state to a satisfying assignment. Given a state �, the unique restrictionof an assignment satisfying � to the domain of � is an environment in the senseof the de�nition of SML.The relation � j= � is de�ned to hold if and only if every assignment thatsatis�es � also satis�es �. If the free variables of � are all in the domain of �,then we have either � j= � or � j= :�. This means that a state has completeinformation about the values of its addresses. We require that the �rst-orderlanguage be rich enough so that for every � there exists a formula � such that� j= � () � j= �for all assignments �. Note that � determines � up to logical equivalence. We use�� to denote a constraint with the above property and say that �� representsthe logic content of �.5 Thread and StoreThe operational semantics of DML distinguishes between a thread and a store.The thread is a functional evaluator that operates on the store. The states of thestore are the states de�ned above. The store should be thought of as an abstractdata type that is accessed by the thread only through a number of prede�nedoperations. An example of such an operation is record selection, which takes anaddress a and a label l and returns an address or an exception packet.An interesting primitive operation is the equality test a1 = a2. It returnstrue if � j= a1 = a2 and false if � j= : a1 = a2. Note that this de�nition yieldsstructural equality for records and variants.We write � ! �0 to say that there is an operation on the store that willreplace the state � with a state �0. The following monotonicity property holdsfor DML and all extensions we will consider:� j= � ^ � ! �0 ) �0 j= �provided all free variables of � are in the domain of �.



6 Logic VariablesWe now extend DML with logic variables, one of the essentials of logic program-ming. Logic variables are a means to represent in a state partial informationabout the values of addresses. Logic variables are modelled with a new unitlvar. The de�nition of states is extended so that a state may map an addressalso to lvar or an address. We only admit states � whose dereference relationa !� a0 is terminating, where a !� a0 holds i� �(a) = a0. The case �(a) = a0may appear when a logic variable is bound. We use ��(a) to denote the uniquenormal form of a with respect to the dereference relation !� . The de�nition ofthe relation � j= � is extended as follows:1. If �(a) = lvar, then there is no constraint on �(a).2. If �(a) = a0, then �(a) = �(a0).States can now represent partial information about the values of their addresses.This means that � does not necessarily determine the truth value of a formula� whose free variables are in the domain in �.Our states contain more information than necessary. For instance, if �(a) =a1 and �(a1) = a2, then the di�erence between � and �[a2=a] cannot be observedat the level of the programming language. In general, we impose the semanticrequirement that for a state � and addresses a1 and a2 such that � j= a1 = a2the di�erence between a1 and a2 must not be observable. As it comes to spacecomplexity, it is nevertheless important to model structure sharing.The existing operations of DML are extended to the new states as follows.If an operation needs more information about its arguments than the state pro-vides, then the operation returns the control value blocked. If there is only onethread, then computation will terminate. If there are several threads, the threadwill retry the operation in the hope that other threads have contributed themissing information (see next section).A match (e.g., (x::xr => e1 | nil => e2)) blocks until the store containsenough information to commit to one of the clauses or to know that none applies.Of particular interest is the equality test a1=a2, which we de�ned to return trueif � j= a1 = a2 and false if � j= : a1 = a2. Since in the presence of logic variables� may entail neither a1 = a2 nor : a1 = a2, the equality test a1=a2 may block.There is an e�cient incremental algorithm [17] that checks for entailment anddisentailment of equations a1 = a2.We say that an operation is granted by � if it does not block on �. Allextensions we will consider will satisfy the generalized monotonicity condition:if � grants o and � ! �0, then �0 grants o.The operation lvar: unit -> 'acreates a fresh logic variable and returns its address. The operationisvar: 'a -> bool



returns true if its argument a dereferences to a logic variable (i.e., �(��(a)) =lvar) and false otherwise. The variable binding operation<-: 'a * 'a -> 'aexpects that its left argument is a logic variable, binds it to its right argument,and returns the right argument. More precisely, if <- is applied to (a1; a2) and��(a1) = a3, �(a3) = lvar and ��(a2) = a4, we distinguish two cases:1. If a3 = a4, then there is no side e�ect and a4 is returned.2. If a3 6= a4, then the store is updated to �[a4=a3] and a4 is returned.The operation wait: 'a -> 'ais an identity function that blocks until its argument is bound to a nonvariableunit. This operation is useful for concurrent programming.7 Multiple ThreadsIt is straightforward to extend DML with multiple threads. We use interleavingsemantics, that is, the operations threads perform on the store do not overlapin time. Threads can be created with the expressionspawn ewhich spawns a new thread evaluating e and returns (). Often it is convenientto use the derived form thread ewhich expands tolet val x = lvar() in (spawn x <- e); x endwhere x is a program variable that does not occur free in e. For instance, if wewant to evaluate the constituents of the application e(e1; e2) concurrently, wecan simply write (thread e) (thread e1, thread e2)since the necessary synchronization comes for free.The combination of logic variables and reference cells provides for powerfulsynchronization techniques. For this we need an operationexchange: 'a ref * 'a -> 'awhich updates the reference cell given as �rst argument to hold the secondargument and returns the previous content of the cell. Now a functionmutex: (unit -> 'a) -> 'a



that applies the function given as argument under mutual exclusion can bewritten as follows:local val r = ref()in fun mutex(a) =let val c = lvar()in wait(exchange(r,c));let val v = a() in c <- (); v endendend;A functionchannel: unit -> {put: 'a -> unit, get: unit -> 'a}that returns an asynchronous channel (i.e., a concurrent queue) can be writtenas follows:fun channel() =let val init = lvar()val putr = ref initval getr = ref initfun put(x) =let val new = lvar()val old = exchange(putr,new)in old <- x::new; () endfun get() =let val new = lvar()val x::c = exchange(getr,new)in new <- c ; x endin {put=put, get=get} endThe put function puts items on the channel and the get function gets items fromthe channel. The get function blocks until there is an item on the channel. Theblocking is caused by the matchval x::c = exchange(getr,new)To obtain fairness, the simple requirement that every thread that is notblocked will eventually advance su�ces. In the two examples above starvationis excluded since the blocked threads are implicitly queued by means of logicvariables. Note that both example functions encapsulate the logic variables theyintroduce. Our simple fairness requirement rests on the generalized monotonicitycondition stated above (i.e., the property that a thread can advance cannot beinvalidated by the operations performed by other threads). Languages that takechannels as concurrency primitive (e.g., Pict [7]) require the more complicatedfairness condition that our channels implement with logic variables.



The outlined style of concurrent programming originated with Oz and isexplored in [15, 1]. The paper [15] relates to a previous version of Oz that didnot have sequential composition. The book [1] is based on the current versionof Oz and explores concurrent programming with object-oriented abstractions.The interested reader may also consult [19], which outlines a distributed versionof Oz currently under development.8 Uni�cationNext we de�ne uni�cation. We say that �0 is obtained from � by a narrowingstep if there are addresses a and a0 in the domain of � such that �(a) = lvar,��(a0) 6= a, and �0 = �[a0=a]. Note that the variable binding operation <-performs a narrowing step if it succeeds. We say that �0 is obtained from �by uni�cation of a1 and a2 if �0 can be obtained from � by a minimal number ofnarrowing steps such that �0 j= a1 = a2 holds. If there is such a �0, we say thata1 and a2 are uni�able in �. If �0 is obtained from � by uni�cation of a1 and a2,then ��0 is logically equivalent to ��^ a1 = a2. Moreover, a1 and a2 are uni�ablein � if and only if �� ^ a1 = a2 is satis�able. This logical characterisation ofuni�cation is a design principle and will also hold for the constraint extensionsintroduced in later sections.The uni�cation operation ==: 'a * 'a -> 'aexpects that its two arguments a1 and a2 be uni�able. If this is the case, itnarrows the state accordingly and returns a2. Otherwise, it returns an exceptionpacket.Our states combine �rst-order constraints with higher-order functions andreference cells. Uni�cation only concerns the part of a state that represents �rst-order constraints. Investigations of uni�cation and constraint solving that relateto the uni�cation de�ned here can be found in [3, 17].9 ChoicesAn essential feature of logic programming is a built-in mechanism for search. Toadd this feature to DML, we introduce choice expressions of the formchoice e1|...|ekA choice is evaluated by replacing it with one of its alternatives ei. To make thispractical, the choices are tried from left to right employing chronological back-tracking as in Prolog. We arrange things such that a speculative computationterminates with failure if a uni�cation operation fails. If there is only one thread,this gives us the search mechanism of pure Prolog.If there are multiple threads, we require that a choice is only committed onceall other threads are either blocked or can only advance by committing a choice.



10 SpacesThe outlined Prolog-like search is not satisfactory in a concurrent setting sincesearch is done at the top level and cannot be encapsulated into concurrent agents.It also fails to provide means for programming search engines like all solutionsearch. This long standing problem of logic programming is solved by Oz witha new concept called spaces. A space is a box consisting of a store and threads.Computation in a space is speculative and does not have a direct e�ect outside.Computation in a space proceeds until the space becomes either failed or stable.Stability means that no thread can advance except by committing a choice. Thereis an operation that blocks until a space is failed or stable and then reports theresult. For stable spaces there are two possibilities: either there is a pendingchoice or not. If there is no pending choice, the space can be merged with theparent space to obtain the result of the speculative computation. If there is apending choice, the space can be cloned and be committed to the respectivealternatives.Spaces turn out to be a simple and exible means for programming searchengines. A �rst version is described in [11, 14]. A recent paper on spaces andtheir use is [10].11 Finite Domain ConstraintsFinite domain constraints are constraints over integers that in conjunction withconstraint programming yield a powerful tool for solving combinatorial problemslike scheduling [2, 18, 12]. To include them in our framework, we introduce a newunit lvar(D) that represents a logic variable that is constrained to take a value inD, where D must be a �nite set of integers. Variable binding and uni�cation areadapted so that they respect �nite domain constraints. The primitive operationsof DML treat �nite domain variables like unconstrained variables. There is anew primitive operation fdvar: findom -> intthat returns a fresh logic variable constrained to the �nite domain given asargument. Uni�cation is extended to handle constrained logic variables accordingto their logical meaning. For instance, the expressionlet val x = fdvar[1,2] val y = fdvar[0,2] in x == y endis equivalent to the expression 2.More expressive constraints like 2�x = y are realized with concurrent agentscalled propagators. For instance, if the store knows that x 2 f1; : : : ; 10g andy 2 f1; : : : ; 9g, a propagator for the constraint 2�x = y can narrow the domainsof x and y to x 2 f1; 2; 3; 4g and y 2 f2; 4; 6; 8g. This form of inference iscalled constraint propagation. In general, there will be many propagators thatcommunicate through the store. The power of a constraint programming systemdepends on the class of propagators it o�ers. Depending on the constraints they



realize, propagators often use nontrivial algorithms. A ubiquitous constraint is\x1; : : : ; xk are all di�erent". For instance, if the store knowsx 2 f1; 2; 3g y 2 f1; 2; 3g z 2 f1; 2; 3g u 2 f1; 2; 3; 4; 5g v 2 f1; 3; 4ga propagator for \x; y; z; u; v are all di�erent" can narrow the domains tox 2 f1; 2; 3g y 2 f1; 2; 3g z 2 f1; 2; 3g u 2 f5g v 2 f4gwhich determines the values of u and v. There is a complete propagation algo-rithm for the all di�erent constraint that has quadratic complexity in the numbervariables and possible values [8].12 Feature ConstraintsFeature constraints are constraints over records that have applications in com-putational linguistics and knowledge representation. There is a parameterizedprimitive operationtellfeature#label: record * 'a -> unitthat constrains its �rst argument to be a record that has a �eld with the labellabel and with the value that is given as second argument. For instance,tellfeature#age(x,y)posts the constraint that x is a record of the form {age=y,...}.To accommodate feature constrains, we use units of the formlvar(w; fl1 = a1; : : : ; lk = akg)that represent logic variables that are constrained to records as speci�ed. Arecord satis�es the above speci�cation if it has at most w �elds and at least a�eld for every label li with a value that satis�es the constraints for the address ai.The metavariable w stands for a nonnegative integer or 1, where k � w.There is also a primitive operationtellwidth: record * int -> unitthat constrains its �rst argument to be a record with as many �elds as speci�edby the second argument.The operation tellfeature is in fact a uni�cation operation. It narrows thestore in a minimal way so that the logic content of the new state is equivalentto the logic content of the old state conjoined with the feature constraint told.For instance, the expressionlet val x = lvar()in tellwidth(x,1); tellfeature#a(x,7); x endis equivalent to the expression {a=7}.Feature constraints and the respective uni�cation algorithms are the subjectof [17]. Feature constraints are related to Ohori's [5] inference algorithm forpolymorphic record types.



13 ConclusionThe main point of the paper is the insight that logic and concurrent constraintlanguages can be pro�tably based on functional core languages with call byvalue semantics. This avoids unnecessary duplication of concepts. SML winsover Scheme since it has richer data structures and factored out reference cells.Our approach does not unify the theories behind functional and logic pro-gramming. It treats the extensions necessary for concurrent constraint program-ming at an abstract implementation level. To understand and analyse concurrentconstraint programming, more abstract models are needed (e.g., [9, 2, 13, 15, 16]).It seems feasible to extend the SML type system to logic variables and con-straints. Such an extension would treat logic variables similar to reference cells.Feature constraints could possibly be treated with Ohori's polymorphic recordtypes [5].The approach presented here is an outcome of the Oz project. The devel-opment of Oz started in 1991 from logic programming and took several turns.Oz subsumes all concepts in this paper but has its own syntax and is based ona relational rather than a functional core. The relational core makes Oz morecomplicated than necessary. The insights formulated in this paper can be usedto design a new and considerably simpli�ed version of Oz. Such a new Oz wouldbe more accessible to programmers experienced with SML and would be a goodvehicle for teaching concurrent constraint programming.AcknowledgmentsThanks to Martin M�uller and Christian Schulte for comments on a draft of thepaper, and thanks to all Oz developers for inspiration.References1. M. Henz. Objects for Concurrent Constraint Programming. Kluwer AcademicPublishers, Boston, Nov. 1997.2. J. Ja�ar and M. J. Maher. Constraint logic programming: A survey. The Journalof Logic Programming, 19/20:503{582, May-July 1994.3. J.-L. Lassez, M. J. Maher, and K. Marriott. Uni�cation revisited. In J. Minker,editor, Foundations of Deductive Databases and Logic Programming. Morgan Kauf-mann Publishers, San Mateo, CA, USA, 1988.4. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The De�nition of StandardML (Revised). The MIT Press, Cambridge, MA, 1997.5. A. Ohori. A polymorphic record calculus and its compilation. ACM Trans. Prog.Lang. Syst., 17(6):844{895, 1995.6. Oz. The Oz Programming System. Programming Systems Lab, DFKI and Uni-versit�at des Saarlandes: http://www.ps.uni-sb.de/oz/.7. B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus. In Proof, Language and Interaction: Essays in Honour of Robin Milner.The MIT Press, Cambridge, MA, 1997.
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