
Unification Modulo Nonnested Recursion
Schemes via Anchored Semi-Unification
Gert Smolka1 and Tobias Tebbi1

1 Saarland University, Saarbrücken, Germany
smolka@ps.uni-saarland.de, ttebbi@ps.uni-saarland.de

Abstract
A recursion scheme is an orthogonal rewriting system with rules of the form f(x1, . . . , xn) → s.
We consider terms to be equivalent if they rewrite to the same redex-free possibly infinite term
after infinitary rewriting. For the restriction to the nonnested case, where nested redexes are
forbidden, we prove the existence of principal unifiers modulo scheme equivalence. We give
an algorithm computing principal unifiers by reducing the problem to a novel fragment of semi-
unification we call anchored semi-unification. For anchored semi-unification, we develop a decision
algorithm that returns a principal semi-unifier in the positive case.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases Recursion Schemes, Semi-Unification, Infinitary Rewriting

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Recursion schemes (in the following shortly called schemes) describe mutually recursive
function definitions and go back to the 1970s [18, 2]. They can be understood as rewriting
systems with rules of the form f(x1, . . . , xn) → s such that there is exactly one rule per
function symbol f and s is not a redex. Starting with a finite term, the limit of repeatedly
rewriting with these rules is a possibly infinite term containing no redexes, see Dershowitz et
al. [3]. We consider two terms to be equivalent if they rewrite to the same redex-free term.
This equivalence is known as tree equivalence (introduced by Rosen [18]). Given a scheme S,
we will speak of S-equivalence in the following. As shown by Courcelle [2], S-equivalence
is interreducible to the equivalence of deterministic pushdown automata (DPDA). DPDA
equivalence was an open problem for 20 years and was finally shown to be decidable by
Sénizergues [21]. Sénizergues’ proof yields a non-elementary decision procedure. The best
known upper bound for the complexity of the problem is primitive recursive (see Stirling
[22]).

In this paper, we will consider schemes without nested redexes, which we call nonnested
schemes following Courcelle [2]. Sabelfeld [19] gives a polynomial decision procedure for
S-equivalence where S is a nonnested scheme.

Our motivation to investigate nonnested schemes is compiler verification. Nonnested
schemes suffice to encode control flow graphs (CFGs) where everything but register updates
and jumps is left uninterpreted. See Figure 1 for an example of a CFG together with a
corresponding scheme. If two CFGs result in equivalent recursion schemes, then they are
observationally equivalent. So if a compiler optimization produces a transformed CFG
whose recursion scheme is equivalent to the recursion scheme of the original CFG, then this
optimization is sound. Thus in a verified compiler, a compilation phase that produces a
scheme-equivalent CFG can be validated by running a recursion scheme equivalence checker.

© Gert Smolka and Tobias Tebbi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Unification Modulo Nonnested Recursion Schemes via Anchored Semi-Unification

x:=10

x := x - 1
y := 2 * y

return y
x > 0x ≤ 0

f1(x, y) → f2(10, y)
f2(x, y) → if(x− 1 > 0, f2(x− 1, 2 ∗ y), f3(x− 1, 2 ∗ y))
f3(x, y) → return(y)

Figure 1 CFG with corresponding scheme

We expect that compilation phases like global value numbering, code motion for assignments
and register allocation (except for spilling) can be validated with this method.

We solve a more general problem than S-equivalence, namely unification modulo S-
equivalence. This relies on our result that S-unification is unitary (i.e., principal S-unifiers
exist). Given two terms s and t, we show how to compute a principal S-unifier of s and t if
one exists. For our results, we restrict substitutions such that variables are replaced with
redex-free terms.

Our method is a certifying algorithm [15] in the following sense. Whenever we compute
a principal substitution σ such that σs and σt are S-equivalent, we also have a certificate
proving that σs and σt are S-equivalent.

Our method works by reducing the unification problem to a new decidable fragment of
semi-unification we call anchored semi-unification. Semi-unification is a generalization of
ordinary syntactic unification. Semi-unification was first identified by Lankford and Musser
[10] in 1978 and rediscovered in different areas ten years later [5, 7, 17]. In its general
form, semi-unification was shown to be undecidable by Kfoury et al. [8]. Several decidable
fragments of semi-unification are known, but all of them differ significantly from our new
fragment (see Section 11). Our semi-unification algorithm can be seen as a restriction of the
diverging semi-unification rules of Leiß [12].

2 Overview

Our method is based on a coinductive definition of S-equivalence. We seem to be the first to
employ a coinductive definition of S-equivalence. According to our definition, two terms s
and t are S-equivalent (i.e., s ≡ t) if there is a compliant relation relating s and t. Compared
with process equivalence, compliant relations play the role of bisimulations. Our first main
result is the existence of principal S-unifiers. A substitution σ is a principal S-unifier of two
terms s and t if it is a principal (aka most general) substitution such that σs ≡ σt. From
the existence of principal S-unifiers, it follows that there are principal pairs. A pair of terms
(fs, gt) is a principal pair for the function symbols f and g if for all tuples of terms u and v,
we have fu ≡ gv iff (fu, gv) is a substitution instance of (fs, gt).

By weakening the conditions on compliant relations, we obtain a decidable criterion for
finite relations that implies S-equivalence for the pairs in the relation (and their substitution
instances). We call finite relations that satisfy this criterion certificates. It turns out that
every finite set of principal pairs can be extended to a certificate by adding more principal
pairs. Thus there are certificates for all S-equivalences between redexes. On the other hand,
a principal certificate contains only principal pairs. A principal certificate is a relation σF
where F is a frame and σ is a principal substitution such that σF is a certificate. A frame is
roughly a relation on terms of the form fx that does not contain a variable twice. We will

G. Smolka and T. Tebbi 3

show that if there is a principal pair for f and g, then it is possible to compute a frame F
and a substitution σ such that σF is a principal certificate containing a principal pair for f
and g.

We solve the S-unification problem (ScUP) by reducing it to the anchored semi-unification
problem (AnSUP). This is done using three reduction steps.

ScUP→ FIP→ SUP∗ → AnSUP

ScUP is the initial problem, asking for a principal S-unifier of two terms fs and gt. To
find an S-unifier of fs and gt, it suffices to determine a principal pair for f and g. If there is
no principal pair for f and g, then fs and fg are not S-unifiable. To find a principal pair for
f and g, we compute a frame F for f and g such that F can be instantiated to a principal
certificate for f and g iff there exists a principal pair for f and g. We call the new problem
frame instantiation problem (FIP).

We reduce FIP to the standard semi-unification problem SUP. Since SUP is undecidable
in general, we employ a further reduction to the anchored semi-unification problem AnSUP.
We show that every instance of SUP obtained by our reduction from FIP translates to an
instance of AnSUP. In the diagram above, SUP∗ indicates the fragment of SUP reachable by
our reduction from FIP. While SUP employs inequalities s �̇ t, AnSUP employs equations
s
.= t where s and t can contain instance variables αx consisting of a simple variable x and a

substitution variable α that represents a substitution. The anchoredness constraint ensures
that for every relevant instance variable αx, there is an equation αx .= s where s contains no
instance variables. We solve instances of AnSUP with terminating semi-unification rules that
are a restriction of the rules in [12]. The anchoredness constraint is preserved by applications
of the semi-unification rules and allows us to always eliminate instance variables.

The paper is organized as follows. First, we define nonnested schemes and S-equivalence.
Then we formulate ScUP and prove the existence of principal S-unifiers and principal pairs.
Afterwards, we define FIP with frames and certificates and present the reductions from ScUP
to FIP and from FIP to SUP. Next, we define AnSUP and present the reduction from FIP to
AnSUP. Finally, we define a solved form and present terminating semi-unification rules for
AnSUP. The sections on AnSUP and the semi-unification rules can be read independently of
the rest of the paper.

3 Equivalence Modulo Nonnested Schemes

We assume an alphabet of constants (ranged over by a, b, c), an alphabet of function symbols
(ranged over by f , g, h) and an alphabet of variables (ranged over by x, y, z). We assume
that there are infinitely many variables and finitely many function symbols. We define terms
(ranged over by s, t, u, v) using the grammar

s, t ::= a | x | s · t | fs

where s is a tuple of terms not containing a term of the form ft.
Note that although we restrict ourselves to a single binary operator (·), we do not loose

expressive power compared to full first-order terms since they can be encoded, for example
with a(s1, s2, . . . , sn) (· · · ((a · s1) · s2) · · · · sn). We impose the usual discipline that every
function symbol has a fixed arity and that for fs, the length of s is the arity of f . We omit
parentheses such that s · t · u = s · (t · u).

Since we will have a rewrite rule for every function symbol, we call every term of the form
fs a redex. A term is simple if it contains no redex. A term is plain if it is simple or a redex.

4 Unification Modulo Nonnested Recursion Schemes via Anchored Semi-Unification

A substitution (ranged over by σ, τ , θ) is a function from variables to simple terms. Note
that this is a nonstandard restriction and affects our results for unification modulo nonnested
schemes. We lift substitutions to range over terms, tuples and sets in the usual way.

A declaration of f is a rewrite rule fx→ s1 · s2 with distinct variables x and terms s1, s2
containing only variables from x. A nonnested scheme (in the following shortly scheme) S is
a set of declarations that contains exactly one declaration for every function symbol. We
assume that a scheme S is given. For technical reasons, we require that S is reduced, that
is, for every declaration fx→ s1 · s2, both s1 and s2 are plain and at least one of them is
a redex. Sabelfeld [19] uses a similar restriction of the same name. Given a redex fs, its
unfolding S(fs) is the term σt where fx→ t is the unique declaration of f in S and σ is a
substitution with σx = s. We write Sis for ti where Ss = t1 · t2 and i ∈ {1, 2}.

I Example 1. For the reduced scheme

f(x, y)→ x · g(a · x, y)
g(x, y)→ y · f(a · x, a · a · y)

infinitary rewriting of the redex f(x, y) results in the infinite tree

·
x ·

y ·
·

a ·
a x

·
·

a ·
a y

· · ·

General Convention. From now on until Section 7, s, t, u and v will always denote
plain terms and R will always denote a binary relation on plain terms.

We now give a coinductive definition of S-equivalence. We call a relation R on plain
terms closed if R(Sis)(Sit) for all pairs of redexes (s, t) ∈ R and i ∈ {1, 2}. The kernel of a
relation R is KR := {(s, t) ∈ R | s or t simple}. A relation R is coreflexive if s = t whenever
Rst. We call a relation R compliant if it is closed and KR is coreflexive. Two plain terms
s and t are S-equivalent iff there is a compliant relation R with Rst. Since S is fixed, we
simply write s ≡ t to say that s and t are S-equivalent and use (≡) to denote the set of all
S-equivalent pairs. Note that a compliant relation is essentially a bisimulation between the
trees generated by infinitary rewriting.

I Example 2. For the scheme from Example 1,

{(f(x, a · y), g(y, x)),
(x, x), (g(a · x, a · y), f(a · y, a · a · x)),
(a · y, a · y), (f(a · a · x, a · a · a · y), g(a · a · y, a · a · x)), . . .}

is a compliant relation containing (f(x, a · y), g(y, x)). Observe how this relation corresponds
to a walk through the following tree, which can be obtained by infinitary rewriting of either

G. Smolka and T. Tebbi 5

f(x, a · y) or g(y, x).

·
x ·

·
a y

·
·

a ·
a x

· · ·

I Proposition 3. S-equivalence (≡) is an equivalence relation on plain terms. Moreover, it
is the largest compliant relation.

Proof. Reflexivity follows from the fact that {(s, s) | s plain} is compliant. The other
properties follow from the fact that the inverse, union, intersection and composition of
compliant relations are compliant. J

Our coinductive definition of S-equivalence is equivalent to the usual approach using
infinite trees. For every term s, infinitary rewriting with the rules of the scheme yields a
possibly infinite redex-free term that can be seen as a possibly infinite binary tree Ts whose
internal nodes are labeled with · and whose leaves are labeled with constants and variables.
Two terms s and t are tree-equivalent if Ts = T t. We write (Ts) · (T t) for the tree whose
root has exactly Ts and T t as children. For a formal definition of tree equivalence, see e.g.
Courcelle [2]. We will not define Ts, but instead we use the following two properties.
1. T (s · t) = (Ts) · (T t)
2. Ts = (T (S1s)) · (T (S2s)) if s is a redex
In the following, we write (∼T) for the relation on plain terms such that s ∼T t iff Ts = T t.
Using property (1.), it is clear that for simple terms s and t, we have s ∼T t iff s = t.
For a simple term s, Ts is finite. In contrast to this, Ts is infinite if s is a redex because
S is reduced. Taking these properties together, we obtain that K(∼T) is coreflexive. We
also have that (∼T) is closed because if s ∼T t for redexes s and t, then, by property (2.),
(T (S1s)) · (T (S2s)) = (T (S1t)) · (T (S2t)) and hence Sis ∼T Sit for i ∈ {1, 2}. Thus (∼T) is
a compliant relation and therefore (∼T) ⊆ (≡).

It remains to show that (∼T) ⊇ (≡). Assume, for contradiction, that there are plain
terms s and t with s ≡ t that are not tree-equivalent. When two trees are different, then they
differ at some finite level. Select s and t such that the level l at which Ts and T t differ is
minimal. Since s ≡ t, we have that s and t are both redexes because otherwise s = t. Since
Ts = (T (S1s)) · (T (S2s)) and T t = (T (S1t)) · (T (S2t)) differ at level l, there is i ∈ {1, 2} such
that T (Sis) and T (Sit) differ at level l − 1. So we have a contradiction because Sis ≡ Sit.
I Remark. We can restrict ourselves to plain terms because other terms can be transformed
into plain terms by adding additional declarations to the scheme.

Also, the restriction to reduced schemes is inessential because every scheme can be
transformed into an equivalent reduced one.

A declaration fx→ s with s simple can be eliminated by replacing every redex ft in S
with the simple term S(ft).
A declaration with deep redexes can be split into several declarations, e.g.

f(x)→ a · g() · x f(x)→ a · f ′(x)
f ′(x)→ g() · x

6 Unification Modulo Nonnested Recursion Schemes via Anchored Semi-Unification

4 Scheme Unification Problem (ScUP)

A substitution σ is an S-unifier of two terms s and t if σs ≡ σt. We define the usual
instantiation pre-order (�) on tuples of terms and substitutions. For two tuples of terms s
and t, we have s � t if σs = t for some substitution σ. For two substitutions σ and τ , we
have σ � τ if τ = θ ◦ σ for some substitution θ (as usual, (θ ◦ σ)(x) := θ(σx)). We call a set
Σ of substitutions quasi-principal if Σ is either empty or contains a substitution σ such that
Σ = {τ | σ � τ}. In this case we call σ a principal element of Σ. A principal S-unifier of s
and t is a principal element of {σ | σs ≡ σt}.

I Problem 1 (ScUP). Given two plain terms s and t, find a principal S-unifier of s and t if
one exists.

In the remainder of this section, we prove that two terms have a principal S-unifier if
they are S-unifiable. The principal S-unifiers will turn out to be essential for our reduction,
because they allow us to characterize all S-equivalences between terms with the finite set of
principal S-unifiers between terms of the form fx.

The closure C(s, t) of s and t is the smallest closed relation containing (s, t).

I Proposition 4. s ≡ t iff K(C(s, t)) is coreflexive.

Proof. If s ≡ t, then there is a compliant relation R containing (s, t). Thus C(s, t) ⊆ R.
Hence K(C(s, t)) ⊆ KR is coreflexive.

If K(C(s, t)) is coreflexive, then C(s, t) is a compliant relation containing (s, t). Thus
s ≡ t. J

I Proposition 5. For every redex s, we have S(σs) = σ(Ss).

I Lemma 6. C(σs, σt) = σ C(s, t)

Proof. Using Proposition 5, we obtain that σ C(s, t) is closed. Since also (σ C(s, t))(σs)(σt),
we have C(σs, σt) ⊆ σ C(s, t). It remains to show that C(σs, σt) ⊇ σ C(s, t). This follows
from a simple induction on the derivations of the elements in C(s, t). J

The following well-known result generalizes the existence of principal unifiers for ordinary
unification to infinite systems of equations. Note that σR is coreflexive iff σ is an (ordinary)
unifier of R.

I Proposition 7. For a relation R on terms with finitely many variables, {σ | σR coreflexive}
is quasi-principal.

Proof. See Proposition 4.10 in Eder [4]. J

I Theorem 8. {σ | σs ≡ σt} is quasi-principal.

Proof. We have

{σ | σs ≡ σt}
= {σ | K(C(σs, σt)) coreflexive} by Proposition 4
= {σ | K(σ C(s, t)) coreflexive} by Lemma 6
= {σ | σ(K(C(s, t))) coreflexive}

and {σ | σ(K(C(s, t))) coreflexive} is quasi-principal by Proposition 7. J

G. Smolka and T. Tebbi 7

For a relation R on plain terms, we define ↑R := {(s′, t′) | ∃(s, t) ∈ R. (s, t) � (s′, t′)}.
Given function symbols f and g, we call (fs, gt) a principal pair for (f, g) if ↑{(fs, gt)} =
{(fu, gv) | fu ≡ gv}. Note that a principal pair for f and g completely characterizes
S-equivalence for terms of the form fs and gt.

I Corollary 9. If σ is a principal S-unifier of fx and gy, and x, y are pairwise distinct
variables, then σ(fx, gy) is a principal pair.

5 Frame Instantiation Problem (FIP)

In this section, we introduce the frame instantiation problem, which will allow us to compute
principal pairs. In Section 6, we will then show how to construct a frame that can be
instantiated to a certificate consisting of principal pairs only.

For a relation R on redexes, we define ⇑R := ↑R ∪ {(s, s) | s simple}. A finite relation R
on redexes is a certificate if ⇑R(Sis)(Sit) for all redexes (s, t) ∈ R and i ∈ {1, 2}. Note that
a certificate is essentially a bisimulation up-to instantiation in the sense of up-to techniques
for bisimulations [20].

I Example 10. For the scheme from Example 1,

R := {(f(x, a · y), g(y, x)), (g(y, x), f(x, a · y))}

is a certificate. Observe that ⇑R is a superset of the compliant relation from Example 2. Also
note that R consists of two principal pairs.

I Lemma 11. Let R be a certificate. Then ⇑R ⊆ (≡).

Proof. It suffices to show that ⇑R is compliant. We have that K⇑R is coreflexive because
K⇑R = ⇑(KR) = ⇑{}. It remains to show that ⇑R is closed. Consider a pair of redexes
(s, t) ∈ ⇑R. We have to show that ⇑R(Sis)(Sit) for i ∈ {1, 2}. By the definition of ⇑R, there
are redexes (u, v) ∈ R with (u, v) � (s, t). Since R is a certificate, we have ⇑R(Siu)(Siv). As
(Siu,Siv) � (Sis,Sit) by Proposition 5, it follows that ⇑R(Sis)(Sit). J

We write s ≈ t if s and t are redexes with the same function symbol, and (s, t) ≈ (u, v)
if s ≈ u and t ≈ v. We call a relation R on redexes unitary if there are no distinct pairs
(s1, s2), (t1, t2) ∈ R with (s1, s2) ≈ (t1, t2). Note that every unitary relation is finite because
there are only finitely many function symbols. We call a unitary relation F on redexes of the
form fx a frame if no variable occurs twice in F .

I Example 12. Consider the frame F := {(f(x1, x2), g(x3, x4)), (g(x5, x6), f(x7, x8))}.
There is a substitution σ such that σF is the certificate from Example 10. Moreover, σ is
principal with this property if it is the identity on all variables not occurring in F .

I Problem 2 (FIP). Given a frame F , find a principal element of {σ | σF is certificate} if it
exists.

It is easy to decide if a finite relation is a certificate. Thus a certificate proves that its
elements are S-equivalent. So for every solution σ of a frame F , we obtain a certificate
(in the sense of a certifying algorithm [15]) for the fact that all pairs of terms in σF are
S-equivalent.

8 Unification Modulo Nonnested Recursion Schemes via Anchored Semi-Unification

6 ScUP to FIP

To solve ScUP, it suffices to compute principal pairs. Suppose we want to compute a principal
S-unifier of two plain terms s and t. We distinguish three cases.
1. If s and t are both redexes, then consider a principal pair (s′, t′) with (s′, t′) ≈ (s, t) and

fresh variables. We obtain an ordinary unification problem because

{σ | σs ≡ σt} = {σ | (s′, t′) � σ(s, t)} = {σ | ∃τ. τ(s′, t′) = σ(s, t)}

2. If s and t are both simple, then we are about to solve an ordinary unification problem
since for simple terms, S-equivalence is (syntactic) equality.

3. Otherwise, one of them is a redex and the other one is a simple term and hence they
cannot be S-unifiable.

So in the following, we only consider the first case and construct a frame F such that for its
principal solution σ, a suitable principle pair is contained in σF .

We call a relation R on redexes pointwise S-unifiable if s and t are S-unifiable whenever
Rst. We call a relation R on redexes function-closed if ⇑R(Sis)(Sit) whenever Rst, i ∈ {1, 2}
and Sis and Sit are both redexes. For example, the frame from Example 12 is pointwise
S-unifiable and function-closed.

I Lemma 13. For every function-closed and pointwise S-unifiable frame F , there is a
substitution σ such that σF is a certificate containing only principal pairs.

Proof. For (s, t) ∈ F , let σs,t be a principal S-unifier of s and t. These S-unifiers exist
because F is pointwise S-unifiable. Since the elements of F have disjoint variables, the
following substitution is well-defined.

τx =
{
σs,tx if there is (s, t) ∈ F s.t. x occurs in (s, t)
x otherwise

For all (s, t) ∈ F , we have that σs,t(s, t) = τ(s, t) and hence τ(s, t) is a principal pair by
Corollary 9. Thus τF consists only of principal pairs and ⇑(τF) = (≡) ∩ ⇑F .

It remains to show that τF is a certificate. Consider a pair of redexes (s, t) ∈ τF . We
have to show that ⇑(τF)(Sis)(Sit) for i ∈ {1, 2}. There are (s′, t′) ∈ F with τ(s′, t′) = (s, t).
We have that s ≡ t and hence Sis ≡ Sit. By Proposition 5, τ(Sis′) = Sis ≡ Sit = τ(Sit′).
Thus either both Sis′ and Sit′ are redexes or both are simple. Hence and because F is
function-closed, we have ⇑F (Sis′)(Sit′). Thus also ⇑F (τ(Sis′))(τ(Sit′)) and equivalently
⇑F (Sis)(Sit). Since ⇑(τF) = (≡) ∩ ⇑F , we conclude that ⇑(τF)(Sis)(Sit). J

However, we are still missing a way to construct an appropriate function-closed and
pointwise S-unifiable frame. It turns out that we get pointwise S-unifiability for free if we
just make the frame as small as we can.

Given function symbols f and g, we write F(f, g) for a fixed function-closed frame with
minimum cardinality containing a pair (fx, gy) for some pairwise distinct variables x, y. Since
every maximum cardinality frame is function-closed, F(f, g) always exists. For example, we
can take the frame from Example 12 for F(f, g) where f and g are the function symbols
from Example 1. One can easily compute F(f, g) by incrementally adding elements (hx, h′y)
with fresh and distinct variables x, y as required by the function-closedness constraint.

I Lemma 14. If fs and gt are S-unifiable, then F(f, g) is pointwise S-unifiable.

G. Smolka and T. Tebbi 9

Proof. Suppose, for contradiction, that F := {(u, v) ∈ F(f, g) | u, v S-unifiable} 6= F(f, g).
Then F has strictly smaller cardinality. We have ⇑F (fs)(gt) since fs and gt are S-unifiable.
Thus we can conclude a contradiction by showing that F is also function-closed. Let (u, v) ∈ F
and i ∈ {1, 2} such that Siu and Siv are both redexes. We need to show that ⇑F (Siu)(Siv).
Since F(f, g) is function-closed, we have (⇑F(f, g))(Siu)(Siv). Select a substitution σ with
σu ≡ σv. By Proposition 5, we have σ(Siu) = Si(σu) ≡ Si(σv) = σ(Siv). Thus Siu and Siv
are S-unifiable and hence ⇑F (Siu)(Siv). J

I Corollary 15. If fs and gt are S-unifiable, then {σ | σF(f, g) is certificate} is nonempty
and for every principal element σ, we have that σF(f, g) contains a principal pair for (f, g).

We will reduce FIP to AnSUP in a way that a frame F is mapped to an anchored
system of equations E with {σ | σF is certificate} = {σ | σ semi-unifies E} and we will
prove that {σ | σ semi-unifies E} is quasi-principal. Thus if fs and gt are S-unifiable, then
{σ | σF(f, g) is certificate} contains a principal element σ and σF(f, g) contains a principal
pair for (f, g). Otherwise {σ | σF(f, g) is certificate} is empty. This concludes the reduction
from ScUP to FIP.

7 FIP to SUP

In this section, we define the semi-unification problem (SUP) using systems of inequalities
and give a reduction from FIP to SUP.

Let D be a relation on tuples of plain terms. We write the elements (s, t) ∈ D as
inequalities s �̇ t and call D a system of inequalities. We call D directed if s � t for all
(s �̇ t) ∈ D. If σD is directed, then σ is a semi-unifier of D.

I Problem 3 (SUP). Given a system of inequalities D, find a principal semi-unifier of D.

In this section, we will show how to construct a system of inequalities with the same
principal solution as a given instance of FIP.

Note that our definition of SUP corresponds roughly to the usual definition of the semi-
unification problem (e.g. in Henglein [5]). Since semi-unification is undecidable, we cannot
hope to solve the problem in general. Instead, we only consider the image of the reduction
from FIP. In Section 9, we will show how to reduce this image to the anchored fragment.

For a unitary relation R, we define the projection of a pair (s, t) of plain terms as follows.

πR(s, t) :=

(s′, t′) if Rs′t′ and (s′, t′) ≈ (s, t)
(s, s) if s, t simple
() otherwise

Note that πR(s, t) is well-defined because R is unitary. The following proposition holds due
to the fact that (s, s) � (s, t) iff s = t.

I Proposition 16. Let R be unitary. Then ⇑Rst iff πR(s, t) � (s, t).

For a unitary relation R, we construct the system of inequalities

DR := {πR(Sis,Sit) �̇ (Sis,Sit) | Rst, i ∈ {1, 2}}

10 Unification Modulo Nonnested Recursion Schemes via Anchored Semi-Unification

I Example 17. For the frame F from Example 12, we construct the system of inequalities

D F = { (x1, x1) �̇ (x1, x4),
(g(x5, x6), f(x7, x8)) �̇ (g(a · x1, x2), f(a · x3, a · a · x4)),

(x6, x6) �̇ (x6, x7),
(f(x1, x2), g(x3, x4)) �̇ (f(a · x5, a · a · x6), g(a · x7, x8)) }

I Proposition 18. Let R be unitary. Then DR is directed iff R is a certificate.

Proof. Follows from the construction of DR using Proposition 16. J

I Proposition 19. Let R be unitary. Then σ(πR(s, t)) = π(σR)(σs, σt) and σ(DR) = D(σR).

I Lemma 20. Let R be unitary. Then σ semi-unifies DR iff σR is a certificate.

Proof. Follows immediately from Proposition 18 and Proposition 19. J

Thus D is a reduction from FIP to SUP.

8 Anchored Semi-Unification Problem (AnSUP)

The definition as well as the algorithm for AnSUP rely on a formulation of semi-unification
that uses systems of equations between terms with explicit substitution variables instead of
inequalities. A similar formulation has been used by Leiß [12]. For example, the inequalities
(x1, x2) �̇ (x3, x4) and (x5) �̇ (x6) corresponds to the equations αx1

.= x3, αx2
.= x4 and

βx5
.= x6 with the substitution variables α and β. The substitution variables make the

additional substitution on the left-hand side of inequalities explicit.
We call the variables we have used so far simple variables and assume an additional

alphabet of substitution variables (ranged over by α, β, γ). An instance variable αx is a pair
of a substitution variable and a simple variable. We define a new kind of terms that extend
the simple terms we defined before with instance variables.

s, t ::= a | x | s · t | αx

Given a simple term s and a substitution variable α, we write α̂s for the term obtained
from s by replacing every variable x by αx. As before, substitutions are functions from
variables to simple terms. In the semi-unification context [12, 5, 7], this is the standard notion
of substitution. We lift substitutions to terms according to the equations σ(αx) = α̂(σx),
σ(s · t) = σs · σt and σa = a.

We say a term s occurs in a term t if s is a subterm of t. We do not consider x to be a
subterm of αx.

An assignment A is a function from substitution variables to substitutions. Assignments
are lifted to terms such that As is the term obtained from s by replacing every occurrence of
an instance variable αx with the simple term (Aα)x.

A system of equations E is a finite set of pairs of terms. We take the freedom to write
s
.= t for a pair (s, t). A substitution σ is a semi-unifier of E if there is an assignment A

such that for all s .= t ∈ E, we have A(σs) = A(σt).
The formulation of semi-unification as just presented has the same expressivity as the

formulation with inequalities. We will now restrict the systems of equations we consider to
obtain the anchored fragment.

G. Smolka and T. Tebbi 11

An atom (ranged over by X, Y , Z) is either a simple variable or an instance variable. A
partial equivalence relation (PER) is a symmetric and transitive relation. Note that a PER
(∼) is an equivalence relation on {X | X ∼ X}.

The anchoredness condition ensures that there is an equation αx .= s with s simple for
every instance variable αx that might occur when the semi-unification rules to be defined
later are applied. A system of equations E is anchored with a PER (∼) on atoms if the
following conditions hold.
1. If s .= t ∈ E with X and Y occurring in s .= t, then X ∼ Y .
2. If x ∼ y and αx ∼ αx, then αx ∼ αy.
3. If αx ∼ αx, then there is a simple term s with αx .= s ∈ E or x .= s ∈ E.
For example, {x .= z · βy, αx = a · b} is not anchored, but {x .= z · βy, αx = a · b,
βy = z, αz = z} is anchored with the symmetric and transitive closure of {(x, z), (z, βy),
(αx, αz), (αz, z)}.

I Problem 4 (AnSUP). Given an anchored system of equations E, find a principal semi-
unifier.

For comparison to other fragments of semi-unification, we now give a definition of the
anchoredness condition for systems of inequalities. A system of inequalities is anchored if
there is a partition X of the variables such that for every inequality s �̇ t, the following two
conditions hold.
1. All variables in t are in a single class of the partition X.
2. All variables in s are in a single class A of the partition X and every variable in A occurs

at least once at a position in s that also exists in t. Expressed formally, there is a tuple u
and substitutions σ, τ such that σu = s, τu = t and for all variables x ∈ A, we have that
σx = x and x occurs in u.

9 FIP to AnSUP

Let F be a frame. We will translate the system of inequalities D F into an equivalent
anchored system of equations E such that σ semi-unifies E iff σ semi-unifies D F .

The case where D F contains an element of the form () �̇ (s, t) is trivial, since in this
case, there is no substitution that semi-unifies D F . So in the following, we assume that D F
contains only inequalities between pairs.

We construct E by translating every element of D F into equations according to the rules

(fx, gy) �̇ (fs, gt) αx
.= s, αy

.= t

(s, s) �̇ (s, t) s
.= t

where α is a fresh substitution variable for every inequality and αx .= s stands for αx1
.=

s1, . . . , αxn
.= sn with x = (x1, . . . , xn) being a tuple of variables and s = (s1, . . . , sn) being

a tuple of simple terms of the same length. Note that the rules cover all elements of D F
and that in the second rule, s and t are always simple terms.

I Example 21. The system of inequalities from Example 17 is translated into the system of
equations

x1
.= x4,

αx5
.= a · x1, αx6

.= x2, αx7
.= a · x3, αx8

.= a · a · x4,

x6
.= x7,

βx1
.= a · x5, βx2

.= a · a · x6, βx3
.= a · x7, βx4

.= x8

12 Unification Modulo Nonnested Recursion Schemes via Anchored Semi-Unification

I Lemma 22. Let E be a translation of D F for some frame F . Then σ semi-unifies D F
iff σ semi-unifies E.

Proof. Since distinct inequalities in D F are translated into equations with disjoint substitu-
tion variables, it suffices to consider the translation E′ of a singleton subset D′ ⊆ D F .

Let D′ = {(fx, gy) �̇ (fs, gt)}. Then E′ = {αx .= s, αy
.= t}. If σ semi-unifies D′,

then there is a substitution τ with τ(σ(fx, gy)) = σ(fs, gt). Thus σ semi-unifies E′ with
the assignment A where Aα := τ . If σ semi-unifies E′, then σ semi-unifies D′ because
(Aα)(σx) = A(σ(αx)) = A(σs) = σs and the same for αy and t.

Let D′ = {(s, s) �̇ (s, t)} with s and t being simple. Then E′ = {s .= t}. If σ semi-unifies
D′, then there is a substitution τ with τ(σs) = σs and τ(σs) = σt. Thus σs = σt and hence
σ semi-unifies E′. If σ semi-unifies E′, then σs = σt and hence σ semi-unifies D′. J

We need the following technical lemma to show that the translation is anchored.

I Lemma 23. Let (∼) be an equivalence relation on simple variables and let E be a system
of equations containing only equations of the form αx

.= s or s .= t where s and t are simple
terms. Then E is anchored if the following conditions are satisfied.
1. If αx occurs in E and x ∼ y, then αy occurs in E.
2. If αx1

.= s ∈ E and αx2
.= t ∈ E, then y1 ∼ y2 for all simple variables y1, y2 that occur

in s or t.
3. If s .= t ∈ E, then x ∼ y for all simple variables x, y that occur in s or t.

Proof. Let ∼̂ be the smallest symmetric relation on atoms such that
If x ∼ y, then x ∼̂ y.
If αx and αy occur in E, then αx ∼̂ αy.
If αx .= s ∈ E and y occurs in s, then αx ∼̂ y.

The transitive closure ∼̂∗ of ∼̂ is a PER. We will show that E is anchored with ∼̂∗. But
first, we prove that x ∼ y whenever x ∼̂∗ y. We do this by induction on the length of the
shortest sequence x ∼̂X1 ∼̂ · · · ∼̂Xn ∼̂ y. If n = 0, then the claim follows immediately from
the definition of ∼̂. For the inductive case, we distinguish two cases. If there is some simple
variable Xi with i ∈ {1, . . . , n}, then the inductive hypothesis for x ∼̂ X1 ∼̂ · · · ∼̂ Xi and
Xi ∼̂ · · · ∼̂Xn ∼̂ y yield x ∼ Xi and Xi ∼ y and thus x ∼ y. Otherwise, by the definition
of ∼̂, there are simple variables z1, . . . , zn and a single substitution variable α such that
Xi = αzi for all i ∈ {1, . . . , n}. By the definition of ∼̂, there are simple terms s, t such
that αz1

.= s ∈ E and αzn
.= t ∈ E where x occurs in s and y occurs in t. Thus x ∼ y by

requirement (2) on (∼).
Now, we show that E is anchored with ∼̂∗.

1. Let s .= t ∈ E with X and Y occurring in s .= t. We need to show that X ∼̂∗ Y . If s
and t are simple, then this follows immediately from requirement (3) on (∼). Otherwise
s = αx for some instance variable αx and the claim follows from the definition of ∼̂.

2. Let x ∼̂∗ y and αx ∼̂∗ αx. We need to show that αx ∼̂∗ αy. Because of requirement (1)
on (∼), it suffices to show that x ∼ y. As we proved before, this follows from x ∼̂∗ y.

3. Let αx ∼̂∗ αx. It suffices to show that there is a simple term s with αx .= s ∈ E. This
follows from the conditions on E as ∼̂∗ only contains instance variables from E. J

I Lemma 24. Let E be a translation of D F for some frame F . Then E is anchored.

Proof. Consider the equivalence relation (∼) on simple variables such that x ∼ y iff x and
y occur in the same element of F or x = y. It is easy to check that (∼) and E satisfy the
conditions of Lemma 23. J

G. Smolka and T. Tebbi 13

10 Solving AnSUP

In this section, we present rules to solve the anchored semi-unification problem. Our rules
are a restriction of the rules presented by Leiß [12].

We first define the solved form computed by our algorithm. We write E, s .= t for the
disjoint union E ∪̇ {s .= t}. Given a system of equations E, we call an atom X eliminated
if E has the form E′, X

.= s such that neither X nor (in case X is a simple variable) an
instance variable αX occur in E′ or in s. A system of equations E is in solved form if all
equations have the form X

.= s where X is eliminated and s is simple.

I Lemma 25. If a system of equations E is in solved form, then it has a principal semi-
unifier.

Proof. Since E is in solved form, we can unambiguously define a substitution σ and an
assignment A as follows.

σx =
{
s if x .= s ∈ E
x else

(Aα)x =
{
s if αx .= s ∈ E
x else

For σ to be a semi-unifier of E, we have to show that for every equation X .= s ∈ E we have
A(σX) = A(σs). Since E is in solved form, s is simple and cannot contain an eliminated
simple variable. Thus A(σs) = As = s. So it suffices to show that A(σX) = s.

If X = x for some simple variable x, then σx = s by the definition of σ. Since s is simple,
it follows that A(σx) = A(s) = s.

If X = αx for some instance variable αx, then σx = x because otherwise x would be
eliminated and hence αx could not occur in E. So it follows that A(σ(αx)) = A(αx) = s.

It remains to show that σ is principal. Consider some other semi-unifier τ of E. Since τ
unifies all equations of the form x

.= s ∈ E, we have that τx = τ(σx) for all simple variables
x. Thus σ � τ . J

A system of equations E is clashed if one of the following conditions holds.
a
.= s ∈ E or s .= a ∈ E where a 6= s and s is not an atom.

x
.= s ∈ E where x or αx for some α occurs in s and s is not an atom.

αx
.= s ∈ E where αx occurs in s 6= αx.

I Proposition 26. A clashed system of equations has no semi-unifier.

The rules in Figure 2 transform every anchored system of equations into an equivalent
system of equations that is clashed or in solved form. To ensure termination, the rules must
not be applied to a clashed system of equations. We write s[t/x] for σs where σ is the unique
substitution satisfying σx = t and σy = y for all y with y 6= x. We write s[t/αx] for the term
that is obtained from s by replacing every occurrence of αx with t. We write E[s/X] for
{t[s/X] .= u[s/X] | t .= u ∈ E}.

14 Unification Modulo Nonnested Recursion Schemes via Anchored Semi-Unification

Rbop E, s1 · s2
.= t1 · t2 =⇒ E, s1

.= t1, s2
.= t2

Rrefl E, s
.= s =⇒ E

Rorient1 E, s
.= αx =⇒ E,αx

.= s if s is not an instance variable
Rorient2 E, s

.= x =⇒ E, x
.= s if s is not an atom

Relim1 E,αx
.= s =⇒ E[s/αx], αx .= s if s is simple

Relim2 E, x
.= s =⇒ E[s/x], x .= s if x does not occur in s and s is simple

Figure 2 Semi-Unification Rules

I Example 27. We transform the following anchored system of equations into solved form.

αx1
.= a · x3, αx2

.= a · (a · x4), αx3
.= a · x1, αx4

.= x2, x1
.= x4

Relim2
=⇒ αx4

.= a · x3, αx2
.= a · (a · x4), αx3

.= a · x4, αx4
.= x2, x1

.= x4

Relim1
=⇒ x2

.= a · x3, αx2
.= a · (a · x4), αx3

.= a · x4, αx4
.= x2, x1

.= x4

Relim2
=⇒ x2

.= a · x3, a · αx3
.= a · (a · x4), αx3

.= a · x4, αx4
.= a · x3, x1

.= x4

Rbop

=⇒ x2
.= a · x3, a

.= a, αx3
.= a · x4, αx4

.= a · x3, x1
.= x4

Rrefl
=⇒ x2

.= a · x3, αx3
.= a · x4, αx4

.= a · x3, x1
.= x4

I Proposition 28. If E =⇒ E′, then E and E′ have the same semi-unifiers.

I Proposition 29. If E,X .= s is anchored and s is simple, then E[s/X], X .= s is anchored.

I Lemma 30. If E =⇒ E′ and E is anchored, then E′ is anchored.

Proof. For Relim1 and Relim2, this follows immediately from Proposition 29. For the other
rules, the claim is trivial. J

I Lemma 31. There is no infinite reduction sequence E1 =⇒ E2 =⇒ · · · such that Ei is not
clashed for all i ∈ {1, 2, . . .}.

Proof. We assign a triple of natural numbers (n1, n2, n3 + n4 + n5) to every system of
equations E = {s1

.= t1, . . . , sn
.= tn} where

n1 is the number of simple variables in E that are not eliminated,
n2 is the number of instance variables in E that are not eliminated,
n3 is the sum of the sizes of every term si that is not an instance variable for i ∈ {1, 2, . . .},
n4 is the sum of the sizes of every term si that is not an atom for i ∈ {1, 2, . . .} and
n5 is the number of equations in E.

With the usual lexicographical ordering, this yields a well-founded ordering on systems of
equations. It is easy to show that every rule application respects the ordering and hence an
infinite reduction sequence is impossible. J

We call a system of equations E terminal if there is no system of equations E′ with
E =⇒ E′.

I Proposition 32. If E is anchored and terminal, then E is either clashed or in solved form.

G. Smolka and T. Tebbi 15

Proof. Let E be anchored, terminal and not clashed. We show that E is in solved form,
that is, all equations have the form X

.= s where X is eliminated and s is simple.
Let s .= t ∈ E. Then s is an atom because otherwise Rbop, Rrefl, Rorient1 or Rorient2

would be applicable contradicting the fact that E is terminal. Also, t is simple because if it
contained an instance variable αx, then E would also contain an equation αx .= u because
E is anchored. This is a contradiction because Relim1 would be applicable. Since s is an
atom and t is simple, s must be eliminated because otherwise Relim1 or Relim2 would be
applicable. J

Thus we can transform every anchored system of equations E either into solved form
or into a clashed system of equations. In the first case, we have computed a principal
semi-unifier of E. In the second case, E has no semi-unifier.

11 Conclusion

The paper presents the first unification algorithm for nonnested recursion schemes. Based
on a novel coinductive definition of S-equivalence, we establish the existence of principal
S-unifiers. Our method for solving S-unification problems works by a reduction to a new
decidable semi-unification problem we call AnSUP (anchored semi-unification problem).
AnSUP is quite different from other decidable semi-unification problems we know of.

The uniform fragment [7, 16] only allows for a single substitution variable (or, in the
usual representation, a single inequality). In contrast to this, our reduction requires many
substitution variables.
The acyclic fragment [9] and its extension to the R-acyclic fragment [14] disallow cyclic
inequalities in the following sense. There must not be a sequence of inequalities s1 �̇
t1, . . . , sn �̇ tn such that tn and s1 share a variable and for all i ∈ {1, . . . , n− 1}, ti and
si+1 share a variable. In contrast to this, we allow arbitrary cycles and need them in the
reduction.
The left-linear fragment [6] does not allow that a variable occurs twice in the left-hand
side s of an inequality s �̇ t. Adding inequalities of the form (s, s) �̇ (s, t) is impossible
since this would allow for the same expressive power as unrestricted semi-unification,
which is undecidable. So it is impossible to express ordinary unification with the left-linear
fragment.
The quasi-monadic fragment [13] does not allow terms containing two different variables.
There is a decidable fragment that only allows two variables [11].

To the best of our knowledge, AnSUP is the only fragment that allows for cyclic inequalities,
an unrestricted number of variables and subsumes ordinary unification.

Our algorithm for anchored semi-unification needs O(n3) steps, since all three components
of the triple used in the termination proof (Lemma 31) are linearly bounded by the problem
size. However, since our semi-unification rules build on the naive rules for ordinary unification,
the term size can grow exponentially in the number of steps. For example, our algorithm
performs poorly on the ordinary unification problem x1

.= x2 · x2, x2
.= x3 · x3, . . . , xn−1

.=
xn ·xn. We expect that using the same techniques as for ordinary unification [1], it is possible
to design an algorithm for anchored semi-unification with polynomial complexity.

References
1 F. Baader and T. Nipkow. Equational problems. In Term rewriting and all that, pages

58–92. Cambridge University Press, 1998.

16 Unification Modulo Nonnested Recursion Schemes via Anchored Semi-Unification

2 B. Courcelle. A representation of trees by languages II. Theoretical Computer Science,
7(1):25–55, 1978.

3 N. Dershowitz, S. Kaplan, and D.A. Plaisted. Rewrite, rewrite, rewrite, rewrite, rewrite,
. . . . Theoretical Computer Science, 83(1):71–96, 1991.

4 E. Eder. Properties of substitutions and unifications. Journal of Symbolic Computation,
1(1):31–46, 1985.

5 F. Henglein. Type inference and semi-unification. In LISP and functional programming,
pages 184–197. ACM, 1988.

6 F. Henglein. Fast left-linear semi-unification. In Advances in Computing and Information
— ICCI’90, volume 468 of Lecture Notes in Computer Science, pages 82–91. Springer, 1990.

7 D. Kapur, D. Musser, P. Narendran, and J. Stillman. Semi-unification. In Foundations of
Software Technology and Theoretical Computer Science, pages 435–454. Springer, 1988.

8 A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. The undecidability of the semi-unification prob-
lem. In Proceedings of the twenty-second annual ACM symposium on Theory of computing,
pages 468–476. ACM, 1990.

9 A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML typability. Journal of the
ACM (JACM), 41(2):368–398, 1994.

10 D.S Lankford and D.R. Musser. A finite termination criterion. Unpublished draft, 1978.
11 H. Leiß. Decidability of semi-unification in two variables. Technical report, INF-2-ASE-9-89,

Siemens, Munich, 1989.
12 H. Leiß. Polymorphic recursion and semi-unification. In CSL’89, pages 211–224. Springer,

1990.
13 H. Leiß and F. Henglein. A decidable case of the semi-unification problem. In Mathematical

Foundations of Computer Science 1991, volume 520 of Lecture Notes in Computer Science,
pages 318–327. Springer, 1991.

14 B. Lushman and G.V. Cormack. A larger decidable semiunification problem. In Proceedings
of the 9th ACM SIGPLAN international conference on Principles and practice of declarative
programming, pages 143–152. ACM, 2007.

15 R.M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms. Com-
puter Science Review, 5(2):119–161, 2011.

16 A. Oliart and W. Snyder. Fast algorithms for uniform semi-unification. Journal of Symbolic
Computation, 37(4):455–484, 2004.

17 P. Pudlák. On a unification problem related to Kreisel’s conjecture. Commentationes
Mathematicae Universitatis Carolinae, 29(3):551–556, 1988.

18 B.K. Rosen. Program equivalence and context-free grammars. Journal of Computer and
System Sciences, 11(3):358–374, 1975.

19 V. Sabelfeld. The tree equivalence of linear recursion schemes. Theoretical Computer
Science, 238(1–2):1–29, 2000.

20 D. Sangiorgi. On the bisimulation proof method. Mathematical Structures in Computer
Science, 8(5):447–479, 1998.

21 G. Sénizergues. The equivalence problem for deterministic pushdown automata is decidable.
In Automata, languages and programming, volume 1256 of Lecture Notes in Computer
Science, pages 671–681. Springer, 1997.

22 C. Stirling. Deciding DPDA equivalence is primitive recursive. In Automata, languages and
programming, volume 2380 of Lecture Notes in Computer Science, pages 774–774. Springer,
2002.

	Introduction
	Overview
	Equivalence Modulo Nonnested Schemes
	Scheme Unification Problem (ScUP)
	Frame Instantiation Problem (FIP)
	ScUP to FIP
	FIP to SUP
	Anchored Semi-Unification Problem (AnSUP)
	FIP to AnSUP
	Solving AnSUP
	Conclusion

