A Theory of Overloading Part II: Semantics and Coherence

Andreas Rossberg Martin Sulzmann
Programming Systems Lab Department of Computer Science
Universitat des Saarlandes The University of Melbourne

Germany Australia
rossherg@ps.uni-sb.de sulzmann@cs.mu.oz.au

March 21, 2002

Abstract

This paper is a complement to “A Theory of Overloading” by Stuckey and Sulzmann.
The authors introduce a general overloading framework based on Constraint Handling Rules
(CHRs). The main focuss is on type inference issues. Here, we provide a rigorous study
of semantic meanings for programs containing overloaded identifiers. Source expressions are
translated by inserting appropriate evidence parameters which represent actual values of over-
loaded identifiers. We provide a general coherence results under some sufficient conditions on
CHRs. We observe that the target language is typable in the Hindley /Milner system extended
with polymorphic recursion. The coherence property is lost in case of a strict language. Sur-
prisingly, in case we impose condition similar to the value-restriction found in ML, we can
recover coherence for strict languages.

1 Introduction

In “A Theory of Overloading”, Stuckey and Sulzmann introduce a general theory for overloading.
The main focuss is on type inference. In this paper, we provide a thorough study of the semantic
meaning of programs containing overloaded identifiers.

We follow the common approach [3] to give a semantic meaning for overloaded identifiers by
passing around evidence values as additional function parameters. Evidence values represent the
actual definitions of overloaded functions. Consider the following program.

overload eq :: Int — Int — Bool
eq = primEqlint
overload eq :: Va.Eq (a = a — Bool) = [a] — [a] = Bool
eq = let eql :: Va.Eq (a — a — Bool) =
[a] — [a] = Bool
eqL [] [] = True
eqL (x:xs) [] = False
eql [] (y:ys) = False
eql (x:xs) (yiys) = (eq x y) && (eqList xs ys)
in eql

exp xs ys = (eq (tail xs) ys, eq 1 3)

where tail :: [a] — [a] takes the tail of a list. In a first step we translate overloaded definitions. We
find

ecEqint = primEqglnt
ecEqlList eq = let eqL [] [] = True
eqL (x:xs) [] = False
eql [] (y:ys) = False
eql (x:xs) (y:ys) = (eq x y) && (eqL xs ys)
in eq
Constraints in the type component of source expressions are turned into function parameters,
we also say evidence parameters, in the target language. In the above example, the function
parameter eq represents evidence for the equality function on type a — a — Bool. Note that this
is represented by the constraint Fq (a — a — Bool) in the type scheme of the source expression.
What remains is to insert the appropriate evidence values for expression exp.
Expression exp gives rise to the following constraints

Eq ([a] = b— ¢),Eq (Int = Int — d)

where we assume xs :: [a], ys :: b, 1 :: Int and 3 :: Int. In our framework, constraint solving is
defined in terms of Constraint Handling Rules (CHRs). CHRs are a declarative constraint language
to write incremental constraint solvers. Each of the two overloaded definitions gives rise for a CHR
simplification rule:

(Eql) Egq (Int = Int — Bool) <= True
(Eq2) Eq ([a] = [a] = Bool) <= FEq (a = a — Bool)

Rule (Eql) states that a definition exists on type Int — Int — Bool and rule (Eq2) states a
definition on type [a] — [a] — Bool requires a definition on type a — a — Bool (Note that rule
(Eq2) can be straightforwardly derived from the type annotation Ya.Eq (a — a — Bool) = [a] —
[a] = Bool). Logically, <= states an if-and-only-if relation. Operationally, a simplification rule
can be read as follows. Whenever we find a term which matches the left-hand side, then this term
can be simplified (replaced) by the right-hand side. We assume that substitutions represented by
equations have been applied to user-defined constraints such as Eq.

In addition to simplification rules, we also find propagation rules which allow us to impose
stronger conditions. Consider the two propagation rules:

(Eq3) Eq (Int —» Int > a) = a = Bool
(Eq4) Eq([a] > b—¢) = b=]a],c= Bool

Rule (Eq3) states that any definition of equality which takes two arguments of type Int must
have result type Bool. A similar statement is expressed by rule (Eq4). Logically, the = symbol
stands for boolean implication. Operationally, we propagate the right-hand side if there is a term
matching the left-hand side. We commonly use P to refer to the set of CHRs. We identify by
Psjmp the subset of all simplification rules in P. Similarly, we write Pp,,, for the subset of all
propagation rules in P. We write C' —7% C' if constraint C' can be reduced to C' by application of
the set P of CHRs.

Consider the constraints generated from the program text of expression exp. We find the
following CHR derivation:

Eq ([a] = b— ¢),Eq (Int = Int — d)
—ngs Eq ([a] = b—c¢), Eq (Int — Int — d),d = Bool
—ga Eq ([a] = b—c¢),d = Bool
—mq Eq ([a] > b—c¢),b=a],c = Bool,d = Bool
— g Eq (a— a— Bool),b=[a],c= Bool,d = Bool

Resolution of remaining equalities via unification yields

exp 1 Va.Eq (a = a — Bool) = [a] — [a] = (Bool, Bool)
exp xs ys = (eq (tail xs) ys, eq 1 3)

Expression exp’s type states that we can implement exp given we can provide evidence for Eq (a —
a — Bool). We commonly use e¢ to refer to evidence provided for a constraint C.

The novelty of our approach is that the construction of evidence can be straightforwardly
derived from the CHR derivation. Reading the CHR derivation backwards tells us exactly how
this can be achieved. Constraint Eq (Int — Int — Bool) was reduced to True via rule (Eql),
therefore, we insert ecEqlnt at the instantiation site. Constraint Eq ([a] — [a] — Bool) was reduced
to Eq (a = a — Bool). That is, applying ecEqlist to evidence egq (4—a—Boot) yields evidence
€Eq ([a]—[a]—Bool)- Lhe final translated expression is as follows:

exp2 :: Ya.(a = a — Bool) — [a] — [a] = (Bool, Bool)
exp2 e xs ys = (eq (ecEqList e) (tail xs) ys, eq ecEqlnt 1 3)

where eq x = x. We assume each overloaded identifier simply passes on the appropriate calculated
definition. Note that Eq (a — a — Bool) has been turned into a matching function type.

In the remainder of this paper we will give a thorough description of how to translate source
into target expressions including a general coherence result. As we saw in the example above, the
translation depends on a programs typing. Coherence states that the translation is independent of
a programs typing. The main result of this paper is that the translation is coherent if the CHRs
involved are terminating, confluent, range-restricted and simplification rules are single-headed and
non-overlapping. We will call such a set of CHRs a good set of CHRs. For terminology, definitions
and related results we refer the reader to “A Theory of Overloading”.

2 Evidence-Passing Translation

The evidence-passing translation is driven by a programs typing. Source expressions are translated
into target expressions by turning constraints in type schemes of source expressions into function
paramters in target expressions. At instantiation sites we need to provide the appropriate evidence
arguments.

Recall the rule for quantifier elimination of source expressions:

P,Cy,T Fe:Va.Cy =T [[P]] |=Cl—)[77'/d]02
P,Cy,T Fe:[7/a]r

We can eliminate a quantifier if the constraint component can be satisfied by the global context
w.r.t. the current program theory, i.e. [P] = C1 — [7/a@]Cs. In the target language, we need to
construct evidence e[z/5)c, out of ec,. This is done by a evidence constructing function written

ec: 0y 5 [T/a]Cs. As we will see, such a function must exist because of premise [P] = C1 —
[7/a]Cs.

The target rule corresponding to quantifier elimination of source expressions is as follows:
P,Ci,T Fe:VaCy=>17~FE
[P = C1 = [7/alC,
e Cy 5 [7/6)Cy
P,Cy,T F e:[T/a]t ~ E(ec ec,)

Expression E is the translation of e. Note that the translation dependes on e’s type.

PCT,Fe:o
(Let) PCT,x:0t €e:7
PCT, Fletz=eine :7

(x:0)el
PCTF2x:0o

(Var)

PCT.z:7Fe:r P,C,F"EliTl—)T2
s s b .

Ab A PCTF e:
AbS) B O . F e r o7 (4pp) o T n
P,C,F"@l € . T2

P,CiANCy, T Fe:T P,Cy,T Fe:Va.Cy = 1
(VD) a ¢ fo(C1) U fu(T) (VE) [P] E Gy = [7/a]C,
PC,, T Fe:Valy=>rT P,Cy,T' Fe:[T/a]T

(f:Ya.Fa=a)el
fU(Vd.Cf :>Tf) =0

(Annot) 70 gv(:) :_? : (Over) P,C.,T Fe:Va.Cy = 1y
O F(eno):o ¢ mgu of he, F ¢7p < ¢Cy € P
PCTFop:T

P,C,T + overload f :: (Va.Cy = 7¢) =einp: T

Figure 1: Typing Rules

2.1 Source Language

Programs = overload f =einp|e
Expressions =z |Areleel|letz=ceine]|(e: o)
Types s=al|lto7|TT

p
e
r
Constraints Cu=7r7=1|UT|CAC
Type Schemes o :=71]|Va.C =1

where - — - is the function type constructor, 7' is a user-defined n-ary type constructor, - = -
denotes (syntactic) equality among types, U is a user-defined n-ary predicate symbol. and A
denotes conjunction among constraints. Note that we use ’,” for conjunction among constraints in
CHR rules and example CHR derivations.

For syntactic convenience, we write example programs using

overload f:: o instead of overload f = (e:o)in ...

f=e

We will also make use of pattern matching syntax. The straightforward description of this extension
is omitted.

The typing rules can be found in Figure 1. For explanations and inference results we refer to
the related paper.

V=W, +VaV+ 3 EVi Varityw),

where W is the error element and K is the set of value constructors.

[#]n = ()
[Au.e]n = Av.fe]nu := v]
[ee'ln = iffelne V>V A[ln#W
then ([e]n) ([¢'In)
else W
[letz =eine']ln = ifle]n #W
then [¢/Jlz := [¢]1]
else W
AT SR T
1}u T,
Y Trulé,[‘mit/f— Eopi—...o=op, =Ty pim}
[va.r] = Nallr/al]

where for monotypes u we require that fu(u) = ¢ and T’ contains the set of value constructors
used in this context.

Figure 2: Target Semantics

2.2 Target Language
We work with the following target language.

Target Expressions E := z|Az.E|letz=FEinE

In particular, we assume we are given a denumerable set of evidence variables ec indexed by a
constraint C'. Evidence variables will carry the appropriate definitions of overloaded identifiers.

We interpret expressions in an untyped denotational semantics [2]. We refer to Figure 2 for
definitions of domain equations and meaning functions on expressions and types.

2.3 Evidence

We give meaning to evidence variables via a variable environment 1 mapping variables to elements
in V. We will always assume that n(er,ye) = () and n(er,=r,) = () where 7, and 7 are syntactically
equivalent and () represents a distinct value in V.

Variable environments n must satisfy program theories P. We define n satisfies P iff for each
user-defined atom U 7 where U 7 —% True we have that n(ey) € [Vfu(r).7]. That means,
evidence values of user-defined constraints must satisfy the given type specification. For example,
Eq (Int — Int — Bool) —p True, therefore, n(€pq (rnt—Int—Boor)) € [Int = Int — Bool] where
P consists of rules (Eql-4) from the Introduction.

Let C = Uy 7y,...,U, 7, be a constraint such that C' =% True. Then, we require that
n(ec) = (nlev, r,),---,nlev, r,)) as a further condition for variable environments. Note that we
assume an ordering on Uy 7, ...,Up, Tp.

PCT,Fe:oc~E

: r
(z:0) € (Let) PCT,z:0kFée:7~FE

PCTFzxz:o~zx

(Var)

PCT,Fletz=eine:7"~letz=FinE'

PCTFe :m— E
PCTIl,z:TrFe:T~E » Ly €1 T = Ty~ Iy

Ab A P,C,T F ey: E
(Abs) P,C.T, F Are:7 =7 ~ Az.E (App) ; es : T~ Fy
P:C,FF€1€2:T2'\»E1E2

PC,, T Fe:ValCys =17~ E
[Pl = Ci = [7/a]Cs
e Cy 5 [7/a)Cy
P,Cy,T F e:[T/a]t ~ E (ec ec,)

PCiNCy,TFe:T~E
(VD) a ¢ fo(Cy,T) (VE)
P,C,T F e:VYa.Cy = 17~ dec,.FE

Figure 3: Evidence-passing translation

Let C; and Cs be two constraints, i a variable environment and P be a good set of CHRs such
that 7 satisfies P and [P] |= C1 — C>. We say ec is an evidence constructor iff for each substitution
¢ such that ¢(C1) —p True we have that ec(n(egc,))) = n(eg(c.)). In such a situation we

write ec : Oy & Cs. Note that the conditions imply that ¢(Cy) (and ¢(Cy)) doesn’t contain
any equality constraints. The Canonical Normal Form Lemma implies that ¢(Cs) —% True (if
#(C1) —% True).

We maintain that if there exists n which satisfies P, then the definition of evidence construct-
ing functions is straightforward. However, one of the challenges will be to construct a variable
environment 7 which satisfies P.

2.4 Translation

Figure 3 describes the evidence-passing translation from source to target expressions via judgments
of the form P,C,T + e: o0 ~» E. The translation is driven by a programs typing derivation. Note
that we omitted the straightforward rule (Annot).

The most interesting rules are (VI) where we abstract over evidence variables and (VE) where

we provide the proper evidence values. In case ec :: Cy 5 [7/a]C2 where [T/a]Cy —% True, we
simply provide e[z/5]c, directly instead of ec ec, (see the final translated expression of exp from
the Introduction).

The problem of translating overloaded definitions and building evidence constructors will be
reduced to translating expressions. Both translations schemes are mutually recursive. For con-
venience, we will present both constructions in two seperate statements (see Lemmas 1 and 2).
Importantly, the translation schemes preserve typing as stated in Lemma 3.

Wecall P,C,T" F e: o anormalized derivation if no equality constraints appear in the constraint
component of subderivations and type schemes and each entailment check [P] = Cy — C> holds
iff Cl,CQ >—>}J Cl.

Lemma 1 (Translation of Programs) Let p be a program, P; be the set of simplification rules
arising from p and P, be a set of propagation rules such that P = P;UP, is good and P,C.T' F p: o

is normalized for some C, T and o. Then, there exists a variable environment n which satisfies P.

Proof: Consider each overloaded definition overload f :: (V&.C'y = 7) = ein plus their
associated simplification rule

FrUnmn,...U,mnm

Note that Cy =U; 71,...,Upn Tn.
We translate e yielding target expression E, i.e. P,C,I' F e:Va.Cy = 74 ~ E. We
generate

frevintn = E

Target expression E might contain evidence constructors. For each ec :: C4 5 Cy we
generate an equation as described in Lemma 2 (therefore the process of translating
programs and constructing evidence is mutually recursive).

Finally, for each overloaded identifier f we generate f = Az.x.
We record in 7 the least fix point of the above set of equations.
In the following, we will use [V.7] as a short-hand for [Vfu(r).7].

Consider F' 7 such that F' 7 =} True (implies F' 7 —p_ True). We provide an
inductive construction of n(ep ;).

For all F' 7 —p,,, True, we define n(er ») = n(fr + True) Where there exists ¢ such
that 7 = ¢7' and fr ; Trye is as above. Note that n(er ;) € [V.7] by construction
(follows from Lemmas 2 and 3). Note that the CHRs are non-overlapping, therefore,
there is only one such fr - Trye.

For all F' 7 »=pg,,.. U 71,..., Uy T, we have that U; 7 H}Sim? True. Therefore,
n(ev, +,) is defined. We define

n(er) =n(fr U1 71,...,Un) mlev,), -, nlev, 7))

Note that n(fr r.v, r....U,) € [V.(71,...,m) = 7] and n(ey, ;) € [V.7:] (follows
from Lemmas 2 and 3), therefore, n(er ;) € [V.7].

Note that all simplification rules are non-overlapping, hence, for each F' T H}smp True
the derivation is unique. Therefore, the above construction is deterministic.

A note on the ordering among user-defined constraints U; T;:

We denote by < the ordering relation among constraints. Consider (R) F (a — (b —
b)) <= U a,U (b — b) in some set P of CHRs where U a < U (b — b). Assume F (11 —
7o) —% True for some types 7 and 7 such that U 7» < U 7. Clearly, < is not stable
under substitution. We find that F' (11 =) —g U 7,U 71 —% True. However, note
that fr (4 (p-0)).U a,U (v—5) = MU a,€U (v—b)). - - -~ Therefore, we assume that each
simplification rule step keeps the constraints in the same order as in the corresponding
function definition. We have that F' (11 =) —gp U 71,U 70 —% True.

O

Let C =U; 71 A...U, T, be a constraint. We define typeof(C) = (11,..., 7). Recall that we
assume an ordering on constraints.

Lemma 2 (Construction of Evidence) Let p be a program, P; be the set of simplification rules
arising from p and P, be a set of propagation rules such that P = P;UP, is good and P,C.T F p: o
is normalized for some C, I' and 0. Let Ci and Cs be two sets of user-defined constraints such

that C1,Cy —} Ci. Then, there exists a closed definition for ec :: Cy f) Cs. In particular, the
definition of ec has type Va.typeof(C1) — typeof(Co) where a = fu(typeof(C1) — typeof(Cs)).

Proof: For simplicity, we only consider the caseif Co = U rand C; = Uy 11, ..., Up Ty
Note that 01,02 >—>;3 01 implies 01,02 >—>;3 01.

Simp
The proof proceeds by induction on the derivation C;,C> —7p% C;. We distinguish
among the following cases:

(1) U = U;j for some j =1...m: We immediately find that ec(er,...,ej,...,en) = €;.

(2) We have that (R) U 7' <= C5 € P and there exists ¢ such that ¢7' = 7.

We find that Cy,Cy — g C1, ¢C3. For each U; 1; € ¢C5 we have that Cy,U; ; —* C}.
By induction, there exist closed definitions ec; :: C; L U; 7;. We define ec(eq, ..., em) =
(ect r1,cy (€ci(en, ... em)), ..., (eck(er,. .. ,em))) where ecy + ¢, is as in Lemma 1 and

are done. Note that we yet again have to be aware of the “ordering” among constraints
(see Lemma 1).

The statement about typability of ec follows from Lemma 3. O
Note that the above statement excludes evidence constructors such as
eci : Eq ([a] = [a] = Bool) L Eq (a = a — Bool)

We can’t give a closed definition for ec;, however, ec; must exist. For any 7 such that Eq ([7] —
[7] = Bool) —% True we can construct evidence for egy (r—rarrowBool)-
We state that the translation of normalized expression preseves typing.

Lemma 3 (Typability) Let P,C',T' + e : Va.C = 7 ~ E be a normalized derivation. Let
T derived from T' by replacing each f : Va.F a = a € T' by f : Va.a - a. Then T F E :
typeof(C) — 1 is derivable in the Hindley/Milner system with polymorphic recursion.

Consider

overload eq :: Int — Int — Bool
eq = primEqlnt
overload eq :: Va.Eq (a = a — Bool) = [a] — [a] = Bool
eq = let eqlist :: Ya.Eq (a — a — Bool) =
[a] = [a] — Bool
eqlist [] [] = True
eqlist (x:xs) [] = False
eqList [] (y:ys) = False
eqlist (x:xs) (yiys) = (eq x y) && (eqList xs ys)
&& (ord [1] [2])
in eqlist overload ord :: Int — Int — Bool
ord = primOrdInt
overload ord :: Va.Ord (a — a — Bool) = [a] — [a] — Bool
ord = let ordList :: Va.Ord (a = a — Bool) =
[a] = [a] — Bool
ordList [] [] = True
ordList (x:xs) [] = False
ordList [] (y:ys) = False

ordList (x:xs) (y:ys) = (ord x y) && (ordList xs ys)
&& (eq [1] [2])
in ordList
Our translation yields
eql :: Int — Int — Bool
eql = primEqlint
eql :: Va.(a —» a — Bool) — [a] — [a] — Bool
eql eq = let eqlist :: Va.[a] — [a] = Bool
eqlist [] [= True
eqlist (x:xs) [] = False
eqList [] (y:ys) = False
eqlList (x:xs) (y:ys) = (eq x y) && (eqL eq xs ys)
&& (ordL ordl [1] [2])
in eqlist ordl :: Int — Int — Bool
ordl = primOrdInt
ordL :: Va.(a —» a — Bool) — [a] — [a] = Bool
ordL ord = let ordList :: Va.[a] = [a] = Bool
ordList [] [] = True
ordList (x:xs) [] = False
ordList [] (y:ys) = False
ordList (x:xs) (y:ys) = (ord x y) && (ordL ord xs ys)
&& (eql eql [1] [2])
in ordList
Note that we have already simplified slightly the translated expressions. Instead of f (ec e) we
simply write ec e.
For example, we find ordL ordl because of Ord ([Int] — [Int] — Bool), Eq (a —— Bool) —%
Eq (a -»— Bool).
We observe that the translated expressed is typable in the Hindley/Milner system extended
with polymorphic recursion.

2.5 Unambiguity

Unambiguity of a type scheme Va.C = 7 implies that any ground instance of the type component
T uniquely determines the free variables in the constraint component C.

Lemma 4 (Uniqueness) Let P be a good set of CHRs, Va.C = 7 an unambiguous type scheme,
¢ a mapping from type variables fu(C,T) to ground types and ¢' a mapping from type variables
fo(T) to ground types such that ¢' < ¢ and ¢C —% True. Then C,¢' —% ¢" such that ¢'U¢" = ¢.

Proof: Note that we interpret substitutions as equality constraints. Then, the < rela-
tion among substitutions can be expressed as constraint entailment, and U corresponds
to conjunction.

By assumption Va.C = 7 is unambiguous. Let p be a variable renaming. We have that
[P] = (CAp(C)AT = p(T)) = (o= p(a))

for variables a € fu(C, 7). Then, we find that
[P (CAGC) AT =¢(7)) = (a = ¢(a))

for variables a € fu(C, 7). From that, we conclude

[P1E (CAGC)A) & (CAGC)AY)

By assumption we know that ¢(C) —% True. The Canonical Form Lemma enforces
that C, ¢’ —1% ¢". O

2.6 Coherence

The exercise in Section 2.4 was to ensure that there exists a variable environment 1 which satisfies
P. In fact, for normalized expressions we could provide a compilation scheme which preserves

typing.

We will now establish a coherence results under the assumption that we have an n such that n
satisfies P. The technical challenge is to introduce coercion (ordering) relations between different
typing derivations.

Recall the example from the Introduction.

exp :: Ya.Eq (a = a — Bool) = [a] — [a] = (Bool, Bool)
exp xs ys = (eq (tail xs) ys, eq 1 3)

and

exp’ : [Int] — [Int] — (Bool, Bool)
exp’ xs ys = (eq (tail xs) ys, eq 1 3)

are two valid typings for the same expression. We find the following two target expressions

exp2 :: Va.(a = a — Bool) — [a] — [a] = (Bool, Bool)
exp2 e xs ys = (eq (ecEqList e) (tail xs) ys, eq ecEqint 1 3)

and

exp2’ :: [Int] — [Int] — (Bool, Bool)
exp2’ xs ys = (eq (ecEqList ecEqInt) (tail xs) ys, eq ecEqint 1 3)

Clearly, expressions exp type and translation is more general than that of exp'. Technically,
we introduce an ordering relation among types, target expressions and variable environments.
Variable environments need to be included because in case of let expressions the environment will
be changed (see Lemma 8). Unambiguity becomes now important.

Definition 1 Let P be a set of CHRs, C a constraint, o1 = Va,.C; = 1, and 05 = Va.Co = 1
two type schemes, Ey and Es two target expressions, and 1, and ns two variable environments.
We define P,C F'"" (01, E1,m) = (02, E2,m2) iff

e P is good and oy is unambiguous,

e 11 and 1y satisfy P,

L [[P]]/\C "Z (71j(72

e for any ¢ such that [P] = ¢(C AN Cy AT = T2), we have that
[7Er]m m(egc,) = [mE2]n2 n2(egcs)

where ¢' is the unique extension of ¢ such that [P] = ¢'Cy and 7 is mapping on evidence
variables with w(ec) = egc.

We deﬁne P;C '_ttv (Flznl) j (F27772) Zﬁ P,C l_ttv (Ulzmlanl) j (Ulllea,’h)a"'apac l_ttv
(OnsTn,m) = (o), Tn,m2) where I'y = {z1 2 01,...,2n 0} and Ty = {zy : 0f,...,2n : 0} }.

10

Note that uniquess of extension ¢’ is ensured by Lemma 4.

We consider (7, E,n) as a short-hand for (Va.a = 7 = a, Az.E, n) where a and z are fresh vari-
ables. In this particular case, we find that if P,C' F (7, E1,n1) = (11, B2, 1) where fo(r1,) = ()
and C —% True, then [Ei]m = [E2]n:.

Coming back to the example from above we find that

P, True Fttv
(Va.Eq (a = a = Bool) = [a] — [a] = (Bool, Bool), exp2,n)
<

([Int] — [Int] — [Int] N (Bool, Bool), exp2',n)

where P consists of rules (Eql-4) from the Introduction and 7 is the variable enviroment as induced
by Lemma 1.

Lemma 5 (Transitivity) The above relation is transitive.

Lemma 6 (Instantiation) Let P be a set of CHRs, Cy and C two constraints, o1 a type scheme,
FEy and Ey two target expressions, n1 and 1y two variable environments, To a sequence of types, as a

sequence of type variables, ec, a evidence variable and ec :: Cy 5 [T2/@2]CY a evidence constructor
such that P, Cs ptte (UI:Elanl) =< (deCé = TQ,E2,772). Then,

P,Cy ' (01, Br,m) = ([T2/@2]72, B2 (ec ec,),n2).

Lemma 7 (Generalization) Let P be a set of CHRs, Ca and C), two constraints, as a sequence
of type variables, o1 a type scheme, o a type, E1 and Es two target expressions and 1, and ns two
variable environments such that P,Cy A Cy F' (o1, E1,m) = (02, E2,m2) and as & fu(Ca, o).
Then,

P, Cs pitv (0’1,E1,771) =< (VO_LQCé = TQ,AeOé.E27n2).

In order to define on ordering on typing derivations, we will first need to define levels of
derivations trees.

Let P,C.,' F e: 0 ~ E be a jugdment. The derivation tree of P,C,' F e : 0 ~ FE is an
up-side down tree where all leave nodes are associated with (Var) rule application, intermediate
nodes are associated with other valid rule applications and the root node (i.e. the bottom most
node) is P,C,T F e: 0~ E. We refer to the level of P,C,T F e: 0 ~» E as the sum of all of the
paths in the derivation true.

Definition 2 Let P be a set of CHRs, Cy and Cs two constraints, 'y and T's two type environ-
ments, o1 and oo two type schemes, K1 and Es two target expressions and e a source exrpression.
Then, we define
(P,C'l,I‘l Fe: g1 ~» El)
=
(P,CQ,FQ l_ €09 ™ EQ)
if

e P is good and oy is unambiguous,

e [P]ECy: — va(r2)01),

L [[P]]/\CQ "Z (7150’2, [[P]]/\CQ "Z Flj[‘2, and

11

o let Dy be the derivation tree of P,C1,T'y F e: o1~ Ey, and let Dy be the derivation tree of
P,Cy,Ty F e: 09~ Ey. Then relation =X holds for all sub-derivations P,C{, T} F €' : o] ~
E{ in Dy and P,C}, T} & €' : ol ~ EY in Dy where we assume that P,C],T} + €' : 0] ~ Ej
has a lower level in Dy than P,Cy, T, & €' : ol ~ E} in Dy in Ds.

Lemma 8 (Confluent Translations) Let P be a good set of CHRs, P,C1,T'1 + e : 01 ~ E,
P,Cy, Ty F e : g9 ~ Ey be two judgments, n; and ns two variable environments such that
(P:Clyrl Foe: g1~ El) j (P7027F2 Foe: 02 ~» E2) and P:C2 l_ttv (Flanl) j (F2an2)'
Then P,Cy F'"" (01, Ey,m) = (02, E2,12).

Proof: We proceed by induction over the derivation P,C5,Ty F e: g3 ~ Es. We only
show some of the interesting cases.

Case (Var) We find the following situation:

(,TZUQ) €F2
P,Cy,Ty Fz:09~ 2

where (P,Cy,T1 F z:01 ~ x) < (P,Cy,Ty F x: 0y ~ z). By assumption, we have
that P,Cy F* (oy,2,m1) = (02,2,72) and we are done.

Case (VE) We find the following situation:

P,Cy, Ty F e:Va.C) = 1~ Ey
[Pl = Co = [72/as]Ch
ec:: Cy 5 [7y)a2]Cl
P,C,Ty F e: [Ta/as]ma ~ Ez (ec ec,)

We can apply the induction hypothesis to the premise. Application of Lemma 6 yields
the desired result.

Case (VI) We find the following situation:

P,CQ/\C;,FQ F 6:T2’\/'>E2
az ¢ fo(C,T)
P,OQ,F2 F ESV(SLQ.C% = To ~ Aecé.EQ

Application of the induction hypothesis and Lemma 7 yields the desired result.

Case (Let) We find the following situation:

P,OQ,(FQ)x + 620’2’\»E2
P,C2,(F2)m.x:0’2 F €I:T2,’\AE5
P,C5,(Ty), F letx =eine' : 75~ let x = Eyin E)

where

,("6:0’1’\»E1)5(P,02,(F2)z"6:0’2’\»E2)
(P,C1,(T)g.x:01 F e 7~ E}) 2 (P,Ca,(T2)p.x:09 b € : 75~ Eb)

for some o7 and E;.

Application of the induction hypothesis to the top premise yields

P,Cy ' (01, E1,m) = (02, Ea, 1)

We set nj = m[z := Xeq,.[rEr]m] and ny = nafz := Aec,.[7Es]n2]. The induction
hypothesis applied to the bottom premise yields
P,Cy F'™ (1], By,my) 2 (13, By, mp).
We can conclude that
P,Cy F'* (7],let x = Eyin Ej,m) = (13,let x = Eyin E},1y)
and we are done. |
We say a derivation P,C,T' F e : 0 ~ E is principal and unambiguous iff for any other
P,C".T F e:0'~ E' we have that (P,C,T Fe:0~ E) X (P,C",T + e:c' ~ E').
It remains to give a meaning to primitive functions. Let n be a variable environment and I" a

closed type environment (fo(I') = (). We define 5 |= T iff (1) for each f:Va.F a = a € T we have
that n(f) = Az.z, and (2) for all other z : ¢ € I’ we have that n(z) € [o].

Theorem 1 (Coherence) Let P,C;,T + e: 7~ Ey and P,Cy,T' b e: 7~ Ey be two judgments
and n be a variable environment such that the principal derivation is unambiguous, C1 —p True,
Cy =% True, n =T, n satisfies P, fu(T,0) = 0 and P is a terminating, confluent set of CHRs
where each simplification rule is single-headed and non-overlapping. Then [Ei]n = [E=]n.

Proof: The principal derivation is unambiguous. That means, we find that
(P,C3,T Fe:7' ~ E3) = (P,C;,T' F e:7~ Ey)

and
(P,Cg,r F ESTI’\»Eg) j(P,C2,F F e:T’\f)E2)
for some C3 and 7'.

Application of Lemma 8 yields
P: Cl l_ttv (TI: E37 77) j (T: El:’?)

and

P7 CQ l_ttv (TI:E3:77) j (T7 EQan)'
In particular, we find that [Es]n = [E1]n and [Es]n = [E2]n. Therefore, [Ei]n =
[E2]n and we are done. O

We note that we will immediately loose coherence in case of a strict language.
Consider

overload f :: Unit — Int
fx="Ffx
inleta="()
in ()
The let-bound expression a has two possible typings, Vbo.F (Unit — b) = b and Int. Note that the
translation under a :: Int doesn’t terminate. Relates to value restriction in ML.

13

3 Conclusion

We could provide a compilation scheme for normalized programs which preserves typing. We
believe that it is also possible to provide an interpreter-style translation scheme where evidence
values will be constructed a run-time.

The translation scheme is coherent under the assumption that the set of CHRs is terminating,
confluent, range-restricted and simplification rules are single-headed and non-overlapping. This
extends previously known coherence results [1].

References

[1] M. P. Jones. Coherence for qualified types. Research Report YALEU/DCS/RR-989, Yale
University, Department of Computer Science, September 1993.

[2] R. Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17:348-375, Dec 1978.

[3] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In Proc. 16th ACM
Symposium on Principles of Programming Languages (POPL), pages 60-76, January 1989.

14

