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Abstract

Decidability of non-structural subtype entailment is a long-standing open prob-
lem in programming language theory. In this paper, we apply automata theoretic
methods to characterize the problem equivalently by using regular expressions and
word equations. This characterization induces new results on non-structural sub-
type entailment, constitutes a promising starting point for further investigations
on decidability, and explains for the first time why the problem is so difficult. The
difficulty is caused by implicit word equations that we make explicit.
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1 Introduction

Subtyping is a common concept of many programming languages (including
C++ and Java). A subtype relation τ ′≤τ means that all functions in a program
that expect an argument of type τ are sufficiently polymorphic so that they
can also be applied to values of the subtype τ ′. Thus, one can safely replace
values of a type τ by values of subtype τ ′.

Subtype constraints are systems of inequations t≤t′ that talk about the sub-
type relation. Terms t and t′ in subtype constraints are built from type vari-
ables and type constructors. Two logical operations on subtype constraints
were investigated: satisfiability and entailment [1–6]. Subtype satisfiability can
be checked in cubic time for many type languages [7,8]. A quadratic time
algorithm for the variable free case is presented in [9].
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Interest in subtype entailment was first raised by practical questions on type
inference engines with subtyping [10–12]. The efficiency of such systems relies
on the existence of powerful simplification algorithms for typings. Such oper-
ations can be formulated on the basis of algorithms for subtype entailment.

It then turned out that subtype entailment is a quite complex problem, even
for unexpressive type languages where types are ordinary trees. Rehof and
Henglein [13] clarified the situation for structural subtyping. This is a tree
ordering that relates trees of the same shape only. It is induced by lifting an
ordering on constants. If trees are built over the signature {int, real,×,→},
for instance, then structural subtyping is induced by the usual axiom int≤real

which says that every integer is a real number. Rehof and Henglein showed that
structural subtype entailment is coNP-complete [14] for finite trees (simple
types) and PSPACE-complete [15] for possibly infinite trees (recursive types).

Subtyping becomes non-structural if the constants ⊥ and > are admitted that
stand for the least and greatest type. Now, trees of different shapes can be
related since all trees τ satisfy ⊥≤τ≤>. Several cases are to be distinguished:
one can consider only finite trees or admit infinite trees, or one may assume
that all function symbols are co-variant (such as ×) or that some are contra-
variant (as the function type constructor → in its first argument). One can
also vary the number of type constructors of each arity .

Decidability of non-structural subtype entailment (NSSE) is a prominent open
problem in programming language theory. Only a PSPACE lower bound is
known which holds in both cases, for finite trees and for infinite trees [15].
The signature {⊥, f,>} is enough to prove PSPACE hardness if f is a type
constructor of arity at least 2. But this result does not explain why finding a
decision procedure for NSSE is so difficult. On the other hand, only a fragment
of NSSE could be proved decidable [16] (and PSPACE-complete).

The idea behind the approach of this paper is to first reformulate Rehof and
Henglein’s approach for structural subtype entailment in automata theory and
second to lift it to the non-structural case. We have carried out both steps
successfully but report only on the second step.

A similar automata theoretic approach is already known for satisfiability but
not for entailment [7,8]. Our extension to entailment yields a new charac-
terization of NSSE that uses regular expressions and word equations [17,18].
Word equations raise the real difficulty behind NSSE since they spoil the usual
pumping arguments from automata theory. They also clarify why NSSE differs
so significantly from seemingly similar entailment problems [19,20].

A tree automata based approach to non-structural subtype entailment was
proposed recently [21]. It is completely unrelated to the approach of the present
paper, where we only deal with word automata. Tree automata are used in the
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alternative proposal to recognize the set of all solutions of a subtype constraint.
Every solution is seen as tuples of trees [22] that is recognized by tuple tree
automata with equality constraints. But unfortunately, the emptiness problem
of tuple tree automata with equality constraints is undecidable [23].

The present paper is an extension on a paper presented at TACS’01 [24]. All
proofs omitted in this earlier version are given. In particular this subsumes
the quite involved completeness proof for our automata construction (Sec. 9).

Plan of the Article.

We recall the definition of NSSE in Section 2, state our characterization of
NSSE in Theorem 1 of Section 3 and discuss its consequences.

The remainder of the paper is devoted to the proof of Theorem 1. First,
we express NSSE by a so called safety property for sets of words (Section
4). Second, we introduce cap-automata – a restricted version of P-automata
as introduced [16] – which can recognize exactly the same languages as cap
set expressions (Section 5). Third we show how to construct cap automata
corresponding to entailment judgments. This construction encodes NSSE into
universality of cap automata, under the assumption that a satisfiability test
for subtype constraints exists (Section 6). Fourth, we present an algorithm
that decides satisfiability of non-structural subtype constraints (Section 7).
Fifth, we prove the soundness (Section 8) and completeness (Section 9) of our
construction. Sixth, we infer restrictions that are satisfied by all constructed
cap automata and define corresponding restrictions for cap set expressions
(Section 10 and 11). Seventh, we give a back translation (Section 12) that
reduces universality of restricted cap automata into NSSE. Finally, we present
transformations on restricted cap automata that prove Corollary 1 of Theorem
1 (Section 13) and conclude.

2 Non-Structural Subtype Entailment

In this paper we investigate non-structural subtype constraints over signatures
of function symbols Σ = {⊥, f,>} with a single non-constant function symbol
f that is co-variant. We write arg for the arity of a function symbol g ∈ Σ, i.e
ar⊥ = ar> = 0 and arf ≥ 1.

The choice of such signatures imposes two restrictions: first, we do not allow
for contravariant type constructors. These could be covered in our framework
even though this is not fully obvious. Second, we do not treat larger signatures
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with more than one non-constant function symbol. This is a true restriction
that cannot be circumvented easily.

2.1 Words, Trees, and Types

We start with finite, regular, and infinite trees over Σ. Finite trees model
simple types while regular or infinite trees model recursive types. We use a
standard definition of trees, whose idea is to identify every node of a tree with
the word that addresses it relative to the root.

A word over an alphabet A is a finite sequence of letters in A. We denote words
by π, µ, or ν and the set of words over A with A∗. The empty word is written
as ε and the free-monoid concatenation of words π and µ by juxtaposition πµ,
with the property that επ = πε = π. A prefix of a word π is a word µ for
which there exists a word ν such that π = µν. If µ is a prefix of π then we
write µ ≤ π and if µ is a proper prefix of π then we write µ < π.

We consider trees over Σ as partial functions τ :
�

∗ � Σ which map words
over natural numbers to function symbols. The words in Dτ ⊆

�
∗ are called

the nodes or paths of the tree. We require that every tree has a root ε ∈ Dτ

and that tree domains Dτ are always prefix closed and arity-consistent. The
latter means for all trees τ , nodes π ∈ Dτ , and naturals i ∈

�
that πi ∈ Dτ

if and only if 1 ≤ i ≤ arτ(π). A tree τ is finite if its domain Dτ is finite and
otherwise infinite.

We call τ ′ the subtree of τ at path π if τ(ππ′) = τ ′(π′) holds for all π ∈ Dτ ′ .
We write τ.π for the subtree of τ at node π under the presupposition π ∈ Dτ .
A tree is regular if it has at most finitely many distinct subtrees.

We will freely interpret function symbols in Σ as tree constructors. To make
clear distinctions, we will write =Σ for equality of symbols in Σ and = for
equality of trees over Σ. Given g ∈ Σ and trees τ1, . . . , τarg

we define τ =
g(τ1, . . . , τarg

) by τ(ε) =Σg and τ(iπ) =Στi(π) for all π ∈ Dτi
and 1 ≤ i ≤ arg.

We thus consider ground terms over Σ as (finite) trees, for instance f(⊥,>) or
⊥. Thereby, we have overloaded our notation since a constant a ∈ Σ can also
be seen as the tree τ with τ(ε) = a. But this should never lead to confusion.

2.2 Non-Structural Subtyping

Let <Σ be the irreflexive partial order on Σ that satisfies ⊥ <Σ f <Σ >
and ≤Σ its reflexive counterpart. We define non-structural subtyping to be the
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unique relation ≤ on trees which satisfies for all trees τ1, τ2 over Σ:

τ1≤τ2 iff τ1(π) ≤Στ2(π) for all π ∈ Dτ1 ∩Dτ2

Again ≤ is a reflexive, transitive, and anti-symmetric relation and thus, a
partial order.

2.3 Constraint Language

We assume an infinite set of tree valued variables that we denote by x, y, z,
u, v, w. A subtype constraint ϕ is a conjunction of literals with the following
abstract syntax:

ϕ ::= x≤f(y1, . . . , yn) | f(y1, . . . , yn)≤x | x=⊥ | x=> | ϕ ∧ ϕ′

where n = arf . We interpret constraints ϕ in the structure of trees over Σ
with non-structural subtyping. We distinguish two cases, the structure of finite
trees or else of possibly infinite trees. We interpret function symbols in both
cases as tree constructors and the predicate symbol ≤ by the non-structural
subtype relation. Again, this overloads notation: we use the same symbol ≤ for
the subtype relation on trees and the predicate symbol denoting the subtype
relation in constraints. Again, this should not raise confusion.

Note that we do not allow formulas x≤y in our constraint language. This choice
will help us to simplify our presentation essentially. It is, however, irrelevant
from the point of view of expressiveness. We can still express x≤y by using
existential quantifiers:

x≤y ↔ ∃z∃u (f(x, u, . . . , u)≤z ∧ z≤f(y, u, . . . , u))

As in this equivalence, we will sometimes use first-order formulas Φ built from
constraints and the usual first-order connectives. We will write VΦ for the set
of free variables occurring in Φ. A solution of Φ is a variable assignment α
into the set of finite (resp. possibly infinite) trees which satisfies the required
subtype relations; we write α |= Φ if α solves Φ and say that Φ is satisfiable.

Example 1 The constraint x≤f(x) is satisfiable, even when interpreted over
finite trees. We can solve it by mapping x to ⊥. In contrast, the equality
constraint x≤f(x) ∧ f(x)≤x is unsatisfiable over finite trees. It can however
be solved by mapping x to the infinite tree f(f(f(. . .))).
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2.4 Entailment

A formula Φ1 entails Φ2 (we write Φ1 |= Φ2) if all solutions α |= Φ1 satisfy α |=
Φ2. We will consider entailment judgments that are triples of the form (ϕ, x, y)
that we write as ϕ |=? x≤y. Non-structural subtype entailment (NSSE) for Σ is
the problem to check whether entailment ϕ |= x≤y holds for a given entailment
judgment ϕ |=? x≤y.

Note that entailment judgments of the simple form ϕ |=? x≤y can express gen-
eral entailment judgments, where both sides are conjunctions of inequations
t1≤t2 between nested terms or variables (i.e. t ::= x | f(t1, . . . , tn) | ⊥ | >).
The main trick is to replace a judgment ϕ |=? t1≤t2 with terms t1 and t2 by
ϕ ∧ x=t1 ∧ y=t2 |=

? x≤y where x and y are fresh variables. Note also that the
omission of formulas u≤v on the left hand side does not restrict the problem.
(Existential quantifier on the left hand side of an entailment judgment can be
removed.)

Example 2 The prototypical example where NSSE holds somehow surpris-
ingly is:

x≤f(y) ∧ f(x)≤y |=? x≤y (yes)

To see this, note that all finite trees in the unary case are of the form f . . . f(⊥)
or f . . . f(>). Thus, x≤y∨y<x is valid in this case. Next let us contradict the
assumption that there is a solution α |= y<x ∧ x≤f(y) ∧ f(x)≤y. Transitivity
yields α(y)≤f(α(y)) and then also f(α(x))≤f(α(y)). Hence α(x)≤α(y) which
contradicts α(y)<α(x).

3 Characterization

We now formulate the main result of this paper and discuss its relevance
(Theorem 1). This is a new characterization of NSSE which is based on a new
class of extended regular expressions: cap set expressions that we introduce
first.

We start with regular expressions R over some alphabet A that are defined as
usual:

R := a | ε | R1R2 | R
∗ | R1∪R2 | ∅ where a ∈ A

Every regular expression R describes a regular language of words L(R) ⊆ A∗.
We next introduce cap set expressions E over A. (Their name will be explained
in Section 5.)

E ::= R1R
◦
2 | E1 ∪ E2
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Cap set expressions E denote sets of words L(E) ⊆ A∗ that we call cap sets.
We have to define the cap set operator ◦ on sets of words, i.e., we must define
the set S◦ ⊆ A∗ for all sets S ⊆ A∗. Let pr be the prefix operator lifted to sets
of words. We set:

S◦ = {π | π ∈ pr(µ∗), µ ∈ S}

A word π belongs to S◦ if π is a prefix of a power µ . . . µ of some word
µ ∈ S. Note that cap set expressions subsume regular expressions: indeed,
L(R) = L(Rε◦) for all R. But the cap operator adds new expressiveness
when applied to an infinite set: there exist regular expression R such that
the language of the cap set expression R◦ is neither regular nor context free.
Consider for instance (21∗)◦ which denotes the set of all prefixes of words
21n 21n . . . 21n where n ≥ 0. Clearly this set is not context-free.

We will derive appropriate restrictions on cap set expressions (Def. 4) such
that the following theorem becomes true.

Theorem 1 (Characterization) The decidability of NSSE for a signature
{⊥, f,>} with a single function symbol of arity n ≥ 1 is equivalent to the decid-
ability of the universality problem for the class of restricted cap set expressions
over the alphabet {1, . . . , n}. This result holds equally for finite, regular, and
possibly infinite trees.

The theorem allows us to derive the following robustness result of NSSE
against variations from automata transformations (Section 13).

Corollary 1 All variants of NSSE with signature {⊥, f,>} where the arity
of f is at least n ≥ 2 are equivalent. It does not even matter whether finite,
regular, or infinite trees are considered.

Theorem 1 can also be used to relate NSSE to word equations. The idea is to
express membership in cap sets in the positive existential fragment of word
equations with regular constraints [25]. The reduction can easily be based on
the following lemma that is well known in the field of string unification.

Lemma 1 For all words π ∈ A∗ and nonempty words µ ∈ A+ it holds that
π ∈ pr(µ∗) if and only if π ∈ pr(µπ).

PROOF. If π ∈ pr(µ∗) then there is a natural number n ≥ 1 such that
µn−1 ≤ π ≤ µn. Hence, π ≤ µµn−1 ≤ µπ as required. For the converse, let
π ≤ µπ where µ 6= ε. We prove π ∈ pr(µ∗) by induction on the length of π. If
|π| ≤ |µ| then π ≤ µ and thus π ∈ pr(µ∗) as required. Otherwise, there exists
a path π′ with π = µπ′ and thus π′ ≤ µπ′ by our assumption that π ≤ µπ.
Note that π′ is a proper prefix of π since µ 6= ε. The induction hypothesis
applied to π′ yields π′ ∈ pr(µ∗) such that π ∈ pr(µ∗).
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Lemma 1 states that all sets S ⊆ A+ of nonempty words satisfy:

π ∈ S◦ ↔ ∃µ∃ν (µ ∈ S ∧ πν=µπ)

Theorem 1 thus implies that we can express the universality problem of cap
set expressions E in the positive ∀∃∗ fragment of the first-order theory of word
equations with regular constraints.

Corollary 2 NSSE with a single function symbol of arity n ≥ 1 can be ex-
pressed in the positive ∀∃∗ fragment of the first-order theory of word equations
with regular constraints over the alphabet {1, . . . , n}.

Unfortunately, even the positive ∀∃3 fragment of a single word equation is
undecidable [26] except if the alphabet is infinite [27] or a singleton [28].
Therefore, it remains open whether NSSE is decidable or not. But it becomes
clear that the difficulty is raised by word equations hidden behind cap set
expressions R◦, i.e. the equation πν=µπ in Lemma 1.

Theorem 1 constitutes a promising starting point to further investigate decid-
ability of NSSE. For instance, we can infer a new decidability result for the
monadic case directly from Corollary 2.

Corollary 3 NSSE is decidable for the signature {⊥, f,>} if f is unary.

4 Safety

The goal of this section is to characterize NSSE by properties of sets of words,
that we call safety properties. Appropriate safety properties can be verified by
P-automata as we will show in Section 6.

We use terms x(π) to denote the node label of the value of x at path π.
Whenever we use this term, we presuppose the existence of π in the tree
domain of the value of x. For instance, the formula x(12) ≤Σ> is satisfied by
a variable assignment if and only if the tree assigned to x contains the node
12.

We next recall the notion of safety from [16]. Let ϕ |=? x≤y be an entailment
judgment and π a word in {1, . . . , arf}

∗. We call π safe for ϕ |=? x≤y if
entailment cannot be contradicted at π, i.e. if ϕ ∧ y(π) <Σx(π) is unsatisfiable.
Clearly entailment ϕ |= x≤y is equivalent to that all paths are safe for ϕ |=?

x≤y.

For a restricted class of entailment judgments it is shown in [16] that the
above notion of safety can be checked by testing universality of P-automata.
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Unfortunately, it is unclear how to lift this result to the general case. To work
around, we will refine the notion of safety into two dual notions: left (l) safety
and right (r) safety. These notions will be defined on formulas:

prefg
π(x) =def

∨

π′≤π

x(π′) =Σg

for some function symbol g ∈ Σ, word π, and variable x. It requires x to denote
a tree that is labeled by g at some prefix π′ of π. We now define l-safety for
words π ∈ {1, . . . , arf}

∗ with respect to judgments ϕ |=? x≤y:

π is l-safe for ϕ |=? x≤y iff ϕ |= pref>π (x)→ pref>π (y)

If π is l-safe for judgement ϕ |=? x≤y then entailment contradicted by a
solution α of ϕ that maps the left hand side x to some tree where α(x)(π) =Σ

>, except if α(x)(π′) =Σ > and α(y)(π′′) =Σ > for some prefixes π′ and π′′ of
π. The notion of r-safety is analogous; here one tries to contradict with ⊥ at
the right hand side y:

π is r-safe for ϕ |=? x≤y iff ϕ |= pref⊥π (y)→ pref⊥π (x)

We define a variable assignment α to be l-safe or r-safe for α |=? x≤y by
replacing ϕ literally with α in the above definitions. Note that our safety
notions depend on the chosen structure of trees over which we interpret our
formulas.

We first illustrate these concepts by a judgment with a unary function symbol:

z=> ∧ f(z)≤y |=? x≤y (no)

Here, ε is r-safe but not l-safe. All other paths π ∈ 1+ are both l-safe and r-
safe. There is a variable assignment α which contradicts entailment: α(x) = >,
α(z) = >, α(y) = f(>). This shows that ε is indeed not l-safe for α |=? x≤y.

Proposition 1 Entailment ϕ |= x≤y holds if and only if all words π ∈
{1, . . . , arf}

∗ are l-safe and r-safe for ϕ |=? x≤y.

PROOF. We first assume that entailment does not hold and show that either
l-safety or r-safety can be contradicted for some path. As argued above, there
exists an unsafe path π such that ϕ ∧ y(π) <Σ x(π) is satisfiable. Let α be a
solution of this formula.

(1) If α(y)(π) =Σ ⊥ then α |= pref⊥π (y). Since α |= y(π) <Σ x(π) it holds
α(x)(π) ∈ {f,>} which implies α |= ¬pref⊥π (x). Thus, π is not r-safe.

(2) Otherwise α(y)(π) =Σ f which implies α |= ¬pref>π (y). Further, it holds
α(x)(π) =Σ> which implies α |= pref>π (x). Thus, π is not l-safe.
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For the converse, we assume entailment ϕ |= x≤y and show that all paths
are l-safe and r-safe for ϕ |=? x≤y. We fix a path π and solution α of ϕ, and
show that π is l-safe and r-safe for α |=? x≤y. Let π′ be the longest prefix of
π which belongs to Dα(x) ∩Dα(y).

(1) If α(x)(π′) =Σ ⊥ then α |=¬pref>π (x) so that π is l-safe for α |=? x≤y,
and also α |= pref⊥π (x) such that π is r-safe for α |=? x≤y.

(2) Suppose α(x)(π′) =Σ>. Since α |= ϕ and ϕ |= x≤y, we know that α |=
x≤y. Since π′ is a node of both trees it follows that α(x)(π′) ≤Σα(y)(π′)
and thus α(y)(π′) =Σ>. Since π′ ≤ π, α |= pref>π (y)∧¬pref⊥π (y). Thus, π
is l-safe and r-safe for α |=? x≤y.

(3) The last possibility is α(x)(π′) =Σ f . We can infer from entailment that
α(y)(π′) ∈ {f,>}. If α(y)(π′) =Σ > we are done as before. Otherwise,
α(y)(π′) =Σ α(x)(π′) =Σ f such that the maximality of π′ and arf ≥ 1
yields π = π′. Now, α |= ¬pref⊥π (y) so that π is r-safe, and also α |=
¬pref>π (x) such that π is l-safe for α |=? x≤y.

Example 3 The surprising effect of Example 2 seems to go away if one re-
places the unary function symbol there by a binary function symbol:

x≤f(y, y) ∧ f(x, x)≤y |=? x≤y (no)

Now, all words in 1∗ ∪ 2∗ are l-safe and r-safe, but 12 is neither. Entailment
can be contradicted by variable assignments mapping x to f(f(⊥,>),⊥) and
y to f(f(>,⊥),>).

Example 4 This example is a little more complicated. Its purpose is to show
that entailment in the binary case can also be raised by a similar effect as
in Example 2. How to understand this effect in general will be explained in
Section 6.

x≤f(y, y) ∧ f(z, z)≤y ∧ f(u, u)≤z ∧ u=> |=? x≤y (yes)

5 Cap Automata and Cap Sets

We need a notion of automata that can recognize cap sets. Therefore, we
restrict the class of P-automata introduced in [16] to the class of so called
cap automata 1 . We then show that the class of languages recognized by cap

1 Cap automata are the same objects as P-automata, i.e. finite automata with a set
of P-edges. The difference between both concepts concerns only the corresponding
language definitions. Both definitions coincide for those automata P that satisfy
the following condition (the proof is straightforward): if P ` q1

π
−→ q2

µ
−→ q3 q1

then q2 is a final state in P. This condition can be assumed w.l.o.g for all cap
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automata is precisely the class of cap sets, i.e. those sets of words described
by cap set expressions.

A finite automaton A over alphabet A consists of a set Q of states, a set I ⊆ Q
of initial states, a set F ⊆ Q of final states, and a set ∆ ⊆ Q× (A∪{ε})×Q
of transitions. Note that ∆ permits ε transitions and single letter transitions.
We will write A ` q if q ∈ Q is a state of A, A ` q if q ∈ F is a final state of A,

and A ` q if q ∈ I is an initial state of A. The statement A ` q
π
−→ q′ says

that A started at q permits a sequence of transitions consuming π and ending
in q′. Note that A ` q

ε
−→ q holds for all states q ∈ Q. We call A complete if

for every word π ∈ A∗ there exists states q0 and q1 such that A ` q0
π
−→ q1.

Definition 1 A cap automaton P over alphabet A consists of a finite au-
tomaton A over A and a set of P-edges P ⊆ Q×Q. We write P ` q q ′ if
P has a P-edge (q, q′) ∈ P . A cap automaton P over A recognizes the following
language L(P) ⊆ A∗:

L(P) = {π | P ` q0
π
−→ q1} ∪ {πµ

′ | µ′ ∈ pr(µ∗),P ` q0
π
−→ q1

µ
−→ q2 q1}

The first set is the language of the finite automaton underlying P. The second
set adds the contribution of P-edges: if a cap automaton traverses a P-edge
P ` q2 q1 then it must have reached q2 from q1 of some word µ, i.e. P `
q1

µ
−→ q2 q1; in the sequel the automaton can loop through µ∗ and quit

the loop at any time.

Fig. 1 contains a cap automaton over the alphabet {1, 2} that recognizes
the non-context free cap set from the introduction, i.e. described by the cap
set expression (21∗)◦. We generally draw cap automata as one draws finite
automata but with additional dashed arrows to indicate P-edges.

The tree on the right in Fig. 1 represents the language recognized by this cap
automaton. The language of a cap automaton P with alphabet {1, . . . , n} is
drawn as a n-ary class tree. This is a complete infinite n-ary tree whose nodes
are labeled by classes A, P, and C. Each node of the class tree is a word in
{1, . . . , n}∗ that is labeled by the class that P adjoins to it. We assign the
class C to all words in the complement of L(P) of a cap automaton P. The
words with class A are recognized by the finite automaton underlying P. All
remaining words belong to class P. These are accepted by P but not by the
underlying finite automaton.

We now explain the name cap: it is an abbreviation for the regular expression
( C ∪ A+P∗ )∗. Branches in class trees of cap automata always satisfy that

automata, since it is satisfied by all those constructed in the proof of Proposition
2. Thus, cap automata are properly subsumed by the P-automata.
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Fig. 1. A cap automaton with a non context-free language (21∗)◦.

A1 A2q1 q2ε ε ε

Fig. 2. Construction of a cap automaton for the language L(A1)L(A2)
◦.

expression. This means that all nodes of class P in a class tree have a mother
node in either of the classes A or P. To see this, note first that root nodes of
class trees can never belong to class P. Thus, all P nodes must have a mother.
Furthermore, the mother of a P node cannot belong to the C class due to the
cap property.

Proposition 2 Cap set expressions and cap automata recognize precisely the
same class of languages. Universality of cap set expressions and cap automata
are equivalent modulo deterministic polynomial time transformations.

PROOF. For the one direction, let Rq1,q2 be a regular expression for the set
{π | P ` q1

π
−→ q2} then the language of a cap automaton is equal to the

union of ∪P` q0 ∪P`q1 Rq0,q1 and ∪P` q0 ∪P`q1 ∪P`q2 q1Rq0,q1(Rq1,q2)
◦. The

needed regular expressions can be computed in polynomial time

For the converse, we first note that the class of languages recognized by cap
automata is closed under union since cap automata may have several initial
states. There thus only remains to build cap automata for expressions R1R

◦
2.

Let A1 and A2 be finite automata that recognize R1 respectively R2. W.l.o.g.
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reflexive ϕ ` x≤x for variables x ∈ Vϕ

trans. ϕ ` x≤z if ϕ ` x≤y and ϕ ` y≤z

decomp. ϕ ` xi≤yi if 1≤i≤n, ϕ ` x≤y, f(x1, . . . , xn)≤x ∧ y≤f(y1, . . . , yn) in ϕ

Table 1
Syntactic support of inequalities.

we can assume that both automata have a unique initial and a unique final
state. Multiple initial or final states of finite automata (but not of cap au-
tomata) can be eliminated by introducing new ε-transitions. We now compose
A1 and A2 into a new cap automaton that recognizes the language of R1R

◦
2 as

illustrated in Fig. 2: we add two fresh final states q1 and q2 and link A1 and
A2 over these states. This requires 3 new ε-edges and a new P-edge from q2

to q1. To account for the prefix closure within the ◦ operator, we finally turn
all states of A2 into additional final states.

6 Automata Construction

This section presents a construction for cap automata that can test l-safety and
r-safety for entailment judgments. The same construction applies for the three
structures of finite, regular, and possibly infinite trees. The only difference is
hidden in a subroutine for testing satisfiability (see Section 7).

6.1 Closure Algorithm

As a prerequisite for our automata construction, we use a closure algorithm.
This algorithm computes a set of inequalities of the form x≤y that are syn-
tactically supported by a constraint ϕ.

In contrast to other closure algorithms, we cannot simply add supported in-
equalities to the initial constraint ϕ given our syntactic restriction. Instead,
Table 1 defines judgments ϕ ` x≤y which state that ϕ supports x≤y syn-
tactically. The definition consists of three standard rules. The first two rules
express the reflexivity and transitivity of the subtype ordering. Finally and
most importantly, the definition of syntactic support accounts for decomposi-
tion which can be applied recursively.

Lemma 2 For all ϕ, x, and y: if ϕ ` x≤y then ϕ |= x≤y.

PROOF. By induction on the definition of syntactic support of inequalities.
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ϕ ` x≤i(z) if ϕ ` x≤x′, x′≤f(y1, . . . , yn) in ϕ, ϕ ` yi≤z, and 1 ≤ i ≤ arf

ϕ ` i(z)≤x if ϕ ` z≤yi, f(y1, . . . , yn)≤x′ in ϕ, ϕ ` x′≤x, and 1 ≤ i ≤ arf

Table 2
Syntactic support of lower and upper bounds for i-th children.

To keep the automata construction simple, Table 2 define two further forms
of syntactic support: ϕ ` x≤i(y) means that y is an upper bound of the i-th
child of x and ϕ ` i(y)≤x states the symmetric lower bound for x at i.

Lemma 3 For all ϕ, x, y, and 1 ≤ i ≤ n = arf if ϕ ` x≤i(z) then:

ϕ |= ∃y1 . . . ∃yi−1∃yi+1 . . . ∃yn. x≤f(y1, . . . , yi−1, z, yi+1, . . . , yn).

The symmetric property for lower bound ϕ ` i(z)≤x is valid too.

PROOF. Obvious from Lemma 2 and Table 2.

6.2 Left and Right Automata

The automata construction is given in Table 3. For each entailment judgment
ϕ |=? x≤y we construct a left automaton Pl(ϕ |=

? x≤y) and a right automa-
ton Pr(ϕ |=

? x≤y). The left automaton is supposed to accept all l-safe paths
for ϕ |=? x≤y, and the right automaton all r-safe paths (up to appropriate
assumptions). Entailment then holds if and only if the languages of both cap
automata are universal. Note that it remains open whether the set of simulta-
neously l-safe and r-safe paths can be recognized by a single cap automaton.
The problem is that cap automata are not closed under intersection (proof
omitted).

The left and right automata always have the same states, transitions, and
initial states. When testing for ϕ |=? x≤y the only initial state is (x, y).
A state (u, s) of the left automaton is made final if there is an upper bound
u≤f(u1, . . . , un) in ϕ, which proves that the actual path is l-safe. The descend
rule can also be applied in that case. The safety check then continues in some
state (ui, s

′) and extends the actual path by i. It can chose s′ = while
ignoring the right hand side, or if s is also a variable descend simultaneously
on the right hand side. There are three rules that prove that the actual path
and all its extensions are l-safe: bot, top, and reflexivity. Finally there is a
single rule that adds P-edges to the left automaton. The rules for the right
automaton are symmetric.
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alphabet AΣ = {1, . . . , arf}

states Pθ ` (s, s′) if s, s′ ∈ Vϕ ∪ {x, y, }

Pθ ` all

initial state Pθ ` (x, y)

final states Pl ` (u, s) if ϕ ` u≤i(u′), i ∈ AΣ

Pr ` (s, v) if ϕ ` i(v′)≤v, i ∈ AΣ

descend Pθ ` (u, s)
i
−→ (u′, ) if ϕ ` u≤i(u′), i ∈ AΣ

Pθ ` (s, v)
i
−→ ( , v′) if ϕ ` i(v′)≤v, i ∈ AΣ

Pθ ` (u, v)
i
−→ (u′, v′) if ϕ ` u≤i(u′), ϕ ` i(v′)≤v, i ∈ AΣ

bot Pθ ` (u, s)
i
−→ all if ϕ ` u≤u′, u′=⊥ in ϕ, i ∈ AΣ

top Pθ ` (s, v)
i
−→ all if ϕ ` v′≤v, v′=> in ϕ, i ∈ AΣ

reflexivity Pθ ` (u, v)
i
−→ all if ϕ ` u≤v, i ∈ AΣ

all Pθ ` all
i
−→ all if i ∈ AΣ

P−edges Pl ` (u, s) (v, u)

Pr ` (s, v) (v, u)

Table 3
Construction of the cap automata Pθ = Pθ(ϕ |=

? x≤y) for both sides θ ∈ {l, r}.

x y y x1

l, r

AA

PP

PP

P∗P∗x≤f(y) ∧ f(x)≤y |=? x≤y

Fig. 3. Automata construction for Example 2. Entailment holds.

When drawing the constructed left and right automata (Fig. 3 and 4), we
always share the states and transitions for reasons of economy. Different el-
ements of the two automata carry extra annotations. Final states of the left
(right) automaton are put into a left (right) double circle. If a state is final for
both automata then it is drawn within a complete double circle. We annotate
P-edges of the left automaton by l and of the right automaton with r.
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x y y z u all
1,2 1,2 1,2

l
1,2

O

O O

O O O O

O O O O O O O

AA

PA PA

A∗A∗ A∗A∗A∗A∗ A∗A∗

x≤f(y, y) ∧ f(z, z)≤y ∧ f(u, u)≤z ∧ u=> |=? x≤y

Fig. 4. Automata construction for Example 4. Entailment holds.

6.3 Examples

We first illustrate the automata construction for the unary Example 2, recalled
in Fig. 3. The alphabet of both automata is the singleton {1}. The relevant
states are {(x, y), (y, x)}; all others are either unreachable or do not lead
to a final state. The constraints x≤f(y) and f(x)≤y let both cap automata

descend simultaneously by the transition (x, y)
1
−→ (y, x) and turn (x, y) into

a final state of both automata. There are P-edges (y, x) (x, y) for both
cap automata. Note that we ignore the symmetric P-edges (x, y) (y, x) in
the picture since they don’t contribute to the respective languages.

Fig. 3 also contains the class trees for both cap automata but in an overlaid
fashion. The languages of both cap automata are universal due to their P-
edges. Given that our construction is sound (see Sec. 8) this proves entailment.

We now consider the more complex binary Example 4 in Fig. 4 where the
alphabet is {1, 2}. The constraint f(u, u)≤z permits to descend from (y, z)
while ignoring the variable y on the left hand side; this justifies the transi-

tion (y, z)
1,2
−→ ( , u). Since the left hand side is ignored, the state (y, z) is

only put to the final states of the right automaton. The top rule can be

applied to u=>; hence there are transitions ( , u)
1,2
−→ all where ( , u) and

all are universal states according to the all rule. Finally, there is a P-edge
(y, z) (x, y) for the left cap automaton. We again ignore the symmetric
P-edge (x, y) (y, z) since it does not contribute to the language. The lan-
guages of both automata are again universal, in case of the left automaton
because of a P-edge.

The next example shows that decomposition closure as provided by the notion
of syntactic support is needed for completeness. We consider

f(x)≤z ∧ z≤f(z) ∧ f(z)≤y |=? x≤y (yes)

Let ϕ be the left hand side. Since ϕ contains f(x)≤z ∧ z≤f(z), it supports
ϕ ` x≤z syntactically. Thus, ϕ |= x≤f(z)≤y so that entailment holds. This

16



can also be proved through our automaton construction. First note that ϕ `
x≤1(z) holds (since ϕ ` x≤z and z≤f(z) in ϕ). Furthermore, f(z)≤y in ϕ so
that ϕ ` 1(z)≤y. Hence, we can descend to the first child simultaneously for
x and y with the transition:

Pθ(ϕ |=
? x≤y) ` (x, y)

1
−→ (z, z)

This applies for both sides θ ∈ {l, r} and proves that ε is l-safe and r-safe for
ϕ |=? x≤y. Reflexivity shows that all words in 1+ are l-safe and r-safe too.
Thus, our automata construction proves entailment to hold as well.

6.4 Result

The automata construction is sound and complete for both cases, the struc-
tures of finite resp. possibly infinite trees.

Proposition 3 (Soundness and Completeness) Let θ ∈ {l, r} a side, ϕ
be a constraint and x, y ∈ Vϕ variables. If ϕ is satisfiable then Pθ(ϕ |=

? x≤y)
accepts the set of all those paths that are θ-safe for ϕ |=? x≤y .

Soundness will be proved in Section 8 (Proposition 8) and completeness in
Section 9 (Proposition 11).

Lemma 4 The automata construction for judgments ϕ |=? x≤y can be per-
formed in deterministic polynomial time in the size of ϕ.

PROOF. The closure algorithm can compute all valid judgments of the form
ϕ ` u≤v where u, v are variables in Vϕ in time O(m3) and store its result in
a O(m2) table where m is the size of ϕ. The left and right automata have
O(m2) many states. We have to show that we can apply all construction rules
in polynomial time. This is non-obvious for the three descend rules, at least
not at first sight. But note that the set

{z | ϕ ` x≤i(z)}

can be computed in polynomial time for a given x and 1 ≤ i ≤ n = arf : First,
one computes all variables x′ such that ϕ ` x≤x′ in time O(m). Second, one
loops over all such x′ while computing all yi for which there exists some literal
x′≤f(y1, . . . , yn) in ϕ. This requires time O(m) for each individual x′. Finally
one loops for all such yi while computing all z such that ϕ ` yi≤z. This can
be done in time O(m) again. Thus, we obtain an O(m3) algorithm to compute
the above set for a given x and i.
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This set {z | ϕ ` x≤i(z)} has to be computed for all x ∈ Vϕ and 1 ≤ i ≤ n,
i.e., for O(m2) many pairs. Thus, the overall automata construction requires
time at most O(m6) in the size of ϕ. (We did not try to improve on this upper
bound.)

Theorem 2 (Reduction) NSSE for a signature {⊥, f,>} can be reduced
in deterministic polynomial time to the universality problem of cap automata
over the alphabet {1, . . . , arf}. This holds equally for finite, regular, or possibly
infinite trees.

PROOF. The reduction works as follows. Given an entailment judgment
ϕ |=? x≤y we first test whether ϕ is satisfiable. This tests can be done in
polynomial time as we will prove in Theorem 3 of Section 7. Note that this
satisfiability test is the single step of the reduction that differs for finite, resp.
regular, or possibly infinite trees.

If ϕ is unsatisfiable, then entailment holds. Otherwise we construct the left
and right automata for ϕ |=? x≤y. This requires at most polynomial time
according to Lemma 4. Entailment now holds if and only if the languages of
both constructed automata are universal as stated by Propositions 3 and 1.

7 Satisfiability

We now presents satisfiability tests for non-structural subtype constraints. It
will be needed to reduce NSSE to universality of cap automata (see Theorem
2). Furthermore, we will rely on the notions introduced throughput this section
later on.

We consider the two cases of possibly infinite and resp. regular trees first and
then turn to the third and more difficult case of finite trees. Satisfiability
of infinite trees was studied by Palsberg and O’Keefe [29], and additionally
by Pottier [5]. The case of finite trees was solved by Palsberg, Wand, and
O’Keefe [8] 2 . As they do, we will construct solutions with smallest shape
for satisfiable constraints. In the infinite and regular cases, we will construct
least and greatest solutions. These will prove extremely useful for proving the
completeness of our entailment test.

2 An earlier approach [7] treats the simpler problem with greatest but without least
type ⊥.
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C1. ϕ ` x≤y and x=> ∧ y=⊥ in ϕ

C2. ϕ ` x≤y and x=> ∧ y≤f(y1, . . . , yn) in ϕ

C3. ϕ ` x≤y and f(x1, . . . , xn)≤x ∧ y=⊥ in ϕ

Table 4
Label clashes (the definition of judgments ϕ ` x≤y is in Table 1).

7.1 Infinite Trees

A label clash in a constraint ϕ imposes an unsatisfiable condition on the root
label of some tree described by ϕ. Table 4 collects three kinds of label clashes.
Clash C1 requires >≤Σ⊥, clash C2 needs >≤Σf , and C3 imposes f≤Σ⊥.

Lemma 5 If ϕ contains a label clash then it is unsatisfiable over possibly
infinite trees (and thus also over regular or finite trees).

PROOF. We only consider the case where ϕ contains a label clash of form
C1. The two remaining cases C2 and C3 are analogous. If ϕ contains a label
clash of form C1 then:

x=> in ϕ, y=⊥ ∈ ϕ, and ϕ ` x≤y

for some variables x, y in Vϕ. Lemma 2 yields ϕ |= x≤y. Thus, ϕ |= >≤⊥
which requires that ϕ is unsatisfiable.

Proposition 4 A constraint is satisfiable over the structure of possibly infi-
nite trees if and only if it does not contain any label clash (see Table 4).

One direction of Proposition 4 coincides with Lemma 5. The converse is proved
below.

In order to construct least or greatest solutions, we need the notions of lower
and upper bounds in subtree positions. Let u, v be variables and π ∈{1, . . ., arf}

∗

paths. Let terms u.π to denote the subtree of the value of u at node π under
the presupposition of existence. We define two first-order formulas by:

u≤π(v) =def ∃w : u≤w ∧ w.π = v

π(u)≤v =def ∃w : w≤v ∧ w.π = u

The formula u≤π(v) means that v is an upper bound of u at node π. It is
satisfied by variables assignments α where either α(u)(π′) = ⊥ for some prefix
π′ of π or α(u).π ≤ α(v). Symmetrically, π(u)≤v states that u is a lower bound
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ϕ ` x≤ε(y) if ϕ ` x≤y

ϕ ` ε(x)≤y if ϕ ` x≤y

ϕ ` x≤πi(y) if ϕ ` x≤π(z), z≤f(z1, . . . zi . . . , zn) in ϕ, ϕ ` zi≤y

ϕ ` πi(x)≤y if ϕ ` π(z)≤y, f(z1, . . . zi . . . , zn)≤z in ϕ, ϕ ` x≤zi

Table 5
Syntactic support of lower and upper bounds.

of v at π. It is satisfied by variables assignments α where either α(v)(π ′) = >
for some prefix π′ of π or α(u) ≤ α(v).π.

Table 5 defines syntactic support of lower and upper bounds at subtree posi-
tions. This generalizes both notions of syntactic support for inequations and
children positions in Tables 1 and 2. Note in particular that both judgments
ϕ ` x≤ε(y) and ϕ ` ε(x)≤y are equivalent to ϕ ` x≤y.

Lemma 6 If ϕ ` π(x)≤y then ϕ |= π(x)≤y and if ϕ ` y≤π(x) then ϕ |=
y≤π(x).

PROOF. By induction on the derivation of syntactic support. The base case
relies on Lemma 3.

Lemma 7 (Decomposition)

(1) If ϕ ` π(w)≤u and ϕ ` u≤ππ′(v) then ϕ ` w≤π′(v).
(2) If ϕ ` ππ′(v)≤u and ϕ ` u≤π(w) then ϕ ` π′(v)≤w.

PROOF. By induction on the length of the path π.

Proof of Proposition 4 We have to construct solutions for constraints ϕ
that do not have label clashes. The basic idea is to construct the least solution
by mapping variables x of Vϕ to the least upper bound of all lower bounds of
x in ϕ. Symmetrically, we could also choose the greatest solution.

The construction will use additional judgments ϕ ` π(g)≤x where g ∈ Σ.
Such judgments say that ϕ syntactically supports g to be a lower bound for
the label of x at path π. It is defined as follows:

ϕ ` π(>)≤x if ϕ ` y=> in ϕ and ϕ ` π(y)≤x

ϕ ` π(f)≤x if ϕ ` f(y1, . . . , yn)≤y in ϕ and ϕ ` π(y)≤x
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Symmetric judgments of the forms ϕ ` π(>)≤x and ϕ ` π(f)≤x are defined
in analogy.

We now specify variable assignments leastϕ which map variables z ∈ Vϕ to
the least upper bound of all lower bounds of z in ϕ. We define leastϕ(z)(π) by
induction on the length of π. Given a word π for which leastϕ(z)(π′) /∈ {⊥,>}
for all proper prefixes π′ < π, we set:

leastϕ(z)(π) = sup{ g | ϕ ` π(g)≤z }

Otherwise, we leave leastϕ(z)(π) undefined. The definition is sound since all
subsets of Σ have a least upper bound. Note also that ⊥ is the least upper
bound of the empty subset of Σ.

Clearly, leastϕ(z) is a tree over Σ: its domain is prefix closed and arity consis-
tent by definition. Note that leastϕ(z) may be infinite, for instance, if ϕ is the
constraint f(z)≤z.

It remains to show that leastϕ is indeed a solution of ϕ, i.e., that it satisfies
all literals of ϕ. To prove this we distinguish all possible kinds of literals.

(1) Case z=⊥ in ϕ. In this case: leastϕ(z)(ε) = ⊥. Otherwise, ϕ ` ε(>)≤z
or ϕ ` ε(f)≤z. But ϕ then contains a label clash by C1 or C3 which
contradicts our assumption.

(2) Case z=> in ϕ. Obviously, leastϕ(z)(ε) = >.
(3) Case f(z1, . . . , zn)≤z in ϕ. Let π be in the common domain of leastϕ(z)

and leastϕ(f(z1, . . . , zn)).
(a) Case π = ε. Thus, ϕ ` ε(f)≤z so that the least solution satisfies

leastϕ(z)(ε) ≥Σ f = leastϕ(f(z1, . . . , zn))(ε).
(b) Case π = iπ′ for some 1 ≤ i ≤ n. Note that leastϕ(f(z1, . . . , zn)) is

equal to f(leastϕ(z1), . . . , leastϕ(zn)) so that π′ must belong to the do-
main of leastϕ(zi) since π belongs to the domain of leastϕ(f(z1,...,zn)).
This implies that leastϕ(z)(π′) is defined and equal to sup{g | ϕ `
π′(g)≤zi}. But if ϕ ` π′(g)≤zi then ϕ ` iπ′(g)≤z, and hence:

leastϕ(z)(iπ′) = sup{ g | ϕ ` π(g)≤z }

≥Σ sup{ g | ϕ ` π′(g)≤zi }

= leastϕ(zi)(π
′) = leastϕ(f(z1, . . . , zn))(iπ′)

(4) Case z≤f(z1, . . . , zn) in ϕ. Let π be in the common domain of leastϕ(z)
and leastϕ(f(z1, . . . , zn)).
(a) Case π = ε. Since ϕ does not contain any label clash of kind C2, it

cannot hold that ϕ ` ε(>)≤z and hence leastϕ(z)(ε) ≤Σ f .
(b) Case π = iπ′ for some 1 ≤ i ≤ n. Whenever ϕ ` iπ′(g)≤z then
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ϕ ` π′(g)≤zi by decomposition with Lemma 7. Hence:

leastϕ(z)(π) = sup{ g | ϕ ` π′(g)≤z }

≤Σ sup{ g | ϕ ` π′(g)≤zi }

= leastϕ(zi)(π
′) = leastϕ(f(z1, . . . , zn))(iπ′)

By inspection of the proof of Proposition 4 we obtain the following additional
result on the existence and form of least and greatest solutions. This result is
of its own relevance but also important with respect to entailment.

Proposition 5 Every constraints that is satisfiable over possibly infinite trees
permits a least solution leastϕ and a greatest solution greatϕ (over possibly
infinite trees). These solutions satisfy for all variables z ∈ Vϕ and nodes π ∈
Dleastϕ(z) resp. π ∈ Dgreatϕ(z):

leastϕ(z)(π) = sup{ g | ϕ ` π(g)≤z }

greatϕ(z)(π) = inf{ g | ϕ ` z≤π(g) }

PROOF. The proof of Proposition 4 shows that leastϕ is indeed solutions
of ϕ; and this solution is clearly smaller than all other solutions of ϕ. By
symmetry, the result for greatϕ follows.

7.2 Regular Trees

Least solutions always map variables to regular trees. This has the following
consequence:

Proposition 6 A subtype constraint is satisfiable over finite trees if and only
if it is satisfiable over regular trees.

PROOF. Let ϕ be a constraint that is satisfiable over finite trees, i.e. which
does not have any label clash. We show that the least solution leastϕ of ϕ
maps to regular trees only. Proposition 5 shows that the least solution leastϕ

satisfies:

leastϕ(z)(π) = sup{ g | ϕ ` π(g)≤z }

for all z ∈ Vϕ where leastϕ(z)(π′) /∈ {⊥,>} for all proper prefixes π′ < π, and
that leastϕ(z)(π) is undefined otherwise. We next fix a variable z ∈ Vϕ and
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C4. ∃π 6= ε : ϕ ` π(x)≤x and ϕ ` x≤y and ϕ ` y≤π(y)

Table 6
Cycle clashes.

show that leastϕ(z) has only finitely many distinct subtrees. We define for all
paths π ∈ AΣ :

Vϕ(z, π) = { y | ϕ ` π(y)≤z }

The following claim follows straightforwardly from the definition of least so-
lutions. For all π, π′ ∈ Dleastϕ(z):

leastϕ(z).π = leastϕ(z).π′ if and only if Vϕ(z, π) = Vϕ(z, π′)

This claim implies that the number of distinct subtrees of leastϕ(z) is uniformly
bounded for all z ∈ Vϕ by the number of subsets of Vϕ, and this number is
finite.

7.3 Finite Trees

Satisfiability becomes more tedious in the case of finite trees where we have to
care about unsatisfiable cycles. Most typically, x≤f(x) ∧ f(x)≤x is unsatisfi-
able while f(x)≤x is satisfiable over finite trees. These two examples illustrate
that only two-sided cycles in upper and lower bounds are unsatisfiable of finite
trees, while one-side cycles can be satisfied. The general form of cycle clashes
is given by rule C4 in Table 6.

Lemma 8 A constraint with cycle clash is unsatisfiable over finite trees.

The most problematic fact about satisfiability over finite trees is that satisfi-
able constraints need not have least or greatest solutions, in contrast to possi-
bly infinite or regular trees (Proposition 5). But fortunately, there always exist
solutions with least shape (i.e. least tree domain) for all constraints without
label clashes [8]. And least-shape solutions are always finite for constraints
without cycle clashes.

The constraint f(x)≤x, for instance, does not have a least solution when
interpreted over finite trees. Its finite solutions map x to some tree of the form
f(f(f(. . . (>) . . .))), none of which is smaller than all others. The solution
mapping of x to > has the least shape but is greater than all others. Over
possible infinite trees, there exists a least solution which maps x to the infinite
tree f(f(f(. . .))).

Proposition 7 A constraint ϕ is satisfiable over the structure of finite trees
if and only if it does not contain a label clash nor a cycle clash.
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We have already shown the correctness of our clash rules (Lemmas 5 and 8); it
remains to prove that constraints without label and cycle clash are satisfiable.
This will be the content of Lemmas 9 and 10.

Given a satisfiable constraint ϕ we now define an assignment sϕ which maps
variables to trees with the least possible shape for satisfying ϕ, i.e., with
the least possible tree domain. Let z ∈ Vϕ and π ∈ {1, . . . , arf}

∗. We define
sϕ(z)(π) by induction on the length of π so that we can assume that sϕ(z)(π′) =
f for all proper prefixes of π′ of π:

sϕ(z)(π) =



























f if ϕ ` π(f)≤z and ϕ ` z≤π(f)

⊥ if ϕ 6` π(f)≤z and ϕ ` z≤π(g) where g ∈ {⊥, f}

> else

Lemma 9 If ϕ is free of label clashes then sϕ |= ϕ over possibly infinite trees.

PROOF. We show that sϕ satisfies all literals of ϕ.

(1) Case z=⊥ in ϕ. The second clause of the definition of sϕ(z)(ε) applies
since ϕ ` ε(f)≤z would prove a label clash of kind C3 otherwise. Hence
sϕ(z) = ⊥.

(2) Case z=> in ϕ. The first two clauses of the definition of sϕ(z)(ε) cannot
apply in the absence of label clashes of forms C1 and C2. Hence, sϕ(z) =
>.

(3) Case f(z1, . . . , zn)≤z in ϕ. Let π be in the common domain of sϕ(z) and
sϕ(f(z1, . . . , zn)). Note that sϕ(f(z1, . . . , zn)) = f(sϕ(z1), . . . , sϕ(zn)). It
remains to prove sϕ(f(z1, . . . , zn))(π) ≤Σ sϕ(z)(π).
(a) Subcase π = ε. Since f(z1, . . . , zn)≤z in ϕ, sϕ(z)(ε) cannot be defined

by the second clause, and thus sϕ(z)(ε) ≥Σ f .
(b) Subcase π = iπ′ for some 1 ≤ i ≤ n. We must prove sϕ(zi)(π

′) ≤Σ

sϕ(z)(π) under the assumption that both values are defined. Clearly,
this holds in the case sϕ(z)(π) = >. If sϕ(z)(π) =Σf then ϕ ` z≤π(f)
so that the decomposition Lemma 7 yields ϕ ` zi≤π

′(f). Hence,
sϕ(zi)(π

′) ≤Σ f = sϕ(z)(π). Otherwise, sϕ(z)(π) = ⊥ so that ϕ 6`
π(f)≤z and ϕ ` z≤π(g) for some g ∈ {f,⊥}. Hence, ϕ 6` π′(f)≤zi

and ϕ ` zi≤π
′(g). This implies sϕ(zi)(π

′) = ⊥.
(4) Case z≤f(z1, . . . , zn) in ϕ. For given a word π in the domains of sϕ(z)

and sϕ(f(z1, . . . , zn)) we prove sϕ(z)(π) ≤Σ sϕ(f(z1, . . . , zn))(π).
(a) Subcase π = ε. Since z≤f(z1, . . . , zn) in ϕ one of the first two clauses

defines sϕ(z)(ε) so that sϕ(z)(ε) = f as required.
(b) Subcase π = iπ′ for some 1 ≤ i ≤ n. We show sϕ(z)(π) ≤Σ sϕ(zi)(π

′).
This clearly holds if sϕ(zi)(π

′) = >. If sϕ(zi)(π
′) = ⊥ then ϕ 6`

π′(f)≤zi and ϕ ` zi≤π
′(g) for some g ∈ {⊥, f}. Hence, ϕ 6` π(f)≤z
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according to the decomposition Lemma 7. Furthermore, ϕ ` z≤π(g)
so that sϕ(z)(π) = ⊥. The final case is sϕ(zi)(π

′) = f . Now, ϕ `
zi≤π

′(f) and also ϕ ` π′(f)≤zi. Thus, ϕ ` z≤π(f) so that sϕ(z)(π)≤Σf .

Lemma 10 If ϕ doesn’t contain cycle clashes then sϕ(z) is finite for all z ∈Vϕ.

PROOF. Suppose that sϕ(z) is infinite for some z ∈ Vϕ. Then there exists
an infinite word ω over the alphabet {1, . . . , arf} such that sϕ(z)(π) = f for
all finite prefixes π of ω. This yields ϕ ` π(f)≤z and ϕ ` z≤π(f) for all such
prefixes. Hence, there exists variables xπ, yπ ∈ Vϕ for all prefixes π of ω such
that z = xε = yε and for all prefixes ππ′ of ω:

ϕ ` π′(xππ′)≤xπ and ϕ ` xπ≤yπ and ϕ ` yπ≤π
′(yππ′)

Since there are only finitely many distinct pairs (xπ, yπ) of variables in Vϕ,
at least one such pair must be repeated for sufficiently large π and π′. This
pumping argument establishes a cycle clash C4 in ϕ which contradicts our
assumption. Thus, sϕ(z) must be finite for all z ∈ Vϕ.

7.4 Summary

So far, we have seen that we can decide satisfiability of non-structural subtype
constraints by testing for the existence of different kinds of clashes.

Definition 2 We call a constraint ϕ clash free for the structure of

(1) possibly infinite trees if it does not contain any label clash,
(2) regular trees if it does not contain any label clash,
(3) finite trees if it does neither contain a label clash nor a cycle clash.

We now consider efficiency issues. The existence of a label clash in a constraint
ϕ can be tested in cubic time in the size of ϕ. First, one computes a table of
quadratic size that stores all valid judgments ϕ ` u≤v. Second, one compares
the labels required by ϕ for all u and v with ϕ ` u≤v. The existence of a cycle
clash can also be tested in cubic time. All together, this yields the following
result:

Theorem 3 A subtype constraint ϕ is satisfiable (over finite, regular, resp.
possibly infinite trees) if and only if it is clash-free (over finite, regular, resp.
possibly infinite trees). In all three cases, satisfiability can be tested in cubic
time in the size of ϕ. Least and greatest solutions of satisfiable constraints
exist for the infinite and regular cases, but not necessarily over finite trees.
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PROOF. From Propositions 4, 5, 6, 7 and the above discussion on efficiency.

8 Soundness

In this section, we prove the soundness of the automata construction. The
proof is non-trivial and requires a new argument compared to [16]. This ar-
gument (see the proof of Proposition 10) is based on Lemma 1 from Section
3.

Proposition 8 (Soundness) For all ϕ, variables x, y, and sides θ ∈ {l, r}
it holds that all paths accepted by Pθ(ϕ |=

? x≤y) are θ-safe for ϕ |=? x≤y.

We only consider the left side θ = l. We proceed in two steps: we first treat
accepted words in class A (Proposition 9) and second in class P (Proposition
10). For both steps, we have to characterize transitions of the constructed
automata.

Lemma 11 (Transitions without all states) For all constraints ϕ, vari-
ables x, y, u, v, sides θ ∈ {l, r}, and nonempty words π ∈ {1, . . . , arf}

+:

(1) Pθ(ϕ |=
? x≤y) ` (u, s)

π
−→ (v, s′) for some s, s′ if and only if ϕ ` u≤π(v).

(2) Pθ(ϕ |=
? x≤y) ` (s, u)

π
−→ (s′, v) for some s, s′ if and only if ϕ ` π(v)≤u.

This lemma would fail for π = ε. But this does not matter since if ϕ ` u≤v
then reflexivity yields for all non-empty words π:

Pθ(ϕ |=
? x≤y) ` (u, v)

π
−→ all

PROOF. We only prove the first statement for the upper bounds for the
implication from right to left. (The second property is analogous but for lower
bounds.) The proof is by induction on the length of π 6= ε.

First, assume π = i is a single letter path where i ∈ AΣ. The supported upper
bound ϕ ` u≤i(v) permits to apply the descend rule. Hence Pθ(ϕ |=

? x≤y) `

(u, )
i
−→ (v, ) for arbitrary θ ∈ {l, r}.

Second, consider a path π of length at least two. We can decompose π into
π = π′i for some nonempty path π′ and i ∈ AΣ. Also we can decompose
ϕ ` u≤π(v) into ϕ ` u≤π′(v′) and ϕ ` v′≤i(v) for some variable v′. The
induction hypothesis applies twice and yields Pθ(ϕ |=

? x≤y) ` (u, )
π
−→ (v′, )

and ` (v′, )
i
−→ (v, ).
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Lemma 12 (Bounds and safety)

(1) If α |= x≤π(u) then all proper prefixes of π are l-safe for α |=? x≤y.
(2) If α |= x≤π(u) ∧ u=⊥ then all paths ππ′ with π′ ∈ AΣ

∗
are l-safe for

α |=? x≤y.
(3) If α |= x≤π(u) ∧ π(u)≤y then all paths ππ′ with π′ ∈ AΣ

∗
are l-safe for

α |=? x≤y.

PROOF. We only prove 1 (the other two cases are similar). Let π ′ be a
proper prefix of π. Every solution α |= x≤π(u) satisfies either α(x)(π′) =Σ f
or there exists a path ν < π′ with α(x)(ν) =Σ ⊥; thus all π′ are l-safe for
α |=? x≤y.

Proposition 9 (Soundness for class A) For all ϕ, variables x, y it holds
that all paths π with class A accepted by Pl(ϕ |=

? x≤y) are l-safe for ϕ |=?

x≤y.

PROOF. We have to consider all recognizing transitions of the constructed
finite automaton. According to the automaton construction there are three
possibilities for doing this.

(1) Assume that the path is accepted in a state to which the final states
rule applies, i.e. π is recognized by a transition of the following form:

Pl(ϕ |=
? x≤y) ` (x, y)

π
−→ (u, s)

i
−→ (u′, s′).

Lemma 11 yields ϕ |= x≤πi(u′). Thus π is l-safe for ϕ |=? x≤y by Lemma
12 case 1.

(2) Assume π is accepted by the reflexivity rule. Then, π must be of the
form π1π2, where we can identify transition of the following form where
ϕ ` u≤u′:

Pl(ϕ |=
? x≤y) ` (x, y)

π1−→ (u, u′).

Lemma 11 yields ϕ |= x≤π1(u). By symmetrical reasoning ϕ |= π1(u
′)≤y

and thus ϕ |= π1(u)≤y. Case 3 of Lemma 12 shows that π is l-safe for
ϕ |=? x≤y.

(3) Assume π is accepted by the bot rule (the case that the top rule fires
is analogous). Then, π must be of the form π1π2, where we can identify
transition of the following form:

Pl(ϕ |=
? x≤y) ` (x, y)

π1−→ (u, s), ϕ ` u≤u′, and u′=⊥ in ϕ.

Again Lemma 11 yields ϕ |= x≤π1(u
′). Therefore π is l-safe for ϕ |=? x≤y

by Lemma 12 case 2.
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We now approach the soundness of P-edges. It mainly relies on Lemma 13 in
combination with Lemma 1 on word equations.

Lemma 13 (Safety and word equations) Let π 6= ε be a path, u, v vari-
ables, and α |= u≤π(v). All words π′ with π′ ∈ pr(ππ′) are l-safe for α |=?

u≤v.

PROOF. We distinguish whether π′ belongs to Dα(v) or not.

a. Case π′ ∈ Dα(v). It follows in this case from α |= u≤π(v), that α |=
∃v′(u≤ππ′(v′)). By Lemma 12 all proper prefixes of ππ′ are l-safe for
α |=? u≤v. Thus π′ has this property since π′ is a prefix of ππ′ and π 6= ε
by assumption.

b. Case π′ 6∈ Dα(v). Let π′′ be the maximal prefix of π′ in Dα(v). Hence,
α(v)(π′′) ∈ {⊥,>}. First we assume the case α(v)(π′′) =Σ> which implies
that all paths σ with π′′ ≤ σ, in particular π′, are l-safe. Second we assume
the left case α(v)(π′′) =Σ⊥. Since α |= u≤π(v), there exists a path π′′′

with π′′′ ≤ ππ′ such that α(u)(π′′′) =Σ⊥. Both together, π′′′ ≤ ππ′ and
the assumption π′ ≤ ππ′ show that the paths π′′′ and π′ are comparable:
if π′ ≥ π′′′ then π′ is l-safe according to the definition of l-safe. Otherwise,
π′ < π′′′ holds and α(u)(π′) =Σf implies π′ to be l-safe.

Lemma 14 (Composing safety) If α |= x≤π(u), α |= π(v)≤y, and π′ is
l-safe for α |=? u≤v then ππ′ is l-safe for α |=? x≤y.

PROOF. It follows from the assumption π′ is l-safe for α |=? u≤v that
α(u)(π′) =Σf or that there exists π′′≤π′ with α(u)(π′′) =Σ⊥ or α(v)(π′′) =Σ>.
The assumption α |= x≤π(u) and α |= π(v)≤y imply that α(x)(ππ′) =Σ f or
there exists π′′≤ππ′ with α(x)(π′′) =Σ⊥ or α(y)(π′′) =Σ>; thus ππ′ is l-safe
for α |=? x≤y.

Proposition 10 (Soundness for class P) For all ϕ and variables x, y, all
paths of class P accepted by Pl(ϕ |=

? x≤y) are l-safe for ϕ |=? x≤y.

PROOF. A path ν of class P can only be recognized by using a P-edge.
Thus, there exist words µ, µ′, π such that ν = πµ′, µ′ ∈ pr(µ∗) and for some
u, v ∈ Vϕ ∪ {x, y} and s ∈ Vϕ ∪ {x, y, }:

Pl(ϕ |=
? x≤y) ` (x, y)

π
−→ (u, v)

µ
−→ (v, s) (u, v)

Lemma 11 yields ϕ |= x≤π(u), ϕ |= π(v)≤y, and ϕ |= u≤µ(v). We fix an
arbitrary solution α |= ϕ and show that ν is l-safe for α |= x≤y. Note that
µ 6= ε since ν would belong to class A otherwise. We can thus apply Lemma
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1 on word equations to our assumption µ′ ∈ pr(µ∗) to derive µ′ ∈ pr(µµ′).
This verifies the assumptions of Lemma 13 which shows that µ′ is l-safe for
α |=? u≤v. Finally, the composition Lemma 14 shows that πµ′ is l-safe for
α |=? x≤y as required.

9 Completeness

We prove the completeness of the automata construction. This proof was not
given in the conference version of this article [24] and is simplified in many
aspects compared to its relatives [16].

Proposition 11 (Completeness) Let ϕ be a constraint with variables x, y ∈
Vϕ and θ ∈ {l, r} a side. If ϕ is satisfiable (for finite, regular, resp. possibly
infinite trees) then Pθ(ϕ |=

? x≤y) accepts all paths that are θ-safe for ϕ |=?

x≤y (with respect to the considered structure of finite, regular, resp. possibly
infinite trees).

In a first step, we reduce Proposition 11 to simpler statements in Proposition
12 and 13. By symmetry, we can restrict ourselves to the case of r-safety. This
notion can be reformulated on basis of standard logical transformations.

Lemma 15 Let ν be a word in {1, . . . arf}
∗ and ϕ |=? x≤y and entailment

judgment. Then ν is not r-safe for ϕ |=? x≤y if and only if ϕ ∧ pref⊥ν (y) ∧
¬pref⊥ν (x) is satisfiable.

PROOF. The word ν is r-safe for ϕ |=? x≤y iff ϕ |= pref⊥ν (y) → pref⊥ν (x) iff
ϕ ∧ ¬(pref⊥ν (y) → pref⊥ν (x)) is unsatisfiable, i.e., if ϕ ∧ pref⊥ν (y) ∧ ¬pref⊥ν (x)
is satisfiable.

In order to prove Proposition 11 we can assume a satisfiable constraint ϕ
with variables x, y, and a path ν in {1, . . . , arf}

∗ that does not belong to the
language of Pl(ϕ |=

? x≤y). We then have to prove that ν is not r-safe for
ϕ |=? x≤y. Using the above Lemma, this is equivalent to the satisfiability of
the following formula:

ϕ ∧ pref⊥ν (y) ∧ ¬pref⊥ν (x)

We can eliminate the negative subformula ¬pref⊥ν (x) by a simple trick. Let

xε =def x
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and fix a set Fν(x) of fresh and distinct variables xµ for finitely many nonempty
paths µ that are successors of prefixes of ν:

Fν(x) =def { xπi | ε ≤ π ≤ ν, 1 ≤ i ≤ arf }

Note that Fν(x) does not contain xε. Next, we define a constraint lowν(f) (x)
which imposes the lower bound ν(f) on x:

lowν(f) (x) =def

∧

ε≤π≤ν

f(xπ1, . . . , xπn) ≤ xπ

Lemma 16 The constraint lowν(f) (x) is satisfaction equivalent to ¬pref⊥ν (x).

PROOF. Indeed, the existential formula ∃Fν(x). lowν(f) (x) is equivalent to

¬pref⊥ν (x). Note first that lowν(f) (x) ` ν(f)≤x and hence, ∃Fν(x). lowν(f) (x) |=
ν(f)≤x. Clearly, the converse holds as well, i.e., both formulas are equivalent.
Finally, note that ν(f)≤x is also equivalent to ¬pref⊥ν (x).

According to Lemma 16, the remaining goal is to prove the satisfiability of
the formula: ϕ∧pref⊥ν (y)∧ lowν(f) (x). The cases of possibly infinite or regular
trees will be proved in Proposition 12. The existence of finite solutions is then
derived from the existence of possibly infinite solutions in Proposition 13.
Before proving these proposition, we formulate some needed properties of the
constraint lowν(f) (x) in two technical Lemmas 17 and 18.

Lemma 17 The following properties hold for a constraint ϕ with variables
x, u, v ∈ Vϕ, words ν, π, µ ∈ {1, . . . , arf}

∗ such that xµ ∈ Fν(x). Recall that
Fν(x) is a set of fresh variables disjoint from Vϕ. Let ϕ′ = ϕ ∧ lowν(f) (x).

(1) ϕ′ ` u≤π(v) if and only if ϕ ` u≤π(v).
(2) ϕ′ ` xµ≤π(v) if and only if ϕ ` x≤µ(x′), ϕ ` x′≤π(v) for some x′.
(3) ϕ′ ` π(u)≤v if and only if ϕ ` π(u)≤v.
(4) ϕ′ ` π(xµ)≤v if and only if ϕ ` x≤µ′(x′) and ϕ ` π′(x′)≤v

where µ=µ′ν, π=π′ν for some µ′, π′, ν, x′.
(5) ϕ′ ` µ′i(xµµ′i)≤xµ if µµ′ ≤ ν and i ∈ {1, . . . , arf}.
(6) ϕ′ ` ε(xµ)≤xµ and ϕ′ ` xµ≤ε(xµ).

PROOF. The proofs of these properties are tedious but not difficult. Note
that (5) and (6) are trivial but they will simplify the proof.

All inverse implications are straightforward so that we only treat the most
complicated property (4) explicitly. Let the right hand side of (4) be true. Since
µ ∈ Vν(X) we have lowν(f) (x) ` µ(xµ)≤x and thus lowν(f) (x) ` µ

′ν(xµ)≤x.
Because of ϕ ` x≤µ′(x′) we can apply the decomposition Lemma 11 which

30



yields ϕ′ ` ν(xµ)≤x′. Combined with ϕ ` π′(x′)≤v this implies ϕ′ ` π′ν(xµ)≤v
and hence ϕ′ ` π(xµ)≤v as required.

We prove all remaining implications of (1)–(5) together with (6) simultane-
ously. For this we define a new set Cϕ′ of path constraints: a constraint ψ is
in Cϕ′ if and only if one of the properties (1)–(6) licenses ϕ′ ` ψ. In the rest
of the proof we do not distinguish between ε(x)≤y in Cϕ′ and x≤ε(y) in Cϕ′.
We also write x≤y in Cϕ′ in each of both cases. It remains to prove that Cϕ′

is closed under the conditions given in Table 5 of lower and upper bounds. We
restricted ourself to prove that Cϕ′ is again closed under reflexivity, transitiv-
ity, decomposition. The set Cϕ′ is closed under reflexivity for all variables in
Vϕ by property (1) and for all variables in Fν(x) by (6). For transitivity and
decomposition we have to consider literals of the restricted form u≤v where u
and v are distinct variables. Such literals are defined in (1)–(4) where π = ε.
They are not defined in (5) or (6).

We prove that Cϕ′ is closed under transitivity. There is only one interesting
case left where the transitivity rule can be applied. Let v≤u in Cϕ′ with v, u ∈
Vϕ be contributed by ϕ ` v≤u in the case of property (1) or (3). Also let
xµ≤v in Cϕ′ be contributed by (2) or (4) which require ϕ ` x≤µ(x′), ϕ `
x′≤v for some x, x′, v, µ. Following Lemma 7 it holds ϕ ` x≤µ(u) and thus,
xµ≤u in Cϕ′ again by (2).

We prove Cϕ′ to be closed under decomposition.

(1) Assume u≤f(. . . , ui, . . .)∧f(. . . , vi, . . .)≤v in ϕ for variables u, ui, v, vi ∈
Vϕ. Also assume v≤u in Cϕ′ by (1) or (3) contributed by ϕ ` v≤u. Then,
ϕ ` vi≤ui and also vi≤ui in Cϕ′ by (2).

(2) Assume u≤f(. . . , ui, . . .) in ϕ with u, ui ∈ Vϕ and f(x1, . . . , xn) ≤ xε

in lowν(f) (x). Note that xε = x, x ∈ Vϕ by assumption. Also assume
x≤u in Cϕ′ which is contributed by (1) or (3) with ϕ ` x≤u. Then,
xi≤ui in Cϕ′ by (2).

(3) Assume u≤f(. . . , ui, . . .) in ϕ with u, ui ∈ Vϕ and f(xπ1, . . . , xπn) ≤ xπ

in lowν(f) (x) where π 6= ε. Thus, xπ ∈ Fν(x). Then, xi≤ui in Cϕ′ by (2).

Lemma 18 Let ν ∈ {1, . . . , arf}
∗ and let ϕ be a constraint with variables x,

y. It holds that ϕ ∧ lowν(f) (x) ` ν(f)≤y if and only if

(1) ϕ ` ν(f)≤y, or
(2) there exist a state z and paths π1≤ν, π2 such that ϕ ` π1π2(z)≤y, ϕ `

x≤π1(z), and if π2 6= ε then also ν ∈ π1 pr(π∗
2).

PROOF. From right to left. Clearly, ϕ ` ν(f)≤y implies ϕ ∧ lowν(f) (x) `
ν(f)≤y. So let ϕ ` π1π2(z)≤y and ϕ ` x≤π1(z). Let ν ′ be an arbitrary
path and ν = π1ν

′. If ψ ` π1π2(z)≤y, ψ ` x≤π1(z), and ψ ` π1ν
′(f)≤x then
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ψ ` π1π2ν
′(f)≤y according to Lemma 7. Note that lowν(f) (x) ` ν(f)≤x. Thus,

ϕ∧ lowν(f) (x) ` π1π2ν
′(f)≤y which also implies ϕ∧ lowν(f) (x) ` π1π(f)≤y for

every prefix π ≤ π2ν
′. The case π = ν ′, which was to prove, holds for π2 = ε

or ν ′ ∈ pr(π∗
2) according to Lemma 1.

From left to right. Let assume ϕ ∧ lowν(f) (x) ` ν(f)≤y, y ∈ Vϕ which is
equivalent to ϕ ∧ lowν(f) (x) ` ν(u)≤y together with either (1) ϕ ` ε(f)≤u
where u ∈ Vϕ or (2) lowν(f) (x) ` ε(f)≤u where (2a) u = x or (2b) u ∈ Fν(x).
Let us assume case (1). By Lemma 17 also ϕ ` ν(u)≤y since y, u ∈ Vϕ. Our
case assumption ϕ ` ε(f)≤u implies ϕ ` ν(f)≤y.

Next, assume case (2a). Again by Lemma 17 also ϕ ` ν(x)≤y since y, u ∈ Vϕ.
Then, there exist π1 = ε, π2 = ν, z with ϕ ` π1π2(z)≤y and ϕ ` x≤z. Also
ν ∈ pr(π∗

1).

At last assume the remaining case (2b). Our assumption lowν(f) (x) ` ε(f)≤u,
u ∈ Fν(x) holds in the case u = xπ where π ≤ ν. Lemma 17.4 together with
our assumption ϕ ∧ lowν(f) (x) ` ν(xπ)≤y implies ϕ ` x≤π′(x′), ϕ ` ν ′(x′)≤y
where π=π′ν ′′, ν=ν ′ν ′′ for some ν ′, ν ′′, x′. Since π ≤ ν, we get π′ν ′′ ≤ ν =
ν ′ν ′′. This implies π′ ≤ ν ′. So, let ν ′ = π′π′′ for some π′′. Then we identify
ϕ ` π′π′′(x′)≤y and ϕ ` x≤π′(x′) where π′ ≤ ν. Since π′ν ′′ ≤ ν ′ν ′′ and
ν ′ = π′π′′ it holds that π′ν ′′ ≤ π′π′′ν ′′ and thus, ν ′′ ≤ π′′∗ for π′′ 6= ε according
to Lemma 1. It holds that ν = π′π′′ν ′′ ∈ π′ pr(π′′∗) in the case π′′ 6= ε.

We now return to the main line of the completeness proof, i.e., we show that
ϕ ∧ lowν(f) (x) ∧ pref⊥ν (y) is satisfiable.

Proposition 12 Consider the structure of possibly infinite or of regular trees
respectively. Let ν be a word in {1, . . . , arf}

∗ that does not belong to the
language of Pr(ϕ |=

? x≤y). Let ϕ be a satisfiable constraint with variables
x, y ∈ Vϕ. Then the least solution of the constraint ϕ ∧ lowν(f) (x) exists and

satisfies pref⊥ν (y) simultaneously.

PROOF. Let ϕ′ =def ϕ∧ lowν(f) (x). In order to show that ϕ′ permits a least
solution, we first show that it does not contain any label clash (Theorem 3).
Assume the contrary, i.e., that ϕ′ contains a label clash. Then there exists vari-
ables u, v ∈ Vϕ′ with ϕ′ ` u≤v such that ϕ′ requires contradicting label bounds
for u and v according to C1, C2, or C3 in Table 4. Since lowν(f) (x) does not
impose any upper label bounds, it follows that v ∈ Vϕ. If the lower bound for u
belongs already to ϕ then ϕ contains a label clash. Hence, lowν(f) (x) imposes
the lower bound on u. But the only lower bounds that lowν(f) (x) imposes are
f -bounds for some variables xπ; thus u = xπ for some π. Furthermore, lower
f -bounds clash only with upper ⊥-bounds, i.e., we have a label clash of kind
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C3:

f(...)≤xπ in lowν(f) (x), ϕ′ ` xπ≤v, and v=⊥ in ϕ.

Because of f(...)≤xπ in lowν(f) (x) it follows that ε ≤ π ≤ ν. We next show
that ϕ ` x≤π(v). If π = ε then xπ ∈ Vϕ so that part 1 of Lemma 17 yields
ϕ ` x≤π(v). Otherwise, π 6= ε so that xπ ∈ Fν(x). Part 2 of Lemma 17 yield
ϕ ` x≤π(v) in this case, so it holds in all cases.

Lemma 11 implies that the automaton Pr(ϕ |=
? x≤y) reaches state (v, ) over

word π. Since v=⊥ in ϕ, the bot rule of the automata construction (Table 3)
lets Pr(ϕ |=

? x≤y) accepts all words that π is a prefix of. And π ≤ ν so that
ν is accepted by the right automaton, in contrast to our assumption.

Recall that the least solution leastϕ′ is regular but possibly infinite. In order
to prove leastϕ′ |= pref⊥ν (y) we assume the contrary. By definition of leastϕ′

(Section 7.3) the contrary holds if and only if ϕ′ one of the following lower
bounds for y: either π(>) for some prefix π ≤ ν or ν(f):

ϕ′ ` π(>)≤y or ϕ′ ` ν(f)≤y

In the first case, there exists some equation z=> in ϕ′ such that ϕ′ ` π(z)≤y.
But z=> cannot belong to lowν(f) (x). It thus belongs to ϕ so that z ∈ Vϕ.
Part 3 of Lemma 17 yields ϕ ` π(z)≤y. Lemma 11 shows that the automaton
Pr(ϕ |=

? x≤y) reaches state ( , z) over word π. Because of the top rule of the
automata construction (Table 3) Pr(ϕ |=

? x≤y) accepts all words of which π
is a prefix, and thus ν, in contrast to our assumption.

The remaining second case ϕ′ ` ν(f)≤y is the crucial step in this proof.
Lemma 18 leaves only two possibilities that we distinguish:

(1) Case ϕ ` ν(f)≤y. Hence, there exists z such that ϕ ` ν(z)≤y and
f(. . .) ≤ z in ϕ. Lemma 11 proves that Pr(ϕ |=

? x≤y) can reach state
( , z) over word ν. And this state is final since the final state rule applies
given f(. . .) ≤ z in ϕ.

(2) In the other case, there exist π1 ≤ ν, π2, and z with ϕ ` π1π2(z)≤y,
ϕ ` x≤π1(z).
(a) In the case π1 = π2 = ε it holds that ϕ ` x≤y. The initial state

and reflexivity prove all words including ν to be in in the language
of Pr(ϕ |=

? x≤y).
(b) Let π2 = ε but π1 6= ε. Lemma 11 and initial state imply

Pr(ϕ |=
? x≤y) ` (x, y)

π1−→ (z, z).

Since π1 ≤ ν reflexivity proves ν to be in in the language of Pr(ϕ |=
?

x≤y).
(c) Let π1 6= ε and also π1 6= ε. Then, there is also the assumption
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ν ∈ π1 pr(π∗
2). Lemma 11 shows for some token s:

Pr(ϕ |=
? x≤y) ` (x, y)

π1−→ (z, s)
π2−→ ( , z) (z, s)

Again, ν is contained in the language of Pr(ϕ |=
? x≤y) according to

the second P-edge rule.
(d) The remaining case is π1 = ε, but π2 6= ε. Again, ν ∈ π1 pr(π∗

2).
Since ϕ ` x≤z and ϕ ` π2(z)≤y it holds also ϕ ` π2(x)≤y. Lemma
11 shows:

Pr(ϕ |=
? x≤y) ` (x, y)

π2−→ ( , x) (x, y)

Again, ν is contained in the language of Pr(ϕ |=
? x≤y).

We finally treat the case of finite trees. We reuse satisfiability for the infinite
case rather then restarting from scratch. This requires another trick which is
hidden in the proof of the next proposition.

Proposition 13 Let ν be a word in {1, . . . , arf}
∗ that does not belong to the

language of Pr(ϕ |=
? x≤y) and ϕ be a constraint that is satisfiable over finite

trees and contains variables x, y ∈ Vϕ. Then the constraint ϕ ∧ lowν(f) (x) ∧

pref⊥ν (y) is also satisfiable in the structure of finite trees.

PROOF. In a first step, we express the formula pref⊥ν (y) by a satisfaction
the equivalent constraint upν(⊥)

(y):

upν(⊥)
(y) =def yν=⊥ ∧

∧

ε≤π<ν

yπ≤f(yπ1, . . . , yπn)

where yε =def y and Fν(y) is a set of fresh and distinct variables as before.
Since ϕ ∧ lowν(f) (x) ∧ pref⊥ν (y) is satisfiable over possibly infinite trees by
Proposition 12, we know that

ϕ′ =def ϕ ∧ lowν(f) (x) ∧ upν(⊥)
(y)

is also satisfiable over possibly infinite trees. Now comes the trick: The con-
straint ϕ′ cannot contain a label clash. (Otherwise it were unsatisfiable over
possibly infinite trees by Proposition 4.) Furthermore, ϕ′ cannot have a cy-
cle clash, given that ϕ doesn’t (by Proposition 7) and since the addition
of lowν(f) (x) ∧ upν(⊥)

(y) leaves this property invariant. Hence, Proposition
7 shows that ϕ′ has a finite solution; and the satisfaction equivalent formula
ϕ ∧ lowν(f) (x) ∧ pref⊥ν (y) has a finite solution, too.
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Fig. 5. An example for the shuffle property.

10 Restrictions of Constructed Automata

Constructed cap automata satisfy a set of restrictions that we must assume
for the back translation in Section 12.

Definition 3 We call a cap automaton P over A restricted if it is strictly
epsilon free, gap universal, strictly cap, and shuffled.

strictly epsilon free: P has a unique initial state and no ε-transition.
gap universal: If a final state q2 can be reached from a non-final state q1 over

some transition P ` q1
i
−→ q2 with i ∈ A then q2 is universal, i.e., for

all π ∈ A∗ there exists a final state q3 that can be reach over π from q2:
P ` q2

π
−→ q3.

strictly cap: If P ` q2
π
−→ q3 q1 with π 6= ε then q2 is a final state.

shuffled: If there are transitions P ` q
π
←− q0

π
−→ q′ q where P ` q0 is the

initial state and q 6= q′ then the language {π′ | ππ′ ∈ L(P)} is universal.

We conjecture that these restrictions don’t truly restrict the universality prob-
lem of cap automata but cannot prove this so far. Indeed, every cap automaton
whose underlying finite automaton is deterministic can be made restricted.
Again, this is not obvious. The proof exploits that “deterministic” cap au-
tomata are always shuffled. But unfortunately, the usual determination pro-
cedure fails for cap automata.

However, the shuffle property might be problematic, as illustrated by the ex-
ample in Table 5. On the top, it presents a cap automaton over the alphabet
{1, 2} which violates the shuffle property at word 1. This automaton rejects
all words in 1∗2(1∪2)∗. Below, a shuffled extension of this automaton is given;
the additional nodes are marked in grey. The extended automaton recognizes
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more words as it only rejects the words in 2(1∪2)∗ but is still not universal. A
corresponding entailment judgment is also given: our automata construction
applied to this judgment (for both left and right side) generates the shuffled
extension of the original automaton.

The example shows that we cannot simply make an automaton shuffled with-
out extending its language. There are also examples, where the shuffle ex-
tension of a non-universal automata becomes universal. So it remains open,
whether assuming the shuffle property restricts the universality problem of
cap automata or not.

Proposition 14 Constructed cap automata Pθ(ϕ |=
? x≤y) are restricted.

PROOF. Let Pl = Pl(ϕ |=
? x≤y) be a constructed cap automaton for the

left side. Pl is clearly strictly epsilon free, as it has a unique initial state (x, y)
and no ε-transitions. To see that it is gap universal, suppose that there is
a transition from a non-final to a final state in Pl. The second form of the
descend rule is the only rule which may license such a transition. It thus has

the form Pl ` (s, u)
i
−→ ( , v) for some u, v ∈ Vϕ, and s ∈ Vϕ ∪ { }. The only

rule which can turn ( , v) into a final state is the top rule, but this rule turns
( , v) directly into a universal state. (The final states rule does not apply
because of the underscore on the left.)

To prove that Pl is shuffled, we assume a path π and two different states q
and q′ with Pl ` q

π
←− q0

π
−→ q′ q. We unify the states q0, q, q

′ with the
rules of Table 3 and get Pl ` (v, u)

π
←− (x, y)

π
−→ (u, s) (v, u) for some

u, v ∈ Vϕ ∪ {x, y} and s ∈ Vϕ ∪ {x, y, }. By construction of the automaton
(Table 3), Pl ` (x, y)

π
−→ (u, u) must also hold. By reflexivity and all, the

language {π′ | ππ′ ∈ L(Pl)} is universal.

We finally prove the strict cap property. All P-edges of Pl are of the form
P ` (u, s) q for some state q. The last transition in all transition sequences
reaching (u, s) must be licensed by the descend rule, and thus is of the form

P ` (v, s0)
i
−→ (u, s). Now, the final states rule applies to (v, s0). Repeating

this argument inductively shows that all states leading to (v, s0) are final too.

11 Restricted Cap Set Expressions

We now formulate corresponding restrictions for cap set expressions. Thereby,
we obtain the restrictions needed for Theorem 1 to hold.

Definition 4 We call a cap set expression over alphabet A restricted if it is
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a shuffled expression with the following abstract syntax where R1, R2, R range
over regular expressions over A:

F ::= pr(R1R
◦
2) | RA∗ | F1 ∪ F2

A cap set expression of sort F is called shuffled if all its components of the
form pr(R1R

◦
2) with L(R2) 6= {ε} satisfy:

shuffle: for all words π ∈ L(R1) ∩ L(R1R2) it holds that πA∗ ⊆ L(R1 ).

Proposition 15 Universality of restricted cap set expressions and restricted
cap automata are equivalent modulo deterministic polynomial time transfor-
mations.

PROOF. It is easy to see that those cap automata are gap-universal, strictly
cap, and shuffled that the proof of Proposition 2 constructs for restricted cap
expressions. They can be made strictly ε-free in addition, as we will see in
Lemma 20.

Conversely, given a restricted cap automaton P, we can express the regular
part of P by a restricted cap set expression pr(R1ε

◦)∪R2A
∗, because of P is gap

universal. The cap automaton P is also strictly cap, so we can translate every
P-edge of P in a restricted cap set expression pr(R1R

◦
2). All build restricted

cap set expressions are shuffled since P is shuffled.

In order to complete the preceeding proof, we must show how to make cap
automata strictly ε-free. We call a state q of a cap automaton P normalized
if q has no in-going transitions and no out-going P-edges.

Lemma 19 If a cap automaton P has a unique initial state then this state can
be normalized, while preserving the language of the automaton, gap-universality,
strict cap, and the shuffle property.

PROOF. Let P be a cap automaton with one initial state q0. We construct
a new automaton P ′ by adding a state q′0 to P which inherits all out-going
∆-transitions and in-going P-edges from q0. We let q′0 be the unique initial
state of P ′. This state is normalized.

Lemma 20 (Epsilon elimination) Every cap automaton can be made strict-
ly ε-free in polynomial time, while preserving the language and the properties:
gap-universal, strictly cap, and shuffle.
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left l(q)≤f(l(q1), . . . , l(qn)) in ϕP if P ` q
i
−→ qi for all 1 ≤ i ≤ n.

right f(r(q1), . . . , r(qn))≤r(q) in ϕP if P ` q
i
−→ qi for all 1 ≤ i ≤ n

top r(q′)=> in ϕP if P ` q
i
−→ q′, q not final

P-edges l(q)≤i[ r(q2) ] in ϕP if P ` q
i
−→ q1 q2, q1 6=q2

Table 7
Back translation: the constraint ϕP of a restricted cap automaton P.

PROOF. First, we eliminate ε-edges in the underlying finite automaton. This
yields a cap automaton which may have more than one initial state. We assume
w.l.o.g that this automaton consists of n independent parts where each part
has exactly one initial state. Second, we normalize all n initial states according
to Lemma 19.

We prove that the ε-elimination does not affect the language. Let P ε be the
cap automaton that results after ε-elimination in a cap automaton Pε. By
induction it holds that Pε ` q1

π
−→ q2 if and only if P ε ` q1

π
−→ q2 where

π 6= ε. Further it holds Pε ` q0
ε
−→ q′0 if and only if P ε ` q′0. This implies

Pε ` q0
π
−→ q1

µ
−→ q2 q1 if and only if P ε ` q′0

π
−→ q1

µ
−→ q2 q1.

So L(Pε) and L(P ε) are equal.

Second, we copy the whole cap automaton n-times where n is the number
of the initial states. The result is a big cap automaton which consists of n
independent parts, each has a single initial state.

Third, we unify all n initial states into a single initial state. The unified initial
state inherits all P- and ∆-edges of the unified initial states. It is final if
and only if one of the previous initial states was. Since all initial states are
normalized this step does neither change the language of P, nor gap-universal,
the strict cap nor the shuffle property.

12 Back Translation for Restricted Cap Automata

We now encode universality of restricted cap automata over alphabet {1, . . . , n}
back to NSSE over the signature {⊥, f,>} where arf = n. Again, our con-
struction applies to finite, regular, and possibly infinite trees.

Definition 5 Given a restricted cap automaton we assume two fresh variables
l(q) and r(q) for each state P ` q. The judgment J (P) of a restricted cap
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x y y1 p q1

l

x≤f(y) |=? x≤y l(p)≤f(l(q)) ∧ f(r(q))≤r(p) ∧ l(p)≤f(r(p)) |=? l(p)≤r(p)

Fig. 6. A judgment, its pair of cap automata, and the back translation of the left
cap automaton.

automaton P with initial state P ` q0 is ϕP |=
? l(q0)≤r(q0) where ϕP is the

least constraint with the properties in Table 7.

The judgment J (P) is defined such that P recognizes exactly the set of l-safe
words for J (P) whereas the set of r-safe words for J (P) is A∗.

Proposition 16 (Correctness) Every complete and restricted cap automa-
ton P with initial state P ` q0 over alphabet A satisfies:

L(P) = L(Pl(J (P)) and A∗ = L(Pr (J (P)).

For proof we need an auxiliary lemma.

Lemma 21 If J (P) ` u≤v then u = v.

PROOF. By structural induction on derivations J (P) ` u≤v . The derivation
rules are given in Table 1. The consideration for the rules reflexive and trans.
are obvious. So, we can restrict ourself to the decomp. rule. So assume that
the decomposition rule derives J (P) ` u≤v . Hence, f(. . .)≤u and v≤f(. . .)
in J (P) while J (P) ` u≤v . The induction hypothesis yields u = v. The
construction of J (P) in Table 7 implies that u = r(q) and v = l(q) for some
states p, q. Hence r(q) = l(q) which is impossible so that the decomp. rule
cannot be applicable.

Proof of Proposition 16

(1) The language L(Pr(J (P))) is universal: Since P is complete such that
the right rule implies for all words π ∈ A∗ that there exists a state P `
q satisfying ϕP |= π(r(q))≤r(q0). Thus, Pr(J (P)) ` (l(q0 ), r(q0 ))

π
−→

( , l(q)) by the second case of the descend rule, i.e. π is accepted by

Pr(J (P)).
(2) We omit the proof for L(P) ⊆ L(Pl(J (P))) which only requires the

completeness of P and the strictly cap property.
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(3) The remaining inclusion L(Pl(J (P))) ⊆ L(P) is most interesting. Note
that according to Lemma 21 we have not to consider any support J (P) `
u≤v in the construction of the appendant cap automata Pl(J (P)). We
start with an auxiliary claim: If P provides transitions

Pl(J (P) ` (l(q0 ), s0 )
π
−→ (l(qn), sn)

i
−→ (l(q), s)

then there exist transitions P ` q0
π
−→ qn. This claim can be proved as

follows: All transitions must be licensed by a constraint in ϕP which is of
the form l(qi)≤f(. . . , l(qi+1), . . .) where 1 ≤ i ≤ n. Such constraints can
only be created by the left rule. There thus exist transitions P ` q0

π
−→ qn

such P ` qi for all 0 ≤ i < n. We can infer P ` qn as required.

We now come back to the main proof. Suppose π ∈ L(Pl(J (P))). There
are three kinds of transitions by which π can be recognized.
(a) We first consider transitions using the reflexivity rule to recognize

π. These contain a transition sequence of the following form for some
prefix π′ ≤ π:

Pl(J (P)) ` (l(q0 ), r(q0 ))
π′

−→ (r(qn), r(qn))

Either π′ = π or this sequence can be continued to recognize π in the
state all . The first continuation step is by the reflexivity rule itself
and all subsequent steps are due to the all rule.

Note that n ≥ 1. We first consider the descendants on the left
hand side, which starts from state l(r0) and continues over l(ln−1) to
r(qm). The last step must be induced by a constraint in ϕP that is
contributed by the P-edges rule. This and the preceding claim yield
the existence of the following transitions for some state q 6= qn:

P ` q0
π′

−→ q qn

We next consider the descendants on the right hand side. They must
be induced by constraints in ϕP that are inherited form the following
transition sequence:

P ` q0
π′

−→ qn

Now we can apply that P is shuffled which shows that the language
{π′′ | π′π′′ ∈ L(P)} is universal (since q 6= qn)). Thus, π ∈ L(P) as
required.

(b) Second, we consider transitions using the top rule. These contain
a part of the following form for some prefix π′ ≤ π and such that
r(qn)=> in ϕP .

Pl(J (P)) ` (l(q0 ), r(q0 ))
π′

−→ (sn , r(qn))
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Again, either π′ = π or this sequence can be continued to recognize
π in the state all . The first continuation step is by the top rule itself
and all subsequent steps are due to the all rule.

The above transitions of Pl(J (P)) are induced by the following
transition sequence in P where qn−1 is not final:

P ` q0
π′

−→ qn

The gap universal property which holds for P by assumption yields

that {π′′ | P ` qn
π′′

−→ qn} is universal. Thus, π ∈ L(P).

(c) Third, we consider the last case where the class of π is A in Pl(J (P)).
The recognizing transition has to apply the rule for final states:

Pl(J (P)) ` (l(q0 ), r(q0 ))
π
−→ (l(qn), sn))

i
−→ (θ(q), p(π))

All transitions except the last one must be contributed by the left
rule. The P-edges can only apply at the end. In this case however,
we can freely exchange the last transition by another using the left
rule as well. Given this, we can apply our initial claim which yields:

P ` q0
π
−→ qn

Thus, we have shown that π ∈ L(P) for this case too.
(d) Finally, we have to consider transitions that recognize π through P-

edges of Pl(J (P)). Here we have transitions where π is a prefix of
π1π

k
2 for some k ≥ 0: Pl(J (P)) `

(l(q0), r(q0))
π1−→ (l(qi), r(qi))

π2−→ (r(qn), sn) (l(qi), r(qi))

The P-edges rule in the construction of Pl requires qn = qi. The
automaton P thus has the following transitions for some state q:

P ` q0
π1−→ qi

π2−→ q qi

This transition and the strictly cap property allows P to recognize
all prefixes of π1π

k
2 for all k ≥ 0, i.e. π ∈ L(P).

For illustration, we reconstruct an entailment judgment for Pl(x≤f(y) |=?

x≤y) given in Table 6. Before we start we rename the states of Pl(x≤f(y) |=?

x≤y) to p and q. We translate the edge p
1
−→ q to the constraint l(p)≤f(l(q)) ∧

f(r(q))≤r(p) (rule left and right of Table 7). The rule P-edges maps the
P-edge q p to the constraint l(p)≤f(r(p)). If we now construct the left
automaton of the computed constraint, we get the original automaton back.
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Lemma 22 Let P be a restricted cap automaton with initial state P ` q.
The constructed constraint ϕP is satisfiable over finite and infinite trees.

Theorem 4 (Back translation) Universality of restricted cap automata over
the alphabet {1, . . . , arf} can be reduced in polynomial time to NSSE with sig-
nature {⊥, f,>} (respectively over finite, regular, or possibly infinite trees).

PROOF. Let P be complete and restricted cap automaton. Universality
of L(P) is equivalent to universality of both languages: L(Pl(J (P))) and
L(Pr(J (P))) (Proposition 16). Since ϕP is clash-free (Lemma 22), the lat-
ter is equivalent to that NSSE holds for the judgment J (P) (Theorem 2).

13 Equivalence of Variants of NSSE

We prove Corollary 1 which states that all variants of NSSE over the signature
{⊥, f,>} are equivalent if the arity of f is at least 2. Given the characterization
of NSSE in Theorem 1 it remains to prove a corresponding result for restricted
cap automata:

Proposition 17 The universality problems of restricted cap automata over
the alphabet {1, . . . , n} are equivalent for all n ≥ 2 modulo polynomial time
transformations.

PROOF. We first show how to extend to alphabet. Consider a restricted
cap automaton P and an alphabet A = {1, . . . , n−1}. We construct another
restricted cap automaton P ′ with an alphabet A′ = {1, . . . , n} in linear time.
The cap automaton P ′ is identical to P up to the additions

P ′ ` q0
n
−→ q2

1,...,n
−−−→ q2 P ′ ` q0

1,...,n
−−−→ q1

1,...,n
−−−→ q1

n
−→ q2

1,...,n
−−−→ q2

where q0 is the initial state of P and P ′ and q1, q2 are two fresh states. This
construction composes:

L(P ′) = { πσ | π ∈ L(P), and σ ∈ n(1, . . . , n)∗ }.

We now consider alphabet restriction. Let P be a restricted cap automaton
with alphabet A = {1, . . . , n2} where n2 ≥ 3. We can assume w.l.o.g that A is
of that form. Otherwise we can increase A by the previous construction until
this form is reached.
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We next construct a restricted cap automatonP ′ with alphabet A′ = {1, . . . , n}
in polynomial time such that L(P) is universal if and only if L(P ′) is univer-
sal. We encode a letter of A in two letters of A′ to the base n via the standard
encoding d : A→ A′ × A′:

d(i) = ( d1(i) , d2(i) ) =
( ⌊

i

n

⌋

, imod n
)

.

The cap automaton P ′ has two states q and q′ for every state q of P. The
states q and q′ are final in P ′ if q is final in P, i.e.

P ′ ` q1 and P ′ ` q′1 if P ` q1.

The cap automaton P and P ′ share the same initial state and the same P-
edges. We define the transitions of P ′ by

P ′ ` q1
d1(i)
−−−→ q′1

d2(i)
−−−→ q2 if P ` q1

i
−→ q2.

We can show by induction that the word i1 . . . im is in L(P) if and only if the
words d1(1) d2(1) . . . d1(m−1) d2(m−1) d1(m) and d1(1) d2(1) . . . d1(m) d2(m)
are in L(P ′).

Conclusion and Future Work

We have characterized NSSE equivalently by using regular expressions and
word equations. This explains why NSSE is so difficult to solve and links NSSE
to the area of string unification where powerful proof methods are available.
Given that NSSE is equivalent to universality of restricted cap set expressions,
one cannot expect to solve NSSE without treating word equations.

We have also shown that all variants of NSSE with a single function symbol of
arity at least two are equivalent modulo polynomial time transformations. One
might also want to extend the presented characterization to richer signatures.
For instance, it should be possible to treat NSSE with a contra-variant function
symbol. But how to deal with more than one non-constant function symbol is
much less obvious.

Another open question is whether there exists a direct relation between cap
automata and tuple tree automata with equality tests, which are used in the
alternative approach to subtype entailment in [21].
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