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The De�nition of Kernel OzGert SmolkaProgramming Systems LabGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3D66123 Saarbr�ucken, Germanyemail: smolka@dfki.uni-sb.deAbstractOz is a concurrent language providing for functional, object-oriented, andconstraint programming. This paper de�nes Kernel Oz, a semantically com-plete sublanguage of Oz. It was an important design requirement that Oz bede�nable by reduction to a lean kernel language.The de�nition of Kernel Oz introduces three essential abstractions: the Ozuniverse, the Oz calculus, and the actor model. The Oz universe is a �rst-order structure de�ning the values and constraints Oz computes with. TheOz calculus models computation in Oz as rewriting of a class of expressionsmodulo a structural congruence. The actor model is the informal computationmodel underlying Oz. It introduces notions like computation spaces, actors,blackboards, and threads.
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1 Introduction 31 IntroductionOz is a concurrent language providing for functional, object-oriented, and constraintprogramming. It is de�ned by reduction to a lean sublanguage, called Kernel Oz,which is de�ned in this paper. The fact that we can elegantly de�ne the semanticessence of Kernel Oz in less than ten pages indicates that such a multi-paradigmlanguage is feasible. Further evidence is provided by the existence of a completeand e�cient implementation.The research behind Oz is driven by practical and theoretical considerations.On the practical side, we see the need for a concurrent high-level language. Clearly,such a language should subsume higher-order functional programming, and organizestate and concurrent functionality by means of objects. For tasks that involve search,the problem solving capabilities known from constraint logic programming wouldbe advantageous.On the theoretical side, we would like to advance towards a uni�ed computationmodel subsuming and explaining seemingly incompatible programming paradigms.Concurrency and constrained-based problem solving are particularly challenging.Important considerations in the development of a uni�ed programming model areits simplicity and generality as a mathematical construction, its usefulness as abasis for designing practical programming languages, and the existence of simpleand e�cient implementation models.Programming languages can be classi�ed by the computation model they are basedon. Imperative programming, functional programming, logic programming, andconcurrent logic programming are established classes based on di�erent computa-tion models. Oz does not �t in any of these classes. Rather, it is based on a newcomputation model incorporating ideas from functional programming, logic pro-gramming, and concurrent computation (the �-calculus, in particular). Here aresome principles realized in Kernel Oz:� Expressions are composed concurrently, with references made by lexicallyscoped logic variables.� All values are de�ned as the elements of a �rst-order structure, called the Ozuniverse.� Values are described by constraints, which are logic formulas over the Ozuniverse, and are combined automatically by means of constraint simpli�cationand propagation.� Reference to fresh names is possible, where names are special values of the Ozuniverse.� Procedural abstraction is provided with full generality, where abstractions arereferred to by names.



4 1 Introduction� State is provided through cells, which are primitive concurrent agents holdinga reference.� Speculative constraint computation is delegated to local computation spaces.� Search is provided by a combinator spawning a local computation space andreturning nondeterministic alternatives as procedural abstractions.A guiding principle in the design of Oz was the requirement that Oz be de�nable byreduction to a kernel language as lean as possible. This led us to look for minimalprimitives for expressing computational concepts such as functions, objects, andsearch. The search for a coherent collection of such primitives has been an excitingjourney through a jungle of complexity to a glade of simplicity.Structure of the De�nitionThe formal de�nition of a real programming language is a complex task. To be usefulit must be simple. To be simple, it must introduce di�erent abstractions, identifyingdi�erent concerns that can be treated independently. For powerful abstractions toexist, the language design must be based on these abstractions. Thus designing aprogramming language subsumes creating the abstractions explaining the language.The de�nition of Kernel Oz introduces three essential abstractions: the Oz universe,the Oz calculus, and the actor model.Oz Universe Actor Model Kernel OzOz CalculusThe Oz universe de�nes values and constraints. It is a structure of �rst-order pred-icate logic whose elements are the values and whose formulas are the constraints Ozcomputes with. The values of Oz are closed under tuple and record constructionand include numbers, atoms and names. The fact that Oz provides for full higher-order programming but has �rst-order values only is a radical departure from theestablished models of functional computation.The actor model1 is the informal computation model underlying Oz. It introducesnotions like computation spaces, actors, blackboards, and threads. Computationscan be described by a class of elaborable expressions.The Oz Calculus formalizes the actor model, with the exception of the reductionstrategy and input and output. It models concurrent computation as rewriting of1The actor model for Oz is quite di�erent from Hewitt's actor model of computation [6]. How-ever, both models have in common that they are inherently concurrent (Hewitt speaks of ultraconcurrency).



1 Introduction 5a class of expressions modulo a structural congruence. This set-up, which is alsoemployed in more recent presentations of the �-calculus [8, 7], proves particularlyuseful for Oz since constraint propagation and simpli�cation can be accommodatedelegantly by means of the structural congruence.Kernel Oz itself consists of a class of expressions whose semantics is de�ned by atranslation into the elaborable expressions of the actor model. Kernel Oz restrictsthe expressivity of constraints so that an e�cient implementation becomes possible.How to read the De�nitionThis report gives a complete and concise de�nition of Kernel Oz. Supplementaryliterature is needed to understand the language design and programming in Oz. Thereader is expected to have an intuitive understanding of Oz, as conveyed by [14].More thorough introductions to programming in Oz are [5, 9]. The document [4]de�nes Oz by reduction to Kernel Oz.On �rst reading, we recommend to ignore the constraint programming aspects ofOz (disjunctions, solvers, �nite domains). The study of the Oz calculus shouldbe prepared by reading [13], which introduces a simpli�ed calculus not coveringconstraints and search. Other aspects of the calculus, in particular deep guards andthe relationship to logic programming, are discussed in [12]. The search combinatoris introduced in [10, 11].AcknowledgementsThe following persons have contributed directly to the design and/or implementationof Oz: Martin Henz, Michael Mehl, Martin M�uller, Tobias M�uller, Joachim Niehren,Konstantin Popow, Ralf Scheidhauer, Christian Schulte, Gert Smolka, Ralf Treinen,J�org W�urtz.



6 2 The Oz Universe2 The Oz UniverseThe Oz universe is a mathematical model of the data structures Oz computes with.It is de�ned as a structure of �rst-order predicate logic with equality. All variables inOz range over the elements of the Oz universe. The elements of the Oz universe arecalled values, and the �rst-order formulas over its signature are called constraints.2.1 ValuesValues are classi�ed as shown in Figure 1. A value is either a primitive or a com-pound value. A primitive value is either a literal or a number. A literal is eitheran atom or a name. A number is either an integer or a 
oat. A compound valueis either a proper tuple or a proper record.atom name integer 
oatliteral numberprimitive
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 JJJ���� ZZZZ proper record proper tuplecompound���� QQQQFigure 1: Classi�cation of values.It remains to de�ne the basic classes of atoms, names, integers, 
oats, proper records,and proper tuples, which are pairwise disjoint. Every value is in one and only onebasic class.Atoms are �nite sequences of positive integers between 1 and 255. For convenience,atoms are usually written as strings, exploiting a mapping speci�ed in [4] (e.g.,'fred', 'Atom', '', or '$#@\'78'). For alphanumeric atoms starting with a lowercase letter we usually omit the quotes; for instance, we may write fred for 'fred'.Atoms are totally ordered by the lexical order induced by the canonical order onintegers.Names are primitive values without any structure. There are in�nitely manynames. There is no order on names.The integers are the integers you know from school. They are ordered as usual.The 
oats are the �nitely many 
oating point numbers de�ned by the implemen-tation. They are totally ordered.A tuple is either a literal or a proper tuple. A proper tuple is an ordered treel�� @@v1 vn1 n� � �



2.1 Values 7where l is a literal, v1; : : : ; vn are values, and n > 0. Tuples are written as l(v1 : : : vn),where l() stands for l. Two tuples are equal if and only if they have the same linearnotation.Given a tuple t = l(v1 : : :vn), we call the literal l the label, the values v1; : : : ; vnthe components, the integer n the width, and the integers 1; : : : ; n the featuresof t. Moreover, we call vi the component or subtree of t at i.A record is either a literal or a proper record. A proper record is an unorderedtree l�� @@v1 vnl1 ln� � �where l is a literal, l1; : : : ; ln are pairwise distinct literals, v1; : : : ; vn are values, andn > 0.Records are written as l(l1: v1 : : : ln: vn), where l() stands for l. Two proper recordsare equal if and only if they have the same linear notation up to permutation ofnamed �elds li: vi.Given a record t = l(l1: v1 : : : ln: vn), we call the literal l the label, the valuesv1; : : : ; vn the �elds, the integer n the width, and the literals l1; : : : ; ln the featuresof t. Moreover, we call vi the �eld or subtree of t at li.By de�nition, every literal is both a nullary tuple and a zero-width record. In otherwords, the intersection of the set of all tuples with the set of all records is exactlythe set of all literals.The Oz universe is closed under tuple and record construction. It also containsall in�nite trees that can be obtained from primitive values by tuple and recordconstruction. Consequently, the equationx = l(l1: x l2: v)has exactly one solution for x given l; l1; l2; v. The straightforward mathematicaldetails of the underlying construction can be found in [15].An important operation on records is adjunction. The adjunction of two recordss and t is the record s � t de�ned as follows: the label of s � t is the label of t; thefeatures of s � t are the features of s together with the features of t; and v is thesubtree of s � t at l if and only if either v is the subtree of t at l, or if l is not afeature of t and v is the subtree of s at l. Thus record adjunction amounts to recordconcatenation, where for common features the right argument takes priority. Forinstance, l(a: 1 b: 2 c: 3) � k(b: 7 d: 4) = k(a: 1 b: 7 c: 3 d: 4):Lists are special tuples de�ned inductively as follows: the atom nil is a list (calledthe empty list); and if v is a value and w is a list, then the tuple '|'(v w) is a list



8 2 The Oz Universe(where v is called the head and w is called the tail). For instance,1 2 3 nil'|' '|' '|'�� @@�� @@�� @@is the list containing the integers 1, 2, 3 in ascending order.2.2 ConstraintsThe signature of the Oz universe consists of all primitive values and of �nitelymany predicates called constraint predicates. Every primitive value is a constantdenoting itself. Note that the signature of the Oz universe contains no properfunction symbol. The �rst-order formulas over the signature of the Oz universe arecalled constraints. The variables occurring in constraints are taken from a �xedin�nite set.The constraint predicates of the Oz universe are de�ned as follows:� isAtom(x), isName(x), isLiteral(x), isInt(x), isFloat(x), isNumber(x),isRecord(x), and isTuple(x) are de�ned as one would expect from their names.� intPlus(x; y; z) and intTimes(x; y; z) are the predicates corresponding to inte-ger addition and multiplication. For instance, the formulas intMult(3; 6; 18),:intMult(3:0; 6; 18), and :intMult(3:0; 6; 18:0) are all true in the Oz universe.� floatPlus(x; y; z), floatMinus(x; y; z), floatTimes(x; y; z), floatDiv(x; y; z),floatPow(x; y; z), floatAbs(x; y), floatCeil(x; y), floatFloor(x; y),floatExp(x; y), floatLog(x; y), floatSqrt(x; y), floatSin(x; y),floatASin(x; y), floatCos(x; y), floatACos(x; y), floatTan(x; y), andfloatATan(x; y) are the predicates corresponding to the respective functionson the 
oats (de�ned by the implementation).� floatToInt(x; y) and intToFloat(x; y) are the predicates corresponding to therespective conversion functions (de�ned by the implementation).� atomString(x; y) holds if and only if y is the list of integers corresponding tothe atom x. Note that atomString(x; y) is functional from left to right andfrom right to left.� intLE(x; y), floatLE(x; y), and atomLE(x; y) are the predicates correspondingto the respective total orders on integers, 
oats, and atoms.� label(x; y) holds if and only if x is a tuple or record whose label is y.



2.2 Constraints 9� width(x; y) holds if and only if x is a tuple or record whose width is y.� subtree(x; y; z) holds if and only if x is a tuple or record, y is a feature of x,and z is the subtree of x at y.� extendTuple(x; y; z) holds if and only if x and z are tuples and z is obtainedfrom x by adding y as additional rightmost component.� adjoin(x; y; z) is the predicate corresponding to record adjunction.� adjoinAt(x; y; z; u) holds if and only if y is a literal and x and u are recordssuch that x � l(y: z) = u, where l is the label of x.� arity(x; y) holds if and only if x is a record and y is the list of the atomicfeatures of x (i.e., all features of x that are atoms) in ascending order.� finiteDomainBound(x) holds if and only if x is the upper bound for �nitedomains de�ned by the implementation. The upper bound must be an integerlarger or equal than 255.An important property of the Oz universe is the fact that validity of sentences ispreserved under permutation of names; that is, given two �rst-order sentences S, Tover the signature of the Oz universe such that T is obtained from S by a bijectiverenaming of names, S is valid in the Oz universe if and only if T is valid in the Ozuniverse. To obtain this property, no order on names is de�ned, and consequentlythe arity of a record does not contain those features that are names.We write > for the trivial constraint true, and ? for the trivial constraint false. Wesay that� a constraint � entails a constraint  if the implication � !  is valid in theOz universe� a constraint � is equivalent to a constraint  if the equivalence � $  isvalid in the Oz universe� a constraint � is satis�able if it does not entail ?.For convenience, we write x := l(l1: y1; : : : ; ln: yn)for the constraintlabel(x; l) ^ width(x; n) ^ subtree(x; l1; y1) ^ : : : ^ subtree(x; ln; yn):and x := l(y1; : : : ; yn)



10 2 The Oz Universefor the constraintlabel(x; l) ^ width(x; n) ^ subtree(x; 1; y1) ^ : : : ^ subtree(x; n; yn):Moreover, we write x :=y1j : : : jykjnilfor the constraint constraining x to the list y1; : : : ; yk.Since the Oz universe has integers with addition and multiplication, satis�abilityof constraints is undecidable, even for conjunctions of atomic integer constraints(Hilbert's Tenth Problem). Furthermore, satis�ability of constraints involving noother predicate but the subtree predicate is undecidable [16].Kernel Oz restricts the use of constraints such that satis�ability and entailment ofthe occurring constraints is e�ciently decidable.More about the logic and algorithmic properties of record and tuple constraints canbe found in [15, 3, 1, 2].



3 The Actor Model 113 The Actor ModelThe actor model is the informal computation model underlying Oz. It can be seenas a computational metaphor for the Oz calculus, the formal computation modelunderlying Oz. The two models formulate complementary views of computation inOz supporting di�erent intuitions. The actor model takes an operational perspectiveintroducing notions like computation spaces, actors, and blackboards.An important aspect of an inherently concurrent computation model like the oneunderlying Oz is the reduction strategy determining the partial order according towhich possible reduction steps are to be performed. The reduction strategy hassemantical signi�cance as it comes to fairness, and practical signi�cance as it comesto e�cient implementation. Finding the right reduction strategy has been one ofthe more di�cult issues in designing Oz.By its nature, an informal model must rely on the intuition of the reader andcannot compete with the rigor of a formal model. Thus the Oz calculus is taken asthe de�ning model, except for the reduction strategy and input and output, whichare only formulated in the actor model. The formally inclined reader may prefer tostudy the Oz calculus �rst.3.1 Computation Spaces, Blackboards, and ActorsComputation in Oz takes place in a computation space called the top level. Acomputation space consists of a �nite number of actors connected to a black-board. Computation proceeds by reduction of actors. When an actor reduces, itmay create new actors and write information on the blackboard. As long as anactor does not reduce, it does not have an outside e�ect. Actors are short-lived:once they reduce they disappear.A blackboard is a store containing a constraint and a partial function bindingnames to abstractions and variables. Names, variables, and constraints are de�nedby the Oz universe, and abstractions will be de�ned later. The blackboard stores itsconstraint only up to logical equivalence in the Oz universe. A blackboard is calledempty if it binds no name and if its constraint is >.A blackboard entails a constraint  if the constraint of the blackboard entails  .A blackboard binds a variable x to a variable or constant s 6= x if the constraintx :=s is entailed by the constraint of the blackboard.As computation proceeds, the information stored by the constraint of a blackboardincreases monotonically. More precisely, if a blackboard evolves from a state B toa state B0, then:� If B entails a constraint �, then B0 entails �.� If B binds a name a to an abstraction y=E, then B0 binds a to y=E.



12 3 The Actor Modelblackboard� � �actor actorblackboard� � �actor actor blackboard� � �actor actorFigure 2: A tree of computation spaces.� If B binds a name a to an once-only abstraction y==E, then B0 binds a toeither y==E or y=?.� If B binds a name a to a variable, then B0 binds a to a (possibly di�erent)variable.Abstractions will be de�ned shortly.Some actors spawn local computation spaces, thus creating a tree of computationspaces taking the top level as root (see Figure 2). As computation proceeds, newlocal computation spaces are created and existing local spaces are discarded ormerged with their parent space.We say that a computation space S 0 is subordinated to a computation space Sif S 0 = S or if S 0 is subordinated to a local computation space of an actor of S.We say that a blackboard B is subordinated to a computation space S if B isthe blackboard of a space subordinated to S. We say that a blackboard B0 issubordinated to a blackboard B if B0 is subordinated to the computation spaceof B. We say that X is superordinated to Y if Y is subordinated to X .Every computation space is equipped with a possibly empty set of local variablesand local names. As computation proceeds, computation spaces may acquirefresh local variables and names. A variable or name can be local to at most onecomputation space. If a variable or name is local to a space, the space is calledits home space. Every occurring name must have a home space. Moreover, everyvariable having occurrences that are not statically bound (de�ned below) must havea home space. Variables and names with a home space can only occur in spacessubordinated to their home space.The hierarchy of computation spaces rooted in the top level satis�es the following



3.2 Elaboration of Expressions 13invariants:� The constraints of subordinated blackboards entail the constraints of super-ordinated blackboards (slogan: local spaces know the constraints of globalspaces).� Names can only be bound by the blackboard of their home space, and thereis at most one binding for a name.An important operation on a blackboard is the imposition of a constraint. Aconstraint  is imposed on a blackboard storing a constraint � by making theblackboard store the constraint  ^�, where imposing  includes imposing  on allsubordinated blackboards (thus the invariants are maintained).We say that a computation space fails if a constraint is imposed such that theconstraint of the blackboard becomes unsatis�able. If a computation space fails,all its subordinated spaces fail. When a computation space fails, the actors of thespace are discarded and computation in the space is aborted. While failure of alocal space is a regular event, failure of the top level is considered a run-time error.While some actors can reduce immediately once they have been created, others haveto wait until the blackboard contains su�cient information. Once an actor becomesreducible, it remains reducible, except if its computation space fails or is discarded.An actor has an outside e�ect only once it reduces.We assume that actors are reduced one after the other, an important assumptionknown as interleaving semantics. While we anticipate that an implementationreduces actors in parallel, we insist that the e�ect of such a parallel computationmust always be achievable by a sequence of single actor reductions. Interleavingsemantics separates concurrency from parallelism such that parallelism has no se-mantic signi�cance and is only visible at the implementation level.An Oz computation takes places concurrently with other computations, with someof which it may have to communicate and synchronize. To model this essentialaspect of concurrent computation within the actor model, we assume that everytop level computation space is equipped with an input and an output stream.An actor computation may read from the input stream and write on the outputstream. Agents in the outside world may write on the input stream and read fromthe output stream. We assume that the tokens communicated on the input andoutput streams are atoms.There are four kinds of actors: Elaborators, conditionals, disjunctions, and solvers.Conditionals, disjunctions and solvers are called proper actors. While properactors spawn local computation spaces, elaborators do not.3.2 Elaboration of ExpressionsElaborators are actors that elaborate a class of elaborable expressions de-



14 3 The Actor ModelE ::= � constraintj x: y=E abstractorj x: y==E once-only abstractorj x:y cell creationj E1 E2 compositionj local x in E end declarationj newName[x] name creationj apply[xy] applicationj if C1 [] : : : [] Cn else E fi conditionalj or C1 [] : : : [] Cn ro disjunctionj OR C1 [] : : : [] Cn RO nondistributing disjunctionj solve[x:E; y1y2y3] solverj det[x] determinationj getDomain[x; y]j input[x] j output[x]j setThreadPriority[x]j getThreadPriority[x]C ::= x in E1 then E2 clausex; y; z ::= hvariableix; y ::= hpossibly empty sequence of variablesiFigure 3: Elaborable expressions.�ned in Figure 3. Every constraint as de�ned by the Oz universe is an elaborableexpression, provided it contains no names. There is the further side-condition thatthe formal arguments y of an abstractor expression x: y=E or x: y==E be pairwisedistinct.An abstraction takes the form y=E or y==E, where the variables in y are calledthe formal arguments and the elaborable expression E is called the body ofthe abstraction. The formal arguments are required to be pairwise distinct. Anabstraction y==E is called a once-only abstraction and can only be applied once.Given an abstractor x: y=E or x: y==E, we call x the designator and y=E or y==Ethe abstraction of the abstractor.Given an application apply[xy], we call x the designator and y the actual argu-ments of the application.Given a solver solve[x:E; y1y2y3], we call x the root variable, E the guard, and



3.2 Elaboration of Expressions 15y1; y2; y3 the control variables of the solver.Given a clause x in E1 then E2, we call the variables in x the local variables, theexpression E1 the guard, and the expression E2 the body of the clause.The elaborable expressions come with the following variable binders:� universal and existential quanti�cation in constraints� an abstractor x: y=E or x: y==E binds its formal arguments y with scope E� a declaration local x in E end binds its declared variables x with scope E� a solver solve[x:E; y1y2y3] binds its root variable x with scope E� a clause x in E1 then E2 binds its local variables x with scope E1 and E2.Free and bound variables are de�ned accordingly. An elaborable expression isclosed if it has no free variable.Computation spaces also act as variable binders: They bind their local variables.Every variable occurrence must be bound either statically by a binder in an elab-orable expression or a constraint, or dynamically by a computation space. Inparticular, all free variables of the elaborable expression of an elaborator must bebound dynamically.Note that we heavily overload the term \binding". First, a blackboard can bind aname to a variable or an abstraction. Second, a blackboard can bind a variable x toa variable or constant s, which means that it entails the constraint x := s. Third, avariable occurrence in an elaborable expression can be bound by a variable binderas de�ned above. Fourth, a variable occurrence can be bound by a computationspace.By elaboration of an expression E we mean the reduction of an elaborator for E.Elaboration of� a constraint � imposes � on the blackboard of the computation space wherethe elaboration takes place. Recall that imposing a constraint on a black-board means to impose it on all subordinated blackboards. Elaboration of aconstraint in a space may result in the failure of some subordinated spaces.� an abstractor x: y=E or x: y==E chooses a fresh name a, binds a to the abstrac-tion y=E or y==E, and imposes the constraint x :=a. Everything is done in thecomputation space where the elaboration takes place, which also acts as thehome space of the fresh name a.� a cell creation x:y chooses a fresh name a, binds a to y, and imposes theconstraint x := a. The home space of a is the computation space where theelaboration takes place.� a composition E1 E2 creates two separate elaborators for E1 and E2.



16 3 The Actor Model� a declaration local x in E end chooses a fresh variable y and creates an elabo-rator for the expression E[y=x]. The notation E[y=x] stands for the expressionthat is obtained from E by replacing all free occurrences of x with y. Thehome space of y is the space where the elaboration takes place. A multi-ple variable declaration local x x in E end is treated as a nested declarationlocal x in local x in E end end.� newName[x] chooses a fresh name a and imposes the constraint x :=a. The homespace of a is the space where the elaboration takes place.� apply[xy] must wait until there is a name a such that the blackboard entailsx :=a. Then we distinguish three cases:1. If a is bound to an abstraction z=E by a superordinated blackboard andthe number of the actual arguments y agrees with the number of theformal arguments z, an elaborator for E[y=z] is created (a copy of thebody of the abstraction, where the actual arguments replace the formalarguments).2. If a is bound to an once-only abstraction z==E by a superordinated black-board and the number of the actual arguments y agrees with the numberof the formal arguments z, an elaborator for E[y=z] is created. Moreover,a is rebound to the abstraction y=?.3. If a is bound to a variable z by the blackboard of the space where theelaboration takes place and the actual arguments are y = y1 y2, then a isrebound to y2 and the constraint z :=y1 is imposed.In all other cases the elaborator for the application cannot reduce.� a conditional if C1 [] : : : [] Cn else E fi creates a conditional actor spawn-ing a local computation space for every clause C1; : : : ; Cn (see Figure 4). Alocal space for a clause x in E1 then E2 is created with a blackboard con-taining the constraint of the parent board, and a single elaborator for theexpression local x in E1 end. Moreover, the conditional actor carries the elseexpression E and associates with every local computation space the body E2of the corresponding clause. Since the scope of the local variables x includesboth the guard E1 and the body E2 of the clause, the local variables x mustbe replaced consistently in the guard and in the body when local x in E1 endis elaborated in the local space.� a disjunction or C1 [] : : : [] Cn ro or OR C1 [] : : : [] Cn RO creates a disjunc-tive actor spawning a local space for every clause C1; : : : ; Cn. The local spacesare created in the same way as for conditionals. A disjunctive actor created byor : : : ro is called distributing, and a disjunctive actor created by OR : : : ROis called nondistributing.



3.3 Reduction of Proper Actors 17if(E)(E1) (E2) solve(y1; y2; y3)(z)Figure 4: A conditional actor with two local spaces and a solver.� solve[x:E; y1y2y3] creates a solver actor spawning a single local computationspace (see Figure 4). The local computation space is created with a blackboardcontaining the constraint of the parent blackboard, and a single elaborator forE[z=x], where z is a fresh variable taking the local computation space as home.The solver actor carries the root variables z and the control variables y1; y2; y3.� det[x] must wait until the blackboard entails x :=c for some constant c of thesignature of the Oz universe. When this is satis�ed, the elaborator for det[x]reduces without further action.� getDomain[x; y] must wait until there are nonnegative integers n1; : : : ; nk suchthat the blackboard entails the disjunctive constraint x :=n1 _ : : :_ x :=nk .When this is satis�ed, the elaborator for getDomain[x; y] reduces by impos-ing the constraint y :=n1j : : : jnkjnilwhere n1; : : : ; nk is the shortest list in ascending order such that the blackboardentails x :=n1 _ : : :_ x :=nk.� input[x] waits until there is an atom s on the input stream, consumes it, andimposes the constraint x :=s.� output[x] waits until the blackboard entails x := s for some atom s and thenputs s on the output stream.� setThreadPriority[x] and getThreadPriority[x] will be de�ned in Subsec-tion 3.4.We have now seen all reduction rules for elaborators.3.3 Reduction of Proper ActorsWe will now specify the reduction rules for proper actors. Recall that a proper actoris either a conditional, a disjunction, or a solver.



18 3 The Actor ModelWe say that a local computation space is entailed if it contains no actors anymore,and if the parent blackboard entails 9x �, where x are the local variables and � isthe constraint of the blackboard of the local space.Reduction of ConditionalsA conditional actor can reduce if one of its local computation spaces is entailed, orif all its local computation spaces have failed.If one of its local computation spaces is entailed, the conditional can reduce as fol-lows: discard the other local spaces, merge the local blackboard with the globalblackboard (there cannot be any con
icts), and create an elaborator for the associ-ated clause body.If several local computation spaces of a conditional are entailed, the conditional canchoose with which one it reduces.If all local computation spaces of a conditional have failed, it can reduce to anelaborator for the else expression.Reduction of DisjunctionsA disjunctive actor can reduce if all but possibly one of its local computation spaceshave failed, or if a local space whose associated clause body is the constraint > isentailed.If all local computation spaces of a disjunction have failed, the disjunction canreduce to an elaborator for the constraint ?.If all but one local computation space of a disjunction have failed, the disjunctioncan reduce with the unfailed space. This is done by merging the unfailed local spacewith the global space (there cannot be any con
icts), and by creating an elaboratorfor the associated clause body.If a local space with associated clause body > is entailed, the disjunctive actor canreduce without further action.Reduction of SolversA local computation space is called blocked if it is unfailed and no actor in the spaceor a subordinated space can reduce. A local computation space is called stable if itis blocked and remains blocked for every satis�able strengthening of the constraintof the parent blackboard.A solver actor can reduce if its local computation space is either failed or stable.If the local computation space of a solver is failed, the solver can reduce to anelaborator for the application apply[y1], where y1 is the �rst control variable of thesolver.



3.4 Reduction Strategy 19If the local computation space of a solver is stable and does not contain a distributingdisjunctive actor, the solver can reduce to an elaborator for the expressionlocal x inx: z=Fapply[ y2 xS ]endwhere z is the root variable of the solver, F is an elaborable expression representingthe stable local computation space, y2 is the second control variable of the solver,and S (the so-called status) is either the atom entailed or stable, depending onwhether the local space is entailed or not. That F represents the local computationspace means that elaboration of solve[z:F; y1y2y3] will recreate the local space upto renaming of local variables and names by reduction of elaborators only. Thetransformation of a computation space into an elaborable expression is called re-
ection.If the local computation space of a solver is stable and contains a distributingdisjunctive actor or C1 [] : : : [] Cn ro, the solver can reduce to an elaborator forlocal x1 x2 inx1: z== local y in F or C1 ro endx2: z== local y in F or C2 [] : : : [] Cn ro endapply[y3 x1 x2 S]endwhere local y in F or C1 [] : : : [] Cn ro end is an elaborable expression represent-ing the stable local computation space, z is the root variable of the solver, y3 is thethird control variable of the solver, and S (the so-called status) is either the atomlast or more, depending on whether n = 1 or not. The alternatives are returned asonce-only abstractions to allow for an e�cient implementation.For distributing disjunctive expressions and actors the order of clauses and localcomputation spaces is signi�cant and preserved by elaboration and re
ection.3.4 Reduction StrategySo far we have not made any assumptions about the order in which actors arereduced. Such assumptions are needed, however, so that one can write fair ande�cient programs. Without such assumptions a single in�nite computation couldstarve all other computations.Oz's reduction strategy organizes actors into threads, where every thread is guar-anteed to make progress if it can reduce and has su�cient priority. Threads areequipped with priorities to provide for asynchronous real time programming.A thread is a nonempty sequence of actors. Every actor belongs to exactly onethread. When a computation space fails or is discarded, its actors are discarded,



20 3 The Actor Modelwhich includes their removal from the threads they reside on. The actors on a threadmay belong to di�erent computation spaces.Every thread has a priority that can be changed. The priority is an integer, wherea larger integer means a higher priority.Threads are scheduled by means of a priority queue, which is served by one orseveral workers. A free worker picks the �rst thread from the queue and startsreducing it. If the thread cannot reduce anymore, or the worker has spent morethan a given time limit reducing it, the worker puts the thread back into the queue,at the position determined by the current priority of the thread.Although there may be several workers, only one actor can reduce at a time. Thusreductions performed by di�erent workers are interleaved into a sequence of singlereductions (so-called interleaving semantics).A thread can reduce by reducing one of its actors, or by moving its �rst actor to anew thread. If possible, a thread reduces a proper actor. If it contains no reducibleproper actor, the thread must reduce with its �rst actor. Every thread that containsmore than one actor is reducible.To reduce an actor on a thread means to reduce the actor and replace it with thepossibly empty sequence of actors it has reduced to. Proper actors reduce to a singleelaborator or no actor at all. Elaborators may reduce to more than one actor. Forthem the order of the replacing actors is de�ned as follows:� For the elaborator of a composition E1 E2, the elaborator for E1 goes beforethe elaborator for E2.� For the elaborator of a conditional [disjunction], the elaborators for the clausese1; : : : ; en go before the conditional [disjunctive] actor a,e1 : : : en awhere the order of the elaborators e1; : : : ; en is given by the order of the clausesin the conditional [disjunctive] expression� For the elaborator of a solver, the elaborator of the local computation spacegoes before the solver actor.Reduction of threads is de�ned as follows:1. if a thread contains a reducible proper actor, reduce it2. if a thread contains no reducible proper actor and the �rst actor is reducible,reduce the �rst actor3. if a thread contains no reducible proper actor, the �rst actor is not reducible,and the thread contains further actors, move the �rst actor to a newly createdthread; the newly created thread inherits the priority of the creating thread.



3.5 Computations 21We say that the third rule suspends the �rst actor of a thread. Note that suspensionof an actor creates a new thread, and that this is the only way to create a new thread.The strategy gives priority to the reduction of proper actors, where the position inthe thread does not matter. Since proper actors reduce to elaborators, a thread willquickly run out of reducible proper actors. Elaborators are reduced with a strategyreminiscent of sequential execution.Elaboration of an expression� setThreadPriority[x] must wait until there is an integer n such that theblackboard entails x := n. When this is satis�ed, the elaborator ofsetThreadPriority[x] can reduce by changing the priority of its thread to n.If the priority is not stricly increased, the worker must return the thread tothe priority queue.� getThreadPriority[x] imposes the constraint x := n, where n is the currentpriority of the thread elaborating the expression.Concerning solvers, there is a further assumption about order: When a solver re-duces by distributing a disjunctive actor, the distributing disjunctive actor that wascreated last is distributed.3.5 ComputationsA computation space is called irreducible if no actor in the space or a subordinatedspace can reduce. Note that a space is irreducible if and only if it is either blockedor failed.A �nite computation issuing from a closed elaborable expression E is a sequenceS1; : : : ; Sn of states of a top level computation space such that:� The initial state S1 consists of the empty blackboard and an elaborator for E.� Every state Si+1 is obtained from its predecessor Si by reduction of a singleactor, possibly in a subordinated space.� The �nal state Sn is irreducible.� The state sequence respects the reduction strategy.Since failure prevents further reduction, none of the states S1; : : : ; Sn�1 can be failed.A in�nite computation issuing from a closed elaborable expression E is an in�nitesequence S1; S2; S3; : : : of states of a top level computation space such that:� The initial state S1 consists of the empty blackboard and an elaborator for E.� Every state Si+1 is obtained from its predecessor Si by reduction of a singleactor, possibly in a subordinated space.



22 3 The Actor Model� The state sequence respects the reduction strategy.Since failure prevents further reduction, none of the states in an in�nite computationcan be failed.Example 3.1 There are both �nite and in�nite computations issuing from theclosed elaborable expressionlocal X Y inX: = apply[X]if X :=Y then > [] X :=Y then apply[X] else > fiX :=YendHowever, due to the reduction order imposed by threads, there are no in�nite com-putations issuing fromlocal X Y inX: = apply[X]X :=Yif X :=Y then > [] X :=Y then apply[X] else > fiend 23.6 Success, Failure, and Termination of ActorsThe direct descendants of an actor A are the actors A creates when it reduces.The descendants of an actor are obtained by taking the re
exive and transitiveclosure of the direct descendant relation. The actors in the local spaces of a prop-er actor A are not considered descendants of A, and neither are their reductionsconsidered reductions of A.We say that an actor has� succeeded if all its descendants have reduced without failing the computationspace� failed if one of its descendants has failed the computation space� terminated if all its descendants have reduced.Note that an actor has terminated if and only if it has succeeded or failed.



4 Kernel Oz 234 Kernel OzThis section de�nes Kernel Oz, a semantically complete sublanguage of Oz. EveryOz program can be translated into an expression of Kernel Oz. In fact, the meaningof Oz programs is de�ned by a reduction to Kernel Oz.Kernel Oz consists of a class of expressions whose semantics is de�ned by a trans-lation into the elaborable expressions of the actor model.Kernel Oz restricts the elaborable constraints such that the actor model can beimplemented e�ciently. This is necessary since properties such as satis�ability andentailment of constraints are undecidable in general. Kernel Oz provides most of theavailable constraints only indirectly through prede�ned procedures. All prede�nedprocedures are de�ned by an elaborable expression called prelude.Although Oz is semantically de�ned by reduction to Kernel Oz, it cannot be imple-mented e�ciently this way. In particular, implementations are supposed to realizeobjects and �nite domains more e�ciently than it is suggested by their translationto Kernel Oz.4.1 SyntaxThe abstract syntax of Kernel Oz is de�ned in Figure 5. It introduces a class ofexpressions called kernel expressions. The kernel expressions are less expressivethan the elaborable expressions. Except for constraints, the missing expressivity isregained by means of prede�ned procedures.E ::= false j true j x=s constraintsj proc fx y g E end procedure de�nitionj fx y g procedure applicationj E1 E2 compositionj local x in E end declarationj if C1 [] : : : [] Cn else E fi conditionalj or C1 [] : : : [] Cn ro disjunctionj OR C1 [] : : : [] Cn RO nondistributing disjunctionC ::= x in E1 then E2 clausex; y ::= hvariableix; y ::= hpossibly empty sequence of variablesis ::= x j hatomi j hnumberiFigure 5: Kernel expressions.



24 4 Kernel OzA concrete syntax for kernel expressions is inherited from the concrete syntax of Oz(de�ned in [4]).Every kernel expression can be rewritten into an elaborable expression by applyingthe following rules:� A procedure de�nition proc fx y1 : : : yn g E end rewrites intolocal A R inA: y1 : : : yn=ER :=rec(abstraction: A; arity:n)x :=ChunkLabel(Proc : R)end� A procedure application fx y1 : : : yn g rewrites intoif R in subtree(x;Proc ; R)thenlocal A insubtree(R; arity; n)subtree(R; abstraction; A)apply[ A y1 : : : yn ]endelse false fi� The constraint expressions false, true, x=s rewrite into the constraints ?, >,and x :=s, respectively.The symbol Proc is a variable that must not occur in kernel expressions. Wheneverpossible, we use Oz's lexical syntax [4]; for instance, abstraction, arity and rec areatoms, and A, R, and ChunkLabel are variables. Moreover, subtree(R; arity; n) is aconstraint, and R :=rec(abstraction: A; arity:n) and x :=ChunkLabel(Proc : R) abbre-viate constraints (see Section 2).The variable binders of the kernel expressions are clear from the translation to theelaborable expressions. It is understood that the declarations of A and R introducedby the above translation rules do not capture variables.By providing abstractors and applications only indirectly through procedure def-initions and applications, Kernel Oz establishes a recognizable class of �rst-ordervalues acting as procedures (see the de�nition of the kernel procedure IsProcedure).A kernel expression E is admissible if its free variables are among the kernelvariables, which are the following:



4.2 Semantics 25ChunkLabel NewName NewCell Exchange Det SolveCombinatorIsInt IsFloat IsNumber IsAtom IsName IsLiteral IsProcedureIsCell IsChunk IsTuple IsRecord IsNoNumberLabel Width Subtree ExtendTuple Adjoin AdjoinAt ArityAtomToString StringToAtom ProcedureArity`=<` `+` `-` `*` `/` Pow AbsFloatToInt IntToFloat Ceil FloorExp Log Sqrt Sin Cos Tan Asin Acos AtanFiniteDomainBound FiniteDomain FiniteDomainNE GetFiniteDomain`Input` `Output` `SetThreadPriority` `GetThreadPriority`4.2 SemanticsThe semantics of an admissible kernel expression E is de�ned as the semantics ofthe closed elaborable expressionlocal Proc hKernel Variablesi innewName[ChunkLabel]newName[Proc]hPreludeihE rewritten into an elaborable expressioniendwhere the elaborable expression hPreludei is de�ned in the next section.computation issuing from an admissible kernel expression E is a computation issu-ing from the closed elaborable expression obtained from E by the above translation.4.3 PreludeBelow we de�ne several elaborable expressions that composed together yield theexpression hPreludei needed for the semantic translation above. The proceduresde�ned in the prelude are called kernel procedures. We use Oz's lexical syntaxfor variables and atoms (with the exception of the variable Proc , which has noconcrete syntax), and Kernel Oz's syntax for procedure de�nitions and applications(to be expanded as de�ned in Section 4.1). Moreover, we write E1 then E2 for aclause x in E1 then E2 whose variable pre�x x is empty.Names, Determination, Procedures, and Cellsproc {NewName X}newName[X]end



26 4 Kernel Ozproc {Det X}if isInt(X) then det[X] else true fiendproc {IsProcedure P}if R in subtree(P,Proc,R) then true else false fiendproc {ProcedureArity P N}if R in subtree(P,Proc,R) then subtree(R,arity,N) else false fiendlocal Cell in{NewName Cell}proc {NewCell X C}local Z inZ:XC :=ChunkLabel(Cell:Z)endendproc {IsCell X}if Z in subtree(X,Cell,Z) then true else false fiendproc {Exchange C X Y}if Z in subtree(C,Cell,Z) then apply[Z X Y] else false fiendendProcedures and cells are modelled as special records called chunks, where a �eldholds the name bound to an abstraction or variable. Procedures and cells cannot befaked since their features Proc and Cell, respectively, cannot be accessed by admis-sible kernel expressions. This means that every value that quali�es as a procedureor cell must have been introduced by a procedure de�nition or an application of thekernel procedure NewCell, or must have been derived from such a value by possiblyrepeated adjunction.Classi�cation PredicatesThe classi�cation predicates classify the values of Kernel Oz according to the hi-erarchy shown in Figure 6. The classes value, number, noNumber, and literal areobtained by union of their subclasses. All leaf classes are disjoint. The classi�cationpredicates for procedures and cells were already de�ned in Section 4.3.



4.3 Prelude 27value noNumbertuple recordnumber literal chunkinteger 
oat atom name cell procedureFigure 6: Classi�cation of values in Kernel Oz.proc {IsInt X}if isInt(X) then det[X] else false fiendproc {IsFloat X}if isFloat(X) then true else false fiendproc {IsNumber X}if {IsInt X} then true else {IsFloat X} fiendproc {IsAtom X}if isAtom(X) then true else false fiendproc {IsName X}if isName(X) then true else false fiendproc {IsLiteral X}if {IsAtom X} then true else {IsName X} fiend



28 4 Kernel Ozproc {IsTuple X}if isTuple(X) then true else false fiendproc {IsRecord X}if isRecord(X) then true else false fiendproc {IsChunk X}if {IsRecord X} then label(X,ChunkLabel) else false fiendproc {IsNoNumber X}if {IsTuple X} then true else {IsRecord X} fiendOrderproc {`=<` X Y}if {IsInt X} {IsInt Y} then intLE(X,Y)[] {IsFloat X} {IsFloat Y} then floatLE(X,Y)[] {IsAtom X} {IsAtom Y} then atomLE(X,Y)else false fiendTuples, Records, and Atomsproc {Label X L}if {IsNoNumber X} then label(X,L) else false fiendproc {Width X N}if {IsNoNumber X} then width(X,N) else false fiendproc {Subtree X F Y}if {IsRecord X} {IsLiteral F} then subtree(X,F,Y)[] {IsTuple X} {IsInt F} then subtree(X,F,Y)else false fiendproc {ExtendTuple X Y Z}if {IsTuple X} then extendTuple(X,Y,Z) else false fiend



4.3 Prelude 29proc {Adjoin X Y Z}if {IsRecord X} {IsRecord Y}then if {IsChunk X} then false else adjoin(X,Y,Z) fielse false fiendproc {AdjoinAt X F Y Z}if {IsRecord X} {IsLiteral F}then if {IsChunk X} then false else adjoinAt(X,F,Y,Z) fielse false fiendproc {Arity X L}if {IsRecord X} then arity(X,L) else false fiendproc {AtomToString A L}if {IsAtom A} then atomString(A,L) else false fiendlocal ListDet inproc {StringToAtom L A}if {ListDet L} then atomString(A,L) else false fiendproc {ListDet Xs}if X Xr in Xs :='|'(X,Xr) {Det X}then {ListDet Xr} else Xs=nil fiendendArithmeticproc {`+` X Y Z}if {IsInt X} {IsInt Y} then intPlus(X,Y,Z)[] {IsFloat X} {IsFloat Y} then floatPlus(X,Y,Z)else false fiendproc {`-` X Y Z}if {IsInt X} {IsInt Y} then intPlus(Y,Z,X)[] {IsFloat X} {IsFloat Y} then floatMinus(X,Y,Z)else false fiend



30 4 Kernel Ozproc {`*` X Y Z}if {IsInt X} {IsInt Y} then intTimes(X,Y,Z)[] {IsFloat X} {IsFloat Y} then floatTimes(X,Y,Z)else false fiendproc {`/` X Y Z}if {IsFloat X} {IsFloat Y} then floatDiv(X,Y,Z) else false fiendproc {Pow X Y Z}if {IsInt X} Y=0 then Z=1[] {IsInt X} Y>0 thenlocal A B in {`-` Y 1 A} {Pow X A B} {`*` X B Z} end[] {IsFloat X} {IsFloat Y} then floatPow(X,Y,Z)else false fiendproc {Abs X Y}if {IsInt X} then if X<0 then {`-` 0 X Y} else X=Y fi[] {IsFloat X} then floatAbs(X,Y)else false fiendproc {FloatToInt X Y}if {IsFloat X} then floatToInt(X,Y) else false fiendproc {IntToFloat X Y}if {IsInt X} then intToFloat(X,Y) else false fiendproc {Ceil X Y}if {IsFloat X} then floatCeil(X,Y) else false fiendThe remaining kernel procedures for 
oating point arithmeticFloor Exp Log Sqrt Sin Cos Tan Asin Acos Atanare de�ned analogously to Ceil.Finite DomainsfiniteDomainBound(FiniteDomainBound)



4.3 Prelude 31proc {FiniteDomain X}isInt(X) ^ intLE(0,X) ^ intLE(X,FiniteDomainBound)endproc {FiniteDomainNE X N}if {FiniteDomain X} {IsInt N} then :(X :=N) else false fiendproc {GetFiniteDomain X L}if {FiniteDomain X} then getDomain[X,L] else false fiendSolve Combinatorproc {`SolveCombinator` Query Answer}local Failed Solved Distributed inFailed: =Answer :=failedSolved: X S=local P Q inproc {P Y} apply[X Y] endadjoinAt(P,status,S,Q)Answer :=solved(Q)endDistributed: X Y S=local P Q L R inproc {P Z} apply[X Z] endproc {Q Z} apply[Y Z] endadjoinAt(P,status,last,L)adjoinAt(Q,status,S,R)Answer :=distributed(L,R)endsolve[X: {Query X}, Failed Solved Distributed]endendThread PrioritiesThe kernel procedures `SetThreadPriority` and `GetThreadPriority` must only beused in system programs.



32 4 Kernel Ozproc {`SetThreadPriority` N}if {IsInt N} then setThreadPriority[N] else false fiendproc {`GetThreadPriority` N}getThreadPriority[N]endInput and OutputThe kernel procedures `Input` and `Output` serve as a semantic model for thehigher-level input-output functions provided by Oz implementations. They arenot meant for real use. When applied in a local computation space, `Input` and`Output` fail.local IsTopLevel TopLevelCell inproc {`Input` X}{IsTopLevel} input[X]endproc {`Output` X}if {IsAtom X} then {IsTopLevel} output[X] else false fiend{NewCell top TopLevelCell}proc {IsTopLevel}local X in{ExchangeCell TopLevelCell X X}if X=top then true [] true then false else false fiendendend4.4 Normal Computation SpacesKernel Oz restricts the elaborable constraints such that failure, entailment, andstability of local computation spaces become e�ciently decidable. This is done byproviding the necessary constraints in weakened form through prede�ned proce-dures, where the weakened forms can be de�ned by elaborable expressions.In the following we de�ne a property called normality that is satis�ed by all compu-tation spaces occurring in computations issuing from admissible kernel expressions.For normal computation spaces, satis�ability, entailment, and stability can be de-cided e�ciently.A determinant for a variable x is a constraint that has one of the following forms:



4.4 Normal Computation Spaces 331. x :=s, where s is an atom, a name, an integer, or a 
oat2. x := l(l1: y1; : : : ; ln: yn), where l and l1; : : : ; ln are literals and y1; : : : ; yn arevariables3. x := l(y1; : : : ; yn), where l is a literal and y1; : : : ; yn are variables.We say that a constraint � determines a variable x if � entails a determinantfor x.In the following it will become clear that the kernel procedure Det is de�ned such thatan elaborator for {Det X} succeeds if and only if X is determined by the constraintof the blackboard.A normal constraint for a variable x is either a determinant for x or a disjunctionx :=n1 _ : : :_ x :=nk , where n1; : : : ; nk are k > 1 integers between 0 and the upperbound for �nite domains.A solved constraint is a constraint of the formx1 :=y1 ^ : : : ^ xk :=yk ^ �k+1 ^ : : : ^ �nwhere there exist variables xk+1; : : : ; xn such that� x1; : : : ; xn are pairwise distinct� �k+1; : : : ; �n are normal constraints for xk+1; : : : ; xn� the variables x1; : : : ; xk are di�erent from the variables y1; : : : ; yk and do notoccur in the normal constraints �k+1; : : : ; �n.Proposition 4.1 Every solved constraint is satis�able in the Oz universe.Theorem 4.2 The conjunction of two solved constraints is either unsatis�able orlogically equivalent (in the Oz universe) to a solved constraint. Moreover, entail-ment between two possibly existentially quanti�ed solved constraints can be decidedin quasi-linear time.Proof. Follows from the results in [15]. 2A computation space S is normal if all its subordinated spaces are normal, and ifit satis�es one of the following conditions:1. S is failed.2. The constraint of S's blackboard is solved.



34 4 Kernel Oz3. S contains no actors and the constraint of its blackboard is a conjunction ofa solved constraint and an atomic formula obtained with one of the follow-ing constraint predicates: subtree, isInt, IsFloat, IsAtom, IsName, IsTuple,IsRecord.Claim 4.3 Every computation space occurring in a computation issuing from anadmissible kernel expression is normal (up to logical equivalence of constraints inthe Oz universe).4.5 Logical SemanticsA pair of a constraint  and n pairwise distinct variables x1; : : : ; xn is called a logicalsemantics of a procedure p taking n arguments if the following two conditions aresatis�ed:� If an elaborator for an application fp x1 : : : xng fails, where no actors butthe descendents of the elaborator are reduced, then the initial constraint ofthe blackboard entails : .� If an elaborator for an application fp x1 : : : xng succeeds, where no actorsbut the descendents of the elaborator are reduced, then the equivalence�1 ^  $ 9y �2is valid in the Oz universe, where �1 is the initial constraint of the blackboard,�2 is the �nal constraint of the blackboard, and y are the new local variablescreated during the reduction.With the exception ofNewName NewCell Exchange SolveCombinator GetFiniteDomain`Input` `Output` `SetThreadPriority` `GetThreadPriority`all prede�ned kernel procedures have a logical semantics. A logical semantics for,say `=<`, is intLE(x; y) _ floatLE(x; y) _ atomLE(x; y):4.6 Interactive ProgrammingSo far we have assumed that computation starts from a single admissible kernelexpression. It is straightforward to generalize to an incremental regime elaboratingexpressions arriving on a stream. To be useful, the arriving expressions must beallowed to share variables.



4.6 Interactive Programming 35A kernel program is a kernel expression with a hole � de�ned as follows:E ::= � j E E j local x in E endKernel programs are compositional in that we can obtain from two programs E1 andE2 a composed program E1[E2] by replacing the hole of E1 with E2. The idea is nowto replace the initial expression E by a streamE1[E2[: : :En[true] : : :]]of nested programs, where elaboration of the hole � must wait until the next programarrives. To work as expected, a substitution must be maintained for the hole �mapping the statically bound variables to their dynamic replacements. (Recall thatelaboration of local x in E end creates an elaborator for E[y=x], where y is a freshvariable replacing x within its static scope.)A convenient syntax for entering a program isdeclare x in Ewhich stands forlocal x in E � end



36 5 The Oz Calculus5 The Oz CalculusOz has been designed hand in hand with a formal model consisting of the Oz universeand the Oz calculus. It is fair to say that Oz could not have been conceived withouta formal model. This becomes evident, for instance, with the notion of constraintentailment, or the semantics of solvers. As Oz evolved, its formal model evolved.Ideas for new combinators evolved by trying di�erent formulations in the calculus,which provided the ground for arguing their simplicity and generality. The solvecombinator was the one that came last and took longest to evolve.It takes intuition and e�ort to understand a new formal system, even if it is mathe-matically seen simple. This is the reason for presenting the calculus last, althoughit certainly comes �rst in our understanding of Oz. The actor model can be seen asa computational metaphor for the calculus providing motivation and intuition.The Oz calculus models concurrent computation as rewriting of a class of expres-sions modulo a structural congruence. This set-up, which is also employed in morerecent presentations of the �-calculus [8, 7], proves particularly useful for Oz sinceconstraint propagation and simpli�cation can be accommodated elegantly by meansof the structural congruence.The Oz calculus is not committed to a particular constraint system; instead, it isparameterized with respect to a general and straightforward notion of constraintsystem. This divide and conquer approach simpli�es things considerably since wecan now deal with the complexities of the Oz universe separately and independently.In the interest of a smooth presentation, the calculus is somewhat simpli�ed. Itwill be extended with the missing expressivity when the connection with the actormodel is made. The extended calculus formalizes all aspects of the actor model,with the exception of the reduction strategy and input and output. Not specifyingthe order in which actors are reduced greatly simpli�es the formal machinery.The expressions of the Oz calculus model the computation spaces of the actor model.Thus their purpose is di�erent from the purpose of elaborable expressions, which canonly occur within elaborators. While the elaborable expressions model only staticaspects of the actor model, the expressions of the calculus model both the dynamicand static aspects of the actor model. Elaborators are not modelled explicitly butare expressible with the other primitives of the calculus.The study of the Oz calculus should be prepared by reading [13], which introducesa simpli�ed calculus not covering constraints and search.5.1 Constraint SystemsWe base our notion of constraint system on �rst-order predicate logic with equality.A constraint system consists of1. a signature � (a set of constant, function and predicate symbols)



5.2 Syntax 372. a satis�able theory � (a set of sentences over � having a model)3. an in�nite set of constants in � called names satisfying two conditions:(a) � j= :(a :=b) for every two distinct names a, b(b) � j= � $  for every two sentences �,  over � such that  can beobtained from � by permutation of names.The Oz universe de�nes a constraint system as follows: take its signature and itsnames as they are, and let the constraint theory � be the set of all sentences validin the Oz universe. It is not di�cult to verify that the two conditions for namesare satis�ed. Note that the second condition on names prevents us from having anorder on names; this explains why the predicate arity(x; y) ignores those featuresof x that are names.Given a constraint system, we will call every formula over its signature a constraint.We use ? for the constraint that is always false, and > for the constraint that isalways true. We say that a constraint � entails a constraint  if � j= �!  , andthat a constraint � is equivalent to a constraint  if � j= � $  . We say that aconstraint is satis�able if it does not entail ?.5.2 SyntaxFigure 7 de�nes the syntax of the Oz calculus. The de�nition assumes that a con-straint system is given, which �xes in�nite sets of variables, names and constraints.Variables and names are jointly referred to as references.We use u to denote a possibly empty sequence of references. A sequence u is calledlinear if its elements are pairwise distinct. If u = u1 : : : un, we often write 9uE for9u1 : : :9unE.Although our notation suggests the contrary, we do distinguish between a composi-tion �1 ^ �2 and a conjunction �1 ^ �2, and also between a declaration 9x� and anexistential quanti�cation 9x�. If we want to make the distinction explicit, we willuse the symbols _̂ for conjunction and _9 for existential quanti�cation.Both variables and names can be declared. Declaration of names provides for refer-ence to fresh names.An expression a: x=E models a binding of the name a to the abstraction x=E. Forconvenience, we call the entire expression a: x=E an abstraction. We call a thedesignator, x the formal arguments, and E the body of the abstraction. Wesometimes write a:A, where A = x=E.Given a cell a:u, we call a the designator and u the reference of the cell. A cellmodels a binding of a name to a reference.Given an application uv, we call u the designator and v the actual argumentsof the application.



38 5 The Oz CalculusSymbolsx; y; z : variablea; b; c : nameu; v; w ::= x j a referenceExpressions�;  : constraintE ::= � constraintj E1 ^E2 compositionj 9uE declarationj a: x=E abstraction (x linear)j a:u cellj uv applicationj if D else E conditionalj or (D) disjunctionj solve(x:E; uvw) solverD ::= C j ? j D1 _D2 collectionC ::= E1 then E2 j 9uC clauseFigure 7: Syntax of the Oz calculus.Given a solver solve(x:E; uvw), we call x the root variable, E the guard, andu; v; w the control references of the solver.Given a clause 9u (E1 then E2), we call u the local references, E1 the guard,and E2 the body of the clause.The syntactic category D represents multisets of clauses, where ? stands for theempty multiset and _ for multiset union.The Oz calculus has the following binders for references:� A declaration 9uE binds the declared reference u with scope E.� An abstraction a: x=E binds its formal arguments x with scope E.� A clausal declaration 9uC binds the local reference u with scope C.� A solver solve(x:E; uvw) binds its root variable x with scope E.� Universal and existential quanti�cation in constraints.



5.3 Structural Congruence 39The free and bound references of expressions are de�ned accordingly. Anexpression is closed if it has no free variable.The notation E[u=x] stands for the expression that is obtained from E by replacingevery free occurrence of x with u. The notation E[u=x] is de�ned accordingly, wherethe elements of the sequence x are replaced simultaneously, and x is assumed to belinear.A context is an expression having a hole � at a reducible position. Contexts arede�ned as follows:E ::= � j E ^E j E ^ E j 9u E j if D else E j or (D) j solve(x: E ; uvw)D ::= C j D _D j D _ DC ::= E then E j 9u C:We write E [E] for the expression obtained by replacing the hole in the context Ewith the expression E (capturing of free variables in E is OK). An expression E iscalled free for a context E if no free reference of E is captured at the position ofthe hole in E .5.3 Structural CongruenceA congruence is an equivalence relation on the expressions of the Oz calculus(i.e., the syntactic categories �, E, D, and C) that is compatible with all syntacticcombinators (e.g., if E1 � E 01 and E2 � E 02, thenE1^E2 � E 01^E 02). The structuralcongruence E1 � E2 of the Oz calculus is de�ned as the least congruence satisfyingthe congruence laws in Figure 8.Proposition 5.1 Given two constraints �1 and �2, the composition �1 ^�2 is con-gruent to the conjunction �1 _̂�2.Proof. We have �1 ^ �2 � �1 ^ (�1 _̂ �2) � (�1 _̂ �2)^ �1 � (�1 _̂�2) ^ > � �1 _̂ �2by relative simpli�cation, commutativity of composition, relative simpli�cation, andneutrality of >. 2For declaration and existential quanti�cation an analogous proposition does nothold.An expression E is called failed if E � ? ^ E. A clause 9u (E1 then E2) is calledfailed if E1 is failed. A collection D is called failed if D is ?, or D is a failedclause, or D = D1 _D2, where both D1 and D2 are failed.An expression E is called nilpotent if it has the form9x9a9b9c(� ^ a:A ^ b:u)where � j= 9x�. (The notation a:A stands for a composition a1:A1 ^ : : :^ an:Anof abstractions, and b:u stands for a composition of cells.)



40 5 The Oz CalculusRenaming� E1 � E2 if E1 and E2 are equal up to renaming of bound referencesComposition and Collection� ^ is associative, commutative and satis�es E ^ > � E� _ is associative, commutative and satis�es D _ ? � DDeclaration� 9u9vE � 9v9uE� 9uE1 ^E2 � 9u (E1 ^ E2) if u does not occur free in E2Relative Simpli�cation� �1 ^ E [�2] � �1 ^ E [�02] if �1 is free for E and � j= �1 ^ �2 $ �1 ^ �02Equality� x :=u ^E � x :=u ^E[u=x] if u is free for x in EFigure 8: Structural congruence in the Oz calculus.5.4 Induced ConstraintsThe Relative Simpli�cation Law makes it possible to propagate constraints in anexpression downward, provided no free variables of the constraint are captured.Given a context, whose bound references are renamed apart, there is a strongestconstraint (unique up to equivalence) that can be propagated to the hole. Belowwe de�ne this induced constraint for a class of contexts that is exhaustive modulostructural congruence.An expression is called basic if it is no constraint, composition or declaration.The following de�nes a partial function from constraints and contexts to constraints:Ind� (�) = �Ind� ( ^ E) = Ind�^ (E)Ind� (E ^ E) = Ind� (E) if E basicInd� (9uE) = Ind� (E) if u is not free in �Ind� (if D else E) = Ind� (D)Ind� (or (D)) = Ind� (D)Ind� (solve(x: E ; uvw)) = Ind� (E) if x is not free in �



5.5 Reduction 41Ind� (C _D) = Ind� (C)Ind� (E then E) = Ind� (E)Ind� (9uC) = Ind� (C) if u is not free in �.If Ind� (E) is de�ned, we call Ind� (E) the constraint induced by E under �. IfInd> (E) is de�ned, we call Ind> (E) the constraint induced by E .Proposition 5.2 If E induces  under �, then E [ ]^ � � E [>] ^ �.The next proposition says that our de�nition of induced constraints is exhaustiveon contexts modulo structural congruence. Structural congruence on contexts is theleast congruence on contexts satisfying all congruence laws in Figure 8 rewritten forcontexts. Note that E � E 0 does not imply E [E] � E 0[E] (because of the RenamingLaw).Proposition 5.3 For every context E and every constraint � there exists a contextE 0 such that E � E 0 and the induced constraint of E 0 under � is de�ned.We say that a context E is admissible if E [?] 6� E [>].Proposition 5.4 A context E is admissible if and only if there exists a context E 0and a satis�able constraint � such that E � E 0 and E 0 induces �.5.5 ReductionThe reduction relation E ! E 0 of the Oz calculus is de�ned by the inference systemin Figure 9 and the following de�nitions:� An expression E is called reducible if there exists an expression E 0 suchthat E ! E 0.� An expression E is called stable if, for every abstraction and for every satis-�able constraint �, the expression � ^E is neither reducible nor failed. (Thede�nition is by induction on the number of nested solvers in E.)� An expression E is called distributable if there exist u, E 0 and D such thatE � 9u (E 0 ^ or (D)).A �nite computation issuing from a closed expression E1 is a sequence E1; : : : ; Enof closed expressions such that the �nal expression En is irreducible and Ei !Ei+1 for all i. Since failure prevents further reduction, none of the expressionsE1; : : : ; En�1 can be failed.An in�nite computation issuing from a closed expression E1 is an in�nite sequenceE1; E2; E3; : : : of closed expressions such that Ei ! Ei+1 for all i. Since failureprevents further reduction, none of the expressions Ei can be failed.



42 5 The Oz CalculusStructure� E � E [E1] E1 �) E 01 E [E 01] � E 0E ! E 0 if E is admissible and induces �� E ) E 0E �) E 0Application� E [au] ^ a: x=E �) E [E [u=x ]] ^ a: x=Eif E ^ � is admissible, x and u have equal length,u is free for x in E, and a: x=E is free for EExchange� avw ^ a:u ) v :=u ^ a:wConditional� if 9u (E1 then E2) _D else E3 ) 9u (E1 ^E2) if 9uE1 nilpotent� if D else E ) E if D failedDisjunction� or (9u (E1 then E2) _D) ) 9u (E1 ^E2) if D failed� or (9u (E then >) _D) ) > if 9uE nilpotentSolver� solve(x:E; uvw) ) u if E failed� solve(x:E; uvw) ) 9a9b(vab^ a: x=E2 ^ b: x=E3)if 9xE is stable, E = 9u (E1 ^ or (C _D)),E2 = 9u (E1 ^ or (C)), and E3 = 9u (E1 ^ or (D))� solve(x:E; uvw) ) 9a(wa ^ a: x=E) if 9xE stable and not distributableAnnulment� E ) > if E nilpotent and E 6� >Figure 9: Reduction in the Oz calculus.



5.6 Examples 43As one would expect of a concurrent computation model with indeterministic choice,there are closed expressions that permit both �nite and in�nite computations. Forinstance: 9a (a: =a ^ if > then a _ > then > else >):The following proposition says that conditionals can reduce with clauses whoseguards are entailed.Proposition 5.5 Suppose �1 is satis�able and entails 9x�2. Then�1 ^ if 9x(�2 then E1) else E2 ! �1 ^ 9x(�2 ^ E1):Proof. It will be convenient to use the congruence relation (on constraints)� j=j�  : () � j= �$  :Because of the Renaming Law we can assume without loss of generality that novariable in x occurs in �1. It su�ces to show that there exists a constraint �3 suchthat �1 ^ �2 j=j� �1 ^ �3 and 9x�3 j=j� > since�1 ^ if 9x(�2 then E1) else E2 � �1 ^ if 9x(�3 then E1) else E2! �1 ^ 9x(�3 ^ E1)� �1 ^ 9x(�2 ^ E1):by the Relative Simpli�cation Law, the �rst reduction rule for conditionals, and oncemore the Relative Simpli�cation Law. Let �3 := �1 ! �2 (here ! is implication,not reduction). Then �1^�2 j=j� �1^�3 is obviously satis�ed. Moreover, 9x�3 j=j�9x(�1 ! �2) j=j� �1 ! 9x�2 j=j� >. 25.6 ExamplesThe following examples give a �rst impression of how the Oz calculus models con-current computation.Example 5.6 Consider the expression9x9y(9a(x :=a) ^ 9a(y :=a) ^ if x :=y then E1 else E2)and suppose that x and y are distinct variables that do not occur free in E1 andE2. We will show that this expression reduces in four steps to E2.First we move the left declaration of the name a to the outside of the expressionusing the congruence laws for declarations and compositions.� 9a9x9y(x :=a ^ 9a(y :=a) ^ if x :=y then E1 else E2)



44 5 The Oz CalculusThis is of course only possible if a does not occur free in E1 or E2. Should this bethe case, renaming a within its scope as justi�ed by the Renaming Law is necessary.Next we apply the Equality Law to x :=a.� 9a9x9y(x :=a ^ 9a(y :=a) ^ if a :=y then E1 else E2)Now we move the declaration of x inside using the laws for composition and decla-ration (we exploit that x does not occur free in E1 and E2 and that x is di�erentfrom y). � 9a9y(9x(x :=a) ^ 9a(y :=a) ^ if a :=y then E1 else E2)Since 9x(x :=a) is nilpotent, we can delete 9x(x :=a) using the Annulment Rule andthe laws for compositions (in particular E ^ > � E).! 9a9y(9a(y :=a) ^ if a :=y then E1 else E2)Next we rename the inner name a to the di�erent name b using the Renaming Law.� 9a9y(9b(y :=b) ^ if a :=y then E1 else E2)This brings us in a position where we can eliminate 9b(y := b) in the same way wedid it before for 9a(x :=a).! 9a9b(if a :=b then E1 else E2)Now, since a :=b is failed, we obtain! 9a9bE2using the second rule for conditionals. It remains to get rid of the declarations ofthe names a and b. This can be done using the Annulment Rule together with thelaws for compositions and declarations:� 9a9b(> ^ E2) � (9a9b>) ^ E2 ! > ^ E2 � E2: 2Example 5.7 Nilpotence and relative simpli�cation model entailment of clauses inthe presence of local abstractions and cells. For instance, consider the reductiony :=b ^ if 9x (9a(x :=a ^ y :=b ^ a: y=y :=x) then E1) else E2! y :=b ^ 9x (9a(x :=a ^ a: y=y :=x) ^ E1)which is justi�ed by relative simpli�cation, the �rst rule for conditionals, and thefact that 9x9a(x :=a ^ a: y=y :=x) is nilpotent. 2



5.7 Relationship with the Actor Model 455.7 Relationship with the Actor ModelThe expressions of the Oz calculus model the computation spaces of the actor model,provided we take the Oz universe as the constraint system underlying the calculus.Conditionals, disjunctions, and solvers model the respective proper actors. However,we need to extend the calculus so that it� can express nondistributing disjunctions� can express once-only abstractions� captures solvers fully (need to provide status and to return alternatives asonce-only abstractions)� can express elaborators.Nondistributing disjunctions are incorporated easily: they have the same reductionrules as distributing disjunctions, but they are not distributed by solvers.Once-only abstractions are incorporated by extending the expressions of the calculuswith the form a: x==E and the reduction relation with the rule� E [au] ^ a: x==E �) E [E [u =x ]] ^ a: x==?if E ^ � is admissible, x and u have equal length,u is free for x in E, and a: x=E is free for E .Moreover, it is necessary to strengthen the notion of nilpotence to all expressions ofthe form 9x9a9b9c9d(� ^ a:A ^ b:u ^ c:B)where � j= 9x� and c:B stands for a conjunction of once-only abstractions.Now it is easy to modify the second and third reduction rule for solvers such thatthe solvers of the actor model are faithfully modelled.To model elaborators, we �rst extend the expressions of the calculus with det(u)and getDomain(u; v). The semantics of det(u) is captured by the reduction rule� det(u) �) >if there exists a constant c such that � entails u :=c.The semantics of getDomain(u; v) is captured by� getDomain(x; u) �) u :=n1j : : : jnkjnilif n1; : : : ; nk is the shortest list of nonnegative integers in ascending order suchthat � entails x :=n1 _ : : :_ x :=nk.



46 5 The Oz CalculusHow do we model an elaborator for a constraint �? It cannot be modeled by theconstraint � itself since this would impose � immediately (consider the inconsistentconstraint ?). However, the conditional if > then � else > behaves exactly likean elaborator for �: Only when it is reduced, the constraint � is imposed.In the following we write hEi for if > then E else >.An elaborable expression is called translatable if it does not con-tain subexpressions of the form input[x], output[x], setThreadPriority[x], orgetThreadPriority[x].The function [[E]] translates a translatable elaborable expression E into an expressionof the extended Oz calculus. The translation is such that [[E]] models an elaboratorfor E. [[�]] = h�i[[x: y=E]] = h9a(x :=a ^ a: y=[[E]])i[[x: y==E]] = h9a(x :=a ^ a: y==[[E]])i[[x:y]] = h9a(x :=a ^ a:y)i[[E1 E2]] = h[[E1]] ^ [[E2]]i[[local x in E end]] = h9x [[E]]i[[newName[x]]] = h9a(x :=a)i[[apply[xy]]] = xy[[if C1 [] : : : [] Cn else E fi]] = hif [[C1]] _ : : :_ [[Cn]] else [[E]]i[[or C1 [] : : : [] Cn ro]] = hor ([[C1]]_ : : :_ [[Cn]])i[[OR C1 [] : : : [] Cn RO]] = hOR ([[C1]] _ : : :_ [[Cn]])i[[solve[x:E; y1y2y3]]] = hsolve(x: [[E]]; y1y2y3)i[[det[x]]] = det(x)[[getDomain[x; y]]] = getDomain(x; y)[[x in E1 then E2]] = 9x ([[E1]] then [[E2]]) if E2 6= >[[x in E then >]] = 9x ([[E]] then >)The special treatment of the constraint> in clause bodies is needed so that reductionof disjunctions by clause entailment is modelled correctly.We can now state the relationship between the actor model and the Oz calculus.For every closed and translatable elaborable expression E we have the following:� If there is a �nite computation issuing from E in the actor model, then thereis a �nite computation issuing from [[E]] in the extended Oz calculus.



5.7 Relationship with the Actor Model 47� If there is an in�nite computation issuing from E in the actor model, thenthere is an in�nite computation issuing from [[E]] in the extended Oz calculus.The converse of each of the two statements is wrong in general. This is because thereduction strategy employed by the actor model excludes some of the computationsof the calculus.
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