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Abstract. Search in constraint programming is a time consuming task.
Search can be speeded up by exploring subtrees of a search tree in par-
allel. This paper presents distributed search engines that achieve paral-
lelism by distribution across networked computers. The main point of the
paper is a simple design of the parallel search engine. Simplicity comes
as an immediate consequence of clearly separating search, concurrency,
and distribution. The obtained distributed search engines are simple yet
offer substantial speedup on standard network computers.

1 Introduction

Search in constraint programming is a time consuming task. Search can be
speeded up by exploring several subtrees of a search tree in parallel by cooper-
ating search engines called workers.

The paper develops search engines that achieve parallelism by distributing
workers across standard networked computers. The paper has two main points.
The first point is to provide a simple, high-level, and reusable design for parallel
search. The second point is to obtain good speedup rather than good resource
utilization.

Simple and Reusable Design Parallel search is made simple by separating three
issues: search, concurrency, and distribution.

Search Workers are search engines that explicitly manipulate their state. The
state corresponds to yet to be explored subtrees of the search tree. Explicit
manipulation is mandatory since subtrees need to be shared between workers.

Concurrency The main contribution of the paper is the design of a concurrent
search engine that adds communication and cooperation between workers.
Communication and cooperation presupposes concurrency.

Distribution How workers are distributed across networked computers is con-
sidered independently of the architecture of the concurrent engine. An im-
portant technique for sharing nodes across the network is recomputation.

The approach obviously simplifies the design since it allows to address con-
cerns independently. It also allows to reuse the concurrent architecture for other
purposes, such as parallel execution on shared-memory multiprocessors and co-
operative search for multi-agent systems.



The approach presupposes that search is encapsulated and combines well
with concurrency and distribution. As implementation language we use Oz [19],
a concurrent language that supports distribution and programming of search
engines from computation spaces [16]. Since spaces are concurrency-enabled,
parallel search engines can be programmed entirely in Oz.

The distributed search engines described in this paper are implemented in
the Mozart [10] implementation of Oz. The programming effort needed is less
than one thousand lines of Oz code.

Obtaining Speedup Networked computers are cheap, ubiquitous, and mostly idle.
Hence our criterion of success is whether a simple distributed search engine can
offer substantial speedup. This differs from the traditional criterion of success
for parallel search that aims at good utilization of specialized, expensive, and
not widely available hardware.

A performance evaluation shows that the simple distributed engine offers
substantial speedup already for small search trees. Large search trees as common
for complex constraint problems provide almost linear speedup.

Related Work There has been considerable work in the area of parallel search.
Rao and Kumar discuss and analyze the implementation of parallel depth-first
search in [14,8]. Their focus is on the impact of the underlying hardware archi-
tecture and in particular how to best utilize the resources of the parallel architec-
ture. Parallel execution on shared-memory multiprocessors and to a lesser extent
on networked computers has received great attention in logic programming, for
an overview see [1]. Early work that also uses recomputation to distribute work
is the Delphi Prolog system by Clocksin and Alshawi [2,3].

Mudambi and Schimpf discuss in [11] distributed search that also relies
on recomputation. A refinement of this work also addresses branch-and-bound
search [13]. Perron briefly sketches parallel search for ILOG Solver in [12]. All
these approaches have in common that they are mostly focused on the descrip-
tion how each separate engine works. The discussion of the architecture by which
the parallel engines communicate is missing or is at a low-level of abstraction. In
contrast, we are concerned with developing a high-level concurrent architecture
underlying parallel search engines.

Plan of the Paper Section 2 gives an overview of programming search, concurrent
programming, and distributed programming. The architecture for concurrent
search engines is introduced in Section 3, followed by how the concurrent search
engines are distributed across networked computers. The distributed search en-
gines are evaluated in Section 5.

2 Programming

This section gives an overview of the three different paradigms that are essen-
tial for programming distributed search engines: programming search, concur-



rent programming, and distributed programming. The underlying programming
model that supports all three paradigms is the Oz programming model [19].

2.1 Programming Search

Most constraint programming systems come with a fixed set of predefined search
engines that cannot be extended by the user. Our approach is different in that
it makes search programmable by the user: the appropriate primitives are inte-
grated into a programming language.

Oz offers computation spaces as primitives to program search. A more de-
tailed treatment of programming search engines from computation spaces can
be found in [16]. Spaces are applied to visual and interactive search in [15] and
to concurrent deep-guard combinators in [18].

We focus on search engines that explicitly maintain their state as a collection
of nodes (spaces) that require exploration. Having access to the nodes is manda-
tory for concurrent search engines since nodes are subject to sharing between
several concurrent search engines (workers).

NewSpace : Script → Space
Ask : Space → Status
Access : Space → Solution
Clone : Space → Space
Commit : Space × Int → Unit
Inject : Space × Script → Unit

Fig. 1. Operation on computation spaces.

Spaces Spaces are first-class entities in the programming language. The opera-
tions on computation spaces are listed in Figure 1. NewSpace takes a script (a
procedure that defines the constraint problem to be solved) and returns a space
that executes the script. Ask synchronizes until computation in the space has
reached a stable state. It then returns the status of the space, that is, whether
the space is failed, solved, or has alternatives. Alternatives are then re-
solved by search. Access returns the solution stored in a space. Clone returns
a copy of a space. Commit selects an alternative of a choice point. Inject adds
constraints to a space. How the operations are employed for programming search
becomes clear in the following.

Programming Exploration Figure 2 shows a formulation of depth-first explo-
ration (DFE) that explicitly maintains the state as a stack of spaces (imple-
mented as list). DFE returns either the empty list, if no solution is found, or a
singleton list containing the solution. If a space needs to be resolved by search,
the space is copied (by application of Clone) and exploration follows the left
alternative ({Commit S 1}) and later the right alternative ({Commit C 2}).



funfunfun {DFE Ss}

casecasecase Ss ofofof nil thenthenthen nil

[] S|Sr thenthenthen

casecasecase {Ask S} ofofof failed thenthenthen {DFE Sr}

[] solved thenthenthen [{Access S}]

[] alternatives thenthenthen C={Clone S} ininin

{Commit S 1} {Commit C 2} {DFE S|C|Sr}

endendend

endendend

endendend

Fig. 2. Depth-first exploration with explicit state.

The complete search engine is obtained by adding space creation according
to the problem P to be solved:

funfunfun {SearchOne P}
{DFE [{NewSpace P}]}

endendend

Branch-and-bound Search Best-solution search determines a best solution with
respect to a problem-dependent ordering among all solutions. The art of best-
solution search is to prune the search space as much as possible by information
computed from previously found solutions.

The following procedure injects information on a previously found solution
Sol (passed as singleton list) into a space S. The binary procedure O implements
the order between solutions.

procprocproc {Constrain S [Sol]}
{Inject S procprocproc {$ NR} {O Sol NR} endendend}

endendend

Branch-and-bound search organizes the spaces to be explored into two stacks:
the foreground stack (f-stack) and the background stack (b-stack). Spaces on the
f-stack are guaranteed to yield a better solution. Spaces that are not known to
guarantee this invariant are on the b-stack. The engine can be characterized by
how it maintains the invariants for the two stacks:

– Initially, the b-stack is empty and the f-stack contains the root space.
– If the f-stack is empty and the b-stack contains S, S is moved to the f-stack
after constraining.

– If a better solution is found, all elements of the f-stack are moved to the
b-stack.

– If a space from the f-stack is committed or cloned, it is eligible to go on the
f-stack.

Taking these facts together yields the program shown in Figure 3. The pro-
cedure BABE takes the f-stack (Fs), the b-stack (Bs), and the so-far best solu-
tion (BS).



funfunfun {BABE Fs Bs BS}

casecasecase Fs ofofof nil thenthenthen

casecasecase Bs ofofof nil thenthenthen BS

[] B|Br thenthenthen {Constrain B BS} {BABE [B] Br BS}

endendend

[] F|FR thenthenthen

casecasecase {Ask F} ofofof failed thenthenthen {BABE Fr Bs BS}

[] solved thenthenthen {BABE nil {Append Fr Bs} [{Access F}]}

[] alternatives(N) thenthenthen C={Clone F} ininin

{Commit F 1} {Commit C 2#N} {BABE F|C|Fr Bs BS}

endendend

endendend

endendend

Fig. 3. Branch-and-bound exploration with explicit state.

2.2 Concurrent Programming

Central for the integration of search into a concurrent and distributed setting
is that search is encapsulated. Encapsulation means that speculative constraint
computations are separated from the concurrent computations that control the
search engine. Encapsulation is provided by spaces: failure is kept encapsulated
to a space and does not affect other computations.

Active Services Each concurrent search engine is provided as an active and au-
tonomous concurrent service. Each service runs in its own thread and serves
messages set to the active service. This simple construction guarantees consis-
tency in a concurrent setting and also allows for straightforward migration from
a concurrent architecture to a distributed architecture.

Ports provide message sending for active services. A port maintains an or-
dered stream of messages (“mailbox”). A Send-operation on the port adds a
message to the end of the stream. The stream of messages then is incremen-
tally processed as new messages arrive. Ports have been initially conceived in
the context of AKL [7].

In our context a search engine is turned into a concurrent worker by attaching
a port to the engine. The engine then serves incoming messages. One particular
message is explore, which recursively continues exploration.

2.3 Distributed Programming

The basic idea of Distributed Oz is to abstract away the network as much as pos-
sible. This means that all network operations are invoked implicitly by the system
as an incidental result of using particular language operations. Distributed Oz
has the same language semantics as Oz by defining a distributed semantics for
all language entities. The distributed semantics extends the language seman-
tics to take into account the notion of site (or process). It defines the network
operations invoked when a computation is distributed across multiple sites.



Partial Network Transparency Network transparency means that computations
behave the same independent of the site they compute on, and that the possi-
ble interconnections between two computations do not depend on whether they
execute on the same or on different sites. Network transparency is guaranteed
in Distributed Oz for most entities. While network transparency is desirable
since it makes distributed programming easy, some entities in Distributed Oz
are not distributable. There are two different reasons for an entity to be not
distributable.

– The entity is native to the site. Examples are external entities such as files,
windows, but also native procedures acquired by dynamic linking. Native
procedures depend on the platform, the operating system, and also on the
process. Particular examples for native procedures in Mozart are most con-
straints which are implemented in C++ rather than in Oz [9].

– Distribution would be too complex. One class of entities for which distribu-
tion is too complex are computation spaces. Furthermore, even a distributed
implementation of computation spaces would be of limited use, since a com-
putation space typically contains native propagators.

Resource Access For distributed computations that need to utilize resources of
a distributed system, it is important to gain access to site-specific resources.
Access is gained by dynamic linking of functors that return modules in Oz.
Dynamic linking resolves a given set of resource-names (which are distributable)
associated with a functor and returns the resources (which are site-specific).

A straightforward way to access site-specific resources is accessing them
through active services. The service is distributable while its associated thread
is stationary and remains at the creating site. Thus all resource accesses are per-
formed locally. Services by this resemble remote procedure call (RPC) or remote
method invocation (RMI).

Compute Servers An Oz process can create new sites acting as compute servers.
Compute server creation takes the Internet address of a computer and starts a
new Oz process with the help from operating services for remote execution. The
created Oz process can be given a functor for execution. Thus the functor gives
access to the remotely spawned computations. Typically, a functor is used to set
up the right active services and to get access to native resources.

Further Reading An overview on the design of Distributed Oz is [6]. A tutorial
account on distributed programming with Mozart is [20]. The distributed se-
mantics of logic variables is reported in [5]; the distributed semantics of objects
is discussed in [21]. More information on functors, dynamic linking, and module
managers in Mozart can be found in [4].

3 Architecture

The concurrent search engine consists of a single manager and several workers.
The manager initializes the workers, collects solutions, detects termination, and



Manager

Worker · · · Worker

Worker

• explore subtree
(contains starting node)

• share node
(returns node)

• stop work

Manager

• collect solution from worker
(contains solution)

• find work for idle worker
(contains worker reference)

Fig. 4. Architecture of concurrent search engine.

assists in finding work for workers. Workers explore subtrees, share work with
other workers, and send solutions to the manager.

3.1 Cooperation

Manager and workers are understood best as concurrent autonomous agents that
communicate by exchanging messages. The architecture of the concurrent search
engine composed from manager and workers is sketched in Figure 4.

Initialization The concurrent search engine is initialized on behalf of the man-
ager. The manager sends an explore-message for the root node of the search
tree to a single worker. This single worker then starts working by exploring. A
worker that currently explores a subtree is busy and idle otherwise.

Exploration A worker explores nodes of the search tree. By working it generates
new work (new nodes).

Finding Work Suppose that worker Wi is idle. It announces this fact to the
manager by sending a find-message. The manager then tries to find a busy
worker Wb that is willing to share work with Wi. If the manager finds work,
it informs Wi by sending an explore-message containing the work found. To
allow communication back from the manager to Wi, the find-message contains
a reference to Wi.

The manager maintains a list of possibly busy workers which are not known
to be idle since the manager has not received a find-message from them. From
this list the manager picks a worker Wb and then sends a share-message to Wb.

When Wb receives a share-message, it first checks whether it has enough
work to fulfill the request. A worker receiving a share-message can be unable or
unwilling to share work. It can be unable, because it is idle. It can be unwilling,
because it has so little work such that sharing it might make the worker idle
itself (for example, the worker has only a single node left). In case the worker is
willing to share work, it removes a node from its own pool of work and sends it



to the manager. When the manager receives the node, it forwards the node to
the requesting worker.

If the manager receives that a share-message has been unsuccessful, it tries
the next busy worker. If all busy workers have been tried, it starts over again by
re-sending the initial find-message.

Collecting Solutions When a worker finds a solution, it sends a collect-message
containing the solution to the manager.

Termination Detection The manager detects that exploration is complete, when
the list of presumably busy workers becomes empty.

Stopping Search If the search tree needs partial exploration (for example, single-
solution search) the manager can stop search by sending a stop-message to all
workers.

Almost all communication between manager and workers is asynchronous.
The only point where synchronization is needed, is when the manager decides
whether finding work has been successful. This point is discussed in more detail
in Section 3.3.

Important Facts The concurrent search engine does not loose or duplicate work,
since nodes are directly exchanged between workers. Provided that the entire
tree is explored, the number of exploration steps performed by the concurrent
engine is the same as by the standard depth-first engine.

The exploration order is likely to be different from left-most depth-first. The
order depends on which nodes are exchanged between workers and is indeter-
ministic. For all-solution search this has the consequence that the order in which
the manager collects solutions is indeterministic. For single-solution search this
has the consequence that it is indeterministic which solution is found. In ad-
dition, it is also indeterministic how many exploration steps are needed. The
number can be smaller or greater than the number of exploration steps required
by depth-first exploration. The phenomenon to require less steps is also known
as super-linear speedup.

3.2 Worker

A worker is a search engine that is able to share nodes and that can be stopped.
Figure 5(a) summarizes which messages a worker receives and sends. The ability
to share work requires explicit state representation. A worker knows the manager
and maintains a list of nodes that need exploration (“work pool”).

Concurrent Control The worker is implemented as an active service. It runs in its
own thread and sequentially serves the messages it receives. This simple design
is enough to ensure consistency of the workers state in a concurrent setting.

The worker recursively invokes exploration as sketched in Section 2.1 by
sending an exploration message to itself. By message sending, exploration and
communication with the manager is easily synchronized.
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Fig. 5. Summary of messages.

Which Node to Share A promising candidate is the highest node in the search
tree, since it is likely that the subtree starting from it is large (“large work
granularity”). A large subtree prevents that the requesting worker becomes idle
soon and thus prevents excessive communication. Later it becomes clear that
sharing the highest node is a particularly good choice for distribution.

3.3 Manager

The manager is implemented as an active service, the messages it sends and
receives are summarized in Figure 5(b). The manager knows all workers. They
are needed for initialization and for stopping. The manager maintains a list of
workers not known to be idle and a list of solutions.

Finding Work Finding work can be a time consuming task since it can take
several attempts to seek for a worker that is able to share work. Hence, it is
infeasible to block the manager while seeking work.

A design that does not block the manager is as follows. When the manager
receives a find-message, it spawns a new thread that takes the current list of
busy workers as snapshot. Directly after thread creation the manager is again
available to serve incoming messages. If no work has been found, the initial
find-message is send again to the manager and the thread terminates. This is
repeated until either work is found or no presumably busy workers are left.

The solution to take a snapshot of the currently busy workers upon message
receipt is simple but has the following drawback. The manager might ask workers
that are still contained in the snapshot but have already announced that they
are idle themselves. This can result in a delay of the manager to find work and
thus the initially requesting worker might remain idle for a longer period of time.

3.4 Best-solution Search

The main design issue in best-solution search is how to maintain the so-far best
solution. The sequential branch-and-bound engine always knows the so-far best
solution (BS in Figure 3). This is difficult to achieve in a concurrent setting with



several workers. Maintaining the best solution for each worker would require a
large communication and synchronization overhead. Instead we prefer a solution
where both manager and workers maintain the so-far best solution as follows:

Manager When the manager receives a new solution through a collect-
message, it checks whether the solution is really better. If the solution is
better, the manager sends it to all workers. This requires a better-message
that contains the so-far best solution.

Worker When a worker finds a new solution, it stores the solution as so-far best
solution and informs the manager by sending a collect-message. When a
worker receives a better-message the worker does not check whether the
received solution S1 is better than the worker’s so-far best solution S2. If S1

is worse, S1 will be replaced anyway. The manager eventually sends a solution
which is at least as good as S2 (since it receives S2 from this worker). It might
be better in case the manager has received an even better solution from some
other worker.

The architecture sketched above entails that a worker might not always know
the so-far best solution. This can have the consequence that parts of the search
tree are explored that would have been pruned away if the worker would have
had exact knowledge. Thus the loose coupling might be paid by some overhead.
To this overhead we refer to as exploration overhead.

4 Distributed Search Engines

This section discusses how to adopt the concurrent search engine such that its
workers are distributed across networked computers.

Search Engine Setup The setup of the search engine uses compute servers. The
manager is created first. Then a new Oz process is created for each worker.
Typically, each process is created on a different networked computer.

Each newly created process is given a functor that creates and returns the
worker service. It is important that the functor can be given first-class since the
worker requires access to the manager service.

Distributing Nodes Since spaces are not distributable, workers cannot exchange
work by communicating spaces directly. Scripts are not distributable, since they
typically contain references to native propagators. However, a functor that on
application returns the script is distributable. This means that the root space
can be recomputed via the script from the given script-functor by all workers.

Given the root space, work can then be communicated by communicating
paths in the search tree that describe how to recompute nodes:

node ←→ root + path



When a worker acquires new work, the acquired node is recomputed. This
causes overhead, to which we refer to as recomputation overhead. The higher
the node in the search tree, the smaller the recomputation overhead. For this
reason, sharing the topmost node is a good choice. Since all nodes are subject
to sharing, a worker must always maintain the path to recompute a node.

Recomputable Spaces In the following we employ recomputable spaces (r-spaces
for short) as convenient abstractions for distributed search engines. An r-space
supports all space operations. Additionally, an r-space provides an export op-
eration that returns the path for recomputation. Search engines that employ
r-spaces rather than “normal” spaces are otherwise identical, since r-spaces pro-
vide the same programming interface.

The key feature of an r-space is that commit-operations are executed on de-
mand which is beneficial for two reasons. Firstly, not the entire search tree might
be explored during single solution search. Secondly, a node might be handed out
to some other worker and thus the commit operations might be wasted.

An r-space encapsulates the following three components:

Sliding Space It is initialized to a clone of the root space.
Pending Path A list of pending commit-operations.
Done Path A list of already performed commit-operations.

The sliding space always satisfies the invariant that it corresponds to a space
that has been recomputed from the root space and the done path.

Initialization Creation of an r-space takes a path P as input. The sliding space
is initialized to a clone of the root space. The pending path is initialized to
the path P . The done path is initialized to the empty path.

Commit A commit to the i-th alternative adds i to the pending path.
Update Updating an r-space performs all commit-operations on the pending

path. Then the pending path is added to the done path and is reset.
Ask, Clone, Access Ask, clone, and access update the r-space first and then

perform the corresponding operation on the sliding space.
Export Export returns the concatenation of done and pending path.

An r-space is extended straightforwardly to support best-solution search by
storing a list of operations rather than a simple path. This list of operations
contains elements of the form commit(i) and constrain(x), where i is the
number of an alternative and x is a solution. This presupposes that solutions
are distributable.

5 Evaluation

The examples used for evaluation are all common benchmark problems: Alpha,
10-S-Queens, Photo, and MT 10. The examples vary in the following aspects:

Search Space and Search Cost All but MT 10 have a rather small search
space where every exploration step is cheap (that is, takes little runtime).



Strategy For Alpha and 10-S-Queens all-solution search is used. For Photo
and MT 10 best-solution search is used.

Number of Solutions 10-S-Queens has a large number of solutions (every
tenth node is a solution). This makes the example interesting, because each
solution is forwarded to the manager. This assesses whether communication
is a bottleneck and whether the manager is able to process messages quickly.

The choice of examples addresses the question of how good parallel search
engines can be for borderline examples. MT 10, in contrast, can be considered
as a well-suited example as it comes to size and cost.

0 10 20 30 40 50 60

MT 10 4.1

Photo 19.9

10-S-Queens 52.2

Alpha 16.5

percent

Fig. 6. Total overhead of distributed search engine.

Total Overhead Figure 6 shows the total overhead of a distributed search engine
for the examples. The overhead is taken as the additional runtime needed by a
distributed search engine with a single worker, where both worker and manager
execute on the same computer compared to a sequential search engine. Informa-
tion on the used software and hardware platforms can be found in Section A.

The numbers suggest that for examples with small search space and small
search cost the overhead is less than 20%. This is due to the additional costs
for maintaining r-spaces and message-sending to an active service. For large
examples (MT 10) the overhead can be neglected. The overhead of around 50%
for 10-S-Queens is due to frequent communication between worker and manager.
Compared to the small search cost, this overhead is quite tolerable.

Speedup Figure 7 shows the speedup that is obtained for the examples with a
varying number of workers. All examples offer substantial speedup. For three
workers all examples yield at least a speedup of two, and for six workers the
speedup exceeds three. The speedup for MT 10 with six workers is larger than 5.

For all combinations of workers and examples but Alpha with two workers the
coefficient of deviation is less than 7% and for 70% of all combinations less than
5% (in particular, for all combinations of MT 10 less than 4%). For Alpha with
two workers the coefficient of deviation is less than 11%. This allows to conclude
that speedup is stable across different runs and that indeterminism introduced
by communication shows little effect on the runtime. Moreover, this clarifies that
both minimal and maximal speedup are close to the average speedup.
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Fig. 7. Speedup.

Work Granularity Figure 8 shows the average work granularity which is amaz-
ingly coarse. Work granularity is the arithmetic mean of the sizes of subtrees
explored by a worker in relation to the size of the entire tree. For all combina-
tions of examples and workers the granularity remains close to ten percent. This
means that the simple scheme for sharing work is sufficient.

Manager Load A possible drawback of a single manager is the potential of a
performance bottleneck. If the single manager is not able to keep up with pro-
cessing find-messages, workers might be idle even though other workers have
work to share. Figure 9 shows the load of the manager, where a load of 50%
means that the manager is idle during half of the entire runtime.

For all examples the manager has a load of less than 50%. For the more
realistic examples Photo and MT 10 the load is less than 20%. This provides
evidence that the manager will be able to efficiently serve messages for more
than six workers. There are two reasons why the load is quite low. Firstly, work
granularity is coarse as argued above. Coarse granularity means that workers
infrequently communicate with the manager to find work. Secondly, each incom-
ing request to find work is handled by a new thread. Hence, the manager is
immediately ready to serve further incoming messages.

Recomputation Overhead Figure 10 shows the recomputation overhead. The
numbers suggest that the overhead for recomputation is always less than 10%.
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Fig. 8. Work granularity.
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Fig. 10. Recomputation overhead.

This means that the price paid for distributing work across the network is low.
For the general performance of recomputation in Oz, see [17].

Exploration Overhead Exploration overhead occurs for branch-and-bound search
and is due to the differing order in which solutions are found (see Section 3.4).
Figure 11 shows the exploration overhead for Photo and MT 10. The exploration
overhead is almost exclusively the cause for the speedup loss.

Exploration overhead is a consequence of performing branch-and-bound in
parallel and is independent of our implementation of the search engines. A dif-
ferent approach to parallel best-solution search is presented by Prestwich and
Mudambi in [13]. They use a technique called cost-parallelism, where several
searches for a solution with different cost bounds are performed in parallel. This
technique is shown to perform better than parallel branch-and-bound search.

A Hardware and Software Platforms

The performance figures use a collection of standard personal computers running
RedHat Linux 6.2 (Kernel 2.2.14) connected by a 100 MBit Ethernet. Three
different types of machines are used:
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Fig. 11. Exploration overhead.

Type Processors Memory

a 2× 400 MHz Pentium II 256 MB
b 2× 400 MHz Pentium II 512 MB
c 1× 466 MHz Celeron 256 MB

The combination of computers for varying number of workers is as follows,
where the manager has always been run on computer a: 1:(a), 2:(a,b), 3:(a,b,c),
4:(a,b,2×c), 5:(a,b,3×c), and 6:(a,b,4×c).

All times have been taken as wall time (that is, absolute clock time), where
all machines were unloaded. As system Mozart 1.1.1 has been used. All numbers
presented are the arithmetic mean of 25 runs.
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