
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-94-16

A Foundation for Higher-order
Concurrent Constraint Programming

Gert Smolka

June 1994

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

This work appears in the Proceedings of the 1st International Conference on Con-straints in Computational Logics, edited by Jean-Pierre Jouannaud, Springer LNCS,
September 7–9, 1994, München, Germany.

This work has been supported by the Bundesminister für Forschung und Technolo-
gie (contract ITW 9105), the Esprit Basic Research Project ACCLAIM (contract EP
7195), and the Esprit Working Group CCL (contract EP 6028).

c Deutsches Forschungszentrum für Künstliche Intelligenz 1994

This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to copy
in whole or part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of
the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany;
an acknowledgement of the authors and individual contributors to the work; all applicable portions of this
copyright notice. Copying, reproducing, or republishing for any other purpose shall require a licence with
payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

A Foundation for Higher-orderConcurrent Constraint ProgrammingGert SmolkaProgramming Systems LabGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, 66123 Saarbr�ucken, Germanyemail: smolka@dfki.uni-sb.deJune 9, 1994AbstractWe present the -calculus, a computational calculus for higher-order concurrentprogramming. The calculus can elegantly express higher-order functions (both eagerand lazy) and concurrent objects with encapsulated state and multiple inheritance.The primitives of the -calculus are logic variables, names, procedural abstraction,and cells. Cells provide a notion of state that is fully compatible with concurrencyand constraints. Although it does not have a dedicated communication primitive, the-calculus can elegantly express one-to-many and many-to-one communication.There is an interesting relationship between the -calculus and the �-calculus: The-calculus is subsumed by a calculus obtained by extending the asynchronous andpolyadic �-calculus with logic variables.The -calculus can be extended with primitives providing for constraint-based prob-lem solving in the style of logic programming. A such extended -calculus has theremarkable property that it combines �rst-order constraints with higher-order pro-gramming.

Contents1 Introduction 32 The Gamma Calculus 43 The Chemical Metaphor 64 Creating Fresh Names 85 Possible Indeterminisms 96 Embedding of the Eager Lambda Calculus 107 Embedding of the Lazy Lambda Calculus 118 Records 129 Procedures with Encapsulated State 1310 Objects 1411 Communication 1712 An Execution Strategy 1813 First-order Constraints and Search 1913.1 Constraints : 2013.2 Conditionals : 2113.3 Disjunctions : 2113.4 Failure : 2113.5 Search : 2213.6 Higher-order Programming and First-order Constraints : : : : : : : : : : : 2214 Relationship with the �-calculus 2215 Future Research 242

1 IntroductionConcurrent constraint programming [22] is a research direction aiming at a uni�ed frame-work for high-level concurrent programming and constraint-based problem solving. Itsroots are concurrent logic programming [24] and constraint logic programming [3, 10].Although concurrent programming and constraint-based problem solving have di�erentstructure and applications, they do have signi�cant commonalities:� both come in a relational and concurrent setting� constraint propagation is a concurrent activity� logic variables are the canonical form of reference for constraints and concurrentcomputation.This paper presents the -calculus, a computational calculus for higher-order concurrentprogramming. As is, the calculus can elegantly express higher-order functions (both ea-ger and lazy) and concurrent objects with encapsulated state and multiple inheritance.Constraint-based problem solving in the style of logic programming requires additionalprimitives, which can be chosen such that one obtains a combination of higher-order pro-gramming with �rst-order constraints. This is in sharp contrast to approaches based onhigher-order logic [18], where higher-order programming comes with the operational burdenof higher-order constraints.An extension [25, 23] of the -calculus providing for constraint-based problem solvingserves as the foundation of Oz [8], a full-edged programming language and system underdevelopment at the Programming Systems Lab of DFKI.1The primitives of the -calculus are logic variables, names, procedural abstraction, andcells. Cells provide a notion of state that is fully compatible with concurrency and con-straints. Although it does not have a dedicated communication primitive, the -calculuscan elegantly express one-to-many and many-to-one communication.It is illuminating to compare the -calculus with the �-calculus [17, 16, 15]. Both areconcurrent systems with �rst-class names. While the -calculus has logic variables, the �-calculus has formal input arguments only (as in functional programming). As is well-knownfrom logic programming, logic variables do not necessitate a static distinction between inputand output, thus providing for a free data ow combining smoothly with concurrent control.While the �-calculus has communication as its principal primitive, the -calculus has logicvariables, procedural abstraction, and cells as its principal primitives. The primitives ofthe -calculus were chosen with the consideration that programming abstractions suchas higher-order functions and concurrent objects be easily expressible. If we extend the�-calculus with logic variables, it can express procedural abstraction and cells. Logic1The Oz programming system and its documentation are available through anonymous ftp fromps-ftp.dfki.uni-sb.de or through WWW from http://ps-www.dfki.uni-sb.de/.3

variables increase the expressivity of the �-calculus in two crucial aspects: They allow toequate communication links, and they provide the possibility to express procedures withinput and output arguments (recall that a function is a procedure with input and output).The paper is organized as follows. Section 2 gives the formal de�nition of the -calculus.Sections 3{5 provide important intuitions and examples for the expressivity of the -calculus. Sections 6 and 7 show how the eager and the lazy �-calculus can be embeddedinto the -calculus. Section 8 shows how the -calculus can express records. Sections 9and 10 show how the -calculus can express concurrent objects with encapsulated stateand multiple inheritance. Section 11 discusses communication issues. Section 12 presents apossible execution strategy for the -calculus. Section 13 shows how the -calculus can beextended with general �rst-order constraints. Section 14 clari�es the relationship betweenthe -calculus and the �-calculus.2 The Gamma CalculusFigure 1 shows the syntax of the -calculus. It assumes that an in�nite alphabet of variablesand a disjoint and in�nite alphabet of names are given. Variables and names are jointlyreferred to as references. Variables are placeholders for names. There are no other valuesbut names.The expressions of the -calculus are relational, as in logic programming or the �-calculus.Seen from the perspective of predicate logic, expressions play the role of formulas andreferences play the role of terms. Composition is like conjunction in logic programming andparallel composition in the �-calculus. A declaration 9uE introduces a new reference u withscope E. Declaration of variables is like existential quanti�cation in logic programming;declaration of names is like restriction in the �-calculus. Equations are like equations inlogic. Names stand for themselves and thus are di�erent if they are syntactically di�erent(so-called unique name assumption). A (named) abstraction a: x=E consists of a name a,formal arguments x (x stands for a possibly empty sequence of variables), and a body E(the expression being abstracted from). There is the side condition that the sequence offormal arguments x be linear (i.e., consist of pairwise distinct variables). Abstractions canbe seen as procedure or predicate de�nitions. An application uv consists of a reference udesignating the abstraction to be applied and the actual arguments v. Applications canbe seen as procedure or predicate calls. A conditional if u = v then E else F reduces toeither E or F , depending on whether u and v turn out to be equal or di�erent. A cell a:uhas the name a and holds the reference u; reduction with an application avw will imposethe equation u = v and update the cell to hold w.From the above it is clear that the -calculus has one binder for names (9aE) and twobinders for variables (9xE and a: x=E). Free and bound references of expressions are de�nedaccordingly.The -calculus is an expressive computational system. We will show that it can elegantly4

Symbolsx; y; z : variablesa; b; c : namesu; v; w ::= x j a referencesExpressionsE; F;G ::= > nullj E ^ F compositionj 9uE declarationj u = v equationj a: x=E abstraction (x linear)j uv applicationj if u = v then E else F conditionalj a:u cellFigure 1: Syntax of the -calculusexpress higher-order functional programming, data structures, and concurrent objects withencapsulated state and multiple inheritance.A distinctive feature the -calculus shares with logic programming is that variables canbe used without explicitly saying how their values are obtained (so-called logic variables).Information about the values of variables can be stated through equations, which can beseen as constraints. Equations can express partial (e.g, x = y) and total (e.g., x = a)information. Recall that names are the only values variables can take in the -calculus.The computational intuitions expressed above are formalized by rules rewriting the ex-pressions of the calculus. This is a common setup also found in the �-calculus (functionalcomputation) and SLD-resolution (relational computation). For the -calculus, this setupis re�ned in that the rules are applied modulo a structural congruence, and in that therules can only be applied to speci�c positions.2Applying rewrite rules modulo a structural congruence is actually quite common, althoughit is often not made explicit. In the �-calculus, it is common practise to \identify" expres-sions that are equal up to �-conversion (consistent renaming of bound variables). In logicprogramming and uni�cation, one typically rewrites multisets of atomic formulas, where2A similar setup is used in a recent presentation of the �-calculus devised by Milner [16, 15].5

the multisets are obtained by making conjunction associative and commutative. First-order rewriting modulo equations is an established topic [5], serving as a foundation forthe speci�cation language OBJ [6] and Meseguer's rewriting logic [14].The structural congruence of the -calculus is the least congruence \E � F" on the set ofexpressions satisfying the following laws:� composition E^F of expressions is associative, commutative, and satis�es E^> � E(thus we can see composition as multiset union and > as the empty multiset)� declaration 9uE of references allows for consistent renaming of the declared referenceu and satis�es 9uE ^ F � 9u(E ^ F) if u not free in F9u9vE � 9v9uE9u> � >(thus declarations can always be moved above compositions, and declarations ofreferences not being used can be deleted)� abstractions a: x=E allow for consistent renaming of the formal arguments x� equations u = v are symmetric.Reduction in the -calculus is de�ned in Figure 2 by a system of inference rules. Onlythe structure rules have premises, all other rules are axioms. The structure rules saythat reduction is modulo structural congruence, and that reductions of subexpressions notappearing beneath abstractions and conditionals can be taken as reductions of the entireexpression. A reduction E ! F is possible if and only if it can be derived with the structurerules from exactly one instance of an axiom. The Application Rule comes with the sidecondition that the number juj of actual arguments in the application equals the numberjxj of formal arguments in the abstraction.Proposition 1 Let contexts be de�ned as C ::= � j C^E j E^C j 9uC. Then E ! E 0 isa reduction in the -calculus if and only if there exists a context C and an instance G! G0of an axiom in Figure 2 such that E � C[G], and C[G0] � E 0.3 The Chemical MetaphorReduction in the -calculus can be seen as evolution of a computation space containing amultiset of freely oating molecules.3 The molecules are equations, abstractions, applica-tions, conditionals, and cells. The structural congruence of the -calculus is de�ned such3The metaphor of seeing concurrent computation as chemical reaction appeared with Berry and Boudol'schemical abstract machine [4]. 6

StructureE � E 0 E 0 ! F 0 F 0 � FE ! F E ! E 0E ^ F ! E 0 ^ F E ! E 09uE ! 9uE 0Elimination 9x(x = u ^ E) ! E[u=x] if x 6= u and u free for x in EApplicationau ^ a: x=E ! E[u=x] ^ a: x=E if u free for x in E and juj = jxjConditionalif u = u then E else F ! E if a = b then E else F ! F if a 6= bExchange a:u ^ avw ! a:w ^ v = uFigure 2: Reduction in the -calculusthat every expression can be seen as a computation space: After pushing all declarationsto the top (possibly involving �-conversion), we are left with a conjunction of molecules.The expression > describes the empty computation space. Expressions appearing as theconstituents of abstractions and conditionals do not yet contribute to the computationspace.A computation space evolves by reduction with the rules given in Figure 2. The Applicationand Exchange Rules describe reactions between two molecules sharing a name. The rulesfor the conditional describe transformations of a single molecule. The Elimination Ruledeletes an equational molecule and eliminates a variable by replacing all its occurrenceswith another reference.When a conditional reduces, it injects one of its constituent expressions into the computa-tion space, thus possibly contributing new molecules and new references (the operationalreading of a declaration 9uE is: Create a new reference u). Similarly, when an applica-tion reacts with an abstraction, a copy of the body of the abstraction is injected into thecomputation space, where the actual arguments of the application replace the formal ar-guments of the abstraction. The Application Rule is the only rule that copies expressions.As the space evolves, the number of molecules and the number of connecting referencescan increase and decrease. Every in�nite reduction chain E1 ! E2 ! : : : must involve theApplication Rule.The Elimination Rule provides all the constraint handling needed in the -calculus. If acomputation space contains a molecule x = u, then x can be eliminated by replacing it7

with u, provided u is di�erent from x. We assume that a computation space does nothave free variables. Injecting an equation x = a into a computation space amounts to anattempt to �x the value of the variable x to a. There might be competing such attempts,as in 9x(x = a ^ x = b ^ E):Which value is taken for x is an indeterministic choice: The space can either reduce toa = b ^ E[a=x] or to a = b ^ E[b=x], where the choice being made cannot be retracted.Note that all occurrences of x will be replaced with only one of the two names. The factthat there were conicting attempts to �x the value of x remains partly visible since the\inconsistent" equation a = b remains in the space.4 There are three possibilities to handlesuch a conict: consider it a regular event (the choice taken in the -calculus), considerit a run-time error, or consider it a failure in the sense of logic programming (we will saymore about failure in Section 13).The expression (a is not free in E)9a(if x = a then > else E)has an interesting operational reading: inject the expression E in the computation spaceonce the variable x has been assigned a value (i.e., has been replaced by a name). Putmore informally, the above expression synchronizes E upon the event that the value of xbecomes known.The Exchange Rule describes a reaction of a cell a:u with an application avw. The reactionupdates the reference hold by the cell to w and equates the references u and v (exploitinglogic variables). Thus reading and writing of a cell are merged into one atomic operation.Cells yield a notion of state that is fully compatible with concurrency and constraints.Cells are essential for expressing objects.The Application and the Exchange Rule have in common that they describe reactionsbetween two molecules that agree on the same name (i.e., a). As computation proceeds,new abstractions and cells may be created. This necessitates the creation of fresh names,an operation elegantly expressible in the -calculus.4 Creating Fresh NamesThe operational reading of 9a(x = a) is: Create a fresh name and make it the value of thevariable x. To see why this is so, consider the expression9x9y(9a(x = a) ^ 9a(y = a) ^ if x = y then E else F)4Equations of the form u = u and a = b do not have a computational e�ect. Hence they can be deletedin an implementation of the -calculus. 8

and suppose that x and y are distinct variables that do not occur free in E and F . Moreover,assume that a is a name not occurring free in E and F . We will show that the expressionreduces to F .First, we move the left declaration of a to the outside of the expression using the laws fordeclarations and compositions and exploiting the assumption that a does not occur free inE and F . � 9a9x9y(x = a ^ 9a(y = a) ^ if x = y then E else F)Next we exchange the declarations of x and y and eliminate x with the Elimination Rule.! 9a9y(9a(y = a) ^ if a = y then E else F)Next we rename the inner name a to b, where b is assumed to be di�erent and to not occurfree in E and F . � 9a9y(9b(y = b) ^ if a = y then E else F)This brings us in a position where we can eliminate y in the same way we did it for xbefore. ! 9a9b(if a = b then E else F)Now, since a and b are di�erent, we obtain! 9a9bFusing the appropriate rule for the conditional. It remains to get rid of the declarations ofthe names a and b. This can be done using the congruence laws:� 9a9b(> ^ F) � (9a9b>) ^ F � > ^ F � F:5 Possible IndeterminismsThe -calculus involves several indeterminisms:1. if there are two applications for the same cell, the order of their reduction is indeter-ministic2. if there are two equations x = a and x = b for the same variable, the choice of thename replacing x is indeterministic3. if an application matches more than one abstraction or cell, the choice of the abstrac-tion or cell it reacts with is indeterministic.The �rst indeterminism is essential for concurrent computation (see the section on objects).The other indeterminisms should not occur with well-written programs.9

The third form of indeterminism can be excluded with a straightforward syntactic condi-tion: extend the -calculus with the syntactic variantsx: y=E :� 9a(x = a ^ a: y=E)x:u :� 9a(x = a ^ a:u)and admit only initial expressions not containing the primitive forms a: y=E and a:u. Onecan show that reduction sequences issuing from such expressions cannot involve the thirdform of indeterminism.Provided one excludes cells, there is a syntactic condition excluding all remaining indeter-minisms; a thus restricted version of the -calculus is the �-calculus studied and provenconuent in [21]. The �-calculus seems to be a promising alternative to the �-calculus forthe foundation of functional programming.Remark. The syntactic extensions x: y=E and x:u de�ned above are static; that is, theymust be expanded before a reduction rule is applied. This is since x: y=E changes itsmeaning when the elimination rule replaces x with a name a.6 Embedding of the Eager Lambda CalculusTo embed the eager �-calculus (see [27]) into the -calculus, we extend the expressions ofthe -calculus such that one can write �-terms in equations:E; F;G ::= : : : j x =MM;N ::= x j �xM jMN:The semantics of the new equations is given by the congruencesx = �yM :� x: yz=z =Mx =MN :� 9y9z(y =M ^ z = N ^ yzx)providing a translation from the extended syntax to the base syntax (the syntactic ex-tension x: yz=E was de�ned in the previous section). As one would expect, functionalabstractions translate into relational abstractions with an input and an output argument.It is instructive to consider the translation of the identity function:x = �yy � 9a(x = a ^ a: yz=z = y):The translation of functional applications exploits that functional nesting can be expressedby composition and declaration of auxiliary variables.The soundness of the embedding is established by the following theorem [19].Theorem 2 Let M be a closed �-term. Then M converges in the eager �-calculus if andonly if 9x(x =M) converges in the -calculus.10

In contrast to the �-calculus, the -calculus can express (mutual) recursion directly. Forinstance, 9x9y (x = �uM ^ y = �vN ^ E) de�nes two possibly mutually recursivefunctions x and y that can be used in E.Eager functional programming with mutual recursion can in fact be expressed in a conuentsubcalculus of the -calculus, called the �-calculus [21].7 Embedding of the Lazy Lambda CalculusThe embedding of the lazy �-calculus (see [27]) into the -calculus is more subtle thanthe embedding of the eager �-calculus. The basic idea is to represent a lazy function byan abstraction with three arguments: one argument for the input of the function, oneargument for the output of the function, and one argument for requesting that the inputof the function be computed.In the following we will use r and s to denote variables used to request subcomputations.We extend the syntax of the -calculus as follows:E; F;G ::= : : : j x�r = KK;L ::= x j �xK j KL j x�r:An equation x�r = K equates x to the result of the �-term K, where evaluation of K mustbe requested explicitly through the variable r.The semantics of the new expressions is given by the congruencesx�r = y :� x = yx�r = y �s :� x = y ^ r = sx�r = �yK :� x: ysz=z �r = K[y �s=y]x�r = KL :� 9y9y09z9s (y �r = K ^ ryy0 ^ y0zsx ^ z �s = L)providing a translation from the extended syntax to the base syntax of the -calculus.The translation of an equation x �r = K will admit no other rule but the EliminationRule, eliminating unnecessary auxiliary variables (e.g., the translation of x �r = y(z �s)will reduce to 9y0(ryy0 ^ y0zsx)). Evaluation of x �r = K must be requested explicitly bycomposing it with r = �xx (the \eager" equation r = �xx was de�ned in the previoussection). Evaluation is made lazy by switching the connection between abstractions andapplications only when the result of the application is needed. The switch is realized byan application ryy0, which is �red by equating r to the identity function.Concerning the correctness of the embedding of the lazy �-calculus, we conjecture thefollowing theorem to hold.Theorem 3 Let M be a closed �-term. Then M converges in the lazy �-calculus if andonly if 9x9r(r = �yy ^ x�r =M) converges in the -calculus.11

Reduction in the lazy �-calculus is not a fully satisfactory model of reduction in lazyfunctional programming languages [13]. The problem is that �-reduction possibly copies thearguments of applications, which will duplicate reductions to be done if the arguments arereducible terms. For instance, (�x(xx))M will reduce toMM containing two copies of thepossibly reducible term M . The -calculus avoids this problem completely since it copiesthe bodies of abstractions rather than the actual arguments of functional applications.Launchbury [13] carefully analyses sharing in lazy functional programming and providesan operational semantics providing an accurate model for sharing.The following facts provide evidence that the -calculus is superior to the �-calculus as anoperational model of functional programming languages:� The -calculus can directly express (mutual) recursion;� the -calculus can express sharing;� the -calculus can mix lazy with eager functions;� the -calculus provides a uni�ed framework for functional and concurrent program-ming.8 RecordsRecords can be expressed in the -calculus as functions mapping �eld names to theirassociated values. For instance, the record[A:U B:V C:W]can be expressed as the functionfun {F}if F=C then Welseif F=B then Velseif F=A then Uelse undefined fiendreturning the name undefined in case the argument is not equal to one of the �eld namesA, B, C. We have now switched to a concrete syntax for the -calculus. Variables are writtenas identi�ers starting with capital letters, and names are written as identi�ers starting withlower case letters (e.g., undefined). Functional notation translates as in the section on theembedding of the eager �-calculus.Note that the �eld names of the above record are given as variables. In case two or more�eld names turn out to be equal, the rightmost value speci�cation wins.12

Record adjunction takes the union of two records, where conicts are resolved by givingpriority to the right record; for instance,[a:1 b:2 c:3] * [b:8 d:6] = [a:1 b:8 c:3 d:6]In the -calculus, record adjunction can be expressed as the higher-order functionAdjoin = fun {R S}fun {F}local V = {S F} inif V=undefined then {R F} else V fiendendend9 Procedures with Encapsulated StateThe following de�nes a procedure {Num X} maintaining an internal counter initialized with0. local C = {NewCell 0} inproc {Num X}local Y in {C X Y} {Plus X 1 Y} endendendAn application {Num X} will equate X with the current value of the counter and thenincrement the counter. It is straightforward to represent numbers in the -calculus. Theprocedure NewCell is de�ned as9a(NewCell = a ^ a: xy=9c(x = c ^ c:y)):Now suppose the computation space contains the applications{Num X} {Num Y} {Num Z}Then the variables X, Y, and Z will be equated to di�erent numbers and the internal counterof Num will be incremented three times. One possible outcome is X=0, Y=1, Z=2. Anotherpossible outcome is X=1, Y=0, Z=2. However, X=3, Y=0, Z=2 is impossible, provided thereare no other applications of Num but the ones above.The procedure Num builds a state sequenceu1; u2; u3; : : : ; uk13

whose members are linked by constraints {Plus ui 1 ui+1}, and whose respective last mem-ber is hold in the cell C. Concurrent applications of Num create concurrent exchange requestsfor the cell C, which are serialized indeterministically. Reduction of an application {C X Y}will equate X to the current end of the sequence and make Y the new end of the sequence.Note that this construction makes crucial use of logic variables, and that mutual exclusionof the competing state accesses is obtained for free.The procedure Num is unsafe in so far that an application {Num 567}, say, may set thecounter to 568, due to the indeterministic choice of the equation to be used with theElimination Rule. A safe version of Num islocal C = {NewCell 0} inproc {Num A}local X Y in {C X Y} {Plus X 1 Y} {Wait X A} endendendwhere {Wait X A} is de�ned as 9a(if X = a then > else X = A).10 ObjectsObjects are procedures with encapsulated state. They are speci�ed by a collection ofmethods, possibly obtained by inheritance from other objects. Objects are applied tomessages. A message is a record [methodName:M ...] specifying the name M of themethod to be applied, possibly together with input and output arguments. A method is apossibly indeterministic functionmethod: state �message � object ! stateevolving the state of the object according to the message and the object itself (the so-calledself reference).When an object is applied to a message, the method requested by the messageMethod = {MethodTable {Message methodName}}is obtained from the method table of the object (represented as a record). Next a request{C State NewState}to extend the state sequence of the object is issued (C is the encapsulated cell holding theend of the state sequence) and the selected method is applied{Method State Message O NewState} 14

proc {Create MethodTable O}local C = {NewCell EmptyRecord} inproc {O Message}local Method State NewState inMethod = {MethodTable {Message methodName}}{C State NewState}{Method State Message O NewState}endendendend Figure 3: Object creationto link the new state with the old state.Figure 3 shows a procedure {Create MethodTable O} creating a new object O from amethod table given as argument. States are represented as records, and the initial state isthe empty record represented as follows:EmptyRecord = fun {F} undefined endThe procedure Create is oversimpli�ed in that it does not� handle the case where the requested method is unde�ned� provide a possibility to initialize the state of the newly created object (which is amust in a concurrent setting)� provide more sophisticated synchronization, for instance, state access only after themethod to be applied is known� provide a possibility to close an object.All these features can be incorporated easily [8]. Initialization can be taken care of bygiving Create an initial message as extra argument.Using the syntax of Oz [8], a simple counter object C can be created as follows:create Cmeth init(X) val <- X endmeth inc(X) val <- @val+X endmeth read(X) X=@val endend 15

[init: proc {InState Message Self OutState}OutState = {Adjoin InState [val: {Message arg}]}endinc: proc {InState Message Self OutState}OutState = {Adjoin InState[val: {Plus {InState val} {Message arg}}]}endread: proc {InState Message Self OutState}OutState = InState{Message arg} = {InState val}end] Figure 4: Method table of a simple counter objectThis translates in an application of the procedure Create in Figure 3 to the methodtable shown in Figure 4. The state of the counter is represented as a one �eld record[val:_]. The methods init and inc \update" the attribute val by means of recordadjunction.5 A message requesting that the counter be incremented by 67, say, takesthe form [methodName:inc arg:67]. The generality obtained by representing states asrecords and attribute updates as adjunctions is needed when the methods of the counterare inherited to objects with additional attributes.Creating an object O by inheritance from objects O1; : : : ; On means to obtain the methodtable of O by combining the method tables of O1; : : : ; On, possibly by record adjunction. Toenable inheritance, the method table of an object must be made accessible. One straight-forward way to do this is to equip an object with a pseudo-method returning its methodtable.From our discussion it should be clear that there is more than one style of object-orientationthe -calculus can express. A fully developed style of object-orientation based on the ideasoutlined here is realized in Oz [8].The observation that objects are procedures with encapsulated state is well-known in theLisp community [1]. Our contribution here is to show that this idea carries over smoothlyto the concurrent setting of the -calculus.Our object model can express private methods and private attributes by restricting thevisibility of method and attribute names exploiting the statically scoped setting of the-calculus. Although attributes are not directly accessible, they may be visible to methodsadded by inheritance.5Attributes are the �eld names of states and represent what is called an instance variable in Smalltalk.16

proc {NewPort Port Stream}local C = {NewCell Stream} inproc {Port Message}local S in {C [token:Message next:S] S} endendendend Figure 5: Creating ports11 CommunicationWe have seen that we can express communicating concurrent objects as procedures withencapsulated state. This model is di�erent from the established model, where a concurrentobject is an agent reading messages from a communication medium (e.g., streams in con-current logic programming [24], mail boxes in the actor model [9], and ports [12] in AKL).Moreover, the principal notion of process algebras and the �-calculus is communicationthrough channels. So, how is it that the -calculus can express communicating concurrentobjects without a dedicated communication prmitive?The answer is simple: Explicit communication is unnecessary if procedures can be appliedconcurrently and can have encapsulated state. State is obtained from cells, which can beseen as a primitive and standardized form of procedures with state. Thus, communicationand state turn out to be di�erent sides of the same coin. This observation is fundamental,but certainly not new.Our object model provides for straightforward many-to-one communication. In contrast,streams in concurrent logic programming [24] provide for easy one-to-many communication,but have severe problems with many-to-one communication (see [12] for a discussion of thisissue).Ports [12] are a communication structure well-suited for both many-to-one and one-to-many communication. Ports can be easily expressed in the -calculus. The procedure{NewPort Port Stream} in Figure 5 creates a new port (a procedure) and connects itto a stream (a logic variable to be constrained incrementally to a list). An application{Port Message} extends the stream associated with the port with the reference Message.One easily obtains many-to-many communication since the port can be shared by manymessage senders and the stream can be shared by many message receivers.17

12 An Execution StrategyA programming language based on the -calculus must make some assumptions about theorder in which possible reduction steps are to be carried out. Such assumptions are neededso that the programmer can write fair6 and e�cient programs. We will outline one possibleexecution strategy below.Our execution strategy organizes a computation space into a blackboard and a collectionof threads. BlackboardThread : : : Thread�� @@The blackboard is a composition of abstractions, cells, and redundant equations of the formu = u or a = b.7 A thread is a nonempty stack of expressions. The execution strategyconsiders the threads of a computation space in a round-robin fashion making sure thatevery reducible thread will make progress. As computation proceeds, existing threads mayterminate and new threads may be created.A thread is reduced by considering its topmost expression. The reduction rules for threadsare derived from the rules of the -calculus. A thread is not reducible if it consists of asingle expression E and E is either a conditional whose guard does not have the form u = uor a = b, or an application that does not match an abstraction or a cell on the blackboard.In all other cases, a thread is reduced by popping its topmost expression and if it is1. E ^ F : push �rst F and then E2. 9xE: create a fresh variable y and push E[y=x]3. 9aE: create a fresh name b and push E[b=a]4. x = u or u = x, where x 6= u: replace all occurrences of x with u5. u = u, a = b, a: x=E, or a:x: write it on the blackboard6. au and the blackboard contains a matching abstraction a: x=E: push E[u=x]7. if u = u then E else F : push E8. if a = b then E else F , where a 6= b: push F9. avw and the blackboard contains a matching cell a:u: push v = u and replace a:uwith a:w on the blackboard6Fairness roughly means that reduction steps that could be done will be done eventually.7Equations of the form u = u or a = b have no computational signi�cance and can be dropped in animplementation. 18

10. an application or conditional that cannot reduce yet with one of the above rules:make it the single expression of a new thread (Suspension Rule).The congruence laws must not be applied. We assume that computation starts with a com-putation space where no variable is free and no free name is declared. These assumptionsensure that capturing of references cannot occur. The rules have the remarkable propertythat a reducible thread stays reducible if other threads are reduced before it.The idea is to start with a computation space with an empty blackboard and a single threadcontaining a single expression. If the top of a nonsingleton thread is not yet reducible, it issuspended by moving it to a newly created thread. This way the thread is not blocked andthe next expression can be reduced. One can force the creation of a new thread executingE by writing 9x (if x = a then E else > ^ x = a):An expression is called sequential if it will execute with a single thread; that is, if we startwith a computation space consisting just of one singleton thread containing the expression,it cannot evolve into a space with more than one thread. An expression is called quasi-sequential if it is congruent to a sequential expression. If E1 and E2 are sequential, then9x (if x = a then E1 else > ^ if x = a then E2 else > ^ x = a)is quasi-sequential but not sequential.A implementation may execute several threads in parallel. Our execution strategy hasthe interesting property that a sequential expression may be easily rewritten such that itexecutes with several possibly parallel threads.Let M be a closed �-term. Then the expression 9x(x =M) obtained with the translationembedding the eager �-calculus into the -calculus is sequential. Expressions obtained withthe translation embedding the lazy �-calculus are in general not even quasi-sequential.13 First-order Constraints and SearchWe will now extend the -calculus with general �rst-order constraints. The extension togeneral constraints will confront us with the problem of failure, which we could circumventnicely for the simple constraints of the -calculus.In the following we can only present some basic ideas concerning the extension of the -calculus to general constraints and search. For a deeper investigation of these issues werefer the reader to [25, 23, 20].We base our notion of constraint system on �rst-order predicate logic with equality. Aconstraint system consists of1. a signature � (a set of constant, function and predicate symbols)19

2. a consistent theory � (a set of sentences over � having a model)3. an in�nite set of constants in � called names satisfying two conditions:(a) � j= :(a := b) for every two distinct names a, b(b) � j= � $ for every two sentences �, over � such that can be obtainedfrom � by permutation of names.Given a constraint system, we will call every �rst-order formula over its signature a con-straint. We use ? for the constraint that is always false, and > for the constraint that isalways true.The minimal constraint system has no other symbols but names in its signature. The usualtree constraint systems (�nite or rational constructor trees) can be made into constraintsystems in our sense by simply distinguishing in�nitely many constants as names.We now extend the -calculus with three new formsE; F;G ::= : : : j � j if � then E else F j ErF�; : constraintscalled constraints, conditionals, and disjunctions, respectively. We assume that all con-straints are taken from some �xed constraint system. Recall that a constraint is sim-ply a �rst-order formula over the constraint signature. A real programming languagewill of course carefully restrict the constraints a programmer can actually write (see,for instance, Oz [8]). The new expressions subsume the expressions >, u = v, andif u = v then E else F of the -calculus.13.1 ConstraintsThe semantics of constraints in the extended -calculus is given by four congruence laws:1. conjunction of constraints is congruent to composition of constraints2. existential quanti�cation 9x� of constraints is congruent to variable declaration 9x�over constraints3. � � if � j= �$ 4. x = u ^E � x = u ^ E[u=x] if u free for x in E.The �rst three laws provide for constraint simpli�cation. Law (4) extends the equality im-posed by constraints to all expressions. The Elimination Rule of the -calculus is subsumedby the new congruence laws and is thus not present in the extended calculus.Proposition 4 If � j= � ^ $ 0, then � ^ ^ E � 0 ^ E. If � j= � ! , then� ^E � ^ � ^E. 20

13.2 ConditionalsThe semantics of the conditional is given by the congruence law� ^ if then E else F � � ^ if � ^ then E else Fproviding for relative simpli�cation of conditional guards (see [2, 26]) and two reductionrules if > then E else F ! E if ? then E else F ! Fsubsuming the corresponding rules of the -calculus.Proposition 5 If � j= �! , then � ^ if then E else F ! � ^ E. If � j= �! : ,then � ^ if then E else F ! � ^ F .A useful generalization of the conditional is obtained by allowing for multiple clausesif �1 then E1 [] : : : [] �n then En else Fwhere the conditional can reduce with any clause whose guard is entailed. This introducesa new form of indeterminism known as committed choice. If the guards of all clauses aredisentailed, then the generalized conditional can reduce to the else constituent.13.3 DisjunctionsThe semantics of disjunctions is given by the congruence lawsErF � FrE � ^ (ErF) � (�^ E)r(�^ F)and the reduction rules (? ^E)rF ! F >rF ! >:Note that disjunctions do not introduce any form of backtracking. Read from right to left,the second congruence law allows to lift shared constraints (an idea also realized in theconstructive disjunction of [7]). For instance,(x = 1^ y = 1)r (x = 1 ^ y = 2) � x = 1 ^ (y = 1r y = 2):13.4 FailureA expression E is called failed if E � E ^ ?. In a failed expression, all conditionals anddisjunctions become trivially reducible. Thus computation must be stopped as soon asfailure occurs. Note that this is in contrast to the situation in the pure -calculus, wherecomputation can proceed orderly in the presence of inconsistent equations a = b.21

13.5 SearchThe extension of the -calculus to �rst-order constraints is of practical use only in con-junction with a facility for search.Search in the style of Prolog can be provided as follows: Computation proceeds as longas reduction rules are applicable and failure does not occur. If computation arrives at anunfailed and irreducible expression, a disjunctive molecule ErF is selected (if there is any)and two don't know alternatives are created by replacing ErF with E and F , respectively.The alternatives are reduced as before and may be explored following a backtracking strat-egy. Unfailed and irreducible expressions not containing disjunctive molecules are taken assolutions.Prolog-style search su�ers from many problems. For one thing, it is not obtained with-in the computational calculus but formulated at the meta-level. Moreover, the idea ofbacktracking is incompatible with the idea of concurrent and reactive computation.Combining reactive computation with search has been one of the (unsolved) challengesof the Japanese Fifth Generation Project. A computational calculus solving the problemthrough encapsulation of search into deep guard combinators has been devised with theconcurrent constraint language AKL [11]. Oz realizes a more exible scheme based on the-calculus and a higher-order search combinator spawning a local computation space [23].13.6 Higher-order Programming and First-order ConstraintsThe extended -calculus has the remarkable property that it combines �rst-order con-straints with higher-order programming. The only requirement on constraints imposed byhigher-order programming is the accommodation of names. This is in sharp contrast toapproaches based on higher-order logic [18], where higher-order programming comes withthe operational burden of higher-order constraints. Although we do not doubt the useful-ness of higher-order constraints for some applications (e.g., reasoning about programs), wefeel that higher-order programming and higher-order constraints are two separate issuesthat should be decoupled as much as possible.The �-calculus [20] is a conuent subcalculus of the -calculus with constraints, whichprovides for deterministic higher-order programming with �rst-order constraints.14 Relationship with the �-calculusIt is illuminating to compare the -calculus with the �-calculus [17, 16, 15], a calculus ofconcurrent computation that evolved from research on algebraic process calculi. Althoughthe -calculus and the �-calculus were conceived with very di�erent goals and intuitions|auni�ed model of computation in the case of the -calculus and a model of communicatingprocesses in the case of the �-calculus|they are strikingly close technically. In fact, both22

calculi can be obtained as specializations of a slightly more general calculus, which isobtained from the polyadic �-calculus [15] by distinguishing between names and variablesand making variables logical. Logic variables increase the expressivity of the �-calculusin two crucial aspects: They allow to equate communication links, and they provide thepossibility to express procedures with input and output arguments (recall that a functionis a procedure with input and output).While the -calculus has logic variables, the �-calculus has formal arguments only (asin functional programming). While the �-calculus has communication as its principalprimitive, the -calculus has logic variables, abstraction, and cells as principal primitives.We shall show below that the �-calculus can be extended with logic variables, and that thethus extended asynchronous �-calculus can express abstractions and cells.To put the comparison of the two calculi on solid ground, we introduce yet another calculus,called the �-calculus. The �-calculus is an asynchronous and polyadic version of the �-calculus in [16] extended with equations. Its abstract syntax is given byA;B ::= > j A ^B j 9xA j x :: y=A j xy j x: y=A j x = ywhere > is null, A ^B is composition, 9xA is restriction, x :: y=A is an input agent, xy isan asynchronous output agent, and x: y=A is a replicating input agent (i.e, ! x :: y=A). Theonly form not present in the �-calculus are equations x = y. In contrast to the �-calculus,where x and y would be called names, they are called variables in the �-calculus.Seen from the perspective of the -calculus, we have dropped conditionals and the distinc-tion between names and variables, and we have added the form x :: y=A, which will turnout to be a once-only abstraction.The structural congruence of the �-calculus is given by the usual laws for composition andrestriction, �-conversion for both input agents, symmetry for equations, and replicationfor replicating input agents: x: y=A � x :: y=A ^ x: y=A:The reduction axioms are the Communication Rulexy ^ x :: z=A ! A[y=z] if y free for z in Aand the Elimination Rule9x(x = y ^ A) ! A[y=x] if x 6= y and y free for x in E.The structural reduction rules are the usual ones.Seen from the perspective of the -calculus, an output agent is an application and a repli-cating input agent is an abstraction. Ordinary input agents are once-only abstractionsproviding extra expressivity. In fact, cells can be expressed using once-only abstractions:x:y :� 9z (x :: uv=(u= y ^ zv) ^ z:w=x :: uv=(u= w ^ zv)):23

The �-calculus does not make a distinction between variables and names. Without thisdistinction, there is nothing that can make two variables di�erent. Hence the symmetricconditional of the -calculus does not carry over to the �-calculus. However, we could stillhave an asymmetric conditional just testing for equality.One easily veri�es that our embeddings of the eager and lazy �-calculus into the -calculuscarry over to the �-calculus. Due to the presence of logic variables, they are simpler thanthe ones for the �-calculus given by Milner [16]. In contrast to Milner's encoding, ourembedding of the lazy �-calculus shares reductions of arguments (as in implementations oflazy functional programming).It seems that the �-calculus cannot express record adjunction and, consequently, inheri-tance with method overwriting. The problem is that two variables cannot be establishedas di�erent. Thus names and a corresponding symmetric conditional seem to be crucialfor modeling inheritance.15 Future ResearchOur investigations of the -calculus are at an early stage. So far, they have mainly beendriven by considerations concerning the design and implementation of the programminglanguage Oz, of which it formalizes important aspects. Directions for future research aretype disciplines and reasoning about programs. In particular, a declarative characterizationof program equivalence is desirable, the investigation of which may start from the techniquesdeveloped for the �-calculus. Another interesting topic are extensions of the -calculus sothat it can model distributed computation and mobility.AcknowledgementsI'm thankful to Martin M�uller and Joachim Niehren for continued discussions accompany-ing the development of the -calculus. Martin Henz, Andreas Podelski, Ralf Treinen andJ�org W�urtz helped by commenting on a draft version of this paper.References[1] H. Abelson, G. J. Sussman, and J. Sussman. Structure and Interpretation of ComputerPrograms. The MIT Press, Cambridge, Mass., 1985.[2] H. A��t-Kaci, A. Podelski, and G. Smolka. A feature-based constraint system forlogic programming with entailment. Theoretical Computer Science, 122(1{2):263{283,January 1994. 24

[3] F. Benhamou and A. Colmerauer, editors. Constraint Logic Programming: SelectedResearch. The MIT Press, Cambridge, Mass., 1993.[4] G. Berry and G. Boudol. The chemical abstract machine. In Proceedings of the 17thACM Conference on Principles of Programming Languages, pages 81{94, 1990.[5] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of TheoreticalComputer Science, volume B, chapter 15. North{Holland, Amsterdam, Holland, 1990.[6] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2. InProceedings of the 12th ACM Conference on Principles of Programming Languages,pages 52{66, 1985.[7] P. v. Hentenryck, V. Saraswat, and Y. Deville. Design, implementations, and evalua-tion of the constraint language cc(FD). Technical Report CS-93-02, Brown University,Box 1910, Providence, RI 02912, 1993.[8] M. Henz, M. Mehl, M. M�uller, T. M�uller, J. Niehren, R. Scheidhauer, C. Schulte,G. Smolka, R. Treinen, and J. W�urtz. The Oz Handbook. Research Report RR-94-09, Deutsches Forschungszentrum f�ur K�unstliche Intelligenz, Stuhlsatzenhausweg 3,D-66123 Saarbr�ucken, Germany, 1994.[9] C. Hewitt, P. Bishop, and R.Steiger. A universal modular ACTOR formalism forarti�cial intelligence. In Proceedings of the International Joint Conference on Arti�cialIntelligence, pages 235{245, 1973.[10] J. Ja�ar and M. J. Maher. Constraint Logic Programming: A Survey. The Journalof Logic Programming, to appear, 1994.[11] S. Janson and S. Haridi. Programming paradigms of the Andorra kernel language.In V. Saraswat and K. Ueda, editors, Logic Programming, Proceedings of the 1991International Symposium, pages 167{186, San Diego, USA, 1991. The MIT Press.[12] S. Janson, J. Montelius, and S. Haridi. Ports for objects. In Research Directions inConcurrent Object-Oriented Programming. The MIT Press, Cambridge, Mass., 1993.[13] J. Launchbury. A natural semantics for lazy evaluation. In Proceedings of the 20thACM Conference on Principles of Programming Languages, pages 144{154, 1993.[14] J. Meseguer. Conditional rewriting logic as a uni�ed model of concurrency. TheoreticalComputer Science, 96:73{155, 1992.[15] R. Milner. The polyadic �-calculus: A tutorial. ECS-LFCS Report Series 91-180,Laboratory for Foundations of Computer Science, University of Edinburgh, EdinburghEH9 3JZ, October 1991.[16] R. Milner. Functions as processes. Journal of Mathematical Structures in ComputerScience, 2(2):119{141, 1992. 25

[17] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Informationand Computation, 100(1):1{40, September 1992.[18] G. Nadathur and D. Miller. An overview of �Prolog. In R. A. Kowalski and K. A.Bowen, editors, Proceedings of the Fifth International Conference and Symposium onLogic Programming, pages 810{827, Seattle, Wash., 1988. The MIT Press.[19] J. Niehren. Embedding the eager lambda calculus into the delta calculus. Researchreport, DFKI, Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken, Germany, 1994. Forth-coming.[20] J. Niehren and G. Smolka. A conuent calculus for higher-order relational program-ming. In Proceedings of the 1st International Conference on Constraints in Computa-tional Logics, Munich, Germany, September 1994. LNCS, Springer-Verlag.[21] J. Niehren and G. Smolka. Functional computation in a calculus of relational ab-straction and application. Research Report RR-94-04, DFKI, Stuhlsatzenhausweg 3,D-66123 Saarbr�ucken, Germany, March 1994.[22] V. A. Saraswat. Concurrent Constraint Programming. The MIT Press, Cambridge,Mass., 1993.[23] C. Schulte and G. Smolka. Encapsulated search in higher-order concurrent constraintprogramming. Technical report, DFKI, Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken,Germany, April 1994.[24] E. Shapiro. The family of concurrent logic programming languages. ACM ComputingSurveys, 21(3):413{511, September 1989.[25] G. Smolka. A calculus for higher-order concurrent constraint programming with deepguards. Research Report RR-94-03, Deutsches Forschungszentrum f�ur K�unstliche In-telligenz, Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken, Germany, February 1994.[26] G. Smolka and R. Treinen. Records for logic programming. The Journal of LogicProgramming, 18(3):229{258, April 1994.[27] G. Winskel. The Formal Semantics of Programming Languages. The MIT Press,Cambridge, Mass., 1993.Remark. Papers of authors from the Programming Systems Lab of DFKI are avail-able through anonymous ftp from ps-ftp.dfki.uni-sb.de or through WWW fromhttp://ps-www.dfki.uni-sb.de/. 26

