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h 21, 2002Abstra
tThis paper is a 
omplement to \A Theory of Overloading" by Stu
key and Sulzmann.The authors introdu
e a general overloading framework based on Constraint Handling Rules(CHRs). The main fo
uss is on type inferen
e issues. Here, we provide a rigorous studyof semanti
 meanings for programs 
ontaining overloaded identi�ers. Sour
e expressions aretranslated by inserting appropriate eviden
e parameters whi
h represent a
tual values of over-loaded identi�ers. We provide a general 
oheren
e results under some suÆ
ient 
onditions onCHRs. We observe that the target language is typable in the Hindley/Milner system extendedwith polymorphi
 re
ursion. The 
oheren
e property is lost in 
ase of a stri
t language. Sur-prisingly, in 
ase we impose 
ondition similar to the value-restri
tion found in ML, we 
anre
over 
oheren
e for stri
t languages.1 Introdu
tionIn \A Theory of Overloading", Stu
key and Sulzmann introdu
e a general theory for overloading.The main fo
uss is on type inferen
e. In this paper, we provide a thorough study of the semanti
meaning of programs 
ontaining overloaded identi�ers.We follow the 
ommon approa
h [3℄ to give a semanti
 meaning for overloaded identi�ers bypassing around eviden
e values as additional fun
tion parameters. Eviden
e values represent thea
tual de�nitions of overloaded fun
tions. Consider the following program.overload eq :: Int! Int! Booleq = primEqIntoverload eq :: 8a:Eq (a! a! Bool)) [a℄! [a℄! Booleq = let eqL :: 8a:Eq (a! a! Bool))[a℄! [a℄! BooleqL [℄ [℄ = TrueeqL (x:xs) [℄ = FalseeqL [℄ (y:ys) = FalseeqL (x:xs) (y:ys) = (eq x y) && (eqList xs ys)in eqLexp xs ys = (eq (tail xs) ys, eq 1 3)where tail :: [a℄! [a℄ takes the tail of a list. In a �rst step we translate overloaded de�nitions. We�nd 1



e
EqInt = primEqInte
EqList eq = let eqL [℄ [℄ = TrueeqL (x:xs) [℄ = FalseeqL [℄ (y:ys) = FalseeqL (x:xs) (y:ys) = (eq x y) && (eqL xs ys)in eqConstraints in the type 
omponent of sour
e expressions are turned into fun
tion parameters,we also say eviden
e parameters, in the target language. In the above example, the fun
tionparameter eq represents eviden
e for the equality fun
tion on type a! a! Bool. Note that thisis represented by the 
onstraint Eq (a ! a ! Bool) in the type s
heme of the sour
e expression.What remains is to insert the appropriate eviden
e values for expression exp.Expression exp gives rise to the following 
onstraintsEq ([a℄! b! 
); Eq (Int! Int! d)where we assume xs :: [a℄, ys :: b, 1 :: Int and 3 :: Int. In our framework, 
onstraint solving isde�ned in terms of Constraint Handling Rules (CHRs). CHRs are a de
larative 
onstraint languageto write in
remental 
onstraint solvers. Ea
h of the two overloaded de�nitions gives rise for a CHRsimpli�
ation rule:(Eq1) Eq (Int! Int! Bool) () True(Eq2) Eq ([a℄! [a℄! Bool) () Eq (a! a! Bool)Rule (Eq1) states that a de�nition exists on type Int ! Int ! Bool and rule (Eq2) states ade�nition on type [a℄ ! [a℄ ! Bool requires a de�nition on type a ! a ! Bool (Note that rule(Eq2) 
an be straightforwardly derived from the type annotation 8a:Eq (a! a! Bool)) [a℄![a℄ ! Bool). Logi
ally, () states an if-and-only-if relation. Operationally, a simpli�
ation rule
an be read as follows. Whenever we �nd a term whi
h mat
hes the left-hand side, then this term
an be simpli�ed (repla
ed) by the right-hand side. We assume that substitutions represented byequations have been applied to user-de�ned 
onstraints su
h as Eq.In addition to simpli�
ation rules, we also �nd propagation rules whi
h allow us to imposestronger 
onditions. Consider the two propagation rules:(Eq3) Eq (Int! Int! a) =) a = Bool(Eq4) Eq ([a℄! b! 
) =) b = [a℄; 
 = BoolRule (Eq3) states that any de�nition of equality whi
h takes two arguments of type Int musthave result type Bool. A similar statement is expressed by rule (Eq4). Logi
ally, the =) symbolstands for boolean impli
ation. Operationally, we propagate the right-hand side if there is a termmat
hing the left-hand side. We 
ommonly use P to refer to the set of CHRs. We identify byPSimp the subset of all simpli�
ation rules in P . Similarly, we write PProp for the subset of allpropagation rules in P . We write C ��P C 0 if 
onstraint C 
an be redu
ed to C 0 by appli
ation ofthe set P of CHRs.Consider the 
onstraints generated from the program text of expression exp. We �nd thefollowing CHR derivation: Eq ([a℄! b! 
); Eq (Int! Int! d)�Eq3 Eq ([a℄! b! 
); Eq (Int! Int! d); d = Bool�Eq1 Eq ([a℄! b! 
); d = Bool�Eq4 Eq ([a℄! b! 
); b = [a℄; 
 = Bool; d = Bool�Eq2 Eq (a! a! Bool); b = [a℄; 
 = Bool; d = BoolResolution of remaining equalities via uni�
ation yields2



exp :: 8a:Eq (a! a! Bool)) [a℄! [a℄! (Bool; Bool)exp xs ys = (eq (tail xs) ys, eq 1 3)Expression exp's type states that we 
an implement exp given we 
an provide eviden
e for Eq (a!a! Bool). We 
ommonly use eC to refer to eviden
e provided for a 
onstraint C.The novelty of our approa
h is that the 
onstru
tion of eviden
e 
an be straightforwardlyderived from the CHR derivation. Reading the CHR derivation ba
kwards tells us exa
tly howthis 
an be a
hieved. Constraint Eq (Int ! Int ! Bool) was redu
ed to True via rule (Eq1),therefore, we insert e
EqInt at the instantiation site. Constraint Eq ([a℄! [a℄! Bool) was redu
edto Eq (a ! a ! Bool). That is, applying e
EqList to eviden
e eEq (a!a!Bool) yields eviden
eeEq ([a℄![a℄!Bool). The �nal translated expression is as follows:exp2 :: 8a:(a! a! Bool)! [a℄! [a℄! (Bool; Bool)exp2 e xs ys = (eq (e
EqList e) (tail xs) ys, eq e
EqInt 1 3)where eq x = x. We assume ea
h overloaded identi�er simply passes on the appropriate 
al
ulatedde�nition. Note that Eq (a! a! Bool) has been turned into a mat
hing fun
tion type.In the remainder of this paper we will give a thorough des
ription of how to translate sour
einto target expressions in
luding a general 
oheren
e result. As we saw in the example above, thetranslation depends on a programs typing. Coheren
e states that the translation is independent ofa programs typing. The main result of this paper is that the translation is 
oherent if the CHRsinvolved are terminating, 
on
uent, range-restri
ted and simpli�
ation rules are single-headed andnon-overlapping. We will 
all su
h a set of CHRs a good set of CHRs. For terminology, de�nitionsand related results we refer the reader to \A Theory of Overloading".2 Eviden
e-Passing TranslationThe eviden
e-passing translation is driven by a programs typing. Sour
e expressions are translatedinto target expressions by turning 
onstraints in type s
hemes of sour
e expressions into fun
tionparamters in target expressions. At instantiation sites we need to provide the appropriate eviden
earguments.Re
all the rule for quanti�er elimination of sour
e expressions:P;C1;� ` e : 8��:C2 ) � [[P ℄℄ j= C1 ! [��=��℄C2P;C1;� ` e : [��=��℄�We 
an eliminate a quanti�er if the 
onstraint 
omponent 
an be satis�ed by the global 
ontextw.r.t. the 
urrent program theory, i.e. [[P ℄℄ j= C1 ! [��=��℄C2. In the target language, we need to
onstru
t eviden
e e[��=��℄C2 out of eC1 . This is done by a eviden
e 
onstru
ting fun
tion writtene
 : C1 P! [��=��℄C2. As we will see, su
h a fun
tion must exist be
ause of premise [[P ℄℄ j= C1 ![��=��℄C2.The target rule 
orresponding to quanti�er elimination of sour
e expressions is as follows:P;C1;� ` e : 8��:C2 ) � ; E[[P ℄℄ j= C1 ! [��=��℄C2e
 :: C1 P! [��=��℄C2P;C1;� ` e : [��=��℄� ; E (e
 eC1)Expression E is the translation of e. Note that the translation dependes on e's type.3



(Var) (x : �) 2 �P;C;� ` x : � (Let) P;C;�x ` e : �P;C;�x:x : � ` e0 : � 0P;C;�x ` let x = e in e0 : � 0(Abs) P;C;�x:x : � ` e : � 0P;C;�x ` �x:e : � ! � 0 (App) P;C;� ` e1 : �1 ! �2P;C;� ` e2 : �1P;C;� ` e1 e2 : �2(8I) P;C1 ^ C2;� ` e : ��� 62 fv(C1) [ fv(�)P;C1;� ` e : 8��:C2 ) � (8E) P;C1;� ` e : 8��:C2 ) �[[P ℄℄ j= C1 ! [��=��℄C2P;C1;� ` e : [��=��℄�
(Annot) fv(�) = ;P;C;� ` (e :: �) : � (Over) (f : 8a:F a) a) 2 �fv(8��:Cf ) �f ) = ;P;C;� ` e : 8��:Cf ) �f� mgu of hCf F ��f () �Cf 2 PP;C;� ` p : �P; C;� ` overload f :: (8��:Cf ) �f ) = e in p : �Figure 1: Typing Rules2.1 Sour
e LanguagePrograms p ::= overload f = e in p j eExpressions e ::= x j �x:e j e e j let x = e in e j (e :: �)Types � ::= � j � ! � j T ��Constraints C ::= � = � j U �� j C ^ CType S
hemes � ::= � j 8��:C ) �where � ! � is the fun
tion type 
onstru
tor, T is a user-de�ned n-ary type 
onstru
tor, � = �denotes (synta
ti
) equality among types, U is a user-de�ned n-ary predi
ate symbol. and ^denotes 
onjun
tion among 
onstraints. Note that we use ';' for 
onjun
tion among 
onstraints inCHR rules and example CHR derivations.For synta
ti
 
onvenien
e, we write example programs usingoverload f :: � instead of overload f = (e :: �) in : : :f = e: : :We will also make use of pattern mat
hing syntax. The straightforward des
ription of this extensionis omitted.The typing rules 
an be found in Figure 1. For explanations and inferen
e results we refer tothe related paper. 4



V = W? + V ! V + Pk2K (k V1 : : :Varity(k))?where W is the error element and K is the set of value 
onstru
tors.[[x℄℄� = �(x)[[�u:e℄℄� = �v:[[e℄℄�[u := v℄[[e e0℄℄� = if [[e℄℄� 2 V ! V ^ [[e0℄℄� 6=Wthen ([[e℄℄�) ([[e0℄℄�)elseW[[letx = e in e0℄℄� = if [[e℄℄� 6=Wthen [[e0℄℄�[x := [[e℄℄�℄elseW[[�1 ! �2℄℄ = � f 2 V ! V j v 2 [[�1℄℄) f v 2 [[�2℄℄ 	[[T �1 : : : �m℄℄ = f?g [ S fk [[�01℄℄ : : : [[�0n℄℄ jTrue;�init ` k : �01 ! : : :! �0n ! T �1 : : : �mg[[8��:� ℄℄ = T��[[[��=��℄� ℄℄where for monotypes � we require that fv(�) = ; and �init 
ontains the set of value 
onstru
torsused in this 
ontext. Figure 2: Target Semanti
s2.2 Target LanguageWe work with the following target language.Target Expressions E ::= x j �x:E j let x = E in EIn parti
ular, we assume we are given a denumerable set of eviden
e variables eC indexed by a
onstraint C. Eviden
e variables will 
arry the appropriate de�nitions of overloaded identi�ers.We interpret expressions in an untyped denotational semanti
s [2℄. We refer to Figure 2 forde�nitions of domain equations and meaning fun
tions on expressions and types.2.3 Eviden
eWe give meaning to eviden
e variables via a variable environment � mapping variables to elementsin V . We will always assume that �(eTrue) = () and �(e�1=�2) = () where �1 and �2 are synta
ti
allyequivalent and () represents a distin
t value in V .Variable environments � must satisfy program theories P . We de�ne � satis�es P i� for ea
huser-de�ned atom U � where U � ��P True we have that �(eU � ) 2 [[8fv(�):� ℄℄. That means,eviden
e values of user-de�ned 
onstraints must satisfy the given type spe
i�
ation. For example,Eq (Int! Int! Bool)��P True, therefore, �(eEq (Int!Int!Bool)) 2 [[Int! Int! Bool℄℄ whereP 
onsists of rules (Eq1-4) from the Introdu
tion.Let C = U1 �1; : : : ; Un �n be a 
onstraint su
h that C ��P True. Then, we require that�(eC) = (�(eU1 �1); : : : ; �(eUn �n)) as a further 
ondition for variable environments. Note that weassume an ordering on U1 �1; : : : ; Un �n. 5



(Var) (x : �) 2 �P;C;� ` x : � ; x (Let) P;C;�x ` e : � ; EP;C;�x:x : � ` e0 : � 0 ; E0P;C;�x ` let x = e in e0 : � 0 ; let x = E in E0(Abs) P;C;�x:x : � ` e : � 0 ; EP;C;�x ` �x:e : � ! � 0 ; �x:E (App) P;C;� ` e1 : �1 ! �2 ; E1P;C;� ` e2 : �1 ; E2P;C;� ` e1 e2 : �2 ; E1 E2(8I) P;C1 ^ C2;� ` e : � ; E�� 62 fv(C1;�)P;C1;� ` e : 8��:C2 ) � ; �eC2 :E (8E) P;C1;� ` e : 8��:C2 ) � ; E[[P ℄℄ j= C1 ! [��=��℄C2e
 :: C1 P! [��=��℄C2P;C1;� ` e : [��=��℄� ; E (e
 eC1)Figure 3: Eviden
e-passing translationLet C1 and C2 be two 
onstraints, � a variable environment and P be a good set of CHRs su
hthat � satis�es P and [[P ℄℄ j= C1 ! C2. We say e
 is an eviden
e 
onstru
tor i� for ea
h substitution� su
h that �(C1) ��P True we have that e
(�(e�(C1))) = �(e�(C2)). In su
h a situation wewrite e
 :: C1 P! C2. Note that the 
onditions imply that �(C1) (and �(C2)) doesn't 
ontainany equality 
onstraints. The Canoni
al Normal Form Lemma implies that �(C2) ��P True (if�(C1)��P True).We maintain that if there exists � whi
h satis�es P , then the de�nition of eviden
e 
onstru
t-ing fun
tions is straightforward. However, one of the 
hallenges will be to 
onstru
t a variableenvironment � whi
h satis�es P .2.4 TranslationFigure 3 des
ribes the eviden
e-passing translation from sour
e to target expressions via judgmentsof the form P;C;� ` e : � ; E. The translation is driven by a programs typing derivation. Notethat we omitted the straightforward rule (Annot).The most interesting rules are (8I) where we abstra
t over eviden
e variables and (8E) wherewe provide the proper eviden
e values. In 
ase e
 :: C1 P! [��=��℄C2 where [��=��℄C2 ��P True, wesimply provide e[��=��℄C2 dire
tly instead of e
 eC1 (see the �nal translated expression of exp fromthe Introdu
tion).The problem of translating overloaded de�nitions and building eviden
e 
onstru
tors will beredu
ed to translating expressions. Both translations s
hemes are mutually re
ursive. For 
on-venien
e, we will present both 
onstru
tions in two seperate statements (see Lemmas 1 and 2).Importantly, the translation s
hemes preserve typing as stated in Lemma 3.We 
all P;C;� ` e : � a normalized derivation if no equality 
onstraints appear in the 
onstraint
omponent of subderivations and type s
hemes and ea
h entailment 
he
k [[P ℄℄ j= C1 ! C2 holdsi� C1; C2��P C1.Lemma 1 (Translation of Programs) Let p be a program, Pi be the set of simpli�
ation rulesarising from p and Pp be a set of propagation rules su
h that P = Pi[Pp is good and P;C;� ` p : �6



is normalized for some C, � and �. Then, there exists a variable environment � whi
h satis�es P .Proof: Consider ea
h overloaded de�nition overload f :: (8��:Cf ) �f ) = e in plus theirasso
iated simpli�
ation rule F � () U1 �1; : : : ; Un �nNote that Cf = U1 �1; : : : ; Un �n.We translate e yielding target expression E, i.e. P;C;� ` e : 8��:Cf ) �f ; E. Wegenerate fF �;U1 �1;:::;Un �n = ETarget expression E might 
ontain eviden
e 
onstru
tors. For ea
h e
 :: C1 P! C2 wegenerate an equation as des
ribed in Lemma 2 (therefore the pro
ess of translatingprograms and 
onstru
ting eviden
e is mutually re
ursive).Finally, for ea
h overloaded identi�er f we generate f = �x:x.We re
ord in � the least �x point of the above set of equations.In the following, we will use [[8:� ℄℄ as a short-hand for [[8fv(�):� ℄℄.Consider F � su
h that F � ��P True (implies F � ��PSimp True). We provide anindu
tive 
onstru
tion of �(eF � ).For all F � �PSimp True, we de�ne �(eF � ) = �(fF � 0;True) where there exists � su
hthat � � �� 0 and fF � 0;True is as above. Note that �(eF � ) 2 [[8:� ℄℄ by 
onstru
tion(follows from Lemmas 2 and 3). Note that the CHRs are non-overlapping, therefore,there is only one su
h fF � 0;True.For all F � �PSimp U1 �1; : : : ; Un �n, we have that Ui �i ��PSimp True. Therefore,�(eUi �i) is de�ned. We de�ne�(eF � ) = �(fF �;U1 �1;:::;Un �n) (�(eU1 �1); : : : ; �(eUn �n))Note that �(fF �;U1 �1;:::;Un �n) 2 [[8:(�1; : : : ; �n) ! � ℄℄ and �(eUi �i) 2 [[8:�i℄℄ (followsfrom Lemmas 2 and 3), therefore, �(eF � ) 2 [[8:� ℄℄.Note that all simpli�
ation rules are non-overlapping, hen
e, for ea
h F � ��PSimp Truethe derivation is unique. Therefore, the above 
onstru
tion is deterministi
.A note on the ordering among user-de�ned 
onstraints Ui �i:We denote by � the ordering relation among 
onstraints. Consider (R) F (a! (b!b))() U a;U (b! b) in some set P of CHRs where U a � U (b! b). Assume F (�1 !�2)��P True for some types �1 and �2 su
h that U �2 � U �1. Clearly, � is not stableunder substitution. We �nd that F (�1 ! �2)�R U �2; U �1 ��P True. However, notethat fF (a!(b!b));U a;U (b!b) = �(eU a; eU (b!b)): : : :. Therefore, we assume that ea
hsimpli�
ation rule step keeps the 
onstraints in the same order as in the 
orrespondingfun
tion de�nition. We have that F (�1 ! �2)�R U �1; U �2��P True. 2Let C = U1 �1 ^ : : : Un �n be a 
onstraint. We de�ne typeof(C) = (�1; : : : ; �n). Re
all that weassume an ordering on 
onstraints. 7



Lemma 2 (Constru
tion of Eviden
e) Let p be a program, Pi be the set of simpli�
ation rulesarising from p and Pp be a set of propagation rules su
h that P = Pi[Pp is good and P;C;� ` p : �is normalized for some C, � and �. Let C1 and C2 be two sets of user-de�ned 
onstraints su
hthat C1; C2 ��P C1. Then, there exists a 
losed de�nition for e
 :: C1 P! C2. In parti
ular, thede�nition of e
 has type 8��:typeof(C1)! typeof(C2) where �� = fv(typeof(C1)! typeof(C2)).Proof: For simpli
ity, we only 
onsider the 
ase if C2 = U � and C1 = U1 �1; : : : ; Um �m.Note that C1; C2 ��P C1 implies C1; C2 ��PSimp C1.The proof pro
eeds by indu
tion on the derivation C1; C2 ��P C1. We distinguishamong the following 
ases:(1) U = Uj for some j = 1 : : :m: We immediately �nd that e
(e1; : : : ; ej ; : : : ; em) = ej .(2) We have that (R) U � 0 () C3 2 P and there exists � su
h that �� 0 � � .We �nd that C1; C2 �R C1; �C3. For ea
h Ui �i 2 �C3 we have that C1; Ui �i �� C1.By indu
tion, there exist 
losed de�nitions e
i :: C1 P! Ui �i. We de�ne e
(e1; : : : ; em) =(e
U � 0;C3 (e
1(e1; : : : ; em)); : : : ; (e
k(e1; : : : ; em))) where e
U �;C3 is as in Lemma 1 andare done. Note that we yet again have to be aware of the \ordering" among 
onstraints(see Lemma 1).The statement about typability of e
 follows from Lemma 3. 2Note that the above statement ex
ludes eviden
e 
onstru
tors su
h ase
1 :: Eq ([a℄! [a℄! Bool) P! Eq (a! a! Bool)We 
an't give a 
losed de�nition for e
1, however, e
1 must exist. For any � su
h that Eq ([� ℄ ![� ℄! Bool)��P True we 
an 
onstru
t eviden
e for eEq (�!�arrowBool).We state that the translation of normalized expression preseves typing.Lemma 3 (Typability) Let P;C 0;�0 ` e : 8��:C ) � ; E be a normalized derivation. Let� derived from �0 by repla
ing ea
h f : 8�:F � ) � 2 �0 by f : 8�:� ! �. Then � ` E :typeof(C)! � is derivable in the Hindley/Milner system with polymorphi
 re
ursion.Consideroverload eq :: Int! Int! Booleq = primEqIntoverload eq :: 8a:Eq (a! a! Bool)) [a℄! [a℄! Booleq = let eqList :: 8a:Eq (a! a! Bool))[a℄! [a℄! BooleqList [℄ [℄ = TrueeqList (x:xs) [℄ = FalseeqList [℄ (y:ys) = FalseeqList (x:xs) (y:ys) = (eq x y) && (eqList xs ys)&& (ord [1℄ [2℄)in eqList overload ord :: Int! Int! Boolord = primOrdIntoverload ord :: 8a:Ord (a! a! Bool)) [a℄! [a℄! Boolord = let ordList :: 8a:Ord (a! a! Bool))[a℄! [a℄! BoolordList [℄ [℄ = TrueordList (x:xs) [℄ = FalseordList [℄ (y:ys) = False 8



ordList (x:xs) (y:ys) = (ord x y) && (ordList xs ys)&& (eq [1℄ [2℄)in ordListOur translation yieldseqI :: Int! Int! BooleqI = primEqInteqL :: 8a:(a! a! Bool)! [a℄! [a℄! BooleqL eq = let eqList :: 8a:[a℄! [a℄! BooleqList [℄ [℄ = TrueeqList (x:xs) [℄ = FalseeqList [℄ (y:ys) = FalseeqList (x:xs) (y:ys) = (eq x y) && (eqL eq xs ys)&& (ordL ordI [1℄ [2℄)in eqList ordI :: Int! Int! BoolordI = primOrdIntordL :: 8a:(a! a! Bool)! [a℄! [a℄! BoolordL ord = let ordList :: 8a:[a℄! [a℄! BoolordList [℄ [℄ = TrueordList (x:xs) [℄ = FalseordList [℄ (y:ys) = FalseordList (x:xs) (y:ys) = (ord x y) && (ordL ord xs ys)&& (eqL eqI [1℄ [2℄)in ordListNote that we have already simpli�ed slightly the translated expressions. Instead of f (e
 e) wesimply write e
 e.For example, we �nd ordL ordI be
ause of Ord ([Int℄ ! [Int℄ ! Bool); Eq (a !! Bool)��PEq (a!! Bool).We observe that the translated expressed is typable in the Hindley/Milner system extendedwith polymorphi
 re
ursion.2.5 UnambiguityUnambiguity of a type s
heme 8��:C ) � implies that any ground instan
e of the type 
omponent� uniquely determines the free variables in the 
onstraint 
omponent C.Lemma 4 (Uniqueness) Let P be a good set of CHRs, 8��:C ) � an unambiguous type s
heme,� a mapping from type variables fv(C; �) to ground types and �0 a mapping from type variablesfv(�) to ground types su
h that �0 � � and �C ��P True. Then C; �0 ��P �00 su
h that �0t�00 = �.Proof: Note that we interpret substitutions as equality 
onstraints. Then, the � rela-tion among substitutions 
an be expressed as 
onstraint entailment, and t 
orrespondsto 
onjun
tion.By assumption 8��:C ) � is unambiguous. Let � be a variable renaming. We have that[[P ℄℄ j= (C ^ �(C) ^ � = �(�))! (� = �(�))for variables � 2 fv(C; �). Then, we �nd that[[P ℄℄ j= (C ^ �(C) ^ � = �(�)) ! (� = �(�))for variables � 2 fv(C; �). From that, we 
on
lude[[P ℄℄ j= (C ^ �(C) ^ �)$ (C ^ �(C) ^ �0)9



By assumption we know that �(C) ��P True. The Canoni
al Form Lemma enfor
esthat C; �0 ��P �00. 22.6 Coheren
eThe exer
ise in Se
tion 2.4 was to ensure that there exists a variable environment � whi
h satis�esP . In fa
t, for normalized expressions we 
ould provide a 
ompilation s
heme whi
h preservestyping.We will now establish a 
oheren
e results under the assumption that we have an � su
h that �satis�es P . The te
hni
al 
hallenge is to introdu
e 
oer
ion (ordering) relations between di�erenttyping derivations.Re
all the example from the Introdu
tion.exp :: 8a:Eq (a! a! Bool)) [a℄! [a℄! (Bool; Bool)exp xs ys = (eq (tail xs) ys, eq 1 3)andexp' :: [Int℄! [Int℄! (Bool; Bool)exp' xs ys = (eq (tail xs) ys, eq 1 3)are two valid typings for the same expression. We �nd the following two target expressionsexp2 :: 8a:(a! a! Bool)! [a℄! [a℄! (Bool; Bool)exp2 e xs ys = (eq (e
EqList e) (tail xs) ys, eq e
EqInt 1 3)andexp2' :: [Int℄! [Int℄! (Bool; Bool)exp2' xs ys = (eq (e
EqList e
EqInt) (tail xs) ys, eq e
EqInt 1 3)Clearly, expressions exp type and translation is more general than that of exp'. Te
hni
ally,we introdu
e an ordering relation among types, target expressions and variable environments.Variable environments need to be in
luded be
ause in 
ase of let expressions the environment willbe 
hanged (see Lemma 8). Unambiguity be
omes now important.De�nition 1 Let P be a set of CHRs, C a 
onstraint, �1 = 8��1:C1 ) �1 and �2 = 8��2:C2 ) �2two type s
hemes, E1 and E2 two target expressions, and �1 and �2 two variable environments.We de�ne P;C `ttv (�1; E1; �1) � (�2; E2; �2) i�� P is good and �1 is unambiguous,� �1 and �2 satisfy P ,� [[P ℄℄ ^ C `i �1 � �2� for any � su
h that [[P ℄℄ j= �(C ^ C2 ^ �1 = �2), we have that[[�E1℄℄�1 �1(e�0C1) = [[�E2℄℄�2 �2(e�C2)where �0 is the unique extension of � su
h that [[P ℄℄ j= �0C1 and � is mapping on eviden
evariables with �(eC) = e�C .We de�ne P;C `ttv (�1; �1) � (�2; �2) i� P;C `ttv (�1; x1; �1) � (�01; x1; �2); : : : ; P; C `ttv(�n; xn; �1) � (�0n; xn; �2) where �1 = fx1 : �1; : : : ; xn : �ng and �2 = fx1 : �01; : : : ; xn : �0ng.
10



Note that uniquess of extension �0 is ensured by Lemma 4.We 
onsider (�; E; �) as a short-hand for (8�:� = � ) �; �x:E; �) where � and x are fresh vari-ables. In this parti
ular 
ase, we �nd that if P;C `ttv (�1; E1; �1) � (�1; E2; �2) where fv(�1; �2) = ;and C ��P True, then [[E1℄℄�1 = [[E2℄℄�2.Coming ba
k to the example from above we �nd thatP; True `ttv(8a:Eq (a! a! Bool)) [a℄! [a℄! (Bool; Bool); exp2; �)�([Int℄! [Int℄! [Int℄! (Bool; Bool); exp20; �)where P 
onsists of rules (Eq1-4) from the Introdu
tion and � is the variable enviroment as indu
edby Lemma 1.Lemma 5 (Transitivity) The above relation is transitive.Lemma 6 (Instantiation) Let P be a set of CHRs, C2 and C 02 two 
onstraints, �1 a type s
heme,E1 and E2 two target expressions, �1 and �2 two variable environments, ��2 a sequen
e of types, ��2 asequen
e of type variables, eC2 a eviden
e variable and e
 :: C2 P! [��2=��2℄C 02 a eviden
e 
onstru
torsu
h that P;C2 `ttv (�1; E1; �1) � (8��2:C 02 ) �2; E2; �2). Then,P;C2 `ttv (�1; E1; �1) � ([��2=��2℄�2; E2 (e
 eC2); �2):Lemma 7 (Generalization) Let P be a set of CHRs, C2 and C 02 two 
onstraints, ��2 a sequen
eof type variables, �1 a type s
heme, �2 a type, E1 and E2 two target expressions and �1 and �2 twovariable environments su
h that P;C2 ^ C 02 `ttv (�1; E1; �1) � (�2; E2; �2) and ��2 62 fv(C2; �1).Then, P;C2 `ttv (�1; E1; �1) � (8��2:C 02 ) �2; �eC02 :E2; �2):In order to de�ne on ordering on typing derivations, we will �rst need to de�ne levels ofderivations trees.Let P;C;� ` e : � ; E be a jugdment. The derivation tree of P;C;� ` e : � ; E is anup-side down tree where all leave nodes are asso
iated with (Var) rule appli
ation, intermediatenodes are asso
iated with other valid rule appli
ations and the root node (i.e. the bottom mostnode) is P;C;� ` e : � ; E. We refer to the level of P;C;� ` e : � ; E as the sum of all of thepaths in the derivation true.De�nition 2 Let P be a set of CHRs, C1 and C2 two 
onstraints, �1 and �2 two type environ-ments, �1 and �2 two type s
hemes, E1 and E2 two target expressions and e a sour
e expression.Then, we de�ne (P;C1;�1 ` e : �1 ; E1)�(P;C2;�2 ` e : �2 ; E2)i�� P is good and �1 is unambiguous,� [[P ℄℄ j= C2 ! (�9fv(�2)C1),� [[P ℄℄ ^ C2 `i �1 � �2, [[P ℄℄ ^ C2 `i �1 � �2, and11



� let D1 be the derivation tree of P;C1;�1 ` e : �1 ; E1, and let D2 be the derivation tree ofP;C2;�2 ` e : �2 ; E2. Then relation � holds for all sub-derivations P;C 01;�01 ` e0 : �01 ;E01 in D1 and P;C 02;�02 ` e0 : �02 ; E02 in D2 where we assume that P;C 01;�01 ` e0 : �01 ; E01has a lower level in D1 than P;C 02;�02 ` e0 : �02 ; E02 in D2 in D2.Lemma 8 (Con
uent Translations) Let P be a good set of CHRs, P;C1;�1 ` e : �1 ; E1,P;C2;�2 ` e : �2 ; E2 be two judgments, �1 and �2 two variable environments su
h that(P;C1;�1 ` e : �1 ; E1) � (P;C2;�2 ` e : �2 ; E2) and P;C2 `ttv (�1; �1) � (�2; �2).Then P;C2 `ttv (�1; E1; �1) � (�2; E2; �2).Proof: We pro
eed by indu
tion over the derivation P;C2;�2 ` e : �2 ; E2. We onlyshow some of the interesting 
ases.Case (Var) We �nd the following situation:(x : �2) 2 �2P;C2;�2 ` x : �2 ; xwhere (P;C2;�1 ` x : �1 ; x) � (P;C2;�2 ` x : �2 ; x). By assumption, we havethat P;C2 `ttv (�1; x; �1) � (�2; x; �2) and we are done.Case (8E) We �nd the following situation:P;C2;�2 ` e : 8��:C 02 ) �2 ; E2[[P ℄℄ j= C2 ! [��2=��2℄C 02e
 :: C2 P! [��2=��2℄C 02P;C;�2 ` e : [��2=��2℄�2 ; E2 (e
 eC2)We 
an apply the indu
tion hypothesis to the premise. Appli
ation of Lemma 6 yieldsthe desired result.Case (8I) We �nd the following situation:P;C2 ^ C 02;�2 ` e : �2 ; E2��2 62 fv(C2;�2)P;C2;�2 ` e : 8��2:C 02 ) �2 ; �eC02 :E2Appli
ation of the indu
tion hypothesis and Lemma 7 yields the desired result.Case (Let) We �nd the following situation:P;C2; (�2)x ` e : �2 ; E2P;C2; (�2)x:x : �2 ` e0 : � 02 ; E02P;C2; (�2)x ` let x = e in e0 : � 02 ; let x = E2 in E02where (P;C1; (�1)x ` e : �1 ; E1) � (P;C2; (�2)x ` e : �2 ; E2)(P;C1; (�1)x:x : �1 ` e0 : � 01 ; E01) � (P;C2; (�2)x:x : �2 ` e0 : � 02 ; E02)12



for some �1 and E1.Appli
ation of the indu
tion hypothesis to the top premise yieldsP;C2 `ttv (�1; E1; �1) � (�2; E2; �2)We set �01 = �1[x := �eC1 :[[�E1℄℄�1℄ and �02 = �2[x := �eC2 :[[�E2℄℄�2℄. The indu
tionhypothesis applied to the bottom premise yieldsP;C2 `ttv (� 01; E01; �01) � (� 02; E02; �02):We 
an 
on
lude thatP;C2 `ttv (� 01; let x = E1 in E01; �1) � (� 02; let x = E2 in E02; �2)and we are done. 2We say a derivation P;C;� ` e : � ; E is prin
ipal and unambiguous i� for any otherP;C 0;� ` e : �0 ; E0 we have that (P;C;� ` e : � ; E) � (P;C 0;� ` e : �0 ; E0).It remains to give a meaning to primitive fun
tions. Let � be a variable environment and � a
losed type environment (fv(�) = ;). We de�ne � j= � i� (1) for ea
h f : 8a:F a) a 2 � we havethat �(f) = �x:x, and (2) for all other x : � 2 � we have that �(x) 2 [[�℄℄.Theorem 1 (Coheren
e) Let P;C1;� ` e : � ; E1 and P;C2;� ` e : � ; E2 be two judgmentsand � be a variable environment su
h that the prin
ipal derivation is unambiguous, C1 ��P True,C2 ��P True, � j= �, � satis�es P , fv(�; �) = ; and P is a terminating, 
on
uent set of CHRswhere ea
h simpli�
ation rule is single-headed and non-overlapping. Then [[E1℄℄� = [[E2℄℄�.Proof: The prin
ipal derivation is unambiguous. That means, we �nd that(P;C3;� ` e : � 0 ; E3) � (P;C1;� ` e : � ; E1)and (P;C3;� ` e : � 0 ; E3) � (P;C2;� ` e : � ; E2)for some C3 and � 0.Appli
ation of Lemma 8 yieldsP;C1 `ttv (� 0; E3; �) � (�; E1; �)and P;C2 `ttv (� 0; E3; �) � (�; E2; �):In parti
ular, we �nd that [[E3℄℄� = [[E1℄℄� and [[E3℄℄� = [[E2℄℄�. Therefore, [[E1℄℄� =[[E2℄℄� and we are done. 2We note that we will immediately loose 
oheren
e in 
ase of a stri
t language.Consideroverload f :: Unit! Intf x = f xin let a = f ()in ()The let-bound expression a has two possible typings, 8b:F (Unit! b)) b and Int. Note that thetranslation under a :: Int doesn't terminate. Relates to value restri
tion in ML.13



3 Con
lusionWe 
ould provide a 
ompilation s
heme for normalized programs whi
h preserves typing. Webelieve that it is also possible to provide an interpreter-style translation s
heme where eviden
evalues will be 
onstru
ted a run-time.The translation s
heme is 
oherent under the assumption that the set of CHRs is terminating,
on
uent, range-restri
ted and simpli�
ation rules are single-headed and non-overlapping. Thisextends previously known 
oheren
e results [1℄.Referen
es[1℄ M. P. Jones. Coheren
e for quali�ed types. Resear
h Report YALEU/DCS/RR-989, YaleUniversity, Department of Computer S
ien
e, September 1993.[2℄ R. Milner. A theory of type polymorphism in programming. Journal of Computer and SystemS
ien
es, 17:348{375, De
 1978.[3℄ P. Wadler and S. Blott. How to make ad-ho
 polymorphism less ad-ho
. In Pro
. 16th ACMSymposium on Prin
iples of Programming Languages (POPL), pages 60{76, January 1989.
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