

Logic Programming overPolymorphically Order-Sorted TypesGert SmolkaGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, 66123 Saarbr�ucken, Germanysmolka@dfki.uni-sb.de
DissertationFachbereich InformatikUniversit�at KaiserslauternKaiserslauternGermany3 May 1989

At the end, we had something completethat made everything obvious, that madeus realize how we should have attackedthe problem. It takes a long time to realizethe right form. John E. Hopcroft
From K. A. Frenkel, An Interview with the 1986 A.M. Turing Award Recipients|John E.Hopcroft and Robert E. Tarjan. Communications of the ACM 30, 3, 1987, 214{222.

AbstractThis thesis presents the foundations for relational logic programming over polymorphicallyorder-sorted data types. This type discipline combines the notion of parametric polymor-phism, which has been developed for higher-order functional programming, with the notionof order-sorted typing, which has been developed for equational �rst-order speci�cationand programming. Polymorphically order-sorted types are obtained as canonical models ofa class of speci�cations in a suitable logic accommodating sort functions. Algorithms forconstraint solving, type checking and type inference are given and proven correct.

i

ii

AcknowledgementsI would like to thank: J�org Siekmann for his enthusiasm, openness, unfailing supportand trust over many years; once more J�org for writing all these grant proposals whosesuccess was the base for the exciting, challenging and inspiring research environment mycolleagues and I enjoyed in Kaiserslautern (my colleagues still do); Joseph Goguen andJos�e Meseguer for getting me involved with order-sorted algebra and OBJ, which haveprovided technical guidance and inspiration for the research reported in this thesis; oncemore Joseph and Jos�e for two great summers at SRI International that opened up so manythings for me; Werner Nutt for working with me on Order-Sorted Logic and implementingour programming language TEL; once more Werner for reading and discussing some of thisthesis under great time pressure; Markus H�ohfeld for working with me on constraint logicprogramming; Hans-J�urgen B�urckert, Richard G�obel and Manfred Schmidt-Schau� for themany inspiring and challenging discussions we had in Kaiserslautern on uni�cation andrewriting; Alan Demers and Bob Constable for putting up with a student who stubbornlyinsisted on doing his own research; my colleagues in the LILOG and Protos projects atIBM in Stuttgart for providing the pleasant and inspiring environment in which I �nally�nished this thesis; and last not least Harald Ganzinger, Jean-Pierre Jouannaud and J�orgSiekmann for giving their expert opinions on this thesis.
iii

iv

Contents1 Introduction 11.1 The Problem Solved : 11.2 Related Work : 41.3 Overview : 62 Logic Programming over Constraint Languages 72.1 Constraint Languages : 102.2 Canonical Extensions : 132.3 De�nite Clauses : 152.4 Operational Semantics : 172.5 A Type Discipline : 212.6 Type Inference : 233 POS-Logic 273.1 The Category of POS-Algebras : 283.2 POS-Constraints : 303.3 The Substitution Theorem : 323.4 Sort Rewriting : 343.5 Quasi-Extensional Algebras : 343.6 Simple Speci�cations : 364 Sort Rewriting Systems 454.1 Shallow Rewriting Systems : 464.2 Upper Matchers and Suprema : 514.3 Lower Matchers and In�ma : 554.4 Modes : 595 POS-Types 63v

vi Contents5.1 Type Speci�cations : 645.2 Inhabitation : 695.3 Uni�ers and Solution Schemata : 756 POS-Constraint Solving 816.1 The Constraint Solver : 836.1.1 Approximations : 836.1.2 The Constraint Solving Rules : 856.1.3 Pyramids : 876.1.4 The Hauptsatz : 896.2 Well-Typedness in Pyramids : 906.3 Approximations : 946.4 P-In�ma and Mergings : 976.5 Solving PM-Systems : 1006.6 Solving PE-Systems : 1066.7 Proof of the Hauptsatz : 1117 Logic Programming over POS-Types 1137.1 POS-Programs : 1147.2 The Interpreter : 1177.3 Type Inference : 123A Mathematical Preliminaries 129

Chapter 1Introduction1.1 The Problem Solved1.2 Related Work1.3 Overview1.1 The Problem SolvedThis thesis presents the foundations for relational logic programming over polymorphicallyorder-sorted data types (called POS-types, hereafter). This type discipline combines thenotion of parametric polymorphism [Mil78, DM82], which has been developed for higher-order functional programming [HMM86], with the notion of order-sorted typing [Gog78,GM87a, SNGM89], which has been developed for equational �rst-order speci�cation andprogramming [FGJM85]. Both notions are important for practical reasons. With paramet-ric polymorphism one avoids the need for rede�ning lists and other parametric data typesfor every type they are used with. Subsorts not only provide for more natural type spec-i�cations, but also yield more computational power: variables can be constrained to sortsrather than to single values and typed uni�cation computes directly with sort constraints,thus reducing the need for expensive backtracking.Figure 1.1 shows some examples of sort and relation de�nitions in our language. Sort con-stants and sort functions are de�ned by equations, and relations are de�ned by a declarationand a collection of de�nite clauses. The sort bool has two elements, which are given by thevalue constants true and false. The sort int is de�ned as the union of its subsorts inat andnat. The elements of the sort posint are obtained by applying the value functions: nat! posint1

2 Chapter 1. Introduction
bool := true: [] t false: []int := inat t natinat := zero t negintnegint := p: inatzero := o: []nat := zero t posintposint := s: natle: int� int � boolle(p(I); p(J);B) le(I; J;B)le(s(I); s(J);B) le(I; J;B)le(o; I; true) I : natle(o; I; false) I : negintle(I; o; true) I : inatle(I; o; false) I : posintlist(T) := elist t nelist(T)elist := nil: []nelist(T) := cons:T� list(T)pair(S;T) := cp: S � Tdi�ist(T) := pair(list(T); list(T))error or list(E;T) := errormsg(E) t list(T)errormsg(E) := error: nat� list(pair(nat;E))append: list(T) � list(T)� list(T)append(nil; L; L)append(cons(H;R); L; cons(H;RL)) append(R; L;RL)Figure 1.1: A POS-program.

1.1. The Problem Solved 3to elements of nat. Since nat is de�ned as the union of its subsorts zero and posint, theelements of nat are o, s(o), s(s(o)) and so forth.The value functions of POS-types are free constructors: they are injective, and distinct valuefunctions never yield the same element. De�ning sorts with free constructors is commonin functional programming languages and can be traced back to Landin [Lan64], Burstall[Bur69] and Hoare [Hoa75]. Types de�ned with sorts and free constructors are a specialcase of algebraic types [GTW78, NR85, EM85], which are much more expressive sincethey provide for equations between constructors. The POS-types investigated in this thesisare restricted to free constructors and hence their speci�cations cannot employ equationsbetween value terms.The relation le is a less or equal test on the elements of int. Some of the variables occurringin the clauses de�ning le are explicitly constrained to sorts. For the variables that aren'texplicitly constrained, most general sorts are automatically derived by a type inferencealgorithm. This yields I: inat; J: inat; B: boolfor the �rst clause of le and I: nat; J: nat; B: boolfor the second clause of le.Sort functions are de�ned analogously to sort constants, except that the de�ning equationis parameterized with respect to sort variables (one for every argument of the sort functionto be de�ned), which range over the set of all sorts speci�ed by the program. Programswith sort functions specify in�nitely many sorts, for instance, list(nat), list(list(nat)) and soforth.A sort is simply the set of its elements. Hence sorts are partially ordered by set inclusion.Sort functions are monotone with respect to the inclusion order. Consequently, list(nat) isa subset of list(int) since nat is a subset of int (recall that int is de�ned as the union of natand inat).From the sort equationslist(T) := elist t nelist(T)error or list(E;T) := errormsg(E) t list(T)you can see that the types investigated in this thesis can be speci�ed with sort equationsadmitting the union of polymorphic sort terms.The list concatenation relation append is de�ned with exactly the same clauses one woulduse in untyped logic programming. The declaration for append is used for type checkingand type inference. The type inference algorithm completes the second clause of append toappend(cons(H;R); L; cons(H;RL)) H : T & R : list(T) & L : list(T) & RL : list(T) & append(R; L;RL):A few words on the di�erence between sort and types (as used in this thesis): a sort isjust a set of values, while a type is an algebra speci�ed by a collection of sort equationsand consists of sorts, sort functions and value functions. A POS-type is a type that can bespeci�ed within the framework developed in this thesis. This use of the terms sort and typeis common in the theory of algebraic speci�cations [GTW78, NR85, EM85]. In the context

4 Chapter 1. Introductionof programming languages, however, one usually just talks of types and would thus refer to,for instance, bool as a type. Since the terms type discipline, well-typedness, type checkingand type inference are so familiar from programming languages, I will use them in thisthesis although it would be more appropriate to speak of sort discipline, well-sortedness,sort checking and sort inference.Two well-known advantages of typed programming languages, which apply to typed logicprogramming in particular, are:1. The data structures used by a program can be de�ned explicitly. This leads to clearer,much easier to understand programs. The explicit de�nition of data structures isparticularly bene�cial if they are complex, as it is typically the case in Arti�cialIntelligence.2. Type checking detects many programming errors at compile time, a feature whoseimportance is proportional to the size of the program under development.Well-known disadvantages of typed programming languages, whose weight has been signif-icantly reduced by the invention of type inference and parametric polymorphism [Mil78],are that the programmer is burdened with specifying redundant type information and thattyped programs tend to be unnecessarily complicated since the programmer is sometimesforced to program around the type discipline. For pure logic programming, however, theintroduction of a type discipline actually amounts to a generalization rather than a re-striction. By introducing only one sort and declaring every function as a constructor ofthis sort, every untyped logic program becomes a well-typed program. Of course, for logicprogramming to be practical, one needs extra-logical features. The programming languageTEL [Smo88b], which embodies the logical language presented in this thesis, demonstratesthat the necessary nonlogical features can be integrated such that they are type-safe andstill practical.As mentioned before, typed uni�cation adds expressive power by exploiting the inclusionorder on sorts. In untyped logic programming, one could express a sort as a unary predicateholding for the elements of the sort. To express, say, that the variable X ranges over thesort negint, one could write the atom negint(X). Now suppose that during the course of acomputation the additional constraint posint(X) is imposed. While typed uni�cation wouldimmediately recognize that there is no value for X left, untyped logic programming cannotrecognize this conict. All it can do is bind X successively to elements of either posint ornegint and �nd out each time anew that the other constraint is violated.1.2 Related WorkThe existing work on typed logic programming can be classi�ed into a syntactic and asemantic approach.The syntactic approach sees types as a syntactic discipline that must not change the seman-tics of a program. Since the semantics of the program is not changed, typed programs canbe executed in exactly the same way as untyped programs, where, however, the structureimposed by the type discipline can be exploited for optimizations. Mycroft and O'Keefe

1.2. Related Work 5[MO84] show how Milner's [Mil78] polymorphic type discipline can be adapted to Pure Pro-log. Their system relies on type declarations given by the programmer but does not requiretype declarations for the variables occurring in a clause. Dietrich and Hagl's [DH88] extendsMycroft and O'Keefe's work to include subsorts. Since his approach is purely syntactic,he has to restrict the class of well-typed programs severely by imposing a mode discipline.Moreover, it is an open problem whether his type checking discipline is decidable. Anotherdirection of the syntactic approach investigates type inference for logic programs in thecomplete absence of programmer-provided type declarations [Mis84, Zob87].The semantic approach, to which this thesis contributes, bases logic programming withtypes on logics that account for sorts. Consequently, the computational mechanisms maychange, which typically shows up in the uni�cation procedure. One direction, which ap-peared with Eqlog [GM86], takes order-sorted logic as base and employs order-sorted uni-�cation [Gog78, GM87b, HV87, MGS89, SNGM89, SS85, SS89, Wal83, Wal85, Wal87,Wal88]. This thesis generalizes this line of research by incorporating parametric polymor-phism.The distinctive di�erence between order-sorted types [Gog78, GM87a, SNGM89] and POS-types is that POS-types can come with sort functions such as list or pair while order-sortedtypes cannot. POS-types without sort functions are order-sorted types, but most order-sorted types cannot be obtained as POS-types since the speci�cations of POS-types admitneither multiple declarations of value functions nor equations between value terms.Recent research of Hanus [Han88, Han89] develops a Horn logic with equality augmentedwith a polymorphic sort structure (not accommodating subsorts). Hanus gives an opera-tional semantics for relational programs computing on the polymorphic types speci�ablein his framework, where his programs need only satisfy a weak well-typedness conditionadmitting ad hoc polymorphism. The di�erence between parametric and ad hoc polymor-phism (discussed already in [Str67]) is that a parametrically polymorphic operator mustbehave in exactly the same way for all parameter sorts while an ad hoc polymorphic opera-tor is free to do di�erent things for di�erent sort parameters. Now, if there are no subsorts(as in [Han88, Han89] and [MO84]) and the clauses of the program are well-typed undera type discipline enforcing parametric polymorphism (as in this thesis and [MO84]), thenthe standard unsorted operational semantics turns out to be sound and complete. Hence,the sort-related operational methods of Hanus are orthogonal to the operational methodsdeveloped in this thesis: Hanus needs to account for ad hoc polymorphism while I stick toparametric polymorphism but need to account for subsorts.There is a good reason why I insist on a type discipline enforcing parametric polymor-phism: the operational methods developed in this thesis work only under this structuralassumption, which provides for crucial optimizations of the constraint solver, and I evendon't know if a complete computable constraint solver exists for a type discipline admittingad hoc polymorphism in the presence of subsorts.Another direction of the semantic approach was initiated by A��t-Kaci and Nasr's [AKN86]language LOGIN, which replaces ordinary �rst-order terms with record structures andemploys a typed uni�cation called -uni�cation. Mukai's [Muk87] language CIL is similar toLOGIN but has no subsorts. Smolka and A��t-Kaci [SA89] show how LOGIN can be capturedin order-sorted logic and device a framework that combines order-sorted constructor types

6 Chapter 1. Introductionwith LOGIN's feature types. Feature Logic [Smo88a, Smo89] is a decidable logic thatgeneralizes A��t-Kaci's formalism by adding negation and quanti�cation. Feature Logicmakes explicit that A��t-Kaci's -terms, the feature descriptions developed by computationallinguists [KB82, RK86, Joh88], and the knowledge representation language KL-ONE [BS85,LB87, Neb89, SSS91, NS90] are all closely related members of the same family of logics.These logics o�er attributive concept descriptions that are interpreted as sets and are builtfrom sorts and binary relations (called attributes, roles or features) using set operationssuch as intersection, union and complement.1.3 OverviewChapter 2 presents a general framework for relational logic programming extending andgeneralizing Ja�ar and Lassez's [JL86, JL87] model of constraint logic programming (CLP,for short). While CLP relies on many-sorted Predicate Logic as base language, our frame-work is based on a general notion of constraint language that can be instantiated, forinstance, to Predicate Logic, Order-Sorted Logic, attributive concept description logics orthe logic underlying POS-types to be developed in Chapter 3. Like CLP our frameworkgives a generic operational semantics. Our framework comes with a type discipline anddevelops the notions of well-typedness, type checking and type inference in general withoutcommitment to a particular constraint language. An interesting question for future researchis whether polymorphic sort constructions such as lists and pairs can be provided alreadywithin such a general framework.The next four chapters develop the theory of POS-types. Chapter 3 presents the logic un-derlying POS-types. Chapter 4 studies a class of rewriting systems used for the speci�cationof the inclusion orders of POS-types. The emphasis is on operational methods needed forconstraint solving and type inference. Chapter 5 de�nes the class of speci�cations fromwhose initial models POS-types are obtained by a canonical quotient construction turningsorts into the sets of their elements. Chapter 6, which is the heart of this thesis, developsthe constraint solver to be employed in the interpreter for POS-programs. The constraintsolver comes with several powerful optimizations avoiding redundant sort computations byexploiting the structure imposed by a type discipline enforcing parametric polymorphism.The optimizations rely on a compilation step replacing the sort terms in the program withapproximations just retaining the absolutely necessary information.In Chapter 7 the general framework of Chapter 2 and the theory of POS-types developed inChapters 3{6 are put together. We de�ne POS-programs and obtain a sound and completeinterpreter by integrating the constraint solver of Chapter 6 with the generic operationalsemantics of Chapter 2. We show that type checking for POS-programs is decidable andpresent an incomplete type inference algorithm.

Chapter 2Logic Programming overConstraint Languages2.1 Constraint Languages2.2 Canonical Extensions2.3 De�nite Clauses2.4 Operational Semantics2.5 A Type Discipline2.6 Type InferenceIn the last few years a new model of logic programming has emerged that views a logicprogramming language as consisting of a constraint language on top of which relations canbe de�ned by means of de�nite clauses. Di�erent logic programming languages can beobtained by employing di�erent constraint languages. Conventional logic programming isobtained by employing equations that are interpreted in the algebra of �rst-order terms.Prolog II [CKC83, Col84] employs as constraint language equations and disequations thatare interpreted in the algebra of rational trees. The constraint language of Prolog III [Col88]is interpreted in an algebra providing rational trees and rational numbers and allows forlinear equations and inequations for numbers, boolean expressions for truth values, andequations and disequations for general terms. Other recent examples of constraint logicprogramming languages are CLP(R) [JM87], CIL [Muk87] and CHIP [DHS+88].Ja�ar and Lassez [JL86, JL87] were the �rst to identify the new model, coined the nameConstraint Logic Programming, and developed a general framework that is parameterized0This Chapter is an adaptation of [HS88]. 7

8 Chapter 2. Logic Programming over Constraint Languageswith respect to the constraint language being employed and yields soundness and com-pleteness results for a generic operational semantics relying on a constraint solver for theemployed constraint language. A constraint solver is an algorithm deciding the satis�abil-ity of constraint systems. In conventional logic programming, the constraint solver solvesequations in the Herbrand universe, which is accomplished by term uni�cation.The original motivation for the research reported in this chapter was the development ofa semantic foundation for the knowledge representation language LOGIN [AKN86], whererelations are de�ned with de�nite clauses over a constraint language consisting of so-called -terms [AK86].The �rst step of this enterprise was to come up with a logical reformulation of A��t-Kaci's -term calculus and led to the development of Feature Logic [Smo88a, Smo89], a decidablelogic that generalizes A��t-Kaci's formalism by adding negation and quanti�cation. Fea-ture Logic makes explicit that A��t-Kaci's -terms, the feature descriptions developed bycomputational linguists [KB82, RK86, Joh88], and the knowledge representation languageKL-ONE [BS85, LB87, Neb89, SSS91, NS90] are all closely related members of the samefamily of logics. These logics o�er attributive concept descriptions that are interpreted assets and are built from sorts and binary relations (called attributes, roles or features) usingset operations such as intersection, union and complement. Given an attributive conceptdescription C, a constraint x:C constrains the values of the variable x to elements of C.Ideally, the second step of giving a semantic foundation to LOGIN should have consistedin simply applying Ja�ar and Lassez's [JL86, JL87] constraint logic programming scheme(CLP, for short) to Feature Logic. However, this failed for three reasons:1. CLP requires that the constraint language is interpreted in a single �xed domain. Thisis in accordance with the data structure paradigm underlying current programminglanguages, which views programs as computing with data structures that are, in mostapplications, merely representations of the objects one is actually interested in. Forknowledge representation, however, data structures as representations of real objectsare not adequate. Instead, one talks directly about the objects of interest, as thisis accomplished, for instance, by the Tarski semantics of Predicate Logic. Since, ingeneral, we have only partial information about the world we want to reason about, weneed to take into account all worlds that are consistent with our partial knowledge.Thus we have to generalize CLP such that the constraint language can come withmore than one interpretation and a constraint is considered satis�able if there is atleast one interpretation in which it has a solution.2. CLP requires that the interpretations of constraint languages be \solution compact",which implies that every element of an interpretation must be obtainable as the uniquesolution of a possibly in�nite set of constraints. While solution compactness is sensiblefor \data structure" interpretations, it is not acceptable for \real world" interpreta-tions. CLP needs solution compactness since it provides soundness and completenessresults for negation as failure. However, since the constraint language can provide forlogical negation (for instance, disequations in Prolog II or set complements in FeatureLogic) I feel that for many applications there is no further need for the problematicnegation as failure.

93. CLP assumes that the constraint language is expressed in Predicate Logic: constraintsmust be formulas of Predicate Logic and interpretations must be interpretations ofPredicate Logic. However, neither Feature Logic, KL-ONE, nor the logic we aregoing to use for the speci�cation of POS-types satisfy these assumptions. Althoughthese formalisms can be reduced to Predicate Logic in principle, providing customizedmodel theories and notations for them is crucial in keeping them technically simpleand in supporting the adequate intuitions. So what CLP is lacking is a su�cientlyabstract formalization of the notion of a constraint language.This chapter presents a framework that generalizes CLP so that the shortcomings discussedabove are completely avoided. Our framework also extends CLP with a general type disci-pline providing for an abstract treatment of notions like well-typedness, type checking andtype inference.The framework presented in this chapter, which is designed as a foundation of Logic Pro-gramming in general, will be just the right starting point for our theory of logic programmingover POS-types. Presenting our theory of logic programming over POS-types as an instanceof the general framework provides for a clear distinction of notions and results in those thatapply in general and in those that are speci�c to POS-types.Section 2.1 gives a de�nition of constraint languages that is general enough to cover allmentioned formalisms. In our analysis, a constraint is a piece of syntax constraining thevalues the variables occurring in it can take. There is no need to know anything about theinternal structure of a constraint. Since we are not concerned with negation as failure, wedon't need to impose any requirements on the interpretations of constraint languages. Aprominent example of a constraint language is Predicate Logic, where the formulas serveas constraints. Furthermore, the notion of a constraint language will be exploited forthe development of POS-Logic in the next chapter and signi�cantly reduce the notationaloverhead.In Section 2.2 we show that every constraint language can be extended conservativelyto a constraint language providing for relational atoms, the propositional connectives, andquanti�cation. By taking equations with their Tarski interpretations as constraint language,this construction yields Predicate Logic.In Section 2.3 we show that, for every set S of de�nite clauses in the extension of an arbitraryconstraint language L, every interpretation of L can be extended to a minimal model of S.This generalizes the key result of conventional logic programming to our framework, whichis not restricted to Horn theories.In Section 2.4 we present an operational semantics for our general de�nite clause speci�-cations that generalizes the SLD-resolution method [Llo84] employed in conventional logicprogramming and prove its soundness and completeness.In Section 2.5 we present a semantic type discipline for our generalized de�nite clausespeci�cations. The discipline exploits the idea that declarations of relation symbols in asorted language can be expressed as implications; for instance, to declare that the relationplus takes integers as arguments, we can write the implicationplus(x; y; z) ! x: int& y: int& z: int:

10 Chapter 2. Logic Programming over Constraint LanguagesIf Feature Logic is used as underlying constraint language, we can constrain the argumentsof a relation with complex feature terms employing intersections, complements and featureconstraints. The idea even applies to conventional logic programming, where we can writedeclarations like p(x; y) ! 9 z: y = f(x; z):We establish a weak notion of well-typedness by saying that a de�nite clause speci�cation Sis implicitly well-typed with respect to a set D of declarations if every minimal model of Sis a model of D. Next we establish a strong notion of well-typedness by de�ning explicitlywell-typed clauses and show that explicitly well-typed speci�cations are implicitly well-typed. Explicit well-typedness is decidable provided the underlying constraint language isdecidable. Furthermore, we show that our operational semantics is type safe, that is, thereduction of an explicitly well-typed goal with an explicitly well-typed clause yields againan explicitly well-typed goal.Section 2.6 gives a type inference rule that can be used to compute a most general explicitlywell-typed weakening of a speci�cation. We show that, if the explicitly well-typed speci�-cation S 0 is obtained from S by type inference, S 0 and S have the same minimal models,provided S is implicitly well-typed.2.1 Constraint LanguagesThe basic idea is that a constraint is some piece of syntax constraining the values of thevariables occurring in it. Our notion of constraint language does not make any assumptionsabout the syntax of constraints.Technically, it is convenient to have more than one class of variables and values available.For instance, POS-Logic will have two disjoint classes of variables, one ranging over sortsand one ranging over the elements of sorts.Let I be a set. An I-indexed set is a family M = (Mi)i2I of pairwise disjoint nonemptysets. An I-indexed setM is decidable if there exists a computable function �:Si2IMi ! Isuch that �(a) = i if and only if a 2 Mi. An I-indexed mapping from an I-indexed setM to an I-indexed set M 0 is a mappingf :[i2IMi ! [i2IM 0isuch that f(a) 2M 0i if a 2Mi.Let M be an I-indexed set. To obtain a smooth notation, we will abuse M to also denotethe union Si2IMi. By an element of M we always mean an element of Si2IMi anda 2M always stands for a 2 Si2IMi.Warning. Our de�nition of I-indexed sets is di�erent from the notion of \many-sortedness"used in the theory of algebraic speci�cations.A constraint language is a tuple (I;VAR;CON;V ; INT) such that1. I is a decidable set

2.1. Constraint Languages 112. VAR is a decidable I-indexed set such that VARi is in�nite for every i 2 I ; theelements of VAR are called variables3. CON is a decidable set whose elements are called constraints4. V is a computable function that assigns to every constraint � a �nite set V� ofvariables, called the variables constrained by �5. INT is a nonempty set of so-called interpretations, where every interpretationI 2 INT consists of an I-indexed set DI , called the domain of I, and a solutionmapping I[[�]] such that:(a) an I-assignment is an I-indexed mapping VAR! DI , and ASSI is the set ofall I-assignments(b) I[[�]] is a function mapping every constraint � to a set I[[�]] � ASSI , where theI-assignments in I[[�]] are called the solutions of � in I(c) a constraint � constrains only the variables in V�, that is, if � 2 I[[�]] and � isan I-assignment that agrees with � on V�, then � 2 I[[�]].Note that our de�nition of I-indexed sets makes sure that for every interpretation I thereexists at least one I-assignment. Thus we won't be plagued by the infamous \empty sortproblem" known in the theory of algebraic speci�cations.Predicate logic is a prominent example of a constraint language: there is only one class ofvariables, the well-formed formulas are the constraints, V� can be taken as the set of allvariables in � that are free in �, and for every Tarski interpretation I the solutions I[[�]] arethe I-assignments satisfying �. Viewing predicate logic as a constraint language abstractsaway from the syntactic details of formulas.The following de�nitions are all made with respect to some given constraint language L =(I;VAR;CON;V ; INT). Most of the de�nitions generalize terminology that is well-knownfor predicate logic.A constraint is satis�able if there exists at least one interpretation in which it has asolution.A constraint � is valid in an interpretation I if I[[�]] = ASSI , that is, every I-assignmentis a solution of � in I. Conversely, we say that an interpretation I satis�es a constraint �if � is valid in I. An interpretation is a model of a set � of constraints if it satis�es everyconstraint in �. Conversely, we say that an interpretation I satis�es a set � of constraintsif it satis�es every constraint in �. A constraint � is valid in a set � of constraints if everymodel of � satis�es �.A renaming is a bijective I-indexed mapping VAR! VAR that is the identity everywhereexcept for �nitely many exceptions. If � is a renaming, we call a constraint �0 a �-variantof a constraint � ifV�0 = �(V�) and I[[�]] = I[[�0]]� := f�� j � 2 I[[�0]]gfor every interpretation I. A constraint �0 is called a variant of a constraint � if thereexists a renaming � such that �0 is a �-variant of �.

12 Chapter 2. Logic Programming over Constraint LanguagesProposition 2.1.1 A constraint is satis�able if and only if each of its variants is satis�able.Furthermore, a constraint is valid in an interpretation I if and only if each of its variantsis valid in I.A constraint language is closed under renaming if every constraint � has a �-variant forevery renaming �. A constraint language is closed under intersection if for every twoconstraints � and �0 there exists a constraint such that I[[�]] \ I[[�0]] = I[[]] for everyinterpretation I. A constraint language is decidable if the satis�ability of its constraintsis decidable.Let � be a set of constraints and I be an interpretation. The solutions of � in I arede�ned as I[[�]] := [�2�I[[�]];where I[[�]] := ; if � is empty. Note that this de�nition interprets a set of constraints dis-junctively, while the above de�nition of a model interprets a set of constraints conjunctively.To ease our notation, we often abbreviate a singleton f�g to �.Given a set V of variables, the V -solutions of a set � of constraints in an interpretationI are de�ned as I[[�]]V := f�jV j � 2 I[[�]]g = [�2�f�jV j � 2 I[[�]]gwhere �jV is the restriction of � to V . We say that a set of constraints � is V -subsumedby a set of constraints �0 and write � �V �0 if I[[�]]V � I[[�0]]V for every interpretationI. Obviously, V -subsumption de�nes a preorder on sets of constraints. The correspondingequivalence relation � �V �0 :() � �V �0 ^ �0 �V �is called V -equivalence.Proposition 2.1.2 Renaming is homomorphic with respect to V -subsumption, that is, if� and �0 are renamings that agree on V , �0 is a �-variant of a constraint �, 0 is a �0-variantof a constraint , and � �V , then �0 ��(V) 0.A constraint language is called compact if for every set V of variables, every constraint �,and every set of constraints �, � is V -subsumed by � if and only if � is V -subsumed bysome �nite subset of �.Predicate Logic is a compact and undecidable constraint language that is closed underrenaming and intersection.Let A and B be interpretations of L. An L-morphism A ! B is an I-indexed mapping:DA! DB such that1. ASSA = ASSB2. A[[�]] � B[[�]]

2.2. Canonical Extensions 133. f� 2 ASSA j � 2 B[[�]]g � A[[�]].Proposition 2.1.3 Let be an L-morphism A ! B. Then is surjective andA[[�]] = B[[�]]f� 2 ASSA j � 2 B[[�]]g = A[[�]]:Proposition 2.1.4 If is an L-morphism A ! B, then a constraint � is valid [satis�able]in A if and only if it is valid [satis�able] in B.2.2 Canonical ExtensionsLet L be a constraint language. Then we can extend the constraints of L according to theabstract syntax rule:F;G �! � basic constraintj ; empty conjunctionj F &G conjunctionj :F negationj 9x:F existential quanti�cation.The variable mapping V of L can extended as follows:V; := ;; V(F &G) := VF [VG; V(:F) := VF; V(9x:F) := VF � fxg:Furthermore, if I is an interpretation of L, we extend the solution mapping I[[�]] of I asfollows to the new constraints:I[[;]] := ASSII[[F &G]] := I[[F]] \ I[[G]]I[[:F]] := ASSI � I[[F]]I[[9x:F]] := f� 2 ASSI j 9 � 2 I[[F]]: �jVF�fxg = �jVF�fxgg:Now, leaving the index set I and the variables VAR of L unchanged, we have arrivedat a new constraint language L� extending L conservatively. If A is an interpretation ofL, we will abuse A to also denote the extended interpretation, which is di�erent only inthat its solution mapping is extended to the new constraints. As usual, we will use theabbreviationsF jG � :(:F &:G) disjunctionF ! G � (:F)jG implication8x:F � :(9x::F) universal quanti�cation.Since L� is a constraint language, all de�nitions we have made for constraint languages ingeneral apply to L� in particular. This shows that the notion of a constraint language canbe applied iteratively.

14 Chapter 2. Logic Programming over Constraint LanguagesProposition 2.2.1 Let L be a constraint language, � be an L-renaming, and F be anL�-constraint. Then F 0 is a �-variant of F if F 0 can be obtained from F by replacing everyvariable x with �(x) and every L-constraint � with a �-variant of �. Thus L� is closedunder renaming if L is closed under renaming. Furthermore, L� is always closed underintersection.Theorem 2.2.2 Let L be a constraint language, A and B be interpretations of L, and be an L-morphism A ! B. Then is an L�-morphism A ! B.Proof. We show simultaneously by induction on F that A[[F]] � B[[F]] and f� 2 ASSA j� 2 B[[F]]g � A[[F]].If F is an L-constraint, then the claims hold since is an L-morphism A ! B.If F = ;, then A[[;]] = ASSA = ASSB = B[[;]] and f� 2 ASSA j � 2 B[[;]]g � ASSA =A[[;]]:Let F = G&G0. Then we haveA[[G&G0]] = (A[[G]]\ A[[G0]]) �A[[G]]\ A[[G0]]� B[[G]]\ B[[G0]] = B[[G&G0]]using the induction hypothesis for the �rst claim twice. Furthermore, we havef� 2 ASSA j � 2 B[[G&G0]]g= f� 2 ASSA j � 2 B[[G]]g \ f� 2 ASSA j � 2 B[[G0]]g� A[[G]]\ A[[G0]] = A[[G&G0]]using the induction hypothesis for the second claim twice.Let F = :G and � 2 A[[:G]]. Then � =2 A[[G]] and hence, by the induction hypothesis forthe second claim, � =2 B[[G]]. Thus � 2 B[[:G]].Let F = :G, � 2 ASSA and � 2 B[[:G]]. Then � =2 B[[G]] and hence, by the inductionhypothesis for the �rst claim, � =2 A[[G]]. Thus � 2 A[[:G]].Let F = 9x:G and � 2 A[[9x:G]]. Then there exists an assignment � 2 A[[G]] that agreeswith � on VG � fxg. Hence � 2 B[[G]] by the induction hypothesis for the �rst claim.Thus � 2 B[[9x:G]] since � and � agree on VG� fxg.Let F = 9x:G, � 2 ASSA, and � 2 B[[9x:G]]. Then there exists an assignment � 2 B[[G]]that agrees with � on VG � fxg. Since ASSA = ASSB, there exists an assignment� 2 ASSA such that � = � 2 B[[G]] and � agrees with � on VG� fxg. Hence � 2 A[[G]] bythe induction hypothesis for the second claim. Thus � 2 A[[9x:G]] since � and � agree onVG� fxg. 2From now on we assume that a set of relation symbols is given, where every relationsymbol comes with a natural number specifying the number of arguments it takes.Let L be a constraint language and R be a decidable set of relation symbols. An LR-atomhas the form r(~x), where the tuple ~x consists of pairwise distinct L-variables and has as

2.3. De�nite Clauses 15many elements as r has arguments. We extend the constraints of L by adding all LR-atomsand the variable mapping of L by de�ningVr(~x) := V~x:If I is an interpretation of L, we extend I to a new interpretation A by leaving the domainof I unchanged, choosing for every relation symbol r 2 R a relation rA on DI taking theright number of arguments, and de�ning the solution mapping A[[�]] as followsA[[�]] := I[[�]] if � is an L-constraintA[[r(~x)]] := f� 2 ASSI j �(~x) 2 rAg:In this way we can obtain at least one extension for every interpretation of L. Now,leaving the index set I and the variables VAR of L unchanged and taking all possibleextensions of the interpretations of L, we obtain a new constraint language LR that extendsL conservatively.Proposition 2.2.3 Let L be a constraint language, R be a decidable set of relation sym-bols, � be an L-renaming, and F be an LR-constraint. Then F 0 is a �-variant of F if F 0can be obtained from F by replacing every variable x with �(x) and every L-constraint �with a �-variant of �. Thus LR is closed under renaming if L is closed under renaming.If L is a constraint language and R is a decidable set of relation symbols, then we de-note (LR)� with L�R. This construction yields Predicate Logic if the constraints of L arethe equations between �rst-order terms and the interpretations of L are the usual Tarskiinterpretations. In L�R an atom r(s1; : : : ; sn) takes the form9x1: : : :9xn: (x1 = s1& : : : & xn = sn & r(x1; : : : ; xn));where x1; : : : ; xn are pairwise distinct variables not occurring in the argument termss1; : : : ; sn.2.3 De�nite ClausesHere and in the rest of this chapter we assume that L is a constraint language and R is adecidable set of relation symbols. The letters � and will always denote L-constraints, Aand B will always denote LR-atoms, and F and G will always denote L�R-constraints.A de�nite clause is an L�R-implicationA1& : : : &An &�! B;where n � 0, A1; : : : ; An and B are LR-atoms, and � is an L-constraint. If convenient, wewrite a clause as B �&G or B G.A de�nite clause speci�cation is a set of de�nite clauses.Conventional logic programs are de�nite clause speci�cations over E , where the constraintsof E are conjunctions of equations between �rst-order terms and the corresponding ground

16 Chapter 2. Logic Programming over Constraint Languagesterm algebra is the only interpretation of E . To meet our de�nition of de�nite clauses, theclause app(H.R, L, H.RL) app(R, L, RL),for instance, is rewritten to the equivalent clauseapp(X, L, Y) (X=H.R & Y=H.RL) & app(R, L, RL)having the conjunction X=H.R & Y=H.RL as E-constraint.We will show that the nice properties of conventional logic programs extend to de�niteclause speci�cations over arbitrary constraint languages.The base of an L�R-interpretation A is the L-interpretation that A is extending. TwoL�R-interpretations are called base equivalent if they have the same base.We de�ne a partial ordering on the set of all L�R-interpretations by:A � B :() A and B are base equivalent and 8 r 2 R: rA � rB:Proposition 2.3.1 Let A and B be two L�R-interpretations and A be an LR-atom. ThenA[[A]] � B[[A]] if A � B.The intersection Ti2I Ai of a family (Ai)i2I of base equivalent L�R-interpretations isobtained by intersecting the denotations of the relation symbols and is again an L�R-interpretation. Analogously, the union Si2I Ai of a family (Ai)i2I of base equivalentL�R-interpretations is obtained by joining the denotations of the relation symbols and isagain an L�R-interpretation.Proposition 2.3.2 Let I be an L-interpretation. Then the set of all L�R-interpretationsextending I is a complete lattice.Proposition 2.3.3 The intersection of a family of base equivalent models of a de�niteclause speci�cation S is a model of S.The following theorem generalizes the key result for conventional logic programs to generalde�nite clause speci�cations.Theorem 2.3.4 [De�niteness] Let S be a de�nite clause speci�cation in L�R and I bean L-interpretation. Then the equationsrA0 := ;; rAi+1 := f�(~x) j (r(~x) G) 2 S ^ � 2 Ai[[G]]gde�ne a chain A0 � A1 � � � � of L�R-interpretations whose base is I. Moreover, the unionSi�0Ai is the least model of S extending I.Proof. By induction on i one easily veri�es that Ai � Ai+1. Since every Ai is an L�R-interpretation extending I, the union A := Si�0Ai is an L�R-interpretation extending I.

2.4. Operational Semantics 17To show that A is a model of S, let A G be a clause of S and � 2 A[[G]]. We have toshow that � 2 A[[A]]. By the iterative de�nition of A we know that there is some i suchthat � 2 Ai[[G]]. Hence � 2 Ai+1[[A]] � A[[A]].To show that A is a minimal model of S, let B be a base equivalent model of S. Byinduction on i one veri�es easily that Ai � B for every i. Hence A = Si�0Ai � B. 2A set M of L�R-constraints is called a de�nite speci�cation if every L-interpretation canbe extended to a minimal model of M . The De�niteness Theorem says that every de�niteclause speci�cation is a de�nite speci�cation. Many of the interesting properties of de�niteclause speci�cations depend solely on their de�niteness. If M is a de�nite speci�cationin L�R, then M uniquely de�nes the relations of R, that is, for every L-interpretation Mde�nes unique minimal denotations for the relation symbols of R.A goal is a possibly empty conjunction of L-constraints and LR-atoms. To ease our nota-tion, we identify a goal with the multiset consisting of its constraints.An observation is an implication �! G consisting of an L-constraint � and a goal G.Proposition 2.3.5 LetM be a de�nite speci�cation. Then an observation is valid in everymodel of M if and only if it is valid in every minimal model of M .Let M be a de�nite speci�cation. An M-answer of a goal G is a satis�able L-constraint �such that the observation �! G is valid in every model of M . The preceding propositionsays that the M -answers of a goal are completely characterized by the minimal models ofM . Thus we say that a set � of M -answers of a goal G is complete if A[[�]]VG = A[[G]]VGfor every minimal model A of M .Proposition 2.3.6 Let M be a de�nite speci�cation, G be a goal, � be an M -answer ofG, and � be a complete set of M -answers of G. Then:1. I[[�]]VG � I[[�]]VG for every L-interpretation I2. if L is compact, then there exists a �nite subset �0 � � such that I[[�]]VG � I[[�0]]VGfor every L-interpretation I.Proof. The second claim follows immediately from the �rst claim. To show the �rstclaim, suppose that I is an L-interpretation. Since M is de�nite, there exists a minimalmodel A of M whose base is I. HenceI[[�]]VG = A[[�]]VG � A[[G]]VG = A[[�]]VG = I[[�]]VGsince � is an M -answer of G and � is a complete set of M -answers of G. 22.4 Operational SemanticsIn this section we show that one can obtain a complete interpreter for general de�nite clausespeci�cations by generalizing the SLD-resolution method [Llo84] employed in conventional

18 Chapter 2. Logic Programming over Constraint Languageslogic programming. Although our proofs are much more general than the proofs for con-ventional logic programming given in [Llo84], they are clearer and simpler. In particular,we give a new complexity measure based on a multiset ordering that provides for a strongcompleteness result making a careful distinction between don't care and don't know choices.In the following we assume that L and R are given, S is a de�nite clause speci�cation inL�R, and V is a �nite set of variables.We de�ne (S; V)-goal reduction as the binary relation r�!S;V on the set of goals givenby the rule: A&G r�!S;V F &Gif A F is a variant of a clause of Ssuch that (V [VG)\ VF � VA.We say that a goal G0 is obtained from a goal G by (S; V)-goal reduction on A with if G r�!S;V G0 by reducing the atom A 2 G with a variant of the clause 2 S.Proposition 2.4.1 [Soundness of Goal Reduction] If G r�!S;V F , then A[[F]] � A[[G]]for every model A of S.We will now show that goal reduction is a complete rule for inferring S-answers, providedall necessary variants of the clauses of S exist, which is certainly the case if L and henceL�R are closed under renaming. The most important ingredient of the completeness proof isa well-founded complexity measure on goals that can be decreased by goal reduction. Fromthe De�niteness Theorem we know that every minimal model A of S can be obtained asthe union A = Si�0Ai of a chain A0 � A1 � � � � of L�R -interpretations being uniquelyde�ned for A. This provides for the following de�nitions:1. if A is a minimal model of S, A is an atom and � 2 A[[A]], then the complexity of� for A in A is comp(�;A;A) := minfi j � 2 Ai[[A]]g2. if A is a minimal model of S, G is a goal, and � 2 A[[G]], then the complex-ity comp(�;G;A) of � for G in A is the multiset consisting of the complexitiescomp(�;A;A) of the atoms A in G.On the multiset complexities, which are �nite multisets of natural numbers, we de�ne awell-founded total ordering byM �M 0 :() 9 multisets X �M and X 0 �M 0 such thatM = (M 0 �X 0) [X and8 x 2 X 9 x0 2 X 0: x < x0;where �, �, [, and 2 stand for the appropriate multiset operations (see [DM79] for detailson multiset orderings).Now we are ready for the de�nition of the complexity measure we are actually going to use.Let A be a minimal model of S, G be a goal and � 2 A[[G]]V . Then the V -complexity of� for G in A iscompV (�;G;A) := minfcomp(�;G;A) j � 2 A[[G]] ^ � = �jV g;

2.4. Operational Semantics 19where the minimum is taken with respect to the multiset ordering.Theorem 2.4.2 [Completeness of Goal Reduction] Let L be closed under renaming,A be a minimal model of S, G be a goal, A be an atom in G, and � 2 A[[G]]V . Then thereexists a clause 2 S such that1. (S; V)-goal reduction of G on A using is possible2. if G1 is obtained from G by (S; V)-goal reduction on A using ,then � 2 A[[G1]]V and compV (�;G1;A) < compV (�;G;A).Proof. Let G = A&G0 and � 2 A[[A&G0]] such that � = �jV and compV (�;G;A) =comp(�;G;A). Furthermore, let A = r(~x) and i := comp(�;A;A). Then �~x 2 rAi . Hencethere exists a clause r(~y) F in S and an assignment 2 Ai�1[[F]] such that ~y = �~x .Now let � be a renaming and r(~x) H be a �-variant of r(~y) F such that ~x = �(~y) and(V [VG0) \ VH � Vr(~x). Such a variant always exists since L and hence L�R are closedunder renaming, V is �nite, and there are in�nitely many variables for every index. SinceH &G0 can be obtained from G by an (S; V)-goal reduction on A, we have the �rst claim.To show the second claim, we have to show that � 2 A[[H &G0]]V and that compV (�;H &G0;A) < compV (�;G;A).We know that ��1 2 Ai�1[[H]] and that ��1 and � agree on ~x . Hence there exists anassignment � 2 ASSA that agrees with � on V [VG0 and with ��1 on VH . One veri�eseasily that � agrees with � on V , that � 2 A[[G0]], and that � 2 Ai�1[[H]] � A[[H]]. Hence� 2 A[[H &G0]]V andcompV (�;H &G0;A) � comp(�;H &G0;A)= fcomp(�;H;A)g [comp(�; G0;A)< fig [comp(�;G0;A)= comp(�;G;A) = compV (�;G;A): 2Corollary 2.4.3 [Weak Completeness of Goal Reduction] Let L be closed underrenaming, A be a minimal model of S, G be a goal and � 2 A[[G]]V . Then there exists anS-answer � of G such that G r�!�S;V � and � 2 A[[�]]V .Proof. By induction on compV (�;G;A), using the Completeness and Soundness Theo-rems. 2The Completeness Theorem is stronger than the corollary since it makes a careful distinctionbetween don't care and don't know choices: a complete interpreter can choose any atom inthe goal to be reduced, has to try all clauses de�ning the relation symbol of the atom, andcan reduce the goal with any suitable variant of the clause being tried.In conventional logic programming the search space is signi�cantly reduced by exploitingthe fact that only clauses whose head uni�es with the atom to be reduced need to be tried.

20 Chapter 2. Logic Programming over Constraint LanguagesThis crucial optimization generalizes nicely to our framework. To show this, we de�ne anadditional inference rule, called V -constraint solving:�& �0&G c�!V �00&Gif �& �0 �V [VG �00 and�, �0, and �00 are L-constraints.Proposition 2.4.4 [Constraint Solving] Let G be a goal and G c�!V G0. Then:1. A[[G]]V = A[[G0]]V for every interpretation A of L�R2. compV (�;G;A) = compV (�;G0;A) for every minimal model A of S and every � 2A[[G]]V .Next we can require that the underlying constraint language L comes with a set of nor-mal L-constraints such that every normal L-constraint is satis�able, and that for everysatis�able conjunction of L-constraints and every �nite set V of variables there exists aV -equivalent normal L-constraint. For conventional logic programming, the normal con-straints are the equational representations of idempotent substitutions.Finally, we can require that the goal to be reduced contains only one L-constraint that hasto be normal and that the constraints in the clauses of S be normal. Obviously, a de�niteclause speci�cation can be transformed to this format without changing its models.The optimized interpreter works as follows: immediately after a goal reduction step, theconstraint solving rule is applied to the conjunction �&�0 consisting of the normal con-straint from the reduced goal and the normal constraint from the applied clause, where aso-called constraint solver attempts to compute a normal constraint that is equivalent to�& �0. If the constraint solver detects that �& �0 is unsatis�able, then the interpreter triesimmediately another clause since this part of the search space cannot contain any answers.In conventional logic programming, the constraint solver is given by a term uni�cation pro-cedure, where uni�cation succeeds if and only if the corresponding equations are satis�ablein the ground term algebra.We now give our �nal Completeness Theorem, which hides how the complexity measurewas obtained.A complexity measure on a set M is a partial function from M to a set equiped with atotal well-founded ordering.Theorem 2.4.5 [Completeness] Let L be closed under renaming, A be a minimal modelof S, G be a goal, and � 2 A[[G]]V . Then there exists a complexity measure \kGk" on theset of all goals such that1. kGk is de�ned2. if kHk is de�ned, then � 2 A[[H]]V3. if kHk is de�ned and H c�!V H 0, then kH 0k = kHk

2.5. A Type Discipline 214. if kHk is de�ned and A is an atom in H , then there exists a clause 2 S such that(a) (S; V)-goal reduction of H on A using is possible(b) ifH 0 is obtained fromH by (S; V)-goal reduction on A using , then kH 0k < kHk.Proof. By the Completeness Theorem for goal reduction and the Constraint SolvingProposition we know that the complexity measurekHk := compV (�;H;A) if � 2 A[[H]]Vsatis�es the claims of the theorem. 22.5 A Type DisciplineA declaration is an L�R-implication of the formA ! 9y1: : : :9yn: �;where A is an atom, � is a satis�able L-constraint, and y1; : : : ; yn are the variables inV�� VA. For convenience we use the abbreviation A!9 �.Proposition 2.5.1 A declaration r(~x) !9 � is valid in an L�R-interpretation A if andonly if rA � f�(~x) j � 2 A[[�]]g.Declarations prescribe upper bounds for relations. If L is a constraint language with sorts,typical declarations might be:plus(X,Y,Z) !9 X:int & Y:int & Z:intlikes(X,Y) !9 X:person & Y:person.If Feature Logic [Smo88a, Smo89] is employed as the underlying constraint language, thearguments of a relation can be constrained with feature terms employing intersections,unions, complements and feature constraints. Similar declarations are possible using theconcept and role descriptions of KL-ONE [BS85, LB87, Neb89, SSS91, NS90]. The ideaeven applies to conventional logic programming, where we can write declarations likep(x; y) ! 9 z: y = f(x; z):Giving declarations for the relation symbols of a de�nite clause speci�cation makes it easierto understand the speci�cation since looking at the declarations alone already gives one arough understanding of the speci�ed relations. Declarations are much easier to understandthan clauses since a declaration speci�es an upper bound for a relation without recourse toother relations.We establish an undecidable notion of well-typedness by saying that a de�nite speci�cationM satis�es a set D of declarations if every minimal model of M is a model of D.

22 Chapter 2. Logic Programming over Constraint LanguagesProposition 2.5.2 Let M be a de�nite speci�cation and D be a set of declarations. Thenthe following conditions are equivalent:1. M satis�es D2. M [D is a de�nite speci�cation3. M and M [D have the same minimal models.Furthermore, if the above conditions are satis�ed, then an observation is valid in everymodel of M if and only if it is valid in every model of M [D.Proof. \(1)) (2)". Let I be an L-interpretation. We have to show that I can beextended to a minimal model of M [D. Since M is a de�nite speci�cation, I can beextended to a minimal model A of M . Hence we know by our assumption that A is amodel of M [D. To show that A is a minimal model of M [D, let B � A be a modelof M [D. Then B is in particular a model of M and hence B = A since A is a minimalmodel of M .\(2)) (3)". Let A be a minimal model of M . Since M [D is a de�nite speci�cation byassumption, we know thatM [D has a minimal model B such that A and B have the samebase. In particular, we know that B is a model of M . Since A is a minimal model of M ,we know that A � B. Since B is a model of D, we hence know that A is a model ofM [D.Since B is a minimal model of M [D, we thus know that A = B. Hence A is a minimalmodel of M [D.Let A be a minimal model of M [D. Then A is a model of M and, since M is de�nite,M has a minimal model B � A. Since A is a model of D, we know that B is a model ofD. Hence B is a model ofM [D and, since A is a minimal model of M [D, we know thatA = B. Hence A is a minimal model of M .\(3)) (1)". Trivial.The observational equivalence of M and M [D follows from (3) and Proposition 2.3.5. 2In practice, a major advantage of type disciplines is that one can detect speci�cation errorsautomatically by checking whether a speci�cation is well-typed. This, of course, requiresthat the well-typedness of a speci�cation is decidable. Our current notion of well-typedness,however, is undecidable even if the underlying constraint language is decidable. We willnow devise a stronger more syntactically oriented notion of well-typedness that is decidableif the underlying constraint language is decidable.An atomA iswell-typed under an L-constraint � with respect to a declaration � if � �VA for every variant A!9 of �. Note that, if A and � have di�erent relation symbols, thenA is well-typed under every L-constraint with respect to �.Proposition 2.5.3 Let � be an L-constraint and A!9 be a variant of a declaration �.Then A is well-typed under � with respect to � if and only if � �VA .Proof. Follows from Proposition 2.1.2. 2

2.6. Type Inference 23Let D be a set of declarations. A de�nite clause is well-typed with respect to D if everyatom of is well-typed under the L-constraint of with respect to every declaration of D.(For technical convenience, we don't require that the L-constraint of a well-typed clausebe satis�able.) A de�nite clause speci�cation S is well-typed with respect to D if everyclause of S is well-typed with respect to D.Proposition 2.5.4 Let L be a constraint language such that, for every renaming � andevery �nite set V of variables, �-variants are computable and V -subsumption is decidable.Then the well-typedness of �nite de�nite clause speci�cations with respect to �nite sets ofdeclarations is decidable.Theorem 2.5.5 Let L be closed under renaming, S be a de�nite clause speci�cation andD be a set of declarations. Then S satis�es D if S is well-typed with respect to D.Proof. Let A be a minimal model of S, r(~x) !9 � be a declaration of D, and � bean A-assignment such that �~x 2 rA. We have to show that there exists an assignment! 2 A[[�]] that agrees with � on V~x .Since L is closed under renaming, we can assume without loss of generality that ~x = ~y forevery clause r(~y) G in S.Using the construction of the De�niteness Theorem, we know that �~x 2 rAi+1 for some i.Hence there exists a clause r(~x) &F and an assignment � 2 A[[]] such that �~x = �~x .Since S is well-typed, we know �V~x �. Hence there exists an assignment ! 2 A[[�]] suchthat ! agrees with � and hence with � on V~x . 2A goal G is well-typed with respect to D if every atom in G is well-typed under someL-constraint in G with respect to D.Proposition 2.5.6 [Well-Typed Programs Don't Go Wrong] Let S be a de�niteclause speci�cation that is well-typed with respect to a set D of declarations, and let G bea goal that is well-typed with respect to D. Then G0 is well-typed with respect to D if G0is obtained from G by (S; V)-goal reduction or V -constraint solving.2.6 Type InferenceIn the following we assume that S is a de�nite clause speci�cation and D is a set ofdeclarations.We will show that, if S satis�es D, one can compute, by superposing the declarations of Dwith the clauses of S, a de�nite clause speci�cation S 0 that is well-typed with respect to Dsuch that S and S 0 have the same minimal models. Thus S and its well-typed version S 0are observationally equivalent. We will also show that, in general, S 0 [D is semanticallyweaker than S [D, that is, has more nonminimal models than S [D.This result together with the results of the preceding section clari�es the relationship be-tween our two notions of well-typedness. Type inference is also useful for practical applica-tions since one can write an abbreviated de�nite clause speci�cation S together with a set

24 Chapter 2. Logic Programming over Constraint LanguagesD of declarations and automatically infer the \intended" well-typed speci�cation S 0 satis-fying D. If type inference is used for this purpose, it isn't necessary that the abbreviatedspeci�cation S satis�es D.We start by de�ning a quasi-ordering on de�nite clauses:(A �&G) � (A �0&G) :() �0 �VA[VG �:If � 0, we say that 0 is a weakening of . Note that, if 0 is a weakening of , theclauses and 0 are equal up to their L-constraints.To render a clause well-typed with respect toD, we will replace it with a minimal weakeningthat is well-typed with respect to D. The next propositions says that it doesn't matterwhich minimal well-typed weakening we choose.Proposition 2.6.1 If 0 is a weakening of , then every model of is a model of 0.To compute minimal well-typed weakenings, we de�ne the following type inference rule forde�nite clauses: (A �&G) t�!D (A �0&G)if B is an atom in A&G andB !9 is a variant of a declaration of D such thatV \ (VA[V�[VG) � VB,� �VB does not hold, and�0 �VA[VG �& .Theorem 2.6.2 [Type Inference] Let L be closed under renaming and intersection andlet be a de�nite clause. Then:1. there are no in�nite chains t�!D 1 t�!D 2 t�!D � � �2. if the type inference rule t�!D cannot be applied to , then is well-typed withrespect to D3. if t�!D 0, then 0 is a weakening of such that(a) if 00 is a weakening of that is well-typed with respect to D, then 00 is aweakening of 0(b) if S satis�es D and S 0 is obtained from S by replacing with 0, then S and S 0have the same minimal models.Proof. 1. The clause has �nitely many pairs (B; �) such that B is an atom of thatis not well-typed under the L-constraint of with respect to the declaration � 2 D. Anapplication of the type inference rule reduces the number of these pairs.2. The claim is easily veri�ed using that L is closed under renaming and intersection.3. Let = (A �&G), 0 = (A �0&G), B be an atom in , B !9 be a variant of adeclaration of D such that V \ (VA[V�[VG) � VB, and �0 �VA[VG �& . Then 0 isobviously a weakening of .

2.6. Type Inference 253.1. Let 00 = (A �00&G) be well-typed with respect to D and let �00 �VA[VG �. Wehave to show that �00 �VA[VG �0. Since we know that �0 �VA[VG �& , it su�ces to showthat �00 �VA[VG �& . Let I be an L-interpretation and � 2 I[[�00]]. We have to show thatthere exists an assignment � 2 I[[�&]] that agrees with � on VA[VG.Since �00 �VA[VG �, we know that there exists an assignment � 2 I[[�]] that agrees with� on VA [VG. Since B is well-typed under �00 with respect to B !9 , we know that�00 �VB . Thus there exists an assignment ! 2 I[[]] that agrees with � and hence with �on VB. Since V \ (VA [V� [VG) � VB, we can assume without loss of generality that! agrees with � on VA [V�[VG. Thus ! 2 I[[�&]] and ! agrees with � on VA [VG.3.2. Let S satisfy D and let S 0 be obtained from S by replacing with 0. Furthermore, letI be an L-interpretation and let A0 � A1 � � � � and A00 � A01 � � � � be the chains de�ningthe extensions of I to minimal models of S and S 0 as in the proof of the De�nitenessTheorem. We show by induction on i that Ai = A0i for every i � 0. For i = 0 the claim istrivial. To show Ai+1 = A0i+1, it su�ces to show that Ai[[�&G]]VA = Ai[[�0&G]]VA.3.2.1. Let � 2 Ai[[�0&G]]. We show that there exists an assignment � 2 Ai[[�&G]] thatagrees with � on VA. Since �0 �VA[VG �& , we know that there exists an assignment� 2 Ai[[�]] that agrees with � on VA[VG. Hence � 2 Ai[[�&G]].3.2.2. Let � 2 Ai[[�&G]] and B be an atom in G. We show that there exists an assignment! 2 Ai[[�0&G]] that agrees with � on VA. Since S satis�es D, we know that Ai satis�esB !9 . Hence there exists an assignment � 2 Ai[[]] that agrees with � on VB. SinceV \ (VA [V� [VG) � VB, we can assume without loss of generality that � agrees with� on VA [V� [VG. Hence � 2 Ai[[�& &G]]. Since �0 �VA[VG �& , there exists anassignment ! 2 Ai[[�0]] that agrees with � on VA[VG. Hence ! 2 Ai[[�0&G]] and ! agreeswith � on VA.3.2.3. Let � 2 Ai[[�&G]] and B = A. We show that there exists an assignment ! 2Ai[[�0&G]] that agrees with � on VA. Since S satis�es D, we know that Ai+1 satis�esA!9 . Since � 2 Ai+1[[A]], there exists an assignment � 2 Ai[[]] = Ai+1[[]] that agreeswith � on VA. Since V \ (V�[VG) � VA, we can assume without loss of generality that� agrees with � on VA[V�[VG. Hence � 2 Ai[[�& &G]]. Since �0 �VA[VG �& , thereexists an assignment ! 2 Ai[[�0]] that agrees with � on VA [VG. Hence ! 2 Ai[[�0&G]]and ! agrees with � on VA. 2Corollary 2.6.3 Let S 0 be obtained from S by replacing every clause of S by a minimalweakening that is well-typed with respect to D. Then S 0 is well-typed with respect to Dand, if S satis�es D, then S and S 0 have the same minimal models.One could expect that S and S 0 not only have the same minimal models but have the samemodels in general. By Proposition 2.6.1 we know that every model of S is a model of S 0.However, the following example shows that the other direction doesn't hold. This meansthat S 0 is semantically weaker than S in that it allows for more nonminimal models thanS.Example 2.6.4 Let L be the constraint language whose constraints are conjunctions ofequations between �rst-order terms and let the ground term algebra be the only interpre-tation of L. Furthermore, let a declaration � and de�nite clauses and 0 be given as

26 Chapter 2. Logic Programming over Constraint Languagesfollows: � : p(x)!9 x = a : p(x) q(x) 0 : p(x) x = a& q(x):The minimal model of has empty denotations for p and q and thus trivially satis�es�. Note that 0 can be obtained from with type inference modulo �. Now let B be aninterpretation such that pB = fag and qB is the set of all ground terms (assume that thereis more than one). Obviously, B is a model of 0 and � but is not a model of . 2

Chapter 3POS-Logic3.1 The Category of POS-Algebras3.2 POS-Constraints3.3 The Substitution Theorem3.4 Sort Rewriting3.5 Quasi-Extensional Algebras3.6 Simple Speci�cationsThis chapter presents the logic we will use for the speci�cation of POS-types. The logicis interpreted over partial algebras whose carrier consists of values and sorts and whoseoperators are either total functions from sorts to sorts or partial functions from values tovalues. Sorts are partially ordered by an inclusion relation and values and sorts are relatedby a membership relation. To accomplish that, for instance, lists of natural numbers are asubsort of lists of integers, sort functions are required to be monotonic with respect to theinclusion order.In so-called extensional POS-algebras, sorts are sets of values and inclusion and membershipare set inclusion and set membership. The reason for considering nonextensional POS-algebras is that the type speci�cations we are aiming at do not have extensional initialmodels in general. De�ning types as the initial models of their speci�cations is, however,the key paradigm of the theory of abstract data types. Nevertheless, we will show thatPOS-types can also be obtained in a natural way as extensional POS-algebras, where theinitial interpretation of a POS-speci�cation will be very closely related to its extensionalinterpretation. In fact, all operational methods that will be developed in this thesis willwork unchanged for both initial and extensional POS-types.The syntax of POS-Logic distinguishes two kinds of terms denoting sorts and values, re-27

28 Chapter 3. POS-Logicspectively. Primitive constraints are available for expressing inclusion between sort terms,membership between value and sort terms, and equality between value terms. This is asigni�cant departure from Many-Sorted and Order-Sorted Logic, where only equality be-tween value terms can be expressed within the logic. Furthermore, POS-Logic does notimpose a notion of well-typedness a priori. Instead, di�erent notions of well-typedness canbe imposed yielding di�erent speci�cation disciplines. The consequence of not imposing anotion of well-typedness a priory is that the partiality of value functions shows up in thatnot every value term denotes in every algebra. Since for our purpose total homomorphismssu�ce, the presence of partiality doesn't produce any complications.Our development of POS-Logic goes only as far as is needed for our type speci�cations.Since our type speci�cations don't employ equational axioms, we don't study congruencesand quotients. And since there exists a rather specialized deduction system for our typespeci�cations, we don't give general deduction rules.For so-called simple speci�cations we de�ne a notion of well-typedness such that a groundvalue term is well-typed in a simple speci�cation T if and only if it denotes in every modelof T . As in Many- and Order-Sorted Logic, the well-typed terms of a simple speci�cationT yield term models of T and the ground term model of T is an initial model of T . Well-typedness is established with deduction rules, which will turn out to be sound and completefor simple speci�cations.3.1 The Category of POS-AlgebrasFrom now on we assume that two disjoint, decidable sets of function symbols are given whoseelements are called sort function symbols and value function symbols, respectively.The letters �, �, � will always denote sort function symbols and the letters f , g, h willalways denote value function symbols.A POS-signature is a set of sort and value function symbols.A POS-algebra A consists of1. a POS-signature �A,2. a set SA whose elements are called the sorts of A3. a partial order �A on SA, called the inclusion order of A4. a nonempty set VA whose elements are called the values of A, where SA and VAare disjoint5. a relation :A� VA � SA, called the membership relation of A, such that(a) for every a 2 VA there exists an A 2 SA such that a :A A(b) if a :A A and A �A B, then a :A B6. a denotation �A for every sort function symbol � 2 �A, where �A is a total functionSA � � � � � SA ! SA taking as many arguments as speci�ed by the arity of � and

3.1. The Category of POS-Algebras 29being monotonic with respect to the inclusion order of A, that is,~A �A ~B) �A(~A) �A �A(~B)7. a denotation fA for every value function symbol f 2 �A, where fA is a partialfunction VA � � � � �VA ! VA taking as many arguments as speci�ed by the arityof f ; we use D[fA] to denote the domain of fA.The set DA := SA [VA is called the domain of A.A POS-algebra A is called extensional if its sorts are sets, VA = SSA, its inclusion orderis set inclusion, and its membership relation is set membership. General POS-algebras aremore general than extensional POS-algebras in that they are not required to satisfy thedirection \)" of the equivalence(8 a 2 VA: a :A A) a :A B) () A �A B:Let A and B be two POS-algebras such that �A � �B. A homomorphism A ! B (read:from A to B) is a mapping :DA! DB such that1. (�A) � �B and (:A) � :B2. if � 2 �A, then (�A) � �B3. if f 2 �A, then (fA) � fB.Note that our de�nition of homomorphisms is completely natural. It relies on the fact thatfunctions and relations on the domain of a POS-algebra are sets of tuples over the domainand that can be extended component-wise to tuples and element-wise to sets. The usualhomomorphism equations for functions, for instance,(fA(~a)) = fB((~a));are obviously implied by our de�nition. Furthermore, our de�nition treats partial functionsin the right way in that we have (D[fA]) � D[fB] for every value function. Moreover, the�rst condition of our de�nition implies that (SA) � SB and (VA) � VB.Proposition 3.1.1 The POS-algebras together with their homomorphisms comprise a cat-egory.Proof. We must show two things: �rst, if A is a POS-algebra, then the identity mappingof the domain of A is a homomorphism; and second, if A, B, C are POS-algebras, is ahomomorphism A ! B, and � is a homomorphism B ! C, then the composition � is ahomomorphism A ! C. It is straightforward to verify these requirements. 2A homomorphism :A ! B is called an isomorphism if there exists a homomorphism0:B ! A such that 0 = �A and 0 = �B, where �A and �B are the identity homomor-phisms of A and B, respectively. Two POS-algebras are called isomorphic if there existsan isomorphism from one to the other.

30 Chapter 3. POS-LogicExample 3.1.2 Not every bijective homomorphism is an isomorphism. To show this,we de�ne two POS-algebras A and B as follows: �A = �B = ;, SA = SB = fA;Bg,VA = VB = fbg, �A= f(A;A); (B;B)g, �B=�A [f(A;B)g, and :A=:B= f(b; B)g. Thenthe identity function of DA is a bijective homomorphism A ! B but not an isomorphism.2Intuitively, it would be most appealing to restrict our semantic theory to extensional POS-algebras. However, insisting on this restriction would have the severe drawback that ourtype speci�cations would not have initial models in general although they employ onlyHorn-like axioms. This stems from the fact that the equivalence(8 a 2 VA: a :A A) a :A B) () A �A B:satis�ed by extensional POS-algebras cannot be enforced by Horn-like axioms.Order-Sorted Logic [GM87a, SNGM89] interprets sorts as sets and still has initial modelsfor every Horn-like speci�cation. This at �rst surprising di�erence to POS-Logic is causedby the fact that in an order-sorted algebra every sort is the denotation of a sort symbol inthe signature, which allows for a weak noncanonical notion of homomorphism. Since POS-algebras come with sort functions, the notion of an order-sorted homomorphism doesn'tgeneralize to POS-Logic. (Example 3.6.13 will shed more light on this point.)Giving the semantics of a type speci�cation by the isomorphism class of its initial mod-els is the key paradigm of the theory of abstract data types. Admitting nonextensionalPOS-algebras will provide for an initial model semantics of our type speci�cations. Fur-thermore, the initial models of our type speci�cations will have associated with them uniqueextensional models yielding the same theories with respect to membership and equality.3.2 POS-ConstraintsIn this section we de�ne a family of constraint languages whose interpretations are POS-algebras. Having the general framework of Chapter 2 available, it su�ces to give just thede�nitions that are speci�c to POS-Logic.We employ two disjoint alphabets of variables, called sort variables and value variables.If A is a POS-algebra, an A-assignment is a mapping from the set of all sort and valuevariables to the domain of A such that sort variables are mapped to sorts and value variablesare mapped to values. We use ASSA to denote the set of all A-assignments.A sort term is a term that is built only from sort variables and sort function symbols. Avalue term is a term that is built only from value variables and value function symbols.Whenever we are in the context of POS-Logic, we will tacitly assume that x, y, z are valuevariables, �, �, are sort variables, �, � , �, and � are sort terms, and that s, t, u, and vare value terms.Let A be a POS-algebra and � be an A-assignment. The �-denotation A[[�]]� is the leastpartial function from �A-sort and value terms to the domain of A satisfying the following

3.2. POS-Constraints 31equations: A[[�]]� = �(�); A[[�(~�)]]� = �A(A[[~�]]�);A[[x]]� = �(x); A[[f(~s)]]� = fA(A[[~s]]�):If � is a �A-sort term, then the �-denotation of � in A is always de�ned and A[[�]]� 2 SA.If s is a �A-value term and the �-denotation of � in A is de�ned, then A[[s]]� 2 VA.Denotation is strict, that is, a term denotes if and only if each of its subterms denotes.Since the denotation of ground terms does not depend on the employed assignment, wemay write A[[�]] and A[[s]] rather than A[[�]]� and A[[s]]� if � and s are ground.There are three kinds of primitive POS-constraints, which are given below together withtheir solutions in a POS-algebra A (� and � are �A-sort terms and s and t are �A-valueterms):1. inclusions: A[[� v �]] = f� 2 ASSA j A[[�]]� �A A[[�]]�g2. memberships: A[[s: �]] = f� 2 ASSA j A[[s]]� :A A[[�]]�g3. equations: A[[s := t]] = f� 2 ASSA j A[[s]]� = A[[t]]�g.Note that A[[�]]� and A[[s]]� must be de�ned if � and s are terms occurring in a primitivePOS-constraint A and � 2 A[[A]]. Thus our notion of equality is what is known as \exis-tential equality" in the theory of partial algebras: an equation does only hold if both sidesare de�ned.A primitive �A-constraint is a primitive POS-constraint containing only �A-sort andvalue terms. If convenient, we write an inclusion � v � as � w �.Proposition 3.2.1 Let � be a POS-signature. Then the following de�nes a constraintlanguage L(�) that is closed under renaming:1. the variables of L(�) are the sort and value variables2. the constraints of L(�) are the primitive �-constraints3. if A is a constraint of L(�), then VA is the set of all variables occurring in A4. the interpretations of L(�) are the POS-algebras whose signature contains �, wherethe solution mappings are de�ned as above.Given a POS-signature �, we call L(�)�-constraints for convenience just �-constraints.Furthermore, A and B will always denote primitive �-constraints and F and G will alwaysdenote �-constraints.Theorem 3.2.2 [Homomorphism] Let A and B be two POS-algebras, be a homomor-phism A ! B and � be an A-assignment. Then:1. if � is a �A-sort term, then (A[[�]]�) = B[[�]]�2. if s is a �A-value term and A[[s]]� is de�ned, then (A[[s]]�) = B[[s]]�

32 Chapter 3. POS-Logic3. if A is a primitive �A-constraint, then A[[A]] � B[[A]]4. if is an isomorphism A ! B, then is a L(�)- and L(�)�-morphism A ! B.Proof. The �rst two claims can be shown by straightforward inductions over the termstructure of � and s. The third claim follows immediately from the �rst two claims. Thelast claim follows from the third claim and Theorem 2.2.2. 2Corollary 3.2.3 If A and B are isomorphic POS-algebras, then an �A-constraint is valid[satis�able] in A if and only if it is valid [satis�able] in B.The next proposition states some obvious properties of POS-Logic:Proposition 3.2.4 Let A be a POS-algebra. Then:1. (Reexivity) if � is a �A-sort term, then � v � is valid in A2. (Transitivity) if �, � and � are �A-sort terms, then the implication� v � & � v � ! � v �is valid in A3. (Monotonicity) if �(~�) and �(~�) are �A-sort terms, then the implication~� v ~� ! �(~�) v �(~�)is valid in A4. (Compatibility) if s, � and � are �A-terms, then the implications: �& � v � ! s: �is valid in A.3.3 The Substitution TheoremGeneral Assumption. In the context of POS-Logic we will always tacitly assume thatsubstitutions map sort terms to sort terms and value terms to value terms.A sort substitution is a substitution that maps every value variable to itself. A valuesubstitution is a substitution that maps every sort variable to itself.Substitutions are extended to quanti�er-free POS-constraints as one would expect (homo-morphically with respect to the syntactic structure).Let � be a POS-signature. A �-substitution is a substitution that maps �-sort terms to�-sort terms and �-value terms to �-value terms.

3.3. The Substitution Theorem 33Lemma 3.3.1 Let A be a POS-algebra, � be a �A-sort term, s be a �A-value term, and� be a �A-substitution. Furthermore, let � and �0 be A-assignments such that�0(x) =A[[�x]]� if x 2 Vs�0(�) =A[[��]]� if � 2 V�.Then A[[��]]� = A[[�]]�0 and A[[�s]]� = A[[s]]�0 .Proof. By straightforward inductions on � and s. 2Lemma 3.3.2 Let A be a POS-algebra, F be a quanti�er-free �A-constraint and � be a�A-substitution. Furthermore, let � and �0 be A-assignments such that�0(x) =A[[�x]]� if x 2 VF�0(�) =A[[��]]� if � 2 VF .Then � 2 A[[�F]] if and only if �0 2 A[[F]].Proof. We prove the claim by induction on F .Let F be the membership s: �. Then � 2 A[[�s: ��]] () A[[�s]]� :A A[[��]]� () A[[s]]�0 :AA[[�]]�0 () �0 2 A[[s: �]] using the preceding lemma.If F is an inclusion or an equation, the claim is proved analogously.If F is the empty conjunction, then the claim is trivial.If F is the conjunction G&G0, then � 2 A[[�F]] if and only if � 2 A[[�G]] and � 2 A[[�G0]],and �0 2 A[[F]] if and only if �0 2 A[[G]] and � 2 A[[G0]]. Hence the claim follows by theinduction hypothesis.If F is the negation :G, then � 2 A[[�F]] () � 2 A[[:�G]] () � =2 A[[�G]] () �0 =2A[[G]] () �0 2 A[[:G]] () �0 2 A[[F]] using the induction hypothesis. 2Theorem 3.3.3 [Substitution] Let A be a POS-algebra, F be a conjunction of primitive�A-constraints, G be a quanti�er-free �A-constraint and � be a �A-substitution such that�x = x for every value variable x not occurring in F . Then �F ! �G is valid in A if F ! Gis valid in A.Proof. Suppose F ! G is valid in A and � 2 A[[�F]]. We have to show that � 2 A[[�G]].Since F is a conjunction of primitive constraints and � 2 A[[�F]], A[[�x]]� is de�ned if xoccurs in F . Hence �0(�) = �A[[��]]� if � occurs in F ! G�(�) otherwiseand �0(x) = �A[[�x]]� if x occurs in F�(x) otherwisede�ne an A-assignment �0.Since � 2 A[[�F]], we know by the preceding lemma that �0 2 A[[F]]. Since F ! G is validin A, we have �0 2 A[[G]]. Hence we have � 2 A[[�G]] by the preceding lemma. 2

34 Chapter 3. POS-LogicCorollary 3.3.4 [Instantiation of Sort Variables] Let A be a POS-algebra, F be aquanti�er-free �A-constraint, and � be a �A-sort substitution. Then �F is valid in A if Fis valid in A.Proof. Follows from the preceding theorem using the implication ; ! F . 2Proposition 3.3.5 Let A be a POS-algebra and F be a conjunction of primitive �A-constraints. Then F is satis�able in A if some instance �F of F is satis�able in A.Proof. Suppose � 2 A[[�F]]. Then A[[�]]� is de�ned on every sort and value term in�F . Hence there exists an A-assignment �0 such that �0(x) = A[[�x]]� if x 2 VF and�0(�) = A[[��]]� if � 2 VF . Now we know by the preceding lemma that �0 2 A[[F]] andhence that F is satis�able in A. 23.4 Sort RewritingAn inclusion � w � can be regarded as a rewrite rule � ! � if � contains all variablesoccurring in � . In this section we will show that sort rewriting is sound, that is, if � !�R� and R is obtained from valid inclusions, then the inclusion � w � is valid. Sort rewritingwill be the cornerstone of the operational methods for POS-types to be developed in thisthesis.Theorem 3.4.1 [Sort Rewriting] Let A be a POS-algebra and I be a set of �A-inclusions. If for every inclusion � w � in I every variable occurring in � occurs in �,then R(I) = f� ! � j (� w �) 2 Igis a rewrite system that rewrites �A-sort terms to �A-sort terms. Furthermore, if everyinclusion in I is valid in A, then � w � is valid in A if �!�R(I) � and � is a �A-sort term.Proof. Let � be a �A-sort term and �!R(I) � . We show by induction on � that � w �is valid in A. This su�ces since the transitivity property of inclusions yields the rest.If � w � is an instance of an inclusion in I , then � w � is a �A-inclusion since � is a �A-sortterm and R(I) is a �A-rewrite system. Hence we know by the corollary to the SubstitutionTheorem that � w � is valid in A.If � w � is not an instance of an inclusion of I , then � = �(�1; : : : ; �n), � = �(�1; : : : ; �n),and, without loss of generality, �1!R(I) �1 and �i = �i for i 2 2::n. Now, using theinduction hypothesis for �1 w �1, we know that �i w �i is valid in A for i 2 1::n. Hence weknow by the monotonicity property of inclusions that �(�1; : : : ; �n) w �(�1; : : : ; �n) is validin A. 23.5 Quasi-Extensional AlgebrasA quasi-extensional POS-algebra A comes with a canonically associated extensional POS-algebra A� such that A[[F]]V = A�[[F]]V for every inclusion-free constraint F and every set

3.5. Quasi-Extensional Algebras 35V of value variables. It will turn out that the initial algebras of the POS-type speci�cationswe are interested in are quasi-extensional.Let A be a POS-algebra. Then the values of a sort A 2 SA in A are de�ned asVALA[A] := fa 2 VA j a :A Ag:Obviously, VALA[A] � VALA[B] if A �A B. Furthermore, VALA[A] = A if A is aextensional POS-algebra.A POS-algebra A is called quasi-extensional if every sort function �A of A satis�esVALA[~A] � VALA[~B]) VALA[�A(~A)] � VALA[�A(~B)]for every two sort tuples ~A and ~B of the appropriate length.Construction 3.5.1 [Extensional Algebra A�] Let A be a quasi-extensional algebra.Then the following quotient construction de�nes a extensional POS-algebra A�:1. �A� := �A2. SA� := fVALA[A] j A 2 SAg3. VA� := VA4. �A�(VALA[~A]) := VALA[�A(~A)]5. fA� := fA.Furthermore, �(a) := a if a 2 VA and �(A) := VALA[A] if A 2 SA de�nes a surjectivehomomorphism �:A! A�.If � is a POS-signature, the constraint language Lo(�) is obtained from L(�) by admittingonly memberships and equations as constraints.Theorem 3.5.2 If A is a quasi-extensional POS-algebra, then A� is a extensional POS-algebra and � is a surjective Lo(�A)�-morphism A ! A�.Proof. It is straightforward to verify that A� is in fact a extensional POS-algebra andthat � is a surjective homomorphism A ! A�.To show that � is an Lo(�A)�-morphism, it su�ces by Theorem 2.2.2 to show that �is an Lo(�A)-morphism. Since � is surjective, we have �ASSA = ASSA� . Since � is ahomomorphism, we have �A[[A]] � A�[[A]] for every primitive �A-constraint. It remains toshow that f� 2 ASSA j �� 2 A�[[A]]g � A[[A]] for every primitive �A-constraint that isn'tan inclusion.Let � 2 ASSA and A�[[s]]�� 2 A�[[�]]��. Then A�[[s]]�� = A[[s]]� since � doesn't change valuesand A and A� have the same values and value functions. Since � is a homomorphism, weknow by the Homomorphism Theorem that A�[[�]]�� = �A[[�]]� = VALA[A[[�]]�]. HenceA[[s]]� :A A[[�]]� since A[[s]]� 2 VALA[A[[�]]�].For equations the claim is obvious since � doesn't change values and A and A� have thesame values and the same value functions. 2

36 Chapter 3. POS-LogicCorollary 3.5.3 Let A be a quasi-extensional POS-algebra and F be an inclusion-free�A-constraint. Then:1. A�[[F]] = �A[[F]] and A[[F]] = f� 2 ASSA j �� 2 A�[[F]]g2. if V is a set of value variables, then A[[F]]V = A�[[F]]V3. F is valid [satis�able] in A if and only if F is valid [satis�able] in A�4. if � v � is a �A-inclusion and F ! � v � is valid in A, then F ! � v � is valid inA�.Proof. The �rst, second and third claim are immediate consequences of the fact that �is a surjective Lo(�A)�-morphism.To show the fourth claim, suppose F ! � v � is valid in A and let � 2 A�[[F]]. We have toshow that � 2 A�[[� v �]]. Since � is an Lo(�A)�-morphism and F ! � v � is valid in A,there exists a � 2 A[[� v �]] such that �� = �. Since � is a homomorphism, we have by theHomomorphism Theorem that � = �� 2 A�[[� v �]]. 23.6 Simple Speci�cationsWe are now ready to de�ne a class of speci�cations, called simple speci�cations, that dohave initial models. For simple speci�cations we de�ne a notion of well-typedness suchthat the the set of all well-typed ground terms yields an initial model. Well-typedness isestablished with deduction rules that are sound and complete. Since simple speci�cationsdon't allow for equational axioms, there is only one natural notion of well-typedness: avalue term is well-typed if and only if it denotes in every model of the speci�cation.Simple speci�cations are still to permissive to enjoy a well-behaved operational semantics.Furthermore, their initial models are in general not quasi-extensional. The subclass ofsimple speci�cations that yields operationally well-behaved POS-types will be de�ned inChapter 5. In Chapter 4 we will study rewrite systems obtained from inclusional axioms,whose properties are crucial for the operational semantics of POS-types.A rank for a value function symbol f is an implicationx1: �1 & : : : & xn: �n ! f(x1; : : : ; xn): �such that n � 0 and x1; : : : ; xn are pairwise distinct value variables. Since the validity ofa rank in a POS-algebra does not depend on the particular value variables employed, theabbreviated notation f : �1 � � ��n ! �;which can be abbreviated even further to f : ~� ! �, can be used. The tuple ~� is called thedomain of the rank and � is called the codomain of the rank. If the rank f : ~� ! � isused as an axiom, it requires that f is at least de�ned on ~� , and that f maps argumentsin ~� to elements of �.A simple speci�cation is a set T of inclusions and ranks such that

3.6. Simple Speci�cations 371. T contains a least one value constant and at least one sort constant2. the inclusions of T yield a rewrite system R(T) if every inclusion � w � is taken as arewrite rule � ! �3. the rewrite relation \� !�R(T) �" is a partial order.If T is a simple speci�cation, we write � �T � or � �T � if � !�R(T) � , and � �T or �T � if � !�R(T) and � and agree on all value variables. In anticipation of acompleteness result to be shown shortly, we call \� v �" the inclusion order of T . Theset of all sort and value functions occurring in T is called the signature of T and will bedenoted by �T .General Assumption. In this section we assume that T is a simple speci�cation andthat all terms and substitutions employ only function symbols in �T . Furthermore, wetacitly assume that all constraints and interpretations are taken from L(�T)�.A pre�x is a conjunction x1: �1& : : :&xn: �nsuch that n � 0 and x1; : : : ; xn are pairwise distinct value variables. The letters P and Qwill always denote pre�xes.Pre�xes will be used to qualify variables with sorts and are a central notion in our formalism.Many-Sorted and Order-Sorted Logic can do without pre�xes since they stipulate that everyvariable has a �xed sort. This would be possible for POS-Logic as well, but it turns out thatthis notational trick has some rather unpleasant consequences. First, it is responsible forthe annoying empty sort problem plaguing Many-Sorted and Order-Sorted Logic. Second,built-in sorts for variables cause great notational inconvenience with order-sorted uni�cation[MGS89, SNGM89, Wal88], where they require the introduction of auxiliary variables inorder to change the sort quali�cation of a variable.Let P = (x1: �1& : : :&xn: �n) be a pre�x. Then DP := fx1; : : : ; xng is called the domainof P . Moreover, P de�nes a mapping Pxi := �i from DP to the set of sort terms. If V isa set of value variables, then the restriction of P to V is de�ned asP jV := fx:Px j x 2 DP \ V g:The inclusion order is extended to pre�xes as follows:P �T Q :() DP = DQ ^ 8 x 2 DP : Px �T Qx:Note that \P �T Q" is a partial order on the set of all pre�xes.Let P be a pre�x. The membership relation \P `T s: �" of T (read: \s is in � underP") is de�ned as follows:1. P `T x: � if and only if Px �T �2. P `T f(~s): � if and only if there exists an instance f : ~� ! � of a rank in T such thatP `T ~s : ~� and � �T �.

38 Chapter 3. POS-LogicWe say that a value term s is well-typed under a pre�x P if there exists a sort term �such that P `T s: �. We write `T s: � if ; `T s: �.A membership system is a possibly empty conjunction of memberships. If M is amembership system, we write P `T M if P `T s: � for every membership s: � 2 M . Notethat every pre�x is a membership system.Proposition 3.6.1 The membership relation \P `T s: �" has the following properties:1. (Freeness) if P � Q and Vs � DP , then P `T s: � if and only if Q `T s: �2. (Compatibility) if P `T s: � and � �T � , then P `T s: �3. (Substitutability) if P `T s: � and Q `T �P , then Q `T �s: ��.Proof. The �rst and second claim are obvious from the de�nition of \P `T s: �". Toshow the third claim, suppose P `T s: � and Q `T �P . We show by induction on s thatQ `T �s: ��.Let s = x. Then Px �T � and hence �Px �T ��. Since Q `T �P , we know in particularthat Q `T �x: �Px. Hence Q `T �x: �� by the compatibility of \P `T s: �".Let s = f(~s). Then there exists an instance f : ~� ! � of a rank in T such that � �T � andP `T ~s : ~� . By the induction hypothesis we know that Q `T �~s : �~� . Hence Q `T �f(~s): ��since f : �~� ! �� is an instance of a rank of T and �� �T ��. 2Proposition 3.6.2 [Soundness] If P `T s: �, then the implication P ! s: � is valid inT . Furthermore, if � �T � , then the inclusion � v � is valid in T .Proof. The soundness of sort rewriting has already been proven in general. To show thesoundness of \P `T s: �", suppose P `T s: � and A is a model of T . We show by inductionon s that the implication P ! s: � is valid in A.If s = x, then Px �T � and hence Px v � is valid in A. Since A[[P]] � A[[x:Px]], we knowthat P ! x: � is valid in A.If s = f(~s), then there exists an instance f : ~� ! � of a rank in T such that � �T � andP `T ~s : ~� . By the Substitution Theorem we know that ~s : ~� ! f(~s): � is valid in A, and bythe induction hypothesis we know that P ! ~s : ~� is valid in A. Hence we know by ModusPonens that P ! f(~s): � is valid in A. Since � �T �, the inclusion � v � and hence theimplication P ! f(~s): � is valid in A. 2Construction 3.6.3 [Term Algebra I(T; P)] If P is a pre�x, then the following de�nesa POS-algebra I(T; P):1. �I(T;P) := �T2. SI(T;P) is the set of all �T -sort terms containing only sort variables that occur in P3. � �I(T;P) � if and only if � �T � and � 2 SI(T;P)

3.6. Simple Speci�cations 394. VI(T;P) is the set of all value terms that are well-typed in T under P5. s :I(T;P) � if and only if P `T s: � and � 2 SI(T;P)6. �I(T;P)(~�) := �(~�)7. fI(T;P)(~s) := f(~s) if and only if f(~s) is well-typed in T under P .Proposition 3.6.4 If P is a pre�x, then I(T; P) is a POS-algebra.Proof. Since T contains a value constant c, T contains a rank c: �. Since T contains asort constant there exists a ground instance c: � of c: �. Hence P `T c: � and thus c is avalue of I(T; P). If P `T s: � and � contains sort variables that don't occur in P , then weknow by the Substitutivity of \P `T s: �" that these \superuous" sort variables can bereplaced by a sort constant of T . Furthermore, we have required in the de�nition of simplespeci�cations that \� �T �" is a partial order. With that it is straightforward to verifythat I(T; P) is a POS-algebra. 2Proposition 3.6.5 For every I(T; P)-assignment � there exists a unique substitution ��that extends I(T; P)[[�]]�. Furthermore, I(T; P)[[s]]� is de�ned if and only if ��s is well-typedunder P .Proof. The claims follow by straightforward inductions on s. 2Proposition 3.6.6 Let � and s be ground terms. Then I(T; P)[[�]] = � and, if I(T; P)[[s]]is de�ned, I(T; P)[[s]] = s.Proof. Let � be an I(T; P)-assignment. The the claim follows from the preceding propo-sition since I(T; P)[[�]] = I(T; P)[[�]]�, I(T; P)[[s]] = I(T; P)[[s]]�, � = ��� and s = ��s.2Proposition 3.6.7 If �Q is ground and valid in I(T; P), then there exists an assignment� 2 I(T; P)[[Q]] that agrees with � on every variable occurring in Q.Proof. Let �Q be ground and valid in I(T; P). Then �x 2 VI(T;P) if x occurs in Q and�� 2 SI(T;P) if � occurs in Q. Hence there exists an assignment � 2 I(T; P)[[Q]] that agreeswith � on every variable occurring in Q. 2Theorem 3.6.8 [Term Model] For every pre�x P the term algebra I(T; P) is a modelof T .Proof. We have to show to show that I(T; P) satis�es every inclusion and every rank ofT .Let � v � be an inclusional axiom of T and let � be an I(T; P)-assignment. Then ��� �T ���and hence � 2 I(T; P)[[� v �]].Let ~x : ~� ! f(~x): � be a rank of T and let � 2 I(T; P)[[~x : ~�]]. By the construction of I(T; P)we know that P `T ��~x : ��~� . Since f : ��~� ! ��� is an instance of a rank of T , we thushave P `T f(��~x): ��� . Hence � 2 I(T; P)[[f(~x): �]]. 2

40 Chapter 3. POS-LogicLemma 3.6.9 Let A be a POS-algebra, be a homomorphism I(T; P)! A, and � be anA-assignment that agrees with on every variable occurring in P . Then (�) = A[[�]]� ifV� � VP and (s) = A[[s]]� if P `T s: �.Proof. We prove the second claim and omit the proof of the �rst claim, which is analogousto the proof of the second claim.Let P `T s: �. Then s is a value of I(T; P) and hence is de�ned on s. Furthermore, everyvariable occurring in s occurs in P . We prove by induction on s that (s) = A[[s]]�.If s = x, then (x) = �(x) = A[[x]]�.If s = f(~s), then (f(~s)) = (fI(T;P)(~s)) = fA((~s)). Since P `T f(~s): �, we know by thede�nition of `T that there exists a tuple ~� such that P `T ~s : ~� . Hence we know by theinduction hypothesis that (~s) = A[[~s]]�. Thus (f(~s)) = fA(A[[~s]]�) = A[[f(~s)]]�. 2Theorem 3.6.10 [Freeness] Let A be a model of T and P be a pre�x. Then:1. if is a homomorphism I(T; P) ! A, then there exists an A-assignment � 2 A[[P]]that agrees with on every variable occurring in P2. if � 2 A[[P]], then the restriction of A[[�]]� to DI(T;P) is a homomorphism I(T; P)! Aand there exists no other homomorphism I(T; P) ! A that agrees with � on everyvariable occurring in P .Proof. 1. Let be a homomorphism I(T; P)! A, a 2 VA and A 2 SA. Then�(�) = � (�) if � occurs in Pa otherwiseand �(x) = � (x) if x occurs in PA otherwisede�ne an A-assignment �.Let x: � be a membership in P . Since A[[x]]� = �(x) = (x) and A[[�]]� = (�) by thepreceding lemma, it su�ces to show that (x) :A (�). Since P `T x: �, we know x :I(T;P) �.Thus we have (x) :A (�) since is a homomorphism I(T; P)! A.2. Let � 2 A[[P]]. We show that the restriction of A[[�]]� to DI(T;P) is a homomorphismI(T; P)! A.Suppose � �I(T;P) � . Then � �T � . Hence we know by the Soundness Proposition that� v � is valid in A. Thus A[[�]]� �A A[[�]]�.Suppose s :I(T;P) �. Then P `T s: �. Hence we know by the Soundness Proposition thatP ! s: � is valid in A. Since � 2 A[[P]], we have A[[s]]� :A A[[�]]�.It is straightforward to verify that A[[�I(T;P)]]� � �A and A[[fI(T;P)]]� � fA for the sort andvalue function symbols occurring in T , respectively.The uniqueness follows from the preceding lemma. 2Theorem 3.6.11 [Initiality] I(T) := I(T; ;) is an initial model of T .

3.6. Simple Speci�cations 41Proof. We have shown that for every pre�x P the term algebra I(T; P) is a model of T .Hence I(T) is a model of T .Let A be a model of T . We have to show that there exists a unique homomorphismI(T)! A. Since there exists an assignment � 2 A[[;]], we know by the Freeness Theoremthat the restriction of A[[�]]� to DI(T) is a homomorphism I(T)! A and that there existsno other homomorphism I(T)! A. 2The following example shows that, in general, the initial models of simple speci�cations arenot quasi-extensional.Example 3.6.12 Let T be the simple speci�cationb: F(B); A v B;where b is a value constant, A and B are sort constants, and F is a unary sort func-tion symbol. Then I(T) is not quasi-extensional since VALI(T)[A] = VALI(T)[B] =VALI(T)[F(A)] = ; and VALI(T)[F(B)] = fbg. 2The next example shows that even in the absence of proper sort functions the catego-ry of extensional models of a simple speci�cation can fail to have initial objects. Thisstriking di�erence to Order-Sorted Logic [GM87a, SNGM89] stems from the fact thatPOS-homomorphisms are stronger than order-sorted homomorphisms, that is, every POS-homomorphism is an order-sorted homomorphism, but not vice versa.Example 3.6.13 Let T be the simple speci�cationa:A; A v B;where a is a value constant and A and B are sort constants. ThenaA = a; AA = fag; BA = fagand aB = a; AB = fag; BB = fa; bgde�ne two extensional models of T . The initial model I(T) of T is quasi-extensional sinceT has just sort constants but no proper sort functions. It is easy to verify that A is theextensional algebra associated with I(T). Thus one could hope that A is an initial elementin the category of the extensional models of T . However, this is not the case since thereexists no POS-homomorphism A ! B. On the other hand, there exists an order-sortedhomomorphism A ! B and A is in fact an initial order-sorted model of T . 2Theorem 3.6.14 [Soundness and Completeness] Let P be a pre�x that contains allvariables occurring in the value terms s and t. Then:1. � v � is valid in T () � �T �

42 Chapter 3. POS-Logic2. P ! s: � is valid in T () P `T s: �3. P ! s := t is valid in T () s = t and s is well-typed in T under P .Proof. The soundness direction has been proven for the �rst and the second claim andis obvious for the third claim. Thus only the completeness direction remains to be shown.Let Q be a pre�x such that P � Q and Q contains all variables occurring in � and � .Furthermore, let � be an I(T;Q)-assignment such that � maps every variable occurring inQ to itself. Then � 2 I(T;Q)[[Q]] � I(T;Q)[[P]].1. Suppose � v � is valid in T . Then � v � is valid in I(T;Q). Hence � =I(T;Q)[[�]]� �I(T;Q) I(T;Q)[[�]]� = � and thus � �T � .2. Suppose P ! s: � is valid in T . Then P ! s: � is valid in I(T;Q). Hence s =I(T;Q)[[s]]� :I(T;Q) I(T;Q)[[�]]� = � since � 2 I(T;Q)[[P]]. Thus Q `T s: � and P `T s: � byProposition 3.6.1.3. Suppose P ! s := t is valid in T . Then P ! s := t is valid in I(T;Q). Hences = I(T;Q)[[s]]� = I(T;Q)[[t]]� = t since � 2 I(T;Q)[[P]]. Furthermore, there exists a sortterm � such that Q `T s: �. Thus P `T s: � by the freeness of the membership relation. 2Corollary 3.6.15 Let P be a pre�x containing all variables that occur in s. Then s is notwell-typed in T under P if and only if there exist a model A of T and an A-assignment� 2 A[[P]] such that A[[s]]� is not de�ned.Proof. From the Soundness and Completeness Theorem we know that P ! s := s is validin T if and only if s is well-typed in T under P . The claim is obtained by negating bothsides of this equivalence. 2Theorem 3.6.16 [Structural Induction] Validity in the initial model I(T) of T can becharacterized as follows:1. � v � is valid in I(T) if and only if �� �T �� for every ground instance �� v �� of� v �2. if P contains every variable occurring in s: �, then P ! s: � is valid in I(T) if andonly if ; `T �s: �� for every substitution � such that ; `T �P .Proof. 1. Suppose � v � is valid in I(T) and �� v �� is a ground instance of � v � . Thenwe know by the Substitution Theorem that �� v �� is valid in I(T). Hence �� �I(T) ��and thus �� �T �� .Suppose �� �T �� for every ground instance �� v �� of � v � . Let � be an I(T)-assignment. Then ��� v ��� is a ground instance of � v � and hence ��� �T ��� . Thus� 2 I(T)[[� v �]] by Proposition 3.6.5.2. Let P contain every variable occurring in s: �, P ! s: � be valid in I(T), and let ; `T�P . Then we know by the Soundness Proposition that �P is valid in I(T). Hence thereexists an assignment � 2 I(T)[[P]] that agrees with � on every variable in P . Since P ! s: �

3.6. Simple Speci�cations 43is valid in I(T), we have � 2 I(T)[[s: �]]. Hence ; `T ��s: ��� and thus ; `T �s: �� since �and �� agree on every variable occurring in s: �.Let ; `T �s: �� for every substitution � such that ; `T �P , and let � 2 I(T)[[P]]. Then; `T ��P and hence ; `T ��s: ���. Thus � 2 I(T)[[s: �]] by Proposition 3.6.5. 2

44 Chapter 3. POS-Logic

Chapter 4Sort Rewriting Systems4.1 Shallow Rewriting Systems4.2 Upper Matchers and Suprema4.3 Lower Matchers and In�ma4.4 ModesIn the last chapter we have seen that the sort inclusion order of a simple speci�cation isjust the rewriting relation of the rewrite system given by the inclusional axioms of thespeci�cation. This chapter is devoted to the study of rewrite systems generating well-behaved inclusion orders.From the study of order-sorted uni�cation [MGS89, SNGM89, Wal88] we know that thereare two necessary conditions for the existence of principal uni�ers, which is crucial for ane�cient operational semantics:1. regularity, that is, every value term must have a least sort2. lower completeness, that is, every two sorts that have a common subsort must havea greatest common subsort.If � u � is the greatest common subsort of � and � , then regularity is the necessary andsu�cient condition to render a constraintx: �& x: �equivalent to x: (� u �)45

46 Chapter 4. Sort Rewriting Systemsin the initial algebra. The reduction of x: �& x: � to x: (� u �) is the basic sort relatedoperation of an order-sorted uni�cation procedure.Consider the following de�nition of lists:nil: list(�); cons:�� list(�)! list(�):Obviously, the empty list nil has no least sort and hence the speci�cation is not regular.This problem can be solved as in Figure 1.1 by introducing a special sort for the empty list.However, a nicer way to get rid of this di�culty is to always have a unique empty sort ?,which can be introduced by the inclusional axiom? v �and will in fact be empty in the initial model if ? occurs in no other axiom. With theaxiom ? v � the least sort of nil is list(?).Consider the polymorphic rank f :�� �! �:Then a well-typed term f(s; t) will only have a least sort if the least sorts of s and t have aleast common supersort. Hence, in order to get regularity, we also need upper completeness,that is, every two sorts that have a common supersort must have a least common supersort.As in the order-sorted case, upper completeness will come for free, that is, the necessaryconditions for lower completeness are already su�cient for upper completeness.This shows that inclusion orders providing for a practical operational semantics must turnthe set of sort terms into a quasi-lattice with a least element. We will see that the demandfor greatest common subsorts necessarily requires that the inclusion order is well-founded,that is, that the generating rewrite system is terminating. Since we are aiming at a pro-gramming language, we can hence only admit relatively weak inclusional axioms for whichit is decidable whether the rewrite system they de�ne is terminating. Furthermore, to bepractical, it is necessary that greatest common subsorts and least common supersorts arecomputable with reasonable resources.By what I've said it is clear that the theory of sort rewriting systems is of central importancefor the development of an operational semantics for relational programs computing overPOS-types. Fortunately, there is a nice theory and there are good algorithms.4.1 Shallow Rewriting SystemsFor convenience we will use in this chapter our notation for value terms although in therest of this thesis, of course, sort rewriting systems will rewrite sort terms to sort terms.Let R be a rewrite system. Then we write s)R t if s ! t is an instance of a rule of R.Furthermore, we write f)R g if there exist ~s and ~t such that f(~s)! g(~t) is an instanceof a rule of R.In the following we assume that ? is a constant symbol.A shallow rewriting system is a �nite rewrite system R such that

4.1. Shallow Rewriting Systems 471. R contains a rule x ! ?, no other rule of R contains ?, and every other rule of Rhas the form f(~x)! g(~s), where ~x is a tuple of pairwise distinct variables2. \f)R g" is terminating3. if u is the left hand side of a rule of R, thenu)�R g(~s) ^ u)�R g(~t)) g(~s) = g(~t):Proposition 4.1.1 Every shallow rewriting system R allows for in�nite ascending chains,for instance, � � � !R f(f(f(?))) !R f(f(?)) !R f(?) !R ?:Example 4.1.2 Let R be the shallow rewriting systemx! ?; list(x)! pair(x; list(x)):Then R allows for in�nite descending chains, for instance,list(a) !R pair(a; list(a)) !R pair(a; pair(a; list(a))) !R � � � : 2Proposition 4.1.3 It is decidable whether a �nite rewrite system is shallow. Furthermore,if R is a shallow rewriting system, then \s)R t" is terminating and it is decidable whether\s !R t" is terminating.Proof. Let R be a �nite rewrite system. Then requirement (1) of the de�nition of shallowrewriting systems is certainly decidable. Now suppose R satis�es requirement (1). Thenthere are only �nitely many pairs such that f)R g and g 6= ?, and these pairs can beobtained directly from the rules of R. Now \f)R g" is terminating if and only if the �nitesubrelation consisting of these pairs is terminating. Hence it is decidable whether \f)Rg" is terminating. Now let R satisfy requirements (1) and (2). Then the relation \s)R t"is terminating and hence requirement (3) is decidable since R has only �nitely many rules.Now suppose R is a shallow rewriting system. Then a rule f(~x)! t 2 R applies to everyterm f(~s) (this is the most important property of shallow rewriting systems). Hence R isterminating if and only if the �nite relationf ! g :() 9 f(~x)! t 2 R: g occurs in tis terminating. Thus the termination of R is decidable. 2The following two propositions give you the main properties of shallow rewriting systems.There are many, and we will use them all in the rest of this thesis without explicitly referringtheir stating propositions.Proposition 4.1.4 Let R be a shallow rewriting system. Then:

48 Chapter 4. Sort Rewriting Systems1. \f)�R g" is a decidable well-founded order on the set of all function symbols whoseleast element is ?2. \s)�R t" is a decidable well-founded order on the set of all terms whose least elementis ?3. if s)�R t, then �s)�R �t4. if s)�R t and t 6= ?, then either s is a variable and s = t or neither s nor t is avariable5. if �f(~s))�R t, then there exists a unique term u such that f(~s))�R u and t = �u6. if s)�R f(~s) and s)�R f(~t), then f(~s) = f(~t)7. if f(~s) is a term and f)�R g, then there exists a unique term g(~t) such that f(~s))�Rg(~t)8. if f(~s))�R h(~u) and f)�R g)�R h, then there exists a unique term g(~t) such thatf(~s))�R g(~t))�R h(~u).Proof. 1. Follows from the fact that \f)�R g" is reexive and transitive and \f)R g"is terminating.2. Follows from the fact that \s)�R t" is reexive and transitive and \s)R t" is termi-nating.3. and 4. Obvious.5. Let �f(~s))�R t. We show by induction on f(~s) with respect to the well-founded order\s)�R s0" that there exists a term u such that f(~s))�R u and t = �u. If �f(~s) = t, thenthe claim is trivial. Otherwise, we have �f(~s))R g(~u))�R t. Hence we have f(~s))Rg(~v) and �g(~v) = g(~u))�R t. Thus we know by the induction hypothesis that there existsa term u such that g(~v))�R u and t = �u. Hence we have the claim since f(~s))Rg(~v))�R u.To show that u is unique, suppose f(~s))�R u, f(~s))�R v and �u = �v = t.If f(~s) = u, then v = f(�~s). Since v is no variable, the top symbol of v must be f . Hencev = f(~s) = u since otherwise f)R f , which is impossible since \g)R h" is terminating.If f(~s) 6= u, then R has a rule whose left hand side is f(~x). Since f~x=~sgf(~s))�R u andf~x=~sgf(~s))�R v we know by the already proven existence claim that there exist u0 andv0 such that f(~x))�R u0, f(~x))�R v0, u = f~x=~sgu0 and v = f~x=~sgv0. Since neithert, u, v, u0 nor v0 is a variable, all �ve terms must have the same top symbol. Hence weknow by requirement (3) of the de�nition of shallow rewriting systems that u0 = v0. Thusu = f~x=~sgu0 = f~x=~sgv0 = v.6. Let s)�R f(~s) and s)�R f(~t). If s is a variable, then f = ? and hence f(~s) = f(~t). Ifs is no variable, then the claim follows from statement (5) using � = ;.7. Let f(~s) be a term and f)�R g. Then one obtains by a straightforward induction on fwith respect to the well-founded order \h)�R h0" that there exists a term g(~t) such thatf(~s))�R g(~t). The uniqueness follows by statement (6).

4.1. Shallow Rewriting Systems 498. Follows immediately from statement (7). 2Lemma 4.1.5 Let s !�R f(~t). Then there exists a term f(~s) such that s)�R f(~s) and~s !�R ~t .Proof. We prove by induction on the length of a derivation s !�R f(~t) that there existsa term f(~s) such that s)�R f(~s) and ~s !�R ~t .If f = ? or s = f(~t), then the claim is trivial.Let s !�R g(~u) !R f(~t). Then we know by the induction hypothesis that there exists aterm g(~v) such that s)�R g(~v) and ~v !�R ~u . If g = f , then we have the claim. Otherwise,we know that there exists a rule g(~x) ! f(~s) 2 R such that ~t = f~x=~ug~s . This yields theclaim since s)�R g(~v))�R f~x=~vgf(~s) and f~x=~vg~s !�R f~x=~ug~s = ~t . 2Proposition 4.1.6 Let R be a shallow rewriting system. Then:1. (Uniqueness) if s !�R f(~t), then there exists a unique term f(~s) such that s)�Rf(~s)2. if s !�R f(~t) and s)�R f(~s), then ~s !�R ~t3. (Orthogonality) if s !�R t, s)�R f(~u) and t)�R f(~v), then ~u !�R ~v4. s !�R f(~t) () 9 ~s: s)�R f(~s) ^ ~s !�R ~t5. s !�R x () s = x6. s !�R t is a decidable partial order on the set of all terms having ? as its least element7. � !�R is a partial order on the set of all substitutions having the substitution thatmaps every variable to ? as its least element.Proof. 1. Let s !�R f(~t). Then we know by the preceding lemma that there exists aterm f(~s) such that s)�R f(~s). The uniqueness of f(~s) follows by statement (6) of thepreceding proposition.2. Follows by the preceding lemma and statement (1).3. Let s !�R t, s)�R f(~u) and t)�R f(~v). Then s !�R f(~v) and s)�R f(~u). Hence weknow by statement (2) that ~u !�R ~v .4. Follows from statements (1) and (2).5. Obvious.6. The decidability of s !�R t follows from statements (4) and (5). Furthermore, its obviousthat ? is the least element.Since \s !�R t" is the reexive and transitive closure of \s !R t", we know that \s !�Rt" is a quasi-order. To show that \s !�R t" is antisymmetric, suppose s !�R t !�R s. Weshow by induction on s that s = t. If s is a variable, then we know that s = t. If s = f(~s),then there exists ~t such that t = f(~t) since \f)�R g" is a partial order. Hence ~s !�R~t !�R ~s and thus ~s = ~t by the induction hypothesis.

50 Chapter 4. Sort Rewriting Systems7. Follows immediately from statement (6). 2Let (M;�) be a partially ordered set. Then c is called the in�mum of a and b if c � a; band d � c for every d � a; b. Furthermore, c is called the supremum of a and b if a; b � cand c � d for every a; b � d. It is easy to verify that in�ma and suprema are uniqueif they exist. Furthermore, the partial binary functions yielding in�ma and suprema areassociative and commutative.Proposition 4.1.7 If R is a terminating shallow rewriting system such that the right handside of every rule is linear, then there exists a natural number k such that kjsj � jtj if s !�Rt.Proof. Let R be a terminating shallow rewriting system. Then there exists for every lefthand side f(~x) of a rule of R a natural number kf such that jsj � kf (recall, R has only�nitely many rules). Then the greatest kf is a constant as required. 2Recall that the purpose of a shallow rewriting system R is to de�ne a partial orders �R t :() t !�R son the set of all terms. We denote the in�mum [supremum] of s and t with respect to �Rwith suR t [stR t] if it exists. The notations f uRg, ftRg, �uR , and �tR are de�nedanalogously.A partially ordered set (M;�) is a lower quasi-lattice if a u b exists whenever a and bhave a common lower bound. A partially ordered set (M;�) is an upper quasi-lattice ifat b exists whenever a and b have a common upper bound. A partially ordered set (M;�)is a quasi-lattice if it is an upper and a lower quasi-lattice.Proposition 4.1.8 Let (M;�) be a �nite partially ordered set. Then (M;�) is a lowerquasi-lattice if and only if it is an upper quasi-lattice.Proof. Let (M;�) be a lower quasi-lattice in which a and b have a common upper bound.We have to show that the supremum at b exists. Since fc 2M j a; b � cg is nonempty and�nite and (M;�) is a lower quasi-lattice, we have a t b = ufc 2 M j a; b � cg. The otherdirection is shown analogously. 2We call a shallow rewriting system R complete if the set of function symbols is a quasi-lattice under the partial order \f)�R g".In Section 4.2 we will show that the partial order de�ned by a complete shallow rewritingsystem on the set of all terms is a upper quasi-lattice. The following example shows thatcompleteness does not su�ce to obtain a lower quasi-lattice.Example 4.1.9 Let R be the complete and nonterminating shallow rewriting system con-sisting of the rules x! ?; a! f(a); b! f(b):

4.2. Upper Matchers and Suprema 51Then auR b does not exist sincea; b !�R � � � !�R f(f(f(?))) !�R f(f(?)) !�R f(?): 2In Section 4.3 we will show that a terminating and complete shallow rewriting systemde�nes a quasi-lattice on the set of all terms.We call a terminating and complete shallow rewriting system a sort rewriting system.The POS-type speci�cations to be de�ned in the next chapter will only admit inclusionalaxioms that form a sort rewriting system.In Section 4.2 we will show that one can decide whether an inclusion system ~s w ~t has anupper matcher, that is, whether there exists a substitution � such that �~s !�R ~t , providedR is a complete shallow rewriting system. In Section 4.3 we will show that one can decidewhether an inclusion system ~s w ~t has a lower matcher, that is, whether there exists asubstitution � such that ~s !�R �~t , provided R is a sort rewriting system.The natural generalization of these problems is the problem to decide whether an inclusionsystem ~s w ~t is satis�able, that is, whether there exists a substitution � such that �~s !�R�~t . I don't know whether this problem is decidable for sort rewriting systems. Fortunately,there exist good type checking and good constraint solving algorithms that require onlythe computation of lower and upper matchers but not the computation of satisfying sub-stitutions. However, a perfect type inference algorithm would require the computation ofsatisfying substitutions. Fortunately, the imperfect type inference algorithm given in Chap-ter 7, which relies only on the computation of matchers, does work quite well for practicalapplications.4.2 Upper Matchers and SupremaIn this section we assume that R is a complete shallow rewriting system.An inclusion system is a possibly empty conjunction of inclusions. As usual we identifyan inclusion system with the multiset of its inclusions. If convenient, we will use the vectornotation ~s v ~t for inclusion systems. Furthermore, the letter I will always denote aninclusion system.An upper matcher of an inclusion system ~s w ~t (in R) is a substitution � such that �~s !�R~t . We use UMR[I] to denote the set of all upper matchers of the inclusion system I in R.Note that the upper matchers of an inclusion system are partially ordered by \� !�R ".We call an inclusion system upwards solved if it has the form ~x w ~t , where ~x is a possiblyempty tuple of pairwise distinct variables and no component of the tuple ~t is ?.Proposition 4.2.1 Let I = (x1 w t1 & : : : & xn w tn) be an upwards solved inclusionsystem. Then �x := � ti if x = xi for some i 2 1::n? otherwiseis the least upper matcher of I in every shallow rewriting system R.

52 Chapter 4. Sort Rewriting SystemsWe will show that the following reduction rules for inclusion systems constitute an algorithmthat, given an inclusion system I , decides whether I has an upper matcher and, if I has anupper matcher, computes the least upper matcher of I .1. x w y& x w y & I u�!R x w y& I2. s w ?& I u�!R I3. f(~s) w g(~t) & I u�!R ~u w ~t & I if f(~s))�R g(~u)4. x w s& x w t& I u�!R x w f(u1; : : : ; un) & I5. if neither s nor t is a variable or ?,f = topsym[s]tRtopsym[t],x1; : : : ; xn are pairwise distinct variables,f(x1; : : : ; xn) w s& f(x1; : : : ; xn) w t u�!�R I 0 and I 0 is upwards solved,ui = � u if (xi w u) 2 I 0? otherwise for i 2 1::n.Example 4.2.2 Let R be the shallow rewriting system consisting of the rulesx! ?; f(x)! a; f(x)! b:Then x w a& x w b u�!R x w f(?)by rule (4) since f(y) w a& f(y) w b u�!R f(y) w b u�!R ;by applying rule (3) twice. Note that f(?) is the supremum of a and b.Let ~s w ~t be an inclusion system. Then the lower variables of I are LV [~s w ~t] := V~t andthe upper variables of I are UV [~s w ~t] := V~s . 2Proposition 4.2.3 If I u�!�R I 0, then LV [I 0] = LV [I] and UV [I 0] � UV [I].Proposition 4.2.4 Let V be a set of variables and � be a signature such that every ruleof R consists of �-terms. Then I 0 is a (�; V)-inclusion system if I is a (�; V)-inclusionsystem and I u�!�R I 0.The U-complexity of inclusion systems is de�ned as follows:1. jxj := 1 and jf(s1; : : : ; sn)j := 8><>: 0 if f = ?1 + nXi=1 jsij otherwise2. js w tj := � 3jtj if t = ? or s is a variable3jtj � 2 otherwise3. jI j := (X(swt)2I js w tj; n), where n is the number of inclusions in I .

4.2. Upper Matchers and Suprema 53The set of all U-complexities is a well-founded partially ordered set under the lexicographicorder induced by the canonical order on the natural numbers.Lemma 4.2.5 [Termination] If I u�!�R I 0, then jI j � jI 0j, and if I u�!R I 0, then jI j > jI 0j.Proof. For the �rst three rules the second claim is easy to verify. The fourth rule isrecursive and thus forces us to �rst show the �rst claim by induction on the U-complexityof the reduced inclusion system. Since jx w sj + jx w tj = 3jsj + 3jtj > 3jsj + 3jtj � 4 =jf(x1; : : : ; xn) w sj + jf(x1; : : : ; xn) w tj, we know by the induction hypothesis that the�rst component jI 0j1 of the U-complexity of I 0 satis�es jI 0j1 � 3jsj + 3jtj � 4. Since I 0is upwards solved and j?j = 0, we have 3Pni=1 juij = jI 0j1 � 3jsj + 3jtj � 4. Hencejx w f(u1; : : : ; un)j = 3(1 +Pni=1 juij) � 3jsj+ 3jtj � 1 < jx w sj+ jx w tj: 2Lemma 4.2.6 [Invariance] If I u�!�R I 0, then UMR[I] = UMR[I 0].Proof. Since rule (4) is recursive, we prove the claim by induction on the U-complexityof I . If jI j = (0; 0) or I = I 0, then the claim is trivial. Otherwise, it su�ces to show thatthe �rst reduction step leaves the upper matchers invariant. Rules (1) and (2) obviouslyleave the upper matchers invariant.1. To show that rule (3) leaves the upper matchers invariant, suppose thatt w f(s1; : : : ; sn) & I u�!R u1 w s1 & : : : & un w sn & Iand t)�R f(u1; : : : ; un).Let � be an upper matcher of the left-hand side. Then �t !�R f(s1; : : : ; sn) and �t)�Rf(�u1; : : : ; �un). Hence we know that �ui !�R si for i = 1; : : : ; n. Thus � is an uppermatcher of the right-hand side.Let � be an upper matcher of the right-hand side. Then �ui !�R si for i = 1; : : : ; n. Hence�t)�R f(�u1; : : : ; �un) !�R f(s1; : : : ; sn). Thus � is an upper matcher of the left-hand side.2. To show that rule (4) leaves the upper matchers invariant, suppose thatx w s& x w t& I u�!R x w f(u1; : : : ; un) & I;f = topsym[s]tRtopsym[t], x1; : : : ; xn are pairwise distinct variables,f(x1; : : : ; xn) w s& f(x1; : : : ; xn) w t u�!�R I 0;I 0 is upwards solved, and ui = u if (xi w u) 2 I 0 and ui = ? otherwise.Let � be an upper matcher of the left-hand side. Then �x !�R s and �x !�R t. Hencewe know that there exist terms s1; : : : ; sn such that �x)�R f(s1; : : : ; sn) !�R s; t. Thus := fx1=s1; : : : ; xn=sng is an upper matcher of f(x1; : : : ; xn) w s& f(x1; : : : ; xn) w t.Now we know by the induction hypothesis that is an upper matcher of I 0. Hence wehave xi !�R ui for i = 1; : : : ; n. Thus �x)�R f(s1; : : : ; sn) = f(x1; : : : ; xn) !�Rf(u1; : : : ; un). Hence � is an upper matcher of the right-hand side.Let � be an upper matcher of the right-hand side. Then �x !�R f(u1; : : : ; un). Hencethere exist terms s1; : : : ; sn such that �x)�R f(s1; : : : ; sn) and si !�R ui for i = 1; : : : ; n.

54 Chapter 4. Sort Rewriting SystemsSince I 0 is upwards solved and its right-hand sides can only be the variables x1; : : : ; xn,we know that := fx1=s1; : : : ; xn=sng is an upper matcher of I 0. Hence we know by theinduction hypothesis that is an upper matcher of f(x1; : : : ; xn) w s& f(x1; : : : ; xn) w t.Thus �x)�R f(s1; : : : ; sn) = f(x1; : : : ; xn) !�R s; t. Hence is an upper matcher of theleft-hand side. 2Lemma 4.2.7 [Completeness] Let I be an inclusion system that has an upper matcher.Then there exists an upwards solved inclusion system I 0 such that I u�!�R I 0.Proof. We prove the claim by induction on the U-complexity of I . If jI j = (0; 0) or I isupwards solved, the claim is trivial. Otherwise, since we know by the preceding lemma thatreduction with u�!R maintains the existence of upper matchers, it su�ces to show thatat least one rule applies to I . Since I has an upper matcher, at least one of the followingcases applies.1. I contains an inclusion x w y twice. Then rule (1) applies.2. I contains an inclusion s w ?. Then rule (2) applies.3. I contains an inclusion f(s1; : : : ; sm) w g(t1; : : : ; tn). Since I has an upper matcher,we have �f(s1; : : : ; sm) !�R g(t1; : : : ; tn). Hence there exist terms u1; : : : ; un such thatf(s1; : : : ; sm))�R g(u1; : : : ; un). Thus rule (3) applies.4. I contains two inclusions x w s and x w t such that neither s nor t is a variable or ?.Since I has an upper matcher, we have �x !�R s; t. Hence topsym[s] and topsym[t] havea common upper bound. Since R is complete, f := topsym[s]tRtopsym[t] exists. Hencethere exist terms u1; : : : ; un such that �x !�R f(u1; : : : ; un) !�R s; t. Thus f(x1; : : : ; xn) ws& f(x1; : : : ; xn) w t has an upper matcher if x1; : : : ; xn are pairwise distinct variables. Nowwe know by the induction hypothesis that there exists an upwards solved inclusion systemI 0 such that f(x1; : : : ; xn) w s& f(x1; : : : ; xn) w t u�!�R I 0:Hence rule (4) is applicable. 2Theorem 4.2.8 [Upper Matching] Let R be an complete shallow rewriting system.Then it is decidable whether an inclusion system has an upper matcher. Furthermore, if Ihas an upper matcher, one can compute an upwards solved inclusion system I 0 such thatUMR[I] = UMR[I 0].Proof. The claims follow immediately from the preceding lemmas. 2Corollary 4.2.9 [Least Upper Matchers] Let R be a complete shallow rewriting systemand I be an inclusion system that has an upper matcher. Then there exists one and onlyone upwards solved inclusion systemx1 w s1 & : : : & xn w snhaving the same upper matchers as I . Furthermore,�x := � si if x = xi for some i 2 1::n? otherwiseis the least upper matcher of I .

4.3. Lower Matchers and In�ma 55Proof. The existence of the upwards solved inclusion system follows from the precedingtheorem. Thus � is the least upper matcher of I . Since the least upper matcher of I isunique and the upwards solved system does not contain inclusions xi w ? (by de�nition),the upwards solved system must be unique. 2Corollary 4.2.10 [Suprema] Let R be an complete shallow rewriting system. Then everytwo terms that have a common upper bound have a supremum and, if s 6= ?,stR t = u () x w s& x w t u�!�R x w u:4.3 Lower Matchers and In�maIn this section we assume that R is a sort rewriting system (that is, a terminating andcomplete shallow rewriting system).Lemma 4.3.1 If �uR exists, then �suR s = (�uR)s for every term s.Proof. Let s be a term and let �uR exist. Since �; !�R �uR , we have �s; s !�R(�uR)s. Now let t be a term such that �s; s !�R t. We show by induction on t that(�uR)s !�R t. If t is a variable, then t = �s = s = (�uR)s. If t = g(~t), we distinguishtwo cases.1. s is a variable. Then �suR s exists and �suR s = (�uR)s. Since we assumed�s; s !�R t, we have the claim.2. s = f(~s). Since we assumed �s !�R g(~t) = t, we know that there exists ~u such thats)�R g(~u). Hence �s)�R �g(~u) and s)�R g(~u). Since we assumed �s; s !�R g(~t),we have �~u; ~u !�R ~t . Hence we know by the induction hypothesis that (�uR)~u !�R ~t .Thus (�uR)s)�R (�uR)g(~u) !�R g(~t) = t. 2Lemma 4.3.2 Let f(~s))�R (fuRg)(~u), g(~t))�R (fuRg)(~v), and let ~uuR~v exist. Thenf(~s)uRg(~t) = (fuRg)(~uuR~v).Proof. Let f(~s) !�R u and g(~t) !�R u. We have to show that (fuRg)(~uuR~v) !�Ru. Since u cannot be a variable, we know that (fuRg))�R topsym[u]. Hence f(~s))�R(fuRg)(~u) !�R u and g(~t))�R (fuRg)(~v) !�R u. By the preceding lemma we know that(fuRg)(~u)uR (fuRg)(~v) = (f~x=~ug(fuRg)(~x))uR (f~x=~vg(fuR g)(~x))= f~x=(~uuR~v)g(fuRg)(~x) = (fuRg)(~uuR~v);for some tuple ~x of pairwise distinct variables. Hence (fuRg)(~uuR~v) !�R u. 2The R-complexity kskR of a term s is de�ned as the pairkskR := (k; l);where k is the maximal length of a chain s !R s1 !R s2 !R � � � and l is the number offunction symbol occurrences in s. The set of all R-complexities is a well-founded partiallyordered set under the lexicographic order induced by the canonical order on the naturalnumbers.

56 Chapter 4. Sort Rewriting SystemsTheorem 4.3.3 (In�ma) Let R be a sort rewriting system. Then suR t exists for everytwo terms s and t and can be computed as follows:1. xuRx = x2. xuR s = ? if x 6= s3. suRx = ? if x 6= s4. f(~s)uR g(~t) = (fuRg)(~uuR~v)5. if f(~s))�R (fuRg)(~u) and g(~t))�R (fuR g)(~v).If the right-hand side of every rule of R is linear, then the in�mum two terms can becomputed in linear time.Proof. The �rst three claims are obvious. The last claim holds by the preceding lemma,provided we can show that suR t exists for every two terms s and t. We show this byinduction on kskR. If s or t is a variable, then suR t exists by one of the �rst threeequations. If s = f(~s) and t = g(~t), then there exist terms ~u and ~v such that s)�R(fuRg)(~u) and t)�R (fuR g)(~v). Since kskR > kuikR for every component ui of ~u , weknow by the induction hypothesis that ~uuR~v exists. Hence we know by the precedinglemma that suR t exists.The linear time complexity follows by Proposition 4.1.7. 2Corollary 4.3.4 Let R be a sort rewriting system. Then the set of all terms ordered by\s !�R t" is a well-founded quasi-lattice having ? as its least element.Proof. Follows immediately from the In�ma Theorem and the Suprema Corollary of thelast section. 2Example 4.3.5 Let R be the sort rewriting systemx! ?; f(x)! a; f(x)! b:Then f(c)uRf(d) = f(?) and a and b are common lower bounds of f(c) and f(d). Notethat without the empty sort rule x! ? the terms f(c) and f(d) would not have an in�mumalthough they still would have a and b as common lower bounds. 2Example 4.3.6 In general, in�ma in a sort rewriting system R are not stable under in-stantiation, that is, �suR �t = �(suR t) does not hold. To see this, let R be the trivial sortrewriting system just consisting of the rule x ! ?, x and y be two distinct variables, and� = fx=a; y=ag, where a is a constant symbol di�erent from ?. Then �(xuR y) = ? and�xuR �y = a. 2We call the in�mum of s and t stable if �(suR t) = �suR �t for every substitution �.Furthermore, the stable in�mum function is the partial function de�ned bysu�R t := suR t if the in�mum of s and t is stable.

4.3. Lower Matchers and In�ma 57Theorem 4.3.7 [Stable In�ma] Let R be a sort rewriting system. Then t1uR t2 is stableif t1 and t2 have a common upper bound, that is, there exists a term s such that s !�R t1and s !�R t2.Proof. Suppose s !�R t1 and s !�R t2. We prove by induction on kskR that t1uR t2 isstable. If s = x, then either t1 = t2 = x, or t1 = t2 = ?, or t1 = x and t2 = ?, or t1 = ?and t2 = x. For all these cases t1uR t2 is stable. Otherwise, let s = f(~s). Furthermore, lett1 = g1(~t1), t2 = g2(~t2), h = g1uRg2, f(~s))�R h(~u), g1(~t1))�R h(~u1), and g2(~t2))�Rh(~u2). Then we know that ~u !�R ~u1 and ~u !�R ~u2. Hence we know by the inductionhypothesis that u1uRu2 is stable. Hence we have�(t1uR t2) = �h(~u1uR~u2) = h(�(~u1uR~u2)) = h(�~u1uR�~u2) = �t1uR�t2by the In�ma Theorem since �t1 = �g1(~t1))�R h(�~u1) and �t2 = �g2(~t2))�R h(�~u2).Thus t1uR t2 is stable. 2A lower matcher of an inclusion system ~s w ~t (in R) is a substitution � such that ~s !�R�~t and D� � V~t . We use LMR[I] to denote the set of all lower matchers of an inclusionsystem I in R. Note that the lower matchers of an inclusion system are partially orderedby \� !�R ".We call an inclusion system downwards solved if it has the form ~s w ~x , where ~x is apossibly empty tuple pairwise distinct variables.Proposition 4.3.8 Let I = (s1 w x1& : : : & sn w xn) be a downwards solved inclusionsystem. Then �x := � si if x = xi for some i 2 1::nx otherwiseis the greatest lower matcher of I in every shallow rewriting system R.We will show that the following reduction rules for inclusion systems constitute an algorithmthat, given an inclusion system I , decides whether I has a lower matcher and, if I has alower matcher, computes the greatest lower matcher of I .1. s w ?& I l�!R I2. f(~s) w g(~t) & I l�!R ~u w ~t & I if f(~s))�R g(~u)3. s w x& t w x& I l�!R suR t w x& I .Proposition 4.3.9 If I l�!�R I 0, then LV [I 0] = LV [I] and UV [I 0] � UV [I].Proposition 4.3.10 Let V be a set of variables and � be a signature such that every ruleof R consists of �-terms. Then I 0 is a (�; V)-inclusion system if I is a (�; V)-inclusionsystem and I l�!�R I 0.Proposition 4.3.11 [Termination] There are no in�nite chains I l�!R I1 l�!R I2 l�!R� � � issuing from an inclusion system I .

58 Chapter 4. Sort Rewriting SystemsProof. Every l�!R -step reduces the sum of the sizes of the right hand sides. 2Lemma 4.3.12 [Invariance] If I l�!R I 0, then LMR[I] = LMR[I 0].Proof. The claim is obvious for the �rst rule. The second rule leaves the lower matchersinvariant since �f(~s) !�R g(~t) () �g(~u) !�R g(~t) () �~u !�R ~tif f(~s))�R g(~u). The third rule leaves the lower matchers invariant sinces; t !�R �x () suR t !�R �x: 2Lemma 4.3.13 [Completeness] Let I be an inclusion system that has a lower matcherand is not downwards solved. Then there exists an inclusion system I 0 such that I l�!R I 0.Proof. Since I has a lower matcher, at least one of the following cases applies.1. I contains an inclusion s w ?. Then rule (1) applies.2. I contains an inclusion f(~s) w g(~t). Since I has a lower matcher, we have f(~s) !�R�g(~t). Hence there exists ~u such that f(~s))�R g(~u). Thus rule (2) applies.3. I contains two inclusions s w x and t w x. Since R is sort rewriting system, we knowthat suR t exists. Hence rule (3) is applicable. 2Theorem 4.3.14 [Lower Matching] Let R be a sort rewriting system. Then it is decid-able whether an inclusion system has a lower matcher. Furthermore, if an inclusion systemI has a lower matcher, one can compute a downwards solved inclusion system I 0 such thatLMR[I] = LMR[I 0].Proof. The claims follow immediately from the preceding lemmas. 2Corollary 4.3.15 [Greatest Lower Matcher] Let R be a sort rewriting system andI be an inclusion system that has a lower matcher. Then there exists one and only onedownwards solved inclusion systems1 w x1& : : : & sn w xnhaving the same lower matchers as I . Furthermore,�x := � si if x = xi for some i 2 1::nx otherwiseis the greatest lower matcher of I .Proof. The existence of the downwards solved inclusion system follows from the precedingtheorem. Thus � is the greatest lower matcher of I . Since the greatest lower matcher of Iis unique and D� � LV [I] (by de�nition), the downwards solved system must be unique. 2

4.4. Modes 594.4 ModesThis section prepares material for Section 5.2 on inhabitation and I recommend to read ittogether with Section 5.2.We now generalize shallow term rewriting to shallow rewriting of term tuples. A tuplerewriting rule is a pair s ! ~s , where s is a term, ~s is a possibly empty tuple of terms,and every variable occurring in the right-hand side ~s occurs in the left-hand side s. We use; to denote the empty tuple. A tuple rewrite system is a set of tuple rewriting rules. Atuple rewrite system R de�nes a binary relation \~s)R ~t " on the set of all term tuples asfollows:1. (s1; : : : ; si�1; si; si+1; : : : ; sn))R (s1; : : : ; si�1; t1; : : : ; tm; si+1; : : : ; sn)2. if and only if si ! (t1; : : : ; tm) is an instance of a rule of R.A shallow tuple rewrite system is a tuple rewrite system R such that every rule of Rhas the form f(~x) ! ~s , where ~x is a tuple of pairwise distinct variables. (These tuplerewrite systems are called shallow because of the form of the left hand sides of their rules.Unfortunately, I abused the name shallow in the de�nition of shallow rewriting systemsin Section 4.1 for systems that have to satisfy additional properties and also contain thenonshallow rule x! ? since I couldn't come up with another nice name. I do apologize.)In this section we assume that R is a shallow tuple rewrite system.A term s is called weak in R if there exists a tuple ~x of variables such that s)�R ~x . Wewill show in this section that one can compile a shallow tuple rewrite system R into analgorithm that decides in linear time whether a term is weak in R. In Section 5.2 we willshow that a sort term denotes a nonempty set if and only if it is weak in a certain shallowtuple rewrite system that can be obtained from the type speci�cation.Lemma 4.4.1 Let �s)�R ~x . Then there exists a tuple ~y of variables such that s)�R ~yand �~y)�R ~x .Proof. We prove the claim by induction on the length of the derivation �s)�R ~x . If sis a variable, then the claim is trivial. Otherwise, we have s = f(~s) and there exists a rulef(~z)! ~t in R such that �s = �f(~s))R �f~z =~sg~t)�R ~x . Hence we know by the inductionhypothesis that there exists a tuple ~y of variables such that f~z=~sg~t)�R ~y and �~y)�R ~x .Furthermore, s)�R f~z=~sgt)�R ~y since s! f~z=~sgt is an instance of f(~z)! ~t 2 R. 2A mode of R is a pair f(~x)! V such that1. ~x is a tuple of pairwise distinct variables2. there exists a tuple ~y of variables such that f(~x))�R ~y and V~y = V .Note that the right-hand side of a mode contains only variables that occur in the left-handside of the mode. Hence a �nite shallow tuple rewrite system has only �nitely many modesup to consistent variable renaming.

60 Chapter 4. Sort Rewriting SystemsA setM of modes of R is complete for R if, for every pair f(~x) and ~y such that f(~x))�R~y , there exists a variant f(~x)! V of a mode in M such that V � V~y .Proposition 4.4.2 For every �nite shallow tuple rewrite system there exists a �nite com-plete set of modes.By assuming a total order on variables, we can assume that every mode f(~x)! V de�nes aunique tuple rewriting rule f(~x)! ~y such that V~y = V and the variables in ~y are pairwisedistinct. Thus every set of modes de�nes a unique shallow tuple rewrite system. We use)M to denote the rewriting relation de�ned by the shallow tuple rewrite system de�nedby a set of modes M .Lemma 4.4.3 Let M be a set of modes of R. Then:1. there are no in�nite chains ~s1)M ~s2)M ~s3)M � � �2. if ~s)�M ~x , there exists a tuple ~y of variables such that ~s)�R ~y and V~y = V~x3. M is complete for R if and only if, for every pair ~s and ~x such that ~s)�R ~x , thereexists a tuple ~y of variables such that ~s)�M ~y and V~y � V~x .Proof. 1. If ~t is obtained from ~s by applying a tuple rewrite rule obtained from a mode,then the size of ~t is strictly smaller than the size of ~s (although the length of ~t can begreater than the length of ~s).2. Let a derivation ~s)�M ~x be given. We prove the claim by induction on on the lengthof the derivation. If ~s = ~x , then the claim is trivial. Otherwise, we have ~s)M ~t)�M~x . Thus we know by the induction hypothesis that there exists a tuple ~y of variables suchthat ~t)�R ~y and V~y = V~x . By the de�nition of modes we know that there exists a tuple ~ucontaining exactly the same sort terms as ~t such that ~s)�R ~u . Hence there exists a tuple~z of variables such that ~s)�R ~u)�R ~z and V~x = V~y = V~z .3. Suppose M is complete for R and s)�R ~x . We show by induction on s that there existsa tuple ~y of variables such that s)�M ~y and V~y � V~x. If s = x, then s = ~x and the claimis trivial.If s = f(~s), then we have s = f~z=~sgf(~z))�R ~x for some tuple ~z of variables. Hence weknow by Lemma 4.4.1 that there exists a tuple ~z 1 of variables such that f(~z))�R ~z 1 andf~z=~sg~z 1)�R ~x . Since M is complete, we know that there exists a tuple ~z 2 of variablessuch that f(~z))M ~z 2 and V~z 2 � V~z 1. Furthermore, we know by the induction hypothesisthat there exists a tuple ~y of variables such that f~z=~sg~z 1)�M ~y and V~y � V~x . Hence wehave s = f~z=~sgf(~z))M f~z=~sg~z 2)�M ~y .To show the other direction of the equivalence, suppose that, for every pair ~s and ~x suchthat ~s)�R ~x , there exists a tuple ~y of variables such that ~s)�M ~y and V~y � V~x.Furthermore, let f(~x))�R ~y . Then we know that there exists a tuple ~z of variables suchthat f(~x))�M ~s and V~z � V~y . Hence M contains a variant of the mode f(~x)! V~z . 2

4.4. Modes 61Theorem 4.4.4 Let M be a complete set of modes for R. Thenf(~s) is weak in R () f(~s) is weak in M() 9 f(~x)! V 2M8y 2 V: f~x=~sgy is weak in M .Proof. The �rst equivalence follows immediately from the preceding lemma. Further-more, the \(" direction of the second equivalence is obvious. To show the \)" directionof the second equivalence, let f(~s))�M ~x1. Then we have by Lemma 4.4.1 that f(~x2))M~y and f~x2=~sg~y)�M ~x1. Hence there exists a mode f(~x) ! V 2 M such that for everyvariable y 2 V there exists a tuple ~z such that f~x=~sgy)�M ~z . 2Corollary 4.4.5 Given a �nite complete set of modes for R, one can decide in linear timewith respect to the size of a term s whether s is weak in R.Proof. To decide whether f(s1; : : : ; sn) is weak in R, one �rst decides this property forevery subterm si and checks afterwards whether there is an applicable mode in M . 2We will now give an algorithm for computing �nite complete sets of modes for �nite shallowtuple rewrite systems. Since, in general, ~s)�R ~t is not terminating, such an algorithm isnot obvious.In the following we assume without loss of generality that ~x = ~y if f(~x)! ~s and f(~y)! ~tare rules of R.Given a �nite shallow tuple rewrite system R, we de�ne a descending chainR = R0 � R1 � R2 � � � �of �nite tuple rewrite systems and an ascending chain; =M0 �M1 �M2 � � � �of �nite sets of modes of R as follows:Rn+1 := ff(~x)! ~s 2 Rn j f(~x)! ; =2MngMn+1 := Mn [ff(~x)! V~x j 9 f(~x)! ~s 2 Rn+1: ~s)�Mn ~xg:Lemma 4.4.6 Let the chain M0 �M1 � � � � be de�ned as above. Then, if s)�R ~x , thereexist a number n and a tuple ~y of variables such that s)�Mn ~y and V~y � V~x .Proof. Let a derivation s)�R ~x be given. We prove by induction on the length of thederivation that there exist a number n and a tuple ~y of variables such that s)�Mn ~y andV~y � V~x . If s = ~x , then the claim is trivial. Otherwise, we have s)R ~t)�R ~x . Hence weknow by the induction hypothesis that there exist a number n and a tuple ~y of variablessuch that ~t)�Mn ~y and V~y � V~x . Since s can't be a variable, we have s = f(~s) and thereexists a rule f(~z)! ~u in R such thats = f(~s))R f~z=~sg~u)�Mn ~y :

62 Chapter 4. Sort Rewriting SystemsHence we know by Lemma 4.4.1 that there exists a tuple ~z 1 of variables such that ~u)�Mn~z 1 and f~z=~sg~z 1)�Mn ~y .If f(~z) ! ~u is not in Rn+1, then Mn contains the mode f(~z)! ;. Hence s = f(~s))Mn;, which yields the claim.If f(~z) ! ~u is in Rn+1, then the mode f(~z) ! V~z 1 is in Mn+1. Hence there exists atuple ~v such that ~v contains exactly the same sort terms as f~z=~sg~z 1 and s = f(~s))Mn+1~v . Since f~z=~sg~z 1)�Mn ~y , there exists a tuple ~y 1 of variables such that ~v)�Mn ~y 1 andV~y1 = V~y � V~x . Hence s)�Mn+1 ~y 1 and V~y 1 � V~x . 2Theorem 4.4.7 [Computation of Complete Sets of Modes] Let R be a �nite shallowtuple rewrite system and let the chain M0 �M1 � � � � be de�ned as above. Then:1. (Termination) there exists a number n such that Mn =Mn+12. (Soundness) every Mn is a set of modes of R3. (Completeness) if Mn =Mn+1, then Mn is a complete set of modes for R.Proof. 1. For every Mn, the left-hand side of every mode in Mn is the left-hand side ofa rule in R. Since R is �nite, there are only �nitely many of such modes.2. We show by induction on n that Mn is a set of modes of R. Since M0 = ;, the claim istrivial for n = 0. To show that Mn+1 is a set of modes of R, suppose Mn is a set of modesof R, f(~x)! ~s is a rule of R, and ~s)�Mn ~x . We have to show that f(~x)! V~x is a modeof R. Since Mn is a set of modes of R, we know by the preceding lemma that there exists atuple ~y of variables such that ~s)�R ~y and V~y = V~x . Hence f(~x))�R ~y . Thus f(~x)! V~xis a mode of R.3. Let Mn = Mn+1. Then Mi � Mn for every i. Hence the claim follows by the precedinglemma and Lemma 4.4.3. 2Corollary 4.4.8 If R is a �nite shallow tuple rewrite system and every function symbolof R is a constant, then a complete set of modes for R can be computed in quadratic time.Proof. If R contains only constants, then every mode of R has the form c ! ;. Hencethe iteration M0;M1; : : : can take at most as many steps as there are constants occurringin R. Furthermore, every iteration step can be performed in time linear with respect to thesize of R. 2

Chapter 5POS-Types5.1 Type Speci�cations5.2 Inhabitation5.3 Uni�ers and Solution SchemataWe are now ready to de�ne POS-types. They are speci�ed with simple speci�cationswhose inclusions yield a sort rewriting system, where every value function is speci�ed withexactly one rank of the form f : ~� ! �(~�). These speci�cations, which are just called typespeci�cations, have quasi-extensional initial models and hence we choose the extensionalmodel associated with the initial model as the POS-type speci�ed.Type speci�cations do have nice properties. If a value term s is well-typed under a pre�x P ,then there is a computable least sort � such that P ` s: �. Together with the existence ofsort in�ma this implies that the sorts of a POS-type are closed under intersection. Moreover,if s is in � for some pre�x, then one can compute a greatest pre�x P such that P ` s: �.Most of this chapter is already devoted to constraint solving. The constraint solver for ourrelational programs computing over POS-types will have to solve constraints of the formE&M , where E is a conjunction of equations and M is a conjunction of memberships. InSection 5.2 we will attack the subproblem of deciding whether a constraint x: � is satis�ablein a POS-type and develop a linear-time decision algorithm for this problem. In Section5.3 we will generalize the notion of a uni�er to constraints of the form E &M and work outhow the uni�ers of a constraint relate to its solutions. Finally, we will de�ne a notion ofsolved form for the explicit representation of solutions and investigate its most importantproperties. 63

64 Chapter 5. POS-Types5.1 Type Speci�cationsFrom now on we assume that the symbol ?, called the empty sort, is a nullary sortfunction.A type speci�cation T is a �nite set of inclusions and ranks such that1. the inclusions of T yield a sort rewriting system R(T) if every inclusion � w � is takenas a rewrite rule � ! �2. every rank in T has the form f : ~� ! �(~�), where ~� is a tuple of pairwise distinct sortvariables and V(~�) � V(~�)3. no rank in T contains the empty sort ?4. for no function symbol T contains more than one rank5. T contains at least one value constant.Proposition 5.1.1 Every type speci�cation is a simple speci�cation.The sort equations in Figure 1.1 de�ne a typical type speci�cation. The left hand side of asort equation has the form �(~�), where ~� is a tuple of pairwise distinct sort variables, andthe right hand side of the sort equation gives all ranks that go to �(~�) and all sort rewritingrules whose left hand side if �(~�). For instance,error or list(E;T) := errormsg(E) t list(T)translates into the inclusionserror or list(E;T) w errormsg(E); error or list(E;T) w list(T)and list(T) := nil: [] t cons:T� list(T)translates into the ranks nil: list(T); cons:T� list(T)! list(T):Obviously, every type speci�cation can be given by sort equations, and that's the syntaxtype speci�cations are presented in in TEL [Smo88b]. Sort equations are also commonlyused in functional programming languages such as ML [HMM86], there, of course, withoutthe provision for subsorts. Sort equations already presume that type speci�cations specifytheir initial models, which satisfy the equations in the obvious sense. If one has all modelsof a type speci�cation in mind one could still write sort inclusions �(~�) w � � �.

5.1. Type Speci�cations 65General Assumption. We assume in the rest of this thesis that T is a type speci�-cation and that all terms and substitutions employ only function symbols occurring in T .Furthermore, we assume that all constraints and all interpretations are taken from L(�T)�(�T is the set of all function symbols occurring in T). To obtain a smooth notation, wewill always drop the subscripts T and R(T). By this convention the notations� � �; � � �;� � ; � �;P � Q; P � Q inclusion order, see Section 3.6P ` s: �; P `M membership relation, see Section 3.6�)� � top level sort rewriting, see Section 4.1�u�; �u� � [stable] in�mum, see Section 4.3are all well-de�ned.We will use LUM[~� v ~�] to denote the least upper matcher of the inclusion system ~� v ~�(see Section 4.2), where we assume without loss of generality that upper matchers are sortsubstitutions (that is, map every value variable to itself, see Section 3.3).Let P be a pre�x. Then the following two equations de�ne a computable partial function�P [�] from value terms to sort terms:1. �P [x] = Px2. �P [f(~s)] = LUM[�P [~s] v ~�]�(~�) if and only if f : ~� ! �(~�) 2 T .Theorem 5.1.2 [Least Sort] P ` s: � if and only if �P [s] � �.Proof. 1. Suppose P ` s: �. We prove by induction on s that �P [s] � �. If s = x, then�P [x] = Px � �.Let s = f(~s). Then there exists a rank f : ~� ! � in T and a substitution � such that�� � � and P ` ~s : �~� . By the induction hypothesis we know that �P [~s] � �~� . Hence := LUM[�P [~s] v ~�] � � and thus �P [f(~s)] = � � �� � �.2. Suppose �P [s] � �. We prove by induction on s that P ` s: �. If s = x, thenPx = �P [s] � � and hence P ` x: �.Let s = f(~s). Then ~� := �P [~s] exists, f : ~� ! � is a rank in T , � := LUM[~� v ~�] exists,and �� � �. Furthermore, we know by the induction hypothesis that P ` ~s : ~� . Hence P `~s : �~� since ~� � ��. Thus P ` f(~s): � since f : �~� ! �� is an instance of a rank in T and�� � �. 2If �P [s] is de�ned, we say that �P [s] is the least sort term of s under P . The existence ofleast sort terms is crucial for the existence of good uni�cation and type checking algorithms.Corollary 5.1.3 The relation P ` s: � is decidable.Corollary 5.1.4 P ` s: � ^ P ` s: � () P ` s: �u� .

66 Chapter 5. POS-TypesProposition 5.1.5 If �P [s] is de�ned, then V(�P [s]) = Sx2Vs V(Px).Proof. Let �P [s] be de�ned. We prove by induction on s that V(�P [s]) = Sx2Vs V(Px).If s = x, then �P [x] = Px and the claim is trivial.Let s = f(~s). Then T contains a rank f : ~� ! � , � := LUM[�P [~s] v ~�] exists, and�P [s] = �� . We know by the induction hypothesis that V(�P [~s]) = Sx2V(f(~s)) V(Px). SinceV(~�) � V(�), we know by Proposition 4.2.3 that V(��) = V(�P [~s]) = Sx2V(f(~s)) V(Px). 2Proposition 5.1.6 If P ! s: � is valid in T , then Vs � VP .Proof. Let P ! s: � be valid in T , x1; : : : ; xm be the variables occurring in s but not inP , and �1; : : : ; �n be the variables occurring in � but not in P . Furthermore, let �1; : : : ; �mbe pairwise distinct sort variables not occurring in P ! s: � and y1; : : : ; yn be pairwisedistinct value variables not occurring in P ! s: �. ThenQ := P & x1: �1& � � � & xm: �m & y1:�1& � � � & yn:�nis a pre�x and P ! s: � is valid in I(T;Q). Let � be an I(T;Q)-assignment that mapsevery variable occurring in Q to itself. Then � 2 I(T;Q)[[Q]] � I(T;Q)[[P]] and hence� 2 I(T;Q)[[s: �]]. Thus Q ` s: � and � � �Q[s]. Hence Sx2VsQx = V(�Q[s]) � V�.Now suppose m > 0. Then �1 2 V�, which contradicts our assumptions. Thus Vs � VP .2The preceding proposition allows us to get rid of the variable condition in the Soundnessand Completeness Theorem for simple speci�cations:Theorem 5.1.7 [Soundness and Completeness] For every type speci�cation T thefollowing equivalences hold:1. � v � is valid in T () � � �2. P ! s: � is valid in T () P ` s: �3. P ! s := t is valid in T () s = t and s is well-typed in T under P .Proof. Follows by the preceding proposition from the Soundness Proposition and theSoundness and Completeness Theorem for simple speci�cations. 2Using �P [�] we can decide P ` s: � by going bottom up through s. The next propositiongives us a top down decision method for P ` s: �.Proposition 5.1.8 P ` f(~s): � holds if and only if T contains a rank f : ~� ! �(~�) suchthat �)� �(~�) and P ` ~s : f~�=~�g~� .

5.1. Type Speci�cations 67Proof. \)". Let P ` f(~s): �. Then T contains a rank f : ~� ! �(~�) and there exists asubstitution � such that ��(~�) � � and P ` ~s : �~� . Hence there exists ~� such that �)��(~�) and ~� � �~� . Thus f~�=~�g~� � f~�=�~�g~� = �~� and hence P ` ~s : f~�=~�g~� since P `~s : �~� .\(". Let f : ~� ! �(~�) 2 T , �)� �(~�) and P ` ~s : f~�=~�g~� . Then f : f~�=~�g~� ! �(~�) isan instance of a rank in T . Hence P ` f(~s): �. 2The following reduction rules for membership systems de�ne a binary relation \M d�!M 0",called membership decomposition:1. M & f(~s): � d�! M & ~s : f~�=~�g~�if f : ~� ! �(~�) 2 T and �)� �(~�)2. M & x: �& x: � d�! M & x: (�u�).Proposition 5.1.9 The membership decomposition relation \M d�!M 0" has the followingproperties:1. \M d�!M 0" is terminating and conuent2. if M d�!M 0, then P `M () P `M 0 for every pre�x P3. if P `M and M is no pre�x, then d�! applies to M .Proof. The termination of d�! is obvious. Since the in�ma function \�u�" is associa-tive, we know that d�! is locally conuent and hence conuent. The second and the thirdclaim follow with the preceding proposition. 2If there exists a pre�x P such that M d�!� P , then we call GP[M] := P the greatestpre�x supporting M .Theorem 5.1.10 [Greatest Pre�x] If P `M , then GP[M] exists, P jD(GP[M]) � GP[M],and GP[M] `M .Proof. Follows immediately from the preceding proposition. 2We now show that the initial model I(T) of a type speci�cation T is quasi-extensional. Theextensional inclusion preorder �I(T) is the preorder on ground sort terms satisfying� �I(T) � :() 8 s: ` s: �) ` s: � :We extend \� �I(T) �" to substitutions as follows:� �I(T) :() D� = D ^ 8 � 2 D�: �� �I(T) �:Lemma 5.1.11 If � �I(T) and V� � D�, then �� �I(T) � .

68 Chapter 5. POS-TypesProof. Let � �I(T) , V� � D� and ` s: ��. Since s is ground, we know that s = f(~s)and T contains a rank f : ~� ! �(~�). We prove by induction on s that ` s: �.Let � = �. Then �� = �� �I(T) � = �. Hence ` s: � since ` s: ��.Let � = �(~�). By the preceding proposition we know that ��)� �(� � �). Hence there exists~� such that �)� �(~�) and ��)� �(�~�). Thus we know by the preceding proposition that` ~s : �(f~�=~� g~�). Now we have ` ~s : (f~�=~� g~�) by the induction hypothesis, which yields` f(~s): � since �)� �(~�). 2Theorem 5.1.12 [Extensional Interpretation] The initial model I(T) of a type speci-�cation T is quasi-extensional and the extensional algebra I(T)� associated with I(T) is amodel of T .Proof. Follows from the preceding lemma and statement (4) of Corollary 3.5.3. 2We are now ready to make the central de�nitions of this thesis (this took quite somepreparation, didn't it?): the extensional algebra I(T)� associated with the initial modelI(T) of T is called the type speci�ed by T , and a POS-type is an extensional POS-algebra that is isomorphic to the type speci�ed by some type speci�cation. For convenience,we use simply T to denote I(T)�.As you just read, I prefer to take the extensional interpretation of a type speci�cation asthe type it speci�es. This is more or less a matter of taste. If you would prefer the initialinterpretation, you are free to do so since everything that follows holds unchanged bothfor the extensional and the initial interpretation. This is due to the fact that inclusionsare only used for the speci�cation of POS-types but won't appear in the constraints wewill compute with in the following. Furthermore, we will only be interested in solutions forvalue variables. Formally, the interchangeability of T and I(T) is stated best as follows:Proposition 5.1.13 If F is an inclusion-free constraint and V is a set of value variables,then T [[F]]V = I(T)[[F]]V .Proof. The claim just specializes Corollary 3.5.3. 2Proposition 5.1.14 If � is a ground sort term, thenT [[�]] = VALI(T)[�] = fs j ` s: �g:Furthermore, ST = ffs j ` s: �g j � is a ground sort termg;T [[?]] = ;;T [[�u�]] = T [[�]]\ T [[�]] if � and � are ground sort terms,and the sorts of T are closed under intersection.

5.2. Inhabitation 69Proof. By the construction of T = I(T)� (Construction 3.5.1) we know that � is ahomomorphism I(T) ! T such that �(�) = VALI(T)[�] for every ground sort term �.Hence we have T [[�]] = VALI(T)[�] by Lemma 3.6.9. Furthermore, VALI(T)[�] = fs j `s: �g holds by the construction of I(T). Since � is surjective, we know that every sort of Tcan be obtained as �(�) = VALI(T)[�] = fs j ` s: �g.Now suppose T [[?]] 6= ;. Then we know by what we have just proved that there exists aground value term s such that ` s:?. Since every rank of T has the form f : ~� ! �(~�),where � 6= ?, this is impossible.The equation T [[�u�]] = T [[�]] \ T [[�]] follows from Corollary 5.1.4 using T [[�]] = fs j `s: �g, T [[�]] = fs j ` s: �g and T [[�u�]] = fs j ` s: �u�g. 25.2 InhabitationIn this section we devise an algorithm that decides in linear time whether a membershipx: � is valid in T . This algorithm will be one of the cornerstones of the constraint solvingalgorithm to be presented in Chapter 6. The algorithm is given as a conuent and termi-nating rewriting system that rewrites a sort term leaving its denotation in T unchangedsuch that x: � is satis�able in T if and only if the normal form of � isn't ?.A sort term � is called inhabited if there exists a ground value term s and a substitution� such that ` s: ��. A sort term is called void if it is not inhabited.A pre�x P is inhabited if Px is inhabited for every x 2 DP . A substitution � is inhabitedif �� is inhabited for every sort variable � 2 D�.A type speci�cation T is fully inhabited if every sort term of T that doesn't contain ? isinhabited.Proposition 5.2.1 In every type speci�cation T the following holds:1. ? is void and every sort variable is inhabited2. there exist a value constant c and a ground sort term � such that ` c: �3. a sort term � is inhabited if and only if x: � is satis�able in T .Proposition 5.2.2 Let ` s: ��. Then there exist a pre�x ~x : ~� and a linear term t suchthat s is an instance of t and ~x : ~� ` t: �.Proof. We prove the claim by induction on s.If � = �, then choose some value variable x and let t := x and ~x : ~� := x:�.If � is not a sort variable, then s = f(~s) and T contains a rank f : ~� ! �(~�) such that �)��(~�) and ` ~s : �f~�=~�g~� . Hence we know by the induction hypothesis that there exists apre�x ~x : ~� and a linear tuple ~t such that ~s is an instance of ~t and ~x : ~� ` ~t : f~�=~�g~� . Thus~x : ~� ` f(~t): �, f(~t) is linear and s is an instance of f(~t). 2

70 Chapter 5. POS-TypesA type speci�cation T de�nes a �nite shallow tuple rewrite system TR(T) as follows:TR(T) := f�(~�)! � j �(~�) w � 2 Tg [f�(~�)! ~� j f : ~� ! �(~�) 2 Tg:We will prove that � is inhabited if and only if � is weak in TR(T).Proposition 5.2.3 If �)� � and � 6= ?, then �)�TR(T) � .Lemma 5.2.4 Let ~x : ~� ` s: � and V~x = Vs. Then there exists a tuple ~� of sort variablessuch that �)�TR(T) ~� and V~� = V ~� .Proof. We prove the claim by induction on s.If s = x, then ~x : ~� = x:� and � = � and thus the claim is trivial.If s = f(~s), then T contains a rank f : ~� ! �(~�) such that �)� �(~�) and ~x : ~� ` ~s : f~�=~�g~� .Hence we have by the induction hypothesis that f~�=~�g~�)�TR(T) ~� and V~� = V ~� . Thus�)�TR(T) �(~�))TR(T) f~�=~�g~�)�TR(T) ~� . 2Lemma 5.2.5 Let �)�TR(T) ~� . Then there exist a pre�x ~x : ~� and a linear term s suchthat V~x = Vs and ~x : ~� ` s: �.Proof. We prove the claim by induction on the length of the derivation �)�TR(T) ~� .If � = ~� , then the claim is trivial. Otherwise, there exists a rank f : ~� ! �(~�) such that�)� �(~�))TR(T) f~�=~�g~�)�TR(T) ~� . Hence we know by the induction hypothesis thatthere exist a pre�x ~x : ~� and a linear tuple ~s such that V~x = V~s and ~x : ~� ` ~s : f~�=~�g~� .Hence ~x : ~� ` f(~s): �, which yields the claim. 2Theorem 5.2.6 A sort term is inhabited if and only if it is weak in TR(T).Proof. Suppose � is inhabited. Then there exist a value term s and a substitution � suchthat ` s: ��. Hence we know by Proposition 5.2.2 that there exist a pre�x ~x : ~� and a termt such that ~x : ~� ` t: � and V~x = Vt. Thus we know by one of the preceding lemmas that�)�TR(T) ~� .Suppose �)�TR(T) ~� . Then we know by the preceding lemma that there exist a pre�x ~x : ~�and a term s such that ~x : ~� ` s: �. Since there exists a ground membership that is valid inT , there exists a substitution � such that ` �s: ��. Hence � is inhabited. 2Corollary 5.2.7 Let M be a complete set of modes for TR(T). Then a sort term �(~�) isinhabited if and only if there exists a mode �(~�) ! V 2 M such that every sort term inf~�=~�gV is inhabited.Proof. Follows from the preceding theorem and Theorem 4.4.4. 2Corollary 5.2.8 For a given type speci�cation T , one can decide in linear time whether asort term is inhabited in T .

5.2. Inhabitation 71Proof. Follows from the preceding theorem, Corollary 4.4.5 and Proposition 4.4.2. 2Corollary 5.2.9 Inhabited pre�xes and substitutions have the following properties:1. if � is inhabited, then a sort term � is inhabited if and only if �� is inhabited2. two substitutions � and are inhabited if and only if their composition � is inhabited3. if � is inhabited, then a pre�x P is inhabited if and only if �P is inhabited4. a pre�x P is inhabited if and only if P is satis�able in T5. if P is inhabited and P ` s: �, then � is inhabited.Next we give simpli�cation rules for sort terms such that a sort term is void if and only ifits normal form is ?. The application of a simpli�cation rule to a sort term � won't changethe denotation of � in T .A sort term �(~�) is called top-level void if ? 2 f~�=~�gV for every mode �(~�) ! V ofTR(T).Proposition 5.2.10 Top-level voidness has the following properties:1. every sort term that is top-level void is void2. every instance of a top-level void sort term is top-level void3. if � has no mode in TR(T), the �(~�) is top-level void; in particular, ? is top-levelvoid4. if M is a complete set of modes for TR(T), then �(~�) is top-level void if and only if? 2 f~�=~�gV for every mode �(~�)! V 2M .We write � n�! � if � can be obtained from � by replacing a top-level void subterm � 6= ?with ?.Proposition 5.2.11 The relation � n�! � is terminating and conuent.Proof. The termination follows from the fact that every reduction step reduces the num-ber of occurrences of sort function symbols di�erent from ?. Since � n�! � is locally con-uent, we hence know that � n�! � is conuent. 2A sort term is called normal if it is normal with respect to to n�! . We use NF[�] todenote the normal form of � with respect to n�! .We extend the normalization relation to pre�xes as follows:P n�!�Q :() DP = DQ ^ 8 x 2 DP : Px n�!�Qx:

72 Chapter 5. POS-TypesNote that \P n�!�Q" is again terminating and conuent. We use NF[P] to denote thenormal form of P . We call a pre�x normal if every sort term occurring in it is normal.If � and are substitutions, let � n�!� if and only if �� n�!� �� for every sort variable �and � and agree on all value variables. If � is a substitution, then NF[�] is the substitutionsatisfying (NF[�])x = �x and (NF[�])� = NF[��] for every value variable x and everysort variable �. Note that � n�!�NF[�] and \� n�!� " is conuent but, in general, notterminating.Theorem 5.2.12 [Normalization] The normalization relation \� n�! �" has the follow-ing properties:1. if � n�!� � and � n�!� , then �� n�!� � and � � ��2. �� n�!�NF[�]�; �NF[�] and NF[�]�; �NF[�] n�!�NF[��]3. (Orthogonality) if �)� �(~�), �)� �(~�) and � n�!� � , then ~� n�!� ~�4. (Invariance) if � n�!� � , then � is inhabited if and only if � is inhabited5. (Completeness) if � is normal, then � is void if and only if � = ?6. � is void () � n�!�? () NF[�] = ?7. NF[�] = � andNF[�(~�)] = �? if �(NF[~�]) is top-level void�(NF[~�]) otherwise8. NF[�] can be computed in linear time9. (Monotonicity) if � � � , then NF[�] � NF[�]10. if � is normal, � � � and � n�!� �, then � � �11. if P is a normal and inhabited pre�x and � n�!� � , then P ` s: � if and only if P `s: �12. (Invariance) if � n�!� � , then T [[�]]� = T [[�]]� for every T -assignment �13. if P is normal and inhabited and s is well-typed under P , then �P [s] is normal andinhabited.Proof. 1. Let � n�!� � and � n�!� . We prove by induction on � that �� n�!� � and � � ��.Let � = �. Then � = � and hence �� = �� n�!� � = �. It remains to show that � � ��,which follows by a straightforward induction on the length of a derivation �� n�!� �.Let � = �(~�) and � = ?. Then ? = � � �� and it remains to show that �� n�!�?, whichfollows by induction on the length of a derivation � n�!�? exploiting the fact that everyinstance of a top-level void sort term is top-level void.

5.2. Inhabitation 73Let � = �(~�) and � 6= ?. Then � = �(~�) and ~� n�!� ~� . Hence we know by the inductionhypothesis that �~� n�!� ~� � �~� , which yields ��(~�) n�!� �(~�) � ��(~�).2. Follows from the �rst statement and the conuence of n�!� .3. Let �)� �(~�), �)� �(~�) and � n�!� � . We show that ~� n�!� ~� .If � = ?, then ? = �(~�) = �(~�) and hence the claim is trivial. Otherwise, � = �(~�1),� = �(~� 1) and ~� 1 n�!� ~� 1. Furthermore, we have �(~�))� �(~�), ~� = f~�=~�1g~� and~� = f~�=~� 1g~� . Hence ~� n�!� ~� by statement (1) since f~�=~�1g n�!� f~�=~� 1g.4. Let � n�! � . Then � � � by statement (1) and hence � is inhabited if � is inhabited.Now suppose � is inhabited. We show by induction on � that � is inhabited.Since � n�! � , we know that � is no variable. Let � = �(~�). Since � is inhabited, � isnot top-level void and hence � = �(~�) and ~� n�!� ~� . Since � is inhabited, there existsa mode �(~�) ! V of TR(T) such that every element of f~�=~�gV is inhabited. By theinduction hypothesis we know that every element of f~�=~� gV is inhabited. Hence � = �(~�)is inhabited.5. Let � be a normal sort term di�erent from ?. We prove by induction on � that � isinhabited. If � is a variable, then the claim is trivial. Otherwise, let � = �(~�). Since �(~�)is not top-level void, there exists a mode �(~�) ! V of TR(T) such that ? =2 f~�=~�gV .Since every sort term in f~�=~�gV is normal, we know by the induction hypothesis that eversort term in f~�=~�gV is inhabited. Hence we know by Corollary 5.2.9 that � = �(~�) isinhabited.6. Follows immediately from statement (5).7. Obvious.8. Follows immediately from statement (7).9. Let � � � . We prove by induction on � that NF[�] � NF[�]. If � = �, then � = �and hence NF[�] = NF[�]. Otherwise, let � = �(~�). Then we have � = �(~�), �(~�))��(~�), where ~� is linear, and ~� � f~�=~� g~� . Hence we know by the induction hypothesis thatNF[~�] � NF[f~�=~� g~�]. Thus NF[~�] � f~�=NF[~�]g~� by statement (2). If NF[�] = ?, thenthe claim is trivial. Otherwise, NF[�] = �(NF[~�]) and � is inhabited. Hence � is inhabitedand thus NF[�] = �(NF[~�]))� �(f~�=NF[~�]g~�) � �(NF[~�]) = NF[�].10. Let � be normal, � � � and � n�!� �. Then � = NF[�] � NF[�] by the precedingstatement. Hence � n�!�NF[�] by the conuence of n�! and thus � = NF[�] � NF[�] � �.11. Let P be a normal and inhabited pre�x and � n�!� � . Since � � � by the �rst statement,P ` s: � implies P ` s: �. To show the other direction, let P ` s: �. We show by inductionon s that P ` s: � .If s = x, then Px � � . Since Px is normal, we know by the preceding statement thatPx � � and thus P ` x: � .If s = f(~s), then we have f : ~� ! �(~�) 2 T , �)� �(~�) and P ` ~s : f~�=~�g~� . Since Pis inhabited, � is inhabited and hence, using statement (5), � and � have the same topsymbol. Hence �)� �(~�) and thus ~� n�!� ~� by statement (3). Hence f~�=~�g~� n�!�f~�=~� g~� by statement (1) and thus P ` ~s : f~�=~� g~� by the induction hypothesis. Hence P `s: � .

74 Chapter 5. POS-Types12. Let � n�!� � and let � be an I(T)-assignment. Since the canonical homomorphism� : I(T) ! T = I(T)� is surjective, it su�ces to show that T [[�]]�� = T [[�]]��. By theHomomorphism Theorem and the de�nition of � we know thatT [[�]]�� = �(I(T)[[�]]�) = VALI(T)[���]for every sort term �. Hence the claim follows by statement (11) since ��� n�!� ��� bystatement (1).13. Let P be normal and inhabited and s be well-typed under P . Then P ` s: �P [s] andhence P ` s: NF[�P [s]] by statement (11). Thus �P [s] � NF[�P [s]] � �P [s] by the LeastSort Theorem and statement (1). Furthermore, we know by Corollary 5.2.9 that �P [s] isinhabited. 2Corollary 5.2.13 [Full Inhabitation] A type speci�cation T is fully inhabited if andonly if for every sort function symbol � 6= ? of T there exists a mode �(~�)! V of TR(T).Hence it is decidable whether a type speci�cation is fully inhabited. Furthermore, if T isfully inhabited, then every sort term not containing ? is inhabited and normal.Example 5.2.14 Let T be the type speci�cation� = c: []�(�; �) = f :�� � t g: �(�; �):Then TR(T) consists of the rules� ! ;; �(�; �)! ��; �(�; �)! �(�; �):A complete set of modes for TR(T) is obtained with three iteration steps, whereM2 =M3 = f� ! ;; �(�; �)! f�; �g; �(�; �)! f�gg:The subset f� ! ;; �(�; �) ! f�gg is a minimal complete set of modes for T . Using themodes one veri�es easily that �(�;?) is normal and hence inhabited. 2Example 5.2.15 Let T be the type speci�cation� = c: []�(�; �) = f :� t g: ��(�) = h: �(�; �(�)):Then TR(T) consists of the rules� ! ;; �(�; �)! �; �(�; �)! �; �(�)! �(�; �(�)):A minimal complete set of modes for TR(T) is obtained with three iteration steps, whereM2 =M3 = f� ! ;; �(�; �)! f�g; �(�; �)! f�g; �(�)! f�gg:Using the modes one veri�es easily that NF[�(�(?);?)] = ?. Hence �(�(?);?) is void. 2

5.3. Uni�ers and Solution Schemata 75Example 5.2.16 Let T be the type speci�cation� = c: []�(�; �) = f :�� ��(�) = g: �(�; �(�)):Then TR(T) consists of the rules� ! ;; �(�; �)! ��; �(�)! �(�; �(�)):A minimal complete set of modes for TR(T) is obtained with two iteration steps, whereM1 =M2 = f� ! ;; �(�; �)! f�; �gg:Using the modes one veri�es easily that NF[�(�(�); �)] = ?. Hence �(�(�); �) is void. 25.3 Uni�ers and Solution SchemataIn this section we will investigate solved forms for representing the V -solutions of a con-straint as explicitly as possible. The idea is that we represent the solutions of a constraintfor the variables x1; : : : ; xn by a constraintx1 := s1& : : : & xk := sk &xk+1: �k1 & : : : & xn: �n &y1: �1& : : : & ym: �msuch that no si contains one of the variables xj , every yj occurs in some si, and every sortterm is inhabited and normal.Our constraint solving methods will apply to constraints of the form E &M , where E isa conjunction of equations and M is a conjunction of memberships. For such constraintswe will de�ne suitable uni�ers generalizing ordinary uni�ers for unsorted terms. Uni�ersare a slightly more general and more syntactically oriented alternative to solutions and willplay a central role in Chapter 6, where we will develop uni�cation and constraint solvingmethods. It will turn out that systems of the form E&M have principal uni�ers, providedthey satisfy certain weak well-typedness conditions.An equation system is a possibly empty conjunction of equations. Recall that a mem-bership system is a possibly empty conjunction of memberships. From now on, the letter Ewill always denote an equation system and the letter M will always denote a membershipsystem. We use NF[M] to denote the membership system that can be obtained fromM byreplacing every sort term with its normal form.An equation s := t is trivial if s = t. An equation system is trivial if every equationoccurring in it is trivial. An equation s := t is well-typed under a pre�x P if there existsa sort term � such that P ` s: � and P ` t: �. An equation system is well-typed undera pre�x P if every equation occurring in it is well-typed under P . An equation is well-typed if it is well-typed under the empty pre�x. An equation system is well-typed ifevery equation occurring in it is well-typed.

76 Chapter 5. POS-TypesA uni�er is a pair �P consisting of a substitution � and a normal and inhabited pre�x P . Auni�er of a conjunction E &M is a uni�er �P such that P ` �M and the equation system�E is trivial and well-typed under P . We use U[E&M] to denote the set of all uni�ers ofE&M . We say that a conjunction E &M is uni�able if E&M has a uni�er.Proposition 5.3.1 [Uni�er] Uni�ers have the following properties:1. U[E&M] = U[E]\U[M] = U[E&NF[M]]2. if P is a normal and inhabited pre�x, then�P 2 U[E&M] () P ! �E & �M is valid in T3. if � is an I(T)-assignment, then� 2 I(T)[[E&M]] () (��); 2 U[E&M]4. ??????????4. E&M satis�able in T () E&M satis�able in I(T)() E&M is uni�able5. if U[E&M] � U[E 0&M 0], then U[�E & �M] � U[�E 0& �M 0]6. if U[E&M] � U[E 0&M 0], then I(T)[[E &M]] � I(T)[[E 0&M 0]].Proof. 1. The �rst equation is obvious. The second equation follows from the Normal-ization Theorem.2. Follows from the Soundness and Completeness Theorem for type speci�cations.3. Follows from Proposition 3.6.5 and the Soundness and Completeness Theorem for typespeci�cations.4. The �rst equivalence follows fromCorollary 3.5.3. The direction \)" of the second equiv-alence follows from statement (3). To show the other direction, suppose �P 2 U[E&M].Then we know by statement (2) that P ! �E & �M is valid in T . Since P is inhabited,P is satis�able in I(T) (Corollary 5.2.9). Hence �E & �M is satis�able in I(T). Thus weknow by Lemma 3.3.5 that E&M is satis�able in I(T).5. Let U[E&M] � U[E 0&M 0] and suppose Q 2 U[�E & �M]. Then (�)Q 2U[E&M] � U[E 0&M 0]. Hence Q 2 U[�E 0& �M 0].6. LetU[E&M] � U[E 0&M 0] and suppose � 2 I(T)[[E&M]]. Then we know by statement(3) that (��); 2 U[E &M] � U[E 0&M 0] and hence, again by statement (3), that � 2I(T)[[E 0&M 0]]. 2Recall that a value substitution is a substitution that maps every sort variable to itself. A�nite value substitution � = fx1=s1; : : : ; xn=sng de�nes an equation system E[�] as follows:E[�] := (x1 := s1& : : : & xn := sn):

5.3. Uni�ers and Solution Schemata 77Proposition 5.3.2 Let � be a �nite and idempotent value substitution and P be an in-habited and normal pre�x such that P ` �P . Then �P 2 U[E[�] & P].A principal uni�er is a uni�er �P such that � is a �nite and idempotent value substitution,P ` �P and D� � DP . A principal uni�er of E&M is a principal uni�er �P such thatU[E[�] & P] = U[E&M].Proposition 5.3.3 If �P is a principal uni�er, then �P 2 U[E[�] & P].General Assumption. In the following V is a set of value variables.Proposition 5.3.4 For every conjunction E &M the following holds:T [[E&M]]V = I(T)[[E&M]]V = f�jV j � 2 ASSI(T);�� is normal and inhabited, and(��); 2 U[E&M] g:Proof. The �rst equation follows from Corollary 3.5.3 since T = I(T)�. The direction\�" of the second equation follows from statement (3) of the Uni�er Proposition.To show the direction \�" of the second equation, let � 2 I(T)[[E &M]]. Then we know bythe Uni�er Proposition that (��); 2 U[E&M] and hence by the Normalization Theoremthat NF[��]; 2 U[E&M]. Now let � be some normal and inhabited ground sort term andlet �0 be the I(T)-assignment de�ned as follows: �0(x) = �(x) for every value variable x,�0(�) = � if NF[�(�)] = ?, and �0(�) = NF[�(�)] otherwise. Since NF[��] � ��0 , we knowthat (��0); 2 U[E&M]. This yields the claim since � and �0 agree on V . 2We are now ready to de�ne solved forms for explicitly representing V -solutions.A V -solution schema is a uni�er �P such that1. � is a �nite and idempotent value substitution2. �x is well-typed under P for every x 2 D�3. D� � V , DP � V [I�, and DP and D� are disjoint.A V -solution schema for E &M is a V -solution schema �P such that T [[E&M]]V =T [[E[�] &P]]V .The next theorem makes precise in what sense a V -solution schema represents the solutionsof a constraint \explicitly".Theorem 5.3.5 [Solution Schema] Let �P be a V -solution schema for E&M . ThenE&M is satis�able in T . Furthermore, if V � DP [D�, thenT [[E&M]]V = I(T)[[E&M]]V = f(�)jV j ` Pg:

78 Chapter 5. POS-TypesProof. Since �P is a V -solution schema for E&M , we know that T [[E&M]]V =T [[E[�] &P]]V . Hence E&M is satis�able in T if E[�] & P is uni�able. Since DP and D�are disjoint and �x is well-typed under P for every x 2 D�, Q := P & fx: �P [�x] j x 2 D�gde�nes a pre�x. Since P is normal and inhabited, we know by the Normalization Theoremthat Q is normal and inhabited. Now it's easy to verify that �Q 2 U[E[�] & P].To show the second claim, let V � DP [D�. Since the �rst equation has been already estab-lished in the preceding proposition, it su�ces to show that I(T)[[E[�] & P]]V = f(�)jV j ` Pg.\�". Let � 2 I(T)[[E[�] & P]]. Then we know by the Uni�er Proposition that (��); 2U[E[�] & P] and hence that �� = ��� and ` ��P . Thus �jV = (��)jV = (���)jV 2 f(�)jV j ` Pg.\�". Let ` P . Furthermore, let � be a sort substitution such that �� is ground for everysort variable �. Then ` � P .First we show that � �x = �x is a well-typed ground value term for every x 2 DP [D�.If x 2 DP , then x =2 D� and hence �x = x. Thus ` �x: Px since ` P . If x 2 D�,then P ` �x: � for some � and hence ` �x: � since ` P .Hence there exists an I(T)-assignment � such that �x = � �x for every x 2 DP [D� and�� = � �� for every sort variable. Since V � DP [D�, we know that � agrees with � �on V . Furthermore, � and � � agree on every variable occurring in E[�] & P . Hence weknow by the Uni�er Proposition that it su�ces to show that (� �); 2 U[E[�] &P].Since ` � P and D� and VP are disjoint, we know ` � �P . Since � is idempotent, weknow that � � = � �� and hence that � �E[�] is trivial. Furthermore, since we know that� �x is well-typed for every x 2 D�, we know that � �E[�] is well-typed. 2The �nal theorem of this section tells us that we can obtain a V -solution schema for Ffrom a principal uni�er of F by throwing away redundant information.Theorem 5.3.6 [Garbage Collection] Let �P be a principal uni�er of E&M and W =(V � D�) [I(�jV). Then (�jV)P jW is a V -solution schema for E &M .Proof. It is easy to verify that (�jV)P jW is a V -solution schema. Since �P be a prin-cipal uni�er of E&M , we know U[E[�] & P] = U[E&M] and hence I(T)[[E[�] &P]]V =I(T)[[E&M]]V by the Uni�er Proposition. Thus it su�ces to show that I(T)[[E[�] &P]]V =I(T)[[E[�jV] &P jW]]V .\�". Since E[�jV] &P jW � E[�] & P , we know that I(T)[[E[�] & P]]V � I(T)[[E[�jV] &P jW]]V .\�". Let � 2 I(T)[[E[�jV] &P jW]]. We have to show that there exists a �0 2 I(T)[[E[�] & P]]that agree with � on V . By the preceding proposition we know that we can assume withoutloss of generality that �� is inhabited. Let := ��. Then we know that ` (P jW) and that x = �x for every x 2 V . Since �P is a principal uni�er we also know that P ` �:P .Let X := DP � (D� [W) and Y := D� � V . Then we know that DP � D� [W [X andthat D�, W and X are pairwise disjoint. Since P and are inhabited, we can choose a

5.3. Uni�ers and Solution Schemata 79value substitution ! such that D! = X and ` !x: Px. Since !x is ground for x 2 X , weknow that ` !(P jX).Now let � := !�. Then �� = � for every sort variable �. Furthermore, if x =2 X [Y ,then �x = x. To see this, suppose x =2 X [Y . If x =2 DP , then �x = !�x = !x = xsince x =2 X = D!. If x 2 D�, then x 2 D� \ V since x =2 Y . Hence V�x � I(�jV) isdisjoint with X = D!. Hence �x = !�x = �x = x since x 2 D� \ V .Since V , X and Y are pairwise distinct, we know that � agrees with � on V . Furthermore,� maps every sort variable to a ground sort term and every value variable to a well-typedground value term. Thus � extends a I(T)-assignment. Hence it su�ces to show that�; 2 U[E[�] &P].First we show that ` �P . Since we know ` (P jW) and D! = X is disjoint with W , wehave ` !(P jW). Since we know ` !(P jX), we have ` !(P jX[W). Since we know P `�P and I� � X [W , we have P jX[W ` �(P jD�). Hence we know ` !�(P jD�). Thus `�(P jD�). Since ` (P jW) and W and D�[D! are disjoint, we know that ` !�(P jW) andhence ` �(P jW). Since we know that ` !(P jX) and !x is ground for every x 2 X = D!,we know that ` !�(P jX) and hence ` �(P jX). Thus ` �P since DP � D� [W [X .To show that �E[�] is trivial, it su�ces to show that � = ��. This is the case since � isidempotent and hence � = !� = !�� = ��.To show that �E[�] is well-typed, it su�ces to show that �x is well-typed for every x 2 D�.This is the case since D� � DP and we have already shown that ` �P . 2Proposition 5.3.7 If � is a sort substitution, then T [[E& �M]]V � T [[E &M]]V .Proof. Let � 2 T [[E& �M]] and de�ne �0 as follows: �0(x) = �(x) for every value variablex and �0(�) = T [[��]]� for every sort variable �. Then we know by Lemma 3.3.2 that�0 2 T [[E&M]]. Since � and �0 agree on all value variables, we have the claim. 2

80 Chapter 5. POS-Types

Chapter 6POS-Constraint Solving6.1 The Constraint Solver6.2 Well-Typedness in Pyramids6.3 Approximations6.4 P-In�ma and Mergings6.5 Solving PM-Systems6.6 Solving PE-Systems6.7 Proof of the HauptsatzWe have now arrived at the heart of this thesis. This chapter presents the constraint solverto be employed in the interpreter for relational programs over POS-types. The constraintsolver must solve constraints of the form P &E, where E is typically not well-typed underP . This is in sharp contrast to logic programming over order-sorted types, where theconstraints produced by the interpreter are always well-typed.Suppose the program in Figure 1.1 is executed with the well-typed queryL: list(int) & append(nil; cons(p(o); nil); L):Then reduction with the �rst clause of append yields the constraintL: list(int) & L0: list(�)& nil := nil& cons(p(o); nil) := L0& L := L0whose second and third equation are not well-typed under the pre�x of the constraint.Clearly, the ill-typedness is caused by the fact that the \right" instantiation of the sortvariable � is missing.Thus a constraint solver for logic programming over POS-types must deal with a furtherproblem that doesn't show up at all with order-sorted types. Understanding and solving81

82 Chapter 6. POS-Constraint Solvingthis problem was the major di�culty in successfully �nishing the research reported in thisthesis.It is clear that the constraints produced by the interpreter are not completely ill-typed butdo have a strong structural property. What made things di�cult is that the initial structureof the constraint is not preserved by the constraint solving rules. Thus what I had to �ndwas a su�ciently strong invariant that is preserved by the constraint solving rules, and thisinvariant turned out to be complex. Of course, now that we have the invariant things aresimple again.The algorithm I will present in this chapter comes with several powerful optimizationsexploiting the structure asserted by the invariant. In particular, it solves a problem that hasbeen bugging me for quite some time: if an order-sorted uni�cation algorithm is applied to amany-sorted equation system, all the sort-related computations it performs are redundantand are thus wasted time. A uni�cation algorithm for POS-equation systems is a lotmore general than an order-sorted algorithm and thus the overhead for unnecessary sortcomputations increases dramatically. Now the rule of the game in logic programming isspeed, and if one looks at practical applications there are only a few (but important) placeswhere nonredundant sort computations are necessary. So what we need to arrive at apractical theory of logic programming over POS-types is a constraint solver that does onlythe nonredundant sort computations and doesn't spend any time with unnecessary sortcomputations.Fortunately, the problem does have a beautiful solution. The key idea is to not computewith the actual sort terms but with approximations that are obtained from the sort terms inthe program and the query at compile-time. The approximations are obtained by replacingsort terms that are maximal with respect to the inclusion order with a wildcard symbolthat can be thought of as a \no operation" code. For instance, ifpair(int; list(string))is maximal, we can just replace it with the wildcard symbol ` '. Moreover, if we have thesort term pair(nat; list(string));where nat is the only nonmaximal sort symbol involved, we can still replace it with theapproximation pair(nat;):Once the computation is �nished, we are nevertheless able to print the exact answers sincethere exists a retract function computing the actual sort terms from their approximationsand the initial sorts of the variables we were solving for.The �rst section of this chapter presents the complete algorithm and states its propertiesin the Hauptsatz|the main result of this thesis. The following six sections explain whythe constraint solver works by stepwise developing the proof of the Hauptsatz.

6.1. The Constraint Solver 836.1 The Constraint SolverThis section presents the constraint solving algorithm. If you just want to know how thealgorithm works (for instance, if you want to implement it), this section will su�ce and youcan skip the rest of this chapter. If, however, you want to know why the algorithm works,you will have to work yourself through the remaining six sections of this chapter.In this section we devise enough notation to state our main result, the so-called Hauptsatz,which gives the precise precondition under which the constraint solver is correct. TheHauptsatz and a few results of Section 6.2 is all that is needed for the proofs of the nextchapter, where we will �nally give an operational semantics for relational programs overPOS-types.6.1.1 ApproximationsFor many-sorted uni�cation one can just take an unsorted uni�cation algorithm while fororder-sorted uni�cation one needs a more complex algorithm computing with sorts. One,of course, can take the order-sorted uni�cation algorithm as well for doing many-sorteduni�cation, but only at the price of paying the overhead for the then unnecessary sortcomputations. This situation remains unchanged if we have sort functions: as long asthere are no inclusional axioms, any unsorted uni�cation algorithm will do the job (see[MO84]). But in the presence of sort functions and subsorts computations with sorts aremore complex and hence the overhead of a general algorithm with respect to an unsortedalgorithm increases. So wouldn't it be nice if we had an algorithm that automatically adaptsto the uni�cation problem to be solved and always just does the work that is absolutelynecessary?Now, the constraint solver presented here is such an automatically adapting algorithm. Theadaptation is accomplished by a compilation replacing every sort term in the program andthe query with an approximation containing just the nonredundant information. Everysort term that is maximal with respect to the inclusion order is replaced with the wildcardsymbol saying that no sort related computation is necessary. For instance, ifpair(int; list(string))is maximal, we can just replace it with the wildcard symbol ` '. Moreover, if we have thesort term pair(nat; list(string));where nat is the only nonmaximal sort symbol involved, we can still replace it with theapproximation pair(nat;):Once the computation is �nished, we are nevertheless able to print the exact answers sincethere exists a retract function computing the actual sort terms from their approximationsand the initial sorts of the variables we were solving for.Now that you have got the idea, let's start with the technical de�nitions.

84 Chapter 6. POS-Constraint SolvingA sort function symbol is called maximal if it is maximal with respect to the partial order\� � �". A sort term is called maximal if it is maximal with respect to the partial order\� � �".From now on we assume that the symbol ` ', called wildcard, is a sort variable. De�ningwildcard as a sort variable is technically convenient, but, be warned, rather than behavinglike a sort variable, wildcard behaves like a maximal sort having all values as elements.A sort term is called an approximation if it is ground or if it contains no variable butpossibly the wildcard symbol. An approximation is called a weakest approximationif it is a normal sort term and contains no maximal subterm but the wildcard symbol.The constraint solver will only compute with weakest approximations. Keep in mind thatapproximations are syntax and that their denotations aren't meaningful.The weakest approximation #� of a sort term � can be computed as follows:#� =#�(~�) = 8<: if � is maximal and #~� = (; : : : ;)? if �(#~�) is top-level void�(#~�) otherwise.It is easy to verify that the weakest approximation of a sort term is in fact a weakestapproximation. The weakest approximation #P of a pre�x P is de�ned as#P := fx: #Px j x 2 DPg:Replacing every sort term with its weakest approximation is the compilation step requiredby our constraint solver. Since this eliminates all occurring sort variables (except wild-card, but wildcard is just technically a sort variable), our constraint solver doesn't have tocompute with sort variables.Next we de�ne the retract operation, which is the inverse of the weakest approximationoperation and decompiles an approximation back into the actual sort term it stands for.The following equations de�ne a computable partial function \� " �" from sort terms tosort terms: � " � = ��(~�) " � = �(~� " ~�) if �)� �(~�).If � " � is de�ned, then � " � is called the retract of � with respect to � . The retractfunction is extended to pre�xes as follows:P " Q = fx: (Px " Qx) j x 2 DP \ DQg:In Section 6.3 we will show that � = (#�) " �if � is normal and � � � .If the constraint solver computed with the actual sort terms, the main sort-related operationwould be computing NF[�u�] from � and � . The following equations de�ne a computable

6.1. The Constraint Solver 85total function \� # �" from approximations to approximations simulating this operation:# � = �� # = ��(~�) # �(~�) = �? if �(~�) is top-level void�(~�) otherwiseif � = � u �; �(~�))� �(~�1); �(~�))� �(~� 1); and~� = (#~�1) # (#~� 1):If � # � is de�ned, then � # � is called the merging of � and � .For reasons of e�ciency the merging operation integrates the in�mum computation withthe reduction to normal form.In Section 6.4 we will show that the merging of two weakest approximations is again aweakest approximation.6.1.2 The Constraint Solving RulesThe constraint solver is organized in two levels. The equation level consists of the usualuni�cation rules for equations and calls the sort level only if it attempts to bind a variablex to a term s. The sort level deals with memberships and reduces the membership s:Pxconsisting of s and the current sort quali�cation of x under the current sort quali�cationsof the variables in s. For instance, if we take the type speci�cation of Figure 1.1 and havePx = list(posint) and s = cons(y; z), we may have to solve the constrainty: nat& z: list(negint) & cons(y; z): list(posint);which reduces to the satis�able constrainty: posint& z: list(?):Let's start with the reduction rules for memberships. The following rules de�ne a decidablebinary relation m�! on pairs P:M consisting of a pre�x and a membership system:1. P: s: &M m�! P:M2. P & x: �: x: � &M m�! P & x: (� # �):Mif � # � 6= ? and � 6=3. P: f(~s): �&M m�! P:Mif f : ~� ! �(~�) 2 T , �)� �(~�), and ~� is ground4. P: f(~s): �&M m�! P:~s : #(f~�=~�g~�) &Mif f : ~� ! �(~�) 2 T , �)� �(~�), and ~� is not ground.Initially, the pair to be solved has the form P: s:Px, where the pre�x P represents the cur-rent sort quali�cations of the variables and s:Px is the membership that must be satis�edto validate the binding of x to s. The �rst rule says that a membership s: is redundant

86 Chapter 6. POS-Constraint Solvingand can be thrown away. Hence, if the sort quali�cation of x is wildcard, no sort-relatedaction needs to be taken to validate the binding x=s. The second rule reduces a constraintx: �& x: � to x: (� # �), provided the actual sort terms � and � stand for have a nonemptyintersection. The third and the fourth rule solve nontrivial memberships. The third rule isan important optimization for monomorphic value functions, for which it su�ces to checkthat the declared codomain satis�es the required sort. Only for polymorphic functions itis necessary to actually decompose the membership and solve the memberships consistingof the argument terms and the instantiated sort terms declared for the arguments. Theconstraint in the example above can be reduced by �rst applying the polymorphic decom-position rule and then applying the merging rule twice.Proposition 6.1.1 There are no in�nite chains P:M m�! P 0:M 0 m�! � � �. Furthermore, ifP:M m�! P 0:M 0 and every sort term in P:M is a weakest approximation, then every sortterm in P 0:M 0 is a weakest approximation.A pair P:M is called don't care if P:M m�!�Q: ; and P:M m�!� P 0:M 0 always impliesP 0:M 0 m�!�Q: ;. If P:M is don't care, then the choice which m�! -rule is applied where isdon't care nondeterministic. The equation level of the constraint solver will call the sortlevel only with don't care pairs.Next let's give the equation level of the constraint solver, which consists of a suitable variantof the ordinary uni�cation rules [MM82], where the variable binding rule is augmented withthe already discussed hook to the sort level. The following rules de�ne a computable binaryrelation e�! on triples P: �:E:1. P: �: E& x := x e�! P: �: E2. P: �: E& f(~s) := f(~t) e�! P: �: E & ~s := ~t3. P: �: E& s := x e�! P: �: E& x := sif s is no variable4. P: �: E& x := s e�! Q: fx=sg�: fx=sgEif x =2 Vs and P: s:Px m�!�Q: ;.A triple P: �: E consists of a pre�x P representing the current sort quali�cations of thevariables, a substitution � representing the variable bindings already made, and an equationsystem E still to be solved. To solve a constraint P &E, the constraint solver attempts toreduce the triple #P: ;:E. The reductions succeeds if a \solved" triple #P: ;:E e�!�Q: :;can be obtained, and this will be the case if and only if P &E is satis�able. The Hauptsatzto be stated soon will give the precise retract function (recall, the solver starts with theweakest approximation of P and hence the obtained sort quali�cations represented by Qwill only be approximations) and the precondition on P &E under which the constraintsolver is correct. As you will expect, the application of the equation reduction rules is don'tcare nondeterministic.Proposition 6.1.2 There are no in�nite chains P: �: E e�! P 0: �0:E 0 e�! � � �. Furthermore,if P: ;:E e�! Q: �: E 0, then

6.1. The Constraint Solver 871. DQ = DP and D� [I� [VE 0 � VE2. � is idempotent and D� and VE 0 are disjoint3. if every sort term in P is a weakest approximation, then every sort term in Q is aweakest approximation.Proof. Suppose there is an in�nite chain P: �: E e�! P 0: �0: E 0 e�! � � �. Since no rule in-creases the number of variables in E, this number is decreased by the fourth rule, the �rstand the second rules reduce the size of E, and the third rule does not change the size of E,there must be an in�nite chain employing only the third rule, which is impossible.The other claims are easy to verify. 26.1.3 PyramidsBy now you know the algorithm. What you don't know is the precondition under whichit works. From the reduction rules for memberships it's clear that there must be somestrong invariant since otherwise the wildcard rule and the monomorphic decompositionrule couldn't possibly work.The precondition is delicate and it took me many absent-minded walks around a certainblock in Stuttgart until I came up with it. A su�cient precondition is to require of theconstraint P &E to be solved thatE is well-typed under P , but this is too strong a conditionto be satis�ed by the constraints produced by the interpreter for POS-programs. To seethis, recall the program in Figure 1.1 and suppose we want to reduce the queryL: list(int) & append(cons(o; nil); cons(p(o); nil); L):A �rst reduction step with the second clause of append yields the goalL: list(int) &H:�& R: list(�) & L0: list(�) &RL: list(�) &cons(o; nil) := cons(H;R) & cons(p(o); nil) := L0& L := cons(H;RL) &append(R; L0;RL)whose equations are certainly not well-typed under the sort quali�cations of the goal.Things get more complicated if we reduce again, this time with the �rst clause of append:L: list(int) &H:�& R: list(�) & L0: list(�) &RL: list(�) & L00: list(�) &cons(o; nil) := cons(H;R) & cons(p(o); nil) := L0& L := cons(H;RL) &R := nil& L0 := L00& RL := L00:From this example we can see that the constraints produced by the interpreter are well-typed modulo application of certain sort substitutions existing for every reduction step.In the example above, f�=intg is a suitable substitution for the �rst reduction step, andf�=�g is a suitable substitution for the second reduction step. For the correctness proof togo through it will be necessary to have the precise structure of the supporting sequence ofsort substitutions available, which will be called a pyramid. The intuition is that a pyramidis created according to a stack discipline: each reduction step pushes a new layer on top

88 Chapter 6. POS-Constraint Solvingand extends the existing layers by right hand composition with the new layer. (This is alittle bit simpli�ed, but Chapter 7 will tell you all the glory details.)My argumentation indicates that the correctness proof will take the viewpoint that thegoal is �rst reduced using only goal reduction. Only after all atoms have been eliminated,the solution of the piled up constraint system is attempted, where the constraint systemis well-typed modulo the simultaneously obtained pyramid. Of course, in practice such astrategy would be disastrous since unsatis�able parts of the search space couldn't be prunedearly. Fortunately, the structure of the constraint solving rules is incremental enough toallow incremental constraint solving just in the same way it is done in ordinary Prolog.Let's now start with the formal de�nitions. It will be tough to get all this stu� into yourhead, but the proof of the Hauptsatz doesn't come for less. A good strategy might be to onlyskim the following de�nitions (which I will talk you through in Section 6.2), look carefullyat the Hauptsatz, and then go immediately to Chapter 7. Once you have read Chapter7, you will know how the constraint solver is integrated with the rest and that everythingworks out well. Then you should be well-prepared for the guts of this Chapter, which lookmore intimidating than they actually are. Once you can properly visualize pyramids andthe corresponding notion of well-typedness in your mind, everything will turn out to berather simple.A pyramid is a �nite sequence � = �0�1 � � ��n of inhabited sort substitutions such thatn � 0 and1. �0 = ;2. �i = �i�j if n � i � j � 03. D�i [I�i � D�i+1 if 0 � i � n� 1.If � = �0�1 � � ��n is a pyramid, we will often use � to denote �n. We call n the heightof �. The pyramid of height 0 consists only of the empty substitution and is called thetrivial pyramid.Let SV be the set of all sort variables. A pyramid � = �0�1 � � ��n de�nes a partitionSV = SV0] � � �] SVn as follows:SVi := D�i+1 �D�i if i 2 0::n� 1SVn := SV� D�n:Proposition 6.1.3 Let � = �0�1 � � ��n be a pyramid. Then:1. SV = SV0] � � �] SVn2. D�i = SV0] � � �] SVi�1 if i 2 1::n3. I�i � SVi if i 2 0::n4. �i�j = �j�i if i; j 2 0::n.

6.1. The Constraint Solver 89In the following we assume that � = �0�1 � � ��n is a pyramid.If � is a sort variable, we say that � has level i and write �� = i if � 2 SVi.A sort term is called �-admissible if all sort variables occurring in it have the same levelwith respect to �. A pre�x is called �-admissible if every sort term occurring in it is�-admissible.The level �� of a �-admissible sort term is de�ned as follows:�� = �n if � is groundi if � is not ground and 8� 2 V�: �� = i.Proposition 6.1.4 �-admissible sort terms have the following properties:1. if � is �-admissible, then �i� is �-admissible for every i 2 0::n2. if � � � and � is �-admissible, then � is �-admissible, �� � �� , and �� = �� if �contains a variable3. if � is �-admissible and i � ��, then �i� = �4. if � is �-admissible, then ��i� = maxfi; ��g.If P is a �-admissible pre�x and s is a value term such that Vs � DP , then the level �Psof s with respect to P is de�ned as�Ps := �n if s is groundminf�Px j x 2 Vsg otherwise.We now generalize ordinary well-typedness to well-typedness modulo pyramids. The fol-lowing rules de�ne inductively a relation \P `� s: �" taking a �-admissible pre�x P , avalue term s and a �-admissible sort term � as arguments:1. P `� x: � if Px � ��Px�2. P `� s:� if s is no variable, �Ps > ��, and P `� s: ��Ps�3. P `� f(~s): � if f : ~� ! �(~�) 2 T , �)� �(~�) and P `� ~s : f~�=~�g~� .This de�nition will be discussed in Section 6.2.If � is the trivial pyramid, then P ` s: � if and only if P `� s: �. Thus well-typednessmodulo pyramids generalizes ordinary POS-well-typedness.6.1.4 The HauptsatzFirst we state the precise precondition under which the constraint solver is correct.A constraint P &E is called V -admissible if there exists a pyramid � such that1. P is a normal, inhabited and �-admissible pre�x

90 Chapter 6. POS-Constraint Solving2. E is an equation system such that for every equation s := t 2 E there exists a �-admissible sort term � such that P `� s: � and P `� t: �3. V � DP and Px = �Px for every variable x 2 V .Proposition 6.1.5 Let P be a normal and inhabited pre�x and let the equation systemE be well-typed under P . Then P &E is DP -admissible.Proof. Take the trivial pyramid. 2The following de�nes the �nal retract operation, where Q is the computed approximatingpre�x, represents the computed variable bindings, and P is the pre�x representing theinitial sort quali�cations:" [Q; ; P] := E[jDP] & (Q " GP[P])if (jDP)(Q"GP[P]) is a DP -solution schema.Theorem 6.1.6 [Hauptsatz] Let T be a fully inhabited type speci�cation and let P &Ebe V -admissible. Then:1. P &E is satis�able in T if and only if there exist Q and such that #P: ;:E e�!�Q: : ;2. if #P: ;:E e�!�Q: : ;, then T [[P &E]]V = T [[" [Q; ; P jV]]]V3. if #P: ;:E e�!�Q: �: E 0& x := s, then Q: s:Qx is don't care4. if #P: ;:E e�!�Q: �: ; and #P: ;:E e�!�Q0: �0:E 0, then there exist Q00 and �00 suchthat Q0: �0:E 0 e�!�Q00: �00: ;.The �rst two statements say that the constraint solver does what it is supposed to, andthe next two statements say that all choices involved in the application of the constraintsolving rules are don't care nondeterministic.6.2 Well-Typedness in PyramidsThis section investigates the properties of the membership relation \P `� s: �". I will tryto talk you through the de�nitions made in Subsection 6.1.3 and give you some of myvisualizations.General Assumption. Here and in the rest of this chapter we assume that T is atype speci�cation, � = �0�1 � � ��n is a pyramid, and that every occurring sort term is�-admissible.Recall the a pyramid of height n partitions the set of sort variables into n classes. It is usefulto think of this classes as classes of informedness. Sort variables of level n (the maximallevel) are fully informed and sort variables of a lower level are partially informed.

6.2. Well-Typedness in Pyramids 91Recall that a sort term is admissible if all sort variables occurring in it have the same levelof information. All sort terms we need to consider in this chapter will be admissible. Hencewe can say that a ground sort term is fully informed, and that a sort term containing sortvariables is informed at the same level the variables occurring in it are informed.Every layer �i of the pyramid is an information providing function that maps all variablesof an information level less than i to sort terms that are either ground or are informed atlevel i. Variables of level i or higher are not a�ected by �i.If � is admissible and we apply the information layer �i to �, then there are two possibilities:if � is already informed at level i or higher, then � = �i�; otherwise, �i� 6= � and �i� iseither ground or informed at level i.We now generalize the inclusion order to pyramids:� �� � :() � � ����:The idea is to tolerate that � is less informed than �. This is accomplished by informing �up to the level of � before testing the ordinary inclusion relation.Proposition 6.2.1 The relation \� �� �" has the following properties:1. if � � �i� , then � �� � ; in particular, if � � � , then � �� �2. if � �� � , then �� � ��3. \� �� �" is a partial order on the set of all �-admissible sort terms4. (Orthogonality) if � �� � , �)� �(~�) and �)� �(~�), then ~� �� ~� .Proof. 1. Let � � �i� . Then �� � i and hence � = ���� � ����i� = ���� .2. Let � � ���� . If � is ground, then �� = n � �� . If � contains a variable, then�� = ����� = maxf��; ��g and hence �� � �� .3. Since ���� = �, we know that \� �� �" is reexive. To show the antisymmetry,suppose � �� � and � �� �. Then we know by statement (2) that �� = �� . Hence� � ���� = � and � � ���� = � and thus � = � since \� � �" is a partial order. To showthe transitivity, suppose � �� � and � �� �. Hence �� � �� by statement (2) and hence� � ���� � ������� = ����.4. Let � � ���� , �)� �(~�) and �)� �(~�). Then ~� � ���~� . If a component �i of ~� isground, then ��i � �� and hence �i = ���i�i � ���i����i = ���i�i. If a component �i of~� contains a variable, then ��i = �� and hence �i � ���i�i. 2Let P be a pre�x. In Subsection 6.1.3 we have assigned to every value variable in DP theinformation level of its sort quali�cation Px. For a value term s that is pyramid well-typedwith respect to P it's not possible to require that all value variables occurring in s areinformed at the same level. Hence we have de�ned that s is fully informed if s is groundand that s is informed at the level of the least informed value variable occurring in it if sis not ground (this is the de�nition of �Ps, remember?).

92 Chapter 6. POS-Constraint SolvingNow look again at the de�nition of the pyramid membership relation \P `� s: �" in Sub-section 6.1.3. Analogously to the pyramid inclusion order \� �� �", the relation \P `�s: �" tolerates that � is less informed than P . Things will become clearer as we state andprove more properties.Proposition 6.2.2 If P ` s: �, then P `� s: �.Proof. Let P ` s: �. We prove P `� s: � by induction on s.If s = x, then Px � � and hence Px �� �. Hence P `� s: �.If s = f(~s), then we have f : ~� ! �(~�) 2 T , �)� �(~�) and P ` ~s : f~�=~�g~� . Hence weknow P `� ~s : f~�=~�g~� by the induction hypothesis and thus P `� s: �. 2Proposition 6.2.3 If P `� s: �, then �P ` s: ��.Proof. Let P `� s: �. We prove �P ` s: �� by induction on the pair (jsj; n� ��) withrespect to the canonical lexicographic order, where jsj is the size of s and n is the height ofthe pyramid �.Let s = x. Then Px � ��Px� and hence �Px � ��. Hence �P ` x: ��.Let s = f(~s) and � be a variable. Then �Ps > �� and P `� s: ��Ps�. Hence we have �P `s: ���Ps� by the induction hypothesis, which yields �P ` s: �� since ���Ps� = ��.Let s = f(~s) and � not be a variable. Then we have f : ~� ! �(~�) 2 T , �)� �(~�) andP `� ~s : f~�=~�g~� . Hence we know �P `� ~s : �f~�=~�g~� by the induction hypothesis andthus �P ` s: ��. 2Proposition 6.2.4 If P `� s: � and P is inhabited, then � is inhabited.Proof. Let P `� s: � and P be inhabited. By the preceding proposition we know that�P ` s: ��. Since P and � are inhabited, �P is inhabited. Hence we know by Corollary5.2.9 that �� and hence � is inhabited. 2The Monotonicity Lemma says that P `� s: � can only hold if � is at most as informed ass with respect to P :Lemma 6.2.5 [Monotonicity] If P `� s: �, then �Ps � ��.Proof. Let P `� s: �. We prove by induction on s that �Ps � ��.If s = x, then Px �� � and hence �Ps = �Px � ��.Let s = f(~s). If � = �, then �Ps > �� by the de�nition of \P `� s: �". Otherwise, wehave f : ~� ! �(~�) 2 T , �)� �(~�) and P `� ~s : f~�=~�g~� . By the induction hypothesis wehave �Psi � �f~�=~�g�i for every component. Hence �Ps = mini �Psi � mini �f~�=~�g�i = ��since V(f~�=~�g�i) � V�. 2The Flexibility Lemma, which will be used in many proofs to come, says that P `� s: �remains valid if one withdraws information from � or adds information to � (only up tolevel �Ps, of course).

6.2. Well-Typedness in Pyramids 93Lemma 6.2.6 [Flexibility] If P `� s: �i� and j � �Ps, then P `� s: �j�. Furthermore,if P `� s: �i�, then P `� s: �.Proof. We �rst show the second claim using the �rst claim. Suppose P `� s: �i�. Then�Ps � ��i� � �� by the Monotonicity Lemma. Hence we know by the �rst claim that P `�s: ����, which yields P `� s: � since � = ����.To show the �rst claim, let P `� s: �i� and j � �Ps. We prove P `� s: �j� by inductionon the triple (jsj; n� i; n� j) with respect to the canonical lexicographic order, where jsjis the size of s and n is the height of the pyramid �.Let s = x. Then Px � ��Px�i� and �Px � j. Hence �Px � i and thus Px � ��Px�i� =��Px(�j�), which yields P `� x: �j�.Let s = f(~s) and �i� be a variable. Then �Ps > ��i� � i; �� and P `� s: ��Ps�. HenceP `� s: �j� by the induction hypothesis.Let s = f(~s) and �i� not be a variable. We distinguish two cases.1. Let �j� be a variable. Then we know �Ps � i � j by the Monotonicity Lemma andhence P `� s: ��Ps� by the induction hypothesis. Hence P `� s: �j� by the de�nition of\P `� s: �".2. Let �j� be no variable. Then we distinguish once more two cases.2.1. Let i � j. Then we have f : ~� ! �(~�) 2 T , �i�)� �(~�) and P `� ~s : f~�=~�g~� . Sincej � �Ps = min �P~s , we have by the induction hypothesis that P `� ~s : �jf~�=~�g~� . Since�j� = �j(�i�))� �(�j~�), we have P `� s: �j�.2.2. Let j < i. Then we have f : ~� ! �(~�) 2 T , �i�)� �(�i~�), �j�)� �(�j~�), and P `�~s : �if~�=~�g~� . Since j < i � �Ps = min�P~s , we have by the induction hypothesis that P `�~s : �jf~�=~�g~� and hence P `� s: �j�. 2The remaining three lemmas of this section show that the major properties of the ordinarymembership relation are kind enough to generalize to the pyramid membership relation.Lemma 6.2.7 [Upper Weakening] If P `� s: � and � �� � , then P `� s: � .Proof. Let P `� s: � and � � � . We prove by induction on s that P `� s: � . Togetherwith the Flexibility Lemma this yields the claim of the lemma.If s = x, then Px �� � �� � and hence P `� s: � .Let s = f(~s). If � is a variable, then � = � , which yields the claim trivial. Otherwise, wehave f : ~� ! �(~�) 2 T , �)� �(~�) and P `� ~s : f~�=~�g~� , �)� �(~�), and ~� � ~� . HenceP `� ~s : f~�=~� g~� by the induction hypothesis and thus P `� s: � . 2Lemma 6.2.8 [Normalization] If P `� s: � and P is normal, then P `� s: NF[�].Proof. Let P `� s: � and let P be normal. We prove by induction on s that P `�s: NF[�].

94 Chapter 6. POS-Constraint SolvingIf s = x, then Px � ��Px�. Hence Px = NF[Px] � NF[��Px�] � ��PxNF[�] and thusP `� x: NF[�].If s = f(~s) and � is a variable, then � = NF[�] and hence the claim is trivial.If s = f(~s) and � is not a variable, then we have f : ~� ! �(~�) 2 T , �)� �(~�) andP `� ~s : f~�=~�g~� . Hence we have P `� ~s : NF[f~�=~�g~�] by the induction hypothesis andthus P `� ~s : f~�=NF[~�]g~� by the Upper Weakening Lemma. Hence P `� s: �(NF[~�]).Since P is inhabited, �(~�) is inhabited and hence NF[�(~�)] = �(NF[~�]). Since �)� �(~�),we have �(NF[~�]) = NF[�(~�)] � NF[�]. Hence P `� s: NF[�] by the Upper WeakeningLemma. 2We extend \P `� s: �" to membership systems as one would expect:P `� M :() 8 s: � 2M: P `� s: �:Lemma 6.2.9 [Substitution] Let � be a value substitution, Q `� �P and P `� s: �.Then Q `� �s: �.Proof. We prove Q `� �s: � by induction on the pair (jsj; n� ��) with respect to thecanonical lexicographic order, where jsj is the size of s and n is the height of the pyramid�.Let s = x. Then Px �� � and Q `� �x:Px. Hence Q `� �x: � by the Upper WeakeningLemma.Let s = f(~s) and � be a variable. Then �Ps > �� and P `� s: ��Ps�. Hence we have Q `��s: ��Ps� by the induction hypothesis, which yields Q `� �s: � with the Flexibility Lemma.Let s = f(~s) and � not be a variable. Then we have f : ~� ! �(~�) 2 T , �)� �(~�) andP `� ~s : f~�=~�g~� . Hence we know Q `� �~s : f~�=~�g~� by the induction hypothesis and thusQ `� �s: �. 26.3 ApproximationsGeneral Assumption. In this section we assume that T is fully inhabited.We now show that one can compute the weakest approximation #� of a sort term � witha conuent and terminating rewrite system that contains the normalization rule of Section5.2. The characterization of weakest approximations as normal forms of a convergent systemof simpli�cation rules will provide for pleasant proofs of their properties.We write � a�! � if one of the following conditions holds:1. � can be obtained from � by replacing a variable subterm � 6= with2. � can be obtained from � by replacing a subterm �(; : : : ;) such that � is maximalwith

6.3. Approximations 953. � can be obtained from � by replacing a top-level void subterm � 6= ? with ?.Proposition 6.3.1 The relation � a�! � is terminating and conuent.Proof. The termination follows from the fact that every reduction step reduces k + l,where k is the number of occurrences of sort function symbols di�erent from ? and l is thenumber of occurrences of sort variables di�erent from . Furthermore, � a�! � is locallyconuent since a replacement according to condition (2) cannot overlap with a replacementaccording to condition (3) because T is fully inhabited. Hence we know that � a�! � isconuent. 2Proposition 6.3.2 A sort term � is the normal form of a sort term � with respect to a�!if and only if � = #�. Furthermore, the weakest approximations are exactly the normalforms of \� a�! �".If � and are substitutions, we write � a�!� if � and agree on every value variable and�� a�!� � for every sort variable �.The relation \� a�! �" is extended to pre�xes as follows:P a�!�Q :() DP = DQ ^ 8 x 2 DP : Px a�!�Qx:Note that \P a�!�Q" is again terminating and conuent, and that the weakest approxi-mation #P de�ned in Section 6.1 is in fact the a�! -normal form of P .Theorem 6.3.3 [Approximation] The approximation relation \� a�! �" has the follow-ing properties:1. if � n�!� � , then � a�!� �2. if � a�!� � , then � is inhabited if and only if � is inhabited3. � is void () #� = ? () NF[�] = ?4. � is maximal () #� =5. if � a�!� , then �� a�!� �6. (Orthogonality) if � a�!� � , �)� �(~�) and �)� �(~�), then ~� a�!� ~�7. if � a�!� � , � is an approximation, and �� is maximal for every � 2 V�, then �� a�!�� .Proof. 1. Obvious.2. Let � a�! � . We prove by induction on � that � is inhabited if and only if � is inhabited.If � = �, then � = and hence the claim is trivial.Let � = �(~�). If � = , then � = �(; : : : ;) 6= ? and hence � is inhabited, which yieldsthe claim trivial. If � = ?, then � is top-level void and hence void, which yields the claim

96 Chapter 6. POS-Constraint Solvingtrivial. Otherwise, we have � = �(~�) and ~� a�!� ~� . By the induction hypothesis we knowthat a component of ~� is inhabited if and only if the corresponding component of ~� isinhabited. Hence we know by Corollary 5.2.7 that �(~�) is inhabited if and only if �(~�) isinhabited.3. Follows from statement (1) and the Normalization Theorem.4. Let � be maximal. We prove by induction on � that #� = . If � is a variable, then theclaim is obvious. Otherwise, � = �(~�), � is maximal and every component of ~� is maximal.Hence we know by the induction hypothesis that #~� = (; : : : ;) and thus, since � ismaximal, #�(~�) = .Let #� = . We prove by induction on � that � is maximal. If � is a variable, then theclaim is obvious. Otherwise, � = �(~�), � is maximal and #~� = (; : : : ;). Hence we knowby the induction hypothesis that every component of ~� is maximal and thus, since � ismaximal, that �(~�) is maximal.5. Let � a�!� . We prove by induction on � that �� a�!� �. If � = �, then the claim istrivial. Otherwise, we have � = �(~�) and �~� a�!� ~� by the induction hypothesis, whichyields �� = �(�~�) a�!� �(~�) = �.6. Let � a�!� � , �)� �(~�) and �)� �(~�). Then neither � nor � is a variable. If � = ?,then ? = �(~�) = �(~�) and hence the claim is trivial. Otherwise, � = �(~�1), � = �(~� 1)and ~� 1 a�!� ~� 1. Furthermore, �(~�))� �(~�) and ~� = f~�=~�1g~� a�!� f~�=~� 1g~� = ~� by thepreceding statement.7. Follows by induction on � using statement (4). 2Theorem 6.3.4 [Retract] If � a�!� � and � � �, then � n�!� � " �.Proof. Let � a�!� � and � � �. We prove by induction on � that � n�!� � " �.Let � be a variable. Then � = � and � is a variable. Hence � = � " � = � " �.Let � = �(~�) and � be a variable. Then #� = and hence � is maximal. Thus � = � and� = � " � = � " �.Let � = �(~�) and � = ?. Then � is void and hence � n�!�? = � " �.Let � = �(~�) and � = �(~�). Then ~� a�!� ~� , �)� �(~�) and ~� � ~� . Hence ~� n�!� ~� " ~�by the induction hypothesis. Thus � = �(~�) n�!� �(~� " ~�) = �(~�) " �. 2Corollary 6.3.5 If � is normal and � � � , then � = (#�) " � .The next two lemmas will be needed in the proofs to come.Lemma 6.3.6 Let � be a pyramid, � be �-admissible, and �i� be maximal for every� 2 V�. Then, for every �j 2 �, �i� is maximal for every � 2 V�j�.Proof. If �� � j, then � = �j� and hence the claim is trivial. Otherwise, �� < j and let� 2 V�j�. Then there exists � 2 V� such that � 2 V�j�. If i � j, then �i� is a subterm of�i�j� = �i� and hence �i� is maximal since �i� is maximal. If i < j, then �i� = � since�� = j > i. 2

6.4. P-In�ma and Mergings 97Lemma 6.3.7 Let P `� s: � and P a�!�Q. Furthermore, let every sort term in Q be anapproximation and let �i� be maximal for every � 2 V�. Then �iPx a�!�Qx for everyx 2 Vs.Proof. We prove �iPx a�!�Qx by induction on the length of a derivation P `� s: �.Let s = x. Then Px � ��Px� and hence VPx � V(��Px�). Thus we know by the precedinglemma that �� is maximal for every � 2 VPx. Hence �iPx a�!�Qx by statement (7) ofthe Approximation Theorem.Let s = f(~s) and � be a variable. Then �Ps > �� and P `� s: ��Ps�. Thus we know by thepreceding lemma that �� is maximal for every � 2 V��Ps�. Hence we have by the inductionhypothesis that �iPx a�!�Qx for every x 2 Vs.Let s = f(~s) and � be no variable. Then we have f : ~� ! �(~�) 2 T , �)� �(~�) andP `� ~s : f~�=~�g~� . Since V(f~�=~�g~�) � V�, the claim follows by the induction hypothe-sis. 26.4 P-In�ma and MergingsNow it's time to tell you more about the proof of the Hauptsatz. The basic idea, which Idiscussed before, is that the constraint solver simulates a hypothetical computation usingthe actual sort terms rather than their weakest approximations. The hypothetical compu-tation, which is called P-computation (P stands for pyramid), attempts to solve the system�P &E, where � = �n is the lowest layer of the pyramid providing full information. How-ever, the P-computation has still very limited access to the pyramid � and only knows theinformation levels of the occurring sort variables. In particular, the P-computation has tostart with P &E rather than �P &E and cannot access the information layers �i of thepyramid.Not using the pyramid in the P-computation provides for a close coupling (realized by\#�") of the approximations used by the constraint solver and the sort terms used by theP-computation.The merging operation \� # �" simulates the operation \NF[��0u�� 0], where �0 and � 0 arethe actual sort terms. For the P-computation we need an operation \�0 � � 0" simulating\��0u�� 0", which is de�ned on �-admissible sort terms as follows:� � � = �� � � = � if �� > ��� � � = � if �� < ��� � � = � if � is no variable� � � = � if � is no variable�(~�) � �(~�) = �(~� � ~�) if � = �u�, �(~�))� �(~�), �(~�))� �(~�).If � � � exists, then we call � � � the P-in�ma of � and � .Theorem 6.4.1 [P-In�ma] P-In�ma have the following properties:

98 Chapter 6. POS-Constraint Solving1. if � � � exists, then � � � = � � �2. if � � � and � �� �, then � � � exists and � � � = ����u��3. if �; � �� �, then � � � exists and � � � = ����u����� �� �; �4. if � � � exists and � � ��; �� , then � � �(� � �)5. if � � � exists and � �� �; � , then � �� � � � .Proof. 1. Can be shown with a straightforward induction on �.2. Let � � � and � �� �. We show by induction on on k�k (see Section 4.3, calledR-complexity there) that � � � exists and � � � = ����u� . This su�ces since the in�mumof ���� and � is stable because ����; � � ���� (Theorem 4.3.7).Let � = �. Then � = � = � and hence � �� � and ����u� = � . If � is no variable, then� � � = � . Otherwise, let � = �. Then � = ���� and hence �� � ��. If �� = ��, then� = � and � � � = � � � = � = � . If �� > ��, then � � � = � � � = � = � .Let � = �(~�) and � = �. Then � = ���� and hence � is a variable. Thus � = ?. Hence� � � = ? = ?u� = ����u� .Let � = �(� � �) and � = �(� � �). Furthermore, let � = �u�, �)� �(~�), �)� �(~�) and�)� �(~�). Then ~� � ~� and ~� �� ~� . Hence we know by the induction hypothesisthat ~� � ~� = ��~� ~� u~� . Thus � � � = �(��~� ~� u~�) = ����u� , provided we can show that��~� ~� u~� = ���~� u~� .Let �i and �i be corresponding components of ~� and ~� . If �i contains a variable, then��i = �� . Otherwise, �i is ground. Since we already know that ����u� is stable, weknow in particular that ����iu�i is stable. Hence we have ����iu�i = �(����iu�i) =�����iu��i = ���i�iu�i since �i and hence ����iu�i is ground.3. Let �; � � �. Since \� � �" and \�u� �" are commutative, we can assume withoutloss of generality that �� � �� . Then � � ���� and � �� ����. Thus we have � � � =����u�� = ����u����� using the preceding statement. Since � � � � ����; � , we knowthat �(� � �) � �� � �� and thus � � � = ��(���)(� � �) � ��(���)�; ��(���)� . Hence� � � �� �; � .4. Let � � � exist and � � ��; �� . We prove by induction on k�k that � � �(� � �).If � or � is a variable, then � � � 2 f�; �g and hence the claim is trivial.Let � = ��(� � �) and � = �� (� � �). Then we have � = ��u�� , �)� �(~�), �)� �(~�),� � � = �(~� � ~�), ~� = ��(~�), �(~�))� ��(~�), ~� � �f~�=~�g~� , and ~� � �f~�=~� g~� . Let �i bea component of ~� and let �i be the corresponding component of ~� .We now prove by induction on k�ik that �i � �f~�=(~� � ~�)g�i.Let �i = �. Furthermore, let �i := f~�=~�g� and �i := f~�=~� g�. Then �i � ��i; ��i. Hencewe know by the outer induction hypothesis that �i � �(�i � �i) = �f~�=(~� � ~�)g�i.Otherwise, let �i = �(~� i) and �i)� �(~� i). Then we have ~� i � �f~�=~�g~� i and ~� i ��f~�=~� g~� i. Hence we know by the inner induction hypothesis that ~� i � �f~�=(~� � ~�)g~� i.Thus �f~�=(~� � ~�)g�i)� �(�f~�=(~� � ~�)g~� i) � �(~�i) = �i.

6.4. P-In�ma and Mergings 99We now return to the outer induction. We now know that � � �f~�=(~� � ~�)g�. Hence�(� � �) = �(�(~� � ~�)))� ��(�f~�=(~� � ~�)g~�) � ��(~�) = �.5. Follows immediately from statement (4). 2Theorem 6.4.2 [Merging] Let T be fully inhabited. Then the merging operation \� # �"has the following properties:1. if � and � are approximations, then their merging exists and � # � = � # �2. if � and � are weakest approximations, then their merging � # � is a weakest approx-imation3. if �; � �� �, then #(� � �) = (#�) # (#�).Proof. 1. Can be shown by a straightforward induction on �.2. Let � and � be weakest approximations. We show by induction on k�k that � # � is aweakest approximation.If � = or � = , then � # � 2 f�; �g and hence the claim is obvious.Otherwise, let � = �(~�), � = �(~�), � = �u�, �)� �(~� 1), �)� �(~� 1), and ~� =(#~�1) # (#~� 1). Then we know by the induction hypothesis that ~� is a tuple of weakestapproximations. If �(~�) is top-level void then � # � = ? and hence the claim is trivial. If�(~�) is not top-level void, it su�ces to show that either � is not maximal or ~� 6= (; : : : ;).Suppose ~� = (; : : : ;) and let � be maximal. Then � = � = � and, by the de�nition of\� # �", ~� = #~� = #~�1 = (; : : : ;) and ~� = #~� = #~� 1 = (; : : : ;). Hence � = �(~�) isnot a weakest approximation, which contradicts our assumptions.3. Let �; � �� �. Since \���" and \� # �" are commutative, we can assume without loss ofgenerality that �� � �� . Since then � � ���� and � �� ���� we can assume without lossof generality that � � � and � �� �. Now it su�ces to show that � � � a�!� (#�) # (#�)since we know by the preceding statement that (#�) # (#�) is a weakest approximation.Assuming � � � and � �� �, we show by induction on k�k that � � � a�!� (#�) # (#�).If #� = ? or #� = ?, then � �� = ����u� is void and hence � �� = a�!� ? = (#�) # (#�).If #� = , then � is maximal and hence � = �. Thus � � ���� and hence ��� = ����u� =� a�!� #� = (#�) # (#�).If #� = , then � is maximal and hence � = ����. Since � � � we have ���� � � . Hence� � � = ����u� = ���� and (#�) # (#�) = #�. It remains to show that ���� a�!� #�.Since � a�!� #�, we know by statement (7) of the Approximation Theorem that it su�cesto show that ���� is maximal for every � 2 V�. This is the case since V� � V� and���� = � is maximal by assumption.Otherwise, let � = �(~�), � = �(~�), #� = �(#~�) and #� = �(#~�). Furthermore, let� = �u�, �)� �(~�1), �)� �(~� 1), �)� �(~�1), �(#~�))� �(~� 2), and �(#~�))� �(~� 2).Then ��� = �(~�1�~� 1), ~� 1 � ~�1, ~� 1 �� ~�1, and, using statement (6) of the ApproximationTheorem, ~� 1 a�!� ~� 2 and ~� 1 a�!� ~� 2. Hence #~� 1 = #~� 2 and #~� 1 = #~� 2 by the conuenceof a�!� .

100 Chapter 6. POS-Constraint SolvingBy the induction hypothesis we know ~� 1 � ~� 1 a�!� (#~�1) # (#~� 1). Hence � � � = �(~�1 �~� 1) a�!� �((#~�1) # (#~� 1)) = �((#~�2) # (#~� 2)) a�!� �(#~�) # �(#�) = (#~�) # (#~�). 26.5 Solving PM-SystemsGeneral Assumption. In this section we assume that T is fully inhabited.Now we are ready to present the part of the P-computation that is simulated by the sortlevel of the constraint solver. Recall that the sort level of the constraint solver solvesmembership systems of the form P &M .We start with the invariant preserved by the membership reduction rules employed in theP-computation.A pair P:M is �-well-typed if1. P is a normal, inhabited and �-admissible pre�x2. M is a �-admissible membership system such that for every membership s: � 2 Mthere exists a �-admissible sort term � such that P `� s:� and � �� �.The following rules de�ne a binary relation p�! on pairs P:M :1. P: s:�&M p�! P:Mif s is no variable2. P & x: �: x: � &M p�! P & x: NF[� � �]:Mif NF[� � �] 6= ?3. P: f(~s): �&M p�! P:Mif f : ~� ! �(~�) 2 T , �)� �(~�), and ~� is ground4. P: f(~s): �&M p�! P:~s : f~�=~�g~� &Mif f : ~� ! �(~�) 2 T , �)� �(~�), and ~� is not ground.The relation p�! mimics the relation m�! , where p�! employs �-admissible sort termswhile m�! employs weakest approximations.Proposition 6.5.1 There are no in�nite chains P:M p�! P 0:M 0 p�! � � � or P:M m�!P 0:M 0 m�! � � �. Furthermore, if P:M p�!� P 0:M 0 or P:M m�!� P 0:M 0, then DP = DP 0and Px = P 0x for every x 2 DP � VM .Our goal is to prove Theorems 6.5.6 and 6.5.7 appearing at the end of this section. I suggestthat you �rst look at these theorems and convenience yourself that they just state whatyou expect anyway at this point. Then you can go back and look at the preparing lemmasfollowing now.Lemma 6.5.2 [Invariance] Let P:M be �-well-typed and P:M p�! P 0:M 0. Then:

6.5. Solving PM-Systems 1011. P 0:M 0 is �-well-typed2. if Q is a normal pre�x, then Q `� P &M () Q `� P 0&M 03. U[P &M] � U[P 0&M 0].Proof. We have to prove the claims for each of the four p�! -rules.I. Let P: s:�&M p�! P:M , s be no variable, and let P: s:�&M be �-well-typed.I.1. Obvious.I.2. The direction \)" is obvious. To show the other direction, suppose Q is a normalpre�x such that Q `� P &M . Since P: s:�&M is �-well-typed, we know that there existsa variable � such that � = ���� and P `� s: �. Hence we know by the Substitution Lemmathat Q `� s: �. Thus �� < �Qs and hence Q `� s:� by the Flexibility Lemma. Thus Q `�P & s:�&M .I.3. Obvious.II. Let P & x: �: x: � &M p�! P & x: NF[� � �]:M , NF[� � �] 6= ?, and letP & x: �: x: � &M be �-well-typed. Then we have �; � �� � and henceNF[� � �] � � � � = ����u����� �� �; �by the P-In�ma Theorem. Thus P 0 := P & x: NF[� � �] is a normal, inhabited and �-admissible pre�x.II.1. Let s: � 2 M . It su�ces to show that there exists a �-admissible � such that P 0 `�s:� and � �� �. Since P & x: �: x: � &M is �-well-typed, there exists a �-admissible �such that P & x: � `� s:� and � �� �. Since P 0 `� P & x: �, we know P 0 `� s:� by theSubstitution Lemma.II.2. Let Q be a normal pre�x such that Q `� P & x: �& x: � &M . It su�ces to show thatQ `� x: NF[� � �]. Since Qx �� �; � , we know by the P-In�ma Theorem that Qx �� � � � .Hence Qx � ��Qx(� � �) and thusQx = NF[Qx] � NF[��Qx(� � �)] � ��QxNF[� � �]by the normality of Q and the Normalization Theorem. Thus Q `� x: NF[� � �].To show the other direction, suppose Q is a normal pre�x such thatQ `� P & x: NF[� � �] &M . Then Qx �� NF[� � �] �� �; � . Hence Q `� P & x: �& x: � &M .II.3. Let Q 2 U[P & x: �& x: � &M]. It su�ces to show that Q ` x: NF[� � �]. SinceQ ` x: �& x: � , we know that �Q[x] � �; � . Hence we know by the P-In�maTheorem that �Q[x] � (� � �) and thus�Q[x] = NF[�Q[x]] � NF[(� � �)] � NF[� � �]by the normality and inhabitation of Q and the Normalization Theorem. Hence Q ` x: NF[� � �].III. Let P: f(~s): �&M p�! P:M , f : ~� ! �(~�) 2 T , �)� �(~�), ~� be ground, and letP: f(~s): �&M be �-well-typed.

102 Chapter 6. POS-Constraint SolvingIII.1. Obvious.III.2. The direction \)" is obvious. To show the other direction, suppose Q is a normalpre�x such that Q `� P &M . It su�ces to show that Q `� f(~s): �. Since P: f(~s): �&Mis �-well-typed, we know that there exists a �-admissible � such that � �� � and P `�f(~s): �. Since � is no variable, we can assume without loss of generality (by the FlexibilityLemma) that � is no variable. Hence we know by the de�nition of P `� f(~s): � that P `�f(~s): ~� since ~� is ground. Since Q `� P , we know by the Substitution Lemma that Q `�~s : ~� . Hence Q `� f(~s): � since f : ~� ! �(~�) 2 T , �)� �(~�) and ~� is ground.III.3. Obvious.IV. Let P: f(~s): �&M p�! P:~s : f~�=~�g~� &M , f : ~� ! �(~�) 2 T , �)� �(~�), ~� not beground, and let P: f(~s): �&M be �-well-typed.IV.1. It su�ces to show that there exists a �-admissible tuple ~� such that P `� ~s : ~� andf~�=~�g~� �� ~� . Since P: f(~s): �&M is �-well-typed, there exists a �-admissible � suchthat P `� f(~s): � and � �� �. Since � is no variable, we can assume without loss ofgenerality (by the Flexibility Lemma) that � is no variable. Hence �)� �(~�) and P `�~s : f~�=~� g~� . It remains to show that f~�=~�g~� �� f~�=~� g~� .Since � � ����, �)� �(~�) and ����)� �(���~�), we have ~� � ���~� and hence f~�=~�g~� ����f~�=~� g~� .Now let �i be a component of �. If f~�=~�g�i is ground, then f~�=~�g�i = �f~�=~�g�i �����f~�=~� g�i = �f~�=~� g�i and hence f~�=~�g�i �� f~�=~� g�i. If f~�=~�g�i is not ground,then �f~�=~�g�i = �� since V�i � V~� and V~� � V�. Hence f~�=~�g�i �� f~�=~� g�i sincef~�=~�g~� � ���f~�=~� g~� .IV.2. Let Q be a normal pre�x such that Q `� P & f(~s): �&M . Since Q `� f(~s): �,f : ~� ! �(~�) 2 T and �)� �(~�), we have Q `� ~s : f~�=~�g~� and hence Q `� P &~s : f~�=~�g~� &M .To show the other direction, let Q be a normal pre�x such that Q `� P & ~s : f~�=~�g~� &M .Since f : ~� ! �(~�) 2 T , �)� �(~�) and P `� ~s : f~�=~�g~� , we have Q `� f(~s): � and henceQ `� P & f(~s): �&M .IV.3. Let Q 2 U[P & f(~s): �&M]. It su�ces to show that Q ` ~s : f~�=~�g~� . Since Q `f(~s): �, f : ~� ! �(~�) 2 T and �)� �(~�), we have Q ` ~s: f~�= ~�g~� , which yieldsthe claim since V~� � V~� . 2Lemma 6.5.3 Let P be a normal and inhabited pre�x and P `� s: �. Then P: s: �i� p�!�P jDP�Vs & NF[�iP jVs] : ;:Proof. We prove the claim by induction on the pair (jsj; n � ��) with respect to thecanonical lexicographic order, where jsj is the size of s and n is the height of the pyramid�. According to the de�nition of P `� s: �, we distinguish three cases.1. Let s = x. Then Px �� �. It su�ces to show that Px � �i� = �iPx and that �iPx isinhabited, since then the second p�! -rule applies and yields the claim. Since P and �i areinhabited, we know that �iPx is inhabited. Since �i�; Px �� �, we know by the P-In�maLemma that Px � �i� = ���i�Pxu��Px�i�. Hence Px � �i� = �iPxu��Px�i� = �iPxsince �Px � �� and �iPx � ��Px�i� = �i��Px�.

6.5. Solving PM-Systems 1032. Let s = f(~s) and � = �. Then �� < �Ps, P `� s: ��Ps� and ��Ps� is no variable.If �Ps � i, then �i� = �i(��Ps�) and the claim follows by the induction hypothesis.Otherwise, we have i < �Ps and hence NF[�iP jVs] = NF[P jVs] = P jVs since P is normal. If�i� is a variable, then P: s: �i� p�! P: ; with the �rst p�! -rule, which yields the claim. If�i� is no variable, then P `� s: �i� by the Flexibility Lemma and ��i� > ��. Hence theclaim follows by the induction hypothesis since �i(�i�) = �i�.3. Let s = f(~s) and � be no variable. Then f : ~� ! �(~�) 2 T , �)� �(~�) andP `� ~s : f~�=~�g~� .If ~� is ground, we have P: �i� p�! P: ; by the third p�! -rule. Since P `� ~s : f~�=~�g~� , weknow �Ps = n by the Monotonicity Lemma. Hence NF[�iP jVs] = NF[P jVs] = P jVs since Pis normal, which yields the claim.If ~� is not ground, we have P: �i� p�! P:~s : �if~�=~�g~� by the fourth p�! -rule. Since wehave NF[�iNF[�iPx]] = NF[NF[�iPx]] = NF[�iPx] � �iPx �� Px for every x 2 DP , theclaim follows by repeated application (one for every component of the tuple f~�=~�g~�) ofthe induction hypothesis and the Substitution Lemma. 2Lemma 6.5.4 [Simulation] Let P:M be �-well-typed and let #P: #M m�!Q:N . Thenthere exist P 0 and M 0 such that P:M p�!+ P 0:M 0 and Q:N = #P 0: #M 0.Proof. We assume without loss of generality that M consists of a single membership.Let P: s: � be �-well-typed and let m�! apply to #P : s: #�. Since in this case m�! isdeterministic, it su�ces to show that there exist P 0 and M 0 such that P: s: � p�!+ P 0:M 0and #P: s: #� m�! #P 0: #M 0. We distinguish two cases.1. Let #� = . Then #P : s: #� m�! #P 0: ; and � is maximal. Since P: s: � is �-well-typed,we have P `� s:� and � �� �. Hence � = ���� and we haveP: s: � p�!+ P jDP�Vs & NF[���(P jVs)]: ;by the preceding lemma. It remains to show that #NF[���(P jVs)] = #(P jVs).Since � is maximal and � = ����, we know that ���x is maximal for every � 2 V�.Since P: s: � is �-well-typed, we know P `� s:�. Hence we know by Lemma 6.3.7 that���(P jVs) a�!� #(P jVs). Hence NF[���(P jVs)] a�!� #(P jVs) since n�! � a�! and a�! isconuent. Thus #NF[���(P jVs)] = #(P jVs).2. Let #� 6= . Since � # ? = ? for every � and m�! applies to #P: s: #�, we know that#� 6= ?. Hence � = �(~�) and #� = �(#~�). Again, we distinguish two cases.2.1. Let s = x. Then#P: s: #� m�! (#P � fx: #Pxg) & x: (#Px) # (#�) : ;and (#Px) # (#�) 6= ?. Since P: s: � is �-well-typed, we have Px; � �� �. Hence#(Px � �) = (#Px) # (#�) 6= ? by the Merging Theorem. Thus #NF[Px � �] = (#Px) #(#�) 6= ? since n�! � a�! and a�! is conuent. HenceP: s: � p�! (P � fx:Pxg) & x: NF[Px � �] : ;;

104 Chapter 6. POS-Constraint Solvingwhich yields the claim.2.2. Let s = f(~s). Then we have f : ~� ! �(~�) 2 T and #� = �(#~�))� �(~�1) since m�!applies to #P: s: #�. Furthermore, we have � = �(~�))� �(~�2) and ~�2 a�!� ~�1 usingthe Approximation Theorem. If ~� is ground, then #P : s: #� m�! #P: ; and P: s: � p�! P: ;,which yields the claim. Otherwise, we have#P: s: #� m�! #P:~s : #(f~�=~�1g~�)and P: s: � p�! P:~s : f~�=~� 2g~�:It remains to show that #(f~�=~� 2g~�) = #(f~�=~� 1g~�). Since ~� 2 a�!� ~� 1, we havef~�=~�2g~� a�!� f~�=~�1g~� by the Approximation Theorem. Hence #(f~�=~� 2g~�) =#(f~�=~� 1g~�) by the conuence of a�! . 2Lemma 6.5.5 [Completeness] Let P:M be �-well-typed and let P &M be uni�able.Then m�! applies to #P: #M if M is nonempty.Proof. We assume without loss of generality that M consists of a single membership.Let P: s: � be �-well-typed and let P & s: � be uni�able. Then there exists a substitutiontheta such that ` �P and ` �s: ��. Hence � is inhabited and #� 6= ?. If #� = , then thesecond m�! -rule applies to #P: s: #�. Otherwise we know that � = �(~�) and #� = �(#~�).Now we distinguish two cases.Let s = x. It su�ces to show that (#Px) # (#�) 6= ? since then the second m�! -ruleapplies to #P: s: #�. Since P: s: � is �-well-typed we have Px; � �� �. Hence we knowby the Merging Theorem that (#Px) # (#�) = #(Px � �). Furthermore, we know by theP-In�ma Theorem that L��x � �(Px � �) since L��x � �Px; �� because ` �x: �Px and `�x: ��. Since ` �x:L��x we know that L��x is inhabited. Hence Px � � is inhabited andthus (#Px) # (#�) = #(Px � �) 6= ?.Let s = f(~s). Since ` �s: ��, we know f : ~� ! �(~�) 2 T and �� = �(�~�))� �(� � �). Hence#� = �(#~�))� �(� � �) and thus either the third or fourth m�! -rule is applicable. 2Theorem 6.5.6 [P-Reduction] Let P:M be �-well-typed. Then:1. P &M uni�able () 9 Q: P :M p�!�Q: ;2. if P:M p�!�Q: ;, then:(a) if P:M p�!� P 0:M 0, then P 0:M 0 p�!�Q: ;(b) Q is a normal, inhabited and �-admissible pre�x such that Q `� P &M ,U[P &M] � U[Q], and ;NF[�Q] is a principal uni�er of �P & �M .Proof. 1. Suppose P:M is �-well-typed and P &M is uni�able. We show by induction onP:M with respect to p�! that there exists a pre�x Q such that P:M p�!�Q: ;. If M = ;,then the claim is trivial. Otherwise, we know by the Completeness and the SimulationLemma that there exist P 0 and M 0 such that P:M p�!+ P 0:M 0 and #P: #M m�! #P 0: #M 0.

6.5. Solving PM-Systems 105By the Invariance Lemma we know that P 0:M 0 is �-well-typed and uni�able. Hence weknow by the induction hypothesis that there exists a pre�x Q such that P 0:M 0 m�!�Q: ;.Suppose P:M is �-well-typed and P:M p�!�Q: ;. By the Invariance Lemma we know thatQ is a normal, inhabited and �-admissible pre�x. Hence Q `� Q and thus Q `� P &Mby the Invariance Lemma. Thus �Q ` �P & �M and hence �Q! �P & �M is valid in T .Since Q and � are inhabited, the pre�x �Q is inhabited and hence uni�able. Thus �P &�M and hence P &M is uni�able.2. Let P:M be �-well-typed and P:M p�!�Q: ;. Then we know by (1) that P &M isuni�able.2.1. Suppose P:M p�!� P 0:M 0. Then we know by the Invariance Lemma that P 0:M 0 is�-well-typed and uni�able. Hence we know by (1) that there exists a pre�x Q0 such thatP 0:M 0 p�!�Q0: ;. By the Invariance Lemma we know that Q and Q0 are normal and �-admissible pre�xes. Hence Q `� Q and Q0 `� Q0. Thus we know by the Invariance Lemmathat Q `� Q0 and Q0 `� Q. Hence Q = Q0.2.2. By the Invariance Lemma we know that Q is a normal, inhabited and �-admissiblepre�x such that U[P &M] � U[Q]. Hence U[�P & �M] � U[�Q]. Since Q `� Q, we alsohave Q `� P &M by the Invariance Lemma.To show that ;NF[�Q] is a principal uni�er of �P & �M , it remains to show that �Q isinhabited and that U[�Q] � U[�P & �M]. Since � and Q are inhabited, we know that �Qis inhabited. Furthermore, suppose R 2 U[�Q]. Then R ` �Q. Since Q `� P &M , weknow �Q ` �P & �M . Hence R ` �P & �M and thus R 2 U[�P & �M]. 2Theorem 6.5.7 [M-Reduction] Let P:M be �-well-typed. Then:1. if #P : #M m�!�Q:N , then there exist P 0 and M 0 such that P:M p�!� P 0:M 0 andQ:N = #P 0: #M 02. P &M uni�able () 9 Q: #P : #M m�!�Q: ;3. #P : #M is don't care4. if #P: #M m�!�Qa: ;, then there exists a normal, inhabited and �-admissible pre�xQ such that Qa = #Q, Q `� P &M , U[P &M] � U[Q], and ;NF[�Q] is a principaluni�er of �P & �M .Proof. 1. Follows by a straightforward induction using the Simulation and the InvarianceLemma.2. The direction \(" follows by statement (1) and the �rst statement of the P-ReductionTheorem. To show the other direction, suppose P:M is �-well-typed and uni�able. Weshow by induction on P:M with respect to p�! that there exists a pre�x Q such that#P: #M m�!�Q: ;.IfM = ;, then the claim is trivial. Otherwise, we know by the Completeness and the Simu-lation Lemma that there exist P 0 and M 0 such that P:M p�!+ P 0:M 0 and #P: #M m�!#P 0: #M 0. By the Invariance Lemma we know that P 0:M 0 is �-well-typed and uni�-able. Hence we know by the induction hypothesis that there exists a pre�x Q such that#P 0: #M 0 m�!�Q: ;.

106 Chapter 6. POS-Constraint Solving3. Let #P: #M m�!�Qa: ; and #P: #M m�!� P 0:M 0. We have to show that P 0:M 0 m�!�Qa: ;.By statement (1) we have P:M p�!�Q: ;, Qa = #Q, P:M p�!� P 00:M 00, P 0 = #P 00, andM 0 = #M 00. Since #P : #M m�!�Qa: ;, we know by statement (2) that P &M is uni�-able. Hence we know by the Invariance Lemma that P 00&M 00 is uni�able. Thus we haveP 0:M 0 m�!�Q0a: ; by statement (2) and hence P 00:M 00 p�!�Q0: ; and Q0a = #Q0 by state-ment (1). By statement (2.1) of the P-Reduction Theorem we have Q = Q0. HenceQa = #Q = #Q0 = Q0a.4. Let #P: #M m�!�Qa: ;. Then we know by statement (1) that there exists a pre�x Q suchthat Qa = #Q and P:M p�!�Q: ;. Now the claims follow by the P-Reduction Theorem. 26.6 Solving PE-SystemsGeneral Assumption. In this section we assume that T is fully inhabited.This section presents the part of the P-computation that is simulated by the equation levelof the constraint solver. We start with the invariant that is preserved by the equationreduction rules employed in the P-computation.A triple P: �: E is �-well-typed if1. P is a normal, inhabited and �-admissible pre�x2. � is an idempotent value substitution such that D� \ VE = ;, D� � DP , and P `��P3. for every equation s := t 2 E there exists a �-admissible sort term � such that P `�s:� and P `� t:�.Proposition 6.6.1 �-well-typed triples have the following properties:1. if P: �:E is �-well-typed, then D� [I� [VE � DP2. if P: �: ; is �-well-typed, then �NF[�P] is a principal uni�er of �P &E[�]3. if P: �:E & x := s is �-well-typed, then P: s:Px is �-well-typed.The relation u�! is de�ned by the same rules as e�! , except that the fourth rule of u�!employs the relation p�!� rather than the relation m�!� :1. P: �: E& x := x u�! P: �: E2. P: �: E& f(~s) := f(~t) u�! P: �: E & ~s := ~t3. P: �: E& s := x u�! P: �: E& x := sif s is not a variable

6.6. Solving PE-Systems 1074. P: �: E& x := s u�! Q: fx=sg�: fx=sgEif x =2 Vs and P: s:Px p�!�Q: ;.Proposition 6.6.2 There are no in�nite chains P: �: E u�! P 0: �0:E 0 u�! � � �. Furthermore,if P: �: E u�! P 0: �0:E 0, then DP = DP 0.Proof. The termination of u�! follows by the same argument as the termination of e�!(Proposition 6.1.3). The second claim is obvious from the de�ning rules. 2Our goal is to prove Theorems 6.6.6 and 6.6.9 and Corollary 6.6.7 appearing at the end ofthis section. As in the last section I propose to �rst look at these theorems and understandwhat they say. Then you can go through the preparing lemmas following now.Lemma 6.6.3 [Invariance] Let P: �: E be �-well-typed and let P: �: E u�! P 0: �0: E 0.Then:1. P 0: �0:E 0 is �-well-typed2. P 0 `� P3. U[P &E[�] &E] � U[P 0&E[�0] &E 0]4. U[�P 0&E[�0] &E 0] � U[�P &E[�] &E].Proof. We have to prove the claims for each of the four u�! -rules.I. Let P: �:E & x := x u�! P: �: E and let P: �:E & x := x be �-well-typed. Then all claimsare trivial.II. Let P: �: E& f(~s) := f(~t) u�! P: �: E & ~s := ~t and let P: �:E & f(~s) := f(~t) be �-well-typed. Then there exists a �-admissible sort term � such that P `� f(~s):� and P `�f(~t):�.II.1. It su�ces to show that there exists a tuple ~� of �-admissible sort terms such thatP `� ~s : ~� and P `� ~t : ~� . Let i := minf�Pf(~s); �Qf(~t)g. Then we know by the FlexibilityLemma that P `� f(~s): �i� and P `� f(~t): �i�. Since �i� cannot be a variable, we havef : ~� ! �(~�) 2 T , �i�)� �(~�), P `� ~s : f~�=~�g�, and P `� ~t : f~�=~�g�.II.2 and II.3. Trivial.II.4. Let Q 2 U[�P &E[�] &E & ~s := ~t]. It su�ces to show that f(~s) is well-typed withrespect to Q. Since P `� f(~s):�, we know �P ` f(~s): ��. Since Q ` �P , we have Q ` f(~s): ��.III. Let P: �:E & s := x u�! P: �: E& x := s and let P: �:E & s := x be �-well-typed. Thenall claims are trivial.IV. Let P: �: E& x := s u�! Q: fx=sg�: fx=sgE, x =2 Vs, P: s:Px p�!�Q: ;, and let P: �: E&x := s be �-well-typed. Then D� [I� [VE [fxg [Vs � DP = DQ and Py = Qy forevery y 2 DP � Vs. Furthermore, we know by Proposition 6.6.1 that P: s:Px is �-well-typed. Hence we know by the P-Reduction Theorem that Q is a normal, inhabited and

108 Chapter 6. POS-Constraint Solving�-admissible pre�x such that Q `� P & s:Px, U[P & s:Px] � U[Q], and ;NF[�Q] is aprincipal uni�er of �P & s: �Px. Thus U[�Q] = U[�P & s: �Px]. Since Q `� P & s:Px,we have Q `� fx=sgP . Since P: �:E & x := s is �-well-typed, we have P `� �P and thusQ `� fx=sg�P by the Substitution Lemma.IV.1. Since fxg[Vs and D� are disjoint and x =2 Vs, we know that fx=sg� is an idempotentvalue substitution. Furthermore, D(fx=sg�) and V(fx=sgE) are disjoint since x =2 Vs andD� and VE [Vs are disjoint. Moreover, D(fx=sg�) = fxg [D� � DP = DQ.Next we show that Q `� fx=sg�Q. Suppose y 2 DQ. We have to show that Q `�fx=sg�y:Qy. If y 2 Vs, then y 6= x and y =2 D�. Hence fx=sg�y = y and the claim istrivial. If y =2 Vs, then Qy = Py and hence Q `� fx=sg�y:Qy since Q `� fx=sg�P .Let u := v 2 E. We have to show that there exists a �-admissible � such that Q `�fx=sgu:� and Q `� fx=sgv:�. Since P: �: E& x := s is �-well-typed, there exists a �-admissible � such that P `� u:� and P `� v:�. Since Q `� fx=sgP we have Q `�fx=sgu:� and Q `� fx=sgv:� by the Substitution Lemma.IV.2. We know Q `� P since Q `� P & s:Px.IV.3. Let R 2 U[P &E[�] &E& x := s]. Then x = s and hence = fx=sg.Since x =2 D�, we have E[fx=sg�] = fx=sgE[�] & x := s. Thus (E[fx=sg�] &fx=sgE) = (fx=sgE[�] & x := s& fx=sgE) = (E[�] &E& x := s). Furthermore,since R ` P , we have R ` s: Px and thus R 2 U[P & s:PX] � U[Q]. Hence R 2 U[Q&E[fx=sg�] & fx=sgE].IV.4. Let R 2 U[�Q&E[fx=sg�] & fx=sgE]. Since x =2 D�, we have E[fx=sg�] =fx=sgE[�] & x := s. Thus (E[fx=sg�] & fx=sgE) = (fx=sgE[�] & x := s& fx=sgE) = (E[�] &E & x := s) since (E[fx=sg�] & fx=sgE) is trivial, hence x = s, and thus fx=sg = . Furthermore, we know U[�Q] = U[�P & s: �Px] � U[�P]. Hence R 2 U[�P &E[�] &E& x := s]. 2Lemma 6.6.4 [Simulation] Let P: �: E be �-well-typed and let #P: �: E e�! Q: �0: E 0.Then there exists a pre�x P 0 such that Q = #P 0 and P: �:E u�! P 0: �0:E 0.Proof. If #P : �: E e�! Q: �0:E 0 by one of the �rst three e�! -rules, then the claim isobvious since the �rst three e�! -rules are identical with the �rst three u�! -rules.Otherwise, suppose #P : �: E& x := s e�! Q: fx=sg�: fx=sgE, x =2 Vs, #P: s: #Px m�!�Q: ;,and let #P: �: E& x := s be �-well-typed. Then we know by Proposition 6.6.1 that P: s:Pxis �-well-typed. Hence we know by the M-Reduction Theorem that there exists a pre�x P 0such that P: s:Px p�!� P 0: ; and Q = #P 0. Thus P: �: E& x := s u�! P 0: fx=sg�: fx=sgE,which yields the claim. 2Lemma 6.6.5 [Completeness] Let P: �: E be �-well-typed and let P &E[�] &E be uni�-able. Then e�! applies to #P : �: E.Proof. Without loss of generality we can assume that E consists of a single equations := t. Let P: �: s := t be �-well-typed and let Q 2 U[P: �: s := t].If s = f(~s) and t = g(~t), then f = g since s = t, and hence the second e�! -rule applies.

6.6. Solving PE-Systems 109If s = f(~s) and t = x, then the third e�! -rule applies.If s = t = x, then the �rst e�! -rule applies.Otherwise, we have s = x 6= t. Hence x =2 Vt since x = t. Thus the fourth e�! -ruleapplies if we can show that there exists a pre�x Q such that #P: t: #Px m�!�Q: ;.Since q 2 U[P: �: s := t], we know that Q ` P and x = t. By Proposition 6.6.1 weknow that P: t:Px is �-well-typed. Thus x 2 DP and hence Q ` x: Px. Since x = t,we have Q ` t: Px and thus Q 2 U[P & t:Px]. Hence we know by the M-ReductionTheorem that there exists a pre�x Q such that #P: t: #Px m�!�Q: ;. 2Theorem 6.6.6 [U-Reduction] Let P: �: E be �-well-typed. Then:1. P &E[�] &E is uni�able () 9 Q; : P : �: E u�!�Q: : ;2. if P: �:E u�!�Q: : ;, then(a) Q `� Q, Q `� P , U[P &E[�] &E] � U[Q&E[]], and NF[�Q] is a principaluni�er of �P &E[�] &E(b) if P: �:E u�!� P 0: �0:E 0, then P 0: �0:E 0 is �-well-typed and there exist Q0 and 0such that P 0: �0:E 0 u�!�Q0: 0: ;.Proof. 1. Suppose P: �: E is �-well-typed and P &E[�] &E is uni�able. We show byinduction on P: �: E with respect to u�! that there exists Q and such that P: �: E u�!�Q: :;. If E = ;, then the claim is trivial. Otherwise, we know by the Completeness andthe Simulation Lemma that there exist P 0, �0 and E 0 such that P: �: E u�! P 0: �0: E 0 and#P: �: E e�! #P 0: �0: E 0. By the Invariance Lemma we know that P 0: �0: E 0 is �-well-typedand that P 0&E[�0] &E 0 is uni�able. Hence we know by the induction hypothesis that thereexist Q and such that P 0: �0:E 0 u�!�Q: : ;.Suppose P: �: E is �-well-typed and P: �: E u�!�Q: :;. By the Invariance Lemma we knowthat Q: :; is �-well-typed and that U[�Q&E[]] � U[�P &E[�] &E]. Hence NF[�Q] isa principal uni�er and NF[�Q] 2 U[�Q&E[]] � U[�P &E[�] &E]. Thus (�)NF[�Q] is auni�er of P &E[�] &E.2. Let P: �: E is �-well-typed and P: �: E u�!�Q: :;.2.1. By the Invariance and the Substitution Lemma we know that Q `� Q, Q `� P ,U[P &E[�] &E] � U[Q&E[]], and U[�Q&E[]] � U[�P &E[�] &E]. Thus we knowU[�Q&E[]] = U[�P &E[�] &E]. Since Q: : ; is �-well-typed, we know that NF[�q] is aprincipal uni�er of �Q&E[]. Hence NF[�q] is a principal uni�er of �P &E[�] &E.2.2. Suppose P: �: E u�!� P 0: �0:E 0. Then we know by the Invariance Lemma that P 0: �0:E 0is �-well-typed. Since we assumed P: �: E u�!�Q: :;, we know by statement (1) thatP &E[�] &E is uni�able. Thus we know by the Invariance Lemma that P 0&E[�0]&E 0is uni�able. Hence we know by statement (1) that there exist Q0 and 0 such thatP 0: �0:E 0 u�!�Q0: 0: ;. 2The following corollary is a weak version of the U-Reduction Theorem obtained by employ-ing the trivial pyramid. What we get is POS-uni�cation, which is the natural generalizationof order-sorted uni�cation.

110 Chapter 6. POS-Constraint SolvingCorollary 6.6.7 [POS-Uni�cation] Let P be a normal and inhabited pre�x and let Ebe an equation system that is well-typed under P . Then:1. P &E is uni�able () 9 Q; : P : �: E u�!�Q: :;2. P &E is uni�able () P &E has a principal uni�er3. if P: ;:E u�!�Q: : ;, then Q is a principal uni�er of P &E4. if P: ;:E u�!�Q: : ; and P: ;:E u�!� P 0: �0:E 0, then P 0 ` �0P 0, E 0 is well-typed underP 0, and there exist Q0 and 0 such that P 0: �0:E 0 u�!�Q0: 0: ;.Theorem 6.6.8 [Simulation] Let P: �: E be �-well-typed and let #P: �: E e�!�Q: �0: E 0.Then there exists a pre�x P 0 such that P: �:E u�!� P 0: �0:E 0 and Q = #P 0.Proof. Follows by a straightforward induction using the Simulation and the InvarianceLemma. 2Theorem 6.6.9 [E-Reduction] Let P: �: E be �-well-typed. Then:1. P &E[�] &E is uni�able () 9 Q; : #P: �:E e�!�Q: : ;2. if #P: �: E e�!� P 0: �0:E 0& x := s, then P 0: s:P 0x is don't care3. if #P: �: E e�!�Q: : ; and #P: �: E e�!� P 0: �0: E 0, then there exist Q0 and 0 suchthat P 0: �0: E 0 e�!�Q0: 0: ;4. if #P: �: E e�!�Qa: : ;, then there exists a normal, inhabited and �-admissible pre�xQ such that Qa = #Q, Q `� Q, Q `� P , U[P &E[�] &E] � U[Q&E[]], and NF[�Q] is a principal uni�er of �P &E[�] &E.Proof. 1. The direction \(" follows by the Simulation Theorem and the �rst statementof the U-Reduction Theorem. To show the other direction, suppose P: �: E is �-well-typedand P &E[�] &E is uni�able. We show by induction on P: �:E with respect to u�! thatthere exist Q and such that #P : �: E e�! Q: :;.If E = ;, then the claim is trivial. Otherwise, we know by the Completeness and the Simula-tion Lemma that there exist P 0, �0 and E 0 such that P: �:E u�! P 0: �0:E 0 and #P: �: E e�!#P 0: �0:E 0. By the Invariance Lemma we know that P 0: �0:E 0 is �-well-typed and thatP 0&E[�0] &E 0 is uni�able. Hence we know by the induction hypothesis that there exist Qand such that #P : �: E e�! Q: :;.2. Let P: �: E be �-well-typed and let #P: �: E e�!� P 0: �0:E 0& x := s. Then we know bythe Simulation Theorem that there exist a pre�x Q such that P: �: E u�!�Q: �0:E 0& x := sand P 0 = #Q. By the Invariance Lemma we know that Q: �0:E 0& x := s is �-well-typed.Hence we know by Proposition 6.6.1 that Q: s:Qx is �-well-typed. Thus we know by theM-Reduction Theorem that #Q: s: #Qx = P 0: s:P 0x is don't care.3. Let P: �: E be �-well-typed, #P: �: E e�!�Q: :;, and #P: �: E e�!� P 0: �0:E 0. Then weknow by the �rst statement that P: �: E is uni�able. By the Simulation Theorem we know

6.7. Proof of the Hauptsatz 111that there exist a pre�x Q such that P: �: E u�!�Q: �0:E 0 and P 0 = #Q. By the InvarianceLemma we know that Q: �0:E 0 is �-well-typed and that Q&E[�0] &E 0 is uni�able sinceP: �: E is uni�able. Hence we know by the �rst statement there exist Q0 and 0 such thatP 0: �0:E 0 e�!�Q0: 0: ;.4. Follows by the Simulation Theorem and the U-Reduction Theorem. 26.7 Proof of the HauptsatzNow we are ready to enjoy the rewards of our hard work and prove the Hauptsatz.Proof. Let P &E be V -admissible and let � be a validating pyramid. Then P: ;:E is�-well-typed and all except the second claim of the Hauptsatz follow immediately fromcorresponding statements of the E-Reduction Theorem.Now let #P : ;:E e�!�Qa: :;. Then we know by the E-Reduction Theorem that thereexists a normal, inhabited and �-admissible pre�x Q such that Qa = #Q, Q `� Q, Q `�P , U[E& P] � U[Q&E[]], and NF[�Q] is a principal uni�er of �P &E.Let W := (V �D) [I(jV).Since Q `� P and P jV = �P jV , we know that �QjV = QjV � P jV . Since Q `� Q, wehence know by the Monotonicity Lemma that �QjW = QjW . Since QjV � P jV , we know bythe Upper Weakening Lemma that QjW `� P jV . Hence �QjW ` � P jV and thus QjW ` P jV since QjW and P jV are fully informed. Hence we have QjW � GP[P jV].Since Qa = #Q and Q is normal, we know by the Corollary to the Retract Theorem thatQjW = Qa " GP[P jV]:Since NF[�Q] is a principal uni�er of �P &E, we know by the Garbage Collection Theoremthat (jV)(NF[�Q]jW) is a V -solution schema for �P &E. Since Q is normal and QjW =�QjW , we know that (jV)(QjW) is a V -solution schema andT [[" [Q; ; P jV]]]V = T [[E[jV]&QjW]]V = T [[�P &E]]V :It remains to show that T [[E[jV] &QjW]]V = T [[E& P]]V .Since U[E& P] � U[E[]&Q] and E[jV] &QjW � E[]&Q, we have T [[E& P]]V �T [[E[]&Q]]V � T [[E[jV] &QjW]]V . Furthermore, since � is a sort substitution and V is aset of value variables, we have T [[E& �P]]V � T [[E &P]]V by Proposition 5.3.7 and henceT [[E[jV] &QjW]]V � T [[E& P]]V . 2

112 Chapter 6. POS-Constraint Solving

Chapter 7Logic Programming overPOS-Types7.1 POS-Programs7.2 The Interpreter7.3 Type InferenceNow that we have gone trough four chapters on POS-types developing their declarativeand operational semantics, we are well-prepared for the �nal step in our enterprise. ThePOS-programs de�ned in this chapter rely on a type discipline that is considerably morerestrictive than the canonical notion of well-typedness developed in Chapter 2. While thecanonical type discipline would result in ad hoc polymorphism, the type discipline imposedon POS-programs yields parametric polymorphism, which is the form of polymorphism em-ployed in functional programming languages such as ML. There is a good reason for insistingon parametric polymorphism: the constraint solver developed in Chapter 6 works only forthis less general form of polymorphism, and I even don't know if there is a computablecomplete constraint solver for programs relying on ad hoc polymorphism.The last section of this chapter addresses type checking and inference. I will show thatit is decidable whether some �nite collection of syntactic objects is a POS-program andthus solve the type checking problem. Type inference generalizes type checking in that theprogrammer is allowed to omit some or all sort quali�cations for the variables employed in aclause and the system is expected to infer most general sort quali�cations under which theclause becomes well-typed. Here I cannot o�er a perfect solution, but only give an incom-plete algorithm, whose implementation in TEL works quite well for practical applications.The programmer can always prevent the type inference algorithm from failing by explicitly113

114 Chapter 7. Logic Programming over POS-Typesgiving the sort quali�cations for \critical" variables.7.1 POS-ProgramsThis section de�nes the class of relational programs over POS-types that can be executedusing the constraint solver of Chapter 6. The well-typedness condition imposed preventsad hoc polymorphism and enforces parametric polymorphism [Str67], the form of polymor-phism realized in functional programming languages such as ML [HMM86] and in Mycroftand O'Keefe's [MO84] polymorphic type discipline for Prolog. Using the results of Chapter2 we show that POS-programs do have least models satisfying the sort declarations of therelations. Finally, we give a tailored goal reduction rule for POS-programs and show itssoundness and completeness exploiting the general results of Chapter 2.General Assumption. In this chapter we assume that T is a fully inhabited typespeci�cation and that R is a set of relation symbols.Let L(T) be the constraint language obtained from L(�T)� by forgetting all interpretationsbut T . In the following we assume tacitly that all constraints and all interpretations aretaken from L(T)�R.Of course, we could also take the initial interpretation I(T) rather than the extensionalinterpretation T of T . Since our constraint solver works for both interpretations in exactlythe same way, all results of this chapter stay true if I(T) instead of T is taken as the baseinterpretation.A POS-declaration is a declaration r(~x)!9~x : ~� such that ~� is a tuple of normal andinhabited sort terms. Since the validity of a POS-declaration in an interpretation does notdepend on the particular variables employed, we will use the abbreviation r: ~� . A set ofPOS-declarations is called singular if it contains for no relation symbol more than onedeclaration.Proposition 7.1.1 If A is an interpretation and r: ~� is a POS-declaration, then A satis�esr: ~� if and only if rA � SfT [[~�]]� j � 2 ASST g.A POS-atom is a constraint 9~x:(~x := ~s & r(~x)) such that ~s has no variable in common with~x . Since the denotation of a POS-atom does not depend on the particular variables in ~x , weuse the abbreviation r(~s). In the following, the letters A and B will always denote a POS-atom. Furthermore, the letters G and H will always denote a possibly empty conjunctionof POS-atoms.Proposition 7.1.2 If A is an interpretation and r(~s) is a POS-atom, then A[[r(~s)]] = f� 2ASST j T [[~s]]� 2 rAg:A POS-clause is an implication A P &A1& : : : &An such that n � 0, P is a normaland inhabited pre�x, and A and A1; : : : ; An are POS-atoms.

7.1. POS-Programs 115Proposition 7.1.3 An interpretation satis�es the POS-clauser0(~s0) P & r1(~s1) & : : : & rn(~sn)if and only if it satis�es the de�nite clauser0(~x0) P & f~x i := ~s igni=0& r1(~x1) & : : : & rn(~xn);provided the sets V~x0; : : : ;V~xn are pairwise disjoint and have no variable in common withP and ~s0; : : : ; ~sn.Let D be a singular set of POS-declarations. A POS-atom r(~s) is POS-well-typed undera pre�x P with respect to D if there exists a declaration r: ~� 2 D and a substitution �such that P ` ~s : �~� . A POS-clause r(~s) P &A1 & : : : &An is POS-well-typed withrespect to D if the POS-atoms A1; : : : ; An are POS-well-typed under P with respect to Dand there exists a variant r: ~� of a declaration in D such that P ` ~s : ~� .Our de�nition of well-typed clauses is considerably more restrictive than the general def-inition in Chapter 2 since the head of the clause is required to satisfy a variant of thedeclaration rather than an instance. For instance, the programa:A; r:�; r(a) ;is well-typed under the general de�nition of Chapter 2 but is not POS-well-typed. Ournotion of POS-well-typedness agrees with the notion of well-typedness in polymorphical-ly typed functional programming languages such as ML [HMM86] and in Mycroft andO'Keefe's [MO84] polymorphic type discipline for Prolog. This strong notion of well-typedness is necessary to obtain \parametric polymorphism" rather than \ad hoc poly-morphism" [Str67]. It is also crucial for our constraint solver to work with our programs.(In fact, I don't know whether the satis�ability of the constraints produced by \weakly well-typed" programs is decidable.) Interestingly, Hanus [Han88, Han89] investigates a poly-morphic type discipline for Horn Logic that employs the general notion of well-typedness ofChapter 2 and thus admits \ad hoc polymorphism". Hanus' system doesn't accommodatesubsorting.A POS-program is a pair (D;C) consisting of a singular set D of POS-declarations anda set C of POS-clauses that are POS-well-typed with respect to D.Theorem 7.1.4 Let S = (D;C) be a POS-program. Then C has a least model and theleast model of C satis�es D.Proof. By Proposition 7.1.3 we know that we can obtain from C a set �C of de�nite clausessuch that an interpretation satis�es C if and only if it satis�es �C. Since all interpretationshave T as base, we know by the De�niteness Theorem of Chapter 2 that �C and hence Chave a least model.One veri�es easily that �C is well-typed with respect to D (as de�ned in Section 2.5). Hencewe know by Theorem 2.5.5 that the least model of C, which is also the least model of �C,satis�es D. 2

116 Chapter 7. Logic Programming over POS-TypesTo obtain a convenient notation, we �x some POS-program (D;C) and use S to denote itsleast model. Moreover, the letter V will always denote a �nite set of value variables.The following rule de�nes a binary relation \F h�! F 0", calledH-reduction, on constraints:F & r(~s) h�! F & ~s := ~t &F 0if r(~t) F 0 is a variant of a clause in Chaving no variables in common with F & r(~s).Proposition 7.1.5 [Soundness] If F h�!� F 0, then S[[F 0]] � S[[F]].A POS-goal is a conjunction P &G such that P is an inhabited and normal pre�x and Gis a conjunction of POS-atoms that are POS-well-typed under P with respect to D.Theorem 7.1.6 [Completeness] Let P &G be a POS-goal and � 2 S[[P &G]]DP . Thenthere exists a complexity measure \kFk" such that1. kP &Gk is de�ned2. if kFk is de�ned, then � 2 S[[F]]DP3. if P &G h�!� F , kFk is de�ned, and A is a POS-atom in F , then there exists a clause 2 C such that(a) H-reduction of F on A with is possible(b) if F 0 is obtained from F by H-reduction on A with , then kF 0k < kFk.Proof. Let �C be obtained from C be replacing every clause with an equivalent de�niteclause according to Proposition 7.1.3. Then �C is a de�nite clause speci�cation in the senseof Chapter 2. The idea is to simulate h�! with r�! �C;DP � c�!DP and to obtain the claimsfrom the general Completeness Theorem 2.4.5.Recall that a POS-atom r(~s) is actually a constraint 9~x:(~x := ~s & r(~x)). Now let �G beobtained from G by omitting all quanti�ers, that is, by replacing every POS-atom 9~x:(~x :=~s & r(~x)) with ~x := ~s & r(~x), where the existentially quanti�ed variables ~x are renamedsuch that they occur nowhere else. Then S[[G]]DP = S[[�G]]DP and �G is a goal in the senseof Chapter 2.Now let G = G1& r(~s) and �G = �G1& ~x := ~s & r(~x). Furthermore, supposeP &G1& r(~s) h�! P &P 0 & ~s := ~t &G1&G2;where r(~t) P 0 &G2 is a variant of a clause in C having no variables in common withP &G1& r(~s). Then there exists a variant r(~x) ~x := ~t &P 0 & �G2 of a clause in �C havingno variables in common with V(P & �G1)[V~s such that �G2 can be obtained from G2 in thesame way �G was obtained from G. HenceP & �G1& ~x := ~s & r(~x) r�! �C;DP P & P 0& ~x := ~s & ~x := ~t & �G1& �G2c�!DP P & P 0& ~s := ~t & �G1& �G2:

7.2. The Interpreter 1172That's as much as we can get out of the general framework of Chapter 2. We cannotintegrate the constraint solver of Chapter 6 directly since it is not incremental in the strongsense required by the general constraint solving rule. In particular, this failure is causedby the fact that the constraint solver doesn't compute with the \real" constraints butonly with their approximations. We will see in the next section that our constraint solver,nevertheless, can do the job perfectly.7.2 The InterpreterAs in the last section, we assume that a fully inhabited type speci�cation T , a set R ofrelation symbols, and a POS-program (C;D) in L(T)�R are given. All constraints andinterpretations are taken from L(T)�R. Furthermore, let S be the least model of C and Vbe a �nite set of value variables.Our �nal interpreter for POS-programs consists of a single rule, called G-reduction:P: �: G& r(~s) g�! Q: :G&G0if r(~t) P 0&G0 is a variant of a clause in C such thatDP \DP 0 = ; and (P & #P 0): �: �~s := ~t e�!� Q: : ;.Let P &G be a POS-goal. We will show that G-reduction is sound, that is,#P: ;:G g�!�Q: : ;) T [[" [Q; ;P]]]DP � S[[P &G]]DP ;and that G-reduction is complete, that is,� 2 S[[P &G]]DP) 9 Q; : #P : ;:G g�!�Q: : ; ^ � 2 T [[" [Q; ; P]]]DP :Of course, we will show a stronger completeness result saying that only the choice of theclause is don't know and that all other involved choices are don't care (in particular, duringconstraint solving).The proof idea is simple: we will show that every g�! -derivation issuing from a POS-goalcan be simulated by a h�! -derivation, and that enough h�! -derivations can be anticipatedto be complete. The conjunctions of the h�! -derivation will satisfy a su�ciently stronginvariant ensuring that E-reduction is only applied to constraint systems that are admissiblein the sense of the Hauptsatz.A conjunction P &E&G is V-admissible if there exists a pyramid � such that1. P is a normal, inhabited and �-admissible pre�x such that V � DP and P jV = �P jV2. E is an equation system such that for every equation s := t 2 E there exists a �-admissible sort term � such that V� � D�, P ` s: ��Ps�, and P ` t:�3. G is a conjunction of POS-atoms such that every POS-atom r(~s) 2 G is POS-well-typed under P with respect to D and �Px = �Py for any two variables x; y 2 V~s .

118 Chapter 7. Logic Programming over POS-TypesProposition 7.2.1 If P &G is a POS-goal and V � DP , then P &G is V -admissible.Furthermore, if P &E&G is V -admissible, then P &E is V -admissible (as de�ned in Sub-section 6.1.4).We now de�ne so-called V -pairs relating the triples of the g�! -derivation with the \hy-pothetical" conjunctions of the simulating h�! -derivation. A pair <Q: :G; P &E &G>is called a V -pair if P &E&G is V -admissible and #P: ;:E e�!�Q: : ;. Note that theV -admissibility of P &E &G implies that P &E is V -admissible as required by the Haupt-satz.The next lemma states the two crucial properties of V -pairs, where the second property isde�nitely nontrivial and follows from the Hauptsatz. This is one of the two places wherethe Hauptsatz is needed in the proofs to come.Lemma 7.2.2 [V -Pair] If P &G is a POS-goal, then <#P : ;:G; P &G> is a DP -pair.Furthermore, if <Q: :G; P &E&G> is a V -pair, then T [[P &E]]V = T [[" [Q; ;P jV]]]V .Proof. The �rst claim is obvious from the de�nitions and the preceding proposition.To show the second claim, let <Q: :G; P &E &G> be a V -pair. Then #P: ;:E e�!�Q: :; and P &E is V -admissible since P &E &G is V -admissible. Hence we know by theHauptsatz that T [[P &E]]V = T [[" [Q; ;P jV]]]V . 2Next we de�ne so-called �!V -derivations on V -pairs relating g�! -derivations with theirsimulating h�! -derivations:<�; F> �!V <�0; F 0>if <�; F> and <�0; F 0> are V -pairs,� g�! �0, and F h�! F 0.Proposition 7.2.3 Let P &G be a POS-goal and <#P : ;:G; P &G>�!�DP<Qa: : ;; Q&E>. ThenT [[" [Qa; ; P]]]DP = T [[Q&E]]DP � S[[P &G]]DP :Proof. Follows from the soundness of H-reduction and the V -Pair Lemma since QjDP =P . 2Next we will show that every g�! -reduction issuing from a POS-goal P &G can be extendedto a �!DP -derivation. This yields the soundness of G-reduction. The proof will force usfor the very last time to get involved with the tedious details of pyramid well-typedness.Following a g�! -derivation issuing from a POS-goal P &G, one can build up incrementallythe simulating h�! -derivation together with the pyramids validating its DP -admissibilityusing the following lemma.Lemma 7.2.4 [Pyramid Construction] Let � = �n � � ��0 be a pyramid and be anidempotent sort substitution such that D and D�n [I�n are disjoint. Then:

7.2. The Interpreter 1191. if I � SV0, then �0 = (�n) � � �(�0);is a pyramid such that�0� = � 0 if � 2 D ��+ 1 otherwise and �0i+1� = � �i � if � 2 D �i� otherwise2. if I � SVk and k 2 1::n, then�0 = (�n) � � �(�k)�k�1 � � ��0is a pyramid such that�0� = � k � 1 if � 2 D �� otherwise and �0i� = � �i � if � 2 D and i � k�i� otherwise.Proof. Tedious but straightforward. 2Lemma 7.2.5 Let P &E&G& r(~s) be V -admissible, #P: ;:E e�!�Q: : ;, and r(~t) P 0&G0 be a variant of a clause 2 C such that DQ and DP 0 are disjoint. Then thereexists a variant r(~t) P 00&G0 of having no variables in common with P such that1. P & P 00&E & ~s := ~t &G&G0 is V -admissible2. #P & #P 00: ;:E & ~s := ~t e�!� Q& #P 0: : ~s := ~t .Proof. 1. Let � = �n � � ��0 be a pyramid such that: P is �-admissible, P jV = �P jVand V � DP ; for every s := t 2 E there exist a �-admissible � such that V� � D�, P `s: ��Ps� and P ` t:�; and �Px = �Py for every r(~u) 2 G& r(~s) and for every two variablesx; y 2 V~u .Furthermore, let r(~t) P 00&G0 be a variant of such that DP 00 = DP 0 and r(~t) P 00&G0 has no variable in common with VP [D� [I�. Such a variant can be obtained byrenaming the sort variables of P 0 since r(~t) P 0&G0 has no value variable in commonwith DP = D(#P) = DQ.Finally, let r: ~� be a variant of a declaration in D such that P 00 ` ~t : ~� and ~� has no variablein common with VP [D� [I�.Since r(~s) is POS-well-typed under P with respect to D, there exists a sort substitution such that P ` ~s : ~� . Since T is fully inhabited, we can assume without loss of generalitythat is inhabited, D = V~� [Sx2DP 00 VP 00x, and, using Proposition 5.1.5, that I =Sx2V~s VPx. Hence D has no variable in common with VP [D�[I� and is idempotent.Since we know by our assumptions that �Px = �Py for every two variables x; y 2 V~s , thereexists a unique number k such that I � SVk and k = 0 if I = ;.Let �0 be obtained by either the �rst construction of the Pyramid Construction Lemma ifk = 0 or the second construction if k > 0. We now verify that P &P 00&E & ~s := ~t &G&G0is V -admissible with respect to �0.

120 Chapter 7. Logic Programming over POS-Types1.1. Since DP and DP 0 are disjoint and all sort variables in P 00 are in D and hence havethe same level with respect to �0, P & P 00 is a �0-admissible pre�x. By our assumptionsit is also clear that P & P 00 is normal and inhabited. Furthermore, V � DP � D(P & P 00)and hence (P & P 00)jV = P jV = �0P jV = �0(P & P 00)jVsince D has no variables in common with P .1.2. Let s := t 2 E. Then there exists a �-admissible � such that V� � D�, P ` s: ��Ps�and P ` t:�. Hence � is �0-admissible, V� � D� � D�0 and P & P 00 ` s: (�0�0P&P 00(s))�since (�0�0P&P 00 (s))� = ��Ps� by the construction of �0.Now let si be a component of ~s , ti be the corresponding component of ~t , and �i be thecorresponding component of ~� . Since V�i � D , we know that �i is �0-admissible andV�i � D�0. Since P 00 ` ti: �i, we know that P & P 00 ` ti: �i. It remains to show thatP & P 00 ` si: (�0�0P&P 00(si))�i:We know that P ` si: �i. Thus P jVsi ` si: �i and hence P jVsi ` si: ��P (si) �i since��P (si)P jVsi = P jVsi . Thus we have P ` si: ��P (si) �i. Since Sx2V~s VPx = I � SVk weknow that �P (si) � k and hence��P (si) = �0�0P (si) = �0�0P&P 00 (si)for either construction of �0. Thus P & P 00 ` si: (�0�0P&P 00(si))�i.1.3. Let r(~u) 2 G. Then r(~u) is POS-well-typed under P & P 00 with respect to D sincer(~u) is POS-well-typed under P with respect to D. Furthermore, �0Px = �0Py for everytwo variables x; y 2 V~u since �Px = �Py and P has no variables in common with D .Let r(~u) 2 G0. Then r(~u) is POS-well-typed under P & P 00 with respect to D since r(~u) isPOS-well-typed under P 00 with respect to D because every clause in C is POS-well-typedwith respect to D. Furthermore, �0P 00x = �0P 00y for every two variables x; y 2 V~u since allsort variables in P 00 are in D and hence have the same level.2. We know that #P: ;:E e�!�Q: :;. Since D(#P 00) = DP 00 is disjoint with D(#P), weknow that #P & #P 00: ;:E e�!�Q& #P 00: :; and hence#P & #P 00: ;:E& ~s := ~t e�!�Q& #P 00: : ~s := ~t:Since D � DP and ~t has no variable in common with P , we know that ~t = ~t . Since P 00 isa variant of P 0 such that P 00 and P 0 di�er only in sort variables, we know that #P 0 = #P 00.Hence #P & #P 00: ;:E& ~s := ~t e�!� Q& #P 0: : ~s := ~t . 2Lemma 7.2.6 [Simulation] If <�; F> is a V -pair and � g�! �0, then there exists a con-straint F 0 such that <�; F>�!V <�0; F 0>.Proof. Let <Q: :G& r(~s); P &E &G& r(~s)> be a V -pair, r(~t) P 0&G0 be a vari-ant of 2 C such that DQ and DP are disjoint, Q& #P 0: : ~s := ~t e�!�Q0: 0: ;, andQ: :G g�! Q0: 0:G&G0. By the preceding lemma we know that there exists a variantr(~t) P 00&G0 of having no variables in common with P such that

7.2. The Interpreter 121(a) P & P 00&E& ~s := ~t &G&G0 is V -admissible(b) #P & #P 00: ;:E& ~s := ~t e�!� Q& #P 0: : ~s := ~t .Since P contains all variables in P &E &G& r(~s), we know thatP &E &G& r(~s) h�! P & P 00&E & ~s := ~t &G&G0:Furthermore, we have #P & #P 00: ;:E& ~s := ~t e�!� Q0: 0: ;by plugging the two know e�! -derivations together. Hence<Q0: 0:G&G0; P & P 00&E & ~s := ~t &G&G0>is a V -pair that can be obtained from <Q: :G& r(~s); P &E&G& r(~s)> by a �!V -step.2Theorem 7.2.7 [Soundness] If P &G is a POS-goal and #P: ;:G g�!�Q: :;, thenT [[" [Q; ; P]]]DP � S[[P &G]]DP .Proof. Follows from the Simulation Lemma and Proposition 7.2.3. 2We call a triple Q: :E don't care if there exist P , E 0 and V such that P &E 0 isV -admissible and P: ;:E 0 e�!�Q: :E. By the Hauptsatz we know that if we apply E-reduction to don't care triples, all possible choices of what to do next how are don't carenondeterministic.Theorem 7.2.8 [Don't careness of Constraint Solving] Let P &G be a POS-goal,#P: ;:G g�!�Q: :H & r(~s), and r(~t) P 0 &G0 be a variant of a clause in C such thatDQ and DP 0 are disjoint. Then (Q& #P 0): : ~s := ~t is don't care.Proof. We know that <#P : ;:G; P &G> is aDP -pair. Hence we know by the SimulationLemma that there exists a DP -admissible conjunctionP1&E&H & r(~s)such that #P1: ;:E e�!�Q: :;. Now we know by Lemma 7.2.5 that there exists a DP -admissible conjunction (P &P 00) & (E& ~s := ~t) such that#P & #P 00: ;:E& ~s := ~t e�!� Q& #P 0: : ~s := ~t :Hence Q& #P 0: : ~s := ~t is don't care. 2Theorem 7.2.9 [Completeness] Let P &G be a POS-goal and � 2 S[[P &G]]DP . Thenthere exists a complexity measure \k�k" such that

122 Chapter 7. Logic Programming over POS-Types1. kP: ;:Gk is de�ned2. if kQ: :;k is de�ned, then � 2 T [[" [Q; ; P]]]DP3. if P: ;:G g�!� �, k�k is de�ned, and A is a POS-atom in �, then there exists a clause 2 C such that(a) G-reduction of � on A with is possible(b) if �0 is obtained from � by G-reduction on A with , then k�0k < k�k.Proof. By the Completeness Theorem for H-reduction we know that there exists a suit-able complexity measure \kFk" for H-reduction, the POS-goal P &G and � 2 S[[P &G]]DP .With that we de�ne the complexity function \k�k" as follows:k�k = minfkFk j <P: ;:G; P &G>�!�DP <�; F> ^ kFk is de�nedgif there exists a conjunction F such that kFk is de�ned and<P: ;:G; P &G>�!�DP <�; F>.Now we verify the claims of the Theorem.1. Obvious.2. Suppose kQ: :;k is de�ned. Then there exists Q0 and E such that<P: ;:G; P &G>�!�DP <Q: : ;; Q0&E> and kQ0&Ek is de�ned. Hence we know by theCompleteness Theorem for H-reduction that � 2 S[[Q0&E]]DP = T [[Q0&E]]DP . By Propo-sition 7.2.3 we know that T [[" [Q; ;P]]]DP = T [[Q0&E]]DP . Hence � 2 T [[" [Q; ; P]]]DP .3. Let P: ;:G g�!�Q: :G1& r(~s) and kQ: :G1& r(~s)k be de�ned. Then we know thatthere exist a DP -admissible constraint P1 &E &G1& r(~s) such that<P: ;:G; P &G>�!DP <Q: :G1& r(~s); P1&E&G1& r(~s)>and kQ: :G1& r(~s)k = kP1&E &G1& r(~s)k. Now let be the clause that existsfor P1&E&G1& r(~s) according to statement (3) of the Completeness Theorem for H-reduction. Furthermore, let r(~t) P 0&G0 be a variant of such that DQ and DP 0 aredisjoint. Now it su�ces to show that:1. (a) 9 Q0; 0: Q: : ~s := ~t e�!�Q0: 0: ;2. (b) kQ0: 0: G1&G0k < kQ: :G1& r(~s)k.By Lemma 7.2.5 we know that there exists a variant r(~t) P 00&G0 of having no variablesin common with P such that:1. (c) P &P 00&E & ~s := ~t &G1&G0 is DP -admissible2. (d) #P1& #P 00: ;:E & ~s := ~t e�!� Q& #P 0: : ~s := ~t .Hence P1&E&G1& r(~s) h�! P & P 00&E & ~s := ~t &G1&G0

7.3. Type Inference 123by a step on r(~s) with . By the Completeness Theorem for H-reduction we know thatkP & P 00&E& ~s := ~t &G1&G0k < kP1&E &G1& r(~s)k:Hence � 2 S[[P & P 00&E& ~s := ~t &G1&G0]]DP and thus P & P 00&E& ~s := ~t is satis�ablein T . Furthermore, we know by (c) that (P & P 00) & (E& ~s := ~t) is DP -admissible. Hencewe have claim (a) by (d) and the Hauptsatz.Since we now have shown claim (a), we know that<Q: :G1& r(~s); P1 &E &G1& r(~s)>�!DP <Q0: 0:G1&G0; P & P 00&E& ~s := ~t &G1&G0>:Hence kQ0: 0:G1&G0k � kP & P 00&E & ~s := ~t &G1&G0k < kQ: :G1& r(~s)k: 2Corollary 7.2.10 [Weak Completeness] If P &G is a POS-goal and � 2 S[[P &G]]DP ,then there exist Q and such that P: ;:G g�!�Q: :; and � 2 T [[" [Q; ; P]]]DP .7.3 Type InferenceIn this section, let T be a fully inhabited type speci�cation, R be a decidable set of relationsymbols, and D be a �nite and singular set of POS-declarations in L(T)�R. As before, wetacitly assume that all constraints are taken from L(T)�R.We will show that it is decidable whether a POS-clause or a POS-goal are POS-well-typedwith respect to D. Together with our decidability results for type speci�cations this showsthat one can decide for a �nite collection of syntactic objects whether they constitute aPOS-program.In particular, we will investigate type inference, which generalizes the problem of typechecking. We will devise an algorithm that, given a POS-clause whose pre�x consists of ap-proximations, computes a pre�x under which the clause is POS-well-typed. This algorithmdoesn't perform perfect type checking in the sense of Chapter 2, in that it may fail althoughthe clause could be well-typed, and in that it may compute a pre�x that is not most gen-eral. This aws only appear if the clause employs relations with polymorphic declarations.Nevertheless, an implementation of this algorithm in the TEL programming system worksquite well for practical programs. Furthermore, the programmer can always prevent thetype inference algorithm from failing by giving more informative sort quali�cations for thecritical variables.I don't know whether there is a perfect type inference algorithm for POS-programs ingeneral. However, even if there is one, it is not clear whether it would be useful in practice.Our experiments with a more powerful, backtracking type inference algorithm were ratherfrustrating since for clauses that couldn't be well-typed (the ones you want to �nd inpractice) it was very slow and we didn't succeed in making it produce good (that is, speci�c)error messages.Deciding whether a POS-atom is well-typed is easy:

124 Chapter 7. Logic Programming over POS-TypesProposition 7.3.1 A POS-atom r(~s) is POS-well-typed under a pre�x P with respectto D if and only if there exists a declaration r: ~� 2 D such that �P [~s] v ~� has an uppermatcher.To show that a POS-clause r(~s) P &G is POS-well-typed with respect to D, we need toshow that every atom in G is POS-well-typed under P with respect to D, and that thereexists a variant r: ~� of a declaration in D such that P ` ~s : ~� . The well-typedness of thehead r(~s) can be decided with the method given in the following proposition.Proposition 7.3.2 There exists a variant ~� of ~� such that P ` ~s : ~� if and only if� := LUM[�P [~s] v ~�] exists and1. if � 2 V~� , then �� is a variable or ?2. if �; � 2 V~� are distinct sort variables, then �� 6= �� or �� = �� = ?.Proposition 7.3.3 It is decidable whether a POS-clause is POS-well-typed with respectto D. Furthermore, it is decidable whether a conjunction P &G is a POS-goal.We now attack the problem of type inference. First, we extend the inclusion order byde�ning the wildcard symbol as the greatest element. The following de�nes inductively apartial order �� on the set of all sort terms:� �� ; ?���; ����;�(~�)��� if �)� �(~�) and ~� ��~� .We call a sort term proper if it doesn't contain the wildcard symbol.Proposition 7.3.4 The relation �� is a partial order on the set of all sort terms such that:1. if � � � , then � ���2. if � is proper and � ��� , then � is proper3. if � is proper, then � � � if and only if � ��� .The following equations de�ne a computable total function \��u�" from sort terms to sortterms: ��u = ��u� = ���u� = ��(~�)�u�(~�) = �(~� �u~�) if � = �u�, �(~�))� �(~�), and �(~�))� �(~�)��u� = ? if none of the equations above applies.Proposition 7.3.5 If � and � are sort terms, then ��u� is the in�mum of � and � withrespect to �� and �u� � ��u� . Furthermore, if � and � are both proper, then ��u� = �u� .

7.3. Type Inference 125Next we de�ne a new decomposition relation \M i�!M 0" on membership systems exploit-ing the extended inclusion order ��:1. M & f(~s): � i�! M & ~s : f~�=~�g~�if f : ~� ! �(~�) 2 T and �)� �(~�)2. M & x: �& x: � i�! M & x: (��u�).Proposition 7.3.6 The decomposition relation M i�!M 0 is terminating and conuent.Proof. The termination of i�! is obvious. Since the in�mum function \��u�" is asso-ciative, we know that i�! is locally conuent and hence conuent. 2The following conditional equation de�nes a computable partial function \IP[M]" frommembership systems to normal and inhabited pre�xes:IP[M] := NF[P] if M i�!� P and P is an inhabited pre�x.Note that IP[M] is unique if it exists since a pre�x is normal with respect to i�! and i�!is conuent. If IP[M] exists, we call it the inferred pre�x of M .Proposition 7.3.7 If every sort term in M is proper and IP[M &M 0] exists, thenIP[M &M 0] `M and IP[M &M 0](x) is proper if x 2 VM .If P is a pre�x, then P? denotes the pre�x obtainable from P by replacing all occurrencesof the wildcard symbol with ?.Now we are ready to give the type inference algorithm by extending IP[�] to clauses andtheir bodies:1. IP[r(~s) P &G] = IP[IP[Q& ~s : ~�] &G] if r: ~� 2 D andQ := P & fx: j x 2 (V~s [VG)�DP g2. IP[P] = P if every sort term in P is proper3. IP[P & r(~s) &G] = IP[IP[P & ~s : ~�] &G] if r: ~� 2 D and ~� is ground4. IP[P & r(~s) &G] = IP[IP[P & ~s : �~�] &G] if r: ~� 2 D, ~� is nonground, and � =LUM[�P? [~s] v ~�].To make this de�nition work, we assume here that the atoms in the body of the clause areordered and that no declaration in D contains the wildcard symbol. In practical programsthat are executed with the usual left-to-right strategy an atom order that is good withrespect to control is often also good with respect to type inference.Proposition 7.3.8 [Type Inference] Let A P &G be a POS-clause such that Q :=IP[A P &G] exists. Then:

126 Chapter 7. Logic Programming over POS-Types1. A Q&G is POS-well-typed with respect to D2. if x 2 DP , then Qx��Px.The next proposition states that our type inference algorithm is at least perfect for clausesnot containing polymorphic relations.Proposition 7.3.9 [Monomorphic Type Inference] Let A P &G be a POS-clausesuch that every relation symbol occurring in it has a ground declaration in D. Furthermore,let Q0 be a pre�x such that A Q0&G is POS-well-typed with respect to D, Q0x��Px forevery x 2 DP , and DQ0 = VA[DP [VG. Then Q := IP[A P &G] exists, Q0 � Q, andA Q&G is POS-well-typed with respect to D.Example 7.3.10 Consider the declarationsapp: l(�)� l(�)� l(�); sub: l(�)� l(�)and the clause sub(S; L) app(X; S;XS) & app(XS;Y; L)and think of app as a list concatenation relation and of sub as a sublist relation. Then thetype inference algorithm computes the pre�xS: l(�) & L: l(�)&X: l(�) &XS: l(�) &Y: l(�):Furthermore, for the clausesub(S; L) S: l(nat) & app(X; S;XS)& app(XS;Y; L)the type inference algorithm computes the pre�xS: l(?) & L: l(�)&X: l(?) &XS: l(?) &Y: l(�):Incidentally, TEL [Smo88b] would not accept this clause since TEL requires that for everyexplicitly quali�ed variable in a clause the given sort term is an approximation of theinferred sort term. 2Example 7.3.11 Consider the type speci�cationnat v int; 1: nat; �1: int;the declaration m:�� l(�);and the goal m(1; L)&m(�1; L)and think of m as a list membership relation. Then the type inference algorithm computesthe pre�x L: l(nat) although the weaker pre�x L: l(int) would su�ce. Note that the inferred

7.3. Type Inference 127pre�x L: l(nat) renders the goal unsatis�able while L: l(int)&m(1; L)&m(�1; L) is satis�able.However, if the goal is rearranged tom(�1; L)&m(1; L)the type inference algorithm computes the most general pre�x L: int. Now suppose weextend the program withmtwo v int; �2:mtwo; cons:� � l(�)! l(�); r:mtwo:Then the type inference algorithm will fail on the goalm(1; cons(X; L))& r(X)although the goal is well-typed under its most general pre�xX:mtwo& L: l(int):However, if the goal is rearranged tor(X)&m(1; cons(X; L))the type inference algorithm succeeds with the most general pre�x. The di�culty is obvi-ously caused by the fact that, for polymorphic atoms, the type inference algorithm relieson the least upper matcher. Unfortunately, I don't know of any weakening method for theleast upper matcher that, under agreeable restrictions, works in general. One di�culty incoming up with such a weakening is that there are always in�nite ascending chains like, forinstance, ? v l(?) v l(l(?)) v � � � . 2

128 Chapter 7. Logic Programming over POS-Types

Appendix AMathematical PreliminariesIn this thesis we use some of the notations and results in the paper [Hue80]. The followingjust collects a few slight deviations from and additions to this standard notation.Let! be a binary relation on a setM . Then we use!� to denote the reexive and transitiveclosure of !, and !+ to denote the transitive closure of !. We call ! terminating ifthere are no in�nite chains a1 ! a1 ! a3 ! � � �.We assume that a decidable set of function symbols and a decidable set of variablesare given such that no variable is a function symbol. Every function symbol comes witha nonnegative integer specifying the number of arguments it takes. Function symbols thattake zero arguments are called constant symbols. We assume that there are in�nitelymany variables, and that, for every nonnegative integer n, there are in�nitely many functionsymbols taking n arguments.A signature is a set of function symbols.Terms are built from variables and function symbols as usual. We often write f(~s) for aterm of the form f(s1; : : : ; sn), where n � 0. In this case ~s denotes the tuple (s1; : : : ; sn).We assume that there is an empty tuple having zero components. A term is called a�-term if every function symbol occurring in it is in the signature �. We use Vs [V~s] todenote the set of all variables occurring in a term s [tuple ~s]. A term is called linear if novariable occurs more than once in it.A substitution is a total function � from terms to terms such that �f(~s) = f(�~s) forevery term f(~s). If � is a substitution, the domain and the introduced variables of �are de�ned as follows: D� := fx j �x 6= x and x is a variablegI� := [x2D�V(�x):A substitution � is called �nite if D� is �nite. If V is a set of variables, the restriction129

130 Appendix A. Mathematical Preliminariesof � to V is de�ned as the substitution �jV satisfying(�jV)x = � �x if x 2 Vx otherwisefor every variable x. A substitution � is idempotent if � = ��. Note that a substitution �is idempotent if and only if D� and I� are disjoint. We usefx1=s1; : : : ; xn=sngto denote the substitution � satisfying D� � fx1; : : : ; xng and �xi = si for i 2 1::n. Fur-thermore, we use ; to denote the identity function on the set of all terms (called the emptysubstitution).A term t is called an instance of a term s if there exists a substitution � such that t = �s.A rewrite rule is an ordered pair s ! t consisting of two terms s and t such that V(t) �V(s). A rewrite system is a set of rewrite rules. If R is a rewrite system, we write s)Rt and call s ! t an instance of a rule of R if there exists a substitution � and a ruleu! v 2 R such that s = �u and t = �v. We write s !R t if s contains a subterm u suchthat u)R v and t can be obtained from s by replacing some (not every) subterm u withv.If R is a rewrite system and � and are substitutions, we write � !�R if �x !�R x forevery variable x. Note that �s !�R t if s !�R t and � !�R .A rewrite system R is called terminating if there are no in�nite chains s1 !R s2 !Rs3 !R � � � .

Bibliography[AK86] Hassan A��t-Kaci. An algebraic semantics approach to the e�ective resolution oftype equations. Theoretical Computer Science, 45:293{351, 1986.[AKN86] Hassan A��t-Kaci and Roger Nasr. LOGIN: A logic programming language withbuilt-in inheritance. The Journal of Logic Programming, 3:185{215, 1986.[BS85] Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONEknowledge representation system. Cognitive Science, 9(2):171{216, April 1985.[Bur69] R. Burstall. Proving properties of programs by structural induction. ComputerJournal, 12, 1969.[CKC83] A. Colmerauer, H. Kanoui, and M. Van Caneghem. Prolog, theoretical princi-ples and current trends. Technology and Science of Informatics, 2(4):255{292,1983.[Col84] A. Colmerauer. Equations and inequations on �nite and in�nite trees. In Pro-ceedings of the 2nd International Conference on Fifth Generation ComputerSystems, pages 85{99, 1984.[Col88] A. Colmerauer. Final speci�cations for Prolog-III. Manuscript, Esprit Refer-ence Number P1210(1106), February 1988. See also: Opening the Prolog-IIIUniverse, Byte Magazine, August 1987.[DH88] R. Dietrich and F. Hagl. A polymorphic type system with subtypes for Prolog.In Proceedings of the 2nd European Symposium on Programming, volume 300of Lectures Notes in Computer Science, pages 79{93, Berlin, Heidelberg, NewYork, 1988. Springer-Verlag.[DHS+88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, and T. Graf. Appli-cations of chip to industrial and engineering problems. In Proceedings of theFirst International Conference on Industrial and Engineering Applications ofArti�cial Intelligence and Expert Systems, Tullahoma, Tennessee, June 1988.[DM79] Nachum Dershowitz and Zohar Manna. Proving termination with multiset or-derings. Communications of the ACM, 22:465{476, 1979.[DM82] L. Damas and R. Milner. Principal type-schemes for functional programs. InProceedings of the 9th ACM Symposium on Principles of Programming Lan-guages, pages 207{212, 1982. 131

132 Bibliography[EM85] Harmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Speci�cation 1 -Equations and Initial Semantics. EATCS Monographs on Theoretical ComputerScience. Springer-Verlag, Berlin, Heidelberg, New York, 1985.[FGJM85] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2.In B. Reid, editor, Proceedings of 12th ACM Conference on Principles of Pro-gramming Languages, pages 52{66. ACM, 1985.[GM86] Joseph A. Goguen and Jose Meseguer. Eqlog: Equality, types, and genericmodules for logic programming. In Douglas DeGroot and Gary Lindstrom,editors, Functional and Logic Programming, pages 295{363. Prentice Hall, 1986.[GM87a] J. A. Goguen and J. Meseguer. Order-Sorted Algebra I: Partial and OverloadedOperators, Errors and Inheritance. Technical report, Computer Science Lab.,SRI International, Menlo Park, 1987. Draft.[GM87b] Joseph A. Goguen and Jos�e Meseguer. Models and equality for logic program-ming. In TAPSOFT'87, Pisa, Italy, pages 1{22, Berlin, West Germany, 1987.LNCS 250, Springer-Verlag.[Gog78] J. Goguen. Order sorted algebra. Semantics and theory of computation reportno. 14, University of California, Los Angeles, 1978.[GTW78] Joseph A. Goguen, James W. Thatcher, and Eric G. Wagner. An initial algebraapproach to the speci�cation, correctness and implementation of abstract datatypes. In R. Yeh, editor, Current Trends in Programming Methodology IV:Data and Structuring, pages 80{144. Prentice Hall, 1978.[Han88] M. Hanus. Horn Clause Speci�cations with Polymorphic Types. PhD thesis,FB Informatik, Universit�at Dortmund, 1988.[Han89] M. Hanus. Horn clause programs with polymorphic types. In ProceedingsTAPSOFT'89. Springer-Verlag, 1989.[HMM86] R. Harper, D. MacQueen, and R. Milner. Standard ml. Report ecs-lfcs-86-2,Dep. of Computer Science, Univ. of Edinburgh, 1986.[Hoa75] C. A. R. Hoare. Recursive data structures. International Journal of Computerand Information Sciences, 1975.[HS88] Markus H�ohfeld and Gert Smolka. De�nite relations over constraint languages.LILOG Report 53, IWBS, IBM Deutschland, Postfach 80 08 80, 7000 Stuttgart80, Germany, October 1988. To appear in the Journal of Logic Programming.[Hue80] G. Huet. Conuent reductions: Abstract properties and applications to termrewriting systems. Journal of the ACM, 27(4):797{821, 1980.[HV87] M. Huber and I. Varsek. Extended Prolog for order-sorted resolution. In Pro-ceedings of the 4th IEEE Symposium on Logic Programming, pages 34{45, SanFrancisco, 1987.

Bibliography 133[JL86] Joxan Ja�ar and Jean-Louis Lassez. Constraint logic programming. Technicalreport, Department of Computer Science, Monash University, Australia, June1986.[JL87] Joxan Ja�ar and Jean-Louis Lassez. Constraint logic programming. In Proceed-ings of the 14th ACM Symposium on Principles of Programming Languages,pages 111{119, Munich, West Germany, January 1987. ACM.[JM87] J. Ja�ar and S. Michaylov. Methodology and implementation of a clp system.In J.-L. Lassez, editor, Proceedings of the 4th International Conference on LogicProgramming, Cambridge, Mass., 1987. MIT Press.[Joh88] Mark Johnson. Attribute-Value Logic and the Theory of Grammar. CSLILecture Notes 16. Center for the Study of Language and Information, StanfordUniversity, 1988.[KB82] Ronald M. Kaplan and Joan Bresnan. Lexical-Functional Grammar: A formalsystem for grammatical representation. In J. Bresnan, editor, The Mental Rep-resentation of Grammatical Relations, pages 173{381. MIT Press, Cambridge,Mass., 1982.[Lan64] Peter J. Landin. The mechanical evaluation of expressions. Computer Journal,pages 308{320, 1964.[LB87] Hector J. Levesque and Ronald J. Brachman. Expressiveness and tractability inknowledge representation and reasoning. Computational Intelligence, 3:78{93,1987.[Llo84] J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation.Springer-Verlag, Berlin, Heidelberg, New York, 1984.[MGS89] Jos�e Meseguer, Joseph A. Goguen, and Gert Smolka. Order-sorted uni�cation.Journal of Symbolic Computation, 8:383{413, 1989.[Mil78] R. Milner. A Teory of Type Polymorphism in Programming. Journal of Com-puter and System Science, 17:348{375, 1978.[Mis84] P. Mishra. Towards a theory of types in prolog. In Proceedings of the 1st IEEESymposium on Logic Programming, pages 289{298, Atlantic City, New Jersey,1984.[MM82] A. Martelli and U. Montanari. An e�cient uni�cation algorithm. ACM Trans-actions on Programming Languages and Systems, 4(2):258{282, 1982.[MO84] A. Mycroft and R. A. O'Keefe. A polymorphic type system for Prolog. Arti�cialIntelligence, 23:295{307, 1984.[Muk87] Kuniaki Mukai. Anadic tuples in prolog. Technical Report TR-239, ICOT,Tokyo, Japan, 1987.

134 Bibliography[Neb89] Bernhard Nebel. Reasoning and Revision in Hybrid Representation Systems.PhD thesis, Universit�at des Saarlandes, Saarbr�ucken, West Germany, June 1989.To appear in Lecture Notes in Arti�cial Intelligence, Springer-Verlag.[NR85] Maurice Nivat and John C. Reynolds, editors. Algebraic Methods in Semantics.Cambridge University Press, Cambridge, England, 1985.[NS90] Bernhard Nebel and Gert Smolka. Representation and reasoning with attribu-tive descriptions. In K.H. Bl�asius, U.Hedtst�uck, and C.-R. Rollinger, editors,Sorts and Types in Arti�cial Intelligence, volume 418 of Lectures Notes in Com-puter Science, pages 112{139. Springer-Verlag, Berlin Heidelberg, 1990.[RK86] William C. Rounds and Robert T. Kasper. A complete logical calculus forrecord structures representing linguistic information. In Proceedings of the 1stIEEE Symposium on Logic in Computer Science, pages 38{43, Boston, Mass.,1986.[SA89] Gert Smolka and Hassan A��t-Kaci. Inheritance hierarchies: Semantics and uni-�cation. Journal of Symbolic Computation, 7:343{370, 1989.[Smo88a] Gert Smolka. A feature logic with subsorts. LILOG Report 33, IWBS, IBMDeutschland, Postfach 80 08 80, 7000 Stuttgart 80, Germany, May 1988.[Smo88b] Gert Smolka. Tel (version 0.9), report and user manual. Seki-report sr 87-17,FB Informatik, Universit�at Kaiserslautern, 1988.[Smo89] Gert Smolka. Feature constraint logics for uni�cation grammars. IWBS Re-port 93, IWBS, IBM Deutschland, Postfach 80 08 80, 7000 Stuttgart 80, Ger-many, November 1989. To appear in the Journal of Logic Programming.[SNGM89] G. Smolka, W. Nutt, J. A. Goguen, and J. Meseguer. Order-Sorted EquationalComputation. In Hassan A��t-Kaci and Maurice Nivat, editors, Resolution ofEquations in Algebraic Structures, Volume 2, Rewriting Techniques, chapter 10,pages 297{367. Academic Press, New York, N.Y., 1989.[SS85] Manfred Schmidt-Schau�. A many-sorted calculus with polymorphic functionsbased on resolution and paramodulation. In Proceedings of the 9th InternationalConference on Arti�cial Intelligence, pages 1162{1168. Kaufmann, 1985.[SS89] Manfred Schmidt-Schau�. Computational Aspects of an Order-Sorted Logicwith Term Declarations, volume 395 of Lecture Notes in Arti�cial Intelligence.Springer-Verlag, Berlin, West Germany, 1989.[SSS91] Manfred Schmidt-Schau� and Gert Smolka. Attributive concept descriptionswith complements. Arti�cial Intelligence, (47), 1991.[Str67] C. Strachey. Fundamental concepts in programming languages. Notes for theInternational Summer School in Computer Programming, Copenhagen, Den-mark, 1967.

Bibliography 135[Wal83] C. Walther. A many-sorted calculus based on resolution and paramodulation. InProceedings of the 8th International Joint Conference on Arti�cial Intelligence,pages 882{891, 1983.[Wal85] C. Walther. A mechanical solution of Schubert's steamroller by many-sortedresolution. Arti�cial Intelligence, 26:217{224, 1985.[Wal87] C. Walther. A Many-Sorted Calculus Based on Resolution and Paramodula-tion. Research Notes in Arti�cial Intelligence. Pitman, London, and MorganKaufmann, Los Altos, Calif., 1987.[Wal88] C. Walther. Many-sorted uni�cation. Journal of the ACM, 35(1):1{17, January1988.[Zob87] J. Zobel. Derivation of polymorphic types for prolog programs. In Proceedingsof the 4th International Conference on Logic Programming, pages 817{838,Cambridge, Mass., 1987. MIT Press.

