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Coq is built around a well-delimited kernel that perfoms typechecking for definitions in a variant of the
Calculus of Inductive Constructions (CIC). Although the metatheory of CIC is very stable and reliable, the
correctness of its implementation in Coq is less clear. Indeed, implementing an efficient type checker for CIC
is a rather complex task, and many parts of the code rely on implicit invariants which can easily be broken
by further evolution of the code. Therefore, on average, one critical bug has been found every year in Coq.
This paper presents the first implementation of a type checker for the kernel of Coq (without the module
system and template polymorphism), which is proven correct in Coq with respect to its formal specification
and axiomatisation of part of its metatheory. Note that because of Gödel’s incompleteness theorem, there
is no hope to prove completely the correctness of the specification of Coq inside Coq (in particular strong
normalisation or canonicity), but it is possible to prove the correctness of the implementation assuming the
correctness of the specification, thus moving from a trusted code base (TCB) to a trusted theory base (TTB)
paradigm. Our work is based on theMetaCoq project which provides metaprogramming facilities to work
with terms and declarations at the level of this kernel. Our type checker is based on the specification of the
typing relation of the Polymorphic, Cumulative Calculus of Inductive Constructions (PCUIC) at the basis
of Coq and the verification of a relatively efficient and sound type-checker for it. In addition to the kernel
implementation, an essential feature of Coq is the so-called extraction: the production of executable code in
functional languages from Coq definitions. We present a verified version of this subtle type-and-proof erasure
step, therefore enabling the verified extraction of a safe type-checker for Coq.
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1 INTRODUCTION

Since the introduction of the Calculus of Inductive Constructions (CIC) and the first implementation
of the Coq proof assistant, very few issues have been found in the underlying theory of Coq. There
have been several debates on which set of axioms are consistent altogether. For instance, the fact

Authors’ addresses: Matthieu Sozeau, π .r 2, Inria Paris & IRIF, CNRS, Université Paris Diderot, France, matthieu.sozeau@

inria.fr; Simon Boulier, Gallinette, Inria Nantes, France; Yannick Forster, Saarland University, Germany, forster@ps.uni-

saarland.de; Nicolas Tabareau, Gallinette, Inria Nantes, France; Théo Winterhalter, Gallinette, Inria Nantes, France.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART8

https://doi.org/10.1145/3371076

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 8. Publication date: January 2020.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3371076
https://doi.org/10.1145/3371076


8:2 Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter

that the sort Set of sets was impredicative by default has been changed to maintain compatibility
with the axiom of excluded middle. But globally, the type theory supporting the Coq proof assistant
is very stable and reliable. This is however far to be the case for the implementation of the kernel of
Coq, for which on average one critical bug is found every year. The interested reader can directly
jump to https://github.com/coq/coq/blob/master/dev/doc/critical-bugs, where the list of the critical
bugs that have been found in the Coq proof assistant is maintained. For instance, one can find
there that for some time, there was a substitution missing in the body of a let in the definition of
match, somewhere in the code, which could lead to a proof of False.
Fortunately, all those critical bugs are very tricky to exhibit, and would be very unlikely to

happen by accident, but still a malicious developer could exploit them to produce very hard to
detect fake formalisations. At a time where certificates obtained from proof assistants such as Coq
are gaining traction in the safety & security industry, this looks like a bad joke.

However, implementing and maintaining an efficient and bug free type checker for CIC is a very
complex task, mainly due to the fact that the implementation relies on many invariants which are
not always explicit and easy to break by modifying the code or adding new functionality.

łIn this paper, we describe the first implementation of a type checker for the core language of Coq1,

which is proven correct in Coq with respect to an entirely formal specification of the calculus.ž

We would like to mention right away that we are not claiming to prove the consistency of Coq
in Coq, which would obviously contradict Gödel’s second incompleteness theorem stating that
no consistent axiomatic system which includes Peano arithmetic can prove its own consistency.2

Therefore, it is not possible to prove the consistency of the kernel of Coq using Coq, but it is
perfectly possible to prove the correctness of an implementation of a type-checker assuming the

consistency of the theory.
In practice, our formalisation assumes strong normalisation of the reduction of CIC; and this

even serves as the basis for the implementation of algorithmic conversion, which is defined by
recursion on the strong normalisation assumption. We also assume other properties of the metathe-
ory3: subject reduction, validity, strengthening, guard condition for inductive types and fixpoints
and proof-irrelevance. This is the only Achilles heel of our formalisation, the correctness of the
specification of the metatheory: If the metatheory fulfills the well-known, assumed properties, then
there is no error in the implementation.

łThis paper proposes to switch from a trusted code base to a trusted theory base paradigm!ž

Note that if one of the assumed properties would not be true, the implementation might be wrongÐ
but there would be a much more serious problem to fix in Coq’s metatheory. Without entering
into philosophical debates, we argue that this work provides important assurances about the
correctness of the system, that is complimentary to the many theoretical studies of variants of the
Calculus of Constructions and Martin-Löf Type Theory from the literature [Coquand and Huet
1988; Martin-Löf 1998], of which none is as close to the calculus actually implemented in Coq
as our work. True believers in computation and type theory might actually enjoy the relatively
small, formal specification of the calculus implemented in Coq (a few pages for the typing and
reduction rules), which we show confluent. To avoid unnecessary complications, we work with
a mildly simplified version of Coq’s core language we call PCUIC (for Predicative Calculus of
CUmulative Inductive Construction), and show an equivalence with the implemented version (up-to
representation of strings and arrays). Note that the kernel of Coq also includes a module system and

1We do not consider the module system and template polymorphism.
2Gödel’s orginal proof was done in the setting of Peano arithmetic (which is classical). But it can also be performed using

Heyting arithmetic, which lets us think that it is applicable to CIC even if no precise result have been stated in the literature.
3The proofs of subject reduction, validity and strengthening are in progress.
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Inductive term : Set :=

| tRel (n : N)

| tSort (u : universe)

| tProd (na : name) (A B : term)

| tLambda (na : name) (A t : term)

| tLetIn (na : name) (b B t : term)

| tApp (u v : term)

| tConst (k : kername) (ui : universe_instance)

| tInd (ind : inductive) (ui : universe_instance)

| tConstruct (ind : inductive) (n : N) (ui : universe_instance)

| tCase (indn : inductive ∗ N) (p c : term) (brs : list (N ∗ term))

(* # of parameters/type info/discriminee/branches *)

| tProj (p : projection) (c : term)

| tFix (mfix : mfixpoint term) (idx : N)

| tCoFix (mfix : mfixpoint term) (idx : N).

Fig. 1. Syntax of PCUIC

efficient conversion algorithms that we exclude for now. We start by separating the specification
of the type system of PCUIC from its implementation. This allows us to get for instance a very
direct definition of the consistency of a polymorphic universe hierarchy, without the notion of
graph of universes or acyclicity. The implementation involves the more clever and efficient graph
representation, whose acyclicity check is orthogonal to the rest of the type checker. Therefore,
we can replace a naive implementation (as we have currently) by a more efficient one, such as
the incremental cycle detection algorithm of Bender et al. [2015], actually used in the Coq kernel,
while being sure not to break anything in the type checker.

Finally, to get a correct and efficient type checking algorithm, we need to extract it to an efficient
language such as Ocaml. In order to maintain the correctness guarantees on the extracted code, we
derive a proven correct type and proof erasure algorithm. Note that during the development of the
typechecking algorithm, we experienced difficulties to extract it because extraction was producing
an ill-typed term, which strengthens the need for certified extraction.

Outline of the Paper. Section 2 presents the specification of PCUIC and its metatheory. Section 3
describes the implementation of a proven correct type-checker for PCUIC. Section 4 explains type
and proof erasure for PCUIC. Section 5 discusses related work. Section 6 puts everything together
and discusses future work.

The complete Coq formalisation can be found on theMetaCoq project page4. The whole project
is now more than 50kloc and takes around 10 min to compile on a standard recent machine. In
the remainder of the text, we refer to PCUIC: MyFile to depict the file PCUICMyFile.v in the
development. The electronic version has links to the coqdoc documentation on the web.

2 PCUIC: COQ’S CORE CALCULUS

As a type system, PCUIC is an extension of the Predicative Calculus of (Co)-Inductive Construc-
tions, a Pure Type System with an infinite hiearchy of universes Type i and an impredicative sort
Prop, extended with inductive and co-inductive type families. The system also includes universe

4https://github.com/MetaCoq/metacoq
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polymorphism [Sozeau and Tabareau 2014], making it flexible in handling constructions that are
generic in universes. Timany and Sozeau [2017] show the consistency (with a pen and paper proof)
of a variant of the calculus with eliminators for polymorphic and cumulative inductive types.
As a programming language, PCUIC is a standard pure dependent λ-calculus extended with a

let-in construct for local definitions, case analysis and projections of datatypes and (co-)recursion
operators. We will see in ğ 2.3.2 that the seemingly innocuous addition of local definitions signif-
icantly complicates the metatheory of the system. The definitional equality of the system is the
congruence closure of the standard βιζδµν-reductions of each elimination/introduction pairs of
λ-abstraction and case analysis, let reduction, unfolding of constants and (co-)fixpoints. The system
is parametric over universes, hence traditional α-equality of terms, which simply ignores name
annotations, is extended with cumulativity or equality of universes and everything must respect
this subtyping notion. We will also study subrelations of definitional equality geared towards
evaluation of programs (closed terms) for the erasure procedure (ğ4).

The specification of PCUIC in Coq follows the pattern of the specification of the kernel of Coq
inside Coq itself, as described in theMetaCoq project [Anand et al. 2018; Sozeau et al. 2019]. We
briefly explain the syntax and typing judgments of PCUIC and refer the reader to [Sozeau et al.
2019] for a more complete explanation.

2.1 Definition of the Syntax and Environments (PCUIC: Ast)

The syntax of PCUIC is defined in Figure 1. This inductive type is a direct representation of the
constr datatype used in the implementation of Coq terms in Ocaml. The only difference is that
PCUIC’s application tApp is binaryÐwhile it is n-ary in Ocaml, and that PCUIC has no type cast
construct5. The constructor tRel represents variablesÐusing de Bruijn indices implemented as
natural numbersÐbound by abstractions (introduced by tLambda), dependent products (introduced
by tProd) and local definitions (introduced by tLetIn). The type name is a printing annotation.
Sorts are represented with tSort, which takes a universe as argument. A universe can be either
Prop, Set or a more complex expression representing one of the Type universes. The details are
given in Section 2.2.1.

The three constructors tConst, tInd and tConstruct represent references to constants declared
in a global environment. The first is for definitions or axioms, the second for inductive types, and
the last for constructors of inductive types. tCase represents pattern-matchings, tProj primitive
projections, tFix fixpoints and tCoFix cofixpoints.

In PCUIC, the meaning of a term is relative to global environment which is constant through a
typing derivation, and to a local context which may vary.

The local context consists of a list of declarations written in snoc order: we use the notation Γ , d
for adding d to the head of Γ. x :a A is a declaration without a body (as introduced by tLambda) and
x := t :d A is a declaration with a body (as introduced by tLetIn). The global environment consists
of two parts: a list of declarations, properly ordered according to dependencies, and possibly some
additional universe declarations (used to type check the body of a new declaration). A declaration is
either the declaration of a constant (a definition or an axiom, depending on the presence or absence
of a body) or of a block of mutual inductive types (which brings both the inductive types and their
constructors to the context). We do not go into details here, mutual inductives types are described
as in [Sozeau et al. 2019].

5Casts are only necessary to inform the kernel about which conversion algorithm to use, while we only implement one

such algorithm. The implementation actually also includes constructors for existential variables instantiated at a given term

substitution and named variables (hypothesis names in goals): they are treated as atoms everywhere and are not typeable.
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2.2 Definition of Typing (PCUIC: Typing)

The typing rules of PCUIC are defined as the inductive family typing (Figure 2). We do not detail
the rules for inductive types as they introduce a significant additional level of bureaucracy. We
refer the interested reader to the Coq formalisation.
The typing relation is of type

typing : global_env_ext→ context→ term→ term→ Type

and we write Σ ; Γ ⊢ t : T for typing Σ Γ t T.
The typing rules are standard rules of the Calculus of Inductive Constructions or Martin-Löf

Type Theory, and each constructor corresponds to a typing inference rule. For instance, type_Prod
corresponds to the inference rule for dependent product:

Σ; Γ ⊢ A : s1 Σ; Γ, x : A ⊢ B : s2

Σ; Γ ⊢ Π x : A.B : sort of product(s1, s2)

where sort of product is the maximum of the two levels when s2 is not Prop and Prop otherwise
(to account for impredicativity). Note that the typing rules use substitution and lifting operations
of de Bruijn indexes (lift0, subst, . . . ), their definitions are standard. The constructor type_Rel
corresponds to the case of variables. type_Lambda is the introduction of dependent functions,
type_App its usual application. type_Sort is the rule for typing universes. Here super l morally
corresponds to l+1. type_LetIn is the typing rule for introduction of tLetIn. Finally, type_Cumul
is the rule for cumulativity. It says that if t : A and A is a subtype of B where B is a type (or a well-
formed arity, see Section 2.2.3 for more details) then t : B. It relies on the cumulativity (or subtyping)
relation, which depends on definitional equality and the cumulativity of the universe hierarchy.
Conversion is defined as cumulativity in both directions. Basically, A is a subtype of B, written
A ≤ B, when A and B respectively reduce to A' and B' and A' is smaller than B' up to α-equivalence
and cumulativity (this is checked syntactically using leq_term). To make this precise, we need to
define the specification of the universe hierarchy and reduction.

2.2.1 Universes. There are four kinds of level for a universe.

Inductive Level : Set := lProp | lSet | Level (_ : string) | Var (_ : N).

Level s are monomorphic universes with name s (i.e., traditional global universes), while Var n
represent polymorphic universes, where n is the DeBruijn level of the corresponding variable in
an ordered universe context. Then, a universe is technically encoded as a non empty list of pairs
(l,b) of a level l and a boolean b, the boolean being true meaning that we are talking about the
universe above l in the hierarchy (łl+1ž).

Definition universe := non_empty_list (Level ∗ B).

This list is be interpreted as encoding the maximum of its elements to represent so-called łalgebraicž
universes like Typemax(u ,v+1).

Constraints and Valuations. To allow for a flexible and modular account of universes, Coq
implements typical ambiguity and universe polymorphism. The universe hierarchy is hence not
fixed but rather maintained using an extensible (łelasticž, as coined by its designer Gérard Huet)
set of universe levels and associated universe_constraints which say that a level is smaller (Lt),
smaller or equal (Le) or equal (Eq) to another level, as described in Figure 3. In the Coq type checker,
consistency of the universe hierarchy is checked using an acyclicity criterion on the graph induced
by the constraints. However, this characterisation of consistency is quite far from the mathematical
model, which says that universe levels are integers. To keep the specification as close as possible to
the meta theory, we therefore introduce the notion of valuation on universe levels, which associates

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 8. Publication date: January 2020.

https://metacoq.github.io/metacoq/html/MetaCoq.PCUIC.PCUICTyping.html
https://metacoq.github.io/metacoq/html/MetaCoq.PCUIC.PCUICTyping.html#typing
https://metacoq.github.io/metacoq/html/MetaCoq.PCUIC.PCUICLiftSubst.html#subst
https://metacoq.github.io/metacoq/html/MetaCoq.PCUIC.PCUICLiftSubst.html#lift
https://metacoq.github.io/metacoq/html/MetaCoq.PCUIC.PCUICTyping.html#cumul
https://metacoq.github.io/metacoq/html/MetaCoq.PCUIC.PCUICEquality.html#leq_term
https://metacoq.github.io/metacoq/html/MetaCoq.Template.Universes.html
https://metacoq.github.io/metacoq/html/MetaCoq.Template.Universes.html#valuation


8:6 Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter

Inductive typing (Σ : global_env_ext) (Γ : context) : term→ term→ Type :=

| type_Rel n decl :

All_local_env (lift_typing typing Σ) Γ→

nth_error Γ n = Some decl→

Σ ; Γ ⊢ tRel n : lift0 (S n) decl.(decl_type)

| type_Sort l :

All_local_env (lift_typing typing Σ) Γ→

LevelSet.In l (global_ext_levels Σ)→

Σ ; Γ ⊢ tSort l : tSort (super l)

| type_Prod na A B s1 s2 :

Σ ; Γ ⊢ A : tSort s1→

Σ ; Γ , na :a A ⊢ B : tSort s2→

Σ ; Γ ⊢ tProd na A B : tSort (sort_of_product s1 s2)

| type_Lambda na A t s1 B :

Σ ; Γ ⊢ A : tSort s1→

Σ ; Γ , na :a A ⊢ t : B→

Σ ; Γ ⊢ tLambda na A t : tProd na A B

| type_LetIn na b B t s1 A :

Σ ; Γ ⊢ B : tSort s1→

Σ ; Γ ⊢ b : B→

Σ ; Γ , na := b :d B ⊢ t : A→

Σ ; Γ ⊢ tLetIn na b B t : tLetIn na b B A

| type_App t na A B u :

Σ ; Γ ⊢ t : tProd na A B→

Σ ; Γ ⊢ u : A→

Σ ; Γ ⊢ tApp t u : B{0 := u}

| type_Cumul t A B :

Σ ; Γ ⊢ t : A→

(isWfArity typing Σ Γ B + {s & Σ ; Γ ⊢ B : tSort s})→

Σ ; Γ ⊢ A ≤ B→ Σ ; Γ ⊢ t : B

| ... (* remaining definitions for constants, inductive and coinductive types *)

where " Σ ; Γ ⊢ t : T " := (typing Σ Γ t T).

Inductive cumul (Σ : global_env_ext) (Γ : context) : term→ term→ Type :=

| cumul_refl t u : leq_term (global_ext_constraints Σ) t u→ Σ ; Γ ⊢ t ≤ u

| cumul_red_l t u v : fst Σ ; Γ ⊢ t⇝ v→ Σ ; Γ ⊢ v ≤ u→ Σ ; Γ ⊢ t ≤ u

| cumul_red_r t u v : Σ ; Γ ⊢ t ≤ v→ fst Σ ; Γ ⊢ u⇝ v→ Σ ; Γ ⊢ t ≤ u

where " Σ ; Γ ⊢ t ≤ u " := (cumul Σ Γ t u).

Definition leq_term ϕ t u := eq_term_upto_univ (eq_universe ϕ) (leq_universe ϕ) t u.

Fig. 2. Excerpt of typing rules
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Inductive ConstraintType : Set := Lt | Le | Eq.

Definition univ_constraint : Set := Level ∗ ConstraintType ∗ Level.

Record valuation := { valuation_mono : string→ positive; valuation_poly : N→ N }.

Definition val (v : valuation) (l : Level) : Z := match l with

| lProp⇒ −1

| lSet⇒ 0

| Level s⇒ Zpos (v.(valuation_mono) s)

| Var x⇒ Z.ofN (v.(valuation_poly) x) end.

Fig. 3. Definition of constraints and valuations

−1 to lProp, 0 to lSet, a positive number to monomorphic universes (a monomorphic universe
can neither be lProp nor lSet) and a natural number to polymorphic universes (a polymorphic
universe cannot be lProp). Note that we start the hierarchy at −1 to stick to Coq usual convention,
but the starting point is arbitrary.
Then a valuation satisfies a set of constraints when:

Inductive satisfies0 (v : valuation) : univ_constraint→ Prop :=

| satisfies0_Lt l l' : val v l < val v l'→ satisfies0 v (l, Lt, l')

| satisfies0_Le l l' : val v l ≤ val v l'→ satisfies0 v (l, Le, l')

| satisfies0_Eq l l' : val v l = val v l'→ satisfies0 v (l, Eq, l').

Definition satisfies v : constraints→ Prop := For_all (satisfies0 v).

The universe hierarchy is consistent when there exists a valuation which satisfies its set of
constraints:

Definition consistent ctrs := ∃ v, satisfies v ctrs.

Cumulativity. The notion of subtyping on types is defined as definitional equality up to cumulativ-
ity on universes, which states that Level l is a subtype of Level (super l). To realise cumulativity,
we specify when a universe u is smaller than a universe u' for a given set of constraints φ by saying
that for any valuation which satisfies φ, the value of u is smaller than the value of u'. Formally, it is
defined as

Definition leq_universe (φ : constraints) u u' :=

∀ v : valuation, satisfies v φ→ (val v u ≤ val v u').

2.2.2 Reduction. Reduction of PCUIC terms is defined in Figure 4 (congruence rules are omitted
and can be found in the Coq development). Rule red_beta allows a λ-abstraction to consume its
argument to reduce. This is the usual β-reduction. A let expression can be unfolded as a substitution
right away using Rule red_zeta (this is called ζ -reduction). It can also be unfolded later, by reducing
a reference to the let-binding (Rule red_rel, included in the δ -reduction in Coq terminology).
This is what changes from the usual treatment of let x := t in b bindings in ML-style programming
languages: we can transparently access the definiens t of a let inside its body b. The rule verifies
that the ith variable in Γ corresponds to a definition and replaces the variable with it. It needs to be
lifted as the body was defined in a smaller context. Rule red_iota describes how a match expression
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Inductive red1 (Σ : global_declarations) (Γ : context) : term→ term→ Type :=

| red_beta na t b a : Σ ; Γ ⊢ tApp (tLambda na t b) a⇝ b {0 := a}

| red_zeta na b t b' : Σ ; Γ ⊢ tLetIn na b t b'⇝ b' {0 := b}

| red_rel i body : option_map decl_body (nth_error Γ i) = Some (Some body)→

Σ ; Γ ⊢ tRel i⇝ lift0 (S i) body

| red_iota ind pars c u args p brs :

Σ ; Γ ⊢ tCase (ind, pars) p (mkApps (tConstruct ind c u) args) brs⇝

iota_red pars c args brs

| red_fix mfix idx args narg fn : unfold_fix mfix idx = Some (narg, fn)→

is_constructor narg args = true→

Σ ; Γ ⊢ mkApps (tFix mfix idx) args⇝ mkApps fn args

| red_cofix_case ip p mfix idx args narg fn brs :

unfold_cofix mfix idx = Some (narg, fn)→

Σ ; Γ ⊢ tCase ip p (mkApps (tCoFix mfix idx) args) brs⇝

tCase ip p (mkApps fn args) brs

| red_cofix_proj p mfix idx args narg fn :

unfold_cofix mfix idx = Some (narg, fn)→

Σ ; Γ ⊢ tProj p (mkApps (tCoFix mfix idx) args)⇝ tProj p (mkApps fn args)

| red_delta c decl body (isdecl : declared_constant Σ c decl) u :

decl.(cst_body) = Some body→

Σ ; Γ ⊢ tConst c u⇝ subst_instance_constr u body

| red_proj i pars narg args k u arg:

nth_error args (pars + narg) = Some arg→

Σ ; Γ ⊢ tProj (i, pars, narg) (mkApps (tConstruct i k u) args)⇝ arg

| ... (* remaining definitions are congruence rules *)

where " Σ ; Γ ⊢ t ⇝ u " := (red1 Σ Γ t u).

Fixpoint mkApps t us := match us with | nil⇒ t | u :: us⇒ mkApps (tApp t u) us end.

Fig. 4. Excerpt of reduction

can be reduced when the scrutinee is a constructor. mkApps is just application extended to a list
of arguments. Herein, iota_red basically picks the branch corresponding to the constructor and
applies it to the indices of the inductive. Even after they are checked to be terminating (Section 2.2.4),
fixed-points cannot be unfolded indefinitely. There is a syntactic guard to only unfold a fixed-point
when its recursive argument is a constructor. unfold_fix mfix idx allows us to recover both the
body (fn) and the index of the recursive argument (narg) while is_constructor narg args checks
that the given recursive argument is indeed an applied constructor. Mutual fixpoints are represented
by a block of (anonymous) mutually recursive definitions mfix from which one can project each
recursive definition by the index idx. Rules red_cofix_case and red_cofix_proj describe how
co-fixed-points can also be unfolded, when the are forced by a pattern-matching or projection.
Rule red_delta allows for δ -reduction, which unfolds a constant (from the global environment
Σ). It can only be done if a definition is indeed found and has a body. To account for polymorphic
universes, its universes (if it is universe polymorphic) are then instantiated. Finally, there is the
rule red_proj to reduce the projection of the constructor of a record to the corresponding field.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 8. Publication date: January 2020.

https://metacoq.github.io/metacoq/html/MetaCoq.PCUIC.PCUICTyping.html#red1


Coq Coq Correct! Verification of Type Checking and Erasure for Coq , in Coq 8:9

Axiom fix_guard : mfixpoint term→ B.

Axiom fix_guard_red1 : ∀ Σ Γ mfix mfix' idx,

fix_guard mfix→ tFix mfix idx⇝ tFix mfix' idx→ fix_guard mfix'.

Axiom ind_guard : mutual_inductive_body→ B.

Fig. 5. Axiomatisation of the positivity and guard condition

2.2.3 Well-Formed Arities. Coq’s type theory relies on the notion of well-formed arities, which
generalise sorts. An arity is a term of the form ∀Γ, s where Γ is a local context and s a sort (i.e.,
a potentially algebraic universe). The types of (co-)inductive declarations must be arities, and
the validity property of the system ensures that for every well-typed term Σ; Γ ⊢ t : T , T can
itself be typed by an arity in the same context. Arities hence categorise types (as opposed to
terms), recovering the separation of terms and types that is part of Martin-Löf-style Type Theory
presentations [Martin-Löf 1998].

2.2.4 Dealing with Positivity and the Guard Condition. PCUIC is parametrised by the guard condi-
tions on inductive types and on fixpoints which ensure strong normalisation. Technically, they
are considered as syntactic oracles, treated as axioms. The development does not depend strongly
on those oracles, but the guard condition on fixpoints must be preserved by reduction and sub-
stitution in order for PCUIC to satisfy subject reduction for instance. This shows in particular
that implementing a new guard condition on fixpoints in Coq which performs some reduction
before the syntactic check requires some care to be compatible with reduction and substitution.
Figure 5 describes the oracles and the axiom of stability under reduction of the guard condition
on fixpoints. In Coq, the guard condition for inductive types that is implemented is called strict
positivity, and the guard condition for fixpoints is based on recursive calls which must be done on
strict sub-terms6. As we cannot prove strong normalisation anyway, we believe that an axiomatic
presentation makes more sense as it sheds light on the syntactical properties that must be satisfied
by any guard condition on fixpoints. We consider the axioms about the guard condition together
with the axiom of strong normalisation of PCUIC (Section 2.3.4) altogether as one axiom on the
metatheory.

2.3 Metatheory

The previous section specifies the theory of PCUIC. To implement a type checker for PCUIC and
prove it correct, we actually need to formalise also some parts of its metatheory. In particular, we
rely on subject reduction, confluence and strong normalisation of the reduction.
In this section, we show confluence of the conversion using Tait-Martin-Löf methodology

extended to pattern-matching, (co-)-fixpoints and contexts containing let-bindings, and a context
conversion property showing that typing respects conversion. Validity (the fact that the type in a
typing derivation can itself be typed), Subject Reduction and Principality which depend on it are
work in progress, and we assume strong normalisation, but that assumption is not used in the proof
of confluence. Note that because of Gödel’s second incompleteness theorem, strong normalisation
of PCUIC cannot be proven inside Coq. Indeed PCUIC and Coq have the same logical power and
proving strong normalisation (with an explicit characterisation of normal forms) is enough to
derive canonicity and consistency of PCUIC.

6Actually the condition is slightly more general, but this is beyond the scope of this paper.
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2.3.1 Substitution and Weakening (PCUIC: Substitution, PCUIC: Weakening). The implemented
calculus uses standard lifting and (parallel) substitution operations, which we formalise, showing
that reduction, cumulativity and typing are all closed by lifting and substitution operations. This
gives rise to weakening and substitution theorems. Note that, to substitute into a context with
let-ins, one must provide a substitution that matches them. Our notion of well-typed substitution
is hence defined as:

Inductive subslet Σ (Γ : context) : list term→ context→ Type :=

| emptyslet : subslet Σ Γ [] []

| cons_let_ass ∆ s na t T : subslet Σ Γ s ∆→

Σ ; Γ ⊢ t : subst0 s T→ subslet Σ Γ (t :: s) (∆ , na :a T)

| cons_let_def ∆ s na t T : subslet Σ Γ s ∆→

Σ ; Γ ⊢ subst0 s t : subst0 s T→ subslet Σ Γ (subst0 s t :: s) (∆ , na := t :d T).

There is support to promote a traditional substitution matching the assumptions in a context
(e.g., a list of arguments to a function whose type might contain let-ins) to a subslet structure.
This formalises the tricky manipulations one must perform when working with Coq terms and
contexts in ML that developers and plugin writters face.
The global environment also induces a form of weakening by the addition of new inductive

or constant declarations (PCUIC: WeakeningEnv), simpler from the point of view of typing but
trickier w.r.t. universe instantiation (PCUIC: UnivSubstitution).

The σ -calculus (PCUIC: SigmaCalculus). Working with this traditional presentation of de Bruijn
indexes works a long way, however we hit a difficulty when formalising more complex operations
on syntax, like reduction functions as we will see next. To aleviate the difficulties associated with
reasoning on the primitive operations, we provide a version of the σ -calculus operations [Abadi
et al. 1991; Schäfer et al. 2015] on terms.
We derive the primitives of the σ -calculus (renaming and instantiation) and show their (ex-

tensional) equivalence with the traditional lifting and substitution operations, and a general in-
stantiation lemma. The σ -calculus operations enjoy a rich, clean and decidable equational theory,
equivalent to an explicit substitution calculus, and are able to express complex commutations neatly.
compared to the tricky lifting and substitution lemmas of łtraditionalž de Bruijn representations.
We have to extend it to deal with n-ary bindings: ⇑n and ·n and show a few tricky lemmas to

derive commutation properties with fix and cofix (PCUIC: LiftSubst).

2.3.2 Confluence (PCUIC: ParallelReductionConfluence). Following the Tait-Martin Löfmethod [Taka-
hashi 1989], we define parallel reduction for PCUIC, written as Γ,t⇛ ∆,t', in Figure 6. This reduction
is just a variant of reduction Σ ; Γ ⊢ t⇝ t' where already present redexes can all be reduced to-
gether in one single step. Note that the global environment Σ is a parameter of the reduction and
not an index because it is fixed during the reduction. Note that a β-redex can be reduced or not,
depending on whether the reduction rule pred_beta or congruence rule pred_app is used. We also
add a reflexivity rule for atoms (variables which may not be reduced, universes, inductive types
and constructors), thus ensuring that parallel reduction is reflexive.

Dealing with Dependent Let-Bindings. Note that because of let-bindings, we need to take the
context explicitly into account during the reduction. This is obtained by adding the All2_local_env
(on_decl pred1) Γ Γ

′ predicate in the premises of basic parallel reduction steps (such as the rule
pred_rel_def_unfold for instance) in order to allow for parallel reduction in the context too.

Thanks to the generalisation to contexts, we can prove a strong substitution lemma which says
that the parallel reduction satisfies the property that the reductions performed on two terms M and
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Inductive pred1 (Γ ∆ : context) : term→ term→ Type :=

| pred_beta na t0 t1 b0 b1 a0 a1 :

Γ,t0 ⇛ ∆,t1→

(Γ , na :a t0),b0 ⇛ (∆ , na :a t1),b1→ Γ,a0⇛ ∆,a1→

Γ, tApp (tLambda na t0 b0) a0 ⇛ Γ, b1 {0:=a1}

| pred_zeta na d0 d1 t0 t1 b0 b1 :

Γ,t0 ⇛ ∆,t1→

Γ,d0 ⇛ ∆,d1→ (Γ , na := d0 :d t0),b0⇛ (∆ , na := d1 :d t1),b1→

Γ, tLetIn na d0 t0 b0 ⇛ ∆, b1 {0:=d1}

| pred_rel_def_unfold i body :

All2_local_env (on_decl pred1) Γ ∆→

option_map decl_body (nth_error ∆ i) = Some (Some body)→

Γ,tRel i⇛ ∆,lift0 (S i) body

| pred_iota ind pars c u args0 args1 p brs0 brs1 :

All2_local_env (on_decl pred1) Γ ∆→

All2 (pred1 Γ ∆) args0 args1→

All2 (on_Trel_eq (pred1 Γ ∆) snd fst) brs0 brs1→

Γ,tCase (ind, pars) p (mkApps (tConstruct ind c u) args0) brs0 ⇛

∆,iota_red pars c args1 brs1

| pred_app M0 M1 N0 N1 :

Γ,M0 ⇛ ∆,M1→ Γ,N0⇛ ∆,N1→

Γ,tApp M0 N0 ⇛ ∆,tApp M1 N1

| pred_atom_refl t :

All2_local_env (on_decl pred1) Γ Γ
′→

pred_atom t→ Γ,t⇛ Γ
′,t.

(* other cases are omitted *)

where " Γ,t ⇛ ∆,u " := (pred1 Γ ∆ t u).

Inductive psubst Γ Γ
′ : list term→ list term→ context→ context→ Type :=

| psubst_empty : psubst Γ Γ
′ [] [] [] []

| psubsta ∆ ∆
′ s s′ na na' t t' T T' : psubst Γ Γ

′ s s′ ∆ ∆
′→

pred1 (Γ ++ ∆) (Γ′ ++ ∆
′) T T'→ pred1 Γ Γ

′ t t'→

psubst Γ Γ
′ (t :: s) (t' :: s′) (∆ , na :a T) (∆′ , na' :a T')

| psubstd ∆ ∆
′ s s′ na na' t t' T T' : psubst Γ Γ

′ s s′ ∆ ∆
′→

pred1 (Γ ++ ∆) (Γ′ ++ ∆
′) T T'→ pred1 Γ Γ

′ (subst0 s t) (subst0 s
′ t')→

psubst Γ Γ
′ (subst0 s t :: s) (subst0 s

′ t' :: s′) (∆ , na := t :d T) (∆′ , na' := t' :d T').

Fig. 6. Definition of parallel reduction and substitution (assuming a global environment Σ)

N can also be done in one step on M where its first de Bruijn variable is substituted by N', where N
reduces to N' in parallel as well.

Lemma substitution_pred1 Γ ∆ M M' na A A' N N' : wf Σ→

Γ,N⇛ ∆,N'→ (Γ,na :a A),M⇛ (∆,na :a A'),M'→ Γ,M{0 := N}⇛ ∆, M'{0 :=N'}.
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Fixpoint ρ Σ Γ t : term :=

match t with

| tApp (tLambda na T b) u⇒ (ρ (na :a (ρ Γ T) :: Γ) b) {0 := ρ Γ u}

| tLetIn na d t b⇒ (ρ (na := (ρ Γ d) :d (ρ Γ t) :: Γ) b) {0:=ρ Γ d})

| tRel i⇒

match option_map decl_body (nth_error Γ i) with

| Some (Some body)⇒ (lift0 (S i) body)

| Some None⇒ tRel i

| None⇒ tRel i

end

| tApp t u⇒ tApp (ρ Γ t) (ρ Γ u)

| tLambda na t u⇒ tLambda na (ρ Γ t) (ρ (na :a (ρ Γ t) :: Γ) u)

| tProd na t u⇒ tProd na (ρ Γ t) (ρ (na :a (ρ Γ t) :: Γ) u)

| tVar i⇒ tVar i

(* other cases are similar *)

end.

Fig. 7. Definition of the optimal reduction function ρ

We actually need a generalised version of this lemma for well-typed substitutions: Γ ⊢ s : ∆,
where ∆ is the context we are substituting into and Γ represents the variables needed to type the
substitution s. However, as we are doing things in parallel, we need a notion of parallel substitution.
To account for let-ins correctly, we need these well-typed substitutions to coherently preserve the
definiens of local definitions. The parallel substitution structure psubst Σ Γ Γ

′ s t ∆ ∆
′ represents

two substitutions s and t typed respectively in Γ and Γ
′ and instantiating respectively contexts ∆

and ∆
′ (Figure 6).

Rule psubsta simply ensures that the two terms t and t' are in the parallel reduction relation,
to instantiate two assumptions. However, the psubstd assumption rather forces the substitution
to be equal to the appropriately substituted bodies of let-ins. This still allows the reduction of the
substituted versions of let-in definiens in the contexts. While types themselves do not participate
in reduction, it is essential to also allow their reduction, to get context conversion (of type annota-
tions, not bodies) at the same time as substitution: a context conversion, when restricted to type
annotations, is a sustitution by the identity.

Theorem 2.1 (Parallel substitution). The stability by substitution of parallel reduction extends

to parallel substitution in the following way:

if psubst Σ Γ Γ
′ s t ∆ ∆

′ and (Γ ++ ∆ ++ Γ
′), M⇛ (Γ1 ++ ∆1 ++ Γ

′
1 ), N

then (Γ ++ Γ
′[s]), (subst s #|Γ′| M)⇛ (Γ1 ++ Γ

′
1 [s
′]) , (subst s′ #|Γ′1 | N).

The Triangle Method. Parallel reduction induces a relation which is larger than one-step reduction,
but smaller than the reflexive transitive closure of one-step reduction.

→ ⊆ ⇛ ⊆ →∗

Therefore, confluence of parallel reduction is equivalent to confluence of one-step reduction.
But what is crucial for parallel reduction is that it satisfies the property that there is an optimal

reduced term ρ(t) for every term t (Smolka [2015] provides a detailed exposition of this). This
term is defined by a fixpoint on the syntax, performing as many reduction as possible during its
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traversal (see Figure 7). The fact that it is optimal is expressed by the following triangle property
(for readability, we express the following two properties using commutative diagrams).

Theorem 2.2 (Triangle property). For every term t and context Γ, we have Γ, t ⇛ ρ(Γ), ρ(t) and

for every ∆,u such that Γ, t ⇛ ∆,u, the following triangle commutes

Γ, t


� �*

∆,u *4 ρ(Γ), ρ(t)

Parallel reduction is confluent because it is confluent in exactly one step, by using Theorem 2.2
twice.

Corollary 2.2.1 (Confluence of Parallel Reduction). Parallel reduction is confluent.

Γ, t

o{


�

#/
∆,u

#.

∆
′
,u ′

o{

ρ(Γ), ρ(t)

Context Conversion (PCUIC: ContextConversion). One can go łoutž of parallel-reduction back
to the traditional transitive closure of 1-step reduction by forgetting the target contexts (PCUIC:
Confluence). Due to the action at a distance nature of let-in definiens reduction, we cannot get
full context conversion from the substitution lemma. We prove only after confluence that for two
contexts Γ and ∆, if red1_ctx Γ ∆ and red1 Γ t u then there exists a common reduct of t and u

using the reflexive-transitive closure of red1 ∆.
From this, we define a notion of reductions of contexts and derive a confluence lemma for it:

convertible contexts have a common reduct. Finally, this allows us to show that cumulativity and
typing are preserved by conversion. Although we did not prove it, we believe our formalisation is
generic enough to prove an additional strenghtening lemma w.r.t. cumulativity.

2.3.3 Subject Reduction & Principality. Type preservation depends on a validity lemma of typing
(PCUIC: Validity), and the usual inversion properties of the system (PCUIC: Inversion). Validity for
this calculus is complicated by the fact that not all types have types: algebraic universes cannot
be typed. This shows up in the second premise of the cumulativity rule (figure 2). Therefore, we
suppose the following properties on the metatheory.

Conjecture subject_reduction : ∀ (Σ : global_env_ext) Γ t u T,

wf Σ→ Σ ; Γ ⊢ t : T→ red Σ Γ t u→ Σ ; Γ ⊢ u : T.

Note that due to subtyping, the łnaturalž type of t might be smaller. The general property of
cumulativity we assume is:

Conjecture principal_typing {Γ u A B} : Σ ; Γ ⊢ u : A→ Σ ; Γ ⊢ u : B→
∑

C, Σ ; Γ ⊢ C ≤ A × Σ ; Γ ⊢ C ≤ B × Σ ; Γ ⊢ u : C.

This property together with subject reduction is essential to derive strong enough principles of
reasoning on typing derivations up-to reduction (e.g., for sorts for the erasure procedure ğ4), or to
get preservation of typing by conversions, as necessary in the verified conversion checker (ğ3).
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Dealing with Co-Fixpoints. The subject reduction theorem can hold only for typing derivations
where the co-fixpoint introduction rule is forbidden. Indeed, subject reduction fails for co-fixpoints
in Coq. This is an explicit design decision: when Giménez [1996] introduced co-inductive types
in Coq, he faced the problem that his presentation could either provide type preservation or
decidability of type-checking, but not both at the same time. It is known today how to fix the
situation, either by forcing the use of co-pattern-matching and łmendler-stylež presentations
of co-inductives [Abel et al. 2013] or by restricting the dependent elimination of co-inductive
łvaluesž to łpurež predicates, as they should rather be seen as computations [Pédrot and Tabareau
2017]. We plan to study the later treatment in future work. To implement this restriction, the
whole development is parameterized over a flag structure that allows to configure whether the
type_CoFix rule is allowed or not.

2.3.4 Strong Normalisation (PCUIC: SN). As explained at the beginning of this section, there is no
hope to prove strong normalisation of PCUIC inside Coq. However we can state it as an axiom.
First, we need to specify the transitive closure of the co-reduction (the opposite of the reduction)
as the following inductive type cored:

Inductive cored Σ Γ: term→ term→ Prop :=

| cored1 : ∀ u v, red1 Σ Γ u v→ cored Σ Γ v u

| cored_trans : ∀ u v w, cored Σ Γ v u→ red1 Σ Γ v w→ cored Σ Γ w u.

Then, the axiom of normalisation corresponds to the proposition that every well-typed term of
PCUIC is accessible for cored.

Conjecture normalisation : ∀ Γ t, welltyped Σ Γ t→ Acc (cored (fst Σ) Γ) t.

Recall that a relation R is accessible at x when the following inductive type is inhabited.

Inductive Acc (A : Type) (R : A→ A→ Prop) (x : A) : Prop :=

Acc_intro : (∀ y : A, R y x→ Acc R y)→ Acc R x

An element is said to be accessible for the relation R when all smaller elements (for R) are accessible.
In an intuitionistic setting, we need this notion to do well-founded induction; indeed, the induction
principle on Acc allows you to do a recursive call on any R-smaller element. The reduction order is
reversed because a term should reduce to a smaller term for the order. So the axiom normalisation

means that the relation cored is well-founded for well-typed terms, which corresponds to strong
normalisation of PCUIC (all reduction sequences starting from a well-typed term are finite).

3 A VERIFIED CHECKER FOR PCUIC

We now turn to the definition of a type checker for PCUIC and a proof that it is correct with respect
to the specification given in Section 2. The main ingredients are the definition of a conversion
algorithm relying on strong normalisation and checking consistency of universe constraints using
a graph traversal algorithm.

3.1 Defining Reduction Without Fuel

Merely assuming strong normalisation doesn’t deliver a terminating algorithm to compute the
weak-head normal form of a term. We need to define a measure that allows us to reduce the term,
but also to focus on a subterm. This becomes even harder when dealing with pattern matching and
fixpoint. All the more so for fixpoint where the syntactic guard only allows for the unfolding of fix
applied to some arguments if the recursive argument is an applied constructor. In order to do this,
we need to reduce an argument on the stack, meaning a stack consisting only of applications is not
sufficient and we need to remember that we were previously reducing a fixpoint.
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Inductive stack : Type :=

| Empty

| App (t : term) (p : stack)

| Fix (f : mfixpoint term) (n : N) (args : list term) (p : stack)

| CoFix (f : mfixpoint term) (n : N) (args : list term) (p : stack)

| Case (indn : inductive ∗ N) (p : term) (brs : list (N ∗ term)) (p : stack)

| Proj (p : projection) (p : stack)

| Prod_l (na : name) (B : term) (p : stack)

| Prod_r (na : name) (A : term) (p : stack)

| Lambda_ty (na : name) (b : term) (p : stack)

| Lambda_tm (na : name) (A : term) (p : stack)

| coApp (t : term) (p : stack).

Inductive choice := app_l | app_r | case_c | proj_c | lam_ty | lam_tm

| prod_l | prod_r | let_in.

Definition position := list choice.

Inductive positionR : position→ position→ Prop :=

| positionR_app_lr p q : positionR (app_r :: p) (app_l :: q)

| positionR_deep c p q : positionR p q→ positionR (c :: p) (c :: q)

| positionR_root c p : positionR (c :: p) [].

Definition pos (t : term) := { p : position | validpos t p = true }.

Definition posR {t} (p q : pos t) : Prop := positionR p.π1 q.π1.

Inductive dlexprod {A} {B : A→ Type}

(leA : A→ A→ Prop) (leB : ∀ x, B x→ B x→ Prop)

: sigT B→ sigT B→ Prop :=

| left_lex : ∀ x x' y y', leA x x'→ dlexprod leA leB (x;y) (x';y')

| right_lex : ∀ x y y', leB x y y'→ dlexprod leA leB (x;y) (x;y').

Definition R_aux Γ := dlexprod (cored Σ Γ) (@posR).

Definition R Γ (u v : term ∗ stack) := R_aux Γ (zip u ; stack_pos (fst u) (snd u))

(zip v ; stack_pos (fst v) (snd v)).

Fig. 8. Definition of the measures on stacks and terms (PCUIC: Position)

We define (see Figure 8) a function stack_pos to get a position corresponding to a stack. A
stack can be seen as a term with a hole (described by the constructor Empty) and a position is a list
of choices indicating how to traverse a stack to reach its hole. Positions are given with an order
positionR. From that we deduce a measure with the lexicographical order of first coreduction and
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Definition Edge := V ∗ N ∗ V.

Definition RootedGraph := (VSet ∗ EdgeSet ∗ V).

Definition Edges (G : RootedGraph) x y :=
∑

n, EdgeSet.In (x, n, y) (E G).

Inductive Paths G : V→ V→ Type :=

| paths_refl x : Paths x x

| paths_step x y z : Edges x y→ Paths y z→ Paths x z.

Definition acyclic G := ∀ x (p : Paths G x x), weight G p = 0.

Fig. 9. Definition of acyclicity for a graph (wGraph)

then position relation. However the position relation is only well founded if the two positions are
valid positions (defined as pos t) in the same term t (we need to know we do not go indefinitely
down in the term), since the two positions are in a priori different terms, we need to use a dependent
lexicographical order dlexprod, meaning the second order only makes sense if the first components
of the pairs are actually equal.
Finally, we define an order R on tuples of term and stack, where the term under consideration

is the zipping of the term in the stack (coarsely filling the term in the hole of the stack) and the
position is the position induced by the stack (which is valid with respect to the zipped term).

Using the axiom of strong normalization of PCUIC (Section 2.3.4), we can show that R is accessible
for pairs of a term and a stack, whose zipping is well-formed (either well-typed or a valid arity).

Corollary R_Acc : ∀ Γ t, wf Σ→ wellformed Σ Γ (zip t)→ Acc (R Γ) t.

3.2 Weak-Head Normalisation Using a Stack Machine (PCUIC: SafeReduce)

Using R_Acc, we can define weak-head normalisation using a stack machine which emulates the
reduction specified by red1 (Section 2.2.2). The function is defined by induction on the accessibility
proof.

Definition reduce_stack Γ (t : term) (p : stack) (h : wellformed Σ Γ (zip (t,p)))

: { t' : term ∗ stack | Req Σ Γ t' (t, p)} :=

Fix_F (R := R Σ Γ) (fun x⇒ wellformed Σ Γ (zip x)→ { t' : term ∗ stack | Req Σ Γ t' x})

(fun t' f⇒ _) (x := (t, p)) _ R_Acc.

Here, the relation Req is the reflexive closure of R. Thus the definition of reduce_stack is by
construction correct with respect to its specification. Technically, the internal definition of the
reduction is a bit more involved as it requires to maintain more invariants during the reduction.
We refer the interested reader to the Coq development to get a complete definition of weak-head
normalisation.

3.3 Universes: Valuation versus Acyclicity

The specification of universe consistency (Section 2.2.1) as the existence of a valuation into natural
numbers which respects the constraints on the universes does not give rise to a decision procedure.
Therefore, in Coq, the implementation of this consistency check is performed using an acyclicity
check on the weighted graph induced by the constraints.
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Our notion of weighted graph (Figure 9) is parametrised by a type a type V of nodes, an edge
between x and y of weight n is represented as a tuple (x,n,y). Then, a rooted graph G is a set of
V-nodes (V G), a set of edges (E G) and a particular node (s G) in V, the root of the graph.

Note that we need our weighted graphs to be rooted because a graph representing a universe
hierarchy always contains Set as a the universe smaller than all the other (apart from Prop which
is treated separately and not represented in the graph), and this plays a particular role because we
thus know that there is only one connected component.

The predicate Edges G x y specifies that there is an edge between the two nodes x and y. And the
inductive predicate Paths G x y specifies the existence of a path between G and x. The acyclicity of
a weighted graph can then simply be stated as the fact that all reflexive paths have weight 0.
Now, we turn to the formalisation that the acyclicity of the graph induced by the constraints

is equivalent to the existence of a valuation respecting the constraints. First, it is easy to define
a notion of correct labelling of a graph (where labelling := V→ N), which corresponds to the
notion of a valuation satifying the constraints.

Definition correct_labelling (l : labelling) :=

l (s G) = 0 ∧ ∀ x n y, EdgeSet.In (x,n,y) (E G)→ l x + n ≤ l y.

Now it remains to show that acyclicity is equivalent to the existence of a correct labelling. To do so,
we will use the notion of longest simple path between two nodes, which provides at the same time
a characterisation of acyclicity and a decision procedure to check acyclicity.
A simple path in SimplePaths s x y is a path from x to y going only through the nodes in s,

without visiting twice the same node, except for the last one which can appear two times (forming
a loop then)7.

Inductive SimplePaths : VSet→ V→ V→ Type :=

| spaths_refl s x : SimplePaths s x x

| spaths_step s s′ x y z : DisjointAdd x s s′→ Edges x y

→ SimplePaths s y z→ SimplePaths s′ x z.

From this notion, it is possible to compute the weight of the longest simple path (or simply lsp)
between two nodes by taking the maximum of all possible simple paths between x and y.

Definition lsp : (s : VSet) (x y : V) : option N.

Note that the function goes to option N because there may not be any path between x and y. Thus,
the constructor None of option N corresponds to −∞ when extending the addition, maximum
function and comparison to option N.

We then show that lsp s x y is equal to the maximum of weights of simple paths from x to y:

Lemma lsp_spec_le s x y (p : SimplePaths s x y) : Some (weight p) ≤ lsp s x y.

Lemma lsp_spec_eq s x y n : lsp s x y = Some n→ ∃ p : SimplePaths s x y, weight p = n.

With this notion of lsp, we can prove that acyclicity is equivalent to the existence of a correct
labelling, by showing that acyclicity implies that the weight of the longest simple reflexive path on
x is always 0. This allows to derive the fact that the labelling induced by the weight of the longest
simple path from the root is correct when the graph is acyclic.

Lemma acyclic_labelling l : correct_labelling l→ acyclic.

7The usual notion of simple path does not allow such a repetition.
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Lemma acyclic_lsp (HG : acyclic G) s x : lsp s x x = Some 0.

Lemma lsp_correctness (HG : acyclic G) :

correct_labelling (fun x⇒ option_get 0 (lsp (V G) (s G) x)).

In particular, it gives us a decision procedure to check that a graph is acyclic, by simply checking
that lsp (V G) x x is 0 for every node x in the graph.

Of course, this decision procedure is far from being optimal with respect to complexity, but the
rest of the type checker is independent from it, so it can be replaced by a more efficient one (e.g.,
using Tarjan et. al. algorithm, as recently formalised in [Guéneau et al. 2019] in the particular case
where there is no constraint of the form ≤) as soon as this new procedure implies acyclicity of the
graph.

3.4 Cumulativity (PCUIC: SafeConversion)

To implement the conversion check up to cumulativity, we need to decide when a universe is
smaller than another one. This can be rephrased using labelling on graph as

Definition leq_vertices n x y := ∀ l, correct_labelling l→ l x + n ≤ l y.

Using lsp again, we can prove that when the graph is acyclic, this property can just be tested on
one correct labelling, namely the one induced by lsp.

Lemma leq_vertices_caract n x y (Vy : VSet.In y (V G)) :

leq_vertices G n x y↔ (Some n ≤ lsp G x y).

Using this, we can define the basic brick of the cumulativity check, which says that x is n smaller
than y when either y is in the graph of constraints and lsp G x y is bigger than n, or y is constraint
free, and in that case, n must be 0 and x must be at distance 0 from Set (which is the source of the
graph).

Definition leqb_vertices n x y : B :=

if VSet.mem y (V G) then le_dec (Some n) (lsp G x y)

else Nat.eqb n 0 && (V.eq_dec x y ∥ le_dec (Some 0) (lsp G x (s G))).

Then, conversion up to cumulativity can be implemented again by induction on accessiblity of R (in
truth, the order for conversion is even more involved than the one used for reduction: in particular
we rely on a dependent lexicographical order modulo syntactic equality of terms up to cumulativity
of universes). We do not detail here the definition of the conversion algorithm which is optimised
to be much more efficient than just comparing the normal forms up to cumulativity. Coarsely, it
mimics the conversion algorithm implemented in Coq which consists in

(1) first weak-head reducing the two terms without δ -reductions (i.e., without unfolding defini-
tions);

(2) then comparing their heads, and if they match comparing the subterms;
(3) if they do not match, checking if some computation (pattern-matching or fixpoint)Ðor just the

whole termÐis blocked by a definition that could unfold to a value, unfolding this definition
and comparing again.

All together, this allows for the implementation of the function convert_leq while showing that it
is correct with respect to the specification of the conversion of PCUIC.
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Fixpoint infer Γ (HΓ : | | wf_local Σ Γ | |) t : typing_result ({ A : term & | | Σ ; Γ ⊢ t : A | | })

:= match t with

| tRel n⇒

match nth_error Γ n with

| Some c⇒ ret ((lift0 (S n)) (decl_type c); _)

| None ⇒ raise (UnboundRel n)

end

| tSort u⇒

match u with

| NEL.sing (l, false)⇒

check_eq_true (LevelSet.mem l (global_ext_levels Σ)) (Msg "undeclared level");

ret (tSort (Universe.super l); _)

| _⇒ raise (Msg "I can't infer the type of an algebraic universe")

end

| tProd na A B⇒

s1← infer_type infer Γ HΓ A ;

s2← infer_type infer (Γ , na :a A) _ B ;

ret (tSort (sort_of_product s1.π1 s2.π1); _)

| tLambda na A t⇒

s1← infer_type infer Γ HΓ A ;

B← infer (Γ , na :a A) _ t ;

ret (tProd na A B.π1; _)

| tLetIn n b b_ty b'⇒

s← infer_type infer Γ HΓ b_ty ;

X← infer_cumul infer Γ HΓ b b_ty _ ;

b'_ty← infer (Γ , n := b :d b_ty) _ b' ;

ret (tLetIn n b b_ty b'_ty.π1; _)

| tApp t u⇒

ty← infer Γ HΓ t ;

pi← reduce_to_prod Γ ty.π1 _ ;

X← infer_cumul infer Γ HΓ u pi.π2.π1 _ ;

ret (pi.π2.π2.π1 {0:=u}; _)

(* other cases are tConst, tInd, tConstruct, tCase, tProj and tFix *)

end

Definition infer_cumul Γ HΓ t A (hA : wellformed Σ Γ A)

: typing_result (| | Σ ; Γ ⊢ t : A | |) :=

A'← infer Γ HΓ t ;

X← convert_leq Γ A'.π1 A _ hA ;

ret _.

Fig. 10. Definition of type inference (excerpt) (PCUIC: SafeChecker)
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3.5 Typechecking

Instead of defining typechecking, we directly define type inference, which is decidable in absence of
existential variables.8 As type inference may fail when the term is not well-typed, we work inside
the following error monad.

Inductive typing_result (A : Type) :=

| Checked (a : A)

| TypeError (t : type_error).

Type inference is thus described as a functionwhich expects a term t in awell-formed environment Σ
; Γ and returns a type A together with a proof term that Σ ; Γ ⊢ t : A. It is thus correct by construction.
Note that the returned proof term of typing derivation is squashed (written | | X | |) in Prop in order
to make sure that it will be erased by extraction. In the definition of type inference, we let _ for
typing derivation proof terms as they are quite complex to write down. In the development, they
have been defined using the Program command and the possibility to give them after definition
time, using tactics to solve obligations. Figure 10 describes the algorithm written in monadic
style. For a variable tRel n, it checks that it is bound in Γ, and returns its types, and fails otherwise.
For sorts tSort u, it checks that the universe is not algebraic, that the level is declared, and returns
a sort at level above. For dependent products tProd na A B, it computes the sort of A and the sort
of B in the context extended by na:A and returns the sort at level of the sort_of_product of the
two sorts. Similarly for typing functions. The case of tLetIn and tApp are more interesting as
they involve bidirectional typechecking. Indeed, for instance in tApp t u, one needs to infer the
type ty of t, then reduce it to get a type of the term tProd A B using the function reduce_to_prod

and finally check that u as type A. This is done by the function infer_cumul which actually infers
the principal type A' of u and checks that it is convertible to A. Note again here that the function
infer_cumul must return a proof that u as type A, whose definition is postponed using _. This
proof is defined using tactics, combining the proofs that u has type A' and A is a subtype of A'.

Note that we also have an implementation of re-typechecking which does an optimised version
of type inference knowing that the term is already well-typed. However, we have not proven
completeness of type inference.

3.6 Performance of the Extracted Certified Typechecker

To compare the performance of our typechecker with the one of Coq, we have extracted it to
Ocaml using the standard extraction mechanism of Coq and tested it on several examples.
Note that our first attempt to extract the typechecker was producing an ill-typed term which

shows that the current extraction mechanism is not correct in general. We have been able to
circumvent this issue by modifying slightly the specification of the conversion algorithm. To be
precise, the problem is a mix of a bug in extraction and a theoretical limitation of it (it is unable
to provide a general enough type signature for an erased function, which is a known issue). The
workaround is to define an equivalent return type for the conversion algorithm which uses pattern
matching later in its definition. The core idea is to change a function with a type of the form

if b then B→ {a : A & C} else {a : A & C'}

to a function with a type of the form

(if b then B else unit)→ {a : A & if b then C a else C'}

to avoid the structure of the type (in particular its arity) to depend on the value b.

8Type inference is decidable because we use a fully annotated syntax, as opposed to a Curry style one.
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This done, the extraction mechanism produces a typechecker in Ocaml that can be used to
typecheck original Coq terms.

Because we cannot deal with modules and template polymorphism, we cannot use it to typecheck
big terms of the standard library. In particular, it cannot yet been used to typecheck its own
formlization! However we have been able to test it on reasonable proof terms coming from the
HoTT Library (https://github.com/HoTT/HoTT/). For instance, using the extracted type checker, we
have been able to typecheck the proof that an isomorphism can be turned into an equivalence (see
the file test-suite/safechecker test.v). The current implementation is about 1 order of magnitude
slower than Coq’s kernel (0.015s vs 0.002s averaged over 10 runs for each checking). This can in
particular be attributed to our very inneficient representation of global environments as association
lists indexed by character lists, where Coq uses efficient hash-maps on strings. We leave careful
benchmarking and optimization to future work.

4 TYPE AND PROOF ERASURE FOR PCUIC

One of the key features of the Coq proof assistant is extraction, used for instance in the CompCert
compiler [Gallium et al. 2008]. The current implementation of extraction [Letouzey 2002] consists
of a general procedure to erase types and proofs and several different mechanisms to extract this
erased terms into industrial programming languages like OCaml or Scheme. We verify the type and
proof erasure procedure for PCUIC w.r.t. big-step call-by-value evaluation.9 Note that the relation
of our type and proof erasure mechanism and Coq’s extraction could be made formal: Letouzey’s
work [Letouzey 2004] separates the erasure to pure, untyped lambda calculus (equivalent to ours)
from the MiniML extraction that is actually implemented by extraction (inserting Obj.magic to
embed untyped terms and applying optimizations).
We first introduce the target calculus of erasure, which is a simplified version of PCUIC with

one extra constructor □ denoting erased terms. We then define an erasure function E, using the
verified type checker from Section 3. Following Letouzey [2004], we introduce an erasure relation
extending the erasure function, prove its correctness and deduce the strongest possible correctness
result for the erasure function. We obtain that if a program evaluates to an element of a first-order
inductive type (i.e., an inductive type containing no proofs or functions), its erasure evaluates to
the same element. As a corollary, we obtain that for a function where the return type is a first-order
inductive type, its erasure can be obtained separately, and will still evaluate to the correct value
once applied to enough arguments.
Note that, like in the extraction implemented currently in Coq, the rule Prop ≤ Type has to be

disabled for type-checking (using the flag structure) to ensure erasability is stable by expansion.

4.1 The Target Calculus λ□

The target of the type and proof erasure procedure is λ□ an untyped λ-calculus. λ□ is syntactically
similar to PCUIC (see syntax in Figure 1110). It has the same constructors, but subterms which can
only contain types are left out (because they would be erased anyways). Furthermore, λ□ has an
additional constructor □ denoting computationally meaningless content which was erased.
The big-step evaluation relation is defined like for PCUIC, with three amendments:

(1) If Σ ⊢ a ▷ □ then Σ ⊢ (tApp a t) ▷ □.
(2) If Σ ⊢ a ▷ □ then Σ ⊢ eCase (i,p) a [(n, t)] ▷ t □ . . .□

︸  ︷︷  ︸

n times

.

(3) The rule for tFix is extended to also apply if the principal argument evaluates to □.

9We leave out the definition of this standard notion (written as Σ; Γ ⊢ t ▷ v ) and refer to the file PCUIC: WcbvEval.
10Erasure: MyFile refers to MyFile.v in the erasure/theories folder
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Inductive eterm : Set :=

| eBox : term

| eRel : N→ eterm

| eLambda : name→ eterm→ eterm

| eLetIn : name→ eterm (* the eterm *)→ eterm→ eterm

| eApp : eterm→ eterm→ eterm

| eConst : kername→ eterm

| eConstruct : inductive→ N→ eterm

| eCase : (inductive ∗ N) (* # of parameters *)

→ eterm (* discriminee *)→ list (N ∗ eterm) (* branches *)→ eterm

| eProj : projection→ eterm→ eterm

| eFix : mfixpoint eterm→ N→ eterm

| eCoFix : mfixpoint eterm→ N→ eterm.

Fig. 11. Syntax of λ□ (Erasure: EAst).

4.2 Definition of an Erasure Function (Erasure: ErasureFunction)

We now define a type and proof erasure function EΣ Γ : term→ eterm which replaces all types
and proofs by □. Its implementation is based on a Boolean function is erasable Σ Γ t which
checks whether a term is erasable.
We leave out the implementation of is_erasable and only give its informative type:

Definition is_erasable Σ (HΣ : | | wf Σ | |) Γ (HΓ : | | wf_local Σ Γ | |) (t : term) :

typing_result (| | isErasable Σ Γ t | |+| | (isErasable Σ Γ t→ False) ∗ welltyped Σ Γ t | |).

The definition of the erasure function is depicted in Figure 12.

4.3 Correctness of Erasure (Erasure: ErasureCorrectness)

Ideally, we would like to prove that if Σ; Γ ⊢ t ▷ v , we have EΣ ⊢ EΣ,Γt ▷ EΣ,Γv for a suitable
extension of E to global environments. However, this already fails on simple counter-examples:
the Coq-term (fun Z : Type⇒ (1, fun x : X⇒ x)) Type has type N ∗ (Type→ Type) and value (e,
fun x : Type⇒ x). Erasing the term yields (fun X⇒ (1, fun x⇒ x)) □, with value (1, fun x⇒ x).
Erasing the value however yields (1, □), because fun x : Type⇒ x is a type former of type Type
→ Type and thus erased to □.
Following Letouzey [2004], we fix this problem by setting up a relation ; ⊢⇝E extending the

erasure function, which will be closed under weak call-by-value evaluation. For normal terms of
first-order inductive types like N or N ∗ N, the relation and the function agree and we can still get
the strongest result described above on such first-order types.
We define the erasure relation Σ; Γ ⊢ t ⇝E t

′ as depicted in Figure 13. Essentially, the relation
extends the erasure function by nondeterministic rules allowing not to erase a certain part of a
term which could be erased.

The only exception here is the tCase rule. If the tCase matches on a proof of a non-informative
proposition, the whole case analysis has to be erased. This is necessary because erased discriminees
do not contain any information about which branch to use during evaluation. For informative
propositions, there is at most one branch where all arguments are proofs and thus can be erased,
they can thus be still evaluated (by picking the one available branch, if any).
The erasure relation contains (the graph of) the erasure function, as show by lemma 4.1.
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Variable Σ : global_env_ext. Hypothesis H_Σ : | | wf_ext Σ | |.

Equations E Γ (HΓ : | | wf_local Σ Γ | |) (t : term) : typing_result eterm :=

E Γ HΓ t with (is_erasable Σ HΣ Γ HΓ t) :=

{ E Γ HΓ _ (Checked (left _)) := ret (E.tBox);

E Γ HΓ _ (TypeError t) := TypeError t ;

E Γ HΓ (tRel i) _ := ret (E.tRel i) ;

E Γ HΓ (tLambda na b t) _ :=

t'← E (na :a b :: Γ) _ t;

ret (E.tLambda na t')

E Γ HΓ (tApp f u) _ :=

f'← E Γ HΓ f;

l'← E Γ HΓ u;

ret (E.tApp f' l') ;

E Γ HΓ (tCase ip p c brs) _ :=

c'← E Γ HΓ c;

brs′← monad_map (fun x⇒ x'← E Γ HΓ (snd x); ret (fst x, x')) brs;

ret (E.tCase ip c' brs′) ;

(* ... *) }.

Fig. 12. Erasure function

Lemma 4.1 (Erasure function correctness). If EΣ,Γt = Checked t ′, then Σ; Γ ⊢ t ⇝E t
′

We can prove global weakening, weakening and substitutivity of the erasure relation:

Lemma 4.2. Let Σ ; Γ ⊢ t : T and Σ ; Γ ⊢ t⇝E t'. Then

(1) Σ′; Γ ⊢ t ⇝E t
′ for Σ′ extending Σ.

(2) Σ; Γ, Γ′ ⊢ t ⇝E t
′.

(3) If σ erases to σ ′ pointwisely, then Σ; Γ ⊢ t[σ ]⇝E t
′[σ ′].

We will now prove that the erasure relation commutes with weak call-by-value evaluation. First,
we establish some properties of erasable terms:

Lemma 4.3. The following hold:

(1) If t is erasable, mkApps t L is erasable.

(2) If tLambda na T1 t is erasable, t is erasable.

(3) If t is erasable and Σ; Γ ⊢ t ▷ v , then v is erasable.

To state the correctness lemma, we need to extend erasure to global environments Σ. We write
Σ⇝E Σ

′ for this straightforward, inductively defined pointwise extension of⇝E .

Lemma 4.4. If Σ⇝E Σ
′ and the constant c is bound to declaration d in Σ, then constant c is bound

to d ′ in Σ
′ with Σ; ∅ ⊢ d ⇝E d

′.

Proof. The proof is by straightforward induction. Note that in the inductive step for Σ = Σ1, c :=

d, Σ2, we only know that Σ1; ∅ ⊢ d ⇝E d ′. To prove Σ; ∅ ⊢ d ⇝E d ′, we need to use global
weakening for the erasure relation. □
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Inductive erases (Σ : global_context) (Γ : context) : term→ eterm→ Prop :=

erases_tRel : ∀ i : N, Σ; Γ ⊢ tRel i⇝E E.tRel i

| erases_tVar : ∀ n : ident, Σ; Γ ⊢ tVar n⇝E E.tVar n

| erases_tLambda : ∀ (na : name) (b t : term) (t' : eterm),

Σ; (na :a b :: Γ) ⊢ t⇝E t'→ Σ; Γ ⊢ tLambda na b t⇝E E.tLambda na t'

| erases_tLetIn : ∀ (na : name) (t1 : term) (t1' : eterm) (T t2 : term) (t2' : eterm),

Σ; Γ ⊢ t1⇝E t1'→ Σ; (:d na t1 T :: Γ) ⊢ t2⇝E t2'→

Σ; Γ ⊢ tLetIn na t1 T t2⇝E E.tLetIn na t1' t2'

| erases_tApp : ∀ (f u : term) (f' u' : eterm),

Σ; Γ ⊢ f⇝E f'→ Σ; Γ ⊢ u⇝E u'→ Σ; Γ ⊢ tApp f u⇝E E.tApp f' u'

| erases_tConst : ∀ (kn : kername) (u : universe_instance),

Σ; Γ ⊢ tConst kn u⇝E E.tConst kn

| erases_tConstruct : ∀ (kn : inductive) (k : N) (n : universe_instance),

Σ; Γ ⊢ tConstruct kn k n⇝E E.tConstruct kn k

| erases_tCase1 : ∀ (ind : inductive) (npar : N) (T c : term) (c' : eterm)

(brs : list (N ∗ term)) (brs′ : list (N ∗ eterm)), Informative Σ ind→ Σ; Γ ⊢ c⇝E c'→

All2 (fun x x'⇒ Σ; Γ ⊢ snd x⇝E snd x' ∗ fst x = fst x') brs brs′→

Σ; Γ ⊢ tCase (ind, npar) T c brs⇝E E.tCase (ind, npar) c' brs
′

| erases_tProj : ∀ (p : (inductive ∗ N) ∗ N) (c : term) (c' : eterm), let ind := fst (fst p) in

Informative Σ ind→ Σ; Γ ⊢ c⇝E c'→ Σ; Γ ⊢ tProj p c⇝E E.tProj p c'

| erases_tFix : ∀ (mfix : mfixpoint term) (n : N) (mfix' : list (E.def eterm)),

All2 (fun (d : def term) (d' : E.def eterm)⇒ dname d = E.dname d' ∗ rarg d = E.rarg d' ∗

Σ; Γ ++ fix_context mfix ⊢ dbody d⇝E E.dbody d') mfix mfix'→

Σ; Γ ⊢ tFix mfix n⇝E E.tFix mfix' n

| erases_box : ∀ t : term, Is_Type_or_Proof Σ Γ t→ Σ; Γ ⊢ t⇝E E.tBox

where "Σ ; Γ ⊢ s ⇝E t" := (erases Σ Γ s t).

Fig. 13. Erasure relation (Erasure: Extract)

We need to prove an introduction lemma and an inversion lemma for erasure on terms built
using mkApps. The introduction lemma is easy:

Lemma 4.5. If Σ; Γ ⊢ mkApps f L : T , f erases to f ′, and L erases to L′ pointwise then mkApps f L

erases to mkApps f' L'.

The inversion case has to be set up very carefully, because of the non-determinism in the erasure
relation:

Lemma 4.6. If Σ; Γ ⊢ mkApps f L : T and Σ; Γ ⊢ mkApps f L⇝E t then either

(1) t = mkApps f’ L’ for Σ; Γ ⊢ f ⇝E f ′ and L pointwisely erasing to L′.

(2) or L = L1L2 with mkAppsf L1 erasable, L2 pointwisely erasing to L′2 and t = mkApps □ L′2.

This now suffices to prove the correctness theorem of the erasure relation:

Theorem 4.7 (Erasure Correctness). Let Σ be a well-formed environment erasing to Σ
′. Let

Σ; Γ ⊢ t : T erasing to t ′ and evaluating tov . Then there existsv ′ s.t. Σ; Γ ⊢ t ′ ▷ v ′ and Σ; Γ ⊢ v ⇝E v
′.

We conclude with two non-mechanised observations. We call a type first-order if it is a non-
propositional inductive type where all parameters and all arguments of constructors are of a
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first-order type. On elements of such types, the erasure relation is clearly functional, because there
is no erasable content. We thus have the following:

Lemma 4.8. Let Σ; Γ ⊢ t : T for T a fully-applied first-order inductive type. If Σ; Γ ⊢ t ⇝E t
′ and

EΣ,Γt is defined, then t
′
= EΣ,Γt .

Corollary 4.8.1. Let Σ; Γ ⊢ t : T and T be a first-order type.

If EΣ,Γt = t ′, Σ; Γ ⊢ t ▷ v , and EΣ,Γv = v
′, then Σ; Γ ⊢ v ▷ v ′.

In particular, this observation entails that our type and proof erasure function supports separate
compilation:

Corollary 4.8.2. Let Σ; Γ ⊢ mkAppsf L : T , where T is a first-order type. Then the value of

mkApps(E f )(EL) is the erasure of the value of mkAppsf L.

5 RELATED WORK

Abel et al. [2018] present a normalization-by-evaluation algorithm for deciding definitional equality
in an idealized dependent type theory with only one universe and natural numbers, verified in a
larger type theory with inductive-recursive types. Their methodology provides correctness and
completeness results and deals with η-laws by comparing βη-long normal forms. While we only
have correctness for now, our algorithm is certainly more efficient as it does not necessarily need
to go to normal forms, which is crucial for performance in practice. Strub et al. [2012] provide a
methodology to build a self-certifying type-checker for a large subset of F∗, whose metatheory
is formalised in Coq. Our work is complementary in the sense that it reduces the trusted-code
base involved in that methodology to the specification of PCUIC, and no longer to its ML kernel
implementation. Œuf [Mullen et al. 2018] formalise a subset of Coq and provide a verified compiler
from this language to Assembly code.

Hupel and Nipkow [2018] implement a verified extraction from Isabelle/HOL into CakeML. The
first phase of their compiler consists of a proof-producing translation implemented in Standard
ML, translating terms of Isabelle/HOL into a deeply embedded term language. The second part of
their compiler is a verified translation from the deeply embedded language into CakeML. Myreen
and Owens [2014] implement a certifying extraction from HOL light code to CakeML. Their
approach can translate programs in a state-and-exception monad into stateful ML code and was
used to extract the verified HOL-light compiler to CakeML. Forster and Kunze [2019] report on a
certifying translation from a subset of Coq to the weak call-by-value λ-calculus. Their extraction
is implemented in the MetaCoq framework as well, but they produce correctness proofs for their
extract in Coq’s tactic language LTac. Runtime proof erasure / ICC∗ [Barras and Bernardo 2008]
Glondu [2012] verifies the syntactic proof given by Letouzey [2004] in Coq. They formalises a
correctness proof w.r.t. arbitrary small-step reduction, but work in a slightly idealised calculus
with no exploitable correspondence to the actual implementation of Coq. They do not consider a
verified type-checker or the verification of an executable type and proof erasure function.

6 CONCLUSION AND FUTURE WORK

The whole development we presented includes the translation from MetaCoq’s syntax (proven
correct), specification of typing (trusted with respect to strong normalisation), metatheory (whose
proofs are ongoing), verified checker and conversion and erasure phase (that have been proven
correct w.r.t. the metatheory). The whole development is about 17kLoc of specifications, 30kLoc
of proofs and 3kLoc of documentation and relies only on axioms on the metatheory and on
proof irrelevance, thus moving from a trusted code base to a trusted theory base paradigm. The
development runs with Coq 8.9 [Team 2019] in about 10min on a modern laptop. It extensively
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uses the Eqations package [Sozeau and Mangin 2019] and its dependent elimination tactics. It
also relies crucially on the view technique introduced by McBride and McKinna [2004] to factor
cases and the support of Eqations for well-founded recursion. From these specifications and
implementations, a number of applications are possible. Certified translations and plugins were
surveyed in [Sozeau et al. 2019], we focus here on what our contributions bring in addition.

6.1 MetaCoq + CertiCoq + CompCert

Originally, the CertiCoq compiler [Anand et al. 2017] (a verified compiler from Gallina programs
down to CompCert’s C-light) used a rather crude methodology to perform extraction: it expected
a quoted input term to have all its maximal subterms of sort Prop marked by casts, and then
proceeded with an unsafe erasure phase. We put this foremost part of the system on a stronger
footing by having not only implemented the extraction in Coq relying on a safe type checker,
but also proven that it correctly implements erasure. The theorem we prove can be linked to
the correctness of the compiler pipeline resulting in an obsevational equivalence from a weak
call-by-value evaluated term in the λ□ language to C-light semantics. Compiling the code with
CompCert and linking it with a verified garbage collector provides a maximally safe evaluation
chain for Coq’s dependently-typed programming language.

6.2 Future Work

With respect to the formalization presented here, we plan to finish the proofs of the main meta-
theoretical results, but for strong normalization of course. The type-checker and erasure rely on
subject reduction, principality, strenghteningÐand five associated administrative lemmasśthat
remain work-in-progress at the time of writing this article but are within reach. The pervasiveness
of let-ins which complicates notions of substitution, the treatment of algebraic universes which
makes some types untypeable themselves and the sheer complexity of inductive declarations are
the main difficulties in the formalization of these results. However, they also indicate venues for
improving the formalism: e.g., by adding sort annotations on binders, we could greatly streamline
the development with respect to universes.

With respect to Coq’s currently implemented type theory, we depart by not considering η-laws
for functions and primitive record types in our specification of definitional equality. We leave these
extensions to future work. We also leave out the module system: thankfully, it is orthogonal to the
term language and it is unclear if we should not rather explain them through an elaboration, in the
style of Rossberg et al. [2014] rather than bake them in the core calculus.

In future, we want to extend PCUIC and erasure to also handle the sort SProp [Gilbert et al. 2019],
implemented in Coq 8.10. Since SProp is a proof-irrelevant analogue to Prop, adapting erasure is
almost trivial: SProp can be erased like Prop and no special care has to be taken for eliminations.

We also want to extend our account of erasure to other evaluation orders (most notably call-by-
name evaluation to be able to target lazy languages). Currently, we support axioms which do not
block call-by-value evaluationÐwhich is rarely the case. Letouzey [2004] introduces a semantic
account of erasure correctness, which would allow the treatment of axioms. We want to verify such
a semantic correctness theorem, allowing us to argue the consistency of (at least) propositional
axioms like functional extensionality or Markov’s principle.

Another exciting endeavor is to refine the specification to fit into the standard models of depen-
dent type theory, begining with the set theoretic model developed by Barras [1999]. A first step
towards this goal will be to tackle the difficult guard and productivity conditions.
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