
Generating Propagators for Finite Set Constraints

Guido Tack1, Christian Schulte2, and Gert Smolka1

1 PS Lab, Saarland University, Saarbrücken, Germany, {tack,smolka}@ps.uni-sb.de
2 ECS, ICT, KTH - Royal Institute of Technology, Sweden, cschulte@kth.se

Abstract. Ideally, programming propagators as implementations of constraints
should be an entirely declarative specification process for a large class of con-
straints: a high-level declarative specification is automatically translated into an
efficient propagator. This paper introduces the use of existential monadic second-
order logic as declarative specification language for finite set propagators. The
approach taken in the paper is to automatically derive projection propagators (in-
volving a single variable only) implementing constraints described by formulas.
By this, the paper transfers the ideas of indexicals to finite set constraints while
considerably increasing the level of abstraction available with indexicals. The pa-
per proves soundness and completeness of the derived propagators and presents
a run-time analysis, including techniques for efficiently executing projectors for
n-ary constraints.

1 Introduction

Implementing constraints as propagators is an essential yet challenging task in devel-
oping and extending constraint programming systems. It is essential as the system’s
propagators define its efficiency, correctness, maintainability, and usability. It is chal-
lenging as most systems can only be programmed at a painfully low level of abstraction,
requiring the use of languages such as C++, Java, or Prolog as well as intimate knowl-
edge of complex programming interfaces. Some approaches that address this problem
are indexicals (discussed below), high-level descriptions for the range and roots con-
straint [5], and deriving filtering algorithms from constraint checkers [3].

For finite domain constraints, indexicals have been introduced as a high-level pro-
gramming language for projectors, a restricted form of propagators that only allow pro-
jections for a single variable [13, 6, 8]. While indexicals simplify programming prop-
agators considerably, they have shortcomings with respect to level of abstraction and
expressiveness. Indexicals still can not be automatically obtained from purely declara-
tive specifications: multiple implementations for the same constraint are required, such
as for different levels of consistency and entailment checking. Indexicals are only ex-
pressive enough for binary or ternary constraints. For n-ary constraints the very idea
to decompose the propagator into projectors sacrifices efficiency. For example, decom-
posing a linear equation constraint involving n variables into n projectors increases the
run-time from O(n) to O(n2).

Worse still, for more involved constraint domains such as finite sets the burden
on the programmer increases. Here programmers do not only need to reason on a by-
value-base but on a by-set-base (typically involving sets for lower and upper bounds).

This additional complexity has been addressed by recent work of Ågren, Flener, and
Pearson [2] in the context of constraint-based local search with finite set variables.
The authors use formulas from an existential monadic second-order logic (∃MSO) to
give descriptions of penalty functions to guide local search. While using ∃MSO as a
high-level language, formulas are treated in a purely syntactic fashion: different penalty
functions are obtained from syntactically different yet logically equivalent formulas.

Main contribution. This paper presents an exercise in applied software engineering.
We provide a high-level, abstract specification language for finite set constraints, and
an automatic translation into an efficient implementation.

The paper introduces the use of ∃MSO as a purely declarative specification lan-
guage for automatically obtaining propagators for finite set constraints. As an example,
consider the binary union constraint x = y∪ z. In the fragment of ∃MSO we define, this
constraint can be written ∀v.v ∈ x ↔ v ∈ y∨ v ∈ z, where v ranges over individual val-
ues from the universe, and x, y, and z are the finite set variables. Formulas allow us to
specify constraints in a purely declarative way.

From a constraint expressed as a formula, we derive a set of projectors, one for
each of the variables. For the binary union example, we get px = (y∪ z ⊆ x ⊆ y∪ z),
py = (x\ z ⊆ y ⊆ x), pz = (x\ y ⊆ z ⊆ x). Projectors transfer the idea of finite domain
indexicals to finite sets. We show that the generated set of projectors is sound and com-
plete for the constraint it was derived from.

Projectors are an executable specification. Just like indexicals, projectors can be im-
plemented efficiently. We have implemented an interpreter and compiler for projectors
for the Gecode library [20]. We can specify constraints purely declaratively as formulas,
and then generate an implementation that is provably sound and complete.

Plan of the paper. After presenting a framework for studying propagators in Section 2,
this paper is organized as follows:

– The use of ∃MSO as a declarative specification language for finite set constraints
is introduced (Section 3).

– Projectors for finite set constraints are derived from range expressions over finite set
variables (Section 4). This transfers the ideas of indexicals to finite set constraints.

– A correspondence between formulas in ∃MSO and finite set projectors is estab-
lished (Section 5), where equivalent formulas lead to equivalent projectors. We
prove that the derived projectors are correct and as strong as possible.

– Negated and reified constraints are obtained from entailment-checking projectors
(Section 6).

– The specification language is shown to be also suitable for generating ROBDD-
based propagators (Section 7).

– Techniques for evaluating projectors derived from range expressions are discussed,
including common subexpression elimination (Section 8).

– We analyze the run-time of projectors and generalize range expressions to propa-
gators involving arbitrary numbers of set variables (Section 9).

Section 10 concludes the paper.

2 Constraints and Propagators

This section introduces the central notions used in the rest of the paper. The presentation
builds on the extended constraint systems of Benhamou [4].

Variables and constraints. We assume a finite set of variables Var and a finite set of
values Val. Constraints are characterized by assignments α ∈ Asn mapping variables
to values: Asn = Var → Val. A constraint c ∈ Con is a set of fulfilling assignments,
Con = P(Asn). Basing constraints on assignments (defined for all variables Var) rather
than tuples or partial assignments (defined for a subset of variables X ⊆ Var) simplifies
further presentation. Note that a set of tuples or partial assignments for a set of variables
X can be extended easily to a set of assignments by mapping all variables from Var \X
to all possible values.

Domains and stores. Propagation is performed by propagators over constraint stores
(or just stores) where stores are constructed from domain approximations as follows.
A domain d ∈ Dom contains values a variable can take, Dom = P(Val). A domain
approximation A for Dom is a subset of Dom that is closed under intersection and that
contains at least those domains needed to perform constraint propagation, namely /0,
Val, and all singletons {v} (called unit approximate domains in [4]). We call elements
of A approximate domains.

A store S ∈ Store is a tuple of approximate domains. The set of stores is a Cartesian
product Store = An, where n = |Var| and A is a domain approximation for Dom.

Note that a store S can be identified with a mapping S ∈ Var → A or with a set of
assignments S ∈P(Asn). This allows us to treat stores as constraints when there is no
risk of confusion. In particular, for any assignment α , {α} is a store.

A store S1 is stronger than a store S2, if S1 ⊆ S2. By (c)Store we refer to the strongest
store including all values of a constraint, defined as min{S ∈ Store|c ⊆ S}. The mini-
mum exists as stores are closed under intersection. Note that this is a meaningful def-
inition as stores only allow Cartesian products of approximate domains. Now, for a
constraint c and a store S, (c∩S)Store refers to removing all values from S not supported
by the constraint c (with respect to the approximative nature of stores). For a constraint
c, we define c.x = {v|∃α ∈ c : α(x) = v} as the projection on the variable x. For a store
S, S.x is the x-component of the tuple S.

Constraint satisfaction problems. A constraint satisfaction problem is a pair (C,S) ∈
P(Con)× Store of a set of constraints C and a store S. A solution of a constraint
satisfaction problem (C,S) is an assignment α such that α ∈ S and α ∈

⋂
c∈C c.

Propagators. Propagators serve here as implementations of constraints. They are some-
times also referred to as constraint narrowing operators or filter functions. A prop-
agator is a function p ∈ Store → Store that is contracting (p(S) ⊆ S) and monotone
(S′ ⊆ S ⇒ p(S′)⊆ p(S)). Note that propagators are not required to be idempotent.

A propagator is sound for a constraint c iff for all assignments α , we have c∩{α}=
p({α}). This implies that for any store S, we have (c∩S)Store ⊆ p(S). Thus, p is sound
for c if it does not remove solutions and can decide if an assignment fulfills c or not.

A propagator is complete for a constraint c iff for all stores S, we have (c∩S)Store =
p(S). A complete propagator thus removes all assignments from S that are locally in-
consistent with c. Note that a complete propagator for a constraint c establishes domain-
consistency for c with respect to the domain approximation.

Fixpoints as propagation results. With set inclusion lifted point-wise to Cartesian prod-
ucts, stores form a complete partial order. Hence, one can show that the greatest mutual
fixpoint of a set of propagators P for a store S exists. We write the fixpoint as

d
P S.

In the following we will be interested in the soundness and completeness of sets
of propagators. A set of propagators P is sound for a constraint c iff ∀α : c∩{α} =d

P {α}. Likewise, P is complete for c iff ∀S : (c∩S)Store =
d

P S.
Note that we specify what is computed by constraint propagation and not how.

Approaches how to perform constraint propagation can be found in [4, 1, 18].

Projectors. Projection propagators (or projectors, for short) behave as the identity func-
tion for all but one variable. Thus, for a projector on x, we have ∀S ∀y 6= x : (p(S)).y =
S.y. To simplify presentation, we write a projector on x as px ∈ Store→ A.

3 A Specification Language for Finite Set Constraints

This section introduces a high-level, declarative language that allows to specify finite set
constraints intensionally. Finite set constraints talk about variables ranging over finite
sets of a fixed, finite universe: Val = P(U). To specify finite set constraints, we use a
fragment of existential monadic second order logic (∃MSO).

In the following sections, we use ∃MSO for proving properties of projectors and
the constraints they implement. Furthermore, we derive sound and complete projectors
from formulas.

3.1 A logic for finite set constraints

In our framework, constraints are represented extensionally as collections of assign-
ments. To be able to reason about them, we use formulas of a fragment of second-order
logic as an intensional representation.

Finite set constraints can be elegantly stated in existential monadic second-order
logic (∃MSO), see [2] for a discussion in the context of local search. Second-order
variables take the role of finite set variables from Var, and first-order variables range
over individual values from the universe U .

We use the fragment defined by the grammar in Table 1. It has the usual Boolean
connectives, a first-order universal quantifier and a second-order existential quantifier,
all with their standard interpretation. As the second-order variables represent finite sets,
we write v ∈ x instead of x(v) and abbreviate ¬v ∈ x as v /∈ x. Furthermore, we use
implication (→) and equivalence (↔) as the usual abbreviations.

S ::= ∃x S | F second-order quantification

F ::= ∀v.B | F ∧F first-order quantification

B ::= B∧B | B∨B | ¬B | v ∈ x | ⊥ basic formulas

Table 1. Syntax of a fragment of ∃MSO

Formulas as constraints. The extension of a formula ϕ is the set of models of ϕ . In the
case of monadic second-order formulas without free first-order variables, a model cor-
responds directly to an assignment. The extension of ϕ is hence the set of assignments
that satisfy ϕ .

A set of satisfying (or fulfilling) assignments is exactly the definition of a constraint.
Thus, for a formula ϕ without free first-order variables, we write [ϕ] for its extension,
and we use it like a constraint. Table 2 shows some examples of finite set constraints
expressed as ∃MSO formulas.

Some important constraints, like disequality of sets, cannot be expressed using this
logic, as they require a first-order existential quantifier. Extending the logic with exis-
tential quantification is discussed in Section 6.

x⊆ y [∀v.v ∈ x→ v ∈ y] subset
x = y [∀v.v ∈ x↔ v ∈ y] equality
x = y∪ z [∀v.v ∈ x↔ v ∈ y∨ v ∈ z] union
x = y∩ z [∀v.v ∈ x↔ v ∈ y∧ v ∈ z] intersection
x ‖ y [∀v.v /∈ x∨ v /∈ y] disjointness

Table 2. Finite set constraints expressed in ∃MSO

4 Finite Integer Set Projectors

This section introduces a high-level programming language for implementing projec-
tors for finite set constraints. First, we define domain approximations for finite set con-
straints – this yields a concrete instance of the framework defined in Section 2. Then
we describe range expressions as introduced by Müller [15], which carry over the ideas
behind finite domain indexicals to finite set projectors.

4.1 Domain approximations for sets

With Val = P(U) for set variables, a full representation of the domain of a variable
can be exponential in size. This makes domain approximations especially important for
set variables.

rglb(x,S) = glb(S.x) rglb
(
R,S

)
= rlub(R,S)

rglb(R1∪R2,S) = rglb(R1,S)∪ rglb(R2,S) rglb(/0,S) = rlub(/0,S) = /0
rglb(R1∩R2,S) = rglb(R1,S)∩ rglb(R2,S)

rlub(R,S) analogous

Table 3. Evaluating range expressions in a store

Most constraint programming systems use convex sets as an approximation (intro-
duced in [16], formalized in [10]). A convex set d is a set of sets that can be described
by a greatest lower bound glb(d) and a least upper bound lub(d) and represents the sets
{v | glb(d)⊆ v⊆ lub(d)}.

In our terminology, we define the domain approximation ASet as the set of all convex
sets. ASet is indeed a domain approximation, as /0, Val, and all singletons {s} for s ∈ Val
are convex, and the intersection of two convex sets is again convex. We write glb(S.x)
and lub(S.x) to denote the greatest lower resp. least upper bound of x in the store S.

4.2 Range expressions for finite set projectors

Given ASet, a projector for a finite set variable x can be written as a function px ∈
Store→ Val×Val, returning the pruned greatest lower and least upper bound for x.

For finite domain constraints, indexicals have proven a useful projector program-
ming language. The main idea goes back to cc(FD) [12, 13] and was later elaborated
in the context of clp(FD), AKL, and SICStus Prolog [9, 6, 8]. Indexicals build on range
expressions as a syntax for set-valued expressions that can be used to define the projec-
tion of a constraint. These ideas easily carry over to finite set projectors over ASet. We
define range expressions by the following grammar:

R ::= x | R∪R | R∩R | R | /0

A finite set projector for the variable x can now be defined by two range expressions,
one pruning the greatest lower bound of x, and one pruning the upper bound. We write
such a projector px = (R1 ⊆ x⊆ R2).

Range expressions are evaluated in a store using the functions rglb and rlub from
Table 3. A projector px = (R1 ⊆ x ⊆ R2) is defined to compute the function px(S) =
(rglb(R1,S)∪glb(S.x),rlub(R2,S)∩ lub(S.x)).

Proposition 1. A function px = (R1 ⊆ x⊆ R2) is contracting and monotone and there-
fore a propagator.

Proof. The function px is contracting by construction. It is monotone iff ∀S′ ⊆ S :
px(S′) ⊆ px(S), or equivalently ∀S′ ⊆ S : glb(px(S)) ⊆ glb(px(S′)) and lub(px(S′)) ⊆
lub(px(S)). For a projector defined by range expressions (R1 ⊆ x ⊆ R2), we must have
∀S′ ⊆ S : rglb(R1,S) ⊆ rglb(R1,S′) and rlub(R2,S′) ⊆ rlub(R2,S). This can be shown by
induction over the structure of range expressions.

ev(x) = v ∈ x ev
(
R
)

= ¬ev(R)
ev(R1∪R2) = ev(R1)∨ ev(R2) ev(/0) = ⊥
ev(R1∩R2) = ev(R1)∧ ev(R2)

Table 4. Translating a range expression to a formula

5 ∃MSO Specifications for Projectors

We have seen two specification languages so far, one high-level declarative language
for specifying set constraints, and one programming language for set projectors. This
section shows how to connect the two languages: on the one hand, we want to find a
formula describing the constraint a projector implements, on the other hand, we want
to find projectors implementing the constraint represented by a formula.

We derive a ∃MSO formula ϕ for a given projector px such that px is sound for [ϕ].
The formula thus declaratively describes the constraint that px implements.

For the other direction, we generate a set of projectors P for a given formula ϕ such
that P is sound and complete for [ϕ]. This allows us to use ∃MSO as a specification
language for sound and complete finite set projectors.

5.1 From range expressions to ∃MSO specifications

Given a projector px, we now derive a formula ϕpx such that px is sound for [ϕpx].
The correspondence between relational algebra and logic gives rise to the definition

of the function e (Table 4). For a range expression R, ev(R) is a formula that is true iff
v ∈ R. Furthermore, a subset relation corresponds to a logical implication. Hence, for a
projector px = (R1 ⊆ x⊆ R2), we define ϕpx = ∀v.(ev(R1)→ v ∈ x)∧(v ∈ x→ ev(R2)).
We can now show that px is sound for [ϕpx].

Lemma 1. Range expressions have the same extension as the corresponding formulas.

α ∈ [∀v.ev(R)→ v ∈ x] ⇔ rglb(R,{α})⊆ α(x)
α ∈ [∀v.v ∈ x→ ev(R)] ⇔ α(x)⊆ rlub(R,{α})

Proof. By induction over the structure of range expressions.

Proposition 2. Every projector px = (R1 ⊆ x⊆ R2) is sound for the constraint [ϕpx].

Proof. We have to show [ϕpx]∩{α} = px({α}) for all α . This is equivalent to show-
ing α ∈ [ϕpx]⇔ px({α}) = {α}. From the definition of projectors, we get px({α}) =
{α}⇔ rglb(R1,{α})⊆ α(x)∧α(x)⊆ rlub(R2,{α}). Lemma 1 says that this is equiva-
lent to α ∈ [∀v.ev(R1)→ v ∈ x] and α ∈ [∀v.v ∈ x→ ev(R2)]. This can be combined into
α ∈ [∀v.(ev(R1)→ v ∈ x)∧ (v ∈ x→ ev(R2))] = [ϕpx].

Equivalence of projectors. We say that two projectors px and p′x are equivalent iff
they are sound for the same constraint. Using the translation to formulas as introduced
above, px and p′x are equivalent iff ϕpx ≡ ϕp′x . Note that two equivalent projectors may
still differ in propagation strength, for instance if only one of them is complete for ϕpx .

5.2 From specifications to projectors

The previous section shows that for every set projector px one can find a formula ϕpx

such that px is sound for [ϕpx]. We now want to find a set of projectors P for a given
formula ϕ such that P is sound and complete for [ϕ]. Remember that we need a set of
projectors, as each individual projector only affects one variable. For completeness, all
variable domains have to be pruned.

A first step extracts all implications to a single variable x from a given formula ϕ ,
yielding a normal form for ϕ . A second step then transforms this normal form into a
projector for x. Using the transformation to normal form, we can construct a set of pro-
jectors, one for each variable in ϕ . Finally, we show that the set of projectors obtained
this way is complete for [ϕ].

Step 1: Extraction of implications. As we use the convex-set approximation, a pro-
jector for a variable x has to answer two questions: which values for x occur in all
assignments satisfying the constraint (the greatest lower bound), and which values
can occur at all in a satisfying assignment (the least upper bound). The idea of our
transformation is that the first question can be answered by a formula of the form
∀v.ψ1 → v ∈ x, while the second question corresponds to a formula ∀v.v ∈ x → ψ2.
The remaining problem is hence to transform any formula ϕ into an equivalent ϕ ′ =∧

x∀v : (ψ1x → v ∈ x)∧ (v ∈ x→ ψ2x).
The transformation proceeds in four steps: (1) Skolemization, (2) merging of first-

order quantifiers, (3) transformation to conjunctive normal form, and (4) extraction of
implications for each variable.

Skolemization removes all second-order existential quantifiers and replaces them
with fresh variables. Intuitively, the fresh variables play the role of intermediate vari-
ables. Though this is not strictly an equivalence transformation, the extension of the
resulting formula is the same for the variables of the original formula. We can merge
universal quantifiers (∀v.ψ)∧ (∀v.ψ ′) into ∀v.ψ ∧ψ ′. After these transformations, we
arrive at a formula of the form ∀v.ψ where ψ is quantifier-free. We can then transform
ψ into conjunctive normal form (CNF), into a set of clauses {C1, . . . ,Cn}, where each
Ci is a set of literals L (either v ∈ x or v /∈ x).

From the CNF, one can extract all implications for a variable x as follows:

∀v.ψ ≡ ∀v.
∧

i
∨

L′∈Ci
L′

≡ ∀v.
∧

i

(∧
L′ 6=(v∈x)∈Ci

L′ → v ∈ x
)
∧

(∧
L′ 6=(v/∈x)∈Ci

L′ → v /∈ x
)

≡ ∀v.
(∨

i
∧

L′ 6=(v∈x)∈Ci
L′ → v ∈ x

)
∧

(
v ∈ x →

∧
i
∨

L′ 6=(v/∈x)∈Ci
L′

)
If ψ does not contain v ∈ x (or v /∈ x), the corresponding implication is trivially true.

Thus, in practice, this transformation only has to consider the free variables of ψ (after
Skolemization) instead of all the variables.

We call this form L-implying normal form of ϕ , written INFL(ϕ). We refer to∨
i(

∧
L′ 6=(v∈x)∈Ci

L′) as ψ1x and to
∧

i
∨

L′ 6=(v/∈x)∈Ci
L′ as ψ2x .

Step 2: Compilation to projectors. The two subformulas of an L-implying normal
form, ψ1x and ψ2x , are quantifier-free and contain a single first-order variable v. We
observe that the function ev from Table 4 has an inverse e−1 for quantifier-free formulas
with a single free first-order variable v.

With Proposition 2 we can thus argue that (e−1(ψ1x) ⊆ x ⊆ e−1(ψ2x)) is sound for
[INFx(ϕ)]. Furthermore, for any formula ϕ ′ =

∧
x INFx(ϕ), it is easy to show that the

set P = {(e−1(ψ1x)⊆ x⊆ e−1(ψ2x)) | x ∈ Var} is sound for [ϕ].

Example. Consider the ternary intersection constraint x = y∩ z. It can be expressed in
∃MSO as ∀v.v ∈ x↔ v ∈ y∧ v ∈ z. The implied normal forms for x, y, and z are

∀v. (v ∈ y∧ v ∈ z→ v ∈ x) ∧ (v ∈ x→ v ∈ y∧ v ∈ z)
∀v. (v ∈ x→ v ∈ y) ∧ (v ∈ y→ v ∈ x∨ v /∈ z)
∀v. (v ∈ x→ v ∈ z) ∧ (v ∈ z→ v ∈ x∨ v /∈ y)

Deriving projectors from these formulas, we get px = (y∩ z⊆ x⊆ y∩ z), py = (x⊆ y⊆
x∪ z), and pz = (x⊆ z⊆ x∪ y).

Proposition 3. We can now prove completeness of the generated projector set: Given a
formula ϕ ′ =

∧
x INFx(ϕ), the projector set P = {(e−1(ψ1x)⊆ x⊆ e−1(ψ2x)) | x∈ Var}

is complete for [ϕ].

Proof. We only sketch the proof due to space limitations. For completeness, we have to
show

d
P S ⊆ ([ϕ]∩S)Store. If ([ϕ]∩S)Store = S, this is trivial. Otherwise, we only have

to show that at least one projector can make a contribution.
First, we can show that if [ϕ] removes values from the greatest lower or least upper

bounds of variables in S, then there exists at least one x such that already [INFx(ϕ)]
prunes S. More formally, ([ϕ]∩S)Store 6= S implies glb(([∀v.ψ1x → v ∈ x] ∩ S).x) 6=
glb(S.x) or lub(([∀v.v ∈ x→ ψ2x]∩ S).x) 6= lub(S.x) for some x. This is true because
of the way implications are extracted from ϕ .

The second step in the proof is to show that if glb(([∀v.ψ1x → v ∈ x] ∩ S).x) 6=
glb(S.x), then glb(([∀v.ψ1x → v ∈ x]∩ S).x) ⊆ rglb(e−1(ψ1x),S)∪ glb(S.x), and dually
for lub. This means that the projector for x makes a contribution and narrows the do-
main.

Finally, if none of the projectors can contribute for the store S, we know on the
one hand that ([ϕ]∩S)Store = S (we have just proved that), and on the other hand thatd

P S = S (S must be a fixpoint). This concludes the proof.

With Propositions 2 and 3, it follows that the set of projectors {px = (e−1(ψ1x) ⊆
x⊆ e−1(ψ2x)) | x ∈ Var} is sound and complete for [

∧
x INFx(ϕ)] = [ϕ].

Finding small formulas. The projectors derived from two equivalent formulas ϕ ≡ ϕ ′

are equivalent in the sense that they are sound and complete for both formulas. However,
the size of their range expressions, and therefore the time complexity of propagating
them (as discussed in Section 9), can differ dramatically.

The antecedents in an L-implied normal form are in disjunctive normal form (DNF).
We can apply well-known techniques from circuit minimization to find equivalent min-
imal formulas (e.g. the Quine-McCluskey and Petrick’s methods). Note that for the
“standard constraints” like those from Table 2, the generated INF are minimal.

6 Negated and Reified Constraints

In this section, we show how to specify and execute negated and reified constraints,
by transferring the ideas of entailment checking indexicals [7] to finite set projectors.
Negation adds first-order existential quantifiers to the specification language.

Checking entailment of a projector. A propagator p is called entailed by a store S iff
for all stores S′ ⊆ S we have p(S′) = S′.

In the indexical scheme, entailment can be checked using anti-monotone indexi-
cals [7]. Following this approach, we use the anti-monotone interpretation of a projector
to check its entailment. For example, a sufficient condition for p = (R1 ⊆ x⊆ R2) being
entailed is rlub(R1,S)⊆ glb(S.x) and lub(S.x)⊆ rglb(R2,S).

Negated projectors – existential quantifiers. A negated projector p can be propagated
by checking entailment of p. If p is entailed, p is failed, and vice versa. Such a p is
sound for [¬ϕp], but not necessarily complete.

We observe that this gives us a sound implementation for formulas ¬ϕ , where ϕ =
∀v.(ψ1 → v ∈ x)∧(v ∈ x→ ψ2). This is equivalent to ¬ϕ = ∃v.¬(ψ1 → v∈ x∧v∈ x→
ψ2). We can thus extend our formulas with existential first-order quantification:

F ::= ∀v.B | ∃v.B | F ∧F

One important constraint we could not express in Section 3 was disequality of sets,
x 6= y. Using existential quantification, this is easy: ∃v.¬(v ∈ x↔ v ∈ y).

Reified constraints. A reified constraint is a constraint that can be expressed as a for-
mula ϕ ↔ b, for a 0/1 finite domain variable b. Exactly as for reified finite domain
constraints implemented as indexicals [8], we can detect entailment and dis-entailment
of ϕ , and we can propagate ϕ and ¬ϕ . Thus, we can reify any constraint expressible in
our ∃MSO fragment.

7 Generating Projectors for BDD-based Solvers

Solvers based on binary decision diagrams (BDDs) have been proposed as a way to
implement full domain consistency for finite set constraints [11]. This section briefly
recapitulates how BDD-based solvers work. We can then show that ∃MSO can also be
used as a specification language for BDD-based propagators.

Domains and constraints as Boolean functions. The solvers as described by Hawkins et
al. [11] represent both the variable domains and the propagators as Boolean functions.

A finite integer set s can be represented by its characteristic function: χs(i) = 1 ⇔
i ∈ s. A domain, i.e. a set of sets, is a disjunction of characteristic functions.

Constraints can also be seen as Boolean functions. In fact, formulas in our ∃MSO
fragment are a compact representation of Boolean functions. The universal quantifica-
tion ∀v corresponds to a finite conjunction over all v, because the set of values Val is
finite. For instance, the formula ∀v.v ∈ x→ v ∈ y, modeling the constraint x⊆ y, can be
transformed into the Boolean function

∧
v xv → yv.

Reduced Ordered Binary Decision Diagrams. ROBDDs are a well-known data struc-
ture for storing and manipulating Boolean functions. Hawkins et al. propose to store
complete variable domains and propagators as ROBDDs. Although this representation
may still be exponential in size, it works well for many practical examples.

Propagation using ROBDDs also performs a projection of a constraint on a single
variable, with respect to a store. The fundamental difference to our setup is the choice
of domain approximation, as ROBDDs allow to use the full A = P(Dom).

Hawkins et al. also discuss approximations including cardinality information and
lexicographic bounds [17]. These approximations can yield stronger propagation than
simple convex bounds but, in contrast to the full domain representation, have guaranteed
polynomial size.

From specification to ROBDD. As we have sketched above, ∃MSO formulas closely
correspond to Boolean functions, and can thus be used as a uniform specification lan-
guage for projectors based on both range expressions and BDDs.

Although BDDs can be used to implement the approximation based on convex sets
and cardinality, our approach still has some advantages: (1) It can be used for existing
systems that do not have a BDD-based finite set solver. (2) A direct implementation
of the convex-set approximation may be more memory efficient. (3) Projectors can be
compiled statically, and independent of the size of U . Still, projectors based on range
expressions offer the same compositionality as BDD-based projectors.

8 Implementing Projectors

The implementation techniques developed for finite domain indexicals directly carry
over to set projectors. We thus sketch only briefly how to implement projectors. Fur-
thermore, we present three ideas for efficient projector execution: grouping projectors,
common subexpression elimination, and computing without intermediate results.

Evaluating projectors. The operational model of set projectors is very similar to that
of finite domain indexicals. We just have to compute two sets (lower and upper bound)
instead of one (the new domain).

The main functionality a projector (R1 ⊆ x⊆ R2) has to implement is the evaluation
of rglb(R1,S) and rlub(R2,S). Just like indexicals, we can implement rglb and rlub using
a stack-based interpreter performing a bottom-up evaluation of a range expression [6],
or generate code that directly evaluates ranges [9, 15].

Grouping projectors. Traditionally, one projector (or indexical) is treated as one propa-
gator. Systems like SICStus Prolog [14] schedule indexicals with a higher priority than
propagators for global constraints.

However, from research on virtual machines it is well known that grouping sev-
eral instructions into one super-instruction reduces the dispatch overhead and possibly
enables an optimized implementation of the super-instructions.

In constraint programming systems, propagators play the role of instructions in a
virtual machine. Müller [15] proposes a scheme where the set of projectors that imple-
ments one constraint is compiled statically into one propagator.

Common Subexpression Elimination. Range expressions form a tree. A well-known op-
timization for evaluating tree-shaped expressions is common subexpression elimination
(or CSE): if a sub-expression appears more than once, only evaluate it once and reuse
the result afterwards.

Using CSE for range expressions has been suggested already in earlier work on
indexicals (e.g. [6]). Common subexpressions can be shared both within a single range
expression, between the two range expressions of a set projector, and between range
expressions of different projectors.

If subexpressions are shared between projectors, special care must be taken of the
order in which the projectors are evaluated, as otherwise evaluating one projector may
invalidate already computed subexpressions. This makes grouping projectors a prereq-
uisite for inter-projector CSE, because grouping fixes the order of evaluation.

Using iterators to evaluate range expressions. Bottom-up evaluation of range expres-
sions usually places intermediate results on a stack. This imposes a significant perfor-
mance penalty for finite set constraints, which can be avoided using range iterators [19].
Range iterators allow to evaluate range expressions without intermediate results.

A range iterator represents a set of integers implicitly by providing an interface for
iterating over the maximal disjoint ranges of integers that define the set. Set variables
can provide iterators for their greatest lower and least upper bound. The union or inter-
section of two iterators can again be implemented as an iterator. Domain operations on
variables, such as updating the bounds, can take iterators as their arguments. Iterators
can serve as the basis for both compiling the evaluation of range expressions to e.g. C++,
and for evaluating range expressions using an interpreter.

Implementation in Gecode. We have implemented an interpreter and a compiler for
finite set projectors for the Gecode library ([20], version 1.3 or higher). Both interpreter
and compiler provide support for negated and reified propagators.

The interpreter is a generic Gecode propagator that can be instantiated with a set of
projectors, defined by range expressions. Propagation uses range iterators to evaluate
the range expressions. This approach allows to define new set propagators at run-time.

The compiler generates C++ code that implements a Gecode propagator for a set of
projectors. Again, range iterators are used for the actual evaluation of range expressions.

Compiling to C++ code has three main advantages. First, the generated code has
no interpretation overhead. Second, more expensive static analysis can be done to de-
termine a good order of propagation for the grouped projectors (see [15]). Third, the
generated code uses template-based polymorphism instead of virtual function calls (as
discussed in [19]). This allows the C++ compiler to perform aggressive optimizations.

9 Run-time Analysis

In this section, we analyze the time complexity of evaluating set projectors. This analy-
sis shows that the naive decomposition of a constraint over n variables into n projectors
leads to quadratic run-time O(n2). We develop an extended range expression language
that allows to evaluate some important n-ary projectors in linear time O(n).

The technique presented here is independent of the constraint domain. We show that
the same technique can be used for indexicals over finite integer domain variables.

Run-time complexity of projectors. The time needed for evaluating a projector depends
on the size of its defining range expressions. We define the size of a range expression R
as the number of set operations (union, intersection, complement) R contains, and write
it |R|. To evaluate a projector px = (R1 ⊆ x ⊆ R2), one has to perform |R1|+ |R2| set
operations. Abstracting from the cost of individual operations (as it depends on how
sets are implemented), the run-time of px is in O(|R1|+ |R2|).

Example for an n-ary propagator. The finite set constraint y =
⋃

1≤i≤n xi can be stated
as n+1 finite set projectors:

py = (glb(x1)∪·· ·∪glb(xn)⊆ y⊆ lub(x1)∪·· ·∪ lub(xn))
pxi = (glb(y)\

⋃
j 6=i lub(xj)⊆ xi ⊆ lub(y)) for all xi

The range expressions in each projector have size n. Propagating all projectors once
therefore requires time O(n2). If however these n + 1 projectors are grouped, and thus
their order of propagation is fixed, we can apply a generalized form of CSE in order to
propagate in linear time.

Let us assume we propagate in the order px1 . . . pxn . Then at step pxi , we know that
for all j > i, we have not yet changed the domain of x j. Thus, we can use a precomputed
table right[i] =

⋃
j>i lub(x j). The other half of the union, lefti =

⋃
j<i lub(x j), can be

maintained incrementally while moving from step i− 1 to step i. The projectors can
thus be written as

pxi = (glb(y)\ (right[i]∪ lefti)⊆ xi ⊆ lub(y)) for all i
Computing the right[i] requires time O(n). Maintaining lefti is constant time, and

each resulting projector pxi can be executed in time O(1), too. This yields O(n) for
running all projectors once.

Indexed range expressions. We now extend range expressions so that they can be eval-
uated efficiently in the n-ary case, using the method sketched in the example above.

We assume that a subset of the variables Varidx ⊆Var is indexed, such that xi ∈Varidx
for all 1≤ i≤ k. We extend range expressions to indexed range expressions:

R ::= x | R∪R | R∩R | R |
⋃

1≤ j≤k, j 6=i x j |
⋂

1≤ j≤k, j 6=i x j | /0

To simplify presentation, we do not consider nested indexed range expressions here.
A family of projectors can now be stated together as pxi = (R1 ⊆ xi ⊆R2). We extend the
functions rlub and rglb evaluating range expressions to take the index i of the projector
as an argument. The functions rlub and rglb implement the optimization sketched above:

rlub(
⋃

1≤ j≤n, j 6=i x j, i,S) = right[i]∪ lefti
where right and lefti are the “two halves” of the union as described in the example. The
evaluation of the lower bound and the intersection is analogous.

From specification to indexed range expressions. In order to generate indexed range
expressions from formulas as specifications, we have two options. We can either add
syntactic sugar to the formulas that allows to express indexed conjunctions and disjunc-
tions, or we search for sub-formulas of the form

∧
i6= j xi (and similar for disjunction).

Application to n-ary finite domain projectors. The same scheme applies to finite domain
projectors. An n-ary linear equation ∑i xi = c can be stated as

pxi = xi in c−∑ j 6=i max(xi) . . . c−∑ j 6=i min(xi)

Again, if the pxi are evaluated in fixed order, the sums can be precomputed. As for
the set projectors, this scheme allows propagation in time O(n) instead of O(n2).

10 Conclusions and Future Work

We have presented two specification languages: ∃MSO, a high-level, purely declarative
language for specifying finite set constraints, and range expressions, a programming
language for implementing finite set projectors. Set projectors transfer the ideas of in-
dexicals to the domain of finite sets.

We have captured both languages within one formal framework. On the one hand,
this allows us to prove soundness and completeness for projectors with respect to con-
straints specified as formulas. On the other hand, we can derive sound and complete sets
of projectors from constraints specified as formulas. Furthermore, we have shown that
we can derive sound propagators for negated and reified constraints, and that ∃MSO is
a suitable specification language for BDD-based finite set solvers.

With ∃MSO we thus have an expressive, declarative, high-level specification lan-
guage for a large class of sound and complete finite set projectors, both for domain ap-
proximations using convex sets, and for complete domain representations using BDDs.

The run-time analysis we have presented shows that using plain projectors for n-ary
constraints results in quadratic run-time. We have solved this problem with the help of
indexed range expressions and evaluating projectors in a group, leading to linear run-
time for important n-ary constraints. This result carries over to finite domain indexicals.

An implementation of finite set projectors is available in the Gecode library.

Future work. We are currently integrating a BDD-based solver into the Gecode library.
This will allow us to use the same constraint specifications with different solvers. In
addition, it will ease the comparison of propagation strength as well as efficiency of
different finite set solvers.

The translation from ∃MSO formulas to range expressions still has to be imple-
mented. We currently conduct our experiments by translating formulas by hand.

Besides the implementation, our focus is on extensions of the logic as well as the
projector language. We will add cardinality reasoning, which has proven very effective
for several areas of application. An interesting further question is whether and how
propagators for a domain approximation based on lexicographic bounds [17] can be
derived automatically.

Acknowledgements. Christian Schulte is partially funded by the Swedish Research
Council (VR) under grant 621-2004-4953. Guido Tack is partially funded by DAAD
travel grant D/05/26003. The authors thank Mikael Lagerkvist and the anonymous re-
viewers for comments on earlier versions of this paper.

References
1. K. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.
2. M. Ågren, P. Flener, and J. Pearson. Incremental algorithms for local search from existential

second-order logic. In P. van Beek, editor, Proceedings of the 11th International Conference
on Principles and Practice of Constraint Programming, volume 3709 of LNCS, pages 47–61.
Springer, 2005.

3. N. Beldiceanu, M. Carlsson, and T. Petit. Deriving filtering algorithms from constraint
checkers. In Wallace [21], pages 107–122.

4. F. Benhamou. Heterogeneous Constraint Solving. In Proceedings of the fifth International
Conference on Algebraic and Logic Programming (ALP’96), LNCS 1139, pages 62–76.
Springer, 1996.

5. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The range and roots constraints:
Specifying counting and occurrence constraints. In IJCAI, pages 60–65, Aug. 2005.

6. B. Carlson. Compiling and Executing Finite Domain Constraints. PhD thesis, Uppsala
University, Sweden, 1995.

7. B. Carlson, M. Carlsson, and D. Diaz. Entailment of finite domain constraints. In Proceed-
ings of the Eleventh International Conference on Logic Programming, pages 339–353. MIT
Press, 1994.

8. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint solver.
In H. Glaser, P. H. Hartel, and H. Kuchen, editors, PLILP, volume 1292 of LNCS, pages
191–206. Springer, 1997.

9. P. Codognet and D. Diaz. Compiling constraints in clp(FD). Journal of Logic Programming,
27(3):185–226, 1996.

10. C. Gervet. Interval propagation to reason about sets: Definition and implementation of a
practical language. Constraints, 1(3):191–244, 1997.

11. P. Hawkins, V. Lagoon, and P. Stuckey. Solving set constraint satisfaction problems using
ROBDDs. J. Artif. Intell. Res. (JAIR), 24:109–156, 2005.

12. P. V. Hentenryck, V. A. Saraswat, and Y. Deville. Constraint processing in cc(FD). Technical
report, Brown University, 1991.

13. P. V. Hentenryck, V. A. Saraswat, and Y. Deville. Design, implementation, and evaluation of
the constraint language cc(FD). Journal of Logic Programming, 37(1-3):293–316, 1998.

14. Intelligent Systems Laboratory. SICStus Prolog user’s manual, 3.12.1. Technical report,
Swedish Institute of Computer Science, Box 1263, 164 29 Kista, Sweden, 2006.

15. T. Müller. Constraint Propagation in Mozart. Doctoral dissertation, Universität des Saar-
landes, Naturwissenschaftlich-Technische Fakultät I, Fachrichtung Informatik, Saarbrücken,
Germany, 2001.

16. J.-F. Puget. PECOS: A high level constraint programming language. In Proceedings of the
first Singapore international conference on Intelligent Systems (SPICIS), pages 137–142,
1992.

17. A. Sadler and C. Gervet. Hybrid set domains to strengthen constraint propagation and reduce
symmetries. In Wallace [21], pages 604–618.

18. C. Schulte and P. J. Stuckey. Speeding up constraint propagation. In Wallace [21], pages
619–633.

19. C. Schulte and G. Tack. Views and iterators for generic constraint implementations. In
M. Carlsson, F. Fages, B. Hnich, and F. Rossi, editors, Recent Advances in Constraints,
2005, volume 3978 of LNCS, pages 118–132. Springer, 2006.

20. The Gecode team. Generic constraint development environment. www.gecode.org, 2006.
21. M. Wallace, editor. Principles and Practice of Constraint Programming - CP 2004, 10th

International Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004, Pro-
ceedings, volume 3258 of LNCS. Springer, 2004.

