
Undecidability of Higher-Order Unification
Formalised in Coq

Simon Spies
Saarland University

Saarland Informatics Campus, Saarbrücken, Germany
spies@ps.uni-saarland.de

Yannick Forster
Saarland University

Saarland Informatics Campus, Saarbrücken, Germany
forster@ps.uni-saarland.de

Abstract
We formalise undecidability results concerning higher-order
unification in the simply-typed _-calculus with 𝛽-conversion
in Coq. We prove the undecidability of general higher-order
unification by reduction from Hilbert’s tenth problem, the
solvability of Diophantine equations, following a proof by
Dowek. We sharpen the result by establishing the undecid-
ability of second-order and third-order unification following
proofs by Goldfarb and Huet, respectively.

Goldfarb’s proof for second-order unification is by reduc-
tion from Hilbert’s tenth problem. Huet’s original proof uses
the Post correspondence problem (PCP) to show the undecid-
ability of third-order unification. We simplify and formalise
his proof as a reduction from modified PCP. We also verify a
decision procedure for first-order unification.

All proofs are carried out in the setting of synthetic unde-
cidability and rely on Coq’s built-in notion of computation.

CCS Concepts • Theory of computation → Lambda
calculus; Type theory.

Keywords higher order unification, synthetic undecidabil-
ity, Coq

ACM Reference Format:
Simon Spies and Yannick Forster. 2020. Undecidability of Higher-
Order Unification Formalised in Coq. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs
(CPP ’20), January 20–21, 2020, New Orleans, LA, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3372885.3373832

1 Introduction
Higher-order unification in the simply-typed _-calculus is
the problem of finding a substitutionmaking two given typed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’20, January 20–21, 2020, New Orleans, LA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7097-4/20/01. . . $15.00
https://doi.org/10.1145/3372885.3373832

terms convertible. We speak of higher-order unification be-
cause substitution may insert abstractions _𝑥 .𝑠 for variables.
While first-order unification was conceived as a method

to implement automated resolution in classical logic, higher-
order unification has a variety of applications nowadays.
For instance, it is used as the foundation of programming
languages such as _-Prolog, in automated deduction, and
in type-inference procedures for dependent-type theory. In
particular, higher-order unification naturally arises when
working in proof assistants based on type theory. With a
right recursive definition of +, the proposition ∀𝑛. 0 + 𝑛 = 𝑛

can be proven using an application of the induction principle
∀𝑃 . 𝑃 (0) → (∀𝑛. 𝑃 (𝑛) → 𝑃 (𝑛 + 1)) → ∀𝑛. 𝑃 (𝑛). Higher-
order unification can be used to infer 𝑃 := _𝑛.0 + 𝑛 = 𝑛 to
make ∀𝑛. 0 + 𝑛 = 𝑛 convertible to the conclusion ∀𝑛. 𝑃 (𝑛).
Similarly, it allows for programming with implicit arguments
and automated proof search.

In contrast to first-order unification, higher-order unifica-
tion does not establish syntactic equality but equality up to
conversion. This allows for more complicated solutions. For
example, ∀𝑛. 0+𝑛 = 𝑛 can also be proven with an application
of the adapted induction principle ∀𝑃 . 𝑃 (1) → (∀𝑛. 𝑃 (𝑛 +
1) → 𝑃 (𝑛 + 2)) → ∀𝑛. 𝑃 (𝑛 + 1) where higher-order unific-
ation may infer the predicate 𝑃 B _𝑛.0 + pred 𝑛 = pred 𝑛
assuming pred(𝑛 + 1) is convertible to 𝑛.

The decision problem concerning higher-order unification
can be analysed in general or at fixed orders. For instance,
second-order unification only mentions terms with free vari-
ables of second-order type. In contrast, third-order unifica-
tion is concerned with terms where variables have a type of
at most order three.
In 1965, first-order unification was shown to be decid-

able by Robinson [1965] and even has linear decision al-
gorithms [Martelli and Montanari 1976; Paterson and Weg-
man 1978]. In 1972, Huet [1972, 1973] and Lucchesi [1972]
independently showed that third-order unification is unde-
cidable, thereby establishing the undecidability of higher-
order unification in general. In both cases the proof is by
reduction from Post’s correspondence problem [1946]. In
1981, Goldfarb [1981] proved that even second-order uni-
fication is undecidable by reducing from the solvability of
Diophantine equations, more commonly known as Hilbert’s
tenth problem [Davis 1973; Matijasevivc 1970].

https://doi.org/10.1145/3372885.3373832
https://doi.org/10.1145/3372885.3373832

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Simon Spies and Yannick Forster

In this paper, we formalise decidability results concern-
ing first- and higher-order unification for the Curry-style
simply-typed _-calculus with unrestricted 𝛽-conversion in
the constructive type theory of Coq. Explicitly, we formal-
ise the undecidability of second- and third-order unification
(and thus higher-order unification in general) by simplifying
the constructions of Goldfarb and Huet. We implement a
verified decider for first-order unification in the _-calculus
and give enumerability proofs for all considered problems.

Definitions, lemmas, and theorems in the PDF-version of
this document are hyperlinked with the accompanying Coq
development; the statements are marked by the symbol .
We contribute our mechanisation to the Coq library of

undecidable problems, available at
https://github.com/uds-psl/coq-library-undecidability/

Synthetic Undecidability Decidability results are com-
monly mechanised in Coq by calling a problem P repres-
ented by a predicate over a type 𝑋 decidable if dec P :=
∃𝑓 : 𝑋 → B.∀𝑥 . P(𝑥) ↔ 𝑓 𝑥 = true. This standard synthetic
definition of decidability differs from traditional definitions
omitting the condition that 𝑓 is computable, justified by the
fact that every function definable in constructive type theory
is always computable in any model of computation.

The mechanisation of synthetic undecidability, introduced
by Forster et al. [2019a], has been studied in a line of recent
work, now integrated in a Coq library of undecidable prob-
lems [Forster et al. 2020b]. Synthetically, the negative notion
of undecidability has to be defined carefully: simply defin-
ing it as dec P → ⊥ is not sufficient due to the axiomatic
freedom common to constructive type theories like Coq’s. In
Coq, the decidability of every problem P can be consistently
assumed and thus dec P → ⊥ is not provable for any P. For
instance, if we take Halt as a formalisation of the halting
problem for Turing machines, dec Halt is an independent
statement, meaning that neither decHalt → ⊥ nor decHalt
can be proved in axiom-free Coq.
To define synthetic undecidability we make use of the

non-provability of dec Halt and call a problem P synthetic-
ally undecidable if dec P → dec Halt can be proved. Since
the conclusion is not provable in axiom-free Coq, a proof
of the implication must have started from an unprovable as-
sumption. Furthermore, via the Curry Howard isomorphism
the implication can be turned into a function in a concrete
model of computation which transforms deciders for P to
deciders of Halt — ensuring that P cannot be decidable in
any Turing-complete model of computation.

On paper, undecidability proofs for a problem P are rarely
carried out by appealing to the definition of decidability, but
rather by giving a chain of computable many-one reductions
from an undecidable problem Q to P. In Coq, we can define
Q ⪯ P as ∃𝑓 .∀𝑥 . P(𝑥) ↔ Q(𝑓 𝑥) and say that Q many-
one reduces to P. Similar to before, the computability of 𝑓
can be omitted in the synthetic definition. Since many-one

reductions transport decidability, we consider a reduction
Halt ⪯ P an undecidability proof for P, because dec P →
dec Halt follows.

We build this work on top of the reductionsHalt ⪯ MPCP
mechanised by Forster, Heiter, and Smolka [2018] and the
reduction Halt ⪯ H10 mechanised by Larchey-Wendling
and Forster [2019].

Contribution We contribute the first formalisation of un-
decidability for any unification problem. All our problems
are presented as unification in a simply-typed, Curry-style
_-calculus allowing 𝛽-conversion in any context. We formal-
ise the undecidability of higher-order unification in general
following Dowek [2001], by reduction from Hilberts tenth
problem H10. By simplifying the proof by Huet [1973], we
formalise undecidability of third-order unification, by re-
duction from the modified Post correspondence problem
MPCP. Lastly, by embedding the proof by Goldfarb [1981]
into the full _-calculus, we formalise the undecidability of
second-order unification, by reduction from H10. Further-
more, we establish enumerability of all these problems and
the decidability of first-order unification.

Overview In Section 2 we introduce the _-calculus we use,
define higher-order unification U, and prove undecidability
and enumerability forU. In Section 3we define𝑛th-order uni-
fication U𝑛 and show that U𝑛 ⪯ U. In Section 4 we present a
simplified account of Huet’s [1973] undecidability proof for
U3 and in Section 5 a simplified account of Goldfarb’s [1981]
undecidability proof for U2, adapted to our setting. In Sec-
tion 6 we explain how constants can be added or removed to
the _-calculus in the context of unification problems. In Sec-
tion 7 we present a decidability proof for U1, before we give
comments on the formalisation in Section 8, and conclude
in Section 9.

Preliminaries We write L(𝑋) for the type of lists over 𝑋 .
Given a list 𝐴, we write 𝑥 ∈ 𝐴, if 𝑥 is contained in the list
𝐴. We write 𝐵 ⊆ 𝐴 if this is the case for every 𝑥 ∈ 𝐵. We
write ®𝐴 for the reverse list, |𝐴| for the length of 𝐴, 𝑎𝑛 for the
list which contains 𝑎 𝑛-times, and [𝑓 𝑥 | 𝑥 ∈ 𝐴] for the list
obtained by applying 𝑓 to every element of 𝐴. ++ denotes list
concatenation and :: the cons operation on lists.

2 Higher-Order Unification
In this work, we consider a Curry-style1 simply-typed _-
calculus (STLC) with unrestricted 𝛽-reduction. For a discrete
type of constants C we define terms, types, and typing con-
texts by

𝑠, 𝑡, 𝑢, 𝑣 F 𝑥 | 𝑐 | _𝑥.𝑠 | 𝑠 𝑡 (𝑥 : N, 𝑐 : C)
𝐴, 𝐵 F 𝛼 | 𝐴 → 𝐵 (𝛼 : N)

Γ,Δ, Σ F 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛

1Meaning that abstractions are not annotated with a type.

https://github.com/uds-psl/coq-library-undecidability/
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.terms.html#exp
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.terms.html#type
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.typing.html#ctx
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.typing.html#ctx

Undecidability of Higher-Order Unification Formalised in Coq CPP ’20, January 20–21, 2020, New Orleans, LA, USA

We refer to both variables and constants as atoms, denoted
by the letter 𝑎. We write vars 𝑠 for the list of free variables
which occur in 𝑠 and dom Γ for the variables that occur in Γ.
Γ ∪ Δ denotes the context which contains all bindings of Γ
and Δ. For a list of types 𝐿 = [𝐴1, . . . , 𝐴𝑛], we write 𝐿 → 𝐵

for the function type 𝐴1 → · · · → 𝐴𝑛 → 𝐵.

Substitution In the formalisation, we use a De Bruijn
[1972] representation of terms which we generate using
Autosubst 2 [Stark et al. 2019]. For the sake of readability, we
use named syntax on paper and follow Barendregt’s variable
convention [1984], assuming that the free variables occur-
ring in terms are always distinct from bound variables.
Both on paper and in the formalisation we use capture-

avoiding parallel substitutions, denoted by 𝜎, 𝜏 . A parallel
substitution is an infinite mapping from variables (i.e. nat-
ural numbers) to terms. We denote applying the parallel sub-
stitution 𝜎 to all free variables in the term 𝑠 by 𝑠 [𝜎]. The
substitution 𝜎 [𝑥 := 𝑠] denotes the extension of 𝜎 by bind-
ing 𝑥 to the term 𝑠 and 𝜎 [𝜏] the composition of 𝜎 and 𝜏 . We
write 𝑠/𝑥 for the single-point substitution id[𝑥 := 𝑠] where
id 𝑥 B 𝑥 .

Operational Semantics Wewrite 𝑠 ≻ 𝑡 , if 𝑠 can be reduced
to 𝑡 in a single 𝛽-reduction step and 𝑠 ≻∗ 𝑡 , if 𝑠 can be reduced
to 𝑡 in finitely many steps. We say 𝑠 is convertible to 𝑡 , written
𝑠 ≡ 𝑡 , if 𝑠 and 𝑡 are related in the equivalence closure of ≻. A
term 𝑠 is called normal, if it cannot be reduced any further.
The small step semantics ≻ is confluent, normal forms are
unique, and convertibility is compatible with substitutions
and the term structure:

Lemma 2.1.
1. If 𝑠 ≻∗ 𝑡 and 𝑠 ≻∗ 𝑢, then 𝑡 ≻∗ 𝑣 and 𝑢 ≻∗ 𝑣 for some 𝑣 .
2. If 𝑠 ≻∗ 𝑡 and 𝑠 ≻∗ 𝑢 for normal 𝑡 and 𝑢, then 𝑡 = 𝑢.
3. ≻, ≻∗, ≡ are compatible with the term structure and

substitution.

Simple Typing We equip our calculus with a Curry-style
simple type system. We write Γ ⊢ 𝑠 : 𝐴, if 𝑠 can be assigned
the type𝐴 under the typing context Γ. The type of constants
is given by a signature function Ω.

(𝑥 : 𝐴) ∈ Γ

Γ ⊢ 𝑥 : 𝐴 Γ ⊢ 𝑐 : Ω𝑐
Γ ⊢ 𝑠 : 𝐴 → 𝐵 Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝑠 𝑡 : 𝐵

Γ, 𝑥 : 𝐴 ⊢ 𝑠 : 𝐵
Γ ⊢ _𝑥.𝑠 : 𝐴 → 𝐵

We lift typing to substitutions by Δ ⊢ 𝜎 : Γ := ∀(𝑥 : 𝐴) ∈
Γ. Δ ⊢ 𝜎𝑥 : 𝐴. Substitutivity and preservation can be shown:

Lemma 2.2. Let Γ ⊢ 𝑠 : 𝐴.
1. If Δ ⊢ 𝜎 : Γ, then Δ ⊢ 𝑠 [𝜎] : 𝐴.
2. If 𝑠 ≻ 𝑡 , then Γ ⊢ 𝑡 : 𝐴.
3. If 𝑠 ≻∗ 𝑡 , then Γ ⊢ 𝑡 : 𝐴.

Normalisation It is well known that in the simply-typed
_-calculus, all well-typed terms are weakly normalising:

Lemma 2.3. If Γ ⊢ 𝑠 : 𝐴, then there exists some normal
term 𝑡 such that 𝑠 ≻∗ 𝑡 .

We introduce an evaluation function b which for a well-
typed term Γ ⊢ 𝑠 : 𝐴 computes its normal form as follows:
Following the standard technique by Takahashi [1989], in the
proof of confluence (lemma 2.1), we define a parallel reduc-
tion function 𝜍 . We use 𝜍 to define a step-indexed evaluation
function b𝑛 𝑠 where b𝑛 𝑠 returns the normal form of 𝑠 if it
can be reached by applying 𝜍 𝑛-times. lemma 2.3 allows the
computation of a sufficient step index 𝑛, which can be used
in b to compute the normal form using b𝑛 .

Lemma 2.4. If Γ ⊢ 𝑠 : 𝐴, then 𝑠 ≻∗ b𝑠 and b𝑠 is normal.

Reasoning about the normal forms of terms in the con-
text of unification frequently requires an analysis of normal
forms:

Lemma 2.5. If 𝑠 is normal, then 𝑠 = _𝑥1 · · · 𝑥𝑛 .𝑎 𝑡1 · · · 𝑡𝑚
for some 𝑛, atom 𝑎, and finite number of normal 𝑡1, . . . , 𝑡𝑚 .

2.1 Unification
Given two well-typed terms, higher-order unification is the
problem of finding a well-typed substitution such that un-
der the substitution both terms are convertible. Formally,
an instance of higher-order unification is a dependent tuple
(Γ, 𝑠, 𝑡, 𝐴, 𝐻𝑠 , 𝐻𝑡) where𝐻𝑠 and𝐻𝑡 are proofs of Γ ⊢ 𝑠 : 𝐴 and
Γ ⊢ 𝑡 : 𝐴 respectively. On paper, we omit 𝐻𝑠 , 𝐻𝑡 and write
Γ ⊢ 𝑠 ?

= 𝑡 : 𝐴 instead.

Definition 2.6.

U(Γ ⊢ 𝑠 ?
= 𝑡 : 𝐴) B ∃Δ𝜎. Δ ⊢ 𝜎 : Γ and 𝑠 [𝜎] ≡ 𝑡 [𝜎]

Note that when proving unifiability of a higher-order
unification instance, the substitution is allowed to contain
open terms. As a consequence, the equation Γ ⊢ _𝑥𝑦.𝑓 𝑥 ?

=

_𝑥𝑦.𝑓 𝑦 : 𝛼 in the context Γ = (𝑓 : 𝛼 → 𝛼) can be unified
by the substitution __.𝑧/𝑓 in the context Δ = (𝑧 : 𝛼). If
unification was not allowed to introduce fresh variables, this
equation could be unified if and only if the type 𝛼 is inhab-
ited. If 𝛼 is an empty type and 𝜎 was only allowed to insert
closed terms, then the two terms would not be unifiable. In
this case all closed terms of type 𝛼 → 𝛼 are convertible to
identity functions. Hence, after substitution the left term
is convertible to _𝑥𝑦.𝑥 and the right term to _𝑥𝑦.𝑦 which
in turn are clearly not convertible. Thus, disallowing fresh
variables would force unification to perform an emptiness
check in cases such as the above equation which would make
it trivially undecidable in dependent type theories.

Normalisation Using that everywell-typed term isweakly
normalising, we show that every equation Γ ⊢ 𝑠

?
= 𝑡 : 𝐴 is

unifiable if and only if it is unifiable by a substitution which
only inserts normal terms.

https://ps.uni-saarland.de/extras/HOU/HOU.calculus.syntax.html#isAtom
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.prelim.html#71ca1960dd16f5a2fd2bf72245ca13b9
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.prelim.html#71ca1960dd16f5a2fd2bf72245ca13b9
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.semantics.html#step
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.equivalence.html#9461221f34f44b66cab35a70863c8d7c
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.equivalence.html#normal
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.confluence.html#confluence_step
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.confluence.html#confluence_step
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.confluence.html#confluence_step
https://ps.uni-saarland.de/extras/HOU/HOU.std.ars.confluence.html#confluence_unique_normal_forms
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.equivalence.html#Equivalence.CompatibilityProperties
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.typing.html#typing
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.typing.html#typingSubst
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.typing.html#Typing.Preservation
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.typing.html#Typing.Preservation
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.typing.html#preservation_under_substitution
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.typing.html#preservation_under_reduction
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.typing.html#preservation_under_steps
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.normalisation.html#termination_steps
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.normalisation.html#termination_steps
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.evaluator.html#eta
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.confluence.html#rho
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.confluence.html#rho
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.evaluator.html#xi
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.evaluator.html#xi
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.evaluator.html#Evaluator.Correctness
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.evaluator.html#Evaluator.Correctness
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.terms_extension.html#normal_nf
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.terms_extension.html#normal_nf
https://ps.uni-saarland.de/extras/HOU/HOU.unification.higher_order_unification.html#U
https://ps.uni-saarland.de/extras/HOU/HOU.unification.higher_order_unification.html#unif
https://ps.uni-saarland.de/extras/HOU/HOU.unification.higher_order_unification.html#U
https://ps.uni-saarland.de/extras/HOU/HOU.unification.higher_order_unification.html#U

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Simon Spies and Yannick Forster

Definition 2.7. NU(Γ ⊢ 𝑠 ?
= 𝑡 : 𝐴) B ∃Δ𝜎.Δ ⊢ 𝜎 : Γand

𝑠 [𝜎] ≡ 𝑡 [𝜎] and∀𝑥 . normal (𝜎𝑥).

Lemma 2.8.
1. If Δ ⊢ 𝜎 : Γ, then we can compute a substitution 𝜏 such

that Δ ⊢ 𝜏 : Γ, 𝜎𝑥 ≻∗ 𝜏𝑥 for all 𝑥 , and 𝜏𝑥 is normal for
all 𝑥 ∈ dom Γ.

2. U(Γ ⊢ 𝑠 ?
= 𝑡 : 𝐴) iff NU(Γ ⊢ 𝑠 ?

= 𝑡 : 𝐴).

Proof. 1. Pick 𝜏𝑥 B b (𝜎𝑥) if (𝑥 : 𝐴) ∈ Γ and 𝜏𝑥 B 𝜎𝑥

otherwise, where b is the evaluation function defined
before.

2. The backward direction is trivial. For the forward dir-
ection we use 1. to obtain Δ ⊢ 𝜏 ′ : Γ. We modify 𝜏 ′ to a
substitution 𝜏 inserting only normal terms: 𝜏𝑥 B 𝜏 ′𝑥
if 𝑥 ∈ vars 𝑠 or 𝑥 ∈ vars 𝑡 and 𝜏𝑥 B 𝑥 otherwise. □

2.2 System Unification
Dowek [2001] defines unification as a problem over multiple
equations which have to be unified with the same substitu-
tion. Following Snyder and Gallier [1989], we call multiple
equations a system of equations. A single equation is a pair
of terms, written 𝑠 ?

= 𝑡 , and a system of equations is a list of
single equations, denoted by the letter 𝐸. We lift typing to
systems of equations as follows:

Γ ⊢ [] : []
Γ ⊢ 𝑠 : 𝐴 Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝐸 : 𝐿

Γ ⊢ (𝑠 ?
= 𝑡 :: 𝐸) : (𝐴 :: 𝐿)

A system unification instance is a dependent tuple (Γ, 𝐸, 𝐿, 𝐻)
where 𝐻 is a proof of Γ ⊢ 𝐸 : 𝐿. On paper, we also write
Γ ⊢ 𝐸 : 𝐿 for the sake of readability.

Definition 2.9.

SU(Γ ⊢ 𝐸 : 𝐿) B ∃Δ𝜎.Δ ⊢ 𝜎 : Γ and ∀𝑠 ?
= 𝑡 ∈ 𝐸. 𝑠 [𝜎] ≡ 𝑡 [𝜎]

We show that higher-order unification and system unific-
ation are interreducible. To prove SU ⪯ U we exploit that
bound variables can neither be replaced nor reduced. For
example, given the equations 𝑠1

?
= 𝑡1 and 𝑠2

?
= 𝑡2, we produce

the equation _ℎ.ℎ 𝑠1𝑠2
?
= _ℎ.ℎ 𝑡1𝑡2, which is unifiable iff the

original equations are unifiable by the same substitution.

Theorem 2.10. U ⪯ SU and SU ⪯ U.

Analogously to lemma 2.8, we define a normal version of
system unification and prove it equivalent:

Definition 2.11. NSU(Γ ⊢ 𝐸 : 𝐿) B ∃Δ𝜎.Δ ⊢ 𝜎 : Γ and
∀𝑠 ?

= 𝑡 ∈ 𝐸. 𝑠 [𝜎] ≡ 𝑡 [𝜎] and ∀𝑥 .normal (𝜎𝑥)

Lemma 2.12. NSU(Γ ⊢ 𝐸 : 𝐿) iff SU(Γ ⊢ 𝐸 : 𝐿)

2.3 Undecidability of Higher-Order Unification
Goldfarb [1981] reduces Hilbert’s tenth problem H10 to
second-order unification. As the proof is quite intricate,
Dowek [2001] motivates the main idea by reducing H10

to higher-order unification in general. While the latter is
not as strong as Goldfarb’s original result, its proof is con-
siderably simpler. In the following, we formalise a modified
version of Dowek’s argument and use it as a stepping stone
to establish the undecidability of second-order unification
in Section 5. Note that by theorem 2.10 it suffices to reduce
H10 to system unification.
In its original formulation, Hilbert’s tenth problem asks

whether a given Diophantine equation, an equation over in-
tegers involving only addition, multiplication and constants,
has a solution. Larchey-Wendling and Forster [2019] mech-
anise the synthetic undecidability of H10. In the following,
we use their formulation of the problem based on elementary
Diophantine equations (EDEs for short):

𝑑 F 𝑥 ¤= 1 | 𝑥 + 𝑦 ¤= 𝑧 | 𝑥 · 𝑦 ¤= 𝑧 (𝑥,𝑦, 𝑧 : N)
We denote systems of EDEs by the letter 𝐷 and write vars 𝐷
for the variables occuring in 𝐷 . The satisfaction of an EDE 𝑑
by the variable assignment \ is denoted by \ ⊨ 𝑑 and the
satisfaction of a system 𝐷 by \ ⊨ 𝐷 :
\ ⊨ 𝑥 ¤= 1 iff \𝑥 = 1 \ ⊨ 𝑥 + 𝑦 ¤= 𝑧 iff \𝑥 + \𝑦 = \𝑧

\ ⊨ 𝑥 · 𝑦 ¤= 𝑧 iff \𝑥 · \𝑦 = \𝑧 \ ⊨ 𝐷 iff ∀𝑑 ∈ 𝐷. \ ⊨ 𝑑

Hilbert’s tenth problem H10 is then formulated as the satis-
fiability of a system of EDEs:

Definition 2.13. H10(𝐷) := ∃\ . \ ⊨ 𝐷

The reduction from H10 is based on two core ideas. The
first idea is to encode natural numbers, addition, and mul-
tiplication into the _-calculus using Church numerals. The
second idea is to restrict the domain of the unification equa-
tions to encodings of natural numbers, by introducing char-
acteristic equations only satisfied by Church numerals.
Church numerals, defined by J𝑛Kcn B _𝑎𝑓 .𝑓 𝑛 𝑎, express

iteration in the _-calculus. Addition and multiplication can
be defined by add 𝑠 𝑡 B _𝑎𝑓 .𝑠 (𝑡 𝑎 𝑓) 𝑓 and mul 𝑠 𝑡 B
_𝑎𝑓 .𝑠 𝑎 (_𝑏.𝑡 𝑏 𝑓).

Lemma 2.14. Let JNKcn B 𝛼 → (𝛼 → 𝛼) → 𝛼 .

1. Γ ⊢ J𝑛Kcn : JNKcn
2. add J𝑚Kcn J𝑛Kcn ≡ J𝑚 + 𝑛Kcn
3. mul J𝑚Kcn J𝑛Kcn ≡ J𝑚 · 𝑛Kcn.
4. If J𝑚Kcn ≡ J𝑛Kcn, then𝑚 = 𝑛.

In the reduction, we have to construct variable assign-
ments from substitutions, which requires us to recover nat-
ural numbers from _-terms:

Lemma 2.15. For every term 𝑠 , we can compute 𝑛 such that
𝑠 = J𝑛Kcn or prove that no such 𝑛 exists.

Note that Church numerals distribute with function ap-
plication, meaning 𝑓 (J𝑛Kcn 𝑠 𝑓) ≡ 𝑓 𝑛+1 𝑠 ≡ J𝑛Kcn (𝑓 𝑠) 𝑓 .
We use this property to give a characteristic equation which
can only be satisfied by Church numerals:

https://ps.uni-saarland.de/extras/HOU/HOU.unification.higher_order_unification.html#NU
https://ps.uni-saarland.de/extras/HOU/HOU.unification.higher_order_unification.html#NU
https://ps.uni-saarland.de/extras/HOU/HOU.unification.higher_order_unification.html#Normalisation
https://ps.uni-saarland.de/extras/HOU/HOU.unification.higher_order_unification.html#Normalisation
https://ps.uni-saarland.de/extras/HOU/HOU.unification.higher_order_unification.html#normalise_subst
https://ps.uni-saarland.de/extras/HOU/HOU.unification.higher_order_unification.html#U_NU
https://ps.uni-saarland.de/extras/HOU/HOU.unification.systemunification.html#eqs
https://ps.uni-saarland.de/extras/HOU/HOU.unification.systemunification.html#sysuni
https://ps.uni-saarland.de/extras/HOU/HOU.unification.systemunification.html#SU
https://ps.uni-saarland.de/extras/HOU/HOU.unification.systemunification.html#SU
https://ps.uni-saarland.de/extras/HOU/HOU.unification.systemunification.html#SystemUnification.Interreducible
https://ps.uni-saarland.de/extras/HOU/HOU.unification.systemunification.html#SystemUnification.Interreducible
https://ps.uni-saarland.de/extras/HOU/HOU.unification.systemunification.html#NSU
https://ps.uni-saarland.de/extras/HOU/HOU.unification.systemunification.html#NSU
https://ps.uni-saarland.de/extras/HOU/HOU.unification.systemunification.html#SU_NSU
https://ps.uni-saarland.de/extras/HOU/HOU.unification.systemunification.html#SU_NSU
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.diophantine_equations.html#deq
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.diophantine_equations.html#deq
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.diophantine_equations.html#H10
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.diophantine_equations.html#H10
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.encoding.html#enc
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.encoding.html#ChurchEncoding.Properties
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.encoding.html#ChurchEncoding.Properties
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.encoding.html#typing_enc
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.encoding.html#enc_add
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.encoding.html#enc_mul
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.encoding.html#enc_equiv_injective
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.encoding.html#dec_enc
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.encoding.html#dec_enc

Undecidability of Higher-Order Unification Formalised in Coq CPP ’20, January 20–21, 2020, New Orleans, LA, USA

Lemma 2.16. Let 𝑠 be a normal term.

_𝑎𝑓 .𝑓 (𝑠 𝑎 𝑓) ≡ _𝑎𝑓 .𝑠 (𝑓 𝑎) 𝑓 iff 𝑠 = J𝑛Kcn for some 𝑛

Reduction For the reduction, we need to transform a sys-
tem of EDEs into a system of unification equations. We en-
code the individual equations by

𝑥 ¤= 1 := 𝑥
?
= J1Kcn 𝑥 + 𝑦 ¤= 𝑧 := add 𝑥 𝑦

?
= 𝑧

𝑥 · 𝑦 ¤= 𝑧 := mul 𝑥 𝑦
?
= 𝑧

and restrict the domain of the unification equations through
characteristic equations of the formCN𝑥 B _𝑎𝑓 .𝑥 (𝑓 𝑎) 𝑓 ?

=

_𝑎𝑓 .𝑓 (𝑥 𝑎 𝑓).

Lemma 2.17. Let Γ𝐷 B [(𝑥 : JNKcn) | 𝑥 ∈ vars 𝐷]. The
following rules are then admissible:

𝑥 ∈ vars 𝐷

Γ𝐷 ⊢ CN 𝑥 : JNKcn

𝑑 ∈ 𝐷

Γ𝐷 ⊢ 𝑑 : JNKcn

In analogy to the notation \ ⊨ 𝑑 , we define 𝜎 ⊨ 𝑠 ?
= 𝑡 B

𝑠 [𝜎] ≡ 𝑡 [𝜎] to express that 𝜎 unifies 𝑠 and 𝑡 . In particular, we
mean 𝜎 unifies the encoding of 𝑑 , when we write 𝜎 ⊨ 𝑑 . We
show that the characteristic equation restricts the domain
and that the encoding preserves arithmetic operations.

Lemma 2.18. Let 𝜎𝑥 be normal.

𝜎 ⊨ CN 𝑥 iff ∃𝑛. 𝜎𝑥 = J𝑛Kcn
Lemma 2.19. Let 𝜎𝑥 = J𝑚Kcn, 𝜎𝑦 = J𝑛Kcn, and 𝜎𝑧 = J𝑝Kcn.

𝜎 ⊨ 𝑥 ¤= 1 iff 𝑚 = 1 𝜎 ⊨ 𝑥 + 𝑦 ¤= 𝑧 iff 𝑚 + 𝑛 = 𝑝

𝜎 ⊨ 𝑥 · 𝑦 ¤= 𝑧 iff 𝑚 · 𝑛 = 𝑝

Theorem 2.20. H10 ⪯ SU

Proof. For a system of EDEs 𝐷 , we produce the system of
equations:

𝑓 (𝐷) = Γ𝐷 ⊢ 𝐸𝐷 : JNKcn
|𝐸𝐷 |

where 𝐸𝐷 = [CN 𝑥 | 𝑥 ∈ vars 𝐷] ++[𝑑 | 𝑑 ∈ 𝐷].
It remains to prove that H10(𝐷) iff SU(𝑓 (𝐷)).
1. Let \ be a solution for 𝐷 . Pick Δ := ∅ and 𝜎𝑥 := J\𝑥Kcn.

Typing follows with lemma 2.14 and the unifiability
with lemma 2.19.

2. By lemma 2.12 let Δ ⊢ 𝜎 : Γ𝐷 be a substitution insert-
ing only normal terms and unifying the equations 𝐸𝐷 .
Using lemma 2.16 we define \𝑥 := 𝑛 if 𝜎𝑥 = J𝑛Kcn
and \𝑥 := 0 otherwise. We establish satisfiability us-
ing Lemmas 2.18 and 2.19. □

Enumerability We show that the problem U is enumer-
able. In general, following Forster et al. [2019a] we say that a
problem 𝑃 on 𝑋 is enumerable if there is a function 𝐿 : N→
L𝑋 such that 𝑃𝑥 holds if and only if ∃𝑛. 𝑥 ∈ 𝐿𝑛. A type 𝑋
is enumerable if there is a function 𝐿 : N→ L𝑋 such that
∀𝑥 : 𝑋 .∃𝑛. 𝑥 ∈ 𝐿𝑛.

Our strategy to enumerate U is to first enumerate all pos-
sible dependent tuples Γ ⊢ 𝑠

?
= 𝑡 : 𝐴 along with all pos-

sible contexts Δ and substitutions 𝜎 such that Δ ⊢ 𝜎 : Γ
and ∀𝑥 ∉ dom Γ. 𝜎𝑥 = 𝑥 . We then obtain an enumerator
for U by projecting out the pairs Γ ⊢ 𝑠

?
= 𝑡 : 𝐴 such that

b (𝑠 [𝜎]) = b (𝑡 [𝜎]).

Lemma 2.21. The following are enumerable:
1. The types of terms, types and typing contexts.
2. Proofs of Γ ⊢ 𝑠 : 𝐴.
3. Dependent tuples Γ ⊢ 𝑠 ?

= 𝑡 : 𝐴.
4. Dependent tuples (Δ, 𝜎, Γ) such that Δ ⊢ 𝜎 : Γ and

∀𝑥 ∉ dom Γ. 𝜎𝑥 = 𝑥 .

Proof. By exhibiting a function from N to lists of the desired
type, using standard techniques from Forster et al. [2019a].

□

Theorem 2.22. U is enumerable.

Proof. By lemma 2.21 we can easily obtain an enumerator
𝐿 for tuples (Γ, 𝑠, 𝑡, 𝐴, 𝐻1, 𝐻2,Δ, 𝜎) such that 𝐻1 is a proof
of Γ ⊢ 𝑠 : 𝐴, 𝐻2 is a proof of Γ ⊢ 𝑡 : 𝐴, Δ ⊢ 𝜎 : Γ, and
b (𝑠 [𝜎]) = b (𝑡 [𝜎]).
We obtain an enumerator for U from 𝐿 by discarding Δ

and 𝜎 from the results of 𝐿. □

Corollary 2.23. SU is enumerable.

Proof. Immediate with Theorems 2.10 and 2.22. □

3 Nth-Order Unification
In Section 2, we established the undecidability of higher-
order unification in general. In the following, we restrict the
order of the variables which may occur. For example, second-
order unification is only concerned with terms containing
free variables of at most order two. Third-order unification
on the other hand restricts the order of free variables to
three.

Order Typing In general, we define the order of a type 𝐴
by ord 𝛼 B 1 and ord (𝐴 → 𝐵) B max(ord 𝐴 + 1, ord 𝐵).
Following Snyder and Gallier [1989], we say a term is of
order 𝑛, if the types of all occurring variables are at most of
order 𝑛 and the types of all occurring constants are at most
of order 𝑛 + 1. We capture the fragment of all terms which
are of order 𝑛 by order typing Γ ⊢𝑛 𝑠 : 𝐴.

(𝑥 : 𝐴) ∈ Γ ord 𝐴 ≤ 𝑛

Γ ⊢𝑛 𝑥 : 𝐴
ord (Ω𝑐) ≤ 𝑛 + 1

Γ ⊢𝑛 𝑐 : Ω𝑐

Γ ⊢𝑛 𝑠 : 𝐴 → 𝐵 Γ ⊢𝑛 𝑡 : 𝐴
Γ ⊢𝑛 𝑠 𝑡 : 𝐵

Γ, 𝑥 : 𝐴 ⊢𝑛 𝑠 : 𝐵
Γ ⊢𝑛 _𝑥 .𝑠 : 𝐴 → 𝐵

Allowing constants of order 𝑛 + 1 coincides with the usual
first-order interpretation where for constants g : 𝛼 → 𝛼 →
𝛼 and a : 𝛼 , the term 𝑥 : 𝛼 ⊢1 g a 𝑥 : 𝛼 is a first-order term.

https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.encoding.html#CharacteristicEquation
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.encoding.html#CharacteristicEquation
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.encoding.html#Encoding.Typing
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.encoding.html#Encoding.Typing
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.reduction.html#EquationEquivalences.Variables
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.reduction.html#EquationEquivalences.Variables
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.reduction.html#EquationEquivalences
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.reduction.html#EquationEquivalences
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.reduction.html#Dowek
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.reduction.html#Dowek
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.reduction.html#H10_DWK
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.dowek.reduction.html#DWK_H10
https://ps.uni-saarland.de/extras/HOU/HOU.unification.enumerability.html#ListEnumerability
https://ps.uni-saarland.de/extras/HOU/HOU.unification.enumerability.html#ListEnumerability
https://ps.uni-saarland.de/extras/HOU/HOU.unification.enumerability.html#ListEnumerability.Basics
https://ps.uni-saarland.de/extras/HOU/HOU.unification.enumerability.html#enumT_typing
https://ps.uni-saarland.de/extras/HOU/HOU.unification.enumerability.html#enumT_uni
https://ps.uni-saarland.de/extras/HOU/HOU.unification.enumerability.html#enum_substs
https://ps.uni-saarland.de/extras/HOU/HOU.unification.enumerability.html#enumerable_unification
https://ps.uni-saarland.de/extras/HOU/HOU.unification.enumerability.html#enumerable_unification
https://ps.uni-saarland.de/extras/HOU/HOU.concon.enumerability.html#enumerable_systemunification
https://ps.uni-saarland.de/extras/HOU/HOU.concon.enumerability.html#enumerable_systemunification
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.order.html#ordertyping

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Simon Spies and Yannick Forster

Order typing is lifted to substitutions by Δ ⊢𝑛 𝜎 : Γ := ∀(𝑥 :
𝐴) ∈ Γ. Δ ⊢𝑛 𝜎𝑥 : 𝐴.

For Γ ⊢𝑛 𝑠 : 𝐴, neither the type 𝐴 nor the order 𝑛 is
necessarily unique. Nonuniqueness is inherited from the
Curry-style type system (and monotonicity of the rules). For
example, the term _𝑥 .𝑥 can be typed as ⊢1 _𝑥.𝑥 : 𝛼 → 𝛼 and
⊢2 _𝑥.𝑥 : (𝛼 → 𝛼) → (𝛼 → 𝛼). We remark that w.r.t. uni-
fication, only the order of free variables is of interest, and
their order is uniquely determined by the typing context.
Order typing is monotone with respect to the order and

can be seen as a more fine-grained version of the standard
typing judgement. Similar to standard typing, order typing
is also preserved under substitution and reduction.

Lemma 3.1.
1. If Γ ⊢𝑛 𝑠 : 𝐴, then Γ ⊢ 𝑠 : 𝐴.
2. If Γ ⊢ 𝑠 : 𝐴, then Γ ⊢𝑛 𝑠 : 𝐴 for some 𝑛.
3. If Γ ⊢𝑛 𝑠 : 𝐴 and 𝑛 ≤ 𝑚, then Γ ⊢𝑚 𝑠 : 𝐴.

All properties also hold for substitutions.

Lemma 3.2. Let Γ ⊢𝑛 𝑠 : 𝐴.
1. If Δ ⊢𝑛 𝜎 : Γ, then Δ ⊢𝑛 𝑠 [𝜎] : 𝐴.
2. If 𝑠 ≻ 𝑠 ′, then Γ ⊢𝑛 𝑠 ′ : 𝐴.
3. If 𝑠 ≻∗ 𝑠 ′, then Γ ⊢𝑛 𝑠 ′ : 𝐴.

Nth-Order Unification Compared to higher-order unific-
ation, 𝑛th-order unification restricts the order of all occur-
ring terms to 𝑛. An instance of 𝑛th-order unification is a
dependent tuple (Γ, 𝑠, 𝑡, 𝐴, 𝐻𝑠 , 𝐻𝑡) where 𝐻𝑠 , 𝐻𝑡 are proofs of
Γ ⊢𝑛 𝑠 : 𝐴 and Γ ⊢𝑛 𝑡 : 𝐴 respectively. On paper, we omit
𝐻𝑠 , 𝐻𝑡 and write Γ ⊢𝑛 𝑠

?
= 𝑡 : 𝐴 instead.

Definition 3.3.

U𝑛 (Γ ⊢𝑛 𝑠
?
= 𝑡 : 𝐴) B ∃Δ𝜎. Δ ⊢𝑛 𝜎 : Γ and 𝑠 [𝜎] ≡ 𝑡 [𝜎]

For 𝑛 = 0, the equation 𝑥 : 𝛽 ⊢0 a
?
= a : 𝛼 is not unifiable

if a is a constant of type 𝛼 and 𝛽 is empty. Any substitution
would have to replace 𝑥 by some term of type 𝛽 and order 1.
If 𝛽 is empty, no term without variables exists of type 𝛽 . To
exclude such artificial instances, we only consider the case
where 𝑛 ≥ 1.

Similar to higher-order unification, we define a system
version of 𝑛th-order unification, called SU𝑛 and versions of
both U𝑛 and SU𝑛 where the substitution is required to be
normal on all arguments called NU𝑛 and NSU𝑛 . We do not
spell out all the details of these problems on paper.
An instance of SU𝑛 is denoted by Γ ⊢𝑛 𝐸 : 𝐿. The reduc-

tion U ⪯ SU carries over to U𝑛 ⪯ SU𝑛 without changes.
The reduction SU ⪯ U does not. Consider the second-order
system of equations _𝑥𝑦.𝑥 ?

= 𝑓 and _𝑥𝑦.𝑦
?
= 𝑔 which can

be typed as 𝛼 → 𝛼 → 𝛼 in a context where 𝑓 , 𝑔 are of this
type. The equation _ℎ.ℎ (_𝑥𝑦.𝑥) (_𝑥𝑦.𝑦) ?

= _ℎ.ℎ 𝑓 𝑔 cannot
be typed in the second-order fragment as applying the left
hand sides to ℎ makes ℎ a third-order variable. The reduction
SU𝑛 ⪯ U𝑛 is not needed in the following as we can prove

all unification problems U2+𝑘 undecidable without it. In the
one case where it would be useful, connecting H10 with U2
using theorem 5.23, we can essentially inline the reduction
but have to take care of some binders. On paper the reduc-
tion exists: If 𝑛 = 1 it is trivial because first-order unification
is decidable (theorem 7.6). If 𝑛 > 1, then in the context of
the library we have a reduction Halt ⪯ H10 ⪯ U2 ⪯ U𝑛

using corollary 5.25. Further, SU𝑛 is enumerable thus there
is a reduction SU𝑛 ⪯ Halt which we do not formalise in this
work. The tools for formalising said reduction are developed
in [Forster and Kunze 2019; Forster et al. 2020a].

The equivalence ofU𝑛 andNU𝑛 , as well as the equivalence
of SU𝑛 and NSU𝑛 is preserved. The proofs are analogous to
their higher-order counterparts.

3.1 Conservativity
Huet [1973] proves the undecidability of higher-order unific-
ation and remarks that since his reduction only uses terms
of at most order three, it can be seen as an undecidability
proof for third-order unification. Formalising this argument
would require the duplication of auxiliary lemmas to the
setting without explicit order. Instead, in this work, we show
U𝑛 ⪯ U, the conservativity of unification.
The key insight for the reduction is that for two terms 𝑠

and 𝑡 of order 𝑛 one can always transform a unifying higher-
order substitution into a unifying substitution of order𝑛. This
is accomplished by replacing free variables and constants
which are not needed to unify 𝑠 and 𝑡 with terms of the same
type and order one.

We denote the arity of 𝐴 by ar(𝐴) and the target of 𝐴, the
rightmost base type of 𝐴, by tar(𝐴). For example, the arity
of the type 𝛼 → (𝛼 → 𝛼) → 𝛽 is 2 and the target is 𝛽 .

Lemma 3.4. For the term inhab𝑥 𝐴 B _𝑥1 . . . 𝑥ar(𝐴) .𝑥 we
have Γ ⊢1 inhab𝑥 𝐴 : 𝐴 provided that (𝑥 : tar(𝐴)) ∈ Γ.

Lemma 3.5. Let Δ ⊢ 𝜎 : Γ with 𝑠 [𝜎] ≡ 𝑡 [𝜎].
1. There exist Σ ⊢ 𝜏 : Γ with 𝑠 [𝜏] ≡ 𝑡 [𝜏] and ord Σ ≤ 1.
2. There exist Δ ∪ Σ ⊢ 𝜏 : Γ with 𝑠 [𝜏] ≡ 𝑡 [𝜏], ord Σ ≤ 1

and all constants in 𝜏 are constants from 𝑠 or 𝑡 .

Proof. For 1. let 𝜏 ′𝑥 B inhab𝑦𝑥 𝐴 if (𝑥 : 𝐴) ∈ Δ and 𝜏 ′𝑥 B 𝑥

otherwise where each 𝑦𝑥 is a fresh variable. We pick Σ B
[(𝑦𝑥 : tar(𝐴)) | (𝑥 : 𝐴) ∈ Δ] and 𝜏 B 𝜎 [𝜏 ′].
For 2. let 𝐶 be a list of all constants in 𝑠 or 𝑡 and 𝑥𝑐 a

fresh variable for every 𝑐 ∉ 𝐶 . We define 𝜏 by replacing
every constant 𝑐 ∉ 𝐶 in 𝜎 by inhab𝑥𝑐 (Ω𝑐) and pick Σ B
[(𝑥𝑐 : tar(Ω𝑐)) | 𝑐 ∉ 𝐶, 𝑐 ∈ consts (𝜎𝑥), 𝑥 ∈ dom Γ] where the
list consts (𝜎𝑥) contains the constants in 𝜎𝑥 . □

We recover order typing from ordinary typing by:

Lemma 3.6. If ord Γ ≤ 𝑛, ord 𝐴 ≤ 𝑛 + 1, and ord (Ω𝑐) ≤
𝑛 + 1 for all constants 𝑐 in 𝑠 , then:

Γ ⊢ 𝑠 : 𝐴 normal 𝑠

Γ ⊢𝑛 𝑠 : 𝐴

https://ps.uni-saarland.de/extras/HOU/HOU.calculus.order.html#Ordertyping.OrdertypingProperties
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.order.html#Ordertyping.OrdertypingProperties
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.order.html#ordertyping_soundness
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.order.html#ordertyping_completeness
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.order.html#ordertyping_monotone
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.order.html#OrderTyping.PreservationOrdertyping
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.order.html#OrderTyping.PreservationOrdertyping
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.order.html#ordertyping_preservation_under_substitution
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.order.html#ordertyping_preservation_under_reduction
https://ps.uni-saarland.de/extras/HOU/HOU.calculus.order.html#ordertyping_preservation_under_steps
https://ps.uni-saarland.de/extras/HOU/HOU.unification.nth_order_unification.html#OU
https://ps.uni-saarland.de/extras/HOU/HOU.unification.nth_order_unification.html#OU
https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#inhab_typing
https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#inhab_typing
https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#Conservativity.DowncastLemmas
https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#Conservativity.DowncastLemmas
https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#downcast_variables
https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#downcast_constants
https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#ordertyping_from_basetyping
https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#ordertyping_from_basetyping

Undecidability of Higher-Order Unification Formalised in Coq CPP ’20, January 20–21, 2020, New Orleans, LA, USA

By definition Γ ⊢𝑛 𝑠
?
= 𝑡 : 𝐴 ensures that for all variables

(𝑥 : 𝐵) ∈ Γ which occur in 𝑠 or 𝑡 the type 𝐵 is at most of
order 𝑛. However, there may be variables of arbitrary order
in Γ which do not occur in 𝑠 or 𝑡 . The following lemma shows
that unifiability is not affected by this technicality.

Lemma 3.7. If 𝑠 [𝜎] ≡ 𝑡 [𝜎] and for all (𝑥 : 𝐵) ∈ Γ where
𝑥 is a free variable of 𝑠 or 𝑡 , Δ ⊢𝑛 𝜎𝑥 : 𝐵, then 𝑠 [𝜏] ≡ 𝑡 [𝜏] for
some Σ and Σ ⊢𝑛 𝜏 : Γ.

Lemma3.8. Let Γ ⊢𝑛 𝑠
?
= 𝑡 : 𝐴. For everyΔ and substitution

Δ ⊢ 𝜎 : Γ with 𝑠 [𝜎] ≡ 𝑡 [𝜎], there exists Σ and a substitution
Σ ⊢𝑛 𝜏 : Γ with 𝑠 [𝜏] ≡ 𝑡 [𝜏].

Proof. Let Δ ⊢ 𝜎 : Γ be a unifying substitution. Let Δ1 and 𝜏1
be obtained from lemma 3.5 1. for 𝜎 and Δ2 and 𝜏2 from
lemma 3.5 2. for 𝜏1.
That is, we have Δ1 ∪ Δ2 ⊢ 𝜏2 : Γ with ord (Δ1 ∪ Δ2) ≤ 1

and all constants in 𝜏2 are constants from 𝑠 or 𝑡 . The claim
follows by normalising 𝜏2 using lemma 2.8 and Lemmas 3.6
and 3.7. □

Corollary 3.9. Let 𝑛 ≤ 𝑚.
1. U𝑛 ⪯ U𝑚 and U𝑛 ⪯ U.
2. SU𝑛 ⪯ SU𝑚 and SU𝑛 ⪯ SU.

Proof. 1. follows from Lemmas 3.1 and 3.8. The proof of 2. is
analogous. □

Conservativity allows us to lift enumerability from higher-
order unification to the 𝑛th-order fragments.

Corollary 3.10. U𝑛 and SU𝑛 are enumerable.

4 Third-Order Unification
Huet [1973] proves the undecidability of higher-order unifica-
tion by reduction from Post’s correspondence problem [1946]
PCP. We adapt Huet’s proof to our setting and simplify it by
reducing the modified Post correspondence problem [Hop-
croft et al. 2006] to third-order unification. The synthetic
undecidability ofMPCP was established by Forster, Heiter,
and Smolka [2018].

Definition 4.1. We define the modified Post correspondence
problem MPCP over a dedicated card 𝑙0/𝑟0 and a list of cards
𝑙1/𝑟1, . . . , 𝑙𝑛/𝑟𝑛 where each 𝑙𝑖 , 𝑟𝑖 is a binary string.

MPCP(𝑙0/𝑟0, 𝑙1/𝑟1, . . . , 𝑙𝑛/𝑟𝑛) :=
∃𝑘.∃𝑖1 . . . 𝑖𝑘 .𝑙0𝑙𝑖1 · · · 𝑙𝑖𝑘 = 𝑟0𝑟𝑖1 · · · 𝑟𝑖𝑘

We denote Booleans by the letter 𝑏 and binary strings by
𝑙, 𝑟 and𝑤 . Binary strings are encoded as

𝑏1 · · ·𝑏𝑛 B _𝑥.𝑏1 (· · · (𝑏𝑛 𝑥) · · ·) with 1 B 𝑢1, 0 B 𝑢0

for fixed variables 𝑢1, 𝑢0. For encoded strings, concatenation
can be implemented simply as composition and encoded
strings are of type 𝛼 → 𝛼 provided 𝑢1, 𝑢0 are of this type:

Lemma 4.2. Let Γ ⊢3 𝑢1 : 𝛼 → 𝛼 and Γ ⊢3 𝑢0 : 𝛼 → 𝛼 . We
then have Γ ⊢3 𝑏 : 𝛼 → 𝛼 and Γ ⊢3 𝑤 : 𝛼 → 𝛼 .

Proof. Using the _-typing rule and an induction on𝑤 . □

Lemma 4.3. 𝑤1 · · ·𝑤𝑛 𝑠 ≡ 𝑤1 (· · · (𝑤𝑛 𝑠) · · ·)
Proof. By induction on 𝑛. The inductive step follows with
𝑤 (𝑤 ′ 𝑠) ≡ 𝑤𝑤 ′ 𝑠 , which is shown by induction on𝑤 . □

The encoding is invertible, provided its arguments do not
encode strings.

Lemma 4.4. If𝑤 𝑠 ≡ 𝑤 ′ 𝑡 , then𝑤 = 𝑤 ′ and 𝑠 ≡ 𝑡 provided
neither 𝑠 nor 𝑡 is convertible to 𝑢0 𝑠 ′ or 𝑢1 𝑠 ′ for any 𝑠 ′.

Proof. By induction on𝑤 . □

We now define and verify the many-one reduction from
MPCP to U3. For a dedicated card 𝑙0/𝑟0 and a list of cards
𝑙1/𝑟1, . . . , 𝑙𝑛/𝑟𝑛 , we construct Γ̂ ⊢3 𝑠

?
= 𝑡 : 𝐴 where

Γ̂ B (𝑥 𝑓 : (𝛼 → 𝛼)𝑛+1 → 𝛼) 𝐴 B (𝛼 → 𝛼)2 → 𝛼

𝑠 B _𝑢0𝑢1.𝑙0 (𝑥 𝑓 𝑙0 · · · 𝑙𝑛) 𝑡 B _𝑢0𝑢1.𝑟0 (𝑥 𝑓 𝑟0 · · · 𝑟𝑛)
We introduce a decomposition lemma to obtain sequences

of indices from terms:

Lemma 4.5. For any term 𝑠 and variables 𝑥1, . . . , 𝑥𝑛 , we
have 𝑠 = 𝑥𝑖1 (· · · (𝑥𝑖𝑘 𝑠 ′) · · ·) for some 𝑖1, . . . , 𝑖𝑘 and term 𝑠 ′

such that 𝑠 ′ is not of the shape 𝑥𝑖 𝑠 ′′ for any 1 ≤ 𝑖 ≤ 𝑛 and 𝑠 ′′.

For an empty base type 𝛼 , Reynolds’s notion of paramet-
ricity [1983] suggests that a function 𝑓 of type (𝛼 → 𝛼)𝑛 →
𝛼 → 𝛼 fulfills 𝑓 𝑔1 · · · 𝑔𝑛 𝑡 ≡ 𝑔𝑖1 (· · · (𝑔𝑖𝑘 𝑡)) for a fixed
sequence 𝑖1, . . . , 𝑖𝑘 depending solely on 𝑓 . Since we are us-
ing possibly nonempty base types and open substitutions,
we cannot use such a general parametricity statement. In-
stead, we remove the argument 𝑡 and focus on terms of type
Γ ⊢3 𝑠 : (𝛼 → 𝛼)𝑛 → 𝛼 .

Lemma 4.6. For all Γ ⊢3 𝑠 : (𝛼 → 𝛼)𝑛 → 𝛼 with𝑢1, 𝑢0 not
free in 𝑠 , there is a sequence 𝑖1, . . . , 𝑖𝑘 such that for all𝑤1 . . .𝑤𝑛

𝑠 𝑤1 · · · 𝑤𝑛 ≡ 𝑤𝑖1 (· · · (𝑤𝑖𝑘 𝑡) · · ·)
for some 𝑡 which is not convertible to 𝑢0 𝑠 ′ or 𝑢1 𝑠 ′ for all 𝑠 ′.

Proof. We analyse the normal form 𝑣 of 𝑠 . By lemma 2.5, 𝑣
must be of the shape _𝑥1 · · · 𝑥𝑚 .𝑣 ′ where 𝑣 ′ = 𝑎 𝑠1 · · · 𝑠𝑝 for
atom 𝑎. We proceed by case analysis on𝑚.

1. If𝑚 > 𝑛, we have a contradiction since in this case 𝑣
cannot be of type (𝛼 → 𝛼)𝑛 → 𝛼 .

2. If 𝑛 =𝑚, then by lemma 4.5 let 𝑘 be the largest number
such that 𝑣 ′ = 𝑥𝑖1 (· · · (𝑥𝑖𝑘 𝑣 ′′) · · ·) for some sequence
𝑖1, . . . , 𝑖𝑘 and term 𝑣 ′′. Thus, we obtain the equivalence

𝑣 𝑤1 · · · 𝑤𝑛 ≡ 𝑤𝑖1 (· · · (𝑤𝑖𝑘 𝑡) · · ·) for a certain term 𝑡 .

Since 𝑣 and therefore 𝑣 ′′ contains neither 𝑢1 nor 𝑢0
and 𝑣 ′′ is not an application of any of the 𝑥𝑖 ’s, we can
conclude that the resulting term 𝑡 is not convertible to
𝑢0 𝑠

′ or 𝑢1 𝑠 ′ for any 𝑠 ′.

https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#ordertyping_weak_ordertyping
https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#ordertyping_weak_ordertyping
https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#unification_downcast
https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#unification_downcast
https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#unification_steps
https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#unification_steps
https://ps.uni-saarland.de/extras/HOU/HOU.concon.enumerability.html#OrderedUnification
https://ps.uni-saarland.de/extras/HOU/HOU.concon.enumerability.html#OrderedUnification
https://ps.uni-saarland.de/extras/HOU/HOU.third_order.pcp.html#MPCP
https://ps.uni-saarland.de/extras/HOU/HOU.third_order.pcp.html#MPCP
https://ps.uni-saarland.de/extras/HOU/HOU.third_order.encoding.html#Encoding.Typing
https://ps.uni-saarland.de/extras/HOU/HOU.third_order.encoding.html#Encoding.Typing
https://ps.uni-saarland.de/extras/HOU/HOU.third_order.encoding.html#Encoding.Reduction
https://ps.uni-saarland.de/extras/HOU/HOU.third_order.encoding.html#Encoding.Reduction
https://ps.uni-saarland.de/extras/HOU/HOU.third_order.encoding.html#Encoding.Injectivity
https://ps.uni-saarland.de/extras/HOU/HOU.third_order.encoding.html#Encoding.Injectivity
https://ps.uni-saarland.de/extras/HOU/HOU.third_order.encoding.html#AppL_decomposition
https://ps.uni-saarland.de/extras/HOU/HOU.third_order.encoding.html#AppL_decomposition
https://ps.uni-saarland.de/extras/HOU/HOU.third_order.encoding.html#Encoding.MainLemma
https://ps.uni-saarland.de/extras/HOU/HOU.third_order.encoding.html#Encoding.MainLemma

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Simon Spies and Yannick Forster

3. If𝑚 < 𝑛, then we proceed with a case analysis on 𝑎.
a. If 𝑎 = 𝑐 for some constant 𝑐 , then 𝑣 𝑤1 · · ·𝑤𝑛 reduces

to a term 𝑡 with 𝑐 as its applicative head. With 𝑘 B 0
we have 𝑣 𝑤1 · · · 𝑤𝑛 ≡ 𝑡 and thus the claim follows.

b. If 𝑎 = 𝑥 for some 𝑥 , then the type of 𝑥 , in this case
(𝛼 → 𝛼)𝑛−𝑚 → 𝛼 , enforces that 𝑥 ≠ 𝑥𝑖 for all 𝑖
since every 𝑥𝑖 is of type 𝛼 → 𝛼 . As a consequence,
𝑥 is a free variable and behaves similarly to a con-
stant. Analogous to 3a we have 𝑣 𝑤1 · · · 𝑤𝑛 ≡ 𝑡 for
a sufficient 𝑡 . □

Theorem 4.7. MPCP ⪯ U3

Proof. We proveMPCP(𝑙0/𝑟0, 𝑙1/𝑟1, . . . , 𝑙𝑛/𝑟𝑛) if and only if
U3 (Γ̂ ⊢3 𝑠

?
= 𝑡 : 𝐴). The forward direction is straightforward.

Given 𝑖1, . . . , 𝑖𝑘 such that 𝑙0𝑙𝑖1 · · · 𝑙𝑖𝑘 = 𝑟0𝑟𝑖1 · · · 𝑟𝑖𝑘 , we pick 𝜎
as 𝜎𝑥 𝑓 B _𝑥0𝑥1 · · · 𝑥𝑛 .𝑥𝑖1 (· · · (𝑥𝑖𝑘 𝑧) · · ·) and 𝜎𝑥 B 𝑥 oth-
erwise, in context Δ B (𝑧 : 𝛼). Using lemma 4.3, we have:

𝑠 [𝜎] ≡ _𝑢0𝑢1.𝑙0 (𝑙𝑖1 (· · · (𝑙𝑖𝑘 𝑧) · · ·))

≡ _𝑢0𝑢1.𝑙0𝑙𝑖1 · · · 𝑙𝑖𝑘 𝑧
= _𝑢0𝑢1 .𝑟0𝑟𝑖1 · · · 𝑟𝑖𝑘 𝑧
≡ _𝑢0𝑢1.𝑟0 (𝑟𝑖1 (· · · (𝑟𝑖𝑘 𝑧) · · ·))
≡ 𝑡 [𝜎] .

For the other direction, assume Δ ⊢3 𝜎 : Γ and 𝑠 [𝜎] ≡ 𝑡 [𝜎].
This entails 𝑙0 (𝜎𝑥 𝑓 𝑙0 · · · 𝑙𝑛) ≡ 𝑟0 (𝜎𝑥 𝑓 𝑟0 · · · 𝑟𝑛). Thus, by
Lemmas 4.3 and 4.6 we have 𝑙0𝑙𝑖1 · · · 𝑙𝑖𝑘 𝑡 ′ ≡ 𝑟0𝑟𝑖1 · · · 𝑟𝑖𝑘 𝑡 ′′ for
some 𝑡 ′, 𝑡 ′′ such that neither 𝑡 ′ nor 𝑡 ′′ is convertible to𝑢0 𝑠 ′ or
𝑢1 𝑠

′ for any 𝑠 ′. The claim then follows with lemma 4.4. □

5 Second-Order Unification
Goldfarb [1981] proves the undecidability of second-order
unification for the applicative fragment of the _-calculuswith
hereditary substitutions. We adapt his proof to our Curry-
style simply-typed _-calculus, simplify his construction, and
give an intuitive explanation. We use a single equation to
encode multiplication whereas Goldfarb’s reduction relies
on two.
The structure of the proof is similar to the undecidabil-

ity proof of higher-order unification in Section 2. Instead of
Church numerals, Goldfarb uses an encoding of natural num-
bers based on constants g : 𝛼 → 𝛼 → 𝛼 and a : 𝛼 , which
we refer to as Goldfarb numerals. The Goldfarb numeral
J𝑛Kgn B _𝑎.S𝑛 𝑎 can be derived from the Church numeral
J𝑛Kcn = _𝑎𝑓 .𝑓 𝑛 𝑎 by fixing S B g a for 𝑓 .

Lemma 5.1. Γ ⊢2 J𝑛Kgn : 𝛼 → 𝛼

We call the reduced form S𝑛 𝑡 of the application of a Gold-
farb literal J𝑛Kgn to a term 𝑡 an applied Goldfarb numeral. In
the following, applied Goldfarb numerals allow us to reason
about syntactic equality whereas Goldfarb numerals would
force us to reason about convertibility.

Lemma 5.2.

S0 𝑡 = 𝑡 S𝑛+1 𝑡 = S (S𝑛 𝑡) S𝑚+𝑛 𝑡 = S𝑚 (S𝑛 𝑡)

Lemma 5.3. Let 𝑠, 𝑡 be atoms. If S𝑚 𝑠 = S𝑛 𝑡 , then𝑚 = 𝑛

and 𝑠 = 𝑡 .

Lemma 5.4. Let 𝑠 be normal. We can compute some 𝑛 such
that 𝑠 a ≡ S𝑛 a, or prove that no such 𝑛 exists.

Proof. With the reduction function 𝜍 , we obtain the normal
form 𝑣 of 𝑠 a and check whether 𝑣 = S𝑛 a for some 𝑛. □

Multiplication We now encode constants, addition and
multiplication equations of H10 using Goldfarb numerals.
The equations constants and addition are straightforward ad-
aptions of the equations for Church numerals. Multiplication
for Church numerals, however, is implemented by instanti-
ating the second argument 𝑓 of a numeral with a function.
Since Goldfarb numerals fix this argument to S, this construc-
tion cannot be reused. Instead, we use a relational encoding
of multiplication in the _-calculus in terms of conversion
equations.
In the following, we first give an intuitive, more abstract

explanation of the proof idea beforewe give the details for the
full construction. The idea behind the relational encoding can
be understood by looking at how the equation𝑚 · 𝑛 = 𝑝 can
be encoded as an equationM𝑚,𝑛,𝑝 𝑀 over finite sequences
𝑀 : L(N × N). The same ideas then apply to encode the
equation𝑚 · 𝑛 = 𝑝 as a conversion equation G𝑚,𝑛,𝑝 𝐺 over
functions 𝐺 in the _-calculus.
To compute the product of 𝑚 and 𝑛 by hand, one can

start with the pair (0, 0) and iteratively apply step𝑛 (𝑎, 𝑘) B
(𝑎 + 𝑛, 𝑘 + 1) until the counter, i.e. the second component
reaches𝑚. This process generates the sequence

(0, 0), (𝑛, 1), (2 · 𝑛, 2), . . . , (𝑚 · 𝑛,𝑚).
The pair (𝑝,𝑚) occurs in this sequence if and only if𝑚 ·𝑛 = 𝑝 .

We represent finite sequences as lists and define 𝑇𝑚 :=
[𝑡0, . . . , 𝑡𝑚−1] where 𝑡𝑘 := (𝑘 · 𝑛, 𝑘). Note that the sequence
above is exactly 𝑇𝑚+1. The iteration function step𝑛 is lifted
to lists by step𝑛 𝑀 := [step𝑛 (𝑎, 𝑘) | (𝑎, 𝑘) ∈ 𝑀]. In the fol-
lowing, we show that𝑚 ·𝑛 = 𝑝 and𝑀 = 𝑇𝑚 iffM𝑚,𝑛,𝑝 𝑀 for
the equation

M𝑚,𝑛,𝑝 𝑀 B 𝑀 ++[(𝑝,𝑚)] = 𝑡0 :: step𝑛 𝑀.

The forward direction of this equivalence is straightfor-
ward. By construction, application of step𝑛 yields the next
pair of the sequence and if 𝑝 = 𝑚 · 𝑛, then 𝑇𝑚 is always a
solution:

Lemma 5.5. step𝑛 𝑡𝑘 = 𝑡𝑘+1

Lemma 5.6. M𝑚,𝑛,𝑚 ·𝑛 𝑇𝑚

Proof. Since (𝑚 · 𝑛,𝑚) = 𝑡𝑚 , we have 𝑇𝑚 ++[(𝑚 · 𝑛,𝑚)] =

[𝑡0, 𝑡1, . . . , 𝑡𝑚] = 𝑡0 :: [step𝑛 𝑡0, . . . , step𝑛 𝑡𝑚−1] = 𝑡0 :: step𝑛𝑇𝑚 ,
where the second equality is by lemma 5.5. □

https://ps.uni-saarland.de/extras/HOU/HOU.third_order.simplified.html#MPCP_U3
https://ps.uni-saarland.de/extras/HOU/HOU.third_order.simplified.html#MPCP_U3
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.reduction.html#gf_typing
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.reduction.html#gf_typing
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.encoding.html#Encoding.enc_equations
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.encoding.html#Encoding.enc_equations
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.encoding.html#enc_injective
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.encoding.html#enc_injective
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.encoding.html#dec_enc
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.encoding.html#dec_enc
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.motivation.html#step_t
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.motivation.html#step_t
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.motivation.html#M_forward
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.motivation.html#M_forward

Undecidability of Higher-Order Unification Formalised in Coq CPP ’20, January 20–21, 2020, New Orleans, LA, USA

We turn to the backwards direction of the equivalence.
Note that the equationM𝑚,𝑛,𝑝 𝑀 can be seen a description
of 𝑀 in terms of its head and its tail. We show that this
suffices to enforce an iterative structure and to characterise
the multiplication sequence.

Lemma 5.7. If M𝑚,𝑛,𝑝 𝑀 , then𝑀 = 𝑇𝑙 for some 𝑙 .

Proof. We generalise the statement: If 𝑀 ++[𝑥] = (𝑎, 𝑏) ::
step𝑛 𝑀 , then𝑀 ++[𝑥] = [(𝑎, 𝑏), (𝑎 +𝑛,𝑏 + 1), . . . , (𝑎 + |𝑀 | ·
𝑛,𝑏 + |𝑀 |)] by induction on 𝑀 with lemma 5.5. The claim
follows with 𝑥 = (𝑝,𝑚) and 𝑎 = 𝑏 = 0. □

Lemma 5.8. If M𝑚,𝑛,𝑝 𝑇𝑙 , then𝑚 = 𝑙 and𝑚 · 𝑛 = 𝑝 .

Proof. By lemma 5.6 we have M𝑙,𝑛,𝑙 ·𝑛 𝑇𝑙 , i.e. we know that
𝑇𝑙 ++[(𝑙 · 𝑛, 𝑙)] = 𝑡0 :: step𝑛 𝑇𝑙 . By the assumption M𝑚,𝑛,𝑝 𝑇𝑙 ,
we know 𝑡0 :: step𝑛 𝑇𝑙 = 𝑇𝑙 ++[(𝑝,𝑚)] and thus 𝑇𝑙 ++[(𝑙 ·
𝑛, 𝑙)] = 𝑇𝑙 ++[(𝑝,𝑚)]. By injectivity we have 𝑚 = 𝑙 and
𝑚 · 𝑛 = 𝑝 . □

Corollary 5.9. 𝑚 · 𝑛 = 𝑝 and𝑀 = 𝑇𝑚 iffM𝑚,𝑛,𝑝 𝑀 .

Proof. Follows from Lemmas 5.6 to 5.8. □

In the remainder of this section, we mirror the above proof
in the _-calculus. To this end, we define the counterpart to
M𝑚,𝑛,𝑝 𝑀 , a relation G𝑚,𝑛,𝑝 𝐺 over second-order terms 𝐺 .
Because our calculus does not have means to computation-
ally distinguish g 𝑠 𝑡 from e.g. a, we cannot implement the
step𝑛 function over sequences or the concatenation of lists as
second-order _-terms. Instead, we require𝐺 to be a function
and realise step𝑛 and concatenation by choosing appropriate
arguments for𝐺 . Note that Goldfarb numerals are of second
order, so functions taking them as arguments will be of third
order. To work with second-order terms only, we use two
fresh variables 𝑎, 𝑏 and applied Goldfarb numerals such as
S𝑛 𝑎 instead of Goldfarb numerals. For such applied numer-
als, addition cannot be realised by application. Instead, we
rely on substitution: Addition of𝑚 can be realised by the
substitution S𝑚 𝑎/𝑎, since (S𝑛 𝑎) [(S𝑚 𝑎)/𝑎] = S𝑛+𝑚 𝑎.
We encode lists as [] B a and 𝑠 :: 𝑡 B g 𝑠 𝑡 and pairs as�(𝑚,𝑛) B ⟨S𝑚 𝑎, S𝑛 𝑏⟩ where ⟨𝑠, 𝑡⟩ B g 𝑠 𝑡 . By construction

𝑡𝑘 = ⟨S𝑘 ·𝑛 𝑎, S𝑘 𝑏⟩. In the following, we use list notation both
for lists of pairs and encoded lists. We realise M𝑚,𝑛,𝑝 𝑀 in
the _-calculus as

G𝑚,𝑛,𝑝 𝐺 B 𝐺 [�(𝑝,𝑚)] 𝑎 𝑏 ≡ 𝑡0 :: 𝐺 [] (S𝑛 𝑎) (S 𝑏)
where 𝐺 may not contain 𝑎 or 𝑏 as free variables. In the
formalisation, this is achieved by renaming both variables
in 𝐺 .
In the following, we show that𝑚 · 𝑛 = 𝑝 and 𝐺 = 𝑇𝑚 iff

G𝑚,𝑛,𝑝 𝐺 for a _-term𝑇𝑚 encoding𝑇𝑚 . Note that the straight-
forward encoding of 𝑇𝑚 , i.e. [𝑡0, . . . , 𝑡𝑚−1] is not a function
and therefore cannot satisfy the equation. Instead, we define
𝑇𝑚 B _𝑟𝑎𝑏.𝑡0 :: . . . :: 𝑡𝑚−1 :: 𝑟 .

We again start with the forwards direction:

Lemma 5.10. Let 𝜎 id
𝑝,𝑞 and 𝜎st be defined by

𝑎 𝑏 𝑟

𝜎 id
𝑝,𝑞 𝑎 𝑏 [�(𝑝, 𝑞)]
𝜎st S𝑛 𝑎 S 𝑏 [].

and id othw. Then𝑇𝑚 [�(𝑝, 𝑞)] 𝑎 𝑏 ≡ (𝑡0 :: . . . :: 𝑡𝑚−1 :: 𝑟) [𝜎 id
𝑝,𝑞]

and 𝑇𝑚 [] (S𝑛 𝑎) (S 𝑏) ≡ (𝑡0 :: . . . :: 𝑡𝑚−1 :: 𝑟) [𝜎st].

Note that 𝜎 id
𝑝,𝑞 leaves elements of the multiplication se-

quence unchanged, whereas 𝜎st realises the step𝑛 function.
We show the counterpart of lemma 5.5 which suffices to
recover lemma 5.6.

Lemma 5.11. 𝑡𝑘 [𝜎 id
𝑝,𝑞] = 𝑡𝑘 and 𝑡𝑘 [𝜎st] = 𝑡𝑘+1

Corollary 5.12. 𝑇𝑚 [�(𝑝, 𝑞)] 𝑎 𝑏 ≡ [𝑡0, . . . , 𝑡𝑚−1, �(𝑝, 𝑞)] and
𝑇𝑚 [] (S𝑛 𝑎) (S 𝑏) ≡ [𝑡1, . . . , 𝑡𝑚]

Proof. Immediate from Lemmas 5.10 and 5.11. □

Corollary 5.13. G𝑚,𝑛,𝑚 ·𝑛 𝑇𝑚

Proof. By corollary 5.12 it follows that 𝑇𝑚 [�(𝑚 · 𝑛,𝑚)] 𝑎 𝑏 ≡
[𝑡0, 𝑡1, . . . , 𝑡𝑚] ≡ 𝑡0 :: [𝑡1, . . . , 𝑡𝑚] ≡ 𝑡0 :: 𝑇𝑚 [] (S𝑛 𝑎) (S 𝑏).

□

The backwards direction of the equivalence, i.e. the coun-
terpart of lemma 5.7 is more complicated in the _-calculus.
The combination of the following three lemmas suffices to
recover the result. First, we show that terms satisfying the
equation have to be functions of the shape _𝑟𝑎𝑏.𝐺 ′ where𝐺 ′

satisfies a substitution equation. Then, we show that the sub-
stitution 𝜎 id

𝑝,𝑞 is invertible for the elements of the sequence 𝑡𝑘 .
Lastly, we show how from the substitution equation, one can
recover the multiplication sequence.

Lemma 5.14. Let 𝐺 be normal. If G𝑚,𝑛,𝑝 𝐺 , then 𝐺 =

_𝑟𝑎𝑏.𝐺 ′ for some 𝐺 ′ with 𝐺 ′[𝜎 id
𝑝,𝑚] = 𝑡0 :: 𝐺 ′[𝜎st].

Proof. The claim 𝐺 = _𝑟𝑎𝑏.𝐺 ′ follows by normal form ana-
lysis on𝐺 . By conversion, we obtain𝐺 ′[𝜎 id

𝑝,𝑚] ≡ 𝑡0 :: 𝐺 ′[𝜎st].
The terms𝐺 ′[𝜎 id

𝑝,𝑚] and 𝑡0 :: 𝐺 ′[𝜎st] are normal since insert-
ing _-free terms into normal terms does not create new redi-
cies. Equality follows with unique normal forms (lemma 2.1).

□

Lemma 5.15.
1. If 𝑠 [𝜎 id

𝑝,𝑞] = 𝑎, then 𝑠 = 𝑎.
2. If 𝑠 [𝜎 id

𝑝,𝑞] = 𝑏, then 𝑠 = 𝑏.
3. If 𝑠 [𝜎 id

𝑝,𝑞] = S𝑘 𝑡 , then 𝑠 = S𝑘 𝑡 ′ and 𝑡 ′[𝜎 id
𝑝,𝑞] = 𝑡 for

some 𝑡 ′.
4. If 𝑠 [𝜎 id

𝑝,𝑞] = 𝑡𝑘 , then 𝑠 = 𝑡𝑘 .

Proof. 1. and 2. are immediate from the definition of 𝜎 id
𝑝,𝑞 . 3.

follows by induction on 𝑘 . 4. follows from 1. - 3. □

Lemma 5.16.

https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.motivation.html#M_backward_exists
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.motivation.html#M_backward_exists
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.motivation.html#M_backward_equations
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.motivation.html#M_backward_equations
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.motivation.html#M_iff
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.motivation.html#M_iff
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#Multiplication.G_subst
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#Multiplication.G_subst
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#Multiplication.t_subst
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#Multiplication.t_subst
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#Multiplication.G_reduce
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#Multiplication.G_reduce
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#G_forward
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#G_forward
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#multiplication_lambdas
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#multiplication_lambdas
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#Multiplication.InvertSubstitution
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#Multiplication.InvertSubstitution
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#Multiplication.RecoverStructure
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#Multiplication.RecoverStructure

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Simon Spies and Yannick Forster

1. If 𝑠 [𝜎 id
𝑝,𝑞] = 𝑡𝑘 :: 𝑠 [𝜎st], then 𝑠 = 𝑟 or 𝑠 = 𝑡𝑘 :: 𝑠 ′ for

some 𝑠 ′.
2. If 𝑠 [𝜎 id

𝑝,𝑞] = 𝑡𝑘 :: 𝑠 [𝜎st], then 𝑠 = 𝑡𝑘 :: . . . :: 𝑡𝑘+𝑙−1 :: 𝑟 for
some 𝑙 .

Proof. 1. By case analysis on 𝑠 and lemma 5.15.
2. Follows by size induction on 𝑠 . By 1. we have 𝑠 = 𝑟

or 𝑠 = 𝑡𝑘 :: 𝑠 ′. If 𝑠 = 𝑟 the claim is immediate. For 𝑠 =
𝑡𝑘 :: 𝑠 ′, we have 𝑠 ′[𝜎 id

𝑝,𝑞] = 𝑡𝑘 [𝜎st] :: 𝑠 ′[𝜎st]. The claim
follows with lemma 5.11 and the inductive hypothesis.

□

Corollary 5.17. Let 𝐺 be normal. If G𝑚,𝑛,𝑝 𝐺 , then 𝐺 = 𝑇𝑙
for some 𝑙 .

Proof. By lemma 5.14 we have𝐺 = _𝑟𝑎𝑏.𝐺 ′ for some𝐺 ′ with
𝐺 ′[𝜎 id

𝑝,𝑚] = 𝑡0 :: 𝐺 ′[𝜎st]. The claim follows with lemma 5.16
with 𝑘 = 0. □

We can now recover lemma 5.8.

Lemma 5.18. If G𝑚,𝑛,𝑝 𝑇𝑙 , then𝑚 = 𝑙 and𝑚 · 𝑛 = 𝑝 .

Proof. By corollary 5.13 we have G𝑙,𝑛,𝑙 ·𝑛 𝑇𝑙 .

[𝑡0, . . . , 𝑡𝑙−1,�(𝑙 · 𝑛, 𝑙)]
≡ 𝑇𝑙 [�(𝑙 · 𝑛, 𝑙)] 𝑎 𝑏 (corollary 5.12)

≡ 𝑡0 :: 𝑇𝑙 [] (S𝑛 𝑎) (S 𝑏) (G𝑙,𝑛,𝑙 ·𝑛 𝑇𝑙)

≡ 𝑇𝑙 [�(𝑝,𝑚)] 𝑎 𝑏 (G𝑚,𝑛,𝑝 𝑇𝑙)

≡ [𝑡0, . . . , 𝑡𝑙−1,�(𝑝,𝑚)] (corollary 5.12)

With injectivity of ::, we have𝑚 = 𝑙 and𝑚 · 𝑛 = 𝑝 . □

Corollary 5.19. Let 𝐺 be normal.𝑚 · 𝑛 = 𝑝 and 𝐺 = 𝑇𝑚
iff G𝑚,𝑛,𝑝 𝐺 .

Proof. Follows from Corollaries 5.13 and 5.17 and lemma 5.18.
□

Reduction In the definition of G𝑚,𝑛,𝑝 𝐺 , we require that𝐺
neither contains 𝑎 nor 𝑏 as free variables. When construct-
ing unification equations for multiplication, we use a free
variable for 𝐺 . By turning 𝑎 and 𝑏 into bound variables, we
can be sure that occurrences of 𝑎 or 𝑏 in terms inserted for𝐺
are distinct from the variables used in the previous proof.
Recall that bound variables are consistently renamed in case
a term containing these variables is inserted by substitution.
We define:

GN 𝑥 B _𝑎𝑏.𝑥 (S 𝑎) ?
= _𝑎𝑏.S (𝑥 𝑎)

𝑥 ¤= 1 B _𝑎𝑏.𝑥 𝑎
?
= _𝑎𝑏.J1Kgn 𝑎

𝑥 + 𝑦 ¤= 𝑧 B _𝑎𝑏.𝑥 (𝑦 𝑎) ?
= _𝑎𝑏.𝑧 𝑎 𝑥 · 𝑦 ¤= 𝑧 B

_𝑎𝑏.𝐺𝑥𝑦𝑧 [⟨𝑧 𝑎, 𝑥 𝑏⟩] 𝑎 𝑏 ?
= _𝑎𝑏.⟨𝑎, 𝑏⟩ :: 𝐺𝑥𝑦𝑧 [] (𝑦 𝑎) (S 𝑏)

where 𝐺𝑥𝑦𝑧 is a fresh variable for each choice of 𝑥,𝑦, and 𝑧.
The encodings of the characteristic equation, addition and
constants are straightforward adaptations of the equations
for Church encodings. To simplify matters, we add the vari-
able 𝑏 in those equations as well, which allows us to type all
equations as 𝛼2 → 𝛼 :

Lemma5.20. Let Γ𝐷 := [(𝑥 : 𝛼 → 𝛼) | 𝑥 ∈ vars 𝐷]
∪ [(𝐺𝑥𝑦𝑧 : 𝛼3 → 𝛼) | 𝑥 · 𝑦 ¤= 𝑧 ∈ 𝐷] .

𝑥 ∈ vars 𝐷

Γ𝐷 ⊢2 GN 𝑥 : 𝛼2 → 𝛼

𝑑 ∈ 𝐷

Γ𝐷 ⊢2 𝑑 : 𝛼2 → 𝛼

Another consequence of Goldfarb numerals is that the ad-
aption of the characteristic equation no longer axiomatises
syntactic equality with a numeral. The Goldfarb numeral
J1Kgn = _𝑎.S 𝑎 is [-equivalent to S and S satisfies the charac-
teristic equation. For our purposes, the extensional equality
𝑠 ≈ J𝑛Kgn := ∀𝑡𝜌. 𝑠 [𝜌] 𝑡 ≡ S𝑛 𝑡 suffices where 𝜌 is a re-
naming, a substitution which replaces variables by other
variables. The renaming allows us to handle open terms in
the reduction.

Lemma 5.21. Let 𝜎𝑥 be normal for all 𝑥 .

𝜎 ⊨ GN 𝑥 iff 𝜎𝑥 ≈ J𝑛Kgn for some 𝑛

Lemma5.22. Let𝜎𝑥 be normal for all𝑥 and let𝜎𝑥 ≈ J𝑚Kgn,
𝜎𝑦 ≈ J𝑛Kgn, and 𝜎𝑧 ≈ J𝑝Kgn.

1. 𝑚 = 1 iff 𝜎 ⊨ 𝑥 ¤= 1.
2. 𝑚 + 𝑛 = 𝑝 iff 𝜎 ⊨ 𝑥 + 𝑦 ¤= 𝑧.
3. 𝑚 · 𝑛 = 𝑝 and 𝜎𝐺𝑥𝑦𝑧 = 𝑇𝑚 iff 𝜎 ⊨ 𝑥 · 𝑦 ¤= 𝑧.

Theorem 5.23. H10 ⪯ SU2

Proof. Given 𝐷 , we construct Γ𝐷 ⊢2 𝐷 : (𝛼2 → 𝛼) |𝐷 | where
𝐷 = [𝑑 | 𝑑 ∈ 𝐷] ∪ [GN 𝑥 | 𝑥 ∈ vars 𝐷]. Typing follows with
lemma 5.20.

1. For a solution\ ⊨ 𝐷 , we pick the substitution𝜎 𝐺𝑥𝑦𝑧 B

𝑇\𝑥 where we choose \𝑦 for 𝑛 and 𝜎𝑥 B J\𝑥Kgn. The
claim then follows with Lemmas 5.21 and 5.22.

2. Let Γ𝐷 ⊢2 𝜎 : Δ be a substitution with 𝑠 [𝜎] ≡ 𝑡 [𝜎]
for all 𝑠 ?

= 𝑡 ∈ 𝐷 . Using lemma 2.12, wlog. we may
assume that 𝜎 only inserts normal terms. We construct
a solution \ by means of lemma 5.4. With Lemmas 5.21
and 5.22 \ ⊨ 𝐷 follows. □

We use ⟨·, ·⟩ to combine multiple equations to one. Then,
by combining all equations in 𝐷 , we establish the undecid-
ability of second-order unification.

Lemma 5.24. 𝜎 ⊨ _𝑎𝑏.𝑠1
?
= _𝑎𝑏.𝑡1 and 𝜎 ⊨ _𝑎𝑏.𝑠2

?
= _𝑎𝑏.𝑡2

iff. 𝜎 ⊨ _𝑎𝑏.⟨𝑠1, 𝑠2⟩
?
= _𝑎𝑏.⟨𝑡1, 𝑡2⟩

Corollary 5.25. H10 ⪯ U2

https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#G_backward_exists
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#G_backward_exists
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#G_backward_equations
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#G_backward_equations
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#G_iff
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.multiplication.html#G_iff
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.encoding.html#Typing
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.encoding.html#Typing
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.reduction.html#EquationEquivalences.Variables
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.reduction.html#EquationEquivalences.Variables
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.reduction.html#EquationEquivalences
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.reduction.html#EquationEquivalences
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.reduction.html#EquationEquivalences.Constants
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.reduction.html#EquationEquivalences.Addition
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.reduction.html#EquationEquivalences.Multiplication
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.reduction.html#Goldfarb'
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.reduction.html#Goldfarb'
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.reduction.html#conseqs_combine
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.reduction.html#conseqs_combine
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.reduction.html#Goldfarb
https://ps.uni-saarland.de/extras/HOU/HOU.second_order.goldfarb.reduction.html#Goldfarb

Undecidability of Higher-Order Unification Formalised in Coq CPP ’20, January 20–21, 2020, New Orleans, LA, USA

6 Constants
In Section 5, we formalise a proof of the undecidability of
second-order unification. The second-order proof requires
constants a : 𝛼 and g : 𝛼 → 𝛼 → 𝛼 , while in Section 2
we assume an arbitrary type of constants C and a constant
type signature Ω. Negligible as this may seem, Farmer [1988]
proves that second-order unification is decidable in the mon-
adic fragment, the fragment where all constants have at most
arity one. In contrast, the proof of the undecidability of third-
order unification in Section 4 is independent of the constants
of the language.
In the following, we clarify the role of constants in our

setting of unification. We formalise techniques for the in-
troduction and elimination of constants without affecting
unifiability. The introduction of constants may be under-
stood as the conservativity of unification with respect to the
available constants. Combined with the introduction, the
elimination of constants can be used to obtain Goldfarb’s
strongest result [1981], the undecidability of second-order
unification in any language which contains a binary function
constant g : 𝛼 → 𝛼 → 𝛼 . Furthermore, the results of this
section allow us to deduce Huet’s result of Section 4 from
the results of Goldfarb presented in Section 5.

In the formalisation, constants are drawn from Coq types
and injections denote type inclusions. On paper we use set
notation for finite types and omit type injections and use sub-
typing instead to ease readability. For an injection C ↩→ D,
we denote the subtype of D which contains all the elements
that are not in the image of the injection by D \ C. We add
the superscript ·C to a unification problem to indicate that
all constants are drawn from the type C. For example, to be
precise, in Section 5 we consider the problem U{a,g}

2 .

6.1 Introduction of Constants
We prove that the introduction of new constants has no effect
on 𝑛th-order unification. Explicitly, we assume two types
C ↩→ D of constants and corresponding signatures ΩC and
ΩD which agree with the injection, i.e. ∀𝑐 : C. ΩC 𝑐 = ΩD 𝑐 .
We prove UC

𝑛 ⪯ UD
𝑛 . The key observation in the reduction

is that two terms Γ ⊢𝑛 𝑠
?
= 𝑡 : 𝐴 are unifiable iff they are

unifiable using only constants which occur in 𝑠 or 𝑡 . Note
that for the interesting case of this reduction, transforming
a substitution with constants from D into a substitution
with constants from C, it does not suffice to replace the
constants inD\C with variables. As the order of the type of
a constant may be 𝑛 + 1 in 𝑛th-order fragment, a variable of
the same type would no longer be contained in the fragment.
Instead, we use the technique presented in lemma 3.4, i.e. the
inhabitation of arbitrary types, if we are allowed to introduce
fresh variables.
Recall that we write consts 𝑠 for a finite list of the con-

stants that occur in 𝑠 . Analogous to substitution, we denote

the parallel replacement of all constants according to a func-
tion ^, mapping constants to terms, by 𝑠 [^].
Lemma 6.1. ≻, ≻∗,≡ are compatible with constant replace-

ment.

We associate every constant 𝑑 : D with a fresh variable 𝑥𝑑
and replace constants according to the constant replacement
^in𝑑 B 𝑑 if 𝑑 : C and ^in𝑑 B inhab𝑥𝑑 (ΩD𝑑) otherwise. We
establish:

Lemma 6.2. Let 𝐷 = [𝑑 | 𝑑 ∈ consts (𝜎𝑥), 𝑥 ∈ dom Γ]
and ∀𝑑 ∈ consts 𝑠 . (𝑑 : C).

1. 𝑠 [𝜎 [^in]] = 𝑠 [𝜎] [^in]
2. If Δ ⊢𝑛 𝜎 : Γ and ∀𝑑 ∈ 𝐷. (𝑥𝑑 : tar(ΩD𝑑)) ∈ Δ, then

Δ ⊢𝑛 𝜎 [^in] : Γ.
Lemma 6.3. UC

𝑛 ⪯ UD
𝑛

Proof. The reduction function is the identity. Let Γ ⊢𝑛 𝑠
?
= 𝑡 :

𝐴 be an 𝑛th-order unification instance drawing its constants
from C. As C ↩→ D, the forward direction is trivial. For the
converse direction, we assume some Σ and Σ ⊢𝑛 𝜏 : Γ where
𝑠 [𝜏] ≡ 𝑡 [𝜏]. Let 𝐷 = [𝑑 | 𝑑 ∈ consts (𝜏𝑥), 𝑥 ∈ dom Γ]. Pick
Δ B Σ ∪ [(𝑥𝑑 : tar(ΩD𝑑)) | 𝑑 ∈ 𝐷] and 𝜎 B 𝜏 [^in]. Typing
follows by lemma 6.2 and with lemma 6.1 also 𝑠 [𝜏 [^in]] =
𝑠 [𝜏] [^in] ≡ 𝑡 [𝜏] [^in] = 𝑠 [𝜏 [^in]]. □

6.2 Elimination of Constants
Considering 𝑛th-order unification, we prove that constants
whose type is of an order strictly smaller than 𝑛 can be
removed without affecting unifiability. Explicitly, we prove
UD
𝑛 ⪯ UC

𝑛 if C ↩→ D, ΩC and ΩD agree with the injection,
and ord (ΩD𝑑) < 𝑛 for all 𝑑 : D \ C. This allows us, for
example, to obtain Goldfarb’s result in a language without
the constant a : 𝛼 , i.e. H10 ⪯ U{g}

2 . The decidability of
monadic second-order unification entails that we cannot
hope to eliminate constants with a type of order 𝑛 as well.
If this was the case, g : 𝛼 → 𝛼 → 𝛼 could be eliminated,
making the problem U∅

2 undecidable, a contradiction to the
decidability of monadic second-order unification.

Similar techniques to eliminate constants have been used
by Statman [1981].

The main idea behind our reduction is to replace constants
by bound variables. Similar to constants, bound variables
are not affected by substitution. In contrast to constants,
bound variables cannot be used when inserting new terms
by substitution. For example, the equation 𝑦 : 𝛼 ⊢2 𝑦

?
= a : 𝛼

is unifiable but after transforming a into a bound variable 𝑥a,
the resulting equation 𝑦 : 𝛼 ⊢2 _𝑥a .𝑦

?
= _𝑥a .𝑥a : 𝛼 → 𝛼 is

no longer unifiable. We circumvent this problem by passing
the bound variables used to replace constants to every free
variable. For the above example, we obtain 𝑦 : 𝛼 → 𝛼 ⊢2
_𝑥a.𝑦 𝑥a

?
= _𝑥a .𝑥a : 𝛼 → 𝛼 which is unifiable.

First, we show how to remove a list of constants 𝐷 =

[𝑑1, . . . , 𝑑𝑚] with 𝑑1, . . . , 𝑑𝑚 : D \ C, given ord (ΩD𝑑𝑖) < 𝑛

https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#Constants.ConstantSubstitution.CompatibilityLemmas
https://ps.uni-saarland.de/extras/HOU/HOU.concon.conservativity.html#Constants.ConstantSubstitution.CompatibilityLemmas
https://ps.uni-saarland.de/extras/HOU/HOU.concon.constants.html#Retracts.Properties
https://ps.uni-saarland.de/extras/HOU/HOU.concon.constants.html#Retracts.Properties
https://ps.uni-saarland.de/extras/HOU/HOU.concon.constants.html#subst_consts_inject_backwards
https://ps.uni-saarland.de/extras/HOU/HOU.concon.constants.html#re_typing
https://ps.uni-saarland.de/extras/HOU/HOU.concon.constants.html#unification_constants_monotone
https://ps.uni-saarland.de/extras/HOU/HOU.concon.constants.html#unification_constants_monotone

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Simon Spies and Yannick Forster

for all 𝑖 = 1, . . . ,𝑚. We then generalise the result to the entire
type D \ C with a particular choice of the 𝑑𝑖 ’s. We associate
every constant 𝑑𝑖 with a fresh variable 𝑥𝑖 and introduce the
encoding Y which performs the transformation. Variables
are replaced according to the substitution 𝜎Y𝑥 B 𝑥 𝑥1 · · · 𝑥𝑚
and constants according to ^Y𝑑 B 𝑑 if 𝑑 : C, ^Y𝑑 B 𝑥𝑖 if
𝑑 = 𝑑𝑖 for some 𝑖 , and ^Y𝑑 B 𝑥0 for some fixed 𝑥0 otherwise.
The transformation Y is given by Y𝑠 B _𝑥1 · · · 𝑥𝑚 .𝑠 [𝜎Y] [^Y].
We transform types by Y (𝐴) B ΩD𝑑1 → . . . → ΩD𝑑𝑚 → 𝐴

and to contexts by Y (Γ) B [(𝑥 : Y (𝐴)) | (𝑥 : 𝐴) ∈ Γ]. We
introduce the operation Y−1𝑠 B 𝑠 𝑑1 · · · 𝑑𝑚 which reverses
the effect of Y to a certain extend. Y and Y−1 are lifted to
substitutions by point wise application, i.e. Y (𝜎) (𝑥) B Y (𝜎𝑥).

Lemma 6.4. Let ∀𝑑 ∈ consts 𝑠 . 𝑑 ∈ 𝐷 ∨ 𝑑 : C and ∀𝑑 ∈
consts (𝜎𝑥). 𝑑 ∈ 𝐷 ∨ 𝑑 : C for all 𝑥 .

1.
Γ ⊢𝑛 𝑠 : 𝐴

Y (Γ) ⊢𝑛 Y𝑠 : Y (𝐴)
and

Γ ⊢𝑛 𝑠 : Y (𝐴)
Γ ⊢𝑛 Y−1𝑠 : 𝐴

2. ≡ is compatible with Y and Y−1.
3. Y𝑠 [Y𝜎] ≻∗ Y (𝑠 [𝜎]) and Y−1 ((Y𝑠) [𝜎]) ≻∗ 𝑠 [Y−1𝜎].

Lemma 6.5. UD
𝑛 ⪯ UC

𝑛 provided C ↩→ D, ΩC and ΩD
agree with the injection, and ord (ΩD𝑑) < 𝑛 for all 𝑑 : D \ C.

Proof. We pick 𝐷 B [𝑑 | 𝑑 ∈ consts 𝑠 ++ consts 𝑡, 𝑑 : D \ C]
and the function Y (Γ ⊢𝑛 𝑠

?
= 𝑡 : 𝐴) B Y (Γ) ⊢𝑛 Y𝑠

?
= Y𝑡 : Y (𝐴)

to show UD
𝑛 (Γ ⊢𝑛 𝑠

?
= 𝑡 : 𝐴) iff UC

𝑛 (Y (Γ ⊢𝑛 𝑠
?
= 𝑡 : 𝐴)). □

Corollary 6.6. Let g : D with ΩDg = 𝛼 → 𝛼 → 𝛼 .

H10 ⪯ U{g,a}
2 ⪯ U{g}

2 ⪯ UD
2 U{g,a}

2 ⪯ U∅
3 ⪯ UC

3

7 First-Order Unification
We verify a decision procedure for first-order unification in
the _-calculus, following the approach used in a formalisa-
tion by Smolka and Husson [2014]. First-order unification is
formalised in various proof assistants, we thus only give the
proof idea for the simply typed _-calculus.
Our proof consists of two steps: First, we implement a

unification procedure for the _-free fragment of our calculus.
Second, we use normalisation and the unification procedure
to decide the problem U1 for the whole calculus.

We say that a term is _-free if it does not contain any ab-
stractions. We fix a predicate freewhich determines whether
a variable is considered as free, and should be replaced by
substitutions, or as bound, and can thus not be replaced. We
say that a substitution 𝜎 respects bound variables if 𝜎𝑥 = 𝑥

for all variables 𝑥 with bound 𝑥 .
The proof is based on decomp 𝐸, a decomposition proced-

ure which simplifies a system of equations by generating
more, but structurally simpler equations. We first define it

for a single equation.

decomp (𝑠 ?
= 𝑠) = [] decomp (𝑥 ?

= 𝑠) = [𝑥 ?
= 𝑠]

decomp (𝑠 ?
= 𝑥) = [𝑥 ?

= 𝑠] decomp (𝑠1 𝑠2
?
= 𝑡1 𝑡2) =

decomp (𝑠1
?
= 𝑡1) ++ decomp (𝑠2

?
= 𝑡2)

decomp (_ ?
= _) = ∅ othw.

where ∅ indicates that there is no sensible decomposition.We
lift the definition to systems of equations by decomp [] = []
and decomp (𝑠 ?

= 𝑡 :: 𝐸) = decomp (𝑠 ?
= 𝑡) ++ decomp 𝐸.

Based on this we define a unification relation 𝐸 ↦→ 𝜎 which,
if read operationally, directly yields a unification procedure:

decomp 𝐸 = []
𝐸 ↦→ id

decomp 𝐸 = 𝑥
?
= 𝑠 :: 𝐸 ′ free 𝑥 𝑥 ∉ vars 𝑠

∀𝑦 ∈ vars 𝑠 . free 𝑦 𝐸 ′[𝑥] ↦→ 𝜎

𝐸 ↦→ 𝜎 [𝑥 := 𝑠 [𝜎]]
We can prove computability, soundness and completeness

of this relation:

Lemma 7.1. For every 𝐸 we can compute 𝜎 such that 𝐸 ↦→
𝜎 , or we can prove that no such 𝜎 exists.

Lemma 7.2. If 𝐸 ↦→ 𝜎 , we have
1. 𝜎 unifies the equations in 𝐸.
2. 𝜎 is _-free
3. 𝜎 respects bound variables.
4. if ord Γ ≤ 1 and Γ ⊢1 𝐸 : 𝐿, then Δ ⊢1 𝜎 : Γ.

Lemma 7.3. If 𝜎 respects bound variables and solves 𝐸, then
there exists 𝜏 with 𝐸 ↦→ 𝜏 .

We need two more observations before we are able to
prove the decidability of U1:

Lemma 7.4. If Γ ⊢1 𝑠 : 𝐴, 𝑠 is normal and 𝑠 ≠ _𝑥 .𝑡 for all
𝑡 , then 𝑠 is _-free.

Lemma 7.5. If Γ ⊢𝑛 𝑠
?
= 𝑡 : 𝐴, then Δ ⊢𝑛 b𝑠

?
= b𝑡 : 𝐵 for

some Δ with ord Δ ≤ 𝑛 and 𝐴 with ord 𝐴 ≤ 𝑛 + 1. Moreover,
U𝑛 (Γ ⊢𝑛 𝑠

?
= 𝑡 : 𝐴) iffU𝑛 (Δ ⊢𝑛 b𝑠

?
= b𝑡 : 𝐵).

Theorem 7.6. U1 is decidable.

Proof. By lemma 2.8 it suffices to decide whether there exists
a unifying substitution inserting normal forms only. Let Γ ⊢1
𝑠

?
= 𝑡 : 𝐴. Due to lemma 7.5, we can assume wlog. that

𝑠 and 𝑡 are normal, ord Γ ≤ 1, and ord 𝐴 ≤ 2. Because
inserting normal terms in normal, first-order terms yields
normal terms, and on such terms ≡ coincides with equality,
it suffices to decide the existence of 𝜎 fulfilling

Δ ⊢1 𝜎 : Γ, 𝑠 [𝜎] = 𝑡 [𝜎], and normal 𝜎𝑥 for all 𝑥 .

https://ps.uni-saarland.de/extras/HOU/HOU.concon.constants.html#RemoveConstants.EncodingLemmas
https://ps.uni-saarland.de/extras/HOU/HOU.concon.constants.html#RemoveConstants.EncodingLemmas
https://ps.uni-saarland.de/extras/HOU/HOU.concon.constants.html#RemoveConstants.EncodingLemmas.Typing
https://ps.uni-saarland.de/extras/HOU/HOU.concon.constants.html#RemoveConstants.EncodingLemmas.CompatibilityLemmas
https://ps.uni-saarland.de/extras/HOU/HOU.concon.constants.html#RemoveConstants.EncodingLemmas.SubstitutionLemmas
https://ps.uni-saarland.de/extras/HOU/HOU.concon.constants.html#remove_constants_reduction
https://ps.uni-saarland.de/extras/HOU/HOU.concon.constants.html#remove_constants_reduction
https://ps.uni-saarland.de/extras/HOU/HOU.concon.constants.html#Corollaries
https://ps.uni-saarland.de/extras/HOU/HOU.concon.constants.html#Corollaries
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#unify
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#Unification.Computability
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#Unification.Computability
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#Unification.Soundness
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#Unification.Soundness
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#unify_unifiable
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#unify_lambda_free
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#unify_free'
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#unify_typing
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#unify_complete
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#unify_complete
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#order_one_lambda_free
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#order_one_lambda_free
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#Retyping
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#Retyping
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#firstorder_decidable
https://ps.uni-saarland.de/extras/HOU/HOU.firstorder.html#firstorder_decidable

Undecidability of Higher-Order Unification Formalised in Coq CPP ’20, January 20–21, 2020, New Orleans, LA, USA

We analyse the form of 𝑠 and 𝑡 using lemma 2.5, which
are normal. Hence, let 𝑠 = _𝑥1 · · · 𝑥𝑘 .𝑎1 𝑠1 · · · 𝑠𝑞 and 𝑡 =

_𝑥1 · · · 𝑥𝑙 .𝑎2 𝑡1 · · · 𝑡𝑟 .

1. Case𝑘 ≠ 𝑙 . Wlog. let𝑘 < 𝑙 . We show both terms cannot
be unifiable. We assume that both terms are unifiable
and derive a contradiction. If 𝑎1 is a constant, then
substitution does not affect 𝑎1 and thus we can obtain
an equation between an abstraction and a constant.
This is clearly a contradiction. If 𝑎1 is a variable, then
the type of this variable must be a function type. A
contradiction, since first-order terms cannot contain
function variables.

2. Case 𝑘 = 𝑙 . With lemma 7.4 we know that 𝑎1 𝑠1 · · · 𝑠𝑞
and 𝑎2 𝑡1 · · · 𝑡𝑟 are _-free. Thus, we can use the de-
cision procedure from lemma 7.1 to decide whether
[𝑎1 𝑠1 · · · 𝑠𝑞

?
= 𝑎2 𝑡1 · · · 𝑡𝑟] ↦→ 𝜎 for some𝜎 where there

variables 𝑥1, . . . , 𝑥𝑘 are considered bound and all others
are free. If this is the case, then lemma 7.2, soundness,
guarantees that 𝜎 unifies 𝑠 and 𝑡 . If this is not the case,
then completeness (lemma 7.3) guarantees that no 𝜎
unifies 𝑠 and 𝑡 .

□

8 Formalisation
The overhead generated by using a proof assistant is com-
parable to detailed paper proofs. Using a proof assistant has
prevented us from making small errors, in particular in the
multiplication proof in Section 5. The formalisation spans
7300 lines of code, with an additional 2400 lines of code that
may be understood as an extension of the standard library. Of
those seven thousand lines a significant amount is devoted to
developing the meta theory about the _-calculus and unific-
ation. Only about 1000 lines are needed for Goldfarb’s result
and amongst those a fourth is devoted to multiplication. The
simplified version of Huet’s result spans 400 lines.

While we use a named representation on paper to improve
readability, in Coq we use a De Bruijn [1972] representation
of terms. As a consequence, in the formalisation typing con-
texts are lists. Working with De Bruijn terms in Coq is con-
siderably eased by the Autosubst 2 framework [Stark et al.
2019], which can generate the term syntax, renaming and a
substitution operations as well as their correctness lemmas.
In lemma 2.3 we establish that well-typed terms are nor-

malising. We define the logical relation following Schäfer
[2019], which was first used by Forster et al. [2019b], to ob-
tain a very short proof of normalisation for our simply-typed
_-calculus with constants.

The technique we use to enumerate predicates and types
is based on prior work by Forster et al. [2019a]. The com-
putability proof of the relation 𝐸 ⊨ 𝜎 is using non-structural
recursion, enabled in Coq by the Equations package [Sozeau
and Mangin 2019].

Surprisingly challenging was the formalisation of the con-
servativity of unification. We did not find a previous proof
of conservativity in the literature. When transforming a sub-
stitution Δ ⊢𝑚 𝜎 : Γ into Σ ⊢𝑛 𝜏 : Γ for 𝑛 ≤ 𝑚 free variables
and constants of order 𝑚 have to be replaced with terms
of order 𝑛. For decreasing the order of constants we had to
introduce the constant replacement 𝑠 [^] and prove it com-
patible with reduction and typing. In addition, to recover
ordertyping we need normal forms meaning after replacing
constants and free variables we need to normalise the result-
ing terms. Normal terms are needed because a substitution of
order𝑚 may contain unreduced𝑚th-order subterms which
are closed and thus remain untouched by substitution. As
the proof of lemma 3.6 shows this is no longer the case if we
consider normal forms. Further, formalising the techniques
from Section 6 required longer proofs than we anticipated.
On paper, we easily convinced ourselves that the techniques
should work as expected, spelling out all details to constitute
a formal proof was more difficult. While not particularly
challenging, formalising the meta theory of the STLC caused
considerable overhead. For example, where on paper one
might just write “. . . ” to indicate multiple arguments being
applied to a function, in the formalisation we define a func-
tion for applying a list of terms 𝑇 = [𝑡1, . . . , 𝑡𝑛] from the
right to a term 𝑠 . The non-tail-recursive definition 𝑠 [] B 𝑠

and 𝑠 (𝑡 :: 𝑇) B (𝑠 𝑇) 𝑡 of this operation reverses the order of
the arguments, i.e. 𝑠 𝑇 = 𝑠 𝑡𝑛 · · · 𝑡1. To improve readability,
we deviate slightly from the formalisation on paper and use
the canonical order 𝑠 𝑡1 · · · 𝑡𝑛 whenever possible.

Nevertheless, Coq provides an ideal environment for our
proofs. Its constructive nature allows a synthetic approach to
undecidability, whereas tactics like setoid rewriting [Sozeau
2009] and especially the Autosubst 2 tool [Stark et al. 2019]
made the formalisation of syntax and semantics straightfor-
ward.

9 Discussion
To the best of our knowledge, this paper contains the first
formalisation of higher-order unification in the _-calculus
with undecidability results. In particular, we are the first to
present the results by Huet and Goldfarb and first-order uni-
fication in one setting, the STLC. In the context of the Coq lib-
rary of undecidable problems [Forster et al. 2020b], with Co-
rollaries 3.9 and 5.25 we obtain the synthetic undecidability
of higher-order unification Halt ⪯ H10 ⪯ U2 ⪯ U2+𝑘 ⪯ U.

9.1 Related Work
Higher-order unification The undecidability proof in Sec-
tion 2 is based on [Dowek 1993] which in turn presents the
result by Goldfarb [1981]. In this work, we use a different
equation to characterise Church numerals.

CPP ’20, January 20–21, 2020, New Orleans, LA, USA Simon Spies and Yannick Forster

The undecidability proof of third-order unification is based
on prior work by Huet [1973]. Although the result is sub-
sumed by Goldfarb’s combined with the techniques to treat
constants presented in this work, we formalise Huet’s result
as it showcases a very different technique for establishing
the undecidability of unification problems. We simplified his
construction by reducing from MPCP instead of the Post-
correspondence problem.

For comparison, we also formalised the original reduction
by Huet. In his reduction, Huet must ensure that it is not
possible to give a unifying substitution which corresponds to
an empty sequence of cards. He excludes the empty solution
by adding an additional constraint, using a technique similar
to lemma 5.24. We do not need such a constraint as the
empty sequence is a solution forMPCP (then 𝑙0 = 𝑟0 for the
designated card 𝑙0/𝑟0). Huet presents his result in a Church-
typed setting whereas we use Curry typing throughout the
work. We did not notice significant differences arising in the
proofs from this decision.
The undecidability of second-order unification is based

on prior work by Goldfarb [1981]. Goldfarb uses a calculus
without abstractions, using hereditary substitutions for uni-
fication. We adapt his work to the STLC which for example
entails proving lemma 5.14 and simplify his construction: We
distinguish between pairs and lists and we only need a single
equation for multiplication. Goldfarb needs two equations to
ensure that the terms inserted by substitution do not contain
the constants a and b. We accomplish this by using bound
variables instead.

Formalised undecidability results Most of the pub-
lished work on formalised undecidability results is available
as part of the library of formalised undecidable problems
in Coq [Forster et al. 2020b]. Amongst them are undecid-
ability proofs for the halting problem in the call-by-value
_-calculus [Forster and Smolka 2017], for string rewriting,
PCP and MPCP [Forster et al. 2018], for the halting prob-
lem of register machines, binary stack machines and prov-
ability in intuitionistic linear logic [Forster and Larchey-
Wendling 2019], for various notions in first-order logic [For-
ster et al. 2019a], and for Hilbert’s tenth problem [Larchey-
Wendling and Forster 2019]. Apart from the library, there is
a formalised undecidability result for provability in System
F by Dudenhefner and Rehof [2018] and the undecidability
of subtyping in the 𝐷<: calculus [Hu and Lhoták 2019] and
other calculi related to dependent object types [Hu 2019], all
in Coq.
An undecidability proof for Hilbert’s tenth problem in

Isabelle is work in progress [Bayer et al. 2019].
Working in concrete models of computation, Ramos et al.

[2018] formalise the undecidability of a halting problem for
a functional language in PVS, Carneiro [2018] formalises
Rice’s problem based on partial recursive functions in Lean,
and Xu et al. [2013] formalise the undecidability of the halt-
ing problem of Turing machines in Isabelle.

Formalisation of unification To the best of our know-
ledge, we are the first to give a formalised presentation of
higher-order unification. First-order unification (in the _-
free fragment) has been formalised in numerous proof assist-
ants, amongst them Coq [Rouyer 1992] and Isabelle [Coen
1992]. Nominal unification has been mechanised in Isabelle
by Urban et al. [2004] and in HOL4 by Kumar and Norrish
[2010].

9.2 Future Work
Farmer [1988] proves the decidability of monadic second-
order unification. A natural extension of this work is the
formalisation of its decision procedure, determining the
status of all UC

𝑛 problems formally.
In Section 2, we present a semi-decision procedure for

higher-order unification. A more efficient semi-decision pro-
cedure was introduced by Huet [1975], it would be interest-
ing to mechanise its correctness proof.

Furthermore, there are several variants of unification with
undecidability proofs that can be formalised, including E-
unification [Degtyarev and Voronkov 1996]. Other problems
like pattern unification are known to be decidable [Miller
1991], but lack a formalised proof. Several known undecidab-
ility results build on the undecidability of unification prob-
lems, like typability in the _Π-calculus [Dowek 1993] (which
is shown undecidable by adapting Huet’s proof) or type in-
ference in Curry-style System 𝐹𝜔 [Urzyczyn 1997] (shown
undecidable by reduction from U2). Lastly, it would be a
major challenge to bring the undecidability proof of semi-
unification [Kfoury et al. 1993], which works by reduction
from the mortality problem of Turing machines, into a shape
suitable for mechanisation.

Acknowledgments
We would like to thank Dominik Kirst for constructive feed-
back on how to present the material, Gert Smolka for valu-
able guidance throughout the project, and the anonymous
reviewers for very helpful hints and suggestions.

References
Henk P. Barendregt. 1984. The Lambda Calculus: Its Syntax and Semantics

(2nd revised ed.). North-Holland.
Jonas Bayer, Marco David, Abhik Pal, Benedikt Stock, and Dierk Schleicher.

2019. The DPRM Theorem in Isabelle (Short Paper). In 10th International
Conference on Interactive Theorem Proving (ITP 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Mario Carneiro. 2018. Formalizing computability theory via partial recursive
functions. arXiv preprint arXiv:1810.08380 (2018).

Martin David Coen. 1992. Interactive program derivation. Technical Report.
University of Cambridge, Computer Laboratory.

Martin Davis. 1973. Hilbert’s Tenth Problem is Unsolvable. The American
Mathematical Monthly 80, 3 (1973), 233–269.

Nicolaas Govert De Bruijn. 1972. Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with application to
the Church-Rosser theorem. In Indagationes Mathematicae (Proceedings),
Vol. 75. Elsevier, 381–392.

Undecidability of Higher-Order Unification Formalised in Coq CPP ’20, January 20–21, 2020, New Orleans, LA, USA

Anatoli Degtyarev and Andrei Voronkov. 1996. The undecidability of simul-
taneous rigid E-unification. Theoretical Computer Science 166, 1-2 (1996),
291–300.

Gilles Dowek. 1993. The undecidability of typability in the lambda-pi-
calculus. In International Conference on Typed Lambda Calculi and Ap-
plications. Springer, 139–145.

Gilles Dowek. 2001. Higher-Order Unification and Matching. Handbook of
automated reasoning 2 (2001), 1009–1062.

Andrej Dudenhefner and Jakob Rehof. 2018. A Simpler Undecidability Proof
for System F Inhabitation. TYPES 2018 (2018).

William M Farmer. 1988. A unification algorithm for second-order monadic
terms. Annals of Pure and applied Logic 39, 2 (1988), 131–174.

Yannick Forster, Edith Heiter, and Gert Smolka. 2018. Verification of PCP-
related computational reductions in Coq. In International Conference on
Interactive Theorem Proving. Springer, 253–269.

Yannick Forster, Dominik Kirst, and Gert Smolka. 2019a. On synthetic
undecidability in Coq, with an application to the Entscheidungsproblem.
In Proceedings of the 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs. ACM, 38–51.

Yannick Forster and Fabian Kunze. 2019. A Certifying Extraction with
Time Bounds from Coq to Call-By-Value Lambda Calculus. In 10th In-
ternational Conference on Interactive Theorem Proving (ITP 2019) (Leib-
niz International Proceedings in Informatics (LIPIcs)), John Harrison,
John O’Leary, and Andrew Tolmach (Eds.), Vol. 141. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 17:1–17:19. https:
//doi.org/10.4230/LIPIcs.ITP.2019.17

Yannick Forster, Fabian Kunze, and Maximilian Wuttke. 2020a. Verified
Programming of Turing Machines in Coq. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs. ACM.

Yannick Forster and Dominique Larchey-Wendling. 2019. Certified unde-
cidability of intuitionistic linear logic via binary stack machines and
Minsky machines. In Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs. ACM, 104–117.

Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner, Edith
Heiter, Dominik Kirst, Fabian Kunze, Gert Smolka, Simon Spies, Dominik
Wehr, and Maximilian Wuttke. 2020b. A Coq Library of Undecidable
Problems. In The Sixth International Workshop on Coq for Program-
ming Languages (CoqPL 2020). https://github.com/uds-psl/coq-library-
undecidability

Yannick Forster, Steven Schäfer, Simon Spies, and Kathrin Stark. 2019b.
Call-by-push-value in Coq: operational, equational, and denotational
theory. In Proceedings of the 8th ACM SIGPLAN International Conference
on Certified Programs and Proofs. ACM, 118–131.

Yannick Forster and Gert Smolka. 2017. Weak call-by-value lambda cal-
culus as a model of computation in Coq. In International Conference on
Interactive Theorem Proving. Springer, 189–206.

WarrenD. Goldfarb. 1981. The undecidability of the second-order unification
problem. Theoretical Computer Science 13 (1981), 225–230.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2006. Introduction
to Automata Theory, Languages, and Computation (3rd ed.). Addison-
Wesley.

Jason Hu and Ondvrej Lhoták. 2019. Undecidability of𝐷<: and Its Decidable
Fragments. arXiv preprint arXiv:1908.05294 (2019).

Zhong Sheng Hu. 2019. Decidability and Algorithmic Analysis of Dependent
Object Types (DOT). http://hdl.handle.net/10012/14964

Gerard Pierre Huet. 1972. Constrained resolution: a complete method for
higher-order logic. (1972).

Gérard P Huet. 1973. The undecidability of unification in third order logic.
Information and control 22, 3 (1973), 257–267.

Gerard P. Huet. 1975. A unification algorithm for typed _-calculus. Theor-
etical Computer Science 1, 1 (1975), 27–57.

Assaf J Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. 1993. The undecidability
of the semi-unification problem. Information and Computation 102, 1

(1993), 83–101.
Ramana Kumar and Michael Norrish. 2010. (Nominal) unification by recurs-

ive descent with triangular substitutions. In International Conference on
Interactive Theorem Proving. Springer, 51–66.

Dominique Larchey-Wendling and Yannick Forster. 2019. Hilbert’s Tenth
Problem in Coq. In 4th International Conference on Formal Structures for
Computation and Deduction, FSCD 2019, Dortmund, Germany. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 27:1–27:20.

CL Lucchesi. 1972. The undecidability of the unification problem for third
order languages. Report CSRR 2059 (1972), 129–198.

Alberto Martelli and Ugo Montanari. 1976. Unification in linear time and
space: A structured presentation. Istituto di Elaborazione della Inform-
azione, Consiglio Nazionale delle Ricerche.

Yuri V. Matijasevivc. 1970. Enumerable sets are Diophantine. In Soviet
Mathematics: Doklady, Vol. 11. 354–357.

Dale Miller. 1991. A logic programming language with lambda-abstraction,
function variables, and simple unification. Journal of logic and computa-
tion 1, 4 (1991), 497–536.

Michael S Paterson and Mark N Wegman. 1978. Linear unification. J.
Comput. System Sci. 16, 2 (1978), 158–167.

Emil L Post. 1946. A variant of a recursively unsolvable problem. Bull. Amer.
Math. Soc. 52, 4 (1946), 264–268.

Thiago Mendoncca Ferreira Ramos, César Muñoz, Mauricio Ayala-Rincón,
Mariano Moscato, Aaron Dutle, and Anthony Narkawicz. 2018. Form-
alization of the Undecidability of the Halting Problem for a Functional
Language. In International Workshop on Logic, Language, Information,
and Computation. Springer, 196–209.

John C Reynolds. 1983. Types, abstraction and parametric polymorphism.
(1983).

John Alan Robinson. 1965. A machine-oriented logic based on the resolution
principle. Journal of the ACM (JACM) 12, 1 (1965), 23–41.

Joseph Rouyer. 1992. Développement de l’algorithme d’unification dans le
calcul des constructions avec types inductifs. Ph.D. Dissertation. INRIA.

Steven Schäfer. 2019. Engineering Formal Systems in Constructive Type
Theory. Ph.D. Dissertation. Saarland University. https://www.ps.uni-
saarland.de/~schaefer/thesis/

Gert Smolka and Adrien Husson. 2014. Introduction to Computational Logic.
(2014). https://courses.ps.uni-saarland.de/icl/2/Resources Unification.

Wayne Snyder and Jean H Gallier. 1989. Higher order unification revisited:
Complete sets of transformations. Technical Reports (CIS) (1989), 778.

Matthieu Sozeau. 2009. A New Look at Generalized Rewriting in Type
Theory. Journal of Formalized Reasoning 2, 1 (2009).

Matthieu Sozeau and Cyprien Mangin. 2019. Equations Reloaded: High-
Level Dependently-Typed Functional Programming and Proving in Coq.
Proceedings of the ACM on Programming Languages 3, ICFP (2019).

Kathrin Stark, Steven Schäfer, and Jonas Kaiser. 2019. Autosubst 2: reas-
oning with multi-sorted De Bruijn terms and vector substitutions. In
Proceedings of the 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs. ACM, 166–180.

Richard Statman. 1981. On the existence of closed terms in the typed _ cal-
culus II: Transformations of unification problems. Theoretical Computer
Science 15, 3 (1981), 329–338.

Masako Takahashi. 1989. Parallel reductions in _-calculus. Journal of
Symbolic Computation 7, 2 (1989), 113–123.

Christian Urban, Andrew M Pitts, and Murdoch J Gabbay. 2004. Nominal
unification. Theoretical Computer Science 323, 1-3 (2004), 473–497.

Pawel Urzyczyn. 1997. Type Reconstruction in F Ω. Mathematical. Struc-
tures in Comp. Sci. 7, 4 (Aug. 1997), 329–358. https://doi.org/10.1017/
S0960129597002302

Jian Xu, Xingyuan Zhang, and Christian Urban. 2013. Mechanising Turing
Machines and Computability Theory in Isabelle/HOL. In ITP (LNCS),
Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie (Eds.),
Vol. 7998. Springer, 147–162.

https://doi.org/10.4230/LIPIcs.ITP.2019.17
https://doi.org/10.4230/LIPIcs.ITP.2019.17
https://github.com/uds-psl/coq-library-undecidability
https://github.com/uds-psl/coq-library-undecidability
http://hdl.handle.net/10012/14964
https://www.ps.uni-saarland.de/~schaefer/thesis/
https://www.ps.uni-saarland.de/~schaefer/thesis/
https://courses.ps.uni-saarland.de/icl/2/Resources
https://doi.org/10.1017/S0960129597002302
https://doi.org/10.1017/S0960129597002302

	Abstract
	1 Introduction
	2 Higher-Order Unification
	2.1 Unification
	2.2 System Unification
	2.3 Undecidability of Higher-Order Unification

	3 Nth-Order Unification
	3.1 Conservativity

	4 Third-Order Unification
	5 Second-Order Unification
	6 Constants
	6.1 Introduction of Constants
	6.2 Elimination of Constants

	7 First-Order Unification
	8 Formalisation
	9 Discussion
	9.1 Related Work
	9.2 Future Work

	Acknowledgments
	References

