
Autosubst 2: Reasoning with Multi-sorted de Bruijn
Terms and Vector Substitutions

Kathrin Stark
Saarland University

Saarbrücken, Germany
stark@ps.uni-saarland.de

Steven Schäfer
Saarland University

Saarbrücken, Germany
schaefer@ps.uni-saarland.de

Jonas Kaiser
Saarland University

Saarbrücken, Germany
jkaiser@ps.uni-saarland.de

Abstract
Formalising metatheory in the Coq proof assistant is tedious
as reasoning with binders without native support requires a
lot of uninteresting technicalities. To relieve users from so-
produced boilerplate, the Autosubst framework automates
working with de Bruijn terms: For each annotated inductive
type, Autosubst generates a corresponding instantiation op-
eration for parallel substitutions and a decision procedure for
assumption-free substitution lemmas. However, Autosubst is
implemented in Ltac, Coq’s tactic language, and thus suffers
from Ltac’s limitations. In particular, Autosubst is restricted
to Coq and unscoped, non-mutual inductive types with a sin-
gle sort of variables. In this paper, we present a new version
of Autosubst that overcomes these restrictions. Autosubst 2
is an external code generator, which translates second-order
HOAS specifications into potentially mutual inductive term
sorts. We extend the equational theory of Autosubst to the
case of mutual inductive sorts by combining the application
of multiple parallel substitutions into exactly one instantia-
tion operation for each sort, i.e. we parallelise substitutions
to vector substitutions. The resulting equational theory is
both simpler and more expressive than that of the original
Autosubst framework and allows us to present an even more
elegant proof of part A of the POPLMark challenge.

CCSConcepts •Theory of computation→Automated
reasoning;Type theory;Operational semantics; Lambda
calculus.

Keywords de Bruijn representation, parallel substitutions,
sigma-calculus, multi-sorted terms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’19, January 14–15, 2019, Cascais, Portugal
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6222-1/19/01. . . $15.00
https://doi.org/10.1145/3293880.3294101

ACM Reference Format:
Kathrin Stark, Steven Schäfer, and Jonas Kaiser. 2019. Autosubst
2: Reasoning with Multi-sorted de Bruijn Terms and Vector Sub-
stitutions. In Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP ’19), January 14–
15, 2019, Cascais, Portugal. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3293880.3294101

1 Introduction
Formalising the metatheory of programming languages and
logical systems in a proof assistant requires the treatment
of syntax with binders. However, using a system without
native support for binders (like the general-purpose proof
assistant Coq) requires a lot of boilerplate [Aydemir et al.
2005]. These uninteresting technicalities distract from the
actual proofs and forgo the advantage of automation a proof
assistant has.
There are multiple approaches to representing binders –

de Bruijn [de Bruijn 1972], locally nameless [Aydemir et al.
2005], nominal sets [Pitts 2013], or HOAS [Pfenning and
Elliott 1988]. While all approaches chase the common goal of
simplifying proofs with binders, there are different tradeoffs
and measures of success: How natural is it to work with?
Which syntax can be handled? Which are the requirements
for the logic of the proof assistant? How much boilerplate is
necessary before and during use?
An approach that emphasizes the last problem and min-

imises the pure mechanisation effort is Autosubst [Schäfer
et al. 2015b]. Autosubst is based on the σ -calculus [Abadi
et al. 1991], a λ-calculus with explicit substitutions.
The σ -calculus handles substitutions by restricting itself

to a small selection of substitution operations and combina-
tors which are (1) still expressive enough to handle β- and
η-reduction and (2) are closed under instantiation. These
operations come with a terminating [Abadi et al. 1991], con-
fluent [Curien et al. 1996], and complete [Schäfer et al. 2015a]
rewriting system, which allows arguing about these opera-
tions in the form of a decision procedure for assumption-free
substitution lemmas. Autosubst then forms a model of the
σ -calculus with unscoped de Bruijn terms.

More specifically, given an annotated inductive type of
terms, Autosubst automatically derives a model of an ex-
tended σ -calculus, comprising an instantiation operation

https://doi.org/10.1145/3293880.3294101
https://doi.org/10.1145/3293880.3294101

CPP ’19, January 14–15, 2019, Cascais, Portugal Kathrin Stark, Steven Schäfer, and Jonas Kaiser

and rewriting system. This means that we can generate ev-
ery proof for a goal of the form s = t which contains only
syntactic expressions and instantiation – if it exists.

We have successfully used Autosubst in several case stud-
ies, ranging from strong normalisation proofs to the metathe-
ory of Martin-Löf type theory [Schäfer et al. 2015b] and
equivalence proofs of alternative syntactic presentations of
System F [Kaiser et al. 2017b]. However, the derivation pro-
cess is implemented in Ltac, Coq’s tactic language. Ltac is
no full programming language, and Autosubst 1 suffers from
its limitations, namely:

1. The generation of an instantiation operation for a
given syntactic class automatically equips the sort with
a variable constructor.

2. Ltac is specific to Coq.
3. It is hard to maintain or extend Ltac code, e.g. to pro-

vide faster automation or automation without func-
tional extensionality.

4. Ltac’s semantics is non-dependent and allows no mu-
tual definitions. Autosubst thus allows neither mutual
inductive sorts nor well-scoped syntax. In general, it
is not clear which exact class of syntax Autosubst can
handle as Ltac tactics are used heuristically.
As a consequence, the handling of heterogeneous sub-
stitutions, i.e., multiple instantiation operations on a
single term sort, is ad-hoc.

5. It is difficult to extend Autosubst to more constructs
than instantiation, e.g., syntax traversals [Allais et al.
2017; Kaiser et al. 2018].

In summary, Autosubst 1 cannot handle the syntax of a call-
by-value variant of the lambda calculus, call-by-push value,
or the π -calculus. The success in extending Autosubst 1 via
Ltac is questionable – especially the lack of mutual recursion
would require several work-arounds –, and, in the best case,
error prone.
We thus propose a new implementation of Autosubst

which amends the above-mentioned lack of flexibility and
reliability and at the same time extends Autosubst’s input
language to mutual inductive sorts with multiple sorts of
variables.

Our implementation comes in the form a code generator
in three layers: It parses a Twelf-like second order HOAS
system specification, analyses it, generates internal proof
terms, and then produces the desired definitions and lemmas
as a plain source file which can be read by the proof assistant.

Based on the specification we compute which sorts require
variables and which sorts have to be declared as mutually
inductive. At the moment we only accept second-order spec-
ifications, that is, we do not admit HOAS constants as the µ-
operator mu : ((tm → nam) → nam)→ tm found in [Abel 2001].
As a result, the generated inductive types in Coq are simple
in the sense that they do not have constructors accepting
functions as arguments. The current version of Autosubst 2

is able to produce both unscoped and well-scoped Coq code.
The extension to well-scoped syntax is technically straight-
forward, but gives the user a better check while writing
definitions.
Moreover, Autosubst 1 chose to handle renamings – i.e.,

substitutions which only substitute variables, in our case
not necessarily injective – as second-class: An unfortunate
choice, as many statements require a proof for renamings
first (Section 4). In our re-implementation, we introduce
first-order renamings to Autosubst 2.

The main contribution of this paper is our novel treatment
of heterogeneous substitutions. Instead of equipping a given
sort x with a separate instantiation operation for each sort y
that may occur as a variable in x , we generate a single instan-
tiation operation that takes a vector of parallel substitutions
with one component for each occurring variable sort y. For
sorts without any variable occurrences, no instantiation is
generated.

Using vectors of parallel substitutions simplifies the equa-
tional theory of substitution lemmas in the heterogeneous
setting. We extend the automation of Autosubst accordingly,
using a straightforward extension of the σ -calculus.
To demonstrate the benefit of mutual inductive types

with heterogeneous substitutions we revisit a case study
from [Schäfer et al. 2015b]. We show weak normalisation
of call-by-value System F by making a syntactic distinction
between terms and values. This syntactic distinction simpli-
fies the definitions and leads to an extremely short proof. All
emerging substitution lemmas are automatically solved by
our extended automation tactic. Wemoreover present a more
elegant proof of part A of the POPLMark challenge [Aydemir
et al. 2005] using Autosubst 2 and shortly present other case
studies enabled by Autosubst 2.

Contributions. This paper revisits the efforts reported in
a previous work-in-progress paper [Kaiser et al. 2017a]. As
such, it complements and extends the σ -calculus and Au-
tosubst 1 to 1.) multivariate, 2.) mutual inductive, and 3.)
well-scoped syntax. This includes an extension of both in-
stantiation and the corresponding rewriting system.
Our re-implementation as an external tool moreover cre-

ates the basis for a more flexible tool to argue about substitu-
tions. We moreover provide a proof of weak normalisation
of call-by-value System F and a new, improved proof of the
POPLMark challenge.

The Coq formalisation of all results in this paper and the
Autosubst 2 tool itself are available online1.

2 Preliminaries
The main feature of de Bruijn syntax is the absence of vari-
able names. In well-scoped de Bruijn [Adams 2004], vari-
ables are instead represented as indices taken from a finite

1https://www.ps.uni-saarland.de/extras/autosubst2/

https://www.ps.uni-saarland.de/extras/autosubst2/

Autosubst 2: Reasoning with Multi-sorted de Bruijn Terms. . . CPP ’19, January 14–15, 2019, Cascais, Portugal

0 : In+1 id : In → In

↑ : In → In+1 idx = x

_ , _ : X → (In → X) → (In+1 → X)

(s ,σ) 0 = s
(s ,σ) (↑ x) = σ x

_ ◦ _ : (B → C) → (A → B) → (A → C)

(σ ◦ τ)x = σ (τx)

Figure 1. Primitives of the σ -calculus.

k-element type Ik . This corresponds to a reference in a con-
text of size k .

Syntactic sorts are then represented by N-indexed induc-
tive families. The scopes are exclusive upper bounds on the
freely occurring variables of certain sorts.
The following grammar gives System F types in a well-

sorted de Bruijn representation:

An ,Bn ∈ tyn ::= xnty | An → Bn | ∀. An+1 x ∈ In

Note how in the case of universal quantification the type
index of A increases by 1 for the additional freely occurring
variable. Although all types are scoped, we usually leave out
the indices for the sake of readability.

Instantiation. We recall the definition of instantiating a
typeAwith a parallel type substitutionσ : Im → tyn , written
A[σ].

For the definition, we use a well-scoped version of the
primitive operations first defined in the σ -calculus [Abadi
et al. 1991], as depicted in Figure 1. E.g., the stream cons
substitution A ,σ maps the index 0 to A and indices ↑ x to
σ x . Note that this operation binds weaker than composition.

A substitution acts on all k free type variable in Ak at
once. We define A[σ] mutually recursive with the forward
composition of substitutions:

X [σ] = σ X (σ1 ◦ [σ2])X = (σ1X)[σ2]

(A → B)[σ] = A[σ] → B[σ]

(∀. A)[σ] = ∀. A[⇑ty σ] with ⇑ty σ = 0ty ,σ ◦ [↑]

Substitution traverses the term homomorphically. If we
reach the variable constructor, we perform the substitution.
Traversing a universal quantifier changes the interpretation
of indices in scope. We thus adjust the substitution via a
lifting operation ⇑ty . The index 0 is mapped to 0, indices of
the form ↑ x are first mapped to σ x and then adjusted to
bypass the new binder. We achieve this adjustment by simply
post-composing ↑ to σ .

The σ -calculus. Single-point substitutions, i.e., substitu-
tions which only act on one variable, interfere with each

(s ,σ) 0 = s (s ,σ) ◦ ↑ ≡ σ

(s ,σ) (↑ n) = σ n σ 0 ,↑ ◦ σ ≡ σ

0 , ↑ ≡ id (s ,σ) ◦ τ ≡ τ s ,σ ◦ τ

σ ◦ id ≡ σ id ◦ σ ≡ σ

(a) Interference laws.

X [σ] = σ X

(A → B)[σ] = A[σ] → B[σ]

(∀. A)[σ] = ∀. A[⇑ty σ] with ⇑ty σ = 0ty ,σ ◦ [↑]

(b) Reduction laws.

idty ◦ _[σ] ≡ σ

s[idty] = s

s[σ][τ] = s[σ ◦ [τ]]

(c) Monad laws.

_[idty] ≡ id

(σ ◦ [τ]) ◦ [θ] ≡ σ ◦ [τ ◦ [θ]]

(d) Supplementing laws.

Figure 2. Rewriting system for System F types.

other and permuting them introduces non-trivial side con-
ditions. Combining them into a parallel substitution leads
to a more uniform treatment and is crucial for an elegant
equational theory.

This parallel-substitution equational theory was first pre-
sented in [Abadi et al. 1991] for the λ-calculus and consists
of four categories of laws (Figure 2).
Interference laws govern the interplay of basic forward

composition, stream cons, and shifting, while reduction laws
account for the sort-specific definition of instantiation. In-
stantiation on terms can be seen as a monad from a category
of renamings to the terms themselves [Altenkirch et al. 2010]
and thus satisfies themonad laws, i.e. left identity, right iden-
tity, and composition. Last, the above rules might generate
critical pairs. The supplementing laws ensure that the rewrit-
ing system is confluent.
Note that several equations are stated as equivalences,

where f ≡ д if f x = д x for all arguments x .
The resulting equational theory is terminating [Abadi et al.

1991], confluent [Curien et al. 1996], and complete [Schäfer
et al. 2015a].

Autosubst 1. Autosubst 1 simplifies reasoning with parallel
de Bruijn substitutions for generalised syntax. As such, it
takes an annotated inductive type of terms, and generates a
model for a sort-specific version of the σ -calculus described
above using Ltac. This includes both the derivation of the
capture-avoiding instantiation operation for parallel substi-
tutions and the corresponding lemmas.
The implementation requires several intermediate steps.

First, note that the mutual recursion between instantiation

CPP ’19, January 14–15, 2019, Cascais, Portugal Kathrin Stark, Steven Schäfer, and Jonas Kaiser

and composition is not structural. We follow the pattern pre-
sented in [Adams 2004] and first define instantiation for the
special case of (not necessarily injective) renamings, i.e. sub-
stitutions which only substitute variables.

Next, the lemmas of the aforementioned equational theory
have to be proven. While the interference laws hold indepen-
dent of a specific syntax, the reduction laws and left identity
follow immediately from our definition of instantiation itself.
In contrast, the two remaining monad laws require several
inductions (e.g., compositionality requiring first instances
where either σ , or τ , or both σ and τ are renamings). Last, the
supplementing laws follow with the corresponding monad
laws.

Coq provides a type theorywithout functional extensional-
ity, i.e. f ≡ д ↛ f = д. However, as functional extensionality
may be safely assumed [Hofmann 1995], which Autosubst
does to provide a tactic asimpl that automatically rewrites
the lemmas in Figure 2.

Specifications. Autosubst 2 takes a second-order HOAS
specification as input. A specifications is a context Θ declar-
ing new types and constructors.

(specifications) Θ ::= T1 : Type, . . . ,C1 : U1, . . .

(constructor types) U ::= T | (T1 → . . .→ Tn) → U

Since we only allow simple types, our specifications are
fairly restrictive compared to contemporary type theories
supporting HOAS [Pfenning and Schürmann 1999; Pientka
and Dunfield 2010]. In fact, our specifications are equiva-
lent to the multi-sorted second-order binding signatures of
Ahrens and Zsido [2011].

We chose the HOAS presentation to allow us to extend
Autosubst 2 in the future. Tools like Twelf and Beluga have
already shown that it is possible to include type systems (by
adding dependent types and a universe of propositions) and
recursive definitions (e.g., by adding modalities [Hofmann
1999a; Nanevski et al. 2008]) in the same formalism.

3 From Parallel Substitutions to Vector
Substitutions on the Example of FCBV

In Section 2 we saw the instantiation of renaming and substi-
tution for one sort of variables. Let us consider an example
with multiple sorts of variables: a call-by-value variant of
System F.

Ak ,Bk ∈ tyk ::= xkty | Ak → Bk | ∀. Ak+1 x ∈ Ik

sk,l , tk,l ∈ tmk,l ::= sk,l tk,l | sk,l Ak | vk,l

uk,l ,vk,l ∈ vlk,l ::= xk,lvl | λAk . sk,l+1 | Λ. sk+1,l x ∈ Il

While its sort of types is still univariate, i.e. contains only
one type of variables, the terms s and values v are multivari-
ate, i.e. both type and value variables can be bound. Terms
and values are thus indexed by the upper bound of both type

(s t)[σ ;τ] = s[σ ;τ] t[σ ;τ] x[σ ;τ] = τ x

(s A)[σ ;τ] = s[σ ,τ]A[σ] (Λ. s)[σ ;τ] = Λ. s[⇑ty σ ; ⇑ty τ]

(λA. s)[σ ;τ] = λA[σ]. s[⇑vl σ ; ⇑vl τ]

⇑vl σ := σ ⇑vl τ := 0vl ,τ ◦ [idty ;↑]

⇑ty σ := 0ty ,σ ◦ [↑] ⇑ty τ := τ ◦ [↑; idvl]

Figure 3. Term and value substitutions for FCBV.

and value variables. FCBV concisely showcases the compli-
cations that arise from a potentially mutual syntax and we
thus use it as our example syntactic system in the remainder
of the section.
Extending instantiation to terms and values implies the

need to substitute for both type and value variables. In Au-
tosubst 1, this resulted in different instantiation operations
for type and value variables, e.g. for values:

[]ty : vlmn → (Im → tym′) → vlm′ n

[]vl : vlmn → (In → vlmn′) → vlmn′

This results in a total of five instantiation operations.
We face the problem that the various instantiation oper-

ations interfere and become difficult to permute. Take for
example

s[τ]vl [σ]ty = s[σ]ty [σ ◦ [τ]ty]vl

where permuting the two substitutions requires us to replace
types in substituted values. Even more important, this made
Autosubst fail to scale to mutual inductive sorts like those
of our example FCBV.

Parallelising substitutions is the key. Just as we combined
several single-point substitutions into a parallel substitution,
we now combine multiple parallel substitutions into a sin-
gle vector of parallel substitutions, with one component for
each sort that may occur in a variable position. We will see
that this leads to a more uniform treatment and a simple
equational theory. In the following, we give the required
definitions for FCBV to illustrate the approach.

Though we use FCBV as a running example, note that the
Autosubst 2 tool extends the above approach to all second-
order HOAS signatures.

3.1 Instantiation
See Figure 3 for a definition of instantiation

[; _] : vlmn → (Im → tym′) → (In → tym′ n′) → vlm′ n′

for well-scoped System F.
The instantiation operations for terms and values are de-

fined in Figure 3, again mutually recursive with the forward
composition operation. We write s[σ ;τ] for a term s where
all type variables are substituted according to σ and all value

Autosubst 2: Reasoning with Multi-sorted de Bruijn Terms. . . CPP ’19, January 14–15, 2019, Cascais, Portugal

variables according to τ , and similarly for values. The fol-
lowing aspects are worth pointing out.
First, whenever we reach a variable, we have to project

the correct component, e.g., x[σ ;τ] = τ x for value variables.
Second, when a given subterm is of a different sort, we

have to select the correct instantiation function and subvec-
tor. Take for example (s A)[σ ;τ], where the correct subvector
for instantiating the subterm A is [σ]. As the shape of the
substitution will be determined from a transitive notion of
occurrence, a suitable subvector will always exist.

Third, andmost interestingly, the traversal of binders chan-
ges the interpretation of the indices in scope. We have to
adjust each component of the substitution vector via a cus-
tomised lifting operation which is more involved than in the
single-sorted setting (cf. the overloaded ⇑ty). The component
that corresponds to the sort of the binder we just traversed,
say σ , is modified almost as before. While the index 0 is
mapped to 0 as usual (capture-avoiding substitution should
not substitute the newly bound variable), we have to ensure
that ↑ x is first mapped to σx and then adjusted to bypass
the new binder. For types, this was achieved by simply post-
composing ↑ to σ . Instead, we have to post-compose a vector
substitution which matches the codomain of σ , has a shift
for the bound sort, and is otherwise the variable constructor
idty : ∀n. In → In – corresponding to the change of interpre-
tation under the corresponding binder. We further have to
construct and post-compose such adjustments to all other
components σ ′ of the original vector substitution. For our
concrete example, these are the two operations ⇑vl and ⇑ty

defined in Figure 3 both of which construct substitutions
suitable for the sort of terms while incorporating a newly
bound value or, respectively, type. When we observe their
uses, we see that they act on substitutions for the sort of
values, indicating that the subvector cast mentioned above
may, in fact, be the identity. We further observe that the
post-composed adjustment may itself not have a component
for the bound sort, in which case the adjustment degenerates
to the identity everywhere and is tacitly omitted.

Coq Implementation. Again, themutual recursion between
instantiation and composition is not structural, and we thus
first define instantiation for renamings, written A⟨ξ ⟩ and
s ⟨ξ ; ζ ⟩. For example, ⇑ty is in fact defined as

⇑ty σ := 0ty ,σ ◦ ⟨↑⟩

and similarly for ⇑vl .

3.2 Rewriting System
Based on the aforementioned aspects we extend the σ -cal-
culus [Abadi et al. 1991] to vector substitutions. We recall
the different kinds of rules of the σ -calculus (Figure 2): inter-
ference, reduction, monad, and supplementing laws. As no
new primitives were needed, the interference laws remain
unchanged. As before, the reduction laws have to be adapted

Laws of System F types
+ reduction laws

+

s[idty ; idvl] = s
s[σty ;σvl][τty ;τvl] = s[σty ◦ [τty];σvl ◦ [τty ;τvl]]

idvl ◦ _[σ ;τ] ≡ τ

v[idty ; idvl] = v
v[σty ;σvl][τty ;τvl] = v[σty ◦ [τty];σvl ◦ [τty ;τvl]]

(a) Monad laws.

_[idty ; idvl] ≡ id

(σvl ◦ [τty ;τvl]) ◦ [θty ;θvl] ≡ σvl ◦ [τty ◦ [θty];τvl ◦ [θty ;θvl]]

(b) Supplementing laws.

Figure 4. Equational System for Terms and Values of Sys-
tem F.

to the extended syntax. The monad laws and supplementing
laws further hold in a generalised form, we account for in
the following.

In the case of right identity, the single identity substitution
extends to a vector of identity substitutions. We prove the
statement as follows:

Lemma 3.1 (Right Identity). s[idty, idvl] = s and
v[idty, idvl] = v .

Proof. By a mutual induction on s and v . In the case of the
value variable constructor, the goal holds directly by defini-
tion of idvl .
Otherwise, in each case, the statement holds by congru-

ence and the corresponding proof on the single compo-
nents. E.g., in the case of application, s A, we show that
s[idty, idvl] = s and A[idty] = A. Note that for A, the state-
ment relies on the respective proofs for ty .

Next, in each case we traverse a binder, we have to account
for the scope change. For example, in the case of type ab-
straction, we have to show that s[⇑ty idty, ⇑ty idvl] = s . This
requires two additional proofs to show that ⇑ty idty ≡ idty
and ⇑ty idvl ≡ idvl .
If the lifted variable does not correspond to the newly

bound variable (e.g., for ⇑ty idvl), this follows directly. Other-
wise, e.g. for ⇑ty idty , we have to take a case analysis on the
examined variable, where again in both cases the statement
follows directly. □

Note how this proof followed the structure of instantiation:
We had to take care of the mutual structure, the correct sub-
components, the variable constructor, and adequate lifting
operations.

CPP ’19, January 14–15, 2019, Cascais, Portugal Kathrin Stark, Steven Schäfer, and Jonas Kaiser

We prove compositionality in a similar manner. As in Au-
tosubst 1, we have to show the statement for all combinations
of renamings and substitutions (cf. [Adams 2004]):
Lemma 3.2 (Compositionality).

1. s ⟨ξty ; ξvl ⟩⟨ζty ; ζvl ⟩ = s ⟨ξty ◦ ζty ; ξvl ◦ ζvl ⟩
2. s ⟨ξty ; ξvl ⟩[τty ;τvl] = s[ξty ◦ τty ; ξvl ◦ τvl]
3. s[σty ;σvl]⟨ζty ; ζvl ⟩ = s[σty ◦ ⟨ζty ⟩;σvl ◦ ⟨ζty ; ζvl ⟩]
4. s[σty ;σvl][τty ;τvl] = s[σty ◦ [τty];σvl ◦ [τty ;τvl]]

Proof. Again, each statement will require an induction on s ,
following the above traversal structure. Each scope change
will require corresponding lifting lemmas, which will, in
turn, require the previous compositionality statements. We
omit the details of the proofs. □

Finally, we have to adapt the supplementing laws.
Lemma 3.3 (Supplementing Laws).

1. _[idty ; idvl] ≡ id
2. (σvl ◦ [τty ;τvl]) ◦ [θty ;θvl]

≡ σvl ◦ [τty ◦ [θty];τvl ◦ [θty ;θvl]]

Proof. Both statements follow with right identity respec-
tively compositionality. □

We conjecture that the extended term rewriting system is
still confluent and terminating.
Note that in the previous statement we silently assumed

extensionality. For the monad law, we can avoid extensional-
ity with more general statements (see Section 5). Otherwise,
the following law will provide useful:

Lemma 3.4 (Extensionality).
σty ≡ τty σvl ≡ τvl

s[σty ;σvl] = s[τty ;τvl]

Proof. By induction on s , requiring first an instance for re-
naming. The traversal structure is similar to the right identity
law. □

3.3 Typing and Evaluation for FCBV
Let us examine how we can use vector substitutions to state
evaluation and typing for FCBV (Figure 5).
For evaluation, vector substitutions allow us to state β-

reduction for both types of abstraction. In the case of term
abstraction, we lift the term component and the type com-
ponent remains unchanged, vice versa for type abstraction.

As we work in a well-scoped syntax, term typing is stated
as a predicate of type

∀mn.(Im → tyn) → tmm;n → ty n → P,

i.e. contexts are represented as functions. The variable rule
will thus simply state that a variable has the type its context
dictates: Γ ⊢v x : Γ x . In the case of type abstraction, the
scope changes, which we come up for by composition of the
necessary shifting operation.

In the next section, we use our rewriting system to prove
preservation.

s ⇓ λA. b t ⇓ u
b[idty ;u , idvl] ⇓ v

s t ⇓ v

s ⇓ Λ. b
b[A , idty ; idvl] ⇓ v

s A ⇓ v v ⇓ v

Γ ⊢ s : A → B Γ ⊢ t : A
Γ ⊢ s t : B

Γ ⊢ s : ∀. A
Γ ⊢ s B : A[B , idty]

Γ ⊢v v : A
Γ ⊢ v : A

Γ ⊢v x : Γ x
Γ,A ⊢ s : B

Γ ⊢v λA. s : A → B

Γ ◦ ⟨↑⟩ ⊢ s : A
Γ ⊢v Λ. s : ∀. A

Figure 5. Evaluation and type system of FCBV.

4 First-Class Renamings
In Autosubst 1 and the σ -calculus, renamings are treated as a
special case of substitutions, and are thus second class. While
convenient for the equational theory, this does not match a
proof assistant which supports only structural induction:
Often, substitution properties might require proving the

corresponding instance for renamings first. A well-known
example are context morphism lemmas [Goguen and McK-
inna 1997; Kaiser et al. 2017b], stating e.g. that typing of FCBV
(Figure 5) is substitutive:

Γ ⊢ s : A ∀x .∆ ⊢ τ x : (Γ x)[σ]
∆ ⊢ s[σ ;τ] : A[σ]

The proof proceeds by induction on Γ ⊢ s : A. In the case
of abstraction the context changes to Γ ,A and we need to
show that the precondition is preserved under it, i.e.,

A ,∆ ⊢ (⇑tm τ)x : ((A , Γ)x)[⇑tm σ]

for all x . For an arbitrary x , this statement is no longer cov-
ered by the inductive hypothesis and we will thus first re-
quire a proof for renamings of the form

Γ ⊢ s : A ∀x .(Γ x)⟨ξ ⟩ = ∆ (ζ x)

∆ ⊢ s ⟨ξ ; ζ ⟩ : A⟨ξ ⟩

Even worse: Some statements only hold for renaming,
such as the anti-renaming lemma,

injective ξ → s ⟨ξ ⟩ ⇓ t ⟨ξ ⟩ → s ⇓ t .

In Autosubst 1, we can only reason about a renaming ξ by
an embedding into substitutions via [ξ ◦ idty]. This compli-
cates the application of previous inductive hypotheses and
makes working with renamings unnecessarily cumbersome.

In Autosubst 2, we decided to make renamings first-class,
similar to [Pitts 2013]. For example, in the case of System
F types, there are both renamings ξ : Im → In and sub-
stitutions σ : Im → tmn . At the same time, we allow the

Autosubst 2: Reasoning with Multi-sorted de Bruijn Terms. . . CPP ’19, January 14–15, 2019, Cascais, Portugal

user to employ both instantiation of renamings (ξ ⟨s⟩) and
instantiation of substitutions ([s]σ).
The resulting rewriting system will thus hold variants

for both instantiation of renamings and substitutions. For
example, in the case of the right identity law, the law will be
stated as:

s ⟨id; id⟩ = s .
Compositionality will require four instances, one for each
combination of renaming and substitution. Note that in the
definition of instantiation and in the proofs for the equational
theory, we did first use renamings to resolve the mutual
inductive structure. So all the infrastructure already exists.

Renamings are always preserved unless the user explicitly
decides to do otherwise (see Section 5.5). However, we pro-
vide the following law connecting instantiation of renamings
and substitutions:

Lemma 4.1 (Renaming and Instantiation).

s[ξ ◦ idty] = s ⟨ξ ⟩

Proof. By induction on s . The proof extends to vector substi-
tutions and follows the expected traversal structure. □

The resulting equational theory of a σ -calculus with re-
namings still has to be examined in detail. We conjecture that
convergence and termination are preserved, even though
completeness breaks.
Let us revisit substitutivity of typing and see how Auto-

subst performs.

Lemma 4.2 (Context Renaming Lemma).
Γ ⊢ s : A ∀x .(Γ x)⟨ξ ⟩ = ∆ (ζ x)

∆ ⊢ s ⟨ξ ; ζ ⟩ : A⟨ξ ⟩
and

Γ ⊢ s : A ∀x .∆ ⊢ τ x : (Γ x)[σ]
∆ ⊢ s[σ ;τ] : A[σ]

Proof. By induction on Γ ⊢ s : A. All cases without a change
of scope follow immediately.
For context renaming and term abstraction, we have to

show that

∆ ⊢ λA[ξ]. s[⇑tm ξ ; ⇑tm ζ] : (A → B)[ξ]

and thus with the inductive hypothesis that

∀x .((A , Γ)x)⟨⇑tm ξ ⟩ = A⟨ξ ⟩ ,∆ ((⇑tm ζ)x)

This requires a case analysis on x . In both cases, the state-
ment follows with the primitive equations for stream cons.
The same holds for the context substitution lemma, but

this time we have to show that

A ,∆ ⊢ (⇑tm τ)x : ((A , Γ)x)[⇑tm σ]

This time, we will need the variable case of typing for x = 0.
In the case of ↑ x , we have to apply the context renaming
lemma and need to use right identity to show that (Γx)[σ] =
(Γx)[σ]⟨id⟩. To show the premise of the context renaming

HOAS Input

Dependency Graph

Internal Proof Terms

Unscoped
Coq Code

Well-scoped
Coq Code

...

Parsing/Analysis

Code Generator

Pretty Printing

Figure 6. Set-up of Autosubst 2.

lemma, we need again the definition of stream cons and right
identity.
All of the above equations can be solved automatically

using the Autosubst 2 framework. □

5 From HOAS to Vector Substitutions
All definitions and statements of Section 3 follow a regular
pattern where the only real input was the grammar of FCBV.
We exploit this regularity and automatically generate the
inductive term sorts, the corresponding vector instantiation
operations, and the equational theory for a given concise
syntax description.

Our implementation in Haskell parses a Twelf-like second
order HOAS system specification and produces the desired
output as a plain source file which can be read by the proof
assistant. See Figure 6 for an overview of the set-up. From
the HOAS system specification, we deduce which sorts re-
quire variables, which dependencies exist, and the minimal
vectors needed for instantiation. This is similar to the subor-
dination analysis in Beluga [Pientka and Dunfield 2010] or
Twelf [Pfenning and Schürmann 1999].

Based on this information, we construct the required mo-
del of the σ -calculus in an intermediate type theory syntax,
which abstracts from the specific proof assistant. In the last
step, we use pretty printing to generate the required proof
script.

In the following, we explain the subcomponents of Auto-
subst 2 in more detail.

5.1 Generation of the Dependency Graph
A sample input specification and the desired well-scoped
inductive term sorts for FCBV are shown in Figure 7.

To understand why a HOAS specification suffices to gener-
ate the wealth of structure outlined above, we need to study
the notion of direct occurrence, a relation on syntactic sorts.
Given a HOAS constructor, say

lam : ty → (vl→ tm)→ vl,

CPP ’19, January 14–15, 2019, Cascais, Portugal Kathrin Stark, Steven Schäfer, and Jonas Kaiser

ty, tm, vl : Type

arr : ty → ty → ty

all : (ty → ty)→ ty

app : tm → tm → tm

tapp : tm → ty→ tm

vt : vl → tm

lam : ty → (vl→ tm)→ vl

tlam : (ty → tm) → vl

Inductive ty n : Type :=
| var_ty : fin n → ty n

| arr : ty n → ty n→ ty n

| all : ty (n + 1) → ty n.

Inductive tm m n: Type :=
| app : tm m n → tm m n→ tm m n

| tapp : tm m n → ty m→ tm m n

| vt : vl m n → tm m n

with vl m n : Type :=
| var_vl : fin n → vl m n

| lam : ty n → tm m (n + 1) → vl m n

| tlam : tm (m + 1) n → vl m n.

Figure 7. HOAS specification of FCBV (left) and the corre-
sponding inductively defined, well-scoped de Bruijn sorts
(right).

tm[ty,vl]

app : tm → tm → tm

tapp : tm → ty → tm

vt : vl → tm

vl[ty,vl]

lam : ty → (vl → tm) → vl

tlam : (ty → tm) → vl

ty[ty]

arr : ty → ty → ty

all : (ty → ty) → ty

Figure 8. Dependency graph of FCBV.

we will refer to the result type of each argument as the head
of said argument, here ty and tm. When a given argument,
e.g., vl → tm, has premises, we will call them the binders
of the argument, here vl. A sort y occurs directly in sort
x exactly when it appears as an argument head in one of
x ’s constructors. We refer to the transitive closure of direct
occurrence as occurrence.
At this point we can determine if a given sort has to be

equipped with a variable constructor, as these are left im-
plicit in the HOAS specification. A sort x requires a variable
constructor iff x is a binder of some sort y and also occurs in
y. For FCBV this applies to ty and vl, but not to tm. If only the
first condition is satisfied, the respective binding constructor
is vacuous and our implementation produces a warning.
The information can be visualised as a directed depen-

dency graph, where nodes correspond to sorts and an edge
from x to y indicates the direct occurrence of y in x . Sorts
that require variables are marked by a bold border. The de-
pendency graph for FCBV is shown in Figure 8. We also show
the shape of the corresponding vector substitutions, that
is a list of sorts that are the codomains for each required
substitution component. To be precise, a vector substitution
for a sort x must have a component for each occurring sort y
which has variables. Here, ty requires only one component
for ty itself, while tm and vl each require components for
both ty and vl.

5.2 Generation of Internal Proof Terms
The dependency graph yields all the information needed to
define a model of the σ -calculus for the corresponding term
sort. We process this dependency graph in topological order,
preserving the input order of sorts and constructors as much
as possible, to generate the desired output.
The following aspects will be relevant (see Section 3.2):

First, the definitions and proofs follow the inductive struc-
ture of the term sorts. Sorts of a strongly connected compo-
nent have to be processed simultaneously. This means that
the corresponding inductive term sorts will be declared as
mutually inductive, instantiation operations will be defined
mutually recursive, and the equational rules of the affected
sorts are proven simultaneously. In case the respective sort
contains a variable constructor, we have to handle this case
separately. Projections have to be respected. We use no ex-
plicit projections, but handle these by omitting irrelevant
invariants. New binding constructs will require special treat-
ment: Either in the form of a changed definition or in the
case of the lemmas applying a previously defined lemma
which states that the invariants are preserved.

In the following we discuss the generation of the different
components.

Inductive term sorts. The generation of the inductive term
sorts is straightforward. All we have to do is aggregate the
constructors, strip binders and, if necessary, add a variable
constructor. Sorts in the same strongly connected component
have to be declared mutually inductive. If a term is bound,
the index of the respective term is increased by 1.

Instantiation. Instantiations are slightly more interesting.
As we work in a proof assistant with only structural recur-
sion, we declare instantiation first for renamings, then for
substitutions. Both are defined by a mutual recursion on all
inter-dependent sorts. Recall Section 3.1 for a definition. For
the correct choice of a lifting operation, we first determine
the head of the binding argument x and then the bound sort
y and then employ ⇑yx . The graph also tells us which of these
lifting operations have to be generated, and how.

Lemmas. In Section 3, we showed how to prove the required
substitution lemmas.

In contrast to Autosubst 1, we state the lemmas in a more
general fashion which does not require functional extension-
ality. For example, compositionality for the terms and values
of FCBV is stated as:

θty ≡ σty ◦ [τty] θvl ≡ σvl ◦ [τty ;τvl]
s[σty ;σvl][τty ;τvl] = s[θty ;θvl]

The proof still follows the previously defined structure.

Autosubst 2: Reasoning with Multi-sorted de Bruijn Terms. . . CPP ’19, January 14–15, 2019, Cascais, Portugal

Technical Realisation. In the generation of proof terms, it
is crucial to be as precise as possible: This prevents generali-
sation problems or problems specific due to proof-assistant-
specific behaviour. This includes that we (1) use as few im-
plicit arguments as possible, (2) do not use any notation
during definition, and (3) use proof terms instead of tactics.
The last point further ensures that we can extend Autosubst 2
to proof assistants without a tactic interface, e.g. Agda.
To simplify generation, we introduced a special type for

substitution objects. This type includes pre-defined instances
of scope vectors, renaming vectors, substitution vectors, and
the possibility to include equation vectors, needed to prove
the monad lemmas. Together with this data type we define
specific functions to select subvectors or to lift the object
into a new scope, e.g. for renamings by post-composing the
corresponding vector.
Moreover, we implemented a traversal-like function to

simplify the definition of both instantiation and the lemmas
for the rewriting system. The function basically implements
traversals as described in [Allais et al. 2017; Kaiser et al. 2018],
traversing a term and changing the scope if necessary.

5.3 Printing
In the last step, we transform the internal proof terms into
plain text, readable (and checkable) by a proof assistant of
choice. We use pretty printing [Wadler 2003] together with
Haskell’s type class mechanism. Every backend comes with
its own type class for printing, each internal construct re-
quires a corresponding instance of the type class.
Treating substitution objects special proved useful: The

well-scoped and unscoped variant of the generated Coq code
only differ in the Show instance of scoping objects.
Adapting Autosubst 2 to a new proof assistant (with the

corresponding support for, e.g., mutually inductive types)
is easy. Printing for Lean [de Moura et al. 2015] and Ag-
da [Norell 2008] are work-in-progress.

5.4 Automation
Every instance of automation should implement the rewrit-
ing system of the σ -calculus.

Under the assumption of functional extensionality, we can
simply rewrite the corresponding lemmas of the rewriting
system. The current implementation does exactly this in few
lines of Ltac. The tactic asimpl rewrites the corresponding
lemmas in the goal, respectively for asimpl in * in both
all hypotheses and in the goal. The reduction laws are not
rewritten, but directly reduced using Coq’s evaluation tactic,
to reduce proof term size. Notations (Section 5.5) have to be
unfolded.

A tactic without functional extensionality is possible with
our restricted syntax, but has to traverse the term. This re-
quires the (already automatically generated) extensionality
lemma (Lemma 3.4). An implementation is currently work-
in-progress.

(* Type Class for the Notation *)

Class Subst1 (X1 : Type) (Y Z: Type) :=
subst1 : X1 → Y→ Z.

Notation "s [sigma]" := (subst1 sigma s) (...).

(* Declared instance of the notation. *)

Instance Subst_ty { mty nty : nat } :
Subst1 (fin (mty) → ty (nty)) (ty (mty)) (ty (nty))
:= subst_ty (mty) (nty) .

(* Additional Printing Notation. *)

Notation "s [σ]" := (subst_ty σ s) (..., only printing).

Figure 9. Instantiation notation FCBV types.

5.5 Notation
We aim for a univariate syntax for instantiation for different
sorts, i.e. the user should be able to write s[σ] without know-
ing the exact name of the specific instantiation operation.

We use a common type class instance to be able to overload
the parsing of notation (see Figure 9) in Coq. Autosubst 2
generates the required instances together with the remaining
code. Each instance is unique because of its result type. As
automation works on terms without notation, asimpl will
need to unfold the type class instances.

Folding (dependent) instances is difficult andwe thus intro-
duce a all notations a second time just for printing (Figure 9).
As such, we will never fold to a type class instance.

We have introduced similar syntax for renamings (A⟨ξ ⟩
and s ⟨ξ ; ζ ⟩), variable constructors (ids), and the lifting of
variables. For example, a scope change that lifts one type vari-
able van be written as ⇑ty σ , independent of the underlying
type of σ .

Renamings and Substitutions. At the moment, our au-
tomation tactic does not automatically switch between re-
namings and substitutions.
Instead, we provide tactics which allow the user to auto-

matically transform renamings to substitutions (substify)
and vice versa (renamify).
The first direction is the easy one, simply rewriting with

Lemma 4.1 from left to right. On the other side, renamify
requires several transformations: A substitution of the form
ξ ◦ idty can be directly transformed to a renaming, other-
wise, we have to re-parenthesise to the left and then re-try.
Moreover, we might have to fold the stream cons, e.g. from
idtyx ,(ξ ◦ idty) to (x , ξ) ◦ idty .

6 Case Studies
We developed several case studies to test the performance of
Autosubst 2. All developments can be found online. See the
context renaming lemma in Section 4 for a detailed proof
using the rewriting system of Autosubst 2.

CPP ’19, January 14–15, 2019, Cascais, Portugal Kathrin Stark, Steven Schäfer, and Jonas Kaiser

POPLMark Reloaded. We provide a solution for the POPL-
Mark Reloaded challenge [Abel et al. 2017], in which we
show strong normalisation for a strong λ-calculus with dis-
joint sums using Kripke logical relations for both unscoped
and well-scoped syntax. A well-scoped solution, which pro-
vides for elegant handling of contexts, would not have been
possible with Autosubst 1.

Algorithmic Equivalence. We revisit a proof of the equiv-
alence of algorithmic and definitional equivalence for an
untyped λ-calculus via logical relations [Crary 2005]. We fol-
low the structure of the corresponding Beluga proof [Cave
and Pientka 2015], and, similarly, omit units. The proof uses
only one syntactic sort but relies on the convenient handling
of renamings.

POPLMark Challenge (Part A). In the next section, we
present a proof of part A of the POPLMark challenge using
vector substitutions. This simplifies on the previous Auto-
subst 1 proof with ad-hoc heterogeneous substitutions.

Weak Normalisation of FCBV. We present a concise formal
proof that FCBV is weakly normalising using a unary logi-
cal relation. The logical relation interprets (open) types as
mappings from environments to sets of closed values. Our
definitions and proofs rely on the syntactic distinction be-
tween terms and values. For the logical relation, it is crucial
that ρ maps type variables to sets of values, instead of arbi-
trary terms. The proof requires two sorts of variables and
mutual inductive syntax.

Call-by-push-value. We use Autosubst 2 in a recent 8000-
line development [Forster et al. 2018] formalising the op-
erational, equational, and denotational semantics of call-
by-push-value [Levy 1999], a language subsuming the call-
by-value/call-by-name λ-calculus with sums and products.
Autosubst 2 excels in a development with three different
sorts with variables, two of them (fine-grained CBV and
CBPV) mutually inductive. Mutually inductive types and
well-scoped syntax were not supported in Autosubst 1, and
thus this case study would not have been possible.

6.1 Weak Normalisation of FCBV
We present a concise formal proof that FCBV is weakly nor-
malising. In Figure 5, we defined both the typing rules and a
big-step reduction relation from terms to values.
We show that every closed, well-typed term s can be re-

duced to a valuev , that is s ⇓ v , using a unary logical relation.
The logical relation interprets (open) types as mappings from
environments to sets of values, realised as predicates. An
environment ρ maps type variables to sets of values and we
write d , ρ for ρ extended with a new type variable interpre-
tation d .

Similar to the typing rules, the logical relation consists of
two parts, a term interpretation [[A]]ρ and a value interpre-
tation (|A|)ρ .

[[A]]ρ := λs . ∃v . s ⇓ v ∧ (|A|)ρ v

(|X |)ρ := ρ X

(|A → B |)ρ := { λC . s | ∀v . (|A|)ρ v → [[B]]ρ s[idty ;v , idvl] }
(|∀. A|)ρ := {Λ. s | ∀Bd . [[A]]d , ρ s[B , idty, idvl] }
In order to handle type abstractions, we need to know

that this definition is compatible with type substitution and
weakening.

Lemma 6.1. For all types A, environments ρ, and renamings
ξ we have (|A[ξ]|)ρ = (|A|)ξ ◦ [ρ]. In particular, (|A[↑]|)d , ρ =
(|A|)ρ holds.

Proof. By induction on A using the equations in Figure 2a.
□

Lemma 6.2. For all types A, environments ρ, and substitu-
tions σ we have (|A[σ]|)ρ = (|A|)σ ◦ (|−|)ρ . The result trivially
lifts to the term interpretation and we obtain [[A[B , idty]]]ρ =
[[A]](|B |)ρ , ρ as a special case.

Proof. Induction on A using Lemma 6.1. □

We extend the value interpretation to terms in contexts
and define semantic counterparts to our two syntactic typing
relations.

(|Γ |)ρ := λτ . ∀x . (|Γx |)ρ (τ x)
Γ ⊨ s : A := ∀στρ. (|Γ |)ρ τ → [[A]]ρ s[σ ;τ]

Γ ⊨v v : A := ∀στρ. (|Γ |)ρ τ → (|A|)ρ v[σ ;τ]

We now prove that syntactic typing implies semantic typ-
ing.

Theorem 6.3 (Soundness). For all Γ, s,v,A we have

Γ ⊢ s : A → Γ ⊨ s : A
Γ ⊢v v : A → Γ ⊨v v : A

Proof. By mutual induction on the typing derivations. The
type application case introduces a substitution on types
which is handled with Lemma 6.2. Meanwhile, type abstrac-
tion relies on Lemma 6.1. The proof also depends on two
non-trivial substitution lemmas for the cases of abstraction
and type abstraction.

s[⇑vl (σ ;τ)][idty ;v , idvl] = s[σ ;v ,τ]

s[⇑ty (σ ;τ)][A , idty ; idvl] = s[A ,σ ;τ]

Both are solved automatically by our framework. □

Corollary 6.4 (Weak Normalisation). For all s,A we have

⊢ s : A → ∃v . s ⇓ v

Autosubst 2: Reasoning with Multi-sorted de Bruijn Terms. . . CPP ’19, January 14–15, 2019, Cascais, Portugal

Syntax of F<
Ak ,Bk ∈ tyk ::= xkty | Ak → Bk | ∀ <: Ak .Bk+1 x ∈ Ik

sk,l , tk,l ∈ tmk,l ::= xk,ltm | sk,l tk,l | sk,l Ak

λAk . sk,l+1 | Λ <: .[k, l]Ask+1,l x ∈ Il

Subtyping ∆ ⊢ A <: B

∆ ⊢ A <: T ∆ ⊢ x <: x
∆ ⊢ ∆ x <: B
∆ ⊢ x <: B

∆ ⊢ B1 <: A1 ∆ ⊢ A2 <: B2

∆ ⊢ A1 → A2 <: B1 → B2

∆ ⊢ B1 <: A1 (B1,∆) ◦ ⟨↑⟩ ⊢ A2 <: B2

∆ ⊢ ∀ <: A1.A2 <: ∀ <: B1.B2

Typing ∆; Γ ⊢ s : A

∆; Γ ⊢ s : A → B ∆; Γ ⊢ t : A
∆; Γ ⊢ s t : B

∆; Γ ⊢ s : ∀ <: A.
∆; Γ ⊢ s B : A[B , idty]

∆; Γ ⊢ x : Γ x
∆;A, Γ ⊢ s : B

∆; Γ ⊢ λA. s : A → B

(A ,∆) ◦ ⟨↑⟩; Γ ◦ ⟨↑⟩ ⊢ s : B
∆; Γ ⊢ Λ <: A.s : ∀ <: A.B

∆ ⊢ A <: B ∆; Γ ⊢ s : A
∆; Γ ⊢ s : B

Weak Semantics s > t

s > s ′

s t > s ′ t

t > t ′

v t > v t ′
s > s ′

s A > s ′A

λA. s v > s[idty ;v , idvl]

Λ <: A.s B > s[B , idty ; idvl]

Figure 10. Syntax, typing and weak semantics of F< .

Note that our definitions and proofs rely on the syntactic
distinction between terms and values. For the logical relation,
it is crucial that ρ maps type variables to sets of values,
instead of arbitrary terms. More details can be found in the
accompanying formalisation.

6.2 The POPLMark Challenge (Part A)
We take a second look at part A of the POPLMark chal-
lenge [Aydemir et al. 2005]. The goal is to show preservation
of F< , i.e. System F with subtyping (Figure 10).

Theorem 6.5 (Preservation). If ∆; Γ ⊢ s : A, and s ⇓ t , then
∆; Γ ⊢ t : A.

Typing comes with two kinds of contexts: One for type
variables which remembers the subtyping information, one
for term variables which collects the typing information.
Note that the term context Γ depends on the type context ∆,
as its contained objects only make sense in reference to ∆.
Thus, a scope change of ∆ as for type abstraction requires
a scope change on the term context. As contexts are just
functions, this can be handled with post-composition.
Our previous solution [Schäfer et al. 2015b] is already

based on context morphism lemmas [Goguen and McKinna
1997; Kaiser et al. 2017b]. Unlike [Schäfer et al. 2015b], we
use well-scoped syntax with vector substitutions.
In the first part we show that subtyping is transitive and

commutes with substitutions. We omit the proofs here, since
there were no substantial changes after introducing vector
substitutions.
We turn to preservation. We say that ∆′ <: ∆ iff ∆′ ⊢

∆′ x <: ∆ x for all variables x in scope.

Lemma 6.6. If ∆′ <: ∆ and ∆; Γ ⊢ s : A, then ∆′; Γ ⊢ s : A.

Proof. By induction on ∆; Γ ⊢ s : A with compatibility of
subtyping with renaming and substitution. □

Lemma 6.7 (Context Renaming Lemma). Assume that

1. ∆′; Γ′ ⊢ s : A
2. ξ ⟨(∆′x)⟩ = ∆(ξx) for all x
3. ξ ⟨(Γ′ x)⟩ = Γ(ζx) for all x

Then Γ;∆ ⊢ s ⟨ξ ; ζ ⟩ : A⟨ξ ⟩.

Proof. By induction on ∆′; Γ′ ⊢ s : A, requiring compatibility
of subtyping with renaming.
The proof requires equational reasoning with binders in

three cases: typing of type application and both term and
type abstraction. Let us have a closer look at type abstrac-
tion, as this case requires reasoning on both type and value
substitutions.
We have to show that ∆; Γ ⊢ Λ <: s .⟨ξ ; ζ ⟩ : ∀ <: A.B,

i.e. ∆; Γ ⊢ Λ <: A⟨ξ ⟩.s ⟨⇑ty ξ ; ⇑ty ζ ⟩ : ∀ <: A.B. Using
the corresponding typing rule and the inductive hypothesis,
we thus remain with showing that both A⟨ξ ⟩ ,∆ ◦ ⟨↑⟩ and
Γ ◦ ⟨↑⟩ still fulfill the corresponding preconditions (2) and
(3), i.e.

∀x .(⇑ty ξ)(((A ,∆′) ◦ ⟨↑⟩)x) = ((A⟨ξ ⟩ ,∆) ◦ ⟨↑⟩)((⇑ty ξ)x)

and

∀x .(⇑ty ξ)⟨(Γ′ ◦ ⟨↑⟩)x⟩ = (Γ ◦ ⟨↑⟩)((⇑ty ζ)x),

requiring reasoning on the composition of renamings and
substitutions, the interaction between cons and composition,
and in the first case a case analysis on x .
For both equations, we can use asimpl to simplify the

goals for us and then use the corresponding property for ξ
and ∆ to solve the equations. □

CPP ’19, January 14–15, 2019, Cascais, Portugal Kathrin Stark, Steven Schäfer, and Jonas Kaiser

Note how using well-scoped syntax allows us to treat
contexts as functions themselves, and thus permits the same
equational reasoning.

Similarly, we can state the context substitution lemma:

Lemma 6.8 (Context Substitution Lemma). Assume that
1. ∆′; Γ′ ⊢ s : A
2. ∆′ ⊢ σ x <: (∆ x)[σ] for all x
3. ∆′; Γ′ ⊢ τ x : (Γ x)[σ] for all x

Then Γ;∆ ⊢ s[σ ;τ] : A[σ].

Proof. By induction on ∆′; Γ′ ⊢ s : A
We require similar equational reasoning as in the context

renaming lemma, using the context renaming lemma in the
case of binders.

□

Theorem 6.5 can then be shown by induction on ∆; Γ ⊢ s :
A, using the previous context renaming and context substi-
tution for typing of type applications and type abstraction
respectively.

Discussion. See Figure 11 for an overview of the lines of
code for the different challenges. Schäfer et al. [2015b] offer
a detailed discussion. The recent proof shortened the code
for Autosubst 1 slightly. The main gap to Needle&Knot lies
in the proof of transitivity.
The proofs could be shortened for three reasons: First,

compared to the proofs suggested in the appendix of the
POPLMark challenge [Aydemir et al. 2005], parallel substitu-
tions relieve us from many of the intermediate lemmas for
single-point substitutions.
Second, a well-scoped syntax allowed us to remove the

separate well-scopedness judgment. It also enables us to
work with contexts in a more concise, functional fashion.

Third, vector substitutions omit interchanging lemmas for
type and term renamings, respectively substitutions. Previ-
ous efforts could thus be simplified.
In short, vector substitutions and well-scoped terms al-

lowed us to develop an even shorter and more elegant proof
of part A of the POPLMark challenge.
There is still one area of improvement we want to tackle

in the future. Note how – except for the main result – the
main lemmas were all context renaming and context mor-
phism lemmas. These lemmas can be obtained for free in a
system based on HOAS. Extending Autosubst 2 in this way
is currently work-in-progress [Schäfer and Stark 2018].

6.3 Call-by-push-value
A detailed description of our development can be found
in [Forster et al. 2018]. We use this section to highlight some
of the cases where Autosubst proved useful.
In our project, we consider three syntactic systems: A

full λ-calculus (CBN), a fine-grained call-by-value variant
which distinguishes between two mutually inductive sorts of

Le
roy

– L
N

Ch
arg
ué
rau
d –

LN

Vo
uil
lon

– d
B

GM
eta

– d
B

GM
eta

– L
N

LN
Ge
n –

LN

Au
tos
ub
st
– d
B

Kn
ot
– d
B

Au
tos
ub
st
2 –

dB

0

500

1,000

655 623
520 441 483

197 210 168 151

1,199

728 697 714
562

681

225
121 165Li

ne
so

fC
od

e

Spec
Proof

Figure 11. Comparison of Coq solutions to part A of the
POPLMark challenge, measured using the coqwc utility.

terms and values (CBV), and call-by-push-value(CBPV, [Levy
1999]), which distinguishes betweenmutually inductive sorts
of values and computations.

Among others, CBPV contains an eliminator for pairs,

caseP : vl → (vl→ vl→ comp)→ comp

which binds two variables at the same time. Neither this nor
subsorts without variables, caused any problems.

Among other results, we provided translations from CBN
and CBV to CBPV and proved simulation with respect to
a weak and strong operational semantics. We proved the
following substitution statement for CBV/CBN:

s[σ] = s[σ]

where s and σ are the translation of CBV/CBN terms and
substitutions to CBPV terms and substitutions, respectively.
Again this required proving the corresponding statement for
renamings first. In general, the CBPV project motivated us
to switch to first-class renamings. In a first version, many
statements needed manual changes to cope with renamings.
We used well-scoped syntax. This was especially pleas-

ant as many results were technically involved, and well-
scopedness ensured that we used the correct liftings. They
further provide a way to express that certain results only
hold for closed terms.

Finally, let us mention that the development stays faithful
to the corresponding paper proofs and with Autosubst 2
binders caused no grief.

7 Related Work
Binders come with an enormous amount of literature.

POPLMark Challenge (Part A). It is fair to say, that the
POPLMark challenge [Aydemir et al. 2005] re-sparked the
interest in the correct handling of binders. There is a wealth
of solutions, also in the Coq proof assistants [Aydemir and
Weirich 2010; Keuchel et al. 2017; Lee et al. 2012; Pottier 2013;

Autosubst 2: Reasoning with Multi-sorted de Bruijn Terms. . . CPP ’19, January 14–15, 2019, Cascais, Portugal

Vouillon 2012]. A more detailed account can be found on the
POPLMark website.

Autosubst and the σ -calculus. Autosubst 2 extends Au-
tosubst [Schäfer et al. 2015a,b], a tool to generate support for
parallel de Bruijn substitutions and the σ -calculus. The es-
sential idea remains unchanged: on syntax with exactly one
sort and one sort of variables both versions behave the same,
except for the handling of renamings (Section 4). However,
Autosubst 2’s implementation is more flexible and allows a
richer input syntax. Case studies as call-by-push-value or
call-by-name variants would simply have not been supported
by Autosubst 1.

Higher-order abstract syntax (HOAS). In HOAS [Pfen-
ning and Elliott 1988], binders of the object language are
represented as binders of the meta-language. Then, capture-
avoiding substitution corresponds to function application
and all constructs are automatically compatible with renam-
ings and substitutions. However, HOAS cannot be imple-
mented directly in Coq, since Coq’s function spaces are ex-
tensional [Hofmann 1999b]. Weak HOAS [Despeyroux et al.
1995] or parametric HOAS [Chlipala 2008] avoid this problem
with a slightly different definition, and still get compatibility
with renamings.

Twelf [Pfenning and Schürmann 1999] or Beluga [Pientka
and Dunfield 2010] directly implement variants of HOAS
inside the proof assistant. They thus choose the trade-off of
another function space and theory.

Code Generators. With Autosubst 2, we continue in the
tradition of code generators. Ott and Lem [Mulligan et al.
2014; Sewell et al. 2007] provide tools to generate syntax
for LaTeX and a wealth of proof assistants. Ott was later
extended to locally nameless syntax [Aydemir and Weirich
2010], but we know of no interface for parallel de Bruijn
substitutions and the σ -calculus.
Needle and Knot [Keuchel et al. 2017, 2016] generates

code for unscoped, single-point de Bruijn substitutions. Au-
tosubst 2 uses a similar (but simpler) intermediate layer and
printing interface, while Needle and Knot do not compile
their syntax to different proof assistants.

Our approach differs from an algebraic approach as in [Al-
lais et al. 2018; Gheri and Popescu 2017]. There, instead of
one (syntactic) sort for each object sort, there is one meta-
sort of all syntactic systems parameterised by a signature.
Although not so elegant, code generation comes with many
practical advantages for the user. As each sort corresponds to
an inductive type, we can use the immediate support of the
proof assistant for inductive types. Moreover, we do not have
to argue about instantiation of renamings or substitution
which have no effect on the respective sort. Code generation
also simplifies the handling of notation and automation.

Traversals. Syntax traversals [Allais et al. 2018, 2017] ap-
pear everywhere: Instantiation of renamings and substitu-
tions are traversals, and even the substitution lemmas follow
a similar structure. Moreover, traversals appear in various
case studies as they allow a structured approach for recursion
on higher-order types. A direct implementation of traversals
in Autosubst 2 would simplify some of these proofs.

8 Conclusion and Future Work
We have outlined the theory and design of Autosubst 2, a tool
that supports reasoning about languages with binders for
mutual inductive sorts. Given a HOAS specification, our tool
generates a Coq source file containing inductive de Bruijn
term sorts, corresponding instantiation operations with vec-
tor substitutions, as well as a rewriting system for both un-
scoped and well-scoped syntax.

There are several directions for future work. First, we are
interested in Autosubst 2 backends for Lean and Agda. This
should be straightforward and is already work-in-progress.

From a theoretical point of view, wewant to show that con-
fluence and termination are preserved for both a σ -calculus
with renamings and the multivariate σ -calculus. Moreover,
we want to examine the matching problem for the σ -calculus.
This would simplify the application of lemmas containing
substitutions. Unfortunately, Coq does not allow to extend
the matching algorithm directly.

We would further like to implement additional versions of
automation, e.g., a variant without functional extensionality
and a faster version of Autosubst’s automation via reflection.

We are also interested in extending the input language of
Autosubst 2. First to simply-typed structures and containers,
then to lists or even more elaborated forms of binders (see
e.g. [Keuchel and Jeuring 2012; Urban and Kaliszyk 2011]),
needed, e.g., for part B of the POPLMark challenge, and last
to possibly dependent predicates. More elaborated forms of
binders might require us to change our input language from
HOAS to a nominal variant.
Last, we would like to extend Autosubst 2 to syntax tra-

versals, which provide renaming and substitution lemmas
for structural recursive functions for free.

Acknowledgments
We thank the reviewers for their insightful comments and
suggestions.

References
Martin Abadi, Luca Cardelli, P-L Curien, and J-J Lévy. 1991. Explicit substi-

tutions. Journal of functional programming 1, 4 (1991), 375–416.
Andreas Abel. 2001. A Third-Order Representation of the λµ-Calculus.

Electronic Notes in Theoretical Computer Science 58, 1 (2001), 97 – 114.
MERLIN 2001: Mechanized Reasoning about Languages with Variable
Binding (in connection with IJCAR 2001).

Andreas Abel, Alberto Momigliano, and Brigitte Pientka. 2017. POPLMark
Reloaded. In Proceedings of the Logical Frameworks and Meta-Languages:
Theory and Practice Workshop.

CPP ’19, January 14–15, 2019, Cascais, Portugal Kathrin Stark, Steven Schäfer, and Jonas Kaiser

Robin Adams. 2004. Formalized Metatheory with Terms Represented by
an Indexed Family of Types. In Proceedings of the 2004 International
Conference on Types for Proofs and Programs (TYPES’04). 1–16. https:
//doi.org/10.1007/11617990_1

Benedikt Ahrens and Julianna Zsido. 2011. Initial Semantics for Higher-
Order Typed Syntax in Coq. Journal of Formalized Reasoning 4, 1 (2011).

Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James
McKinna. 2018. A type and scope safe universe of syntaxes with binding:
their semantics and proofs. Proceedings of the ACM on Programming
Languages 2, ICFP (2018), 90.

Guillaume Allais, James Chapman, Conor McBride, and James McKinna.
2017. Type-and-scope Safe Programs and Their Proofs. In Proceedings of
the 6th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP
2017). ACM, 195–207.

Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. 2010. Monads
need not be endofunctors. In International Conference on Foundations of
Software Science and Computational Structures. Springer, 297–311.

Brian E Aydemir, Aaron Bohannon, Matthew Fairbairn, J Nathan Foster, Ben-
jamin C Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn,
Stephanie Weirich, and Steve Zdancewic. 2005. Mechanized metatheory
for the masses: The POPLmark challenge. In TPHOLs, Vol. 3603. Springer,
50–65.

Brian E. Aydemir and StephanieWeirich. 2010. LNgen: Tool support for locally
nameless representations. Technical Report. University of Pennsylvania.

Andrew Cave and Brigitte Pientka. 2015. A case study on logical relations
using contextual types. arXiv preprint arXiv:1507.08053 (2015).

Adam Chlipala. 2008. Parametric higher-order abstract syntax for mecha-
nized semantics. In ACM Sigplan Notices, Vol. 43. ACM, 143–156.

Karl Crary. 2005. Logical relations and a case study in equivalence checking.
Advanced Topics in Types and Programming Languages (2005), 223–244.

Pierre-Louis Curien, Thérèse Hardin, and Jean-Jacques Lévy. 1996. Con-
fluence properties of weak and strong calculi of explicit substitutions.
Journal of the ACM (JACM) 43, 2 (1996), 362–397.

Nicolaas Govert de Bruijn. 1972. Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with application
to the Church-Rosser theorem. Indagationes Mathematicae (Proceedings)
75, 5 (1972), 381 – 392.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and
Jakob von Raumer. 2015. The Lean theorem prover (system description).
In International Conference on Automated Deduction. Springer, 378–388.

Joëlle Despeyroux, Amy Felty, and André Hirschowitz. 1995. Higher-order
abstract syntax in Coq. In International Conference on Typed Lambda
Calculi and Applications. Springer, 124–138.

Yannick Forster, Steven Schäfer, Simon Spies, and Kathrin Stark. 2018. Call-
By-Push-Value in Coq: Operational, Equational, and Denotational The-
ory. Submitted. (2018). https://www.ps.uni-saarland.de/Publications/
documents/ForsterEtAl_2018_Call-By-Push-Value.pdf

Lorenzo Gheri and Andrei Popescu. 2017. A formalized general theory of
syntax with bindings. In International Conference on Interactive Theorem
Proving. Springer, 241–261.

Healfdene Goguen and James McKinna. 1997. Candidates for substitution.
LFCS report series-Laboratory for Foundations of Computer Science ECS
LFCS (1997).

Martin Hofmann. 1995. Extensional concepts in intensional type theory.
(1995).

Martin Hofmann. 1999a. Semantical analysis of higher-order abstract syntax.
In Logic in Computer Science, 1999. Proceedings. 14th Symposium on. IEEE,
204–213.

Martin Hofmann. 1999b. Semantical analysis of higher-order abstract syntax.
In Logic in Computer Science, 1999. Proceedings. 14th Symposium on. IEEE,
204–213.

Jonas Kaiser, Steven Schäfer, and Kathrin Stark. 2017a. Autosubst 2: To-
wards Reasoning with Multi-Sorted De Bruijn Terms and Vector Sub-
stitutions. In Proceedings of the Workshop on Logical Frameworks and

Meta-Languages: Theory and Practice (LFMTP ’17). ACM, New York, NY,
USA, 10–14. https://doi.org/10.1145/3130261.3130263

Jonas Kaiser, Steven Schäfer, and Kathrin Stark. 2018. Binder aware recur-
sion over well-scoped de Bruijn syntax. In Proceedings of the 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs. ACM,
293–306.

Jonas Kaiser, Tobias Tebbi, and Gert Smolka. 2017b. Equivalence of System
F and λ2 in Coq based on Context Morphism Lemmas. In Proceedings of
CPP 2017. ACM.

Steven Keuchel and Johan T Jeuring. 2012. Generic conversions of abstract
syntax representations. In Proceedings of the 8th ACM SIGPLAN workshop
on Generic programming. ACM, 57–68.

Steven Keuchel, Tom Schrijvers, and Stephanie Weirich. 2017. Needle &
Knot: Boilerplate bound tighter. Technical Report.

Steven Keuchel, Stephanie Weirich, and Tom Schrijvers. 2016. Needle &
Knot: Binder boilerplate tied up. In European Symposium on Programming
Languages and Systems. Springer, 419–445.

Gyesik Lee, Bruno C.D.S. Oliveira, Sungkeun Cho, and Kwangkeun Yi. 2012.
GMeta: A Generic Formal Metatheory Framework for First-Order Repre-
sentations. In Programming Languages and Systems. Lecture Notes in
Computer Science, Vol. 7211. Springer Berlin Heidelberg, 436–455.

Paul Blain Levy. 1999. Call-by-push-value: A subsuming paradigm. In Inter-
national Conference on Typed Lambda Calculi and Applications. Springer,
228–243.

Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and Pe-
ter Sewell. 2014. Lem: Reusable Engineering of Real-world Semantics.
In Proceedings of the 19th ACM SIGPLAN International Conference on
Functional Programming (ICFP ’14). ACM, New York, NY, USA, 175–188.
https://doi.org/10.1145/2628136.2628143

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Con-
textual Modal Type Theory. ACM Transactions on Computational Logic
(TOCL) 9, 3 (2008), 23.

Ulf Norell. 2008. Dependently typed programming in Agda. In International
School on Advanced Functional Programming. Springer, 230–266.

Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. In
Proceedings of the ACM SIGPLAN’88 Conference on Programming Lan-
guage Design and Implementation (PLDI), Atlanta, Georgia, USA, June
22-24, 1988. ACM, 199–208.

Frank Pfenning and Carsten Schürmann. 1999. System description: Twelf –
A meta-logical framework for deductive systems. In International Con-
ference on Automated Deduction. Springer, 202–206.

Brigitte Pientka and Joshua Dunfield. 2010. Beluga: A framework for pro-
gramming and reasoning with deductive systems (system description). In
International Joint Conference on Automated Reasoning. Springer, 15–21.

Andrew M Pitts. 2013. Nominal sets: Names and symmetry in computer
science. Cambridge University Press.

François Pottier. 2013. DBLIB, a Coq library for dealing with binding using
de Bruijn indices. https://github.com/fpottier/dblib.

Steven Schäfer, Gert Smolka, and Tobias Tebbi. 2015a. Completeness and
Decidability of de Bruijn Substitution Algebra in Coq. In Proceedings of
the 2015 Conference on Certified Programs and Proofs, CPP 2015, Mumbai,
India, January 15-17, 2015. Springer-Verlag, Berlin, Heidelberg, 67–73.
https://doi.org/10.1145/2676724.2693163

Steven Schäfer and Kathrin Stark. 2018. Embedding Higher-Order Abstract
Syntax in Type Theory. In Abstract for Types Workshop.

Steven Schäfer, Tobias Tebbi, and Gert Smolka. 2015b. Autosubst: Reasoning
with de Bruijn Terms and Parallel Substitutions. In Interactive Theorem
Proving - 6th International Conference, ITP 2015, Nanjing, China, August
24-27, 2015, Proceedings (Lecture Notes in Computer Science), Christian
Urban and Xingyuan Zhang (Eds.), Vol. 9236. Springer, 359–374. https:
//doi.org/10.1007/978-3-319-22102-1_24

Peter Sewell, Francesco ZappaNardelli, Scott Owens, Gilles Peskine, Thomas
Ridge, Susmit Sarkar, and Rok Strniša. 2007. Ott: Effective tool support
for the working semanticist. ACM SIGPLAN Notices 42, 9 (2007), 1–12.

https://doi.org/10.1007/11617990_1
https://doi.org/10.1007/11617990_1
https://www.ps.uni-saarland.de/Publications/documents/ForsterEtAl_2018_Call-By-Push-Value.pdf
https://www.ps.uni-saarland.de/Publications/documents/ForsterEtAl_2018_Call-By-Push-Value.pdf
https://doi.org/10.1145/3130261.3130263
https://doi.org/10.1145/2628136.2628143
https://github.com/fpottier/dblib
https://doi.org/10.1145/2676724.2693163
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1007/978-3-319-22102-1_24

Autosubst 2: Reasoning with Multi-sorted de Bruijn Terms. . . CPP ’19, January 14–15, 2019, Cascais, Portugal

Christian Urban and Cezary Kaliszyk. 2011. General bindings and alpha-
equivalence in Nominal Isabelle. In European Symposium on Program-
ming. Springer, 480–500.

Jérôme Vouillon. 2012. A Solution to the POPLmark Challenge Based on de
Bruijn Indices. Journal of Automated Reasoning 49, 3 (2012), 327–362.

PhilipWadler. 2003. A prettier printer. The Fun of Programming, Cornerstones
of Computing (2003), 223–243.

	Abstract
	1 Introduction
	2 Preliminaries
	3 From Parallel Substitutions to Vector Substitutions on the Example of FCBV
	3.1 Instantiation
	3.2 Rewriting System
	3.3 Typing and Evaluation for FCBV

	4 First-Class Renamings
	5 From HOAS to Vector Substitutions
	5.1 Generation of the Dependency Graph
	5.2 Generation of Internal Proof Terms
	5.3 Printing
	5.4 Automation
	5.5 Notation

	6 Case Studies
	6.1 Weak Normalisation of FCBV
	6.2 The POPLMark Challenge (Part A)
	6.3 Call-by-push-value

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

