
A Theory of Overloading Part II: Semantis and CohereneAndreas Rossberg Martin SulzmannProgramming Systems Lab Department of Computer SieneUniversit�at des Saarlandes The University of MelbourneGermany Australiarossberg�ps.uni-sb.de sulzmann�s.mu.oz.auMarh 21, 2002AbstratThis paper is a omplement to \A Theory of Overloading" by Stukey and Sulzmann.The authors introdue a general overloading framework based on Constraint Handling Rules(CHRs). The main fouss is on type inferene issues. Here, we provide a rigorous studyof semanti meanings for programs ontaining overloaded identi�ers. Soure expressions aretranslated by inserting appropriate evidene parameters whih represent atual values of over-loaded identi�ers. We provide a general oherene results under some suÆient onditions onCHRs. We observe that the target language is typable in the Hindley/Milner system extendedwith polymorphi reursion. The oherene property is lost in ase of a strit language. Sur-prisingly, in ase we impose ondition similar to the value-restrition found in ML, we anreover oherene for strit languages.1 IntrodutionIn \A Theory of Overloading", Stukey and Sulzmann introdue a general theory for overloading.The main fouss is on type inferene. In this paper, we provide a thorough study of the semantimeaning of programs ontaining overloaded identi�ers.We follow the ommon approah [3℄ to give a semanti meaning for overloaded identi�ers bypassing around evidene values as additional funtion parameters. Evidene values represent theatual de�nitions of overloaded funtions. Consider the following program.overload eq :: Int! Int! Booleq = primEqIntoverload eq :: 8a:Eq (a! a! Bool)) [a℄! [a℄! Booleq = let eqL :: 8a:Eq (a! a! Bool))[a℄! [a℄! BooleqL [℄ [℄ = TrueeqL (x:xs) [℄ = FalseeqL [℄ (y:ys) = FalseeqL (x:xs) (y:ys) = (eq x y) && (eqList xs ys)in eqLexp xs ys = (eq (tail xs) ys, eq 1 3)where tail :: [a℄! [a℄ takes the tail of a list. In a �rst step we translate overloaded de�nitions. We�nd 1



eEqInt = primEqInteEqList eq = let eqL [℄ [℄ = TrueeqL (x:xs) [℄ = FalseeqL [℄ (y:ys) = FalseeqL (x:xs) (y:ys) = (eq x y) && (eqL xs ys)in eqConstraints in the type omponent of soure expressions are turned into funtion parameters,we also say evidene parameters, in the target language. In the above example, the funtionparameter eq represents evidene for the equality funtion on type a! a! Bool. Note that thisis represented by the onstraint Eq (a ! a ! Bool) in the type sheme of the soure expression.What remains is to insert the appropriate evidene values for expression exp.Expression exp gives rise to the following onstraintsEq ([a℄! b! ); Eq (Int! Int! d)where we assume xs :: [a℄, ys :: b, 1 :: Int and 3 :: Int. In our framework, onstraint solving isde�ned in terms of Constraint Handling Rules (CHRs). CHRs are a delarative onstraint languageto write inremental onstraint solvers. Eah of the two overloaded de�nitions gives rise for a CHRsimpli�ation rule:(Eq1) Eq (Int! Int! Bool) () True(Eq2) Eq ([a℄! [a℄! Bool) () Eq (a! a! Bool)Rule (Eq1) states that a de�nition exists on type Int ! Int ! Bool and rule (Eq2) states ade�nition on type [a℄ ! [a℄ ! Bool requires a de�nition on type a ! a ! Bool (Note that rule(Eq2) an be straightforwardly derived from the type annotation 8a:Eq (a! a! Bool)) [a℄![a℄ ! Bool). Logially, () states an if-and-only-if relation. Operationally, a simpli�ation rulean be read as follows. Whenever we �nd a term whih mathes the left-hand side, then this terman be simpli�ed (replaed) by the right-hand side. We assume that substitutions represented byequations have been applied to user-de�ned onstraints suh as Eq.In addition to simpli�ation rules, we also �nd propagation rules whih allow us to imposestronger onditions. Consider the two propagation rules:(Eq3) Eq (Int! Int! a) =) a = Bool(Eq4) Eq ([a℄! b! ) =) b = [a℄;  = BoolRule (Eq3) states that any de�nition of equality whih takes two arguments of type Int musthave result type Bool. A similar statement is expressed by rule (Eq4). Logially, the =) symbolstands for boolean impliation. Operationally, we propagate the right-hand side if there is a termmathing the left-hand side. We ommonly use P to refer to the set of CHRs. We identify byPSimp the subset of all simpli�ation rules in P . Similarly, we write PProp for the subset of allpropagation rules in P . We write C ��P C 0 if onstraint C an be redued to C 0 by appliation ofthe set P of CHRs.Consider the onstraints generated from the program text of expression exp. We �nd thefollowing CHR derivation: Eq ([a℄! b! ); Eq (Int! Int! d)�Eq3 Eq ([a℄! b! ); Eq (Int! Int! d); d = Bool�Eq1 Eq ([a℄! b! ); d = Bool�Eq4 Eq ([a℄! b! ); b = [a℄;  = Bool; d = Bool�Eq2 Eq (a! a! Bool); b = [a℄;  = Bool; d = BoolResolution of remaining equalities via uni�ation yields2



exp :: 8a:Eq (a! a! Bool)) [a℄! [a℄! (Bool; Bool)exp xs ys = (eq (tail xs) ys, eq 1 3)Expression exp's type states that we an implement exp given we an provide evidene for Eq (a!a! Bool). We ommonly use eC to refer to evidene provided for a onstraint C.The novelty of our approah is that the onstrution of evidene an be straightforwardlyderived from the CHR derivation. Reading the CHR derivation bakwards tells us exatly howthis an be ahieved. Constraint Eq (Int ! Int ! Bool) was redued to True via rule (Eq1),therefore, we insert eEqInt at the instantiation site. Constraint Eq ([a℄! [a℄! Bool) was reduedto Eq (a ! a ! Bool). That is, applying eEqList to evidene eEq (a!a!Bool) yields evideneeEq ([a℄![a℄!Bool). The �nal translated expression is as follows:exp2 :: 8a:(a! a! Bool)! [a℄! [a℄! (Bool; Bool)exp2 e xs ys = (eq (eEqList e) (tail xs) ys, eq eEqInt 1 3)where eq x = x. We assume eah overloaded identi�er simply passes on the appropriate alulatedde�nition. Note that Eq (a! a! Bool) has been turned into a mathing funtion type.In the remainder of this paper we will give a thorough desription of how to translate soureinto target expressions inluding a general oherene result. As we saw in the example above, thetranslation depends on a programs typing. Coherene states that the translation is independent ofa programs typing. The main result of this paper is that the translation is oherent if the CHRsinvolved are terminating, onuent, range-restrited and simpli�ation rules are single-headed andnon-overlapping. We will all suh a set of CHRs a good set of CHRs. For terminology, de�nitionsand related results we refer the reader to \A Theory of Overloading".2 Evidene-Passing TranslationThe evidene-passing translation is driven by a programs typing. Soure expressions are translatedinto target expressions by turning onstraints in type shemes of soure expressions into funtionparamters in target expressions. At instantiation sites we need to provide the appropriate evidenearguments.Reall the rule for quanti�er elimination of soure expressions:P;C1;� ` e : 8��:C2 ) � [[P ℄℄ j= C1 ! [��=��℄C2P;C1;� ` e : [��=��℄�We an eliminate a quanti�er if the onstraint omponent an be satis�ed by the global ontextw.r.t. the urrent program theory, i.e. [[P ℄℄ j= C1 ! [��=��℄C2. In the target language, we need toonstrut evidene e[��=��℄C2 out of eC1 . This is done by a evidene onstruting funtion writtene : C1 P! [��=��℄C2. As we will see, suh a funtion must exist beause of premise [[P ℄℄ j= C1 ![��=��℄C2.The target rule orresponding to quanti�er elimination of soure expressions is as follows:P;C1;� ` e : 8��:C2 ) � ; E[[P ℄℄ j= C1 ! [��=��℄C2e :: C1 P! [��=��℄C2P;C1;� ` e : [��=��℄� ; E (e eC1)Expression E is the translation of e. Note that the translation dependes on e's type.3



(Var) (x : �) 2 �P;C;� ` x : � (Let) P;C;�x ` e : �P;C;�x:x : � ` e0 : � 0P;C;�x ` let x = e in e0 : � 0(Abs) P;C;�x:x : � ` e : � 0P;C;�x ` �x:e : � ! � 0 (App) P;C;� ` e1 : �1 ! �2P;C;� ` e2 : �1P;C;� ` e1 e2 : �2(8I) P;C1 ^ C2;� ` e : ��� 62 fv(C1) [ fv(�)P;C1;� ` e : 8��:C2 ) � (8E) P;C1;� ` e : 8��:C2 ) �[[P ℄℄ j= C1 ! [��=��℄C2P;C1;� ` e : [��=��℄�
(Annot) fv(�) = ;P;C;� ` (e :: �) : � (Over) (f : 8a:F a) a) 2 �fv(8��:Cf ) �f ) = ;P;C;� ` e : 8��:Cf ) �f� mgu of hCf F ��f () �Cf 2 PP;C;� ` p : �P; C;� ` overload f :: (8��:Cf ) �f ) = e in p : �Figure 1: Typing Rules2.1 Soure LanguagePrograms p ::= overload f = e in p j eExpressions e ::= x j �x:e j e e j let x = e in e j (e :: �)Types � ::= � j � ! � j T ��Constraints C ::= � = � j U �� j C ^ CType Shemes � ::= � j 8��:C ) �where � ! � is the funtion type onstrutor, T is a user-de�ned n-ary type onstrutor, � = �denotes (syntati) equality among types, U is a user-de�ned n-ary prediate symbol. and ^denotes onjuntion among onstraints. Note that we use ';' for onjuntion among onstraints inCHR rules and example CHR derivations.For syntati onveniene, we write example programs usingoverload f :: � instead of overload f = (e :: �) in : : :f = e: : :We will also make use of pattern mathing syntax. The straightforward desription of this extensionis omitted.The typing rules an be found in Figure 1. For explanations and inferene results we refer tothe related paper. 4



V = W? + V ! V + Pk2K (k V1 : : :Varity(k))?where W is the error element and K is the set of value onstrutors.[[x℄℄� = �(x)[[�u:e℄℄� = �v:[[e℄℄�[u := v℄[[e e0℄℄� = if [[e℄℄� 2 V ! V ^ [[e0℄℄� 6=Wthen ([[e℄℄�) ([[e0℄℄�)elseW[[letx = e in e0℄℄� = if [[e℄℄� 6=Wthen [[e0℄℄�[x := [[e℄℄�℄elseW[[�1 ! �2℄℄ = � f 2 V ! V j v 2 [[�1℄℄) f v 2 [[�2℄℄ 	[[T �1 : : : �m℄℄ = f?g [ S fk [[�01℄℄ : : : [[�0n℄℄ jTrue;�init ` k : �01 ! : : :! �0n ! T �1 : : : �mg[[8��:� ℄℄ = T��[[[��=��℄� ℄℄where for monotypes � we require that fv(�) = ; and �init ontains the set of value onstrutorsused in this ontext. Figure 2: Target Semantis2.2 Target LanguageWe work with the following target language.Target Expressions E ::= x j �x:E j let x = E in EIn partiular, we assume we are given a denumerable set of evidene variables eC indexed by aonstraint C. Evidene variables will arry the appropriate de�nitions of overloaded identi�ers.We interpret expressions in an untyped denotational semantis [2℄. We refer to Figure 2 forde�nitions of domain equations and meaning funtions on expressions and types.2.3 EvideneWe give meaning to evidene variables via a variable environment � mapping variables to elementsin V . We will always assume that �(eTrue) = () and �(e�1=�2) = () where �1 and �2 are syntatiallyequivalent and () represents a distint value in V .Variable environments � must satisfy program theories P . We de�ne � satis�es P i� for eahuser-de�ned atom U � where U � ��P True we have that �(eU � ) 2 [[8fv(�):� ℄℄. That means,evidene values of user-de�ned onstraints must satisfy the given type spei�ation. For example,Eq (Int! Int! Bool)��P True, therefore, �(eEq (Int!Int!Bool)) 2 [[Int! Int! Bool℄℄ whereP onsists of rules (Eq1-4) from the Introdution.Let C = U1 �1; : : : ; Un �n be a onstraint suh that C ��P True. Then, we require that�(eC) = (�(eU1 �1); : : : ; �(eUn �n)) as a further ondition for variable environments. Note that weassume an ordering on U1 �1; : : : ; Un �n. 5



(Var) (x : �) 2 �P;C;� ` x : � ; x (Let) P;C;�x ` e : � ; EP;C;�x:x : � ` e0 : � 0 ; E0P;C;�x ` let x = e in e0 : � 0 ; let x = E in E0(Abs) P;C;�x:x : � ` e : � 0 ; EP;C;�x ` �x:e : � ! � 0 ; �x:E (App) P;C;� ` e1 : �1 ! �2 ; E1P;C;� ` e2 : �1 ; E2P;C;� ` e1 e2 : �2 ; E1 E2(8I) P;C1 ^ C2;� ` e : � ; E�� 62 fv(C1;�)P;C1;� ` e : 8��:C2 ) � ; �eC2 :E (8E) P;C1;� ` e : 8��:C2 ) � ; E[[P ℄℄ j= C1 ! [��=��℄C2e :: C1 P! [��=��℄C2P;C1;� ` e : [��=��℄� ; E (e eC1)Figure 3: Evidene-passing translationLet C1 and C2 be two onstraints, � a variable environment and P be a good set of CHRs suhthat � satis�es P and [[P ℄℄ j= C1 ! C2. We say e is an evidene onstrutor i� for eah substitution� suh that �(C1) ��P True we have that e(�(e�(C1))) = �(e�(C2)). In suh a situation wewrite e :: C1 P! C2. Note that the onditions imply that �(C1) (and �(C2)) doesn't ontainany equality onstraints. The Canonial Normal Form Lemma implies that �(C2) ��P True (if�(C1)��P True).We maintain that if there exists � whih satis�es P , then the de�nition of evidene onstrut-ing funtions is straightforward. However, one of the hallenges will be to onstrut a variableenvironment � whih satis�es P .2.4 TranslationFigure 3 desribes the evidene-passing translation from soure to target expressions via judgmentsof the form P;C;� ` e : � ; E. The translation is driven by a programs typing derivation. Notethat we omitted the straightforward rule (Annot).The most interesting rules are (8I) where we abstrat over evidene variables and (8E) wherewe provide the proper evidene values. In ase e :: C1 P! [��=��℄C2 where [��=��℄C2 ��P True, wesimply provide e[��=��℄C2 diretly instead of e eC1 (see the �nal translated expression of exp fromthe Introdution).The problem of translating overloaded de�nitions and building evidene onstrutors will beredued to translating expressions. Both translations shemes are mutually reursive. For on-veniene, we will present both onstrutions in two seperate statements (see Lemmas 1 and 2).Importantly, the translation shemes preserve typing as stated in Lemma 3.We all P;C;� ` e : � a normalized derivation if no equality onstraints appear in the onstraintomponent of subderivations and type shemes and eah entailment hek [[P ℄℄ j= C1 ! C2 holdsi� C1; C2��P C1.Lemma 1 (Translation of Programs) Let p be a program, Pi be the set of simpli�ation rulesarising from p and Pp be a set of propagation rules suh that P = Pi[Pp is good and P;C;� ` p : �6



is normalized for some C, � and �. Then, there exists a variable environment � whih satis�es P .Proof: Consider eah overloaded de�nition overload f :: (8��:Cf ) �f ) = e in plus theirassoiated simpli�ation rule F � () U1 �1; : : : ; Un �nNote that Cf = U1 �1; : : : ; Un �n.We translate e yielding target expression E, i.e. P;C;� ` e : 8��:Cf ) �f ; E. Wegenerate fF �;U1 �1;:::;Un �n = ETarget expression E might ontain evidene onstrutors. For eah e :: C1 P! C2 wegenerate an equation as desribed in Lemma 2 (therefore the proess of translatingprograms and onstruting evidene is mutually reursive).Finally, for eah overloaded identi�er f we generate f = �x:x.We reord in � the least �x point of the above set of equations.In the following, we will use [[8:� ℄℄ as a short-hand for [[8fv(�):� ℄℄.Consider F � suh that F � ��P True (implies F � ��PSimp True). We provide anindutive onstrution of �(eF � ).For all F � �PSimp True, we de�ne �(eF � ) = �(fF � 0;True) where there exists � suhthat � � �� 0 and fF � 0;True is as above. Note that �(eF � ) 2 [[8:� ℄℄ by onstrution(follows from Lemmas 2 and 3). Note that the CHRs are non-overlapping, therefore,there is only one suh fF � 0;True.For all F � �PSimp U1 �1; : : : ; Un �n, we have that Ui �i ��PSimp True. Therefore,�(eUi �i) is de�ned. We de�ne�(eF � ) = �(fF �;U1 �1;:::;Un �n) (�(eU1 �1); : : : ; �(eUn �n))Note that �(fF �;U1 �1;:::;Un �n) 2 [[8:(�1; : : : ; �n) ! � ℄℄ and �(eUi �i) 2 [[8:�i℄℄ (followsfrom Lemmas 2 and 3), therefore, �(eF � ) 2 [[8:� ℄℄.Note that all simpli�ation rules are non-overlapping, hene, for eah F � ��PSimp Truethe derivation is unique. Therefore, the above onstrution is deterministi.A note on the ordering among user-de�ned onstraints Ui �i:We denote by � the ordering relation among onstraints. Consider (R) F (a! (b!b))() U a;U (b! b) in some set P of CHRs where U a � U (b! b). Assume F (�1 !�2)��P True for some types �1 and �2 suh that U �2 � U �1. Clearly, � is not stableunder substitution. We �nd that F (�1 ! �2)�R U �2; U �1 ��P True. However, notethat fF (a!(b!b));U a;U (b!b) = �(eU a; eU (b!b)): : : :. Therefore, we assume that eahsimpli�ation rule step keeps the onstraints in the same order as in the orrespondingfuntion de�nition. We have that F (�1 ! �2)�R U �1; U �2��P True. 2Let C = U1 �1 ^ : : : Un �n be a onstraint. We de�ne typeof(C) = (�1; : : : ; �n). Reall that weassume an ordering on onstraints. 7



Lemma 2 (Constrution of Evidene) Let p be a program, Pi be the set of simpli�ation rulesarising from p and Pp be a set of propagation rules suh that P = Pi[Pp is good and P;C;� ` p : �is normalized for some C, � and �. Let C1 and C2 be two sets of user-de�ned onstraints suhthat C1; C2 ��P C1. Then, there exists a losed de�nition for e :: C1 P! C2. In partiular, thede�nition of e has type 8��:typeof(C1)! typeof(C2) where �� = fv(typeof(C1)! typeof(C2)).Proof: For simpliity, we only onsider the ase if C2 = U � and C1 = U1 �1; : : : ; Um �m.Note that C1; C2 ��P C1 implies C1; C2 ��PSimp C1.The proof proeeds by indution on the derivation C1; C2 ��P C1. We distinguishamong the following ases:(1) U = Uj for some j = 1 : : :m: We immediately �nd that e(e1; : : : ; ej ; : : : ; em) = ej .(2) We have that (R) U � 0 () C3 2 P and there exists � suh that �� 0 � � .We �nd that C1; C2 �R C1; �C3. For eah Ui �i 2 �C3 we have that C1; Ui �i �� C1.By indution, there exist losed de�nitions ei :: C1 P! Ui �i. We de�ne e(e1; : : : ; em) =(eU � 0;C3 (e1(e1; : : : ; em)); : : : ; (ek(e1; : : : ; em))) where eU �;C3 is as in Lemma 1 andare done. Note that we yet again have to be aware of the \ordering" among onstraints(see Lemma 1).The statement about typability of e follows from Lemma 3. 2Note that the above statement exludes evidene onstrutors suh ase1 :: Eq ([a℄! [a℄! Bool) P! Eq (a! a! Bool)We an't give a losed de�nition for e1, however, e1 must exist. For any � suh that Eq ([� ℄ ![� ℄! Bool)��P True we an onstrut evidene for eEq (�!�arrowBool).We state that the translation of normalized expression preseves typing.Lemma 3 (Typability) Let P;C 0;�0 ` e : 8��:C ) � ; E be a normalized derivation. Let� derived from �0 by replaing eah f : 8�:F � ) � 2 �0 by f : 8�:� ! �. Then � ` E :typeof(C)! � is derivable in the Hindley/Milner system with polymorphi reursion.Consideroverload eq :: Int! Int! Booleq = primEqIntoverload eq :: 8a:Eq (a! a! Bool)) [a℄! [a℄! Booleq = let eqList :: 8a:Eq (a! a! Bool))[a℄! [a℄! BooleqList [℄ [℄ = TrueeqList (x:xs) [℄ = FalseeqList [℄ (y:ys) = FalseeqList (x:xs) (y:ys) = (eq x y) && (eqList xs ys)&& (ord [1℄ [2℄)in eqList overload ord :: Int! Int! Boolord = primOrdIntoverload ord :: 8a:Ord (a! a! Bool)) [a℄! [a℄! Boolord = let ordList :: 8a:Ord (a! a! Bool))[a℄! [a℄! BoolordList [℄ [℄ = TrueordList (x:xs) [℄ = FalseordList [℄ (y:ys) = False 8



ordList (x:xs) (y:ys) = (ord x y) && (ordList xs ys)&& (eq [1℄ [2℄)in ordListOur translation yieldseqI :: Int! Int! BooleqI = primEqInteqL :: 8a:(a! a! Bool)! [a℄! [a℄! BooleqL eq = let eqList :: 8a:[a℄! [a℄! BooleqList [℄ [℄ = TrueeqList (x:xs) [℄ = FalseeqList [℄ (y:ys) = FalseeqList (x:xs) (y:ys) = (eq x y) && (eqL eq xs ys)&& (ordL ordI [1℄ [2℄)in eqList ordI :: Int! Int! BoolordI = primOrdIntordL :: 8a:(a! a! Bool)! [a℄! [a℄! BoolordL ord = let ordList :: 8a:[a℄! [a℄! BoolordList [℄ [℄ = TrueordList (x:xs) [℄ = FalseordList [℄ (y:ys) = FalseordList (x:xs) (y:ys) = (ord x y) && (ordL ord xs ys)&& (eqL eqI [1℄ [2℄)in ordListNote that we have already simpli�ed slightly the translated expressions. Instead of f (e e) wesimply write e e.For example, we �nd ordL ordI beause of Ord ([Int℄ ! [Int℄ ! Bool); Eq (a !! Bool)��PEq (a!! Bool).We observe that the translated expressed is typable in the Hindley/Milner system extendedwith polymorphi reursion.2.5 UnambiguityUnambiguity of a type sheme 8��:C ) � implies that any ground instane of the type omponent� uniquely determines the free variables in the onstraint omponent C.Lemma 4 (Uniqueness) Let P be a good set of CHRs, 8��:C ) � an unambiguous type sheme,� a mapping from type variables fv(C; �) to ground types and �0 a mapping from type variablesfv(�) to ground types suh that �0 � � and �C ��P True. Then C; �0 ��P �00 suh that �0t�00 = �.Proof: Note that we interpret substitutions as equality onstraints. Then, the � rela-tion among substitutions an be expressed as onstraint entailment, and t orrespondsto onjuntion.By assumption 8��:C ) � is unambiguous. Let � be a variable renaming. We have that[[P ℄℄ j= (C ^ �(C) ^ � = �(�))! (� = �(�))for variables � 2 fv(C; �). Then, we �nd that[[P ℄℄ j= (C ^ �(C) ^ � = �(�)) ! (� = �(�))for variables � 2 fv(C; �). From that, we onlude[[P ℄℄ j= (C ^ �(C) ^ �)$ (C ^ �(C) ^ �0)9



By assumption we know that �(C) ��P True. The Canonial Form Lemma enforesthat C; �0 ��P �00. 22.6 CohereneThe exerise in Setion 2.4 was to ensure that there exists a variable environment � whih satis�esP . In fat, for normalized expressions we ould provide a ompilation sheme whih preservestyping.We will now establish a oherene results under the assumption that we have an � suh that �satis�es P . The tehnial hallenge is to introdue oerion (ordering) relations between di�erenttyping derivations.Reall the example from the Introdution.exp :: 8a:Eq (a! a! Bool)) [a℄! [a℄! (Bool; Bool)exp xs ys = (eq (tail xs) ys, eq 1 3)andexp' :: [Int℄! [Int℄! (Bool; Bool)exp' xs ys = (eq (tail xs) ys, eq 1 3)are two valid typings for the same expression. We �nd the following two target expressionsexp2 :: 8a:(a! a! Bool)! [a℄! [a℄! (Bool; Bool)exp2 e xs ys = (eq (eEqList e) (tail xs) ys, eq eEqInt 1 3)andexp2' :: [Int℄! [Int℄! (Bool; Bool)exp2' xs ys = (eq (eEqList eEqInt) (tail xs) ys, eq eEqInt 1 3)Clearly, expressions exp type and translation is more general than that of exp'. Tehnially,we introdue an ordering relation among types, target expressions and variable environments.Variable environments need to be inluded beause in ase of let expressions the environment willbe hanged (see Lemma 8). Unambiguity beomes now important.De�nition 1 Let P be a set of CHRs, C a onstraint, �1 = 8��1:C1 ) �1 and �2 = 8��2:C2 ) �2two type shemes, E1 and E2 two target expressions, and �1 and �2 two variable environments.We de�ne P;C `ttv (�1; E1; �1) � (�2; E2; �2) i�� P is good and �1 is unambiguous,� �1 and �2 satisfy P ,� [[P ℄℄ ^ C `i �1 � �2� for any � suh that [[P ℄℄ j= �(C ^ C2 ^ �1 = �2), we have that[[�E1℄℄�1 �1(e�0C1) = [[�E2℄℄�2 �2(e�C2)where �0 is the unique extension of � suh that [[P ℄℄ j= �0C1 and � is mapping on evidenevariables with �(eC) = e�C .We de�ne P;C `ttv (�1; �1) � (�2; �2) i� P;C `ttv (�1; x1; �1) � (�01; x1; �2); : : : ; P; C `ttv(�n; xn; �1) � (�0n; xn; �2) where �1 = fx1 : �1; : : : ; xn : �ng and �2 = fx1 : �01; : : : ; xn : �0ng.
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Note that uniquess of extension �0 is ensured by Lemma 4.We onsider (�; E; �) as a short-hand for (8�:� = � ) �; �x:E; �) where � and x are fresh vari-ables. In this partiular ase, we �nd that if P;C `ttv (�1; E1; �1) � (�1; E2; �2) where fv(�1; �2) = ;and C ��P True, then [[E1℄℄�1 = [[E2℄℄�2.Coming bak to the example from above we �nd thatP; True `ttv(8a:Eq (a! a! Bool)) [a℄! [a℄! (Bool; Bool); exp2; �)�([Int℄! [Int℄! [Int℄! (Bool; Bool); exp20; �)where P onsists of rules (Eq1-4) from the Introdution and � is the variable enviroment as induedby Lemma 1.Lemma 5 (Transitivity) The above relation is transitive.Lemma 6 (Instantiation) Let P be a set of CHRs, C2 and C 02 two onstraints, �1 a type sheme,E1 and E2 two target expressions, �1 and �2 two variable environments, ��2 a sequene of types, ��2 asequene of type variables, eC2 a evidene variable and e :: C2 P! [��2=��2℄C 02 a evidene onstrutorsuh that P;C2 `ttv (�1; E1; �1) � (8��2:C 02 ) �2; E2; �2). Then,P;C2 `ttv (�1; E1; �1) � ([��2=��2℄�2; E2 (e eC2); �2):Lemma 7 (Generalization) Let P be a set of CHRs, C2 and C 02 two onstraints, ��2 a sequeneof type variables, �1 a type sheme, �2 a type, E1 and E2 two target expressions and �1 and �2 twovariable environments suh that P;C2 ^ C 02 `ttv (�1; E1; �1) � (�2; E2; �2) and ��2 62 fv(C2; �1).Then, P;C2 `ttv (�1; E1; �1) � (8��2:C 02 ) �2; �eC02 :E2; �2):In order to de�ne on ordering on typing derivations, we will �rst need to de�ne levels ofderivations trees.Let P;C;� ` e : � ; E be a jugdment. The derivation tree of P;C;� ` e : � ; E is anup-side down tree where all leave nodes are assoiated with (Var) rule appliation, intermediatenodes are assoiated with other valid rule appliations and the root node (i.e. the bottom mostnode) is P;C;� ` e : � ; E. We refer to the level of P;C;� ` e : � ; E as the sum of all of thepaths in the derivation true.De�nition 2 Let P be a set of CHRs, C1 and C2 two onstraints, �1 and �2 two type environ-ments, �1 and �2 two type shemes, E1 and E2 two target expressions and e a soure expression.Then, we de�ne (P;C1;�1 ` e : �1 ; E1)�(P;C2;�2 ` e : �2 ; E2)i�� P is good and �1 is unambiguous,� [[P ℄℄ j= C2 ! (�9fv(�2)C1),� [[P ℄℄ ^ C2 `i �1 � �2, [[P ℄℄ ^ C2 `i �1 � �2, and11



� let D1 be the derivation tree of P;C1;�1 ` e : �1 ; E1, and let D2 be the derivation tree ofP;C2;�2 ` e : �2 ; E2. Then relation � holds for all sub-derivations P;C 01;�01 ` e0 : �01 ;E01 in D1 and P;C 02;�02 ` e0 : �02 ; E02 in D2 where we assume that P;C 01;�01 ` e0 : �01 ; E01has a lower level in D1 than P;C 02;�02 ` e0 : �02 ; E02 in D2 in D2.Lemma 8 (Conuent Translations) Let P be a good set of CHRs, P;C1;�1 ` e : �1 ; E1,P;C2;�2 ` e : �2 ; E2 be two judgments, �1 and �2 two variable environments suh that(P;C1;�1 ` e : �1 ; E1) � (P;C2;�2 ` e : �2 ; E2) and P;C2 `ttv (�1; �1) � (�2; �2).Then P;C2 `ttv (�1; E1; �1) � (�2; E2; �2).Proof: We proeed by indution over the derivation P;C2;�2 ` e : �2 ; E2. We onlyshow some of the interesting ases.Case (Var) We �nd the following situation:(x : �2) 2 �2P;C2;�2 ` x : �2 ; xwhere (P;C2;�1 ` x : �1 ; x) � (P;C2;�2 ` x : �2 ; x). By assumption, we havethat P;C2 `ttv (�1; x; �1) � (�2; x; �2) and we are done.Case (8E) We �nd the following situation:P;C2;�2 ` e : 8��:C 02 ) �2 ; E2[[P ℄℄ j= C2 ! [��2=��2℄C 02e :: C2 P! [��2=��2℄C 02P;C;�2 ` e : [��2=��2℄�2 ; E2 (e eC2)We an apply the indution hypothesis to the premise. Appliation of Lemma 6 yieldsthe desired result.Case (8I) We �nd the following situation:P;C2 ^ C 02;�2 ` e : �2 ; E2��2 62 fv(C2;�2)P;C2;�2 ` e : 8��2:C 02 ) �2 ; �eC02 :E2Appliation of the indution hypothesis and Lemma 7 yields the desired result.Case (Let) We �nd the following situation:P;C2; (�2)x ` e : �2 ; E2P;C2; (�2)x:x : �2 ` e0 : � 02 ; E02P;C2; (�2)x ` let x = e in e0 : � 02 ; let x = E2 in E02where (P;C1; (�1)x ` e : �1 ; E1) � (P;C2; (�2)x ` e : �2 ; E2)(P;C1; (�1)x:x : �1 ` e0 : � 01 ; E01) � (P;C2; (�2)x:x : �2 ` e0 : � 02 ; E02)12



for some �1 and E1.Appliation of the indution hypothesis to the top premise yieldsP;C2 `ttv (�1; E1; �1) � (�2; E2; �2)We set �01 = �1[x := �eC1 :[[�E1℄℄�1℄ and �02 = �2[x := �eC2 :[[�E2℄℄�2℄. The indutionhypothesis applied to the bottom premise yieldsP;C2 `ttv (� 01; E01; �01) � (� 02; E02; �02):We an onlude thatP;C2 `ttv (� 01; let x = E1 in E01; �1) � (� 02; let x = E2 in E02; �2)and we are done. 2We say a derivation P;C;� ` e : � ; E is prinipal and unambiguous i� for any otherP;C 0;� ` e : �0 ; E0 we have that (P;C;� ` e : � ; E) � (P;C 0;� ` e : �0 ; E0).It remains to give a meaning to primitive funtions. Let � be a variable environment and � alosed type environment (fv(�) = ;). We de�ne � j= � i� (1) for eah f : 8a:F a) a 2 � we havethat �(f) = �x:x, and (2) for all other x : � 2 � we have that �(x) 2 [[�℄℄.Theorem 1 (Coherene) Let P;C1;� ` e : � ; E1 and P;C2;� ` e : � ; E2 be two judgmentsand � be a variable environment suh that the prinipal derivation is unambiguous, C1 ��P True,C2 ��P True, � j= �, � satis�es P , fv(�; �) = ; and P is a terminating, onuent set of CHRswhere eah simpli�ation rule is single-headed and non-overlapping. Then [[E1℄℄� = [[E2℄℄�.Proof: The prinipal derivation is unambiguous. That means, we �nd that(P;C3;� ` e : � 0 ; E3) � (P;C1;� ` e : � ; E1)and (P;C3;� ` e : � 0 ; E3) � (P;C2;� ` e : � ; E2)for some C3 and � 0.Appliation of Lemma 8 yieldsP;C1 `ttv (� 0; E3; �) � (�; E1; �)and P;C2 `ttv (� 0; E3; �) � (�; E2; �):In partiular, we �nd that [[E3℄℄� = [[E1℄℄� and [[E3℄℄� = [[E2℄℄�. Therefore, [[E1℄℄� =[[E2℄℄� and we are done. 2We note that we will immediately loose oherene in ase of a strit language.Consideroverload f :: Unit! Intf x = f xin let a = f ()in ()The let-bound expression a has two possible typings, 8b:F (Unit! b)) b and Int. Note that thetranslation under a :: Int doesn't terminate. Relates to value restrition in ML.13



3 ConlusionWe ould provide a ompilation sheme for normalized programs whih preserves typing. Webelieve that it is also possible to provide an interpreter-style translation sheme where evidenevalues will be onstruted a run-time.The translation sheme is oherent under the assumption that the set of CHRs is terminating,onuent, range-restrited and simpli�ation rules are single-headed and non-overlapping. Thisextends previously known oherene results [1℄.Referenes[1℄ M. P. Jones. Coherene for quali�ed types. Researh Report YALEU/DCS/RR-989, YaleUniversity, Department of Computer Siene, September 1993.[2℄ R. Milner. A theory of type polymorphism in programming. Journal of Computer and SystemSienes, 17:348{375, De 1978.[3℄ P. Wadler and S. Blott. How to make ad-ho polymorphism less ad-ho. In Pro. 16th ACMSymposium on Priniples of Programming Languages (POPL), pages 60{76, January 1989.
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