
SEKI Report SR-87-11, Universit�at Kaiserslautern, West Germany, February 1988
TEL (Version 0.9)

Report and User Manual
Gert Smolka

FB Informatik, Universit�at Kaiserslautern
6750 Kaiserslautern, West Germany

smolka@uklirb.uucp
Abstract

TEL is a second generation logic programming language integrating types and
functions with relational programming �a la Prolog. Relations are de�ned as
in Prolog and are executed by typed resolution and backtracking. Functions
are de�ned with conditional equations and are executed by typed innermost
rewriting.

The most innovative aspect of TEL is its type system, which accommo-
dates parametric polymorphism as in ML and subtypes as in OBJ2. Variables
need not be declared since TEL's type checker infers their most general types
automatically. Types are present at runtime through typed matching and
uni�cation: values are tested for membership in subtypes and variables are
constrained to subtypes.

TEL is not a toy language. Almost the entire TEL system has been written
in TEL. TEL has a module facility supporting the incremental construction of
large programs. Furthermore, TEL supports type-safe �le handling and other
extra-logical operations.

Acknowledgments: This research was funded by the Bundesminister
f�ur Forschung und Technologie under grant ITR8501A. Version 0.9 of TEL is
being implemented by Costa Moissiadis, Werner Nutt, Reinhard Praeger, Ralf

Scheidhauer, and Georg Seul. The �rst version of TEL was implemented by
Michael Schmitt.

Contents

1 Introduction . 1
2 Types . 6
3 Functions . 15
4 Built-in Types . 20
5 Relations . 26
6 Modules . 36
7 Open Variables . 53
8 Type Checking . 63
9 Streams and Procedures 71
10 More on Conditions 79
11 Data Bases . 84

Appendices
A Built-ins . 86
B Syntax . 94
C Manager Commands 103
D Limitations of the Current Implementation 107

1 Introduction

TEL, an acronym for types, equations and logic, is a second generation logic
programming language. It is the practical outcome of a research e�ort aimed
at the integration of types and functions with logic programming �a la Prolog.
Here are some highlights of TEL:
� TEL is a functional language. Functions are de�ned with conditional
equations and are executed by innermost rewriting.
� TEL is a relational language. Relations are de�ned with Horn clauses and
are executed by resolution and backtracking.
� Relations are declared with �xed input and output arguments, the con-
sistent use of which is checked automatically at compile time. These data

ow declarations provide for a simple and clean operational interaction
between functions and relations.
� The data
ow discipline can be weakened by declaring variables as open.
Thus the full generality of logical variables in Prolog is available if needed.
� TEL is a typed language. It is the �rst language supporting both subtypes
(as in OBJ2) and polymorphic type constructors (as in ML). Every well-
typed term has a unique least type depending functionally on the types
of the variables occurring in the term.
� TEL computes with types. Types are present at run-time through typed
matching and uni�cation: values are tested for membership in subtypes
and open variables are constrained to subtypes.
� TEL has a module facility supporting the incremental construction of
large programs. After the interface structure of a system has been �xed,
every module can be compiled separately.
� TEL is a logic programming language. TEL's kernel language is based
on a �rst-order, typed, de�nite clause logic with equality giving an initial
algebra semantics to programs.

� TEL is a practical language. It supports type-safe �le handling and other
extra-logical operations. Almost the entire TEL system is written in TEL.
� TEL is an interactive language. The user enters queries, which are type
checked, compiled, and executed. The results of a query are reported
together with their least types.
Most of the theoretical and practical e�ort was devoted to the development

of TEL's type system. So far TEL is the only language integrating parametric
polymorphism �a la ML [Harper et al. 86] with subtypes �a la OBJ2 [Futatsugi
85]. This combination regains much of the
exibility of untyped languages such
as Lisp and Prolog while providing the classical advantages of typed languages:
� The data structures used by a program can be de�ned explicitly. This
leads to clearer, much easier to understand programs. The explicit de�-
nition of data structures is particularly bene�cial if they are complex, as
it is typically the case in Arti�cial Intelligence.
� Type checking detects many programming errors at compile time, a fea-
ture whose importance is proportional to the size of the program under
development.

The presence of subtypes makes TEL's type system more than a syntactic
discipline merely visible at compile time. TEL actually computes with types:
at run time values are tested for membership in subtypes and variables are
constrained to subtypes. Constraining variables to subtypes rather than bind-
ing them tentatively to particular elements (as in Prolog) avoids expensive
backtracking.

The combination of parametric polymorphism with subtypes poses many
interesting research problems: the design of a logic supporting these features,
the development of the necessary type checking algorithms (which are nontriv-
ial), and the development of an operational semantics having typed rewriting
and uni�cation as its major components. These problems are adressed in my
thesis [Smolka 88], which provides the theoretical foundation for TEL. Another
paper contributing to the theoretical foundation of TEL is [Smolka et al. 87],

which studies computational aspects of an equational logic with subsorts.
The goal in designing TEL was to come up with a practical language that

is a signi�cant improvement over Prolog and can be implemented e�ciently
right now. The quest for practicability strongly constrained the design of TEL:
� Functions are executed by innermost rewriting rather than by the more
general narrowing. If there is a need to solve for variables, this still can be
done with relations. One advantage of executing functions with rewriting
is that the programmer doesn't need to worry about their control. Fur-
thermore, executing functions with innermost rewriting can compete with
the e�ciency of pure Lisp, which gains a magnitude in speed over current
Prolog implementations.
� Relations must be declared with �xed input and output arguments. This
ensures a clean operational interaction between functions and relations
and is in accordance with common Prolog programming style. Having
explicit data
ow declarations and checking their consistent use at com-
pile time contributes signi�cantly to the clarity of programs. If the full
generality of logical variables is needed, which is typically the case only
at a few places in a large program, it can be obtained by bypassing the
data
ow discipline by declaring variables as open. While this approach
is quite unsatisfactory from a theoretician's point of view, our program-
ming experience in TEL suggests that it is very practical. One major
use of logical variables is the implementation of open data structures, for
instance, tables that are created incrementally at run time. In TEL open
data structures can be implemented as abstract data types, thus making
it possible to hide the use of open variables.
� Logic alone does not su�ce for a practical programming language. Hence
TEL has several extra-logical features including modules, control struc-
tures, stream-based �le handling and data bases. All of TEL's extra-
logical features are type safe.
To ensure TEL's practicability, I decided to implement TEL with a boot-

strapped approach so that we could write most of the TEL system in TEL.

This still provides an excellent test case for TEL and many of the features of
version 0.9 of TEL grew out of the experience made when implementing earlier
versions of TEL.

At the time this report is published (February 1988), we have almost
�nished an implementation of version 0.9 of TEL [Nutt/Smolka 88]. This im-
plementation runs on Quintus Prolog under UNIX 4.2 BSD on Apollo work-
stations and will be distributed freely including the program sources. Most of
the implementation is written in TEL. The frontend of the compiler produces
an intermediate language, which the backend translates to Quintus Prolog en-
hanced with a small run-time system. TEL programs that are comparable to
Prolog programs run at the same speed as their Prolog equivalents.

Since the current implementation employs Prolog as the target language,
the backend of the compiler is simple and we could concentrate on the frontend
and the programming environment, which turned out to be complex due to
type and module checking. To achieve a reasonably e�cient execution, we were
forced to map TEL's typed uni�cation more or less directly to Prolog's untyped
uni�cation. Consequently, the current implementation cannot constrain open
variables to subtypes. The solution to this problem will be the development of
an abstract machine tailored to TEL's needs. The abstract machine will also
allow for many optimizations exploiting the presence of functions and types
that aren't possible at the level of Prolog.

Currently we are investigating several extensions that could be part of
version 1.0 of TEL. Among them are feature types and inheritance hierarchies
[Smolka/A��t-Kaci 87], which would provide record notation and feature uni-
�cation. Another line of research tries to accommodate types as �rst-class
citizens and to allow for dependent types. Finally, we would like to have the
possibility to pass functions and relations as arguments.

This report describes version 0.9 of TEL from the viewpoint of a pro-
grammer who has programming experience in Prolog but is not necessarily
interested in TEL's theoretical foundations. It is complemented by my the-
sis [Smolka 88], which provides the theoretical foundations and develops, in a

more general setting, the employed type checking and uni�cation algorithms.
References
K. Futatsugi, J.A. Goguen, J.-P. Jouannaud and J. Meseguer, Principles of
OBJ2. POPL 1985, 52{66.
R. Harper, D. MacQueen, and R. Milner, Standard ML. Report ECS-LFCS-
86-2, Edinburgh University, Scotland, March 1986.
W. Nutt and G. Smolka, Implementing TEL. SEKI Report, Universit�at
Kaiserslautern, West Germany, 1988, forthcoming.
G. Smolka, Classi�ed Logic: Semantics, Deduction, Type Checking and Com-
putation. Dissertation, Universit�at Kaiserslautern, West Germany, 1988, forth-
coming.
G. Smolka and H. A��t-Kaci, Inheritance Hierarchies: Semantics and Uni�ca-
tion. To appear in Symbolic Computation, Special Issue on Uni�cation Theory,
1988. Report AI-057-87, MCC, Austin, Texas, May 1987.
G. Smolka, W. Nutt, J.A. Goguen and J. Meseguer, Order-Sorted Equational
Computation. Presented at the Colloquium on the Resolution of Equations
in Algebraic Structures, Austin, Texas, May 1987. SEKI Report SR-87-14,
Universit�at Kaiserslautern, West Germany, December 1987.

2 Types

About the most simple kind of type de�nition you can write in TEL is
color := {red, blue, green}.
This de�nition introduces the type constructor color together with the three
value constructors red, blue and green. The de�nition states that the type
color has exactly three elements which are denoted by the given value con-
structors.
De�nitions cannot be given directly to TEL but must be part of a module.
After you have activated TEL, you can enter the command
TEL> #edit_module(test).
and an editor window will pop up on the screen containing an empty module
with the name test:
module test.
endmodule.
Now you can add de�nitions, for instance:
module test.
color := {red, blue, green}.
endmodule.
After you have saved the editor window you can enter the command
TEL> #open(test).
and TEL will type-check, compile, load, and open the module test. Now you
can type the term
TEL> red.
and TEL will respond
red : color

which means that the term red reduces to the term red having the least type
color. In TEL every well-typed ground term, that is, a well-typed term not
containing variables, has a unique least type.
To obtain a type with in�nitely many elements you need to use recursion. For
instance, try something like
tree := {etree,

netree: tree x %left subtree
tree}. %right subtree

The elements of tree are the closed terms that can be build with the value
constructors etree and netree, where the two arguments of netree must be
of type tree. The recursion comes in through the binary value constructor
netree: tree x tree --> tree.
After you have opened a module with the de�nition of tree you can type the
term
TEL> netree(netree(etree, etree), etree).
and TEL will respond with:
netree(netree(etree, etree), etree) : tree
TEL>

An important feature of TEL is that types can be de�ned as the union of
types. For instance, you can de�ne binary trees also as
tree := empty_tree ++ nonempty_tree.
empty_tree := {etree}.
nonempty_tree := {netree: tree x tree}.
With this de�nition empty_tree and nonempty_tree are subtypes of tree.
After you have opened a module containing this de�nition of tree you can
type
TEL> etree.

and TEL will respond with
etree : empty_tree.
If you type
TEL> netree(netree(etree, etree), etree).
TEL will respond with:
netree(netree(etree, etree), etree) : nonempty_tree.

The possibility to de�ne a type as the union of subtypes contributes signif-
icantly to the expressive power of TEL's type system. You can mix subtype
de�nitions with constructor de�nitions. For instance, you can write
strange_type := color ++

tree ++
{other,
strange_tree: strange_type x strange_type}.

After you have opened a module containing the de�nition of strange_type
you can type the following queries:
TEL> red.
red : color
TEL> etree.
etree:empty_tree
TEL> strange_tree(blue, other).
strange_tree(blue, other) : strange_type
The query
TEL> red : strange_type.
succeeded.

is a so-called containment, which tests whether the value of the term given at
its left-hand side is an element of the type given at its right-hand side. If you
type
red:tree.
TEL will respond with
*** type error in condition 1:

least type of red is color;
color and tree don't have a common subtype

since the type checker determines that the given containment cannot hold.
Trees labelled with colors can be de�ned as follows:
tree := empty_tree ++ nonempty_tree.
empty_tree := {etree}.
nonempty_tree := {netree: tree x tree x color}.

TEL also provides for polymorphic type de�nitions. The following is a poly-
morphic de�nition of labelled trees:
tree(T) := empty_tree ++ nonempty_tree(T).
empty_tree := {etree}.
nonempty_tree(T) := {netree: tree x tree x T}.
The letter T is a variable that ranges over types and parameterizes the de�ni-
tion of tree and non_emptytree with respect to the type of the labels. This
polymorphic de�nition introduces in�nitely many types, for instance,
tree(color), tree(tree(color)), tree(tree(tree(color))),
After you have opened a module containing the polymorphic de�nition of la-

belled trees and the de�nition of color, you can type the following queries:
TEL> etree.
etree : empty_tree
TEL> netree(etree, etree, red).
netree(etree, etree, red) : nonempty_tree(color)
TEL> netree(etree, etree, etree).
netree(etree, etree, etree) : nonempty_tree(empty_tree)
TEL> netree(etree, etree, netree(etree, etree, red)).
netree(etree, etree, netree(etree, etree, red)) :

nonempty_tree(nonempty_tree(color)).
The syntax of variables that range over types is the same as for variables that
range over elements of types: they must start with a capital letter and can then
continue with capital and small letters, digits, and the underline character ` '
.
All type constructors you can de�ne in TEL are monotonic with respect
to the subtype order. For instance, tree(empty_tree) is a subtype of
tree(tree(color)) since empty_tree is a subtype of tree(color). Further-
more, empty_tree is a subtype of tree(tree(color)) since empty_tree is a
subtype of tree(t) for every type t.
The following polymorphic de�nition of lists is built-in in TEL:
list(T) := elist ++ nelist(T).
elist := {nil}.
nelist(T) := {. : T x list(T)}.
For syntactical convenience, TEL treats the value constructor `.' as a right-
associative in�x operator. For instance, if you have opened module with the
de�nition of color, you can type the query
TEL> red.blue.green.nil
and TEL will respond
red.blue.green.nil : nelist(color).

Pairs are another built-in polymorphic type of TEL:
L##R := {# : L x R}.
For syntactical convenience, TEL treats the binary type constructor `##' and
the binary value constructor `#' as right-associative in�x operators.
A type de�nition whose right-hand side consists of a single type term de�nes
a type abbreviation. For instance,
assoc_list(Key,T) := list(Key##T).
introduces the type abbreviation assoc_list. You can now write as-
soc_list(color,bool) for list(color##bool). Type abbreviations are syn-
tactic sugar that is eliminated at compile-time.
Consider the type de�nition
ty(T) := {foo: list(T) x color}.
What do you think is the least type of foo(nil,red)? TEL will give you the
answer if you open a module with the de�nition of ty and pose the query:
TEL> foo(nil,red).
foo(nil,red) : ty(void).
TEL solves the problem with the internal type void, which has no elements
and is a subtype of every type. TEL won't allow you to explicitly use void in
your programs.
By now you know TEL's basic machinery for type de�nitions. In later sections
we will discuss a few further built-in types and TEL's facility for de�ning
abstract types. In the rest of this section, we will state some restrictions that
type de�nitions in TEL must observe.
The closedness condition applies to all de�nitions you can write in TEL and
requires that in a module every occurring designator (a name for an object, for

instance, a type or value constructor) must have one and only one de�nition.
In particular, TEL will complain if you use the same name for a type and a
constructor or if the same constructor occurs in the right-hand sides of two
di�erent type de�nitions.
The minimality condition requires that

1. the variables occurring in the left-hand side of a type de�nition must be pair-
wise distinct

2. every variable occurring in the left-hand side of a type de�nition must occur
in the right-hand side of the type de�nition, and every variable occurring in
the right-hand side of a type de�nition must occur in the left-hand side of the
type de�nition.
The completeness condition requires that two types have a greatest common
subtype if they have a common subtype. Thus TEL will complain if you write
tya := {a}.
tyb := {b}.
tyc := tya ++ tyb ++ {c}.
tyd := tya ++ tyb ++ {d}.
since tyc and tyd have tya and tyb as common subtypes but do not have a
greatest common subtype. If you complete the above de�nition to
tya := {a}.
tyb := {b}.
tyab := tya ++ tyb.
tyc := tyab ++ {c}.
tyd := tyab ++ {d}.
TEL will be happy since now tyab is the greatest common subtype of tyc and
tyd. Figure 2.1 gives a graphical representation of the two type hierarchies.
The well-foundedness condition requires that no type has in�nitely many sub-
types. In contrast to the preceding conditions, which are more or less of a

tyc tyd

tya tyb

tyc tyd

tyab

tya tyb

Figure 2.1. An incomplete type hierarchy and its completion.

cosmetic nature, this condition unfortunately excludes quite interesting type
de�nitions. For instance, TEL will scream at you if you write
mylist(T) := T##mylist(T) ++ {mynil}.
since, for instance, mylist(color) has in�nitely many subtypes:
mylist(color) � color##mylist(color) � � � � :
The well-foundedness condition is needed so that TEL's type checker and uni-
�cation algorithm can work properly.
The coherence condition requires that two type terms are equal if their outer-
most type constructors are equal and they both can be reached by following
subtype speci�cations starting from the righthand side of some type de�nition.
For instance, TEL will complain if you write the de�nitions
tyc(T) := tya(color) ++ tyb(T).
tya(T) := list(T) ++ {a: T}.
tyb(T) := list(tree(T)) ++ {b: T}.
since, starting from tyc(T), one can reach both list(color) and list(tree(T)):
tyc(T)) tya(color)) list(color)
tyc(T)) tyb(T)) list(tree(T)):

Like the well-foundedness condition, the coherence condition is needed so that
TEL's type checker and uni�cation algorithm can work properly.
This gives you a good idea of the restrictions type de�nitions in TEL must
satisfy. All these restrictions are checked automatically by TEL.
In TEL it is possible to de�ne types having no elements, for instance,
empty_type := {foo: empty_type x color}.
TEL checks for each type constructor whether it has elements and prints a
warning if it discovers an empty type constructor. We will see later that empty
types can make sense in conjunction with open data structures.

3 Functions

Functions in TEL are de�ned by conditional equations and are executed by
typed rewriting. The following examples are functions for list processing, so
you may want to look again at the built-in de�nition of lists:
list(T) := elist ++ nelist(T).
elist := {nil}.
nelist(T) := {.: T x list(T)}.
A function that appends two lists can be de�ned as follows:
app: list(T) x list(T) --> list(T).

app(nil, L) = L.
app(H.T, L) = H.app(T,L).

The de�nition consists of three sentences: a function declaration stating the
types of the arguments and the result, and two equations de�ning app by
induction on the list structure of the �rst argument. A sentence is a sequence
of characters ending with a full stop, that is, a period followed by a layout
character, for instance, a space or a newline character. The scope of a variable
is always limited to the sentence in which it appears. Variables start with a
capital letter and can continue with letters, digits or the underline character
`_' . Thus T, L, H, and T are the variables that occur in the de�nition of app.
Since TEL derives the types of variables automatically, you don't have to de-
clare variables. The types TEL derives for the variables in the second equation
of app are:
TT:type, H:TT, T:list(TT), L:list(TT).
The type variable TT doesn't appear in the clause but is an auxiliary variable
generated by TEL's type checker. Note tat the occurrence of T in the decla-
ration of app is unrelated to the occurrence of T in the second equation of
app, since the scope of a variable is always limited to the sentence in which it
occurs.

TEL also supports a second, more compact syntax for function de�nitions:
app: list(T) x list(T) --> list(T).

nil, L |> L.
H.T, L |> H.app(T,L).

Since TEL has subtypes, it makes often sense to declare more than one rank
for a function, for instance:
app: list(T) x list(T) --> list(T),

nelist(T) x list(T) --> nelist(T),
list(T) x nelist(T) --> nelist(T).

nil, L |> L.
H.T, L |> H.app(T,L).

With this de�nition you can use app(s,t) as an argument for a function that
requires a nonempty list, provided s or t is a nonempty list. A fourth rank one
could declare for app is
elist x elist --> elist
but this rank will be of little use in practice.
After you have opened a module containing the de�nitions of color and app,
you can enter the query
app(red.blue.nil, green.blue.nil).
and TEL will respond:
red.blue.green.blue.nil : nelist(color).
The query is executed by rewriting the given term with the equations de�ning
app, that is, by applying them from left to right:
app(red.blue.nil, green.blue.nil)
red.app(blue.nil, green.blue.nil) %by the 2nd equation
red.blue.app(nil, green.blue.nil) %by the 2nd equation
red.blue.green.blue.nil. %by the 1st equation

Rewriting is done in an innermost order, that is, the arguments of a function
are reduced or evaluated before the function is applied. TEL's well-typedness
conditions ensure that rewriting never increases the least type of the term
being rewritten.
Another list function is the membership test
member: T x list(T) --> bool

_, nil |> false.
X, X._ |> true.
X, Y.R |> member(X,R) <-- X \= Y.

where
bool := {true, false}.
is a built-in type of TEL. This example illustrates several further features of
TEL. First, the underline character ` ' can be used as a wildcard variable,
that is, as a variable that occurs only once in a sentence. It is good style to use
the underline character for every such variable. Second, the third equation of
member is conditional. Its condition is the disequation X\=Y, which is satis�ed
if X and Y are di�erent. Finally, the left-hand sides of the equations de�ning
a function need not be linear|for instance, X appears twice in the second
equation of member.
When a function is executed, its equations are considered in top down order. An
equation applies if its left-hand side matches and its conditions are satis�ed.
The �rst equation that applies determines the result of the function. Note
that member is de�ned such that always exactly one equation applies. Since
the equations are tried in top down order, member could also be written as
member: T x list(T) --> bool

_, nil |> false.
X, X._ |> true.
X, Y.R |> member(X,R). %<-- X \= Y.

where the operationally redundant test X \= Y is omitted. The drawback of
this optimization is that the declarative semantics of the de�nition of member

is not correct anymore, that is, we have traded clarity for e�ciency. It is good
style to list the conditions that are optimized away as comments.
The following de�nes a function computing the list of all sublists of a list:
powerlist: list(T) --> list(list(T)).

nil |> nil.nil.
H.T |> app(listcons(H,PL), PL) <-- PL = powerlist(T).

listcons: T x list(list(T)) --> list(list(T)).
_, nil |> nil.
X, H.T |> (X.H).listcons(X,T).

The second clause of powerlist shows that you can introduce new variables
in the condition part of a clause by binding them at the left-hand side of an
equation.
The canonical example of a recursive function is the factorial function for the
natural numbers. Since integers are built-in in TEL, one possibility is:
fac: nat --> posint.

0 |> 1.
N |> N*fac(N-1) <-- N>0.

Another possibility is:
fac: nat --> posint.

0 |> 1.
N |> N*fac(N-1) <-- N:posint.

Here the condition of the second clause is the containment N:posint, which
is satis�ed if N is a positive integer. The type posint is a built-in subtype of
nat, which in turn is a built-in subtype of int.
In TEL a function must have at least one argument. Constants can be de�ned
as so-called parameters, for instance:
par length : nat = 22.
par width : nat = 56.
par area : nat = length*width.

The value of a parameter is computed exactly once when the module in which
the parameter is de�ned is loaded.
The left-hand side of an equation de�ning a function f must have the form
f(s1; . . . ; sn), where the formal arguments s1; . . . ; sn must be canonical terms,
that is, terms that only consist of variables and value constructors. For the
|>-syntax this means that every term that appears left from the |>-symbol
must be canonical.
For every well-typed tuple of arguments, at least one of the equations de�n-
ing a function should apply. Since TEL allows for conditional equations, this
property is undecidable. If at run-time a situation occurs in which no equation
of a function applies, TEL will print an error message and abort execution.

4 Built-in Types

This section presents most of TEL's built-in types.
4.1 Booleans

The following type de�nition is built-in:
bool := {true, false}.
Furthermore, the following boolean connectives are built-in:
and: bool x bool --> bool. %and is a right-associative

true, true |> true. %infix operator
false, _ |> false.
_, false |> false.

or: bool x bool --> bool. %or is a right-associative
false, false |> false. %infix operator
true, _ |> true.
_, true |> true.

not: bool --> bool. %not is a prefix operator
true |> false.
false |> true.

4.2 Integers

Integers are built-in as follows:
int := negint ++ nat.
nat := zero ++ posint.
negint := {~1, ~2, ~3, ... }.
zero := {0}.
posint := {1, 2, 3, ... }.
par minnegint : negint = <implementation dependent>.
par maxposint : posint = <implementation dependent>.

The following arithmetic functions are built-in:

+ : int x int --> int, % + is a right-associative
nat x nat --> nat, % infix operator
posint x nat --> posint,
nat x posint --> posint,
negint x negint --> negint.

- : int x int --> int, % - is a left-associative
nat x negint --> posint, % infix operator
negint x nat --> negint.

~ : int --> int, %unary minus, ~ is a prefix operator
posint --> negint,
negint --> posint.

* : int x int --> int, % * is a right-associative
nat x nat --> nat, % infix operator
posint x posint --> posint,
posint x negint --> negint,
negint x posint --> negint,
negint x negint --> posint.

mod: int x int --> nat. % mod is an infix operator

// : int x int >-> int, % // is an infix operator
nat x nat >-> nat,
posint x posint --> posint,
posint x negint --> negint,
negint x posint --> negint,
negint x negint --> posint.

The �rst two ranks of the integer division function `//' are partial since
division by zero is unde�ned. You should use partial ranks for all functions
that are not de�ned for all arguments. Operationally, it makes no di�erence
whether you use total or partial ranks, but the correct use of partial ranks
makes it easier to understand your programs.
The usual comparisons for integers are built-in:
< : int x int --> bool. % < is an infix operator
=< : int x int --> bool. % =< is an infix operator
> : int x int --> bool. % > is an infix operator
>= : int x int --> bool. % >= is an infix operator

4.3 Characters

Characters are built-in as follows:
char := layout_char ++ alpha_char ++ symbol_char.
alpha_char := letter ++ digit ++ {"_"}.
letter := capital_letter ++ small_letter.
symbol_char := grouping_symbol ++ operator_symbol ++ {"%"}.

layout_char := {"bell", "eof", "nl",
" any character with ASCII-code less than 33"}.

capital_letter := {"A", "B", ... , "Z"}.
small_letter := {"a", "b", ... , "z"}.
digit := {"0", "1", ... , "9"}.

grouping_symbol := {"(", ")", "[", "]", "{", "}",
""", "'", ","}.

operator_symbol := {"+", "-", "*", "/", "|", "\", "^",
"<", ">", "`", "~", "=", ":", ".",
"?", "@", "#", "$", "&", "!", ";"}.

Every character has a natural number equivalent:
natequiv: char --> nat.
charequiv: nat >-> char.

4.4 Lists

The following de�nition of lists is built-in:
list(T) := elist ++ nelist(T).
elist := {nil}.
nelist(T) := {. : T x list(T)}.
Furthermore, a few list functions are built-in:
| : list(T) x list(T) --> list(T), % | is a right-assoc.

nelist(T) x list(T) --> nelist(T), % infix operator
list(T) x nelist(T) --> nelist(T).
nil, L |> L.
H.T, L |> H.T|L.

in: T x list(T) --> bool. % in is an infix operator
_, nil |> false.
X, X._ |> true.
X, Y.T |> X in T. %<-- X \= Y.

length: list(T) --> nat,
nelist(T) --> posint.

nil |> 0.
_.T |> 1 + length(T).

4.5 Pairs

Pairs are built-in as follows:
S##T := {# : S x T}. % ## and # are right-associative

% infix operators

4.6 Strings

Strings are built-in as follows:
string := estring ++ nestring.
estring := {''}.
nestring := a nonempty string starts with ', continues with at least one character,

where ' is written as '', and ends with '

Strings are ordered lexiographically and the following comparisons are built-
in:
@< : string x string --> bool. % @< is an infix operator
@=< : string x string --> bool. % @=< is an infix operator
@> : string x string --> bool. % @> is an infix operator
@>= : string x string --> bool. % @>= is an infix operator

Strings can be converted to character lists and character lists can be converted
to strings:
chartrans: string --> list(char),

nestring --> nelist(char).

stringtrans: list(char) --> string,
nelist(char) --> nestring.

A function that concatenates two strings is built-in:
^ : string x string --> string.

S1, S2 |> stringtrans(chartrans(S1)|chartrans(S2)).

Furthermore, a function that converts natural numbers into strings is built-in:
genstring: string x nat --> nestring.

S, N |> S^stringtrans(genstring1(N,nil)).

The auxiliary functions genstring1 and gen_equiv are not built-in, but they
are included here to give two more examples for functional programming in
TEL.
genstring1: nat x list(char) --> list(char).

N, L |> gen_equiv(N).L <-- N < 10.
N, L |> genstring1(N//10, gen_equiv(N mod 10).L).

%<-- N >= 10.

gen_equiv: nat >-> char. %only defined for 0..9
0 |> "0".
1 |> "1".
2 |> "2".
3 |> "3".
4 |> "4".
5 |> "5".
6 |> "6".
7 |> "7".
8 |> "8".
9 |> "9".

5 Relations

As in Prolog, relations in TEL are de�ned by a sequence of Horn clauses, which
are logical implications of the form
P C1 & . . . & Cn
and are read: P holds if C1; . . . ; Cn hold. Since TEL is typed, you must declare
a type for every argument of a relation. Furthermore, you must declare for ev-
ery argument of a relation whether, operationally, it is used as an input or an
output argument. Compared to Prolog, this data
ow declarations certainly
restrict the things one can do with relations, but, on the other hand, they
make it easier to understand the operational semantics of a program. Further-
more, data
ow declarations are needed for a clean and simple integration of
the functional and relational parts of the language. In a later section we will
discuss so-called open variables, which provide a means to bypass data
ow
declarations and thus allow to regain the full power of Prolog if it is actually
needed.
A simple example is the de�nition of a membership relation for lists:
rel member: ?T x list(T).

member(X, X._).
member(X, _.T) <-- member(X,T).

This de�nition can be read as follows: X is a member of a list whose head is
X, and X is a member of a list if it is a member of its tail. The �rst argu-
ment of member is declared as an output argument and the second argument
is declared as an input argument. When a relational condition is executed, the
terms appearing as input arguments must be ground, that is, must not contain
variables. After a relational condition is executed, the terms appearing as out-
put arguments will be ground. TEL's type checker ensures that you can de�ne
and use relations only in such a way that these conditions are always satis�ed
at run-time.
If you have opened a module containing the de�nition of member, you can type
the following query:
TEL> member(X, 1.2.3.nil).

Tel will compute the �rst solution for the variable X and respond with:
X = 1 : posint
more answers? (y/n).
If you now type `n' , TEL will be ready for the next query. However, if you
type `y' , TEL computes a further answer to your query:
X = 2 : posint
more answers? (y/n) y
X = 3 : posint
more answers? (y/n) y
failed.

Here are two further queries:
TEL> member(2, 1.2.3.nil).
succeeded
TEL> member(4, 1.2.3.nil)
failed.

TEL won't accept the query
TEL> member(X, 1.2.3.Y).
since the second argument of member is an input argument and thus must not
contain an unbound variable. TEL will respond with the error message:
*** mode error in condition 1:

second argument 1.2.3.Y of member is declared input;
Y is not bound.

In TEL relations are executed as in Prolog. To execute a relational condition
r(s1; . . . ; sn), the clauses de�ning r are tried in top down order. A clause
applies if its head uni�es with r(s1; . . . ; sn) and all its conditions, which are

executed from left to right, succeed. If a clause applies, the uni�cation with its
head and the execution of its conditions will bind all variables occurring in the
output arguments of r(s1; . . . ; sn) to ground terms. If no clause of r applies, the
execution of r(s1; . . . ; sn) fails. In contrast to functional conditions, a relational
condition can be reactivated through backtracking and can thus produce more
than one set of bindings for the variables occurring in its arguments. I won't
o�er more information on the execution of relations since careful explanations
can be found in textbooks on Prolog and logic programming.
5.1 Example: A Tautology Checker

This example shows how one can implement a tautology checker for proposi-
tional formulas in TEL. It illustrates determinate relations, negation as failure,
and the combination of relations and functions.
Propositional formulas are de�ned as follows:
propform := bool ++ propvar ++

{a: propform x propform, % and connective
o: propform x propform, % or connective
n: propform}. % not connective

propvar := {v: string}. % propositional variable
Furthermore, we need assignments that assign truth values to propositional
variables:
assignment := list(propvar##bool).
Note that assignment is not a type constructor but a type abbreviation for
the type term list(propvar##bool). The de�nition of assignment reveals a
weakness that TEL shares with other typed programming languages: the type
de�nition cannot express the requirement that an assignment should assign
only one truth value to a propositional variable. All we can do is to de�ne a
test that checks whether an assignment is consistent:
consistent: assignment --> bool.

nil |> true.
H.A |> consistent1(H,A) and consistent(A).

consistent1: propvar##bool x assignment --> bool.
_, nil |> true.
V#_, V#_.A |> false.
V1#B1, V2#_.A |> consistent1(V1#B1, A). % <-- V1 \= V2.

Next we de�ne a relation truthvalue(F, A, CA, B) that holds if A can be
extended to CA such that F has the truthvalue B under CA:
rel truthvalue: propform x

assignment x
?assignment x % extended assignment
?bool. % truth value under extended ass.

truthvalue(B, A, A, B) <-- B:bool.

truthvalue(V, A, CA, B) <-- V:propvar &
extends(V, A, CA, B).

truthvalue(a(F1,F2), A, CA, B) <--
truthvalue(F1, A, CA1, B1) &
truthvalue(F2, CA1, CA, B2) &
B = (B1 and B2).

truthvalue(o(F1,F2), A, CA, B) <--
truthvalue(F1, A, CA1, B1) &
truthvalue(F2, CA1, CA, B2) &
B = (B1 or B2).

truthvalue(n(F), A, CA, B) <--
truthvalue(F, A, CA, B1) &
B = not B1.

rel extends: propvar x assignment x ?assignment x ?bool.
extends(V, nil, V#true, true).
extends(V, nil, V#false, false).
extends(V, A, A, B) <-- V#B._ = A.
extends(V, W#BW.A, W#BW.CA, B) <-- V \= W &

extends(V, A, CA, B).
If you have opened a module containing these de�nitions, you can type the
query:
TEL> F = a(v('x'), v('y')) &

A = v('x')#true .nil &
truthvalue(F, A, CA, B).

CA = v('x')#true .v('y')#true .nil : nelist(propvar##bool)
B = true : bool
more answers? (y/n) y
CA = v('x')#true .v('y')#false .nil : nelist(propvar##bool)
B = false : bool
more answers? (y/n) y
failed.

We can now de�ne a relation that holds if its argument is a satis�able propo-
sitional formula:
rel satisfiable: propform.
satisfiable(F) <-- truthvalue(F, nil, _, true).
A relation is called determinate if it produces at most one collection of output
arguments for any well-typed collection of input arguments. Since satisfiable
has no output arguments, it is necessarily determinate. In TEL you can declare
relations to be determinate by using drel instead of rel. Thus
drel satisfiable: propform.
satisfiable(F) <-- truthvalue(F, nil, _, true).

is a better de�nition of satisfiable since it makes explicit that satisfiable
is determinate. Furthermore, declaring satisfiable as determinate will speed
up the execution of your program, since it prevents backtracking the execution
of satisfiable, which would unnecessarily force truthvalue to search for a
further solution.
From what I have said it is clear that you can force relations to be determinate
by declaring them determinate. This use of a drel-declaration corresponds to
a weak form of Prolog's cut.
A boolean test for satis�ability can be de�ned as follows:
issatifiable: propform --> bool.

F |> true <-- truthvalue(F, nil, _, true).
F |> false <-- naf truthvalue(F, nil, _, true).

This example illustrates that TEL o�ers the possibility to negate relational
conditions. This is done by the reserved identi�er naf, which stands for nega-
tion as failure. A condition naf C succeeds if C fails and fails if C succeeds.
As in Prolog, TEL's negation as failure is in general not logical negation.
You can make the following optimization without changing the operational
semantics of issatisfiable:
issatifiable: propform --> bool.

F |> true <-- truthvalue(F, nil, _, true).
F |> false. % <-- naf truthvalue(F, nil, _, true).

Finally, you can write a tautology test as follows:
istautology: propform --> bool.

F |> not issatisfiable(n(F)).
5.2 Example: A Precedence Parser

This example implements a precedence parser for expressions built from inte-
gers and pre�x and in�x operators. Operators and precedences are de�ned as
follows:
operator := prefix_operator ++ postfix_operator.

prefix_operator := {preop: string x % operator name
precedence x % prec. of operator
precedence}. % max. prec. of arg.

%the argument precedence must be =< the operator precedence

infix_operator := {inop: string x % operator name
precedence x % prec. of operator
precedence x % max. prec. left arg.
precedence}. % max. prec. right arg.

%the argument precedences must be =< the operator precedence

precedence := nat. % must be =< maxprecedence
par maxprecedence : precedence = 10000.
The parser translates lists of operators and integers to groups, which are de-
�ned as follows:
group := int ++

{pgroup: prefix_operator x group,
igroup: infix_operator x group x % left arg.

group}. % right arg.

op_or_int := operator ++ int.
op_or_group := op_or_int ++ group.
group_or_error := group ++ {error}.

These type de�nitions provide a nice example for a nontrivial subtype hierar-
chy, which is shown graphically in Figure 5.1. Note that op_or_int and group
have int as greatest common subtype. Next we de�ne a function that yields

op_or_group group_or_error

groupop_or_int

intoperator

prefix_operator infix_operator negint nat

zero posint

Figure 5.1. The subtype hierarchy of the precedence parser example.

the precedence of operators and groups:
pre: op_or_group --> nat.

preop(_,P,_) |> P.
inop(_,P,_,_) |> P.
I |> 0 <-- I:int.
pgroup(O,_) |> pre(O).
igroup(O,_,_) |> pre(O).

Now we are ready to de�ne the parser:
parse: list(op_or_int) --> group_or_error.

L |> G <-- parse1(L, maxprecedence, G, nil).
L |> error. % <-- naf parse1(L, maxprecedence, _, nil).

drel parse1: list(op_or_group) x
precedence x % current precedence
?group x
?list(op_or_group). % unparsed tokens

parse1(G.nil, P, G, nil) <-- G:group & P >= pre(G).
parse1(O.R, P, G, R2) <--

preop(_,OP,AP) = O &
P >= OP &
parse1(R, AP, G1, R1) &
parse1(pgroup(O,G1).R1, P, G, R2).

parse1(G.O.R, P, G2, R2) <--
G:group &
inop(_,OP,LP,RP) = O &
OP =< P & pre(G) =< LP &
parse1(R, RP, G1, R1) &
parse1(igroup(O,G,G1).R1, P, G2, R2).

parse1(G.O.R, P, G, O.R) <--
G:group & O:infix_operator &
P < pre(O) & pre(G) =< P.

If you have opened a module with these de�nitions, you can enter the term
TEL> parse(4

.inop('-',5,5,4)

.preop('~',2,1)

.5

.inop('-',5,5,4)

.7 .nil). % 4 - ~5 - 7
and TEL will respond with
= igroup(inop('-',5,5,4),

igroup(inop('-',5,5,4),
4,
pgroup(preop('~',2,1), 5)),

7).

5.3 Total Relations

Every function can be formulated as a determinate relation by transferring the
result of the function through an output argument. Usually you won't want
to do this since functional notation allows for nesting. However, relational
notation can be convenient for functions whose result is a compound term
that must be decomposed for further processing. For instance,
foo: nat --> nat##nat.

N |> N//5 # N mod 5.
can be written as the total determinate relation
tdrel roo: nat x ?nat x ?nat.

roo(N, D, M) <-- D = N//5 & M = N mod 5.
A relation is total, if it produces at least one output for every well-typed input.
If you know that a relation is total, you should make this explicit by declaring
it as trel or, if you also know that it is determinate, as tdrel. If the execution
of a relation declared as total fails to produce at least one output, TEL prints
an error message and aborts execution. These error messages are helpful during
debugging.
If you want to write programs that are executed very e�ciently, you should
know that the condition roo(N,D,M) is executed more e�ciently than D#M =
foo(N) since in the functional case TEL has to construct a pair and then to
decompose it again, which costs time as well as memory.

6 Modules

TEL has a simple, nonparametric module facility supporting the incremental
construction of large systems. The module facility provides for information
hiding, abstract data types and separate compilation. A module consists of an
interface de�ning which modules are imported and which objects are exported,
and a body implementing the exported objects that aren't transferred from
imported modules. Modules must be organized hierarchically, that is, a module
cannot be imported by one of its submodules. To implement a system, one
starts by writing interfaces and continues by implementing the corresponding
bodies. After a hierarchy of interfaces has been compiled, the corresponding
bodies can be compiled separately.

6.1 An Example

Figure 6.1 shows the simpli�ed module structure of a compiler. The module
abs_syntax_and_table de�nes the abstract syntax and the de�nition table of
the compiler. To make things easy, we assume that the de�nition table need
not be extended during compilation.
interface abs_syntax_and_table.

entry := abstract.
name: entry --> string.
address: entry --> nat.
drel entryof: string x ?entry.
term := {ter: entry x list(term)}.

endinterface.

Note that entry is exported as an abstract type, that is, an importing module
does not know which constructors and subtypes entry has. For every abstract
type equality and containment (for instance, X:entry) are available.
Views are special modules that don't have a body. The view frontend_import
de�nes which of the objects exported by the module abs_syntax_and_table

compiler

backendfrontend

frontend_import backend_import

abs_syntax_and_table

Figure 6.1. A module hierarchy.

can be seen by the front end of the compiler.

view frontend_import.
imports abs_syntax_and_table.
from abs_syntax_and_table: entry, entryof, term.

endview.

The relation entryof is used to obtain the entry of an identi�er. Since it is a
relation that can fail, entryof can also be used to check whether an identi�er
is de�ned in the table.

The view backend_import de�nes which of the objects exported by abs_syntax_and_table
can be seen by the back end of the compiler.

view backend_import.
imports abs_syntax_and_table.
from abs_syntax_and_table: entry, name, address, term.

endview.

Now we are ready for the interface of the front end:
interface frontend.

imports frontend_import.
from abs_syntax_and_table: term abstract.
error := abstract.
term_or_error := term ++ error.
parse: list(char) --> term_or_error.
error_msg: error --> string.

endinterface.
Since the top module of the compiler is not supposed to inspect the details
of the parser output, term is transferred as an abstract type although it is
imported as a nonabstract type from frontend_import. Note that the transfer
declaration
from abs_syntax_and_table: term abstract.
gives the name of the module where term is actually de�ned and not the name
of the module from which term is imported.
The interface of the back end is
interface backend.

imports backend_import.
from abs_syntax_and_table: term abstract.
code: term --> list(char).

endinterface.
and the interface of the top module of the compiler is
interface compiler.

imports frontend, backend.
endinterface.
Note that the type term is imported twice, once from frontend and once from
backend. This is the so-called sharing problem. To make sure that the multiple

import of an identi�er is okay, TEL must �nd out in which module an identi�er
is actually de�ned. A multiple import of an identi�er is okay if all imports refer
to the same module.
To compile all these interfaces it su�ces to type
TEL> compile_interface(compiler).
After you have compiled the interfaces you can compile and recompile the
module bodies in any order you like. However, before you can open a module,
all its submodules must have been compiled.
The body of the top module could be de�ned as follows:
module compiler.

output := {error_str: string,
code_list: list(char)}.

compile: list(char) --> output.
L |> compile1(parse(L)).

compile1: term_or_error --> output.
T |> code_list(code(T)) <-- T:term.
E |> error_str(error_msg(E)) <-- E:error.

endmodule.
The function compile1 uses containments for the abstract types term and
error to �nd out whether the parser has detected an error.
6.2 Signatures

In a TEL module the following objects can exist:
� type constructors, for instance, bool or list
� type abbreviations
� value constructors, for instance, true, #, 63, 'a string', or "eof"
� parameters, for instance, maxposint or minnegint

� functions, for instance, +, mod, or natequiv
� relations
� procedures, which will be introduced in a later section.
For the sake of a short name, the term function is used in TEL only for
functions that, more exactly, might be called extending value functions. Math-
ematically, type constructors, value constructors and parameters are functions
as well.
Every object has a name. Objects that can be de�ned in TEL must be named
by so-called designators, which are either identi�ers or operators. The syntactic
details of identi�ers and operators are spelled out in Appendix B.
Objects that are not built-in are introduced by de�nitions. Part of a de�nition
is a declaration, which states the kind of the object, �xes the designator that
names the object, and possibly states type and data
ow information. TEL
allows for the following declarations:
declaration �!type declaration
j parameter declaration
j function declaration
j relation declaration
j procedure declaration.
Declarations of value constructors appear as part of type declarations.
The syntax of declarations is as follows:
type declaration �!
abstract type declaration
j type abbreviation
j type de�nition
abstract type declaration �!
type dec lhs `:=' `abstract' `.'

type dec lhs �!
identi�er [`(' f variable g `)']
j pre�x operator variable
j variable in�x operator variable
j variable post�x operator
the occurring variables must be pairwise distinct
type abbreviation �!
type dec lhs `:=' nonvariable type termevery variable that occurs in the left-hand side must occur in theright-hand side and vice versa
type de�nition �!
type dec lhs `:=' type def rhs `.'every variable that occurs in the left-hand side must occur in theright-hand side and vice versa
type def rhs �!
(subtype speci�cation `++')�

subtype speci�cation `++'
subtype speci�cation
j (subtype speci�cation `++')�
`{' f constructor de�nition g `}'
subtype speci�cation �!
nonvariable type term
constructor de�nition �!
designator [`:' domain]
domain �!
type term [`x' domain]
designator �!
identi�er j operator
A nonabstract type declaration is called a de�nition since it completely de�nes
the declared type constructor. Note that the right-hand side of a type de�nition
contains further declarations, namely, constructor declarations. Analogous to

type declarations, constructor declarations are called de�nitions since they
de�ne the declared constructor completely.
parameter declaration �!
`par' identi�er `:' ground type term `.'
function declaration �!designator `:' f rank g `.'
all ranks must specify the same number of arguments
rank �!domain `-->' type term
j domain `>->' type termevery variable occurring in the codomain of a rank must occur inthe domain of the rank
relation declaration �!
rel class designator `:' io domain `.'
rel class �!
`tdrel' j `drel' j `trel' j `rel'
io domain �![`?'] type term [`x' io domain]every variable occurring in the type term of an output argumentmust occur in the type term of an input argument
procedure declaration �!
proc class designator `:' [io domain] `.'
proc class �!
`tproc' j `proc'
A signature is a set of declarations containing the declarations of all built-in
objects, which are listed in Appendix A.
Given a signature, one can built two kinds of terms|type terms and value
terms. Type terms are terms that are built from type constructors and vari-
ables. Types are type terms that do not contain variables. Value terms are
terms that are built from value constructors, functions, parameters, and vari-
ables. Values are value terms that are built from value constructors only, that

is, do not contain functions, parameters, or variables. The built-in values of
integer, char and string are nullary value constructors.
Every module comes with three signatures:

� an export signature de�ned by the interface of the module
� an import signature de�ned by the interface of the module
� a local signature de�ned by the body of the module.
Since views don't have a body, they have only an import and an export signa-
ture.
There are several consistency requirements for the signatures of modules and
views, which are checked automatically. To de�ne these requirements, we need
several technical de�nitions. This de�nitions make sense only with respect to
a given signature.
We write s) t (read: s is directly outermost above t) if s and t are type terms
and the pair (s; t) is an instance of a pair (u; v), where the signature contains
a type de�nition whose left-hand side is u and whose right-hand side contains
v as a subtype speci�cation.
We write s)� t (read: s is outermost above t) if t is a type term and there
exist n > 0 type terms s1; . . . ; sn such that
s = s1) s2) � � �) sn = t:
Given the signature that belongs to the subtype hierarchy in Figure 5.1, we
have, for instance, int)�int, group)int, group)�posint, list(group))nelist(group),
and list(group))elist.
We say that a type constructor f is a subconstructor of a type construc-
tor g, if there exist terms s1; . . . ; sm and variables x1; . . . ; xn such that
g(x1; . . . ; xn))� f(s1; . . . ; sm) and g(x1; . . . ; xn) is the left-hand side of a
type de�nition. We say that a type constructor f is a superconstructor of a
type constructor g if g is a subconstructor of f .

We write s ! t (read: s is directly above t) if t is a type term and s can be
obtained from t by replacing a subterm u with v, where u) v. We write s � t
(read: s is above t) if s and t are type terms and there exist n > 0 type terms
s1; . . . ; sn such that
s = s1 ! s2 ! � � � ! sn = t:
We say that a type s is a subtype of a type t if t is above s. We say that a
type s is a supertype of a type t if t is a subtype of s. Every type is a subtype
and a supertype of itself.
The in�mum s u t of two type terms s and t is the greatest type term u such
that s � u and t � u. The supremum s t t of two type terms s and t is the
least type term u such that u � s and u � t. The consistency requirements we
will discuss below ensure that � is a partial order on type terms and that su t
[s t t] exist if s and t have a common lower [upper] bound.
Most of the following consistency requirements for signatures were already
discussed informally in Section 2, which also gives counterexamples.
A signature is closed, if every designator occurring in it has one and only one
declaration, and every term occurring in one of its declarations as a type term
is in fact a type term.
A signature is well-founded, if there are no in�nite chains
s! s1 ! s2 ! s3 ! � � �
issuing from the left-hand side s of a type de�nition. In a well-founded signa-
ture, every type has only �nitely many subtypes.
A signature is coherent if for every left-hand side u of a type de�nition and
every two type terms f(s1; . . . ; sm) and g(t1; . . . ; tn) that are outermost below
u we have f(s1; . . . ; sm) = g(t1; . . . ; tn) if f = g.
A signature is complete if every two type constructors that have a common
subconstructor have a greatest common subconstructor.

A function de�nition is regular if for every two ranks (total or partial)
s1 � � � sn ! s and t1 � � � tn ! t one of the following two conditions is satis-
�ed:

1. si u ti exists for all i, s1 u t1 � � � sn u tn ! u is one of the declared ranks, s � u,
and t � u

2. there is an i such that si = f(� � �), ti = g(� � �), and there is no type constructor
that is below f and g.
A signature is regular if each of its function declarations is regular.
Given a closed signature, the corresponding abbreviation-free signature is ob-
tained by deleting all abbreviation declarations and repeatedly expanding the
remaining occurrences of the abbreviations until all abbreviations are elimi-
nated. Of course, this elimination process only terminates if abbreviations are
used nonrecursively, a property that is checked by TEL.
A signature is consistent if it is closed and its corresponding abbreviation-free
signature exists and is well-founded, coherent, complete, and regular.
6.3 Views

The syntax of views is as follows:
view �!`view' module name `.'
`imports' f module name g `.'
transfer declaration
(transfer declaration)�
`endview' `.'
transfer declaration �!
`from' module name `:' f designator [`abstract'] g `.'
The imports-sentence de�nes the import signature of the view. The module
names listed in the imports-sentence must be pairwise distinct. If a designator
is exported by more than one of the imported modules, all exports must be

de�ned in the same module. The import signature of the view is obtained
as the union of the export signatures of the imported modules, where for a
designator that is exported abstract by some of the imported modules and
nonabstract by some other imported modules the nonabstract declaration is
taken. The thus obtained import signature of the view must be consistent.
An example of a view whose import signature is inconsistent is mod3:
interface mod1.

tya := {a}. tyb := {b}. tyc := tya ++ tyb ++ {c}.
endinterface

interface mod2.
imports mod1.
from mod1: tya, tyb.
tyd := tya ++ tyb ++ {d}.

endinterface
view mod3.

imports mod1, mod2.
from mod1: tya, tyb.
from mod2: tyd.

endview.
The import signature of the view mod3 violates the completeness condition
since tyc and tyd don't have a greatest common subtype although they have
tya and tyb as common subtypes.
The from-sentences of a view de�ne the export signature of the view. There can
be at most one from-sentence for a module. The designators listed in a from-
sentence for a module M must be pairwise distinct and actually be de�ned
and exported by M . Thus the view
view mod4.

imports mod2.
from mod2: tya, tyb.

endview.

is inconsistent, while the view
view mod5.

imports mod2.
from mod1: tya, tyb.

endview.
is consistent.
Every designator listed in a from-sentence must be exported by at least one
of the modules imported by the view. If a designator in a from-sentence for a
moduleM is exported nonabstract byM but is declared abstract in the import
signature of the view, it must be quali�ed abstract in the from-sentence. On
the other hand, a designator listed in a from-sentence can be quali�ed abstract
although it is declared nonabstractly in the import signature of the view.
The interface frontend discussed before gives you an example of this kind of
information hiding.
The export signature of a view is obtained from the import signature of the
view by deleting the declarations of the designators that are not listed in a
from-sentence. If a designator is quali�ed as abstract in a from-sentence of the
view but is declared nonabstractly in the import signature of the view, it is
declared as abstract in the export signature of the view. The thus obtained
export signature of the view must be consistent.
6.4 Interfaces

The syntax of interfaces is de�ned as follows:
interface �!`interface' module name `.'
[`imports' f module name g `.'
[(transfer declaration)�
declaration]]

(declaration)�
`endinterface' `.'

The imports-sentence of an interface must satisfy the same conditions as the
imports-sentence of a view and the import signature of an interface is de�ned
analogously to the import signature of a view. Furthermore, the requirements
for the from-sentences of an interface are the same as for the from-sentences
of a view.

The export signature of an interface is the signature de�ned by the from-
sentences of the interface together with the other declarations appearing in
the interface. The export signature of an interface must be consistent. The
signature de�ned by the from-sentences of an interface is obtained in the same
way it is obtained for views and must be consistent.

A declaration of an interface must not declare a designator that is declared in
the import signature of the interface. For this reason the interface

interface mod6.
imports mod1.
tye := {a}.

endinterface.

is inconsistent although its import and export signature are consistent.

A type constructor is called abstract if it is declared as abstract, or its de�nition
has the form

f(� � �) := f1(� � �) ++ � � � ++ fn(� � �);

where f1; . . . ; fn are abstract type constructors. A type constructor is called
concrete if every type constructor appearing in the right-hand side of its de�-
nition is concrete (taking the greatest �xed point of this inductive de�nition).
A type constructor is called mixed if it is neither abstract nor concrete. For

instance, in the export signature of the interface
interface mixed.

aty1 := abstract.
aty2 := abstract.
aty3 := aty1 ++ aty2.
cty := {a, f: cty}.
mty := {g: aty, h: cty}.

endinterface.
aty1, aty2 and aty3 are abstract, cty is concrete, and mty is mixed.
We need an additional requirement to ensure that abstract types cannot be
inspected. To see this, consider the illegal interfaces
interface mod7.

tya := abstract.
foo: int --> tya

endinterface.

interface mod8.
imports mod7.
tyb := tya ++ {b}.

endinterface.
If TEL would accept these interfaces, then a programmer could write the
equation foo(5)=b, which would allow him to �nd out whether the value of
foo(5) is b.
A type de�nition is called protecting if it has either the form
f(� � �) := f1(� � �) ++ � � � ++ fn(� � �);
where either all or none of the fi are abstract, or it has the form
f(� � �) := f1(� � �) ++ � � � ++ fn(� � �) ++ f� � �g;

where none of the fi is abstract.
Every type de�nition of the corresponding abbreviation-free signature of the
export signature of an interface must be protecting.
6.5 Module Bodies

The syntax of module bodies is de�ned as follows:
module body �!
`module' module name `.'
(de�nition)�
`endmodule' `.'
de�nition �!type de�nition
j type abbreviation
j parameter de�nition
j function de�nition
j relation de�nition
j procedure de�nition
parameter de�nition �!
`par' identi�er `:' ground type term `=' term
[`<--' condition part] `.'
function de�nition �!function declaration
(functional clause)�
relation de�nition �!relation declaration
(relational clause)�
procedure de�nition �!
procedure declaration
(relational clause)�

The import signature of a module is the import signature of its interface and
the export signature of a module is the export signature of its interface.

A module body can be compiled only after its interface has been compiled. If
the interface of a module is empty, both the import and the export signature
of the module are the signature consisting of all built-in declarations. The
local signature of a module is its import signature joined with the declarations
appearing in its body. The local signature of a module must be consistent.
If the corresponding abbreviation-free signature of the local signature of a
module contains a type de�nition
f(x1; . . . ; xm) := � � � ++ g(s1; . . . ; sn) ++ � � � .
such that f is not declared in the import signature of the module, then g
must not be an abstract type constructor. This requirement corresponds to
the protection requirement for interfaces.
Every declaration that appears in the interface of a module must appear in
exactly the same form in the body of the module. The only exception to this
rule are abstract type declarations, where the body must contain a type de�-
nition or a type abbreviation whose left-hand side equals the left-hand side of
the abstract type declaration in the interface.
6.6 Compiling Views, Interfaces and Module Bodies

Appendix D lists the commands for compiling views, interfaces and module
bodies.
A module body can be compiled only after its interface has been compiled.
However, if you ask TEL to compile a module body for which you haven't
written an interface yet, TEL will assume that the module has an empty
interface and compile the body under this assumption.
If you ask TEL to compile an interface or a view, it will �rst compile all
imported interfaces and views that haven't been compiled yet. Only after all
imported interfaces have been compiled successfully, TEL will attempt the
compilation of the importing interface or view.
If you recompile a module body, possibly after you have changed it, no other
module body or interface needs to be recompiled.

If you recompile an interface or a view M , the body of M (if M isn't a view)
and all interfaces, bodies, and views importing M directly or indirectly will be
marked as uncompiled.
6.7 Opening Modules

A module can be opened only if it either has no interface or its interface
and all imported modules have already been compiled successfully. If these
requirements are met but the body of the module to be opened hasn't been
compiled successfully yet, TEL will attempt to compile the body. Once the
body of the module to be opened is compiled successfully, TEL starts loading
all imported modules that aren't loaded already and then loads the module to
be opened. Finally, after all modules have been loaded, TEL loads the local
signature of the module to be opened and prompts you for the next query.
Once a module is loaded (not necessarily opened), it remains loaded as long
as it is not marked as uncompiled. Of course, a module will be unloaded if you
recompile its body.
Parameter de�nitions are executed only once when the module in which they
are de�ned is loaded. At any one time, at most one instance of a module is
loaded. Thus, if the value of a parameter is a data base (an imperative concept
that will be discussed later), all importing modules will use the same data
base.

7 Open Variables

Relations in TEL must be declared with �xed input and output arguments.
TEL checks the consistent use of these data
ow declarations and thus ensures
a clean integration of functions and relations. However, data
ow declarations
restrict the possibilities of how one can compute with relations. To regain
the full power of Prolog, TEL o�ers the possibility to declare variables as
open. Since TEL's type checker considers variables declared as open as bound
to ground terms, open variables provide a means to bypass TEL's data
ow
discipline. This provides for all the advanced programming techniques that
were developped for Prolog.
The philosophy behind data
ow declarations is that programs without open
variables are far easier to understand than programs with open variables. Since
in large programs open variables are only used in a few places, declaring them
is not much e�ort.
In the literature on logic programming, open variables are called logical vari-
ables. Since the practical use of \logical variables" almost always involves the
use of nonlogical operations (for instance, testing at run time whether a vari-
able is bound), this name is somewhat misleading.
Suppose you have opened a module containing the de�nition:
rel append: list(T) x list(T) x list(T).

append(nil, L, L).
append(H.T, L, H.TL) <-- append(T, L, TL).

Then you can pose the following query:
TEL> !L1 & !L2 & append(L1, L2, 1.2.nil).
L1 = nil : elist
L2 = 1.2.nil : list(posint)
more answers? (y/n) y
L1 = 1.nil : list(posint)
L2 = 2.nil : list(posint)
more answers? (y/n) y

L1 = 1.2.nil : list(posint)
L2 = nil : elist
more answers? (y/n) y
failed.
Since all three arguments of append are input arguments, TEL won't accept
the query append(L1, L2, 1.2.nil). However, since the variables L1 and L2
are declared as open in the query above, TEL's type checker considers them
as bound to ground terms. A term is ground or closed if it doesn't contain
variables, and a term is open, if it contains variables. The execution of append
binds L1 and L2 since the formal arguments in the clause heads are uni�ed
with the actual arguments. Since append is not declared as determinate, TEL
can compute more than one answer. If append were declared as a drel, TEL
would compute only the �rst answer.
Here is another query you can pose using open variables:
TEL> !L1 & !L2 & !T & append(L1, L2, 1.T).
L1 = nil : elist
L2 = 1.T : list(posint)
more answers? (y/n) y
L1 = 1.nil : list(posint)
L2 = T : list(posint)
more answers? (y/n) y
L1 = 1._1.nil : list(posint)
L2 = _2 : list(posint)
T = _1._2 : list(posint)
more answers? (y/n) y
L1 = 1._1._3.nil : list(posint)
L2 = _2 : list(posint)
T = _1._3._2 : list(posint)
more answers? (y/n).
For this query TEL could in fact compute in�nitely many answers. The open

variables _1, _2 and _3 were not given in the query but were generated during
execution.
Another interesting query that makes use of TEL's typed uni�cation is:
TEL> !L1 & !L2 & L2:list(negint) &

append(L1, L2, 1.2.0.~1.~2.nil).
L1 = 1.2.0.nil : list(nat)
L2 = ~1.~2.nil : list(negint)
more answers? (y/n) y
L1 = 1.2.0.~1.nil : list(int)
L2 = ~2.nil : list(negint)
more answers? (y/n) y
L1 = 1.2.0.~1.~2.nil : list(int)
L2 = nil : elist
more answers? (y/n) y
failed.

7.1 Example: Tables as Open Data Structures

Without open variables the e�cient implementation of tables allowing for in-
sertion and deletion of entries is impossible. However, such tables can be im-
plemented quite e�ciently by using open variables. Here we will implement
tables as an abstract data type with the interface:
interface table.

table(Entry) := abstract.
tdrel insert: string x Entry x table(Entry).
drel lookup: string x ?Entry x table(Entry).
drel remove: string x table(Entry).
allkeys: table(Entry) --> list(string).
compress: table(Entry) --> table(Entry).

endinterface.
Note that table is declared as a unary abstract type constructor and Entry
is used as a type variable. Furthermore, note that no function or relation is

exported with which you can create an empty table. The reason for this has to
do with the fact that empty tables are implemented as open variables and will
be discussed thoroughly at the end of the section. From the above interface
de�nition you can see that the same name can be used for the module and an
object in the module.
We will implement tables with binary search trees, where empty trees are
represented as open variables. Every node of the tree comes with a delete
ag
that is an open variable as long as the node is not deleted.
table(Entry) := {node: string x % key

Entry x
table(Entry) x % left subtree
table(Entry) x % right subtree
zero} % delete flag

Insertion of a new entry is de�ned as follows:
tdrel insert: string x Entry x table(Entry).

insert(K, E, T) <-- var(T) &
node(K, E, _, _, _) = T.

% the remaining clauses assume that the third argument
% is not a variable

insert(K, E, node(K,_,L,_,0)) <--
insert(K, E, L).

% an already existing entry for K will be deleted

insert(K, E, node(CK,_,L,_,_)) <-- K @< CK &
insert(K, E, L).

insert(K, E, node(CK,_,_,R,_)) <-- % CK @< K &
insert(K, E, R).

The built-in relation var
drel var: T
succeeds if and only if its argument is a variable. The equational condition
node(K, E, _, _, _) = T of the �rst clause of insert will always succeed
since it is executed only if T is a variable. Since equational conditions are exe-
cuted by unifying their left-hand with their right-hand side, execution of this
equation will bind T to the term node(K, E, _, _, _). Note that this term
contains three new open variables for the left subtree, the right subtree and
the delete
ag. You don't have to declare these variables as open since TEL's
type checker believes that T, which appears as an input argument, is bound to
a ground term. Since insert is forced by declaration to be determinate, the
clauses following the �rst clause will only be used if the third argument is not
a variable.
The lookup relation is de�ned as follows:
drel lookup: string x ?Entry x table(Entry).

lookup(K, E, T) <-- naf var(T) &
lookup1(K, E, T).

drel lookup1: string x ?Entry x table(Entry).
% the third argument must not be a variable

lookup1(K, E, node(K,E,_,_,D)) <-- var(D).

lookup1(K, E, node(K,E,L,_,D)) <-- % naf var(D) &
lookup(K,E,L).

lookup1(K, E, node(CK,_,L,_,_)) <-- K @< CK &
lookup(K, E, L).

lookup1(K, E, node(CK,_,_,R,_)) <-- % CK @< K &
lookup(K, E, R).

The relation lookup fails if the table doesn't contain an undeleted entry for
the given key. Thus it can be used to test whether a table contains an entry
for a key.
The de�nition of remove is quite similar to the de�nition of lookup:
drel remove: string x table(Entry).

remove(K, T) <-- naf var(T) &
remove1(K, T).

drel remove1: string x table(Entry).
% the second argument must not be a variable

remove1(K, E, node(K,E,_,_,D)) <-- var(D) &
D = 0.

remove1(K, E, node(K,E,L,_,D)) <-- % naf var(D) &
remove(K,E,L).

remove1(K, E, node(CK,_,L,_,_)) <-- K @< CK &
remove(K, E, L).

remove1(K, E, node(CK,_,_,R,_)) <-- % CK @< K &
remove(K, E, R).

Like lookup remove fails if there is no undeleted entry for the given key in the
table.
The function allkeys returns the list of all keys for which the argument table
contains an undeleted entry.
allkeys: table(Entry) --> list(string).

T |> nil
<-- var(T).

% the remaining clauses assume that the argument
% is not a variable

node(K,_,L,R,D) |> K.(allkeys(L)|allkeys(R))
<-- var(D). % entry is not deleted

node(K,_,L,R,D) |> allkeys(L)|allkeys(R).
%<-- naf var(D). % entry is deleted

The function compress builds a new table that doesn't contain deleted entries.
compress: table(Entry) --> table(Entry).

T |> T
<-- var(T).

% the remaining clauses assume that the argument
% is not a variable

node(K,E,L,R,D) |> node(K, E, compress(L), compress(R), D)
<-- var(D). % entry is not deleted

node(K,_,L,R,D) |> compress1(L,compress(R)).
%<-- naf var(D). % entry is deleted

compress1: table(Entry) x table(Entry) --> table(Entry).
T, T1 |> T1

<-- var(T).

% the remaining clauses assume that the argument
% is not a variable

node(K,E,L,R,D), T |> CT
<-- var(D) & % entry is not deleted

CT = compress1(L, compress1(R,T)) &
insert(K,E,CT).

node(_,_,L,R,D), T |> compress1(L, compress1(R,T)).
%<-- naf var(D). % entry is deleted

Next we write a module importing table:
interface table_test.

imports table.
endinterface.

module table_test.
tdrel empty_int_table: ?table(int).

empty_int_table(T) <-- !T.
endmodule.
After you have opened the module table_test, you can, for instance, enter
the query
TEL> empty_int_table(T) &

insert('five', 5, T) & insert('four', 4, T) &
lookup('five', E, T).

and TEL will respond:
T = abstract : table(int)
E = 5 : posint.
Since the type of T is abstract, TEL doesn't print the actual value of T but
just tells you that it is abstract.
This example should give you a rough idea of what you can do with open
variables. In Prolog textbooks you can �nd further examples. Basically, open

variables are single-assignment pointers that become invisible once they are
bound. Since you can bind an open variable to a term containing further open
variables, open variables give you a means for building data structures in-
crementally. For large applications, like the TEL system itself, the e�ciency
gained from using open variables can be of vital importance. However, since
open data structures require much more care for the operational semantics
than closed data structures, I recommend the use of open data structures only
if a solution using closed data structures is signi�cantly more complicated or
signi�cantly less e�cient.
Now let's discuss why I didn't equip the interface of the table module with
a relation that creates empty tables. Since table is an abstract data type, it
is in fact rather awkward to not hide the information that empty tables are
variables. The problem is that in TEL it is impossible to write a relation
tdrel empty_table: ?table(T).

empty_table(Table) <-- !Table.
since every variable that occurs in an output position of a relational domain
must occur in at least one input position of the domain. This restriction is
essential for the operational semantics of TEL since at run time every open
variable must have a unique type not containing variables.
Introducing a dummy input argument
tdrel empty_table: T x ?table(T).

empty_table(_, Table) <-- !Table.
won't satisfy TEL's type checker either since this still doesn't allow to infer a
ground type term for Table at compile time. The type checker will accept an
open variable X only if at least one of the following conditions is satis�ed:

� X occurs in the output argument of a relational condition
� X occurs at the left-hand side of an equational condition
� it is possible to infer a ground type term for X.

The empty_table example shows a weakness of TEL's type system that needs
to be resolved in the future. The most promising solution seems to make types
�rst-class objects, which would allow the following elegant solution:
tdrel empty_table: T:type x ?T.

empty_table(ETYPE, T) <-- !T & T:table(ETYPE).

8 Type Checking

This section de�nes how the clauses of a module body are type checked. Before
you read this section you should be familiar with the notion of a consistent
signature and the de�nitions introduced in Subsection 6.2.
To type check the clauses of a module body, TEL uses the corresponding
abbreviation-free signature of the local signature of the module. All the fol-
lowing de�nitions are made with respect to a given consistent and abbreviation-
free signature.
To type check the clauses of a module body, TEL extends the type terms
de�ned by the corresponding abbreviation-free signature of the local signature
of the module by the special nullary type constructor ?. The above order
\s � t" on type terms is extended such that ? becomes the least type term,
that is, s � ? for every type term s. You may think of ? as an empty type
that is a subtype of every type. A program cannot explicitly use ?, but ?,
which is printed as void by TEL, can occur in the answer to a query (Section
2 gives an example for such a query).
In this section, we will use the term value function for value constructors,
parameters and functions. To ease our notation, we will use uniform ranks for
all value functions. These ranks have the form s1 � � � sn ! s, where n � 0 and
s1; . . . ; sn and s are type terms. No distinction is made between partial and
total ranks of functions.
We use V(s) to denote the set of all variables occurring in a term s.
A value term is called canonical if it consists only of variables and value con-
structurs.
A variable quali�cation is a pair x: s consisting of a variable x and a type term
s. A pre�x is a set of variable quali�cations such that no variable is quali�ed
more than once. We use D(P) to denote the set of all variables quali�ed by a
pre�x P .

8.1 Type Checking Terms

Given a value function f and n � 0 type terms s1; . . . ; sn, where n is the arity
of f , the least codomain of f for s1; . . . ; sn is de�ned as follows:
least codomain(f; (s1; . . . ; sn)) :=
minf�t j t1 � � � tn ! t is a rank of f and �t1 � s1; . . . ; �tn � sng.
The letter � ranges over substitutions that replace variables with type terms.
The minimum is taken with respect to the above order \s � t" for type terms.
Of course, the least codomain of f for s1; . . . ; sn doesn't always exist. However,
the regularity condition for signatures ensures that the least codomain exists
if and only if there is at least one rank t1 � � � tn ! t of f and a substitution �
such that �ti � si for i = 1; . . . ; n.
In TEL, every well-typed value term has a unique least type term. The partial
function P "s yields the least type term of a value term s under a pre�x P and
is de�ned as follows:

1. P "x = t
if (x: t) 2 P
2. P "x = ?
if x is not quali�ed in P
3. P "f(s1; . . . ; sn) = least codomain(f; P "s1; . . . ; P "sn)

A value term s is well-typed under a pre�x P if V(s) � D(P) and P "s exists.
A type term t is called proper if there exist a canonical value term s and a
pre�x P not containing ? such that V(s) = D(P) and t � (P "s). For instance,
list(?) is proper since ;"nil = elist and list(?) � elist, while the type
term nat##? is not proper.
A pre�x is called proper if each of its type terms is proper. If a value term s
is well-typed under a proper pre�x P , then P "s is proper.

The partial function P "s is a central component of TEL's type checker. It is
used for checking whether value terms are well-typed and for computing their
least type terms.
8.2 Inferring the Types of Variables

The noncanonical variables of a value term are de�ned as follows:
1. NCV(x) = ;
2. NCV(f(s1; . . . ; sn)) = NCV(s1) [� � � [NCV(sn)
if f is a value constructor
3. NCV(f(s1; . . . ; sn)) = V(s1) [� � � [V(sn)
if f is not a value constructor.
A variable occurring in a value term s is called a canonical variable of s if it
is not a noncanical variable of s.
Given a type term s and a value constructor f with rank t1 � � � tn ! t, the
greatest domain of f for s is
greatest domain(f; s) := maxf�(t1; . . . ; tn) j s � �tg;
where the maximum is taken with respect to the order obtained by extending
the above order componentwise to tuples of type terms. The greatest domain
of f for s exists if and only if there exists a substitution � such that s � �t.
If s is proper, then the greatest domain of f for s is a tuple of proper terms
since the codomains of value constructors are linear, that is, no variable occurs
twice.
The partial function P #M takes two arguments: P must be a proper pre�x
and M must be a set of containments s: t such that s is a value term and t is a
type term. If P #M is de�ned, it yields a proper pre�x that extends the given
pre�x P by adding and strengthening quali�cations for the canonical variables
occurring in the value terms of M . The de�nition of P #M is as follows:

1. P #; = P
2. P #(fs: tg]M) = (P #fs: tg)#M
3. P #fx: sg = P [fx: sg
if x is not quali�ed in P and s is proper
4. (P] fx: tg)#fx: sg = P [fx: (t u s)g
if t u s is proper
5. P #ff(s1; . . . ; sn): tg = P #fs1: t1; . . . ; sn: tng
if f is a value constructor and (t1; . . . ; tn) = greatest domain(f; t)
6. P #ff(s1; . . . ; sn): tg = P
if f is not a value constructor.
If s is a term, P is a proper pre�x such that NCV(s) � D(P), and P " s
is de�ned and proper, then P # fs: (P " s)g is de�ned and is a proper pre�x
qualifying all variables in s and satisfying P " s = (P # fs: (P " s)g) " s. Thus
P #fs: tg is a function that infers types for the canonical variables of a term s.
8.3 Typechecking Conditions

The type checker for conditions is a partial function F:O:P [C] that takes four
arguments: a set of variables F , a set of variables O, a pre�x P , and a condition
C. The argument F is the set of \forbidden variables", that is, variables that
must not occur in C. The argument O is the set of variables that have been
declared as open in preceding conditions. The pre�x P quali�es all variables
for which types have been already derived. And C is the condition to be type
checked under F , O and P . If F:O:P [C] is de�ned, then C is well-typed under
F , O and P . The result of F:O:P [C] is a triple F 0:O0:P 0, which extends the
input triple F:O:P with the information obtained from the condition C.
The empty condition and conjunctions are the trivial cases:

� F:O:P [;] = F:O:P

� F:O:P [C&C 0] = (F:O:P [C])[C 0].
Negation as failure is checked as follows:

� F:;:P [naf C] = (F 0 [(D(P 0)�D(P))):;:P
if F 0:;:P 0 := F:O:P [C] is de�ned.
The type checking rule for negation as failure shows the purpose of the list F
of forbidden variables. Since variable bindings produced during the execution
of C are not propagated outside of naf C, variables introduced in C must not
be used outside of naf C.
Now we come to the type checking rules for primitive conditions. Declarations
of open variables are easy to check:

� F:O:P [!x] = F:O [fxg:P
if x 62 F [O [D(P).
Declaring a variable x as open is okay only if x did not appear so far.
Containments are checked as follows:

� F:O:P [s:t] = F:;:(P #fs: tg)
if t is a type,
O � V(s) � O [D(P),
NCV(s) � D(P), and
((P #fs: tg)"s) � t.
The right-hand side of a containment must be a type term not containing
variables.
Discontainments are checked as follows:

� F:;:P [s\:t] = F:O:P
if V(s) � D(P) and F:O:P [s:t] is de�ned.
Equations are checked as follows:

� F:;:P [s=t] = F:;:P #fs: (P "t)g
if NCV(s) [V(t) � D(P),
F and V(s) are disjoint, and
(P #fs: (P "t)g)"s u P "t exists and is proper.
The type checker treats equations asymmetrically to enforce a certain pro-
gramming style: only the left-hand side can contain variables for which types
have not been derived so far. Of course, the logical semantics and the execution
of equations are symmetric.
Furthermore, an equation type checks only if the least type terms of the left
and the right-hand side have a proper in�mum. The reason for this requirement
is that in TEL two terms can denote the same value only if their least type
terms have a proper common lower bound.
Disequations are checked as follows:

� F:;:P [s\=t] = F:;:P
if V(s) � D(P) and F:O:P [s=t] is de�ned.
Boolean conditions are abbreviations for equations:

� F:;:P [s] = F:;:P [true=s]
if the top symbol of s is a variable or a function.
To check relational conditions, we need a further auxiliary function. Given a
relation p with the domain
t1 x � � � x tkx ?tk+1 x � � � x ?tn
and type terms s1; . . . ; sk (k � 0), the least domain of p for s1; . . . ; sk is de�ned
as follows:
least domain(p; (s1; . . . ; sk)) :=
minf�(t1; . . . ; tn) j �t1 � s1 ^ � � � ^ �tk � skg.

Of course, the least domain of p for s1; . . . ; sk doesn't always exist. To ease
the notation, we assume in this section that in a relational domain the input
arguments always appear before the output arguments. This assumption is
purely for notational convenience; in TEL one is of course free to arrange
input and output arguments in any order.
Relational and procedural conditions are checked as follows:

� F:O:P [p(s1; . . . ; sn)] = F:;:(P #fs1: t1; . . . ; sn: tng)
if p is a relation or a procedure having the positions 1; . . . ; k as input
and the positions k + 1; . . . ; n as output arguments,
(t1; . . . ; tn) = least domain(p; (P "s1; . . . ; P "sk)) exists,
t1; . . . ; tk are proper,
(P "si) u ti exists and is proper for i = k + 1; . . . ; n,
NCV(s1) [� � � [NCV(sn) � D(P),
O � V(s1) [� � � [V(sk) � O [D(P),
V(sk+1) [� � � [V(sn) and F are disjoint, and
P #fs1: t1; . . . ; sk: tkg quali�es every variable in O
with a ground type term.
8.4 Type Checking Clauses

A functional clause f(s1; . . . ; sn) = s <-- C is well-typed if
� f is a function and s1; . . . ; sn are canonical value terms
� there exists a rank t1 � � � tn ! t of f such that (;#fsi: tigni=1) is de�ned
� for every rank t1 � � � tn ! t of f such that (;#fsi: tigni=1) is de�ned:
� F:O:P := ;:;:(;#fsi: tigni=1)[C] is de�ned and O = ;
� V(s) � D(P) and t � P "s.
A relational clause p(s1; . . . ; sn) <-- C, where p is a relation with the domain
t1 x � � � x tkx ?tk+1 x � � � x ?tn;

is well-typed if
� s1; . . . ; sn are canonical value terms
� F:O:P := ;:;:(;#fsi: tigki=1)[C] is de�ned
� O � V(sk+1) [� � � [V(sn) � O [D(P)
� ti � P "si for i = k + 1; . . . ; n
� P #fsi: tigni=k+1 quali�es every variable in O with a ground type term.
A parameter de�nition par p : t = s <-- C is well-typed if
� F:O:P := ;:;:;[C] is de�ned and O = ;
� V(s) � D(P) and t � P "s.
TEL's type checker runs with polynomial complexity with respect to the length
of a clause. Furthermore, for every rank or domain, TEL's type checker goes
only once from left to right through a clause and decides immediately whether
a primitive condition is well-typed. Such a local and deterministic strategy is
crucial for the ability to give precise and localized error messages in case a
clause is not well-typed.
8.5 Type Checking Queries

Queries have the same syntax and the same operational semantics as conditions
of clauses. A query C is well-typed if F:O:P := ;:;:;[C] is de�ned and O = ;.

9 Streams and Procedures

Streams are internal representations of �les opened for reading or writing.
Streams are values of so-called stream types, which are obtained by two built-
in abstract type constructors:
instream(T) := abstract.
outstream(T) := abstract.
There are three operations for opening a �le and binding it to a newly created
stream:
proc open_instream: string x T:type x ?instream(T).
proc open_outstream: string x T:type x ?outstream(T).
proc append_outstream: string x T:type x ?outstream(T).
The �rst argument speci�es the name of the �le to be opened. The second
argument speci�es the element type of the �le. TEL considers a �le to be a list
of values all belonging to the same type. The third argument returns a new
stream that is connected to the �le that was opened.
Files whose elements are characters are text �les and can be edited with any
text editor the system provides. All other �les are kept in a special format and
should only be written and read by TEL.
The procedure open_instream opens a �le for reading. If the �le to be opened
doesn't exist, open_instream fails. The procedure open_outstream opens a
�le for writing. If the �le to be opened exists, open_outstream will delete all
elements of the �le so that the �le becomes empty. If the �le to be opened
doesn't exist, open_outstream creates a new �le with the given name. The
procedure append_outstream opens a �le for writing without overwriting its
existing elements. If the �le to be opened doesn't exist, append_outstream
creates a new �le with the given name.
After input from or output to a stream is �nished, a stream must be closed
with one of the built-in procedures:
tproc close_instream: instream(T).
tproc close_outstream: outstream(T).

The closing operations free the �le connected to the given stream, so that the
�le can be used again by other programs. After a stream is closed, an attempt
to access this stream will cause a run-time error.
The principal procedures for reading and writing are:
proc get: instream(T) x ?T.
tproc put: outstream(T) x T.

The procedure get fails if the given input stream contains no further element,
that is, the end of the �le connected to the stream is reached. If get fails on an
input stream, a further call of get on this stream will cause a run-time error
and abort execution.
If you type the query
TEL> open_outstream('myfile', string#int ,SO) &

put(SO, 'Time is money'#3) &
put(SO, 'and love is honey.'#4) &
close_outstream(SO) &
open_instream('myfile', string#int, SI) &
get(SI, E1) & get(SI, E2) &
close_instream(SI).

TEL will answer:
SO = abstract : outstream(string#int)
SI = abstract : instream(string#int)
E1 = 'Time is money'#3 : nestring#posint
E2 = 'and love is honey.'#4 : nestring#posint.

It is possible to write terms containing open variables on a �le. If such terms
are read in again, the occurring variables are replaced consistently with new
variables, where the scope of variables is limited to the term read by get. For

instance, the query
TEL> open_outstream('test', list(int) ,SO) &

!X & !Y & put(SO, X.Y) & put(SO, X.X.Y) &
close_outstream(SO) &
open_instream('test', list(int), SI) &
get(SI, E1) & get(SI, E2) &
close_instream(SI).

will be answered by TEL with:
SO = abstract : outstream(list(int))
SI = abstract : instream(list(int))
X = _1 : int
Y = _2 : list(int)
E1 = _3._4 : list(int)
E2 = _5._5._6 : list(int).

There are three character streams that are always open and cannot be closed:
par user_input: instream(char).
par user_output: outstream(char).
par user_error: outstream(char).
You can use them to read from and to write on your TEL window. If you
write on a stream, the information is usually not immediately transferred to
the connected �le but is kept in a bu�er. With the procedure
tproc flush: outstream(T).
you can force TEL to actually write the bu�er of the given stream on the �le
connected to the stream. This is particulary useful for the standard streams
user_output and user_error.
The following functions, which cannot be used on the standard streams
user_input, user_output and user_error, return information about the

state of character streams:
lineno: instream(char) --> nat,

outstream(char) --> nat.
charno: instream(char) --> nat,

outstream(char) --> nat.
linepos: instream(char) --> nat,

outstream(char) --> nat.
The function lineno yields the current line number of the stream. The function
charno yields the number of characters read from or written to a stream so far.
The function linepos yields the number of characters read from or written to
the current line of the stream.
The procedure
tproc print: outstream(char) x T.
can write values of every type on a character stream. For instance, if you enter
the query
TEL> print(user_output, 'I don''t be'^'lieve it!'#5*7) &

flush(user_output).
TEL will answer:
'I don''t believe it'#35.
A use of print is only okay if TEL can infer a ground type term for the second
argument. Hence, the procedure
proc doesnt_work: T.

doesnt_work(X) <-- print(user_output, X).
won't type check.
Of course, print does not print abstract values. For instance, the query
TEL> open_outstream('test', char ,SO) &

print(user_output, SO) &
flush(user_output) &
close_outstream(SO).

results in the answer:
abstract : outstream(list(int))
SO = abstract : outstream(list(int)).

The procedure
proc parse: instream(char) x T:type x ?T.
is the inverse to print: it reads characters until it reaches a full stop, that is,
a period followed by a layout character, and then tries to build a ground term
of the required type. If parse can't build a ground term of the required type
from the characters read, it fails. Furthermore, parse fails if the end of the �le
is reached. Analogous to get, a second attempt to read after the end of the
�le has been reached will cause a run-time error.
Given the query
TEL> parse(user_input, list(int), L).
TEL prints the prompt > and waits until you type in a sentence, that is, a
sequence of characters followed by a full stop. For instance, if you type
> 6.7.8.nil.
TEL will give the answer
L = 6.7.8.nil.
Of course, parse cannot read abstract values.
Now we have seen all built-ins for stream handling. Many of them are proce-
dures, which were not discussed so far. Procedures are determinate relations
that possibly change the state of the TEL system. TEL treats and executes
procedures exactly like determinate relations, except for the following points:

� a procedure may have no argument, while a relation always must have at least
one argument

� clauses of functions and relations cannot have procedural conditions.
Starting from the built-in procedures you can de�ne further procedures. The
following procedures, which are actually built-in, are examples for de�ned pro-
cedures:
tproc nl: outstream(char).

nl(S) <-- put(S, "nl").

tproc put_string: outstream(char) x string.
put_string(OS, S) <-- put_chars(chartrans(S), OS).

tproc put_chars: outstream(char) x list(char).
put_chars(S, nil).
put_chars(S, H.T) <-- put(S, H) & put_chars(S, T).

The rest of this section spells out how stream types and the special proce-
dures open_instream, open_outstream, append_outstream, and parse are
type checked.
Stream types are obtained by the unary abstract type constructors instream
and outstream. These two type constructors are treated di�erently from the
other abstract type constructors in the following respects:

� instream(s) and outstream(s) are type terms if and only if s is a ground
type term

� s � instream(t) if and only if there exists a type u such that s = instream(u)
and u � t

� instream(s) � t if and only if there exists a type u such that t = instream(u)
and s � u

� s � outstream(t) if and only if there exists a type u such that s =
outstream(u) and t � u

� outstream(s) � t if and only if there exists a u such that t = outstream(u)
and u � s.
This means that the stream type constructors cannot be applied to type terms
containing variables. Furthermore, the type constructor instream is mono-
tonic, while the type constructor outstream is anti-monotonic.
The built-in procedures
open instream, open outstream, append outstreamand parse
take a ground type term as argument. TEL won't allow you to use this kind of
domains for relations or procedures you de�ne yourself. Procedural conditions
using these special procedures are type checked as follows:

� F:;:P [open instream(s,t,x)] = F:;:(P [fx: instream(t)g)
if V(S) � D(P), P "s � string,
t is a type, and
x is a variable not contained in F [D(P)

� F:;:P [open outstream(s,t,x)] = O:(P [fx: outstream(t)g)
if V(S) � D(P), P "s � string,
t is a type, and
x is a variable not contained in F [D(P)

� append_outstream is type checked like open_outstream
� F:;:P [parse(s,t,u)] = F:;:P #fu: tg
if V(S) � D(P), P "s � instream(char),
t is a type,
(P "u) u t exists and is proper,
NCV(u) � D(P) and F \ V(u) = ;.

D Built-ins

This section lists all built-in objects of TEL.
D.1 Booleans

bool := {true, false}.

and: bool x bool --> bool.
or: bool x bool --> bool.
not: bool --> bool.

D.2 Integers

int := negint ++ nat.
nat := zero ++ posint.
negint := {~1, ~2, ~3, ... }.
zero := {0}.
posint := {1, 2, 3, ... }.
par minnegint : negint.
par maxposint : posint.

+ : int x int --> int,
nat x nat --> nat,
posint x nat --> posint,
nat x posint --> posint,
negint x negint --> negint.

- : int x int --> int,
nat x negint --> posint,
negint x nat --> negint.

~ : int --> int,
posint --> negint,
negint --> posint.

* : int x int --> int,
nat x nat --> nat,
posint x posint --> posint,
posint x negint --> negint,
negint x posint --> negint,
negint x negint --> posint.

mod: int x int --> nat.

// : int x int >-> int,
nat x nat >-> nat,
posint x posint --> posint,
posint x negint --> negint,
negint x posint --> negint,
negint x negint --> posint.

< : int x int --> bool.
=< : int x int --> bool.
> : int x int --> bool.
>= : int x int --> bool.

D.3 Characters

char := layout_char ++ alpha_char ++ symbol_char.
alpha_char := letter ++ digit ++ {"_"}.
letter := capital_letter ++ small_letter.
symbol_char := grouping_symbol ++ operator_symbol ++ {"%"}.

layout_char := {"bell", "eof", "nl",
" any character with ASCII-code less than 33"}.

capital_letter := {"A", "B", ... , "Z"}.
small_letter := {"a", "b", ... , "z"}.
digit := {"0", "1", ... , "9"}.

grouping_symbol := {"(", ")", "[", "]", "{", "}",
""", "'", ","}.

operator_symbol := {"+", "-", "*", "/", "|", "\", "^",
"<", ">", "`", "~", "=", ":", ".",
"?", "@", "#", "$", "&", "!", ";"}.

natequiv: char --> nat.
charequiv: nat >-> char.

D.4 Lists

list(T) := elist ++ nelist(T).
elist := {nil}.
nelist(T) := {. : T x list(T)}.

| : list(T) x list(T) --> list(T),
nelist(T) x list(T) --> nelist(T),
list(T) x nelist(T) --> nelist(T).

in: T x list(T) --> bool.

length: list(T) --> nat,
nelist(T) --> posint.

D.5 Pairs

S##T := {# : S x T}.

D.6 Strings

string := estring ++ nestring.
estring := {''}.
nestring := a nonempty string starts with ', continues with at least one character,

where ' is written as '', and ends with '

@< : string x string --> bool.
@=< : string x string --> bool.
@> : string x string --> bool.
@>= : string x string --> bool.

chartrans: string --> list(char),
nestring --> list(char).

stringtrans: list(char) --> string,
nelist(char) --> nestring.

^ : string x string --> string.

genstring: string x nat --> nestring.

D.7 Streams

instream(T) := abstract.
outstream(T) := abstract.

proc open_instream: string x T:type x ?instream(T).
proc open_outstream: string x T:type x ?outstream(T).
proc append_outstream: string x T:type x ?outstream(T).

tproc close_instream: instream(T).
tproc close_outstream: outstream(T).

proc get: instream(T) x ?T.
tproc put: outstream(T) x T.

par user_input: instream(char).
par user_output: outstream(char).
par user_error: outstream(char).

tproc flush: outstream(T).

lineno: instream(char) --> nat,
outstream(char) --> nat.

charno: instream(char) --> nat,
outstream(char) --> nat.

linepos: instream(char) --> nat,
outstream(char) --> nat.

tproc print: outstream(char) x T.

proc parse: instream(char) x T:type x ?T.

tproc nl: outstream(char).
tproc put_string: outstream(char) x string.
tproc put_chars: outstream(char) x list(char).

D.8 Data Bases

database(T) := abstract.

tproc emptydb: T:type x ?database(T).
tproc assert: T x database(T).
proc retract: ?T x database(T).
rel indb : ?T x database(T).

D.9 Variable Test

drel var: T.

D.10 Unix and Quintus Access

The current implementation of TEL has two built-in procedures for accessing
the UNIX operating system and the Quintus Prolog System on which TEL is
running. If your system needs to use these procedures, I recommend that you
use them only in a special module, say, unix_quintus_interface, so that it
is easy to see which low level features are used by your system. Since in future
implementations of TEL these two procedures may change, isolating them in
a single module will make it easier to port your TEL application.
The procedure

proc unix: string.

passes its argument to a newly created UNIX shell process for execution as a
shell command. The shell run depends on the current UNIX environment. If
the execution of the command fails, unix fails.

For the Quintus Prolog access TEL supports a type prolog_term allowing
to express arbitrary Prolog terms in TEL.
prolog_term := refl_variable ++ refl_integer ++

{pterm: string x list(prolog_term)}.
refl_variable := {rvar: varname}.
varname := string. % must satisfy Quintus Prolog Syntax
refl_integer := {rint: int}.

The procedure
proc quintus: prolog_term x list(refl_variable) x

?list(refl_variable##prolog_term).

executes its �rst argument as a goal in the Quintus Prolog system on which
TEL is currently running. If the execution of the goal given in the �rst argu-
ment succeeds, quintus returns the computed bindings for the variables given
in the second argument through the third argument. If the execution of the
given goal fails, quintus fails. Since quintus is a procedure, it is determinate,
that is, it cannot be backtracked.
With quintus you can use all the goodies provided by Quintus Prolog. You
can even de�ne your own Prolog predicates. If you do this, use only names
that (1) are not the names of Quintus Prolog built-ins, (2) do not start with
tel_, which is the pre�x for the predicates comprising TEL's run time system,
and (3) are atoms that can be written without quotes.
For convenience, TEL has the following two procedures built-in although they
can be de�ned with quintus. The procedure
tproc statistics.
statistics <-- quintus(pterm('statistics',nil), nil, _).

prints information about the current memory allocation and the used time on

user_output. The procedure
tdrel time: ?nat.
time(T) <-- %statistics(runtime, [_,T])

quintus(pterm('statistics',
pterm('runtime',nil)
.pterm('.',

rvar('_')
.pterm('.',

rvar('T')
.pterm('[]',nil)
.nil)

.nil)
.nil),

rvar('T').nil,
#rint(T).).

returns the seconds of CPU-time used since the last call of time or statistics.

E Syntax

This section de�nes TEL's syntax using the following notation:
� Syntactic categories are printed slanted, for instance, type de�nition.
� Every syntactic category is de�ned by a syntactic rule, which takes the form
C �! S1jS2j � � � jSn
and states that the syntactic category C can take one of the alternative forms
F1; . . . ; Fn.

� A terminal form `T ' means that the token T must appear physically.
� An optional form [F] means that the form F is optional.
� A list form fFg means that the form F appears either once or more than once
separated by commas `,' .

� A star form (F)� denotes a possibly empty sequence of F s.
E.1 Modules

view �!`view' module name `.'
`imports' f module name g `.'
transfer declaration
(transfer declaration)�
`endview' `.'
interface �!`interface' module name `.'
[`imports' f module name g `.'
[(transfer declaration)�
declaration]]

(declaration)�
`endinterface' `.'

module body �!
`module' module name `.'
(de�nition)�
`endmodule' `.'
module name �!
identi�er
transfer declaration �!
`from' module name `:' f designator [`abstract'] g `.'
declaration �!type declaration
j parameter declaration
j function declaration
j relation declaration
j procedure declaration
de�nition �!type de�nition
j type abbreviation
j parameter de�nition
j function de�nition
j relation de�nition
j procedure de�nition

E.2 Declarations and Definitions

type declaration �!
abstract type declaration
j type abbreviation
j type de�nition
abstract type declaration �!
type dec lhs `:=' `abstract' `.'

type dec lhs �!
identi�er [`(' f variable g `)']
j pre�x operator variable
j variable in�x operator variable
j variable post�x operator
the occurring variables must be pairwise distinct
type abbreviation �!
type dec lhs `:=' nonvariable type termevery variable that occurs in the left-hand side must occur in theright-hand side and vice versa
type de�nition �!
type dec lhs `:=' type def rhs `.'every variable that occurs in the left-hand side must occur in theright-hand side and vice versa
type def rhs �!
(subtype speci�cation `++')�

subtype speci�cation `++'
subtype speci�cation
j (subtype speci�cation `++')�
`{' f constructor de�nition g `}'
subtype speci�cation �!
nonvariable type term
constructor de�nition �!
designator [`:' domain]
designator �!
identi�er j operator
domain �!
type term [`x' domain]
parameter de�nition �!
`par' identi�er `:' ground type term `=' term
[`<--' condition part] `.'
parameter declaration �!
`par' identi�er `:' ground type term `.'

function de�nition �!function declaration
(functional clause)�
function declaration �!designator `:' f rank g `.'
all ranks must specify the same number of arguments
rank �!domain `-->' type term
j domain `>->' type termevery variable occurring in the codomain of a rank must occur inthe domain of the rank
relation de�nition �!relation declaration
(relational clause)�
relation declaration �!
rel class designator `:' io domain `.'
rel class �!
`tdrel' j `drel' j `trel' j `rel'
io domain �![`?'] type term [`x' io domain]every variable occurring in the type term of an output argumentmust occur in the type term of an input argument
procedure de�nition �!
procedure declaration
(relational clause)�
procedure declaration �!
proc class designator `:' [io domain] `.'
proc class �!
`tproc' j `proc'
E.3 Clauses
functional clause �!nonvariable term `=' term
[`<--' condition part] `.'
j f term g `|>' term
[`<--' condition part] `.'

relational clause �!nonvariable term
[`<--' condition part] `.'
condition part �!
condition [`&' condition part]
condition �!conditional
j simple condition
conditional �!`if' simple conjunction `then' cond condition
(`elsif' simple conjunction `then' cond condition)�
[`else' cond condition `fi']
simple conjunction �!
simple condition [`&' simple conjunction]
cond condition �!`succeed'
j `fail'
j condition part
simple condition �!
term `=' term
j term `\=' term
j term `:' ground type term
j term `\:' ground type term
j primitive condition
j `naf' primitive condition
j `!' variable
j `do' primitive condition
j term `islistof' term `where' primitive condition
primitive condition �!
term

E.4 Terms
term �!integer
j character
j string
j variable
j identi�er [`(' f term g `)']
there must be no character between the identi�er and `('
j pre�x operator term
j term in�x operator term
j term post�x operator
j `(' term `)'
nonvariable term �!
a term that is not a variable
type term �!
a term not containing integers, characters or strings
ground type term �!
a type term not containing variables
nonvariable type term �!
a type term that is not a variable
E.5 Tokens
integer �!
[`~'] natural number
natural number �!
digit (digit)�
character �!`"bell"' j `"eof"' j `"nl"'
j `"0"' j � � � j `"9"' j `"a"' j � � � j `"z"' j `"A"' j � � � j `"Z"'
j `"_"' j `" "' j `"%"'
j `"("' j `")"' j `"["' j `"]"' j `"{"' j `"}"' j `"""' j `"'"' j `","'
j `"+"' j `"-"' j `"*"' j `"/"' j `"~"' j `"<"' j `">"' j `"="'
j `":"' j `"?"' j `"!"' j `";"' j `"."'
j `"$"' j `"&"' j `"@"' j `"#"' j `"|"' j `"\"' j `"^"' j `"`"'

string �!
`'''
j nonempty string
nonempty string �!
starts with ', contains at least one character, ' is written as '', and ends with '
variable �!capital letter (alpha character)�
j wildcard
wildcard �!
` '
identi�er �!small letter (alpha character)�
must not be a reserved identi�er or an operator
alpha character �!
digit j capital letter j letter j `_'
layout token �!
comment
j any nonempty sequence of ASCII characters with code �32
comment �!
starts with % and ends with newline
end of sentence token �!
a period `.' followed by an ASCII character with code �32
operator �!
pre�x operator j in�x operator j post�x operator
pre�x operator �!
user de�ned pre�x operator
j `not' precedence 900
j `~' precedence 200

in�x operator �!
user de�ned in�x operator
j `indb' precedence 1200
j `and' precedence 1100, right-associative
j `or' precedence 1000, right-associative
j `in' precedence 900
j `<' j `=<' j `>' j `>=' precedence 900
j `|' precedence 800, right-associative
j `.' precedence 700, right-associative
j `#' precedence 600, right-associative
j `+' precedence 500, right-associative
j `-' precedence 500, left-associative
j `*' precedence 400, right-associative
j `//' j `mod' precedence 400
j `##' precedence 300, right-associative
j `@<' j `@=<' j `@>' j `@>=' precedence 200
j `^' precedence 100, right-associative
post�x operator �!
user de�ned post�x operator
reserved identi�er �!`interface' j `endinterface' j `module' j `endmodule' j `view'
j `endview' j `imports' j `from' j `abstract' j `par'
j `rel' j `drel' j `tdrel' j `trel' j `proc' j `tproc' j `do' j `naf'
j `if' j `then' j `elsif' j `else' j `fi' j `succeed' j `fail'
j `islistof' j `where' j `void'

To see how operators are parsed, consider the text
X + 5 + ~4 - 7 - 6* ~Y
which is parsed as the term
((X + (5 + ~4)) - 7) - (6 * (~Y)).

E.6 User-defined Operators

When TEL is invoked, it looks in the current working directory for a �le
myoperators. If this �le exists, TEL will treat the operators de�ned in it
just as it treats the built-in operators. The �le myoperators must have the
following format:
my operators �!
(operator de�nition)�
operator de�nition �!
`prefix' operator text precedence [`right'] `.'
j `infix' operator text precedence [associativity] `.'
j `postfix' operator text precedence [`left'] `.'
operator text �!
identi�er

must not be a reserved identi�er or a built-in operator
j any nonempty sequence of the characters
+ - * / ~ < > = : ? ! ; . $ & @ # | \ ^ `

but not a built-in operator or any of the following:
:= ++ --> >-> |> <-- & ! = \= : \:.
precedence �!
natural number
associativity �!
`left' j `right'

F Manager Commands

After you have invoked the TEL system, TEL's manager prints the prompt
TEL> and waits for your input. You can enter commands or queries. Com-
mands are used, among other things, to request that a module be edited,
compiled or opened. Queries request TEL computations and are type checked
and executed in the environment de�ned by the local signature of the module
currently opened. If no module is opened, the signature consisting of all built-
in objects is taken as environment. The manager accepts functional queries,
which consist of a term not containing variables, and relational queries, which
have the same form as clause bodies.
Commands start with the character # and end with a period followed by the
newline key. Here are the commands available in our implementation:
#halt. Ends the TEL session.
#help. Lists the available commands.
#show_definition d Prints the de�nitions of the designators d; . . . in
the current environment.
#show_module m Prints information about the modules m;
#show_system. Prints an alphabetical list of all known modules. For instance,
the �rst line of the list
C I B abstract_syntax_and_table %1
I (B) backend %7
V backend_import

L I B frontend %8
V frontend_import

module abstract_syntax_and_table is opened
says that the module abstract_syntax_and_table is consulted, its interface
and body have been compiled successfully, and the Prolog code for its objects
is disambiguated with the pre�x %1. The second line says that the interface

of the module backend has been compiled successfully, while the draft of the
body of backend has not been compiled successfully. The third line says that
the view backend_import has been compiled successfully. The fourth line says
that the interface and body of the module frontend have both been compiled
successfully and that the module is loaded.
#edit_interface m. Creates an edit window for the interface of module m.
If the interface has been compiled successfully, the manager asks whether you
want the compilation of the interface to be retracted. If a compilation is re-
tracted, the compilation of all dependent module components is retracted.
Don't forget to save the editor bu�er after you have �nished editing, otherwise
TEL won't be able to access the interface �le.
#edit_body m. Creates an edit window for the body of module m.
#edit_view m. Creates an edit window for the view m.
#delete m. Deletes the module (interface and body) or view m.
#compile_interface m. First, the compilation of all module components de-
pending on m is retracted. Then the compilation of the interface of module m
is attempted. If the interface of an imported module or an imported view has
not been compiled successfully so far, its compilation is attempted recursively.
#compile_body m. Attempts the compilation of the body of module m. If m
is loaded or consulted and the compilation turns out to be successful, the
manager asks whether you want m to be reloaded or reconsulted.
#compile_view m. First, the compilation of all module components depending
on m is retracted. Then the compilation of the view m is attempted. If the
interface of an imported module or an imported view has not been compiled
successfully so far, its compilation is attempted recursively.
#open m. Attempts to open the module m. If the body of m has not been
compiled successfully so far, its compilation is attempted. If debugging mode
is on, m is consulted rather than loaded.

#show_switches. Prints the settings of the switches of the TEL system. The
default settings are:
noise 2 (1, 2, 3, 4, 5)
time off (on, off)
types off (on, off)
debug off (on, off)
print_depth 30 (1, 2, 3, ...)
The switch noise determines how much TEL tells you about what it is doing.
If the switch time is on, TEL tells you how much CPU seconds it needs for its
actions. If the switch types is on, TEL prints the types it infers for variables
when it type checks clauses. If the switch debug is on, TEL is in debugging
mode. The switch print_depth determines up to which depth TEL prints
terms that appear as answers to queries.
#switch s v. Sets switch s to value v.
#save f. Saves the current state of the TEL system in a �le f. You can restart
the TEL system in this state by typing f to the UNIX shell.
#generate f m p. Generates a user system on �le f using the nullary total
procedure p de�ned in module m as start-up procedure. You can start the
generated system by typing f to the UNIX shell. The generated system contains
TEL's run-time system but not its manager and compiler.
#spy o Sets spypoints on the objects o; . . . and turns the debugging
mode on. An object in the module currently opened is speci�ed by its designa-
tor, while an object d in another module m is speci�ed by m:d. Spypoints can be
put on functions, relations and procedures. If you enter a query and debugging
mode is on, execution stops at every spypoint and the relevant information is
printed. You will be quite amazed at �rst since you are actually debugging the
Prolog code generated by TEL using the excellent Quintus Prolog debugger.
Don't worry, this works quite well in practice although it may not seem so.
Before you start debugging TEL programs, you better get acquainted with the
Quintus Prolog debugger.

#nospy o Removes the spypoints from the objects o;
#nospyall. Removes all spypoints.
#show_spypoints. Prints all existing spypoints.
#consult m Consults the modules m; . . . , which must have been com-
piled successfully. If a module is loaded, its Prolog code is compiled, while the
Prolog code is interpreted if the module is consulted. Interpreted Prolog code
is much slower than compiled Prolog code, but the Prolog debugger can do
much more with interpreted code. If debugging mode is on, the open command
consults rather than loads the requested module.
#deconsult m Deconsults and loads the modules m; . . . , which must be
consulted currently.
#prolog. Starts a Prolog break shell from which you can return to TEL.

G Limitations of the Current Implementation

Our current implementation of TEL Version 0.9 has the following limitations
(in order of their signi�cance):

� Open variables cannot be constrained to subtypes. This is due to the fact that
for reasons of e�ency TEL's typed uni�cation is mapped more or less directly
to Prolog's untyped uni�cation.

� No subtype of the built-in types char and string (including char and string)
can be a subtype of a user-de�ned type. This limitation is due to the fact that
characters are implemented as Prolog numbers and strings are implemented
as Prolog atoms. Without this limitation, integers could not be distinguished
from characters and nullary value constructors could not be distinguished from
strings.

� Relations declared with trel don't produce a run-time error if they fail to yield
at least one answer. We don't know how to implement this feature e�ciently
in Prolog.

� User-de�ned operators are not implemented (yet).
� Of course, TEL inherits all limitations of Quintus Prolog.

